1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Aggregate Expression Emitter 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 38 CodeGenFunction &CGF; 39 CGBuilderTy &Builder; 40 AggValueSlot Dest; 41 bool IsResultUnused; 42 43 AggValueSlot EnsureSlot(QualType T) { 44 if (!Dest.isIgnored()) return Dest; 45 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 46 } 47 void EnsureDest(QualType T) { 48 if (!Dest.isIgnored()) return; 49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 // Calls `Fn` with a valid return value slot, potentially creating a temporary 53 // to do so. If a temporary is created, an appropriate copy into `Dest` will 54 // be emitted, as will lifetime markers. 55 // 56 // The given function should take a ReturnValueSlot, and return an RValue that 57 // points to said slot. 58 void withReturnValueSlot(const Expr *E, 59 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 60 61 public: 62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IsResultUnused(IsResultUnused) { } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 enum ExprValueKind { 76 EVK_RValue, 77 EVK_NonRValue 78 }; 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 /// SrcIsRValue is true if source comes from an RValue. 82 void EmitFinalDestCopy(QualType type, const LValue &src, 83 ExprValueKind SrcValueKind = EVK_NonRValue); 84 void EmitFinalDestCopy(QualType type, RValue src); 85 void EmitCopy(QualType type, const AggValueSlot &dest, 86 const AggValueSlot &src); 87 88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 89 90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 91 QualType ArrayQTy, InitListExpr *E); 92 93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 95 return AggValueSlot::NeedsGCBarriers; 96 return AggValueSlot::DoesNotNeedGCBarriers; 97 } 98 99 bool TypeRequiresGCollection(QualType T); 100 101 //===--------------------------------------------------------------------===// 102 // Visitor Methods 103 //===--------------------------------------------------------------------===// 104 105 void Visit(Expr *E) { 106 ApplyDebugLocation DL(CGF, E); 107 StmtVisitor<AggExprEmitter>::Visit(E); 108 } 109 110 void VisitStmt(Stmt *S) { 111 CGF.ErrorUnsupported(S, "aggregate expression"); 112 } 113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 115 Visit(GE->getResultExpr()); 116 } 117 void VisitCoawaitExpr(CoawaitExpr *E) { 118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitCoyieldExpr(CoyieldExpr *E) { 121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 122 } 123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 126 return Visit(E->getReplacement()); 127 } 128 129 void VisitConstantExpr(ConstantExpr *E) { 130 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 131 CGF.EmitAggregateStore(Result, Dest.getAddress(), 132 E->getType().isVolatileQualified()); 133 return; 134 } 135 return Visit(E->getSubExpr()); 136 } 137 138 // l-values. 139 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 140 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 141 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 142 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 143 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 144 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 145 EmitAggLoadOfLValue(E); 146 } 147 void VisitPredefinedExpr(const PredefinedExpr *E) { 148 EmitAggLoadOfLValue(E); 149 } 150 151 // Operators. 152 void VisitCastExpr(CastExpr *E); 153 void VisitCallExpr(const CallExpr *E); 154 void VisitStmtExpr(const StmtExpr *E); 155 void VisitBinaryOperator(const BinaryOperator *BO); 156 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 157 void VisitBinAssign(const BinaryOperator *E); 158 void VisitBinComma(const BinaryOperator *E); 159 void VisitBinCmp(const BinaryOperator *E); 160 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 161 Visit(E->getSemanticForm()); 162 } 163 164 void VisitObjCMessageExpr(ObjCMessageExpr *E); 165 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 166 EmitAggLoadOfLValue(E); 167 } 168 169 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 170 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 171 void VisitChooseExpr(const ChooseExpr *CE); 172 void VisitInitListExpr(InitListExpr *E); 173 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 174 llvm::Value *outerBegin = nullptr); 175 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 176 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 177 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 178 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 179 Visit(DAE->getExpr()); 180 } 181 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 182 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 183 Visit(DIE->getExpr()); 184 } 185 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 186 void VisitCXXConstructExpr(const CXXConstructExpr *E); 187 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 188 void VisitLambdaExpr(LambdaExpr *E); 189 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 190 void VisitExprWithCleanups(ExprWithCleanups *E); 191 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 192 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 193 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 194 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 195 196 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 197 if (E->isGLValue()) { 198 LValue LV = CGF.EmitPseudoObjectLValue(E); 199 return EmitFinalDestCopy(E->getType(), LV); 200 } 201 202 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 203 } 204 205 void VisitVAArgExpr(VAArgExpr *E); 206 207 void EmitInitializationToLValue(Expr *E, LValue Address); 208 void EmitNullInitializationToLValue(LValue Address); 209 // case Expr::ChooseExprClass: 210 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 211 void VisitAtomicExpr(AtomicExpr *E) { 212 RValue Res = CGF.EmitAtomicExpr(E); 213 EmitFinalDestCopy(E->getType(), Res); 214 } 215 }; 216 } // end anonymous namespace. 217 218 //===----------------------------------------------------------------------===// 219 // Utilities 220 //===----------------------------------------------------------------------===// 221 222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 223 /// represents a value lvalue, this method emits the address of the lvalue, 224 /// then loads the result into DestPtr. 225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 226 LValue LV = CGF.EmitLValue(E); 227 228 // If the type of the l-value is atomic, then do an atomic load. 229 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 230 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 231 return; 232 } 233 234 EmitFinalDestCopy(E->getType(), LV); 235 } 236 237 /// True if the given aggregate type requires special GC API calls. 238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 239 // Only record types have members that might require garbage collection. 240 const RecordType *RecordTy = T->getAs<RecordType>(); 241 if (!RecordTy) return false; 242 243 // Don't mess with non-trivial C++ types. 244 RecordDecl *Record = RecordTy->getDecl(); 245 if (isa<CXXRecordDecl>(Record) && 246 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 247 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 248 return false; 249 250 // Check whether the type has an object member. 251 return Record->hasObjectMember(); 252 } 253 254 void AggExprEmitter::withReturnValueSlot( 255 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 256 QualType RetTy = E->getType(); 257 bool RequiresDestruction = 258 !Dest.isExternallyDestructed() && 259 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 260 261 // If it makes no observable difference, save a memcpy + temporary. 262 // 263 // We need to always provide our own temporary if destruction is required. 264 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 265 // its lifetime before we have the chance to emit a proper destructor call. 266 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 267 (RequiresDestruction && !Dest.getAddress().isValid()); 268 269 Address RetAddr = Address::invalid(); 270 Address RetAllocaAddr = Address::invalid(); 271 272 EHScopeStack::stable_iterator LifetimeEndBlock; 273 llvm::Value *LifetimeSizePtr = nullptr; 274 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 275 if (!UseTemp) { 276 RetAddr = Dest.getAddress(); 277 } else { 278 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 279 llvm::TypeSize Size = 280 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 281 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 282 if (LifetimeSizePtr) { 283 LifetimeStartInst = 284 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 285 assert(LifetimeStartInst->getIntrinsicID() == 286 llvm::Intrinsic::lifetime_start && 287 "Last insertion wasn't a lifetime.start?"); 288 289 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 290 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 291 LifetimeEndBlock = CGF.EHStack.stable_begin(); 292 } 293 } 294 295 RValue Src = 296 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 297 Dest.isExternallyDestructed())); 298 299 if (!UseTemp) 300 return; 301 302 assert(Dest.getPointer() != Src.getAggregatePointer()); 303 EmitFinalDestCopy(E->getType(), Src); 304 305 if (!RequiresDestruction && LifetimeStartInst) { 306 // If there's no dtor to run, the copy was the last use of our temporary. 307 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 308 // eagerly. 309 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 310 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 311 } 312 } 313 314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 316 assert(src.isAggregate() && "value must be aggregate value!"); 317 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 318 EmitFinalDestCopy(type, srcLV, EVK_RValue); 319 } 320 321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 323 ExprValueKind SrcValueKind) { 324 // If Dest is ignored, then we're evaluating an aggregate expression 325 // in a context that doesn't care about the result. Note that loads 326 // from volatile l-values force the existence of a non-ignored 327 // destination. 328 if (Dest.isIgnored()) 329 return; 330 331 // Copy non-trivial C structs here. 332 LValue DstLV = CGF.MakeAddrLValue( 333 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 334 335 if (SrcValueKind == EVK_RValue) { 336 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 337 if (Dest.isPotentiallyAliased()) 338 CGF.callCStructMoveAssignmentOperator(DstLV, src); 339 else 340 CGF.callCStructMoveConstructor(DstLV, src); 341 return; 342 } 343 } else { 344 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 345 if (Dest.isPotentiallyAliased()) 346 CGF.callCStructCopyAssignmentOperator(DstLV, src); 347 else 348 CGF.callCStructCopyConstructor(DstLV, src); 349 return; 350 } 351 } 352 353 AggValueSlot srcAgg = AggValueSlot::forLValue( 354 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 355 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 356 EmitCopy(type, Dest, srcAgg); 357 } 358 359 /// Perform a copy from the source into the destination. 360 /// 361 /// \param type - the type of the aggregate being copied; qualifiers are 362 /// ignored 363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 364 const AggValueSlot &src) { 365 if (dest.requiresGCollection()) { 366 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 367 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 368 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 369 dest.getAddress(), 370 src.getAddress(), 371 size); 372 return; 373 } 374 375 // If the result of the assignment is used, copy the LHS there also. 376 // It's volatile if either side is. Use the minimum alignment of 377 // the two sides. 378 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 379 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 380 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 381 dest.isVolatile() || src.isVolatile()); 382 } 383 384 /// Emit the initializer for a std::initializer_list initialized with a 385 /// real initializer list. 386 void 387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 388 // Emit an array containing the elements. The array is externally destructed 389 // if the std::initializer_list object is. 390 ASTContext &Ctx = CGF.getContext(); 391 LValue Array = CGF.EmitLValue(E->getSubExpr()); 392 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 393 Address ArrayPtr = Array.getAddress(CGF); 394 395 const ConstantArrayType *ArrayType = 396 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 397 assert(ArrayType && "std::initializer_list constructed from non-array"); 398 399 // FIXME: Perform the checks on the field types in SemaInit. 400 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 401 RecordDecl::field_iterator Field = Record->field_begin(); 402 if (Field == Record->field_end()) { 403 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 404 return; 405 } 406 407 // Start pointer. 408 if (!Field->getType()->isPointerType() || 409 !Ctx.hasSameType(Field->getType()->getPointeeType(), 410 ArrayType->getElementType())) { 411 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 412 return; 413 } 414 415 AggValueSlot Dest = EnsureSlot(E->getType()); 416 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 417 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 418 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 419 llvm::Value *IdxStart[] = { Zero, Zero }; 420 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP( 421 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart"); 422 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 423 ++Field; 424 425 if (Field == Record->field_end()) { 426 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 427 return; 428 } 429 430 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 431 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 432 if (Field->getType()->isPointerType() && 433 Ctx.hasSameType(Field->getType()->getPointeeType(), 434 ArrayType->getElementType())) { 435 // End pointer. 436 llvm::Value *IdxEnd[] = { Zero, Size }; 437 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP( 438 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend"); 439 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 440 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 441 // Length. 442 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 443 } else { 444 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 445 return; 446 } 447 } 448 449 /// Determine if E is a trivial array filler, that is, one that is 450 /// equivalent to zero-initialization. 451 static bool isTrivialFiller(Expr *E) { 452 if (!E) 453 return true; 454 455 if (isa<ImplicitValueInitExpr>(E)) 456 return true; 457 458 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 459 if (ILE->getNumInits()) 460 return false; 461 return isTrivialFiller(ILE->getArrayFiller()); 462 } 463 464 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 465 return Cons->getConstructor()->isDefaultConstructor() && 466 Cons->getConstructor()->isTrivial(); 467 468 // FIXME: Are there other cases where we can avoid emitting an initializer? 469 return false; 470 } 471 472 /// Emit initialization of an array from an initializer list. 473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 474 QualType ArrayQTy, InitListExpr *E) { 475 uint64_t NumInitElements = E->getNumInits(); 476 477 uint64_t NumArrayElements = AType->getNumElements(); 478 assert(NumInitElements <= NumArrayElements); 479 480 QualType elementType = 481 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 482 483 // DestPtr is an array*. Construct an elementType* by drilling 484 // down a level. 485 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 486 llvm::Value *indices[] = { zero, zero }; 487 llvm::Value *begin = Builder.CreateInBoundsGEP( 488 DestPtr.getElementType(), DestPtr.getPointer(), indices, 489 "arrayinit.begin"); 490 491 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 492 CharUnits elementAlign = 493 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 494 llvm::Type *llvmElementType = begin->getType()->getPointerElementType(); 495 496 // Consider initializing the array by copying from a global. For this to be 497 // more efficient than per-element initialization, the size of the elements 498 // with explicit initializers should be large enough. 499 if (NumInitElements * elementSize.getQuantity() > 16 && 500 elementType.isTriviallyCopyableType(CGF.getContext())) { 501 CodeGen::CodeGenModule &CGM = CGF.CGM; 502 ConstantEmitter Emitter(CGF); 503 LangAS AS = ArrayQTy.getAddressSpace(); 504 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 505 auto GV = new llvm::GlobalVariable( 506 CGM.getModule(), C->getType(), 507 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 508 llvm::GlobalValue::PrivateLinkage, C, "constinit", 509 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 510 CGM.getContext().getTargetAddressSpace(AS)); 511 Emitter.finalize(GV); 512 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 513 GV->setAlignment(Align.getAsAlign()); 514 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 515 return; 516 } 517 } 518 519 // Exception safety requires us to destroy all the 520 // already-constructed members if an initializer throws. 521 // For that, we'll need an EH cleanup. 522 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 523 Address endOfInit = Address::invalid(); 524 EHScopeStack::stable_iterator cleanup; 525 llvm::Instruction *cleanupDominator = nullptr; 526 if (CGF.needsEHCleanup(dtorKind)) { 527 // In principle we could tell the cleanup where we are more 528 // directly, but the control flow can get so varied here that it 529 // would actually be quite complex. Therefore we go through an 530 // alloca. 531 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 532 "arrayinit.endOfInit"); 533 cleanupDominator = Builder.CreateStore(begin, endOfInit); 534 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 535 elementAlign, 536 CGF.getDestroyer(dtorKind)); 537 cleanup = CGF.EHStack.stable_begin(); 538 539 // Otherwise, remember that we didn't need a cleanup. 540 } else { 541 dtorKind = QualType::DK_none; 542 } 543 544 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 545 546 // The 'current element to initialize'. The invariants on this 547 // variable are complicated. Essentially, after each iteration of 548 // the loop, it points to the last initialized element, except 549 // that it points to the beginning of the array before any 550 // elements have been initialized. 551 llvm::Value *element = begin; 552 553 // Emit the explicit initializers. 554 for (uint64_t i = 0; i != NumInitElements; ++i) { 555 // Advance to the next element. 556 if (i > 0) { 557 element = Builder.CreateInBoundsGEP( 558 llvmElementType, element, one, "arrayinit.element"); 559 560 // Tell the cleanup that it needs to destroy up to this 561 // element. TODO: some of these stores can be trivially 562 // observed to be unnecessary. 563 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 564 } 565 566 LValue elementLV = 567 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 568 EmitInitializationToLValue(E->getInit(i), elementLV); 569 } 570 571 // Check whether there's a non-trivial array-fill expression. 572 Expr *filler = E->getArrayFiller(); 573 bool hasTrivialFiller = isTrivialFiller(filler); 574 575 // Any remaining elements need to be zero-initialized, possibly 576 // using the filler expression. We can skip this if the we're 577 // emitting to zeroed memory. 578 if (NumInitElements != NumArrayElements && 579 !(Dest.isZeroed() && hasTrivialFiller && 580 CGF.getTypes().isZeroInitializable(elementType))) { 581 582 // Use an actual loop. This is basically 583 // do { *array++ = filler; } while (array != end); 584 585 // Advance to the start of the rest of the array. 586 if (NumInitElements) { 587 element = Builder.CreateInBoundsGEP( 588 llvmElementType, element, one, "arrayinit.start"); 589 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 590 } 591 592 // Compute the end of the array. 593 llvm::Value *end = Builder.CreateInBoundsGEP( 594 llvmElementType, begin, 595 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end"); 596 597 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 598 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 599 600 // Jump into the body. 601 CGF.EmitBlock(bodyBB); 602 llvm::PHINode *currentElement = 603 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 604 currentElement->addIncoming(element, entryBB); 605 606 // Emit the actual filler expression. 607 { 608 // C++1z [class.temporary]p5: 609 // when a default constructor is called to initialize an element of 610 // an array with no corresponding initializer [...] the destruction of 611 // every temporary created in a default argument is sequenced before 612 // the construction of the next array element, if any 613 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 614 LValue elementLV = 615 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 616 if (filler) 617 EmitInitializationToLValue(filler, elementLV); 618 else 619 EmitNullInitializationToLValue(elementLV); 620 } 621 622 // Move on to the next element. 623 llvm::Value *nextElement = Builder.CreateInBoundsGEP( 624 llvmElementType, currentElement, one, "arrayinit.next"); 625 626 // Tell the EH cleanup that we finished with the last element. 627 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 628 629 // Leave the loop if we're done. 630 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 631 "arrayinit.done"); 632 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 633 Builder.CreateCondBr(done, endBB, bodyBB); 634 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 635 636 CGF.EmitBlock(endBB); 637 } 638 639 // Leave the partial-array cleanup if we entered one. 640 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 641 } 642 643 //===----------------------------------------------------------------------===// 644 // Visitor Methods 645 //===----------------------------------------------------------------------===// 646 647 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 648 Visit(E->getSubExpr()); 649 } 650 651 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 652 // If this is a unique OVE, just visit its source expression. 653 if (e->isUnique()) 654 Visit(e->getSourceExpr()); 655 else 656 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 657 } 658 659 void 660 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 661 if (Dest.isPotentiallyAliased() && 662 E->getType().isPODType(CGF.getContext())) { 663 // For a POD type, just emit a load of the lvalue + a copy, because our 664 // compound literal might alias the destination. 665 EmitAggLoadOfLValue(E); 666 return; 667 } 668 669 AggValueSlot Slot = EnsureSlot(E->getType()); 670 671 // Block-scope compound literals are destroyed at the end of the enclosing 672 // scope in C. 673 bool Destruct = 674 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 675 if (Destruct) 676 Slot.setExternallyDestructed(); 677 678 CGF.EmitAggExpr(E->getInitializer(), Slot); 679 680 if (Destruct) 681 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 682 CGF.pushLifetimeExtendedDestroy( 683 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 684 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 685 } 686 687 /// Attempt to look through various unimportant expressions to find a 688 /// cast of the given kind. 689 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) { 690 op = op->IgnoreParenNoopCasts(ctx); 691 if (auto castE = dyn_cast<CastExpr>(op)) { 692 if (castE->getCastKind() == kind) 693 return castE->getSubExpr(); 694 } 695 return nullptr; 696 } 697 698 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 699 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 700 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 701 switch (E->getCastKind()) { 702 case CK_Dynamic: { 703 // FIXME: Can this actually happen? We have no test coverage for it. 704 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 705 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 706 CodeGenFunction::TCK_Load); 707 // FIXME: Do we also need to handle property references here? 708 if (LV.isSimple()) 709 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 710 else 711 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 712 713 if (!Dest.isIgnored()) 714 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 715 break; 716 } 717 718 case CK_ToUnion: { 719 // Evaluate even if the destination is ignored. 720 if (Dest.isIgnored()) { 721 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 722 /*ignoreResult=*/true); 723 break; 724 } 725 726 // GCC union extension 727 QualType Ty = E->getSubExpr()->getType(); 728 Address CastPtr = 729 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 730 EmitInitializationToLValue(E->getSubExpr(), 731 CGF.MakeAddrLValue(CastPtr, Ty)); 732 break; 733 } 734 735 case CK_LValueToRValueBitCast: { 736 if (Dest.isIgnored()) { 737 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 738 /*ignoreResult=*/true); 739 break; 740 } 741 742 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 743 Address SourceAddress = 744 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty); 745 Address DestAddress = 746 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 747 llvm::Value *SizeVal = llvm::ConstantInt::get( 748 CGF.SizeTy, 749 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 750 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 751 break; 752 } 753 754 case CK_DerivedToBase: 755 case CK_BaseToDerived: 756 case CK_UncheckedDerivedToBase: { 757 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 758 "should have been unpacked before we got here"); 759 } 760 761 case CK_NonAtomicToAtomic: 762 case CK_AtomicToNonAtomic: { 763 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 764 765 // Determine the atomic and value types. 766 QualType atomicType = E->getSubExpr()->getType(); 767 QualType valueType = E->getType(); 768 if (isToAtomic) std::swap(atomicType, valueType); 769 770 assert(atomicType->isAtomicType()); 771 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 772 atomicType->castAs<AtomicType>()->getValueType())); 773 774 // Just recurse normally if we're ignoring the result or the 775 // atomic type doesn't change representation. 776 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 777 return Visit(E->getSubExpr()); 778 } 779 780 CastKind peepholeTarget = 781 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 782 783 // These two cases are reverses of each other; try to peephole them. 784 if (Expr *op = 785 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) { 786 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 787 E->getType()) && 788 "peephole significantly changed types?"); 789 return Visit(op); 790 } 791 792 // If we're converting an r-value of non-atomic type to an r-value 793 // of atomic type, just emit directly into the relevant sub-object. 794 if (isToAtomic) { 795 AggValueSlot valueDest = Dest; 796 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 797 // Zero-initialize. (Strictly speaking, we only need to initialize 798 // the padding at the end, but this is simpler.) 799 if (!Dest.isZeroed()) 800 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 801 802 // Build a GEP to refer to the subobject. 803 Address valueAddr = 804 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 805 valueDest = AggValueSlot::forAddr(valueAddr, 806 valueDest.getQualifiers(), 807 valueDest.isExternallyDestructed(), 808 valueDest.requiresGCollection(), 809 valueDest.isPotentiallyAliased(), 810 AggValueSlot::DoesNotOverlap, 811 AggValueSlot::IsZeroed); 812 } 813 814 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 815 return; 816 } 817 818 // Otherwise, we're converting an atomic type to a non-atomic type. 819 // Make an atomic temporary, emit into that, and then copy the value out. 820 AggValueSlot atomicSlot = 821 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 822 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 823 824 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 825 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 826 return EmitFinalDestCopy(valueType, rvalue); 827 } 828 case CK_AddressSpaceConversion: 829 return Visit(E->getSubExpr()); 830 831 case CK_LValueToRValue: 832 // If we're loading from a volatile type, force the destination 833 // into existence. 834 if (E->getSubExpr()->getType().isVolatileQualified()) { 835 bool Destruct = 836 !Dest.isExternallyDestructed() && 837 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 838 if (Destruct) 839 Dest.setExternallyDestructed(); 840 EnsureDest(E->getType()); 841 Visit(E->getSubExpr()); 842 843 if (Destruct) 844 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 845 E->getType()); 846 847 return; 848 } 849 850 LLVM_FALLTHROUGH; 851 852 853 case CK_NoOp: 854 case CK_UserDefinedConversion: 855 case CK_ConstructorConversion: 856 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 857 E->getType()) && 858 "Implicit cast types must be compatible"); 859 Visit(E->getSubExpr()); 860 break; 861 862 case CK_LValueBitCast: 863 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 864 865 case CK_Dependent: 866 case CK_BitCast: 867 case CK_ArrayToPointerDecay: 868 case CK_FunctionToPointerDecay: 869 case CK_NullToPointer: 870 case CK_NullToMemberPointer: 871 case CK_BaseToDerivedMemberPointer: 872 case CK_DerivedToBaseMemberPointer: 873 case CK_MemberPointerToBoolean: 874 case CK_ReinterpretMemberPointer: 875 case CK_IntegralToPointer: 876 case CK_PointerToIntegral: 877 case CK_PointerToBoolean: 878 case CK_ToVoid: 879 case CK_VectorSplat: 880 case CK_IntegralCast: 881 case CK_BooleanToSignedIntegral: 882 case CK_IntegralToBoolean: 883 case CK_IntegralToFloating: 884 case CK_FloatingToIntegral: 885 case CK_FloatingToBoolean: 886 case CK_FloatingCast: 887 case CK_CPointerToObjCPointerCast: 888 case CK_BlockPointerToObjCPointerCast: 889 case CK_AnyPointerToBlockPointerCast: 890 case CK_ObjCObjectLValueCast: 891 case CK_FloatingRealToComplex: 892 case CK_FloatingComplexToReal: 893 case CK_FloatingComplexToBoolean: 894 case CK_FloatingComplexCast: 895 case CK_FloatingComplexToIntegralComplex: 896 case CK_IntegralRealToComplex: 897 case CK_IntegralComplexToReal: 898 case CK_IntegralComplexToBoolean: 899 case CK_IntegralComplexCast: 900 case CK_IntegralComplexToFloatingComplex: 901 case CK_ARCProduceObject: 902 case CK_ARCConsumeObject: 903 case CK_ARCReclaimReturnedObject: 904 case CK_ARCExtendBlockObject: 905 case CK_CopyAndAutoreleaseBlockObject: 906 case CK_BuiltinFnToFnPtr: 907 case CK_ZeroToOCLOpaqueType: 908 case CK_MatrixCast: 909 910 case CK_IntToOCLSampler: 911 case CK_FloatingToFixedPoint: 912 case CK_FixedPointToFloating: 913 case CK_FixedPointCast: 914 case CK_FixedPointToBoolean: 915 case CK_FixedPointToIntegral: 916 case CK_IntegralToFixedPoint: 917 llvm_unreachable("cast kind invalid for aggregate types"); 918 } 919 } 920 921 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 922 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 923 EmitAggLoadOfLValue(E); 924 return; 925 } 926 927 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 928 return CGF.EmitCallExpr(E, Slot); 929 }); 930 } 931 932 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 933 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 934 return CGF.EmitObjCMessageExpr(E, Slot); 935 }); 936 } 937 938 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 939 CGF.EmitIgnoredExpr(E->getLHS()); 940 Visit(E->getRHS()); 941 } 942 943 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 944 CodeGenFunction::StmtExprEvaluation eval(CGF); 945 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 946 } 947 948 enum CompareKind { 949 CK_Less, 950 CK_Greater, 951 CK_Equal, 952 }; 953 954 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 955 const BinaryOperator *E, llvm::Value *LHS, 956 llvm::Value *RHS, CompareKind Kind, 957 const char *NameSuffix = "") { 958 QualType ArgTy = E->getLHS()->getType(); 959 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 960 ArgTy = CT->getElementType(); 961 962 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 963 assert(Kind == CK_Equal && 964 "member pointers may only be compared for equality"); 965 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 966 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 967 } 968 969 // Compute the comparison instructions for the specified comparison kind. 970 struct CmpInstInfo { 971 const char *Name; 972 llvm::CmpInst::Predicate FCmp; 973 llvm::CmpInst::Predicate SCmp; 974 llvm::CmpInst::Predicate UCmp; 975 }; 976 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 977 using FI = llvm::FCmpInst; 978 using II = llvm::ICmpInst; 979 switch (Kind) { 980 case CK_Less: 981 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 982 case CK_Greater: 983 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 984 case CK_Equal: 985 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 986 } 987 llvm_unreachable("Unrecognised CompareKind enum"); 988 }(); 989 990 if (ArgTy->hasFloatingRepresentation()) 991 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 992 llvm::Twine(InstInfo.Name) + NameSuffix); 993 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 994 auto Inst = 995 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 996 return Builder.CreateICmp(Inst, LHS, RHS, 997 llvm::Twine(InstInfo.Name) + NameSuffix); 998 } 999 1000 llvm_unreachable("unsupported aggregate binary expression should have " 1001 "already been handled"); 1002 } 1003 1004 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 1005 using llvm::BasicBlock; 1006 using llvm::PHINode; 1007 using llvm::Value; 1008 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 1009 E->getRHS()->getType())); 1010 const ComparisonCategoryInfo &CmpInfo = 1011 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1012 assert(CmpInfo.Record->isTriviallyCopyable() && 1013 "cannot copy non-trivially copyable aggregate"); 1014 1015 QualType ArgTy = E->getLHS()->getType(); 1016 1017 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1018 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1019 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1020 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1021 } 1022 bool IsComplex = ArgTy->isAnyComplexType(); 1023 1024 // Evaluate the operands to the expression and extract their values. 1025 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1026 RValue RV = CGF.EmitAnyExpr(E); 1027 if (RV.isScalar()) 1028 return {RV.getScalarVal(), nullptr}; 1029 if (RV.isAggregate()) 1030 return {RV.getAggregatePointer(), nullptr}; 1031 assert(RV.isComplex()); 1032 return RV.getComplexVal(); 1033 }; 1034 auto LHSValues = EmitOperand(E->getLHS()), 1035 RHSValues = EmitOperand(E->getRHS()); 1036 1037 auto EmitCmp = [&](CompareKind K) { 1038 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1039 K, IsComplex ? ".r" : ""); 1040 if (!IsComplex) 1041 return Cmp; 1042 assert(K == CompareKind::CK_Equal); 1043 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1044 RHSValues.second, K, ".i"); 1045 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1046 }; 1047 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1048 return Builder.getInt(VInfo->getIntValue()); 1049 }; 1050 1051 Value *Select; 1052 if (ArgTy->isNullPtrType()) { 1053 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1054 } else if (!CmpInfo.isPartial()) { 1055 Value *SelectOne = 1056 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1057 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1058 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1059 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1060 SelectOne, "sel.eq"); 1061 } else { 1062 Value *SelectEq = Builder.CreateSelect( 1063 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1064 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1065 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1066 EmitCmpRes(CmpInfo.getGreater()), 1067 SelectEq, "sel.gt"); 1068 Select = Builder.CreateSelect( 1069 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1070 } 1071 // Create the return value in the destination slot. 1072 EnsureDest(E->getType()); 1073 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1074 1075 // Emit the address of the first (and only) field in the comparison category 1076 // type, and initialize it from the constant integer value selected above. 1077 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1078 DestLV, *CmpInfo.Record->field_begin()); 1079 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1080 1081 // All done! The result is in the Dest slot. 1082 } 1083 1084 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1085 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1086 VisitPointerToDataMemberBinaryOperator(E); 1087 else 1088 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1089 } 1090 1091 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1092 const BinaryOperator *E) { 1093 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1094 EmitFinalDestCopy(E->getType(), LV); 1095 } 1096 1097 /// Is the value of the given expression possibly a reference to or 1098 /// into a __block variable? 1099 static bool isBlockVarRef(const Expr *E) { 1100 // Make sure we look through parens. 1101 E = E->IgnoreParens(); 1102 1103 // Check for a direct reference to a __block variable. 1104 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1105 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1106 return (var && var->hasAttr<BlocksAttr>()); 1107 } 1108 1109 // More complicated stuff. 1110 1111 // Binary operators. 1112 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1113 // For an assignment or pointer-to-member operation, just care 1114 // about the LHS. 1115 if (op->isAssignmentOp() || op->isPtrMemOp()) 1116 return isBlockVarRef(op->getLHS()); 1117 1118 // For a comma, just care about the RHS. 1119 if (op->getOpcode() == BO_Comma) 1120 return isBlockVarRef(op->getRHS()); 1121 1122 // FIXME: pointer arithmetic? 1123 return false; 1124 1125 // Check both sides of a conditional operator. 1126 } else if (const AbstractConditionalOperator *op 1127 = dyn_cast<AbstractConditionalOperator>(E)) { 1128 return isBlockVarRef(op->getTrueExpr()) 1129 || isBlockVarRef(op->getFalseExpr()); 1130 1131 // OVEs are required to support BinaryConditionalOperators. 1132 } else if (const OpaqueValueExpr *op 1133 = dyn_cast<OpaqueValueExpr>(E)) { 1134 if (const Expr *src = op->getSourceExpr()) 1135 return isBlockVarRef(src); 1136 1137 // Casts are necessary to get things like (*(int*)&var) = foo(). 1138 // We don't really care about the kind of cast here, except 1139 // we don't want to look through l2r casts, because it's okay 1140 // to get the *value* in a __block variable. 1141 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1142 if (cast->getCastKind() == CK_LValueToRValue) 1143 return false; 1144 return isBlockVarRef(cast->getSubExpr()); 1145 1146 // Handle unary operators. Again, just aggressively look through 1147 // it, ignoring the operation. 1148 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1149 return isBlockVarRef(uop->getSubExpr()); 1150 1151 // Look into the base of a field access. 1152 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1153 return isBlockVarRef(mem->getBase()); 1154 1155 // Look into the base of a subscript. 1156 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1157 return isBlockVarRef(sub->getBase()); 1158 } 1159 1160 return false; 1161 } 1162 1163 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1164 // For an assignment to work, the value on the right has 1165 // to be compatible with the value on the left. 1166 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1167 E->getRHS()->getType()) 1168 && "Invalid assignment"); 1169 1170 // If the LHS might be a __block variable, and the RHS can 1171 // potentially cause a block copy, we need to evaluate the RHS first 1172 // so that the assignment goes the right place. 1173 // This is pretty semantically fragile. 1174 if (isBlockVarRef(E->getLHS()) && 1175 E->getRHS()->HasSideEffects(CGF.getContext())) { 1176 // Ensure that we have a destination, and evaluate the RHS into that. 1177 EnsureDest(E->getRHS()->getType()); 1178 Visit(E->getRHS()); 1179 1180 // Now emit the LHS and copy into it. 1181 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1182 1183 // That copy is an atomic copy if the LHS is atomic. 1184 if (LHS.getType()->isAtomicType() || 1185 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1186 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1187 return; 1188 } 1189 1190 EmitCopy(E->getLHS()->getType(), 1191 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1192 needsGC(E->getLHS()->getType()), 1193 AggValueSlot::IsAliased, 1194 AggValueSlot::MayOverlap), 1195 Dest); 1196 return; 1197 } 1198 1199 LValue LHS = CGF.EmitLValue(E->getLHS()); 1200 1201 // If we have an atomic type, evaluate into the destination and then 1202 // do an atomic copy. 1203 if (LHS.getType()->isAtomicType() || 1204 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1205 EnsureDest(E->getRHS()->getType()); 1206 Visit(E->getRHS()); 1207 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1208 return; 1209 } 1210 1211 // Codegen the RHS so that it stores directly into the LHS. 1212 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1213 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1214 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1215 // A non-volatile aggregate destination might have volatile member. 1216 if (!LHSSlot.isVolatile() && 1217 CGF.hasVolatileMember(E->getLHS()->getType())) 1218 LHSSlot.setVolatile(true); 1219 1220 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1221 1222 // Copy into the destination if the assignment isn't ignored. 1223 EmitFinalDestCopy(E->getType(), LHS); 1224 1225 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() && 1226 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 1227 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1228 E->getType()); 1229 } 1230 1231 void AggExprEmitter:: 1232 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1233 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1234 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1235 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1236 1237 // Bind the common expression if necessary. 1238 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1239 1240 CodeGenFunction::ConditionalEvaluation eval(CGF); 1241 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1242 CGF.getProfileCount(E)); 1243 1244 // Save whether the destination's lifetime is externally managed. 1245 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1246 bool destructNonTrivialCStruct = 1247 !isExternallyDestructed && 1248 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 1249 isExternallyDestructed |= destructNonTrivialCStruct; 1250 Dest.setExternallyDestructed(isExternallyDestructed); 1251 1252 eval.begin(CGF); 1253 CGF.EmitBlock(LHSBlock); 1254 CGF.incrementProfileCounter(E); 1255 Visit(E->getTrueExpr()); 1256 eval.end(CGF); 1257 1258 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1259 CGF.Builder.CreateBr(ContBlock); 1260 1261 // If the result of an agg expression is unused, then the emission 1262 // of the LHS might need to create a destination slot. That's fine 1263 // with us, and we can safely emit the RHS into the same slot, but 1264 // we shouldn't claim that it's already being destructed. 1265 Dest.setExternallyDestructed(isExternallyDestructed); 1266 1267 eval.begin(CGF); 1268 CGF.EmitBlock(RHSBlock); 1269 Visit(E->getFalseExpr()); 1270 eval.end(CGF); 1271 1272 if (destructNonTrivialCStruct) 1273 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1274 E->getType()); 1275 1276 CGF.EmitBlock(ContBlock); 1277 } 1278 1279 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1280 Visit(CE->getChosenSubExpr()); 1281 } 1282 1283 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1284 Address ArgValue = Address::invalid(); 1285 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1286 1287 // If EmitVAArg fails, emit an error. 1288 if (!ArgPtr.isValid()) { 1289 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1290 return; 1291 } 1292 1293 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1294 } 1295 1296 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1297 // Ensure that we have a slot, but if we already do, remember 1298 // whether it was externally destructed. 1299 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1300 EnsureDest(E->getType()); 1301 1302 // We're going to push a destructor if there isn't already one. 1303 Dest.setExternallyDestructed(); 1304 1305 Visit(E->getSubExpr()); 1306 1307 // Push that destructor we promised. 1308 if (!wasExternallyDestructed) 1309 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1310 } 1311 1312 void 1313 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1314 AggValueSlot Slot = EnsureSlot(E->getType()); 1315 CGF.EmitCXXConstructExpr(E, Slot); 1316 } 1317 1318 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1319 const CXXInheritedCtorInitExpr *E) { 1320 AggValueSlot Slot = EnsureSlot(E->getType()); 1321 CGF.EmitInheritedCXXConstructorCall( 1322 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1323 E->inheritedFromVBase(), E); 1324 } 1325 1326 void 1327 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1328 AggValueSlot Slot = EnsureSlot(E->getType()); 1329 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1330 1331 // We'll need to enter cleanup scopes in case any of the element 1332 // initializers throws an exception. 1333 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1334 llvm::Instruction *CleanupDominator = nullptr; 1335 1336 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1337 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1338 e = E->capture_init_end(); 1339 i != e; ++i, ++CurField) { 1340 // Emit initialization 1341 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1342 if (CurField->hasCapturedVLAType()) { 1343 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1344 continue; 1345 } 1346 1347 EmitInitializationToLValue(*i, LV); 1348 1349 // Push a destructor if necessary. 1350 if (QualType::DestructionKind DtorKind = 1351 CurField->getType().isDestructedType()) { 1352 assert(LV.isSimple()); 1353 if (CGF.needsEHCleanup(DtorKind)) { 1354 if (!CleanupDominator) 1355 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1356 CGF.Int8Ty, 1357 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1358 CharUnits::One()); // placeholder 1359 1360 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1361 CGF.getDestroyer(DtorKind), false); 1362 Cleanups.push_back(CGF.EHStack.stable_begin()); 1363 } 1364 } 1365 } 1366 1367 // Deactivate all the partial cleanups in reverse order, which 1368 // generally means popping them. 1369 for (unsigned i = Cleanups.size(); i != 0; --i) 1370 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1371 1372 // Destroy the placeholder if we made one. 1373 if (CleanupDominator) 1374 CleanupDominator->eraseFromParent(); 1375 } 1376 1377 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1378 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1379 Visit(E->getSubExpr()); 1380 } 1381 1382 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1383 QualType T = E->getType(); 1384 AggValueSlot Slot = EnsureSlot(T); 1385 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1386 } 1387 1388 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1389 QualType T = E->getType(); 1390 AggValueSlot Slot = EnsureSlot(T); 1391 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1392 } 1393 1394 /// Determine whether the given cast kind is known to always convert values 1395 /// with all zero bits in their value representation to values with all zero 1396 /// bits in their value representation. 1397 static bool castPreservesZero(const CastExpr *CE) { 1398 switch (CE->getCastKind()) { 1399 // No-ops. 1400 case CK_NoOp: 1401 case CK_UserDefinedConversion: 1402 case CK_ConstructorConversion: 1403 case CK_BitCast: 1404 case CK_ToUnion: 1405 case CK_ToVoid: 1406 // Conversions between (possibly-complex) integral, (possibly-complex) 1407 // floating-point, and bool. 1408 case CK_BooleanToSignedIntegral: 1409 case CK_FloatingCast: 1410 case CK_FloatingComplexCast: 1411 case CK_FloatingComplexToBoolean: 1412 case CK_FloatingComplexToIntegralComplex: 1413 case CK_FloatingComplexToReal: 1414 case CK_FloatingRealToComplex: 1415 case CK_FloatingToBoolean: 1416 case CK_FloatingToIntegral: 1417 case CK_IntegralCast: 1418 case CK_IntegralComplexCast: 1419 case CK_IntegralComplexToBoolean: 1420 case CK_IntegralComplexToFloatingComplex: 1421 case CK_IntegralComplexToReal: 1422 case CK_IntegralRealToComplex: 1423 case CK_IntegralToBoolean: 1424 case CK_IntegralToFloating: 1425 // Reinterpreting integers as pointers and vice versa. 1426 case CK_IntegralToPointer: 1427 case CK_PointerToIntegral: 1428 // Language extensions. 1429 case CK_VectorSplat: 1430 case CK_MatrixCast: 1431 case CK_NonAtomicToAtomic: 1432 case CK_AtomicToNonAtomic: 1433 return true; 1434 1435 case CK_BaseToDerivedMemberPointer: 1436 case CK_DerivedToBaseMemberPointer: 1437 case CK_MemberPointerToBoolean: 1438 case CK_NullToMemberPointer: 1439 case CK_ReinterpretMemberPointer: 1440 // FIXME: ABI-dependent. 1441 return false; 1442 1443 case CK_AnyPointerToBlockPointerCast: 1444 case CK_BlockPointerToObjCPointerCast: 1445 case CK_CPointerToObjCPointerCast: 1446 case CK_ObjCObjectLValueCast: 1447 case CK_IntToOCLSampler: 1448 case CK_ZeroToOCLOpaqueType: 1449 // FIXME: Check these. 1450 return false; 1451 1452 case CK_FixedPointCast: 1453 case CK_FixedPointToBoolean: 1454 case CK_FixedPointToFloating: 1455 case CK_FixedPointToIntegral: 1456 case CK_FloatingToFixedPoint: 1457 case CK_IntegralToFixedPoint: 1458 // FIXME: Do all fixed-point types represent zero as all 0 bits? 1459 return false; 1460 1461 case CK_AddressSpaceConversion: 1462 case CK_BaseToDerived: 1463 case CK_DerivedToBase: 1464 case CK_Dynamic: 1465 case CK_NullToPointer: 1466 case CK_PointerToBoolean: 1467 // FIXME: Preserves zeroes only if zero pointers and null pointers have the 1468 // same representation in all involved address spaces. 1469 return false; 1470 1471 case CK_ARCConsumeObject: 1472 case CK_ARCExtendBlockObject: 1473 case CK_ARCProduceObject: 1474 case CK_ARCReclaimReturnedObject: 1475 case CK_CopyAndAutoreleaseBlockObject: 1476 case CK_ArrayToPointerDecay: 1477 case CK_FunctionToPointerDecay: 1478 case CK_BuiltinFnToFnPtr: 1479 case CK_Dependent: 1480 case CK_LValueBitCast: 1481 case CK_LValueToRValue: 1482 case CK_LValueToRValueBitCast: 1483 case CK_UncheckedDerivedToBase: 1484 return false; 1485 } 1486 llvm_unreachable("Unhandled clang::CastKind enum"); 1487 } 1488 1489 /// isSimpleZero - If emitting this value will obviously just cause a store of 1490 /// zero to memory, return true. This can return false if uncertain, so it just 1491 /// handles simple cases. 1492 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1493 E = E->IgnoreParens(); 1494 while (auto *CE = dyn_cast<CastExpr>(E)) { 1495 if (!castPreservesZero(CE)) 1496 break; 1497 E = CE->getSubExpr()->IgnoreParens(); 1498 } 1499 1500 // 0 1501 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1502 return IL->getValue() == 0; 1503 // +0.0 1504 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1505 return FL->getValue().isPosZero(); 1506 // int() 1507 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1508 CGF.getTypes().isZeroInitializable(E->getType())) 1509 return true; 1510 // (int*)0 - Null pointer expressions. 1511 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1512 return ICE->getCastKind() == CK_NullToPointer && 1513 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1514 !E->HasSideEffects(CGF.getContext()); 1515 // '\0' 1516 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1517 return CL->getValue() == 0; 1518 1519 // Otherwise, hard case: conservatively return false. 1520 return false; 1521 } 1522 1523 1524 void 1525 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1526 QualType type = LV.getType(); 1527 // FIXME: Ignore result? 1528 // FIXME: Are initializers affected by volatile? 1529 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1530 // Storing "i32 0" to a zero'd memory location is a noop. 1531 return; 1532 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1533 return EmitNullInitializationToLValue(LV); 1534 } else if (isa<NoInitExpr>(E)) { 1535 // Do nothing. 1536 return; 1537 } else if (type->isReferenceType()) { 1538 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1539 return CGF.EmitStoreThroughLValue(RV, LV); 1540 } 1541 1542 switch (CGF.getEvaluationKind(type)) { 1543 case TEK_Complex: 1544 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1545 return; 1546 case TEK_Aggregate: 1547 CGF.EmitAggExpr( 1548 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1549 AggValueSlot::DoesNotNeedGCBarriers, 1550 AggValueSlot::IsNotAliased, 1551 AggValueSlot::MayOverlap, Dest.isZeroed())); 1552 return; 1553 case TEK_Scalar: 1554 if (LV.isSimple()) { 1555 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1556 } else { 1557 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1558 } 1559 return; 1560 } 1561 llvm_unreachable("bad evaluation kind"); 1562 } 1563 1564 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1565 QualType type = lv.getType(); 1566 1567 // If the destination slot is already zeroed out before the aggregate is 1568 // copied into it, we don't have to emit any zeros here. 1569 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1570 return; 1571 1572 if (CGF.hasScalarEvaluationKind(type)) { 1573 // For non-aggregates, we can store the appropriate null constant. 1574 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1575 // Note that the following is not equivalent to 1576 // EmitStoreThroughBitfieldLValue for ARC types. 1577 if (lv.isBitField()) { 1578 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1579 } else { 1580 assert(lv.isSimple()); 1581 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1582 } 1583 } else { 1584 // There's a potential optimization opportunity in combining 1585 // memsets; that would be easy for arrays, but relatively 1586 // difficult for structures with the current code. 1587 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1588 } 1589 } 1590 1591 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1592 #if 0 1593 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1594 // (Length of globals? Chunks of zeroed-out space?). 1595 // 1596 // If we can, prefer a copy from a global; this is a lot less code for long 1597 // globals, and it's easier for the current optimizers to analyze. 1598 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1599 llvm::GlobalVariable* GV = 1600 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1601 llvm::GlobalValue::InternalLinkage, C, ""); 1602 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1603 return; 1604 } 1605 #endif 1606 if (E->hadArrayRangeDesignator()) 1607 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1608 1609 if (E->isTransparent()) 1610 return Visit(E->getInit(0)); 1611 1612 AggValueSlot Dest = EnsureSlot(E->getType()); 1613 1614 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1615 1616 // Handle initialization of an array. 1617 if (E->getType()->isArrayType()) { 1618 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1619 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1620 return; 1621 } 1622 1623 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1624 1625 // Do struct initialization; this code just sets each individual member 1626 // to the approprate value. This makes bitfield support automatic; 1627 // the disadvantage is that the generated code is more difficult for 1628 // the optimizer, especially with bitfields. 1629 unsigned NumInitElements = E->getNumInits(); 1630 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1631 1632 // We'll need to enter cleanup scopes in case any of the element 1633 // initializers throws an exception. 1634 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1635 llvm::Instruction *cleanupDominator = nullptr; 1636 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1637 cleanups.push_back(cleanup); 1638 if (!cleanupDominator) // create placeholder once needed 1639 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1640 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1641 CharUnits::One()); 1642 }; 1643 1644 unsigned curInitIndex = 0; 1645 1646 // Emit initialization of base classes. 1647 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1648 assert(E->getNumInits() >= CXXRD->getNumBases() && 1649 "missing initializer for base class"); 1650 for (auto &Base : CXXRD->bases()) { 1651 assert(!Base.isVirtual() && "should not see vbases here"); 1652 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1653 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1654 Dest.getAddress(), CXXRD, BaseRD, 1655 /*isBaseVirtual*/ false); 1656 AggValueSlot AggSlot = AggValueSlot::forAddr( 1657 V, Qualifiers(), 1658 AggValueSlot::IsDestructed, 1659 AggValueSlot::DoesNotNeedGCBarriers, 1660 AggValueSlot::IsNotAliased, 1661 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1662 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1663 1664 if (QualType::DestructionKind dtorKind = 1665 Base.getType().isDestructedType()) { 1666 CGF.pushDestroy(dtorKind, V, Base.getType()); 1667 addCleanup(CGF.EHStack.stable_begin()); 1668 } 1669 } 1670 } 1671 1672 // Prepare a 'this' for CXXDefaultInitExprs. 1673 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1674 1675 if (record->isUnion()) { 1676 // Only initialize one field of a union. The field itself is 1677 // specified by the initializer list. 1678 if (!E->getInitializedFieldInUnion()) { 1679 // Empty union; we have nothing to do. 1680 1681 #ifndef NDEBUG 1682 // Make sure that it's really an empty and not a failure of 1683 // semantic analysis. 1684 for (const auto *Field : record->fields()) 1685 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1686 #endif 1687 return; 1688 } 1689 1690 // FIXME: volatility 1691 FieldDecl *Field = E->getInitializedFieldInUnion(); 1692 1693 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1694 if (NumInitElements) { 1695 // Store the initializer into the field 1696 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1697 } else { 1698 // Default-initialize to null. 1699 EmitNullInitializationToLValue(FieldLoc); 1700 } 1701 1702 return; 1703 } 1704 1705 // Here we iterate over the fields; this makes it simpler to both 1706 // default-initialize fields and skip over unnamed fields. 1707 for (const auto *field : record->fields()) { 1708 // We're done once we hit the flexible array member. 1709 if (field->getType()->isIncompleteArrayType()) 1710 break; 1711 1712 // Always skip anonymous bitfields. 1713 if (field->isUnnamedBitfield()) 1714 continue; 1715 1716 // We're done if we reach the end of the explicit initializers, we 1717 // have a zeroed object, and the rest of the fields are 1718 // zero-initializable. 1719 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1720 CGF.getTypes().isZeroInitializable(E->getType())) 1721 break; 1722 1723 1724 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1725 // We never generate write-barries for initialized fields. 1726 LV.setNonGC(true); 1727 1728 if (curInitIndex < NumInitElements) { 1729 // Store the initializer into the field. 1730 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1731 } else { 1732 // We're out of initializers; default-initialize to null 1733 EmitNullInitializationToLValue(LV); 1734 } 1735 1736 // Push a destructor if necessary. 1737 // FIXME: if we have an array of structures, all explicitly 1738 // initialized, we can end up pushing a linear number of cleanups. 1739 bool pushedCleanup = false; 1740 if (QualType::DestructionKind dtorKind 1741 = field->getType().isDestructedType()) { 1742 assert(LV.isSimple()); 1743 if (CGF.needsEHCleanup(dtorKind)) { 1744 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1745 CGF.getDestroyer(dtorKind), false); 1746 addCleanup(CGF.EHStack.stable_begin()); 1747 pushedCleanup = true; 1748 } 1749 } 1750 1751 // If the GEP didn't get used because of a dead zero init or something 1752 // else, clean it up for -O0 builds and general tidiness. 1753 if (!pushedCleanup && LV.isSimple()) 1754 if (llvm::GetElementPtrInst *GEP = 1755 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1756 if (GEP->use_empty()) 1757 GEP->eraseFromParent(); 1758 } 1759 1760 // Deactivate all the partial cleanups in reverse order, which 1761 // generally means popping them. 1762 assert((cleanupDominator || cleanups.empty()) && 1763 "Missing cleanupDominator before deactivating cleanup blocks"); 1764 for (unsigned i = cleanups.size(); i != 0; --i) 1765 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1766 1767 // Destroy the placeholder if we made one. 1768 if (cleanupDominator) 1769 cleanupDominator->eraseFromParent(); 1770 } 1771 1772 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1773 llvm::Value *outerBegin) { 1774 // Emit the common subexpression. 1775 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1776 1777 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1778 uint64_t numElements = E->getArraySize().getZExtValue(); 1779 1780 if (!numElements) 1781 return; 1782 1783 // destPtr is an array*. Construct an elementType* by drilling down a level. 1784 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1785 llvm::Value *indices[] = {zero, zero}; 1786 llvm::Value *begin = Builder.CreateInBoundsGEP( 1787 destPtr.getElementType(), destPtr.getPointer(), indices, 1788 "arrayinit.begin"); 1789 1790 // Prepare to special-case multidimensional array initialization: we avoid 1791 // emitting multiple destructor loops in that case. 1792 if (!outerBegin) 1793 outerBegin = begin; 1794 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1795 1796 QualType elementType = 1797 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1798 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1799 CharUnits elementAlign = 1800 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1801 1802 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1803 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1804 1805 // Jump into the body. 1806 CGF.EmitBlock(bodyBB); 1807 llvm::PHINode *index = 1808 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1809 index->addIncoming(zero, entryBB); 1810 llvm::Value *element = Builder.CreateInBoundsGEP( 1811 begin->getType()->getPointerElementType(), begin, index); 1812 1813 // Prepare for a cleanup. 1814 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1815 EHScopeStack::stable_iterator cleanup; 1816 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1817 if (outerBegin->getType() != element->getType()) 1818 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1819 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1820 elementAlign, 1821 CGF.getDestroyer(dtorKind)); 1822 cleanup = CGF.EHStack.stable_begin(); 1823 } else { 1824 dtorKind = QualType::DK_none; 1825 } 1826 1827 // Emit the actual filler expression. 1828 { 1829 // Temporaries created in an array initialization loop are destroyed 1830 // at the end of each iteration. 1831 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1832 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1833 LValue elementLV = 1834 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1835 1836 if (InnerLoop) { 1837 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1838 auto elementSlot = AggValueSlot::forLValue( 1839 elementLV, CGF, AggValueSlot::IsDestructed, 1840 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1841 AggValueSlot::DoesNotOverlap); 1842 AggExprEmitter(CGF, elementSlot, false) 1843 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1844 } else 1845 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1846 } 1847 1848 // Move on to the next element. 1849 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1850 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1851 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1852 1853 // Leave the loop if we're done. 1854 llvm::Value *done = Builder.CreateICmpEQ( 1855 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1856 "arrayinit.done"); 1857 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1858 Builder.CreateCondBr(done, endBB, bodyBB); 1859 1860 CGF.EmitBlock(endBB); 1861 1862 // Leave the partial-array cleanup if we entered one. 1863 if (dtorKind) 1864 CGF.DeactivateCleanupBlock(cleanup, index); 1865 } 1866 1867 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1868 AggValueSlot Dest = EnsureSlot(E->getType()); 1869 1870 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1871 EmitInitializationToLValue(E->getBase(), DestLV); 1872 VisitInitListExpr(E->getUpdater()); 1873 } 1874 1875 //===----------------------------------------------------------------------===// 1876 // Entry Points into this File 1877 //===----------------------------------------------------------------------===// 1878 1879 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1880 /// non-zero bytes that will be stored when outputting the initializer for the 1881 /// specified initializer expression. 1882 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1883 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 1884 E = MTE->getSubExpr(); 1885 E = E->IgnoreParenNoopCasts(CGF.getContext()); 1886 1887 // 0 and 0.0 won't require any non-zero stores! 1888 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1889 1890 // If this is an initlist expr, sum up the size of sizes of the (present) 1891 // elements. If this is something weird, assume the whole thing is non-zero. 1892 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1893 while (ILE && ILE->isTransparent()) 1894 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1895 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1896 return CGF.getContext().getTypeSizeInChars(E->getType()); 1897 1898 // InitListExprs for structs have to be handled carefully. If there are 1899 // reference members, we need to consider the size of the reference, not the 1900 // referencee. InitListExprs for unions and arrays can't have references. 1901 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1902 if (!RT->isUnionType()) { 1903 RecordDecl *SD = RT->getDecl(); 1904 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1905 1906 unsigned ILEElement = 0; 1907 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1908 while (ILEElement != CXXRD->getNumBases()) 1909 NumNonZeroBytes += 1910 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1911 for (const auto *Field : SD->fields()) { 1912 // We're done once we hit the flexible array member or run out of 1913 // InitListExpr elements. 1914 if (Field->getType()->isIncompleteArrayType() || 1915 ILEElement == ILE->getNumInits()) 1916 break; 1917 if (Field->isUnnamedBitfield()) 1918 continue; 1919 1920 const Expr *E = ILE->getInit(ILEElement++); 1921 1922 // Reference values are always non-null and have the width of a pointer. 1923 if (Field->getType()->isReferenceType()) 1924 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1925 CGF.getTarget().getPointerWidth(0)); 1926 else 1927 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1928 } 1929 1930 return NumNonZeroBytes; 1931 } 1932 } 1933 1934 // FIXME: This overestimates the number of non-zero bytes for bit-fields. 1935 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1936 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1937 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1938 return NumNonZeroBytes; 1939 } 1940 1941 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1942 /// zeros in it, emit a memset and avoid storing the individual zeros. 1943 /// 1944 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1945 CodeGenFunction &CGF) { 1946 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1947 // volatile stores. 1948 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1949 return; 1950 1951 // C++ objects with a user-declared constructor don't need zero'ing. 1952 if (CGF.getLangOpts().CPlusPlus) 1953 if (const RecordType *RT = CGF.getContext() 1954 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1955 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1956 if (RD->hasUserDeclaredConstructor()) 1957 return; 1958 } 1959 1960 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1961 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1962 if (Size <= CharUnits::fromQuantity(16)) 1963 return; 1964 1965 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1966 // we prefer to emit memset + individual stores for the rest. 1967 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1968 if (NumNonZeroBytes*4 > Size) 1969 return; 1970 1971 // Okay, it seems like a good idea to use an initial memset, emit the call. 1972 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1973 1974 Address Loc = Slot.getAddress(); 1975 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1976 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1977 1978 // Tell the AggExprEmitter that the slot is known zero. 1979 Slot.setZeroed(); 1980 } 1981 1982 1983 1984 1985 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1986 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1987 /// the value of the aggregate expression is not needed. If VolatileDest is 1988 /// true, DestPtr cannot be 0. 1989 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1990 assert(E && hasAggregateEvaluationKind(E->getType()) && 1991 "Invalid aggregate expression to emit"); 1992 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1993 "slot has bits but no address"); 1994 1995 // Optimize the slot if possible. 1996 CheckAggExprForMemSetUse(Slot, E, *this); 1997 1998 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1999 } 2000 2001 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 2002 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 2003 Address Temp = CreateMemTemp(E->getType()); 2004 LValue LV = MakeAddrLValue(Temp, E->getType()); 2005 EmitAggExpr(E, AggValueSlot::forLValue( 2006 LV, *this, AggValueSlot::IsNotDestructed, 2007 AggValueSlot::DoesNotNeedGCBarriers, 2008 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 2009 return LV; 2010 } 2011 2012 AggValueSlot::Overlap_t 2013 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 2014 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 2015 return AggValueSlot::DoesNotOverlap; 2016 2017 // If the field lies entirely within the enclosing class's nvsize, its tail 2018 // padding cannot overlap any already-initialized object. (The only subobjects 2019 // with greater addresses that might already be initialized are vbases.) 2020 const RecordDecl *ClassRD = FD->getParent(); 2021 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 2022 if (Layout.getFieldOffset(FD->getFieldIndex()) + 2023 getContext().getTypeSize(FD->getType()) <= 2024 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 2025 return AggValueSlot::DoesNotOverlap; 2026 2027 // The tail padding may contain values we need to preserve. 2028 return AggValueSlot::MayOverlap; 2029 } 2030 2031 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 2032 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 2033 // If the most-derived object is a field declared with [[no_unique_address]], 2034 // the tail padding of any virtual base could be reused for other subobjects 2035 // of that field's class. 2036 if (IsVirtual) 2037 return AggValueSlot::MayOverlap; 2038 2039 // If the base class is laid out entirely within the nvsize of the derived 2040 // class, its tail padding cannot yet be initialized, so we can issue 2041 // stores at the full width of the base class. 2042 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2043 if (Layout.getBaseClassOffset(BaseRD) + 2044 getContext().getASTRecordLayout(BaseRD).getSize() <= 2045 Layout.getNonVirtualSize()) 2046 return AggValueSlot::DoesNotOverlap; 2047 2048 // The tail padding may contain values we need to preserve. 2049 return AggValueSlot::MayOverlap; 2050 } 2051 2052 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 2053 AggValueSlot::Overlap_t MayOverlap, 2054 bool isVolatile) { 2055 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 2056 2057 Address DestPtr = Dest.getAddress(*this); 2058 Address SrcPtr = Src.getAddress(*this); 2059 2060 if (getLangOpts().CPlusPlus) { 2061 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2062 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 2063 assert((Record->hasTrivialCopyConstructor() || 2064 Record->hasTrivialCopyAssignment() || 2065 Record->hasTrivialMoveConstructor() || 2066 Record->hasTrivialMoveAssignment() || 2067 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) && 2068 "Trying to aggregate-copy a type without a trivial copy/move " 2069 "constructor or assignment operator"); 2070 // Ignore empty classes in C++. 2071 if (Record->isEmpty()) 2072 return; 2073 } 2074 } 2075 2076 if (getLangOpts().CUDAIsDevice) { 2077 if (Ty->isCUDADeviceBuiltinSurfaceType()) { 2078 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest, 2079 Src)) 2080 return; 2081 } else if (Ty->isCUDADeviceBuiltinTextureType()) { 2082 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest, 2083 Src)) 2084 return; 2085 } 2086 } 2087 2088 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 2089 // C99 6.5.16.1p3, which states "If the value being stored in an object is 2090 // read from another object that overlaps in anyway the storage of the first 2091 // object, then the overlap shall be exact and the two objects shall have 2092 // qualified or unqualified versions of a compatible type." 2093 // 2094 // memcpy is not defined if the source and destination pointers are exactly 2095 // equal, but other compilers do this optimization, and almost every memcpy 2096 // implementation handles this case safely. If there is a libc that does not 2097 // safely handle this, we can add a target hook. 2098 2099 // Get data size info for this aggregate. Don't copy the tail padding if this 2100 // might be a potentially-overlapping subobject, since the tail padding might 2101 // be occupied by a different object. Otherwise, copying it is fine. 2102 TypeInfoChars TypeInfo; 2103 if (MayOverlap) 2104 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 2105 else 2106 TypeInfo = getContext().getTypeInfoInChars(Ty); 2107 2108 llvm::Value *SizeVal = nullptr; 2109 if (TypeInfo.Width.isZero()) { 2110 // But note that getTypeInfo returns 0 for a VLA. 2111 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 2112 getContext().getAsArrayType(Ty))) { 2113 QualType BaseEltTy; 2114 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 2115 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 2116 assert(!TypeInfo.Width.isZero()); 2117 SizeVal = Builder.CreateNUWMul( 2118 SizeVal, 2119 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity())); 2120 } 2121 } 2122 if (!SizeVal) { 2123 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()); 2124 } 2125 2126 // FIXME: If we have a volatile struct, the optimizer can remove what might 2127 // appear to be `extra' memory ops: 2128 // 2129 // volatile struct { int i; } a, b; 2130 // 2131 // int main() { 2132 // a = b; 2133 // a = b; 2134 // } 2135 // 2136 // we need to use a different call here. We use isVolatile to indicate when 2137 // either the source or the destination is volatile. 2138 2139 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 2140 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 2141 2142 // Don't do any of the memmove_collectable tests if GC isn't set. 2143 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2144 // fall through 2145 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2146 RecordDecl *Record = RecordTy->getDecl(); 2147 if (Record->hasObjectMember()) { 2148 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2149 SizeVal); 2150 return; 2151 } 2152 } else if (Ty->isArrayType()) { 2153 QualType BaseType = getContext().getBaseElementType(Ty); 2154 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2155 if (RecordTy->getDecl()->hasObjectMember()) { 2156 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2157 SizeVal); 2158 return; 2159 } 2160 } 2161 } 2162 2163 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2164 2165 // Determine the metadata to describe the position of any padding in this 2166 // memcpy, as well as the TBAA tags for the members of the struct, in case 2167 // the optimizer wishes to expand it in to scalar memory operations. 2168 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2169 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2170 2171 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2172 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2173 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2174 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2175 } 2176 } 2177