1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Aggregate Expression Emitter 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 38 CodeGenFunction &CGF; 39 CGBuilderTy &Builder; 40 AggValueSlot Dest; 41 bool IsResultUnused; 42 43 AggValueSlot EnsureSlot(QualType T) { 44 if (!Dest.isIgnored()) return Dest; 45 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 46 } 47 void EnsureDest(QualType T) { 48 if (!Dest.isIgnored()) return; 49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 // Calls `Fn` with a valid return value slot, potentially creating a temporary 53 // to do so. If a temporary is created, an appropriate copy into `Dest` will 54 // be emitted, as will lifetime markers. 55 // 56 // The given function should take a ReturnValueSlot, and return an RValue that 57 // points to said slot. 58 void withReturnValueSlot(const Expr *E, 59 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 60 61 public: 62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IsResultUnused(IsResultUnused) { } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 enum ExprValueKind { 76 EVK_RValue, 77 EVK_NonRValue 78 }; 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 /// SrcIsRValue is true if source comes from an RValue. 82 void EmitFinalDestCopy(QualType type, const LValue &src, 83 ExprValueKind SrcValueKind = EVK_NonRValue); 84 void EmitFinalDestCopy(QualType type, RValue src); 85 void EmitCopy(QualType type, const AggValueSlot &dest, 86 const AggValueSlot &src); 87 88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 89 90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 91 QualType ArrayQTy, InitListExpr *E); 92 93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 95 return AggValueSlot::NeedsGCBarriers; 96 return AggValueSlot::DoesNotNeedGCBarriers; 97 } 98 99 bool TypeRequiresGCollection(QualType T); 100 101 //===--------------------------------------------------------------------===// 102 // Visitor Methods 103 //===--------------------------------------------------------------------===// 104 105 void Visit(Expr *E) { 106 ApplyDebugLocation DL(CGF, E); 107 StmtVisitor<AggExprEmitter>::Visit(E); 108 } 109 110 void VisitStmt(Stmt *S) { 111 CGF.ErrorUnsupported(S, "aggregate expression"); 112 } 113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 115 Visit(GE->getResultExpr()); 116 } 117 void VisitCoawaitExpr(CoawaitExpr *E) { 118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitCoyieldExpr(CoyieldExpr *E) { 121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 122 } 123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 126 return Visit(E->getReplacement()); 127 } 128 129 void VisitConstantExpr(ConstantExpr *E) { 130 EnsureDest(E->getType()); 131 132 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 133 CGF.EmitAggregateStore(Result, Dest.getAddress(), 134 E->getType().isVolatileQualified()); 135 return; 136 } 137 return Visit(E->getSubExpr()); 138 } 139 140 // l-values. 141 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 142 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 143 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 144 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 145 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 146 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 147 EmitAggLoadOfLValue(E); 148 } 149 void VisitPredefinedExpr(const PredefinedExpr *E) { 150 EmitAggLoadOfLValue(E); 151 } 152 153 // Operators. 154 void VisitCastExpr(CastExpr *E); 155 void VisitCallExpr(const CallExpr *E); 156 void VisitStmtExpr(const StmtExpr *E); 157 void VisitBinaryOperator(const BinaryOperator *BO); 158 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 159 void VisitBinAssign(const BinaryOperator *E); 160 void VisitBinComma(const BinaryOperator *E); 161 void VisitBinCmp(const BinaryOperator *E); 162 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 163 Visit(E->getSemanticForm()); 164 } 165 166 void VisitObjCMessageExpr(ObjCMessageExpr *E); 167 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 168 EmitAggLoadOfLValue(E); 169 } 170 171 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 172 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 173 void VisitChooseExpr(const ChooseExpr *CE); 174 void VisitInitListExpr(InitListExpr *E); 175 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 176 llvm::Value *outerBegin = nullptr); 177 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 178 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 179 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 180 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 181 Visit(DAE->getExpr()); 182 } 183 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 184 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 185 Visit(DIE->getExpr()); 186 } 187 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 188 void VisitCXXConstructExpr(const CXXConstructExpr *E); 189 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 190 void VisitLambdaExpr(LambdaExpr *E); 191 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 192 void VisitExprWithCleanups(ExprWithCleanups *E); 193 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 194 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 195 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 196 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 197 198 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 199 if (E->isGLValue()) { 200 LValue LV = CGF.EmitPseudoObjectLValue(E); 201 return EmitFinalDestCopy(E->getType(), LV); 202 } 203 204 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 205 } 206 207 void VisitVAArgExpr(VAArgExpr *E); 208 209 void EmitInitializationToLValue(Expr *E, LValue Address); 210 void EmitNullInitializationToLValue(LValue Address); 211 // case Expr::ChooseExprClass: 212 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 213 void VisitAtomicExpr(AtomicExpr *E) { 214 RValue Res = CGF.EmitAtomicExpr(E); 215 EmitFinalDestCopy(E->getType(), Res); 216 } 217 }; 218 } // end anonymous namespace. 219 220 //===----------------------------------------------------------------------===// 221 // Utilities 222 //===----------------------------------------------------------------------===// 223 224 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 225 /// represents a value lvalue, this method emits the address of the lvalue, 226 /// then loads the result into DestPtr. 227 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 228 LValue LV = CGF.EmitLValue(E); 229 230 // If the type of the l-value is atomic, then do an atomic load. 231 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 232 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 233 return; 234 } 235 236 EmitFinalDestCopy(E->getType(), LV); 237 } 238 239 /// True if the given aggregate type requires special GC API calls. 240 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 241 // Only record types have members that might require garbage collection. 242 const RecordType *RecordTy = T->getAs<RecordType>(); 243 if (!RecordTy) return false; 244 245 // Don't mess with non-trivial C++ types. 246 RecordDecl *Record = RecordTy->getDecl(); 247 if (isa<CXXRecordDecl>(Record) && 248 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 249 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 250 return false; 251 252 // Check whether the type has an object member. 253 return Record->hasObjectMember(); 254 } 255 256 void AggExprEmitter::withReturnValueSlot( 257 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 258 QualType RetTy = E->getType(); 259 bool RequiresDestruction = 260 !Dest.isExternallyDestructed() && 261 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 262 263 // If it makes no observable difference, save a memcpy + temporary. 264 // 265 // We need to always provide our own temporary if destruction is required. 266 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 267 // its lifetime before we have the chance to emit a proper destructor call. 268 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 269 (RequiresDestruction && !Dest.getAddress().isValid()); 270 271 Address RetAddr = Address::invalid(); 272 Address RetAllocaAddr = Address::invalid(); 273 274 EHScopeStack::stable_iterator LifetimeEndBlock; 275 llvm::Value *LifetimeSizePtr = nullptr; 276 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 277 if (!UseTemp) { 278 RetAddr = Dest.getAddress(); 279 } else { 280 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 281 llvm::TypeSize Size = 282 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 283 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 284 if (LifetimeSizePtr) { 285 LifetimeStartInst = 286 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 287 assert(LifetimeStartInst->getIntrinsicID() == 288 llvm::Intrinsic::lifetime_start && 289 "Last insertion wasn't a lifetime.start?"); 290 291 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 292 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 293 LifetimeEndBlock = CGF.EHStack.stable_begin(); 294 } 295 } 296 297 RValue Src = 298 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 299 Dest.isExternallyDestructed())); 300 301 if (!UseTemp) 302 return; 303 304 assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer()); 305 EmitFinalDestCopy(E->getType(), Src); 306 307 if (!RequiresDestruction && LifetimeStartInst) { 308 // If there's no dtor to run, the copy was the last use of our temporary. 309 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 310 // eagerly. 311 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 312 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 313 } 314 } 315 316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 317 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 318 assert(src.isAggregate() && "value must be aggregate value!"); 319 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 320 EmitFinalDestCopy(type, srcLV, EVK_RValue); 321 } 322 323 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 324 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 325 ExprValueKind SrcValueKind) { 326 // If Dest is ignored, then we're evaluating an aggregate expression 327 // in a context that doesn't care about the result. Note that loads 328 // from volatile l-values force the existence of a non-ignored 329 // destination. 330 if (Dest.isIgnored()) 331 return; 332 333 // Copy non-trivial C structs here. 334 LValue DstLV = CGF.MakeAddrLValue( 335 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 336 337 if (SrcValueKind == EVK_RValue) { 338 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 339 if (Dest.isPotentiallyAliased()) 340 CGF.callCStructMoveAssignmentOperator(DstLV, src); 341 else 342 CGF.callCStructMoveConstructor(DstLV, src); 343 return; 344 } 345 } else { 346 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 347 if (Dest.isPotentiallyAliased()) 348 CGF.callCStructCopyAssignmentOperator(DstLV, src); 349 else 350 CGF.callCStructCopyConstructor(DstLV, src); 351 return; 352 } 353 } 354 355 AggValueSlot srcAgg = AggValueSlot::forLValue( 356 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 357 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 358 EmitCopy(type, Dest, srcAgg); 359 } 360 361 /// Perform a copy from the source into the destination. 362 /// 363 /// \param type - the type of the aggregate being copied; qualifiers are 364 /// ignored 365 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 366 const AggValueSlot &src) { 367 if (dest.requiresGCollection()) { 368 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 369 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 370 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 371 dest.getAddress(), 372 src.getAddress(), 373 size); 374 return; 375 } 376 377 // If the result of the assignment is used, copy the LHS there also. 378 // It's volatile if either side is. Use the minimum alignment of 379 // the two sides. 380 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 381 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 382 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 383 dest.isVolatile() || src.isVolatile()); 384 } 385 386 /// Emit the initializer for a std::initializer_list initialized with a 387 /// real initializer list. 388 void 389 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 390 // Emit an array containing the elements. The array is externally destructed 391 // if the std::initializer_list object is. 392 ASTContext &Ctx = CGF.getContext(); 393 LValue Array = CGF.EmitLValue(E->getSubExpr()); 394 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 395 Address ArrayPtr = Array.getAddress(CGF); 396 397 const ConstantArrayType *ArrayType = 398 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 399 assert(ArrayType && "std::initializer_list constructed from non-array"); 400 401 // FIXME: Perform the checks on the field types in SemaInit. 402 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 403 RecordDecl::field_iterator Field = Record->field_begin(); 404 if (Field == Record->field_end()) { 405 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 406 return; 407 } 408 409 // Start pointer. 410 if (!Field->getType()->isPointerType() || 411 !Ctx.hasSameType(Field->getType()->getPointeeType(), 412 ArrayType->getElementType())) { 413 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 414 return; 415 } 416 417 AggValueSlot Dest = EnsureSlot(E->getType()); 418 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 419 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 420 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 421 llvm::Value *IdxStart[] = { Zero, Zero }; 422 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP( 423 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart"); 424 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 425 ++Field; 426 427 if (Field == Record->field_end()) { 428 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 429 return; 430 } 431 432 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 433 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 434 if (Field->getType()->isPointerType() && 435 Ctx.hasSameType(Field->getType()->getPointeeType(), 436 ArrayType->getElementType())) { 437 // End pointer. 438 llvm::Value *IdxEnd[] = { Zero, Size }; 439 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP( 440 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend"); 441 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 442 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 443 // Length. 444 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 445 } else { 446 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 447 return; 448 } 449 } 450 451 /// Determine if E is a trivial array filler, that is, one that is 452 /// equivalent to zero-initialization. 453 static bool isTrivialFiller(Expr *E) { 454 if (!E) 455 return true; 456 457 if (isa<ImplicitValueInitExpr>(E)) 458 return true; 459 460 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 461 if (ILE->getNumInits()) 462 return false; 463 return isTrivialFiller(ILE->getArrayFiller()); 464 } 465 466 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 467 return Cons->getConstructor()->isDefaultConstructor() && 468 Cons->getConstructor()->isTrivial(); 469 470 // FIXME: Are there other cases where we can avoid emitting an initializer? 471 return false; 472 } 473 474 /// Emit initialization of an array from an initializer list. 475 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 476 QualType ArrayQTy, InitListExpr *E) { 477 uint64_t NumInitElements = E->getNumInits(); 478 479 uint64_t NumArrayElements = AType->getNumElements(); 480 assert(NumInitElements <= NumArrayElements); 481 482 QualType elementType = 483 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 484 485 // DestPtr is an array*. Construct an elementType* by drilling 486 // down a level. 487 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 488 llvm::Value *indices[] = { zero, zero }; 489 llvm::Value *begin = Builder.CreateInBoundsGEP( 490 DestPtr.getElementType(), DestPtr.getPointer(), indices, 491 "arrayinit.begin"); 492 493 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 494 CharUnits elementAlign = 495 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 496 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType); 497 498 // Consider initializing the array by copying from a global. For this to be 499 // more efficient than per-element initialization, the size of the elements 500 // with explicit initializers should be large enough. 501 if (NumInitElements * elementSize.getQuantity() > 16 && 502 elementType.isTriviallyCopyableType(CGF.getContext())) { 503 CodeGen::CodeGenModule &CGM = CGF.CGM; 504 ConstantEmitter Emitter(CGF); 505 LangAS AS = ArrayQTy.getAddressSpace(); 506 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 507 auto GV = new llvm::GlobalVariable( 508 CGM.getModule(), C->getType(), 509 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 510 llvm::GlobalValue::PrivateLinkage, C, "constinit", 511 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 512 CGM.getContext().getTargetAddressSpace(AS)); 513 Emitter.finalize(GV); 514 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 515 GV->setAlignment(Align.getAsAlign()); 516 Address GVAddr(GV, GV->getValueType(), Align); 517 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy)); 518 return; 519 } 520 } 521 522 // Exception safety requires us to destroy all the 523 // already-constructed members if an initializer throws. 524 // For that, we'll need an EH cleanup. 525 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 526 Address endOfInit = Address::invalid(); 527 EHScopeStack::stable_iterator cleanup; 528 llvm::Instruction *cleanupDominator = nullptr; 529 if (CGF.needsEHCleanup(dtorKind)) { 530 // In principle we could tell the cleanup where we are more 531 // directly, but the control flow can get so varied here that it 532 // would actually be quite complex. Therefore we go through an 533 // alloca. 534 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 535 "arrayinit.endOfInit"); 536 cleanupDominator = Builder.CreateStore(begin, endOfInit); 537 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 538 elementAlign, 539 CGF.getDestroyer(dtorKind)); 540 cleanup = CGF.EHStack.stable_begin(); 541 542 // Otherwise, remember that we didn't need a cleanup. 543 } else { 544 dtorKind = QualType::DK_none; 545 } 546 547 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 548 549 // The 'current element to initialize'. The invariants on this 550 // variable are complicated. Essentially, after each iteration of 551 // the loop, it points to the last initialized element, except 552 // that it points to the beginning of the array before any 553 // elements have been initialized. 554 llvm::Value *element = begin; 555 556 // Emit the explicit initializers. 557 for (uint64_t i = 0; i != NumInitElements; ++i) { 558 // Advance to the next element. 559 if (i > 0) { 560 element = Builder.CreateInBoundsGEP( 561 llvmElementType, element, one, "arrayinit.element"); 562 563 // Tell the cleanup that it needs to destroy up to this 564 // element. TODO: some of these stores can be trivially 565 // observed to be unnecessary. 566 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 567 } 568 569 LValue elementLV = CGF.MakeAddrLValue( 570 Address(element, llvmElementType, elementAlign), elementType); 571 EmitInitializationToLValue(E->getInit(i), elementLV); 572 } 573 574 // Check whether there's a non-trivial array-fill expression. 575 Expr *filler = E->getArrayFiller(); 576 bool hasTrivialFiller = isTrivialFiller(filler); 577 578 // Any remaining elements need to be zero-initialized, possibly 579 // using the filler expression. We can skip this if the we're 580 // emitting to zeroed memory. 581 if (NumInitElements != NumArrayElements && 582 !(Dest.isZeroed() && hasTrivialFiller && 583 CGF.getTypes().isZeroInitializable(elementType))) { 584 585 // Use an actual loop. This is basically 586 // do { *array++ = filler; } while (array != end); 587 588 // Advance to the start of the rest of the array. 589 if (NumInitElements) { 590 element = Builder.CreateInBoundsGEP( 591 llvmElementType, element, one, "arrayinit.start"); 592 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 593 } 594 595 // Compute the end of the array. 596 llvm::Value *end = Builder.CreateInBoundsGEP( 597 llvmElementType, begin, 598 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end"); 599 600 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 601 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 602 603 // Jump into the body. 604 CGF.EmitBlock(bodyBB); 605 llvm::PHINode *currentElement = 606 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 607 currentElement->addIncoming(element, entryBB); 608 609 // Emit the actual filler expression. 610 { 611 // C++1z [class.temporary]p5: 612 // when a default constructor is called to initialize an element of 613 // an array with no corresponding initializer [...] the destruction of 614 // every temporary created in a default argument is sequenced before 615 // the construction of the next array element, if any 616 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 617 LValue elementLV = CGF.MakeAddrLValue( 618 Address(currentElement, llvmElementType, elementAlign), elementType); 619 if (filler) 620 EmitInitializationToLValue(filler, elementLV); 621 else 622 EmitNullInitializationToLValue(elementLV); 623 } 624 625 // Move on to the next element. 626 llvm::Value *nextElement = Builder.CreateInBoundsGEP( 627 llvmElementType, currentElement, one, "arrayinit.next"); 628 629 // Tell the EH cleanup that we finished with the last element. 630 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 631 632 // Leave the loop if we're done. 633 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 634 "arrayinit.done"); 635 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 636 Builder.CreateCondBr(done, endBB, bodyBB); 637 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 638 639 CGF.EmitBlock(endBB); 640 } 641 642 // Leave the partial-array cleanup if we entered one. 643 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 644 } 645 646 //===----------------------------------------------------------------------===// 647 // Visitor Methods 648 //===----------------------------------------------------------------------===// 649 650 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 651 Visit(E->getSubExpr()); 652 } 653 654 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 655 // If this is a unique OVE, just visit its source expression. 656 if (e->isUnique()) 657 Visit(e->getSourceExpr()); 658 else 659 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 660 } 661 662 void 663 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 664 if (Dest.isPotentiallyAliased() && 665 E->getType().isPODType(CGF.getContext())) { 666 // For a POD type, just emit a load of the lvalue + a copy, because our 667 // compound literal might alias the destination. 668 EmitAggLoadOfLValue(E); 669 return; 670 } 671 672 AggValueSlot Slot = EnsureSlot(E->getType()); 673 674 // Block-scope compound literals are destroyed at the end of the enclosing 675 // scope in C. 676 bool Destruct = 677 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 678 if (Destruct) 679 Slot.setExternallyDestructed(); 680 681 CGF.EmitAggExpr(E->getInitializer(), Slot); 682 683 if (Destruct) 684 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 685 CGF.pushLifetimeExtendedDestroy( 686 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 687 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 688 } 689 690 /// Attempt to look through various unimportant expressions to find a 691 /// cast of the given kind. 692 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) { 693 op = op->IgnoreParenNoopCasts(ctx); 694 if (auto castE = dyn_cast<CastExpr>(op)) { 695 if (castE->getCastKind() == kind) 696 return castE->getSubExpr(); 697 } 698 return nullptr; 699 } 700 701 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 702 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 703 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 704 switch (E->getCastKind()) { 705 case CK_Dynamic: { 706 // FIXME: Can this actually happen? We have no test coverage for it. 707 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 708 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 709 CodeGenFunction::TCK_Load); 710 // FIXME: Do we also need to handle property references here? 711 if (LV.isSimple()) 712 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 713 else 714 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 715 716 if (!Dest.isIgnored()) 717 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 718 break; 719 } 720 721 case CK_ToUnion: { 722 // Evaluate even if the destination is ignored. 723 if (Dest.isIgnored()) { 724 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 725 /*ignoreResult=*/true); 726 break; 727 } 728 729 // GCC union extension 730 QualType Ty = E->getSubExpr()->getType(); 731 Address CastPtr = 732 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 733 EmitInitializationToLValue(E->getSubExpr(), 734 CGF.MakeAddrLValue(CastPtr, Ty)); 735 break; 736 } 737 738 case CK_LValueToRValueBitCast: { 739 if (Dest.isIgnored()) { 740 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 741 /*ignoreResult=*/true); 742 break; 743 } 744 745 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 746 Address SourceAddress = 747 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty); 748 Address DestAddress = 749 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 750 llvm::Value *SizeVal = llvm::ConstantInt::get( 751 CGF.SizeTy, 752 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 753 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 754 break; 755 } 756 757 case CK_DerivedToBase: 758 case CK_BaseToDerived: 759 case CK_UncheckedDerivedToBase: { 760 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 761 "should have been unpacked before we got here"); 762 } 763 764 case CK_NonAtomicToAtomic: 765 case CK_AtomicToNonAtomic: { 766 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 767 768 // Determine the atomic and value types. 769 QualType atomicType = E->getSubExpr()->getType(); 770 QualType valueType = E->getType(); 771 if (isToAtomic) std::swap(atomicType, valueType); 772 773 assert(atomicType->isAtomicType()); 774 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 775 atomicType->castAs<AtomicType>()->getValueType())); 776 777 // Just recurse normally if we're ignoring the result or the 778 // atomic type doesn't change representation. 779 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 780 return Visit(E->getSubExpr()); 781 } 782 783 CastKind peepholeTarget = 784 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 785 786 // These two cases are reverses of each other; try to peephole them. 787 if (Expr *op = 788 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) { 789 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 790 E->getType()) && 791 "peephole significantly changed types?"); 792 return Visit(op); 793 } 794 795 // If we're converting an r-value of non-atomic type to an r-value 796 // of atomic type, just emit directly into the relevant sub-object. 797 if (isToAtomic) { 798 AggValueSlot valueDest = Dest; 799 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 800 // Zero-initialize. (Strictly speaking, we only need to initialize 801 // the padding at the end, but this is simpler.) 802 if (!Dest.isZeroed()) 803 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 804 805 // Build a GEP to refer to the subobject. 806 Address valueAddr = 807 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 808 valueDest = AggValueSlot::forAddr(valueAddr, 809 valueDest.getQualifiers(), 810 valueDest.isExternallyDestructed(), 811 valueDest.requiresGCollection(), 812 valueDest.isPotentiallyAliased(), 813 AggValueSlot::DoesNotOverlap, 814 AggValueSlot::IsZeroed); 815 } 816 817 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 818 return; 819 } 820 821 // Otherwise, we're converting an atomic type to a non-atomic type. 822 // Make an atomic temporary, emit into that, and then copy the value out. 823 AggValueSlot atomicSlot = 824 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 825 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 826 827 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 828 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 829 return EmitFinalDestCopy(valueType, rvalue); 830 } 831 case CK_AddressSpaceConversion: 832 return Visit(E->getSubExpr()); 833 834 case CK_LValueToRValue: 835 // If we're loading from a volatile type, force the destination 836 // into existence. 837 if (E->getSubExpr()->getType().isVolatileQualified()) { 838 bool Destruct = 839 !Dest.isExternallyDestructed() && 840 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 841 if (Destruct) 842 Dest.setExternallyDestructed(); 843 EnsureDest(E->getType()); 844 Visit(E->getSubExpr()); 845 846 if (Destruct) 847 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 848 E->getType()); 849 850 return; 851 } 852 853 LLVM_FALLTHROUGH; 854 855 856 case CK_NoOp: 857 case CK_UserDefinedConversion: 858 case CK_ConstructorConversion: 859 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 860 E->getType()) && 861 "Implicit cast types must be compatible"); 862 Visit(E->getSubExpr()); 863 break; 864 865 case CK_LValueBitCast: 866 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 867 868 case CK_Dependent: 869 case CK_BitCast: 870 case CK_ArrayToPointerDecay: 871 case CK_FunctionToPointerDecay: 872 case CK_NullToPointer: 873 case CK_NullToMemberPointer: 874 case CK_BaseToDerivedMemberPointer: 875 case CK_DerivedToBaseMemberPointer: 876 case CK_MemberPointerToBoolean: 877 case CK_ReinterpretMemberPointer: 878 case CK_IntegralToPointer: 879 case CK_PointerToIntegral: 880 case CK_PointerToBoolean: 881 case CK_ToVoid: 882 case CK_VectorSplat: 883 case CK_IntegralCast: 884 case CK_BooleanToSignedIntegral: 885 case CK_IntegralToBoolean: 886 case CK_IntegralToFloating: 887 case CK_FloatingToIntegral: 888 case CK_FloatingToBoolean: 889 case CK_FloatingCast: 890 case CK_CPointerToObjCPointerCast: 891 case CK_BlockPointerToObjCPointerCast: 892 case CK_AnyPointerToBlockPointerCast: 893 case CK_ObjCObjectLValueCast: 894 case CK_FloatingRealToComplex: 895 case CK_FloatingComplexToReal: 896 case CK_FloatingComplexToBoolean: 897 case CK_FloatingComplexCast: 898 case CK_FloatingComplexToIntegralComplex: 899 case CK_IntegralRealToComplex: 900 case CK_IntegralComplexToReal: 901 case CK_IntegralComplexToBoolean: 902 case CK_IntegralComplexCast: 903 case CK_IntegralComplexToFloatingComplex: 904 case CK_ARCProduceObject: 905 case CK_ARCConsumeObject: 906 case CK_ARCReclaimReturnedObject: 907 case CK_ARCExtendBlockObject: 908 case CK_CopyAndAutoreleaseBlockObject: 909 case CK_BuiltinFnToFnPtr: 910 case CK_ZeroToOCLOpaqueType: 911 case CK_MatrixCast: 912 913 case CK_IntToOCLSampler: 914 case CK_FloatingToFixedPoint: 915 case CK_FixedPointToFloating: 916 case CK_FixedPointCast: 917 case CK_FixedPointToBoolean: 918 case CK_FixedPointToIntegral: 919 case CK_IntegralToFixedPoint: 920 llvm_unreachable("cast kind invalid for aggregate types"); 921 } 922 } 923 924 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 925 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 926 EmitAggLoadOfLValue(E); 927 return; 928 } 929 930 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 931 return CGF.EmitCallExpr(E, Slot); 932 }); 933 } 934 935 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 936 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 937 return CGF.EmitObjCMessageExpr(E, Slot); 938 }); 939 } 940 941 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 942 CGF.EmitIgnoredExpr(E->getLHS()); 943 Visit(E->getRHS()); 944 } 945 946 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 947 CodeGenFunction::StmtExprEvaluation eval(CGF); 948 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 949 } 950 951 enum CompareKind { 952 CK_Less, 953 CK_Greater, 954 CK_Equal, 955 }; 956 957 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 958 const BinaryOperator *E, llvm::Value *LHS, 959 llvm::Value *RHS, CompareKind Kind, 960 const char *NameSuffix = "") { 961 QualType ArgTy = E->getLHS()->getType(); 962 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 963 ArgTy = CT->getElementType(); 964 965 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 966 assert(Kind == CK_Equal && 967 "member pointers may only be compared for equality"); 968 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 969 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 970 } 971 972 // Compute the comparison instructions for the specified comparison kind. 973 struct CmpInstInfo { 974 const char *Name; 975 llvm::CmpInst::Predicate FCmp; 976 llvm::CmpInst::Predicate SCmp; 977 llvm::CmpInst::Predicate UCmp; 978 }; 979 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 980 using FI = llvm::FCmpInst; 981 using II = llvm::ICmpInst; 982 switch (Kind) { 983 case CK_Less: 984 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 985 case CK_Greater: 986 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 987 case CK_Equal: 988 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 989 } 990 llvm_unreachable("Unrecognised CompareKind enum"); 991 }(); 992 993 if (ArgTy->hasFloatingRepresentation()) 994 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 995 llvm::Twine(InstInfo.Name) + NameSuffix); 996 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 997 auto Inst = 998 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 999 return Builder.CreateICmp(Inst, LHS, RHS, 1000 llvm::Twine(InstInfo.Name) + NameSuffix); 1001 } 1002 1003 llvm_unreachable("unsupported aggregate binary expression should have " 1004 "already been handled"); 1005 } 1006 1007 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 1008 using llvm::BasicBlock; 1009 using llvm::PHINode; 1010 using llvm::Value; 1011 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 1012 E->getRHS()->getType())); 1013 const ComparisonCategoryInfo &CmpInfo = 1014 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1015 assert(CmpInfo.Record->isTriviallyCopyable() && 1016 "cannot copy non-trivially copyable aggregate"); 1017 1018 QualType ArgTy = E->getLHS()->getType(); 1019 1020 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1021 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1022 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1023 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1024 } 1025 bool IsComplex = ArgTy->isAnyComplexType(); 1026 1027 // Evaluate the operands to the expression and extract their values. 1028 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1029 RValue RV = CGF.EmitAnyExpr(E); 1030 if (RV.isScalar()) 1031 return {RV.getScalarVal(), nullptr}; 1032 if (RV.isAggregate()) 1033 return {RV.getAggregatePointer(), nullptr}; 1034 assert(RV.isComplex()); 1035 return RV.getComplexVal(); 1036 }; 1037 auto LHSValues = EmitOperand(E->getLHS()), 1038 RHSValues = EmitOperand(E->getRHS()); 1039 1040 auto EmitCmp = [&](CompareKind K) { 1041 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1042 K, IsComplex ? ".r" : ""); 1043 if (!IsComplex) 1044 return Cmp; 1045 assert(K == CompareKind::CK_Equal); 1046 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1047 RHSValues.second, K, ".i"); 1048 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1049 }; 1050 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1051 return Builder.getInt(VInfo->getIntValue()); 1052 }; 1053 1054 Value *Select; 1055 if (ArgTy->isNullPtrType()) { 1056 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1057 } else if (!CmpInfo.isPartial()) { 1058 Value *SelectOne = 1059 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1060 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1061 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1062 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1063 SelectOne, "sel.eq"); 1064 } else { 1065 Value *SelectEq = Builder.CreateSelect( 1066 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1067 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1068 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1069 EmitCmpRes(CmpInfo.getGreater()), 1070 SelectEq, "sel.gt"); 1071 Select = Builder.CreateSelect( 1072 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1073 } 1074 // Create the return value in the destination slot. 1075 EnsureDest(E->getType()); 1076 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1077 1078 // Emit the address of the first (and only) field in the comparison category 1079 // type, and initialize it from the constant integer value selected above. 1080 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1081 DestLV, *CmpInfo.Record->field_begin()); 1082 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1083 1084 // All done! The result is in the Dest slot. 1085 } 1086 1087 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1088 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1089 VisitPointerToDataMemberBinaryOperator(E); 1090 else 1091 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1092 } 1093 1094 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1095 const BinaryOperator *E) { 1096 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1097 EmitFinalDestCopy(E->getType(), LV); 1098 } 1099 1100 /// Is the value of the given expression possibly a reference to or 1101 /// into a __block variable? 1102 static bool isBlockVarRef(const Expr *E) { 1103 // Make sure we look through parens. 1104 E = E->IgnoreParens(); 1105 1106 // Check for a direct reference to a __block variable. 1107 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1108 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1109 return (var && var->hasAttr<BlocksAttr>()); 1110 } 1111 1112 // More complicated stuff. 1113 1114 // Binary operators. 1115 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1116 // For an assignment or pointer-to-member operation, just care 1117 // about the LHS. 1118 if (op->isAssignmentOp() || op->isPtrMemOp()) 1119 return isBlockVarRef(op->getLHS()); 1120 1121 // For a comma, just care about the RHS. 1122 if (op->getOpcode() == BO_Comma) 1123 return isBlockVarRef(op->getRHS()); 1124 1125 // FIXME: pointer arithmetic? 1126 return false; 1127 1128 // Check both sides of a conditional operator. 1129 } else if (const AbstractConditionalOperator *op 1130 = dyn_cast<AbstractConditionalOperator>(E)) { 1131 return isBlockVarRef(op->getTrueExpr()) 1132 || isBlockVarRef(op->getFalseExpr()); 1133 1134 // OVEs are required to support BinaryConditionalOperators. 1135 } else if (const OpaqueValueExpr *op 1136 = dyn_cast<OpaqueValueExpr>(E)) { 1137 if (const Expr *src = op->getSourceExpr()) 1138 return isBlockVarRef(src); 1139 1140 // Casts are necessary to get things like (*(int*)&var) = foo(). 1141 // We don't really care about the kind of cast here, except 1142 // we don't want to look through l2r casts, because it's okay 1143 // to get the *value* in a __block variable. 1144 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1145 if (cast->getCastKind() == CK_LValueToRValue) 1146 return false; 1147 return isBlockVarRef(cast->getSubExpr()); 1148 1149 // Handle unary operators. Again, just aggressively look through 1150 // it, ignoring the operation. 1151 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1152 return isBlockVarRef(uop->getSubExpr()); 1153 1154 // Look into the base of a field access. 1155 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1156 return isBlockVarRef(mem->getBase()); 1157 1158 // Look into the base of a subscript. 1159 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1160 return isBlockVarRef(sub->getBase()); 1161 } 1162 1163 return false; 1164 } 1165 1166 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1167 // For an assignment to work, the value on the right has 1168 // to be compatible with the value on the left. 1169 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1170 E->getRHS()->getType()) 1171 && "Invalid assignment"); 1172 1173 // If the LHS might be a __block variable, and the RHS can 1174 // potentially cause a block copy, we need to evaluate the RHS first 1175 // so that the assignment goes the right place. 1176 // This is pretty semantically fragile. 1177 if (isBlockVarRef(E->getLHS()) && 1178 E->getRHS()->HasSideEffects(CGF.getContext())) { 1179 // Ensure that we have a destination, and evaluate the RHS into that. 1180 EnsureDest(E->getRHS()->getType()); 1181 Visit(E->getRHS()); 1182 1183 // Now emit the LHS and copy into it. 1184 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1185 1186 // That copy is an atomic copy if the LHS is atomic. 1187 if (LHS.getType()->isAtomicType() || 1188 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1189 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1190 return; 1191 } 1192 1193 EmitCopy(E->getLHS()->getType(), 1194 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1195 needsGC(E->getLHS()->getType()), 1196 AggValueSlot::IsAliased, 1197 AggValueSlot::MayOverlap), 1198 Dest); 1199 return; 1200 } 1201 1202 LValue LHS = CGF.EmitLValue(E->getLHS()); 1203 1204 // If we have an atomic type, evaluate into the destination and then 1205 // do an atomic copy. 1206 if (LHS.getType()->isAtomicType() || 1207 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1208 EnsureDest(E->getRHS()->getType()); 1209 Visit(E->getRHS()); 1210 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1211 return; 1212 } 1213 1214 // Codegen the RHS so that it stores directly into the LHS. 1215 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1216 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1217 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1218 // A non-volatile aggregate destination might have volatile member. 1219 if (!LHSSlot.isVolatile() && 1220 CGF.hasVolatileMember(E->getLHS()->getType())) 1221 LHSSlot.setVolatile(true); 1222 1223 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1224 1225 // Copy into the destination if the assignment isn't ignored. 1226 EmitFinalDestCopy(E->getType(), LHS); 1227 1228 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() && 1229 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 1230 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1231 E->getType()); 1232 } 1233 1234 void AggExprEmitter:: 1235 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1236 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1237 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1238 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1239 1240 // Bind the common expression if necessary. 1241 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1242 1243 CodeGenFunction::ConditionalEvaluation eval(CGF); 1244 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1245 CGF.getProfileCount(E)); 1246 1247 // Save whether the destination's lifetime is externally managed. 1248 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1249 bool destructNonTrivialCStruct = 1250 !isExternallyDestructed && 1251 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 1252 isExternallyDestructed |= destructNonTrivialCStruct; 1253 Dest.setExternallyDestructed(isExternallyDestructed); 1254 1255 eval.begin(CGF); 1256 CGF.EmitBlock(LHSBlock); 1257 CGF.incrementProfileCounter(E); 1258 Visit(E->getTrueExpr()); 1259 eval.end(CGF); 1260 1261 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1262 CGF.Builder.CreateBr(ContBlock); 1263 1264 // If the result of an agg expression is unused, then the emission 1265 // of the LHS might need to create a destination slot. That's fine 1266 // with us, and we can safely emit the RHS into the same slot, but 1267 // we shouldn't claim that it's already being destructed. 1268 Dest.setExternallyDestructed(isExternallyDestructed); 1269 1270 eval.begin(CGF); 1271 CGF.EmitBlock(RHSBlock); 1272 Visit(E->getFalseExpr()); 1273 eval.end(CGF); 1274 1275 if (destructNonTrivialCStruct) 1276 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1277 E->getType()); 1278 1279 CGF.EmitBlock(ContBlock); 1280 } 1281 1282 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1283 Visit(CE->getChosenSubExpr()); 1284 } 1285 1286 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1287 Address ArgValue = Address::invalid(); 1288 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1289 1290 // If EmitVAArg fails, emit an error. 1291 if (!ArgPtr.isValid()) { 1292 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1293 return; 1294 } 1295 1296 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1297 } 1298 1299 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1300 // Ensure that we have a slot, but if we already do, remember 1301 // whether it was externally destructed. 1302 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1303 EnsureDest(E->getType()); 1304 1305 // We're going to push a destructor if there isn't already one. 1306 Dest.setExternallyDestructed(); 1307 1308 Visit(E->getSubExpr()); 1309 1310 // Push that destructor we promised. 1311 if (!wasExternallyDestructed) 1312 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1313 } 1314 1315 void 1316 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1317 AggValueSlot Slot = EnsureSlot(E->getType()); 1318 CGF.EmitCXXConstructExpr(E, Slot); 1319 } 1320 1321 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1322 const CXXInheritedCtorInitExpr *E) { 1323 AggValueSlot Slot = EnsureSlot(E->getType()); 1324 CGF.EmitInheritedCXXConstructorCall( 1325 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1326 E->inheritedFromVBase(), E); 1327 } 1328 1329 void 1330 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1331 AggValueSlot Slot = EnsureSlot(E->getType()); 1332 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1333 1334 // We'll need to enter cleanup scopes in case any of the element 1335 // initializers throws an exception. 1336 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1337 llvm::Instruction *CleanupDominator = nullptr; 1338 1339 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1340 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1341 e = E->capture_init_end(); 1342 i != e; ++i, ++CurField) { 1343 // Emit initialization 1344 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1345 if (CurField->hasCapturedVLAType()) { 1346 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1347 continue; 1348 } 1349 1350 EmitInitializationToLValue(*i, LV); 1351 1352 // Push a destructor if necessary. 1353 if (QualType::DestructionKind DtorKind = 1354 CurField->getType().isDestructedType()) { 1355 assert(LV.isSimple()); 1356 if (CGF.needsEHCleanup(DtorKind)) { 1357 if (!CleanupDominator) 1358 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1359 CGF.Int8Ty, 1360 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1361 CharUnits::One()); // placeholder 1362 1363 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1364 CGF.getDestroyer(DtorKind), false); 1365 Cleanups.push_back(CGF.EHStack.stable_begin()); 1366 } 1367 } 1368 } 1369 1370 // Deactivate all the partial cleanups in reverse order, which 1371 // generally means popping them. 1372 for (unsigned i = Cleanups.size(); i != 0; --i) 1373 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1374 1375 // Destroy the placeholder if we made one. 1376 if (CleanupDominator) 1377 CleanupDominator->eraseFromParent(); 1378 } 1379 1380 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1381 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1382 Visit(E->getSubExpr()); 1383 } 1384 1385 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1386 QualType T = E->getType(); 1387 AggValueSlot Slot = EnsureSlot(T); 1388 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1389 } 1390 1391 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1392 QualType T = E->getType(); 1393 AggValueSlot Slot = EnsureSlot(T); 1394 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1395 } 1396 1397 /// Determine whether the given cast kind is known to always convert values 1398 /// with all zero bits in their value representation to values with all zero 1399 /// bits in their value representation. 1400 static bool castPreservesZero(const CastExpr *CE) { 1401 switch (CE->getCastKind()) { 1402 // No-ops. 1403 case CK_NoOp: 1404 case CK_UserDefinedConversion: 1405 case CK_ConstructorConversion: 1406 case CK_BitCast: 1407 case CK_ToUnion: 1408 case CK_ToVoid: 1409 // Conversions between (possibly-complex) integral, (possibly-complex) 1410 // floating-point, and bool. 1411 case CK_BooleanToSignedIntegral: 1412 case CK_FloatingCast: 1413 case CK_FloatingComplexCast: 1414 case CK_FloatingComplexToBoolean: 1415 case CK_FloatingComplexToIntegralComplex: 1416 case CK_FloatingComplexToReal: 1417 case CK_FloatingRealToComplex: 1418 case CK_FloatingToBoolean: 1419 case CK_FloatingToIntegral: 1420 case CK_IntegralCast: 1421 case CK_IntegralComplexCast: 1422 case CK_IntegralComplexToBoolean: 1423 case CK_IntegralComplexToFloatingComplex: 1424 case CK_IntegralComplexToReal: 1425 case CK_IntegralRealToComplex: 1426 case CK_IntegralToBoolean: 1427 case CK_IntegralToFloating: 1428 // Reinterpreting integers as pointers and vice versa. 1429 case CK_IntegralToPointer: 1430 case CK_PointerToIntegral: 1431 // Language extensions. 1432 case CK_VectorSplat: 1433 case CK_MatrixCast: 1434 case CK_NonAtomicToAtomic: 1435 case CK_AtomicToNonAtomic: 1436 return true; 1437 1438 case CK_BaseToDerivedMemberPointer: 1439 case CK_DerivedToBaseMemberPointer: 1440 case CK_MemberPointerToBoolean: 1441 case CK_NullToMemberPointer: 1442 case CK_ReinterpretMemberPointer: 1443 // FIXME: ABI-dependent. 1444 return false; 1445 1446 case CK_AnyPointerToBlockPointerCast: 1447 case CK_BlockPointerToObjCPointerCast: 1448 case CK_CPointerToObjCPointerCast: 1449 case CK_ObjCObjectLValueCast: 1450 case CK_IntToOCLSampler: 1451 case CK_ZeroToOCLOpaqueType: 1452 // FIXME: Check these. 1453 return false; 1454 1455 case CK_FixedPointCast: 1456 case CK_FixedPointToBoolean: 1457 case CK_FixedPointToFloating: 1458 case CK_FixedPointToIntegral: 1459 case CK_FloatingToFixedPoint: 1460 case CK_IntegralToFixedPoint: 1461 // FIXME: Do all fixed-point types represent zero as all 0 bits? 1462 return false; 1463 1464 case CK_AddressSpaceConversion: 1465 case CK_BaseToDerived: 1466 case CK_DerivedToBase: 1467 case CK_Dynamic: 1468 case CK_NullToPointer: 1469 case CK_PointerToBoolean: 1470 // FIXME: Preserves zeroes only if zero pointers and null pointers have the 1471 // same representation in all involved address spaces. 1472 return false; 1473 1474 case CK_ARCConsumeObject: 1475 case CK_ARCExtendBlockObject: 1476 case CK_ARCProduceObject: 1477 case CK_ARCReclaimReturnedObject: 1478 case CK_CopyAndAutoreleaseBlockObject: 1479 case CK_ArrayToPointerDecay: 1480 case CK_FunctionToPointerDecay: 1481 case CK_BuiltinFnToFnPtr: 1482 case CK_Dependent: 1483 case CK_LValueBitCast: 1484 case CK_LValueToRValue: 1485 case CK_LValueToRValueBitCast: 1486 case CK_UncheckedDerivedToBase: 1487 return false; 1488 } 1489 llvm_unreachable("Unhandled clang::CastKind enum"); 1490 } 1491 1492 /// isSimpleZero - If emitting this value will obviously just cause a store of 1493 /// zero to memory, return true. This can return false if uncertain, so it just 1494 /// handles simple cases. 1495 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1496 E = E->IgnoreParens(); 1497 while (auto *CE = dyn_cast<CastExpr>(E)) { 1498 if (!castPreservesZero(CE)) 1499 break; 1500 E = CE->getSubExpr()->IgnoreParens(); 1501 } 1502 1503 // 0 1504 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1505 return IL->getValue() == 0; 1506 // +0.0 1507 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1508 return FL->getValue().isPosZero(); 1509 // int() 1510 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1511 CGF.getTypes().isZeroInitializable(E->getType())) 1512 return true; 1513 // (int*)0 - Null pointer expressions. 1514 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1515 return ICE->getCastKind() == CK_NullToPointer && 1516 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1517 !E->HasSideEffects(CGF.getContext()); 1518 // '\0' 1519 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1520 return CL->getValue() == 0; 1521 1522 // Otherwise, hard case: conservatively return false. 1523 return false; 1524 } 1525 1526 1527 void 1528 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1529 QualType type = LV.getType(); 1530 // FIXME: Ignore result? 1531 // FIXME: Are initializers affected by volatile? 1532 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1533 // Storing "i32 0" to a zero'd memory location is a noop. 1534 return; 1535 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1536 return EmitNullInitializationToLValue(LV); 1537 } else if (isa<NoInitExpr>(E)) { 1538 // Do nothing. 1539 return; 1540 } else if (type->isReferenceType()) { 1541 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1542 return CGF.EmitStoreThroughLValue(RV, LV); 1543 } 1544 1545 switch (CGF.getEvaluationKind(type)) { 1546 case TEK_Complex: 1547 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1548 return; 1549 case TEK_Aggregate: 1550 CGF.EmitAggExpr( 1551 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1552 AggValueSlot::DoesNotNeedGCBarriers, 1553 AggValueSlot::IsNotAliased, 1554 AggValueSlot::MayOverlap, Dest.isZeroed())); 1555 return; 1556 case TEK_Scalar: 1557 if (LV.isSimple()) { 1558 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1559 } else { 1560 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1561 } 1562 return; 1563 } 1564 llvm_unreachable("bad evaluation kind"); 1565 } 1566 1567 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1568 QualType type = lv.getType(); 1569 1570 // If the destination slot is already zeroed out before the aggregate is 1571 // copied into it, we don't have to emit any zeros here. 1572 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1573 return; 1574 1575 if (CGF.hasScalarEvaluationKind(type)) { 1576 // For non-aggregates, we can store the appropriate null constant. 1577 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1578 // Note that the following is not equivalent to 1579 // EmitStoreThroughBitfieldLValue for ARC types. 1580 if (lv.isBitField()) { 1581 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1582 } else { 1583 assert(lv.isSimple()); 1584 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1585 } 1586 } else { 1587 // There's a potential optimization opportunity in combining 1588 // memsets; that would be easy for arrays, but relatively 1589 // difficult for structures with the current code. 1590 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1591 } 1592 } 1593 1594 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1595 #if 0 1596 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1597 // (Length of globals? Chunks of zeroed-out space?). 1598 // 1599 // If we can, prefer a copy from a global; this is a lot less code for long 1600 // globals, and it's easier for the current optimizers to analyze. 1601 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1602 llvm::GlobalVariable* GV = 1603 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1604 llvm::GlobalValue::InternalLinkage, C, ""); 1605 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1606 return; 1607 } 1608 #endif 1609 if (E->hadArrayRangeDesignator()) 1610 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1611 1612 if (E->isTransparent()) 1613 return Visit(E->getInit(0)); 1614 1615 AggValueSlot Dest = EnsureSlot(E->getType()); 1616 1617 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1618 1619 // Handle initialization of an array. 1620 if (E->getType()->isArrayType()) { 1621 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1622 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1623 return; 1624 } 1625 1626 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1627 1628 // Do struct initialization; this code just sets each individual member 1629 // to the approprate value. This makes bitfield support automatic; 1630 // the disadvantage is that the generated code is more difficult for 1631 // the optimizer, especially with bitfields. 1632 unsigned NumInitElements = E->getNumInits(); 1633 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1634 1635 // We'll need to enter cleanup scopes in case any of the element 1636 // initializers throws an exception. 1637 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1638 llvm::Instruction *cleanupDominator = nullptr; 1639 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1640 cleanups.push_back(cleanup); 1641 if (!cleanupDominator) // create placeholder once needed 1642 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1643 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1644 CharUnits::One()); 1645 }; 1646 1647 unsigned curInitIndex = 0; 1648 1649 // Emit initialization of base classes. 1650 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1651 assert(E->getNumInits() >= CXXRD->getNumBases() && 1652 "missing initializer for base class"); 1653 for (auto &Base : CXXRD->bases()) { 1654 assert(!Base.isVirtual() && "should not see vbases here"); 1655 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1656 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1657 Dest.getAddress(), CXXRD, BaseRD, 1658 /*isBaseVirtual*/ false); 1659 AggValueSlot AggSlot = AggValueSlot::forAddr( 1660 V, Qualifiers(), 1661 AggValueSlot::IsDestructed, 1662 AggValueSlot::DoesNotNeedGCBarriers, 1663 AggValueSlot::IsNotAliased, 1664 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1665 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1666 1667 if (QualType::DestructionKind dtorKind = 1668 Base.getType().isDestructedType()) { 1669 CGF.pushDestroy(dtorKind, V, Base.getType()); 1670 addCleanup(CGF.EHStack.stable_begin()); 1671 } 1672 } 1673 } 1674 1675 // Prepare a 'this' for CXXDefaultInitExprs. 1676 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1677 1678 if (record->isUnion()) { 1679 // Only initialize one field of a union. The field itself is 1680 // specified by the initializer list. 1681 if (!E->getInitializedFieldInUnion()) { 1682 // Empty union; we have nothing to do. 1683 1684 #ifndef NDEBUG 1685 // Make sure that it's really an empty and not a failure of 1686 // semantic analysis. 1687 for (const auto *Field : record->fields()) 1688 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1689 #endif 1690 return; 1691 } 1692 1693 // FIXME: volatility 1694 FieldDecl *Field = E->getInitializedFieldInUnion(); 1695 1696 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1697 if (NumInitElements) { 1698 // Store the initializer into the field 1699 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1700 } else { 1701 // Default-initialize to null. 1702 EmitNullInitializationToLValue(FieldLoc); 1703 } 1704 1705 return; 1706 } 1707 1708 // Here we iterate over the fields; this makes it simpler to both 1709 // default-initialize fields and skip over unnamed fields. 1710 for (const auto *field : record->fields()) { 1711 // We're done once we hit the flexible array member. 1712 if (field->getType()->isIncompleteArrayType()) 1713 break; 1714 1715 // Always skip anonymous bitfields. 1716 if (field->isUnnamedBitfield()) 1717 continue; 1718 1719 // We're done if we reach the end of the explicit initializers, we 1720 // have a zeroed object, and the rest of the fields are 1721 // zero-initializable. 1722 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1723 CGF.getTypes().isZeroInitializable(E->getType())) 1724 break; 1725 1726 1727 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1728 // We never generate write-barries for initialized fields. 1729 LV.setNonGC(true); 1730 1731 if (curInitIndex < NumInitElements) { 1732 // Store the initializer into the field. 1733 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1734 } else { 1735 // We're out of initializers; default-initialize to null 1736 EmitNullInitializationToLValue(LV); 1737 } 1738 1739 // Push a destructor if necessary. 1740 // FIXME: if we have an array of structures, all explicitly 1741 // initialized, we can end up pushing a linear number of cleanups. 1742 bool pushedCleanup = false; 1743 if (QualType::DestructionKind dtorKind 1744 = field->getType().isDestructedType()) { 1745 assert(LV.isSimple()); 1746 if (CGF.needsEHCleanup(dtorKind)) { 1747 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1748 CGF.getDestroyer(dtorKind), false); 1749 addCleanup(CGF.EHStack.stable_begin()); 1750 pushedCleanup = true; 1751 } 1752 } 1753 1754 // If the GEP didn't get used because of a dead zero init or something 1755 // else, clean it up for -O0 builds and general tidiness. 1756 if (!pushedCleanup && LV.isSimple()) 1757 if (llvm::GetElementPtrInst *GEP = 1758 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1759 if (GEP->use_empty()) 1760 GEP->eraseFromParent(); 1761 } 1762 1763 // Deactivate all the partial cleanups in reverse order, which 1764 // generally means popping them. 1765 assert((cleanupDominator || cleanups.empty()) && 1766 "Missing cleanupDominator before deactivating cleanup blocks"); 1767 for (unsigned i = cleanups.size(); i != 0; --i) 1768 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1769 1770 // Destroy the placeholder if we made one. 1771 if (cleanupDominator) 1772 cleanupDominator->eraseFromParent(); 1773 } 1774 1775 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1776 llvm::Value *outerBegin) { 1777 // Emit the common subexpression. 1778 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1779 1780 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1781 uint64_t numElements = E->getArraySize().getZExtValue(); 1782 1783 if (!numElements) 1784 return; 1785 1786 // destPtr is an array*. Construct an elementType* by drilling down a level. 1787 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1788 llvm::Value *indices[] = {zero, zero}; 1789 llvm::Value *begin = Builder.CreateInBoundsGEP( 1790 destPtr.getElementType(), destPtr.getPointer(), indices, 1791 "arrayinit.begin"); 1792 1793 // Prepare to special-case multidimensional array initialization: we avoid 1794 // emitting multiple destructor loops in that case. 1795 if (!outerBegin) 1796 outerBegin = begin; 1797 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1798 1799 QualType elementType = 1800 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1801 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1802 CharUnits elementAlign = 1803 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1804 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType); 1805 1806 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1807 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1808 1809 // Jump into the body. 1810 CGF.EmitBlock(bodyBB); 1811 llvm::PHINode *index = 1812 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1813 index->addIncoming(zero, entryBB); 1814 llvm::Value *element = 1815 Builder.CreateInBoundsGEP(llvmElementType, begin, index); 1816 1817 // Prepare for a cleanup. 1818 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1819 EHScopeStack::stable_iterator cleanup; 1820 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1821 if (outerBegin->getType() != element->getType()) 1822 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1823 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1824 elementAlign, 1825 CGF.getDestroyer(dtorKind)); 1826 cleanup = CGF.EHStack.stable_begin(); 1827 } else { 1828 dtorKind = QualType::DK_none; 1829 } 1830 1831 // Emit the actual filler expression. 1832 { 1833 // Temporaries created in an array initialization loop are destroyed 1834 // at the end of each iteration. 1835 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1836 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1837 LValue elementLV = CGF.MakeAddrLValue( 1838 Address(element, llvmElementType, elementAlign), elementType); 1839 1840 if (InnerLoop) { 1841 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1842 auto elementSlot = AggValueSlot::forLValue( 1843 elementLV, CGF, AggValueSlot::IsDestructed, 1844 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1845 AggValueSlot::DoesNotOverlap); 1846 AggExprEmitter(CGF, elementSlot, false) 1847 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1848 } else 1849 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1850 } 1851 1852 // Move on to the next element. 1853 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1854 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1855 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1856 1857 // Leave the loop if we're done. 1858 llvm::Value *done = Builder.CreateICmpEQ( 1859 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1860 "arrayinit.done"); 1861 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1862 Builder.CreateCondBr(done, endBB, bodyBB); 1863 1864 CGF.EmitBlock(endBB); 1865 1866 // Leave the partial-array cleanup if we entered one. 1867 if (dtorKind) 1868 CGF.DeactivateCleanupBlock(cleanup, index); 1869 } 1870 1871 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1872 AggValueSlot Dest = EnsureSlot(E->getType()); 1873 1874 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1875 EmitInitializationToLValue(E->getBase(), DestLV); 1876 VisitInitListExpr(E->getUpdater()); 1877 } 1878 1879 //===----------------------------------------------------------------------===// 1880 // Entry Points into this File 1881 //===----------------------------------------------------------------------===// 1882 1883 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1884 /// non-zero bytes that will be stored when outputting the initializer for the 1885 /// specified initializer expression. 1886 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1887 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 1888 E = MTE->getSubExpr(); 1889 E = E->IgnoreParenNoopCasts(CGF.getContext()); 1890 1891 // 0 and 0.0 won't require any non-zero stores! 1892 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1893 1894 // If this is an initlist expr, sum up the size of sizes of the (present) 1895 // elements. If this is something weird, assume the whole thing is non-zero. 1896 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1897 while (ILE && ILE->isTransparent()) 1898 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1899 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1900 return CGF.getContext().getTypeSizeInChars(E->getType()); 1901 1902 // InitListExprs for structs have to be handled carefully. If there are 1903 // reference members, we need to consider the size of the reference, not the 1904 // referencee. InitListExprs for unions and arrays can't have references. 1905 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1906 if (!RT->isUnionType()) { 1907 RecordDecl *SD = RT->getDecl(); 1908 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1909 1910 unsigned ILEElement = 0; 1911 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1912 while (ILEElement != CXXRD->getNumBases()) 1913 NumNonZeroBytes += 1914 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1915 for (const auto *Field : SD->fields()) { 1916 // We're done once we hit the flexible array member or run out of 1917 // InitListExpr elements. 1918 if (Field->getType()->isIncompleteArrayType() || 1919 ILEElement == ILE->getNumInits()) 1920 break; 1921 if (Field->isUnnamedBitfield()) 1922 continue; 1923 1924 const Expr *E = ILE->getInit(ILEElement++); 1925 1926 // Reference values are always non-null and have the width of a pointer. 1927 if (Field->getType()->isReferenceType()) 1928 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1929 CGF.getTarget().getPointerWidth(0)); 1930 else 1931 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1932 } 1933 1934 return NumNonZeroBytes; 1935 } 1936 } 1937 1938 // FIXME: This overestimates the number of non-zero bytes for bit-fields. 1939 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1940 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1941 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1942 return NumNonZeroBytes; 1943 } 1944 1945 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1946 /// zeros in it, emit a memset and avoid storing the individual zeros. 1947 /// 1948 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1949 CodeGenFunction &CGF) { 1950 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1951 // volatile stores. 1952 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1953 return; 1954 1955 // C++ objects with a user-declared constructor don't need zero'ing. 1956 if (CGF.getLangOpts().CPlusPlus) 1957 if (const RecordType *RT = CGF.getContext() 1958 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1959 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1960 if (RD->hasUserDeclaredConstructor()) 1961 return; 1962 } 1963 1964 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1965 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1966 if (Size <= CharUnits::fromQuantity(16)) 1967 return; 1968 1969 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1970 // we prefer to emit memset + individual stores for the rest. 1971 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1972 if (NumNonZeroBytes*4 > Size) 1973 return; 1974 1975 // Okay, it seems like a good idea to use an initial memset, emit the call. 1976 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1977 1978 Address Loc = Slot.getAddress(); 1979 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1980 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1981 1982 // Tell the AggExprEmitter that the slot is known zero. 1983 Slot.setZeroed(); 1984 } 1985 1986 1987 1988 1989 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1990 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1991 /// the value of the aggregate expression is not needed. If VolatileDest is 1992 /// true, DestPtr cannot be 0. 1993 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1994 assert(E && hasAggregateEvaluationKind(E->getType()) && 1995 "Invalid aggregate expression to emit"); 1996 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1997 "slot has bits but no address"); 1998 1999 // Optimize the slot if possible. 2000 CheckAggExprForMemSetUse(Slot, E, *this); 2001 2002 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 2003 } 2004 2005 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 2006 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 2007 Address Temp = CreateMemTemp(E->getType()); 2008 LValue LV = MakeAddrLValue(Temp, E->getType()); 2009 EmitAggExpr(E, AggValueSlot::forLValue( 2010 LV, *this, AggValueSlot::IsNotDestructed, 2011 AggValueSlot::DoesNotNeedGCBarriers, 2012 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 2013 return LV; 2014 } 2015 2016 AggValueSlot::Overlap_t 2017 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 2018 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 2019 return AggValueSlot::DoesNotOverlap; 2020 2021 // If the field lies entirely within the enclosing class's nvsize, its tail 2022 // padding cannot overlap any already-initialized object. (The only subobjects 2023 // with greater addresses that might already be initialized are vbases.) 2024 const RecordDecl *ClassRD = FD->getParent(); 2025 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 2026 if (Layout.getFieldOffset(FD->getFieldIndex()) + 2027 getContext().getTypeSize(FD->getType()) <= 2028 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 2029 return AggValueSlot::DoesNotOverlap; 2030 2031 // The tail padding may contain values we need to preserve. 2032 return AggValueSlot::MayOverlap; 2033 } 2034 2035 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 2036 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 2037 // If the most-derived object is a field declared with [[no_unique_address]], 2038 // the tail padding of any virtual base could be reused for other subobjects 2039 // of that field's class. 2040 if (IsVirtual) 2041 return AggValueSlot::MayOverlap; 2042 2043 // If the base class is laid out entirely within the nvsize of the derived 2044 // class, its tail padding cannot yet be initialized, so we can issue 2045 // stores at the full width of the base class. 2046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2047 if (Layout.getBaseClassOffset(BaseRD) + 2048 getContext().getASTRecordLayout(BaseRD).getSize() <= 2049 Layout.getNonVirtualSize()) 2050 return AggValueSlot::DoesNotOverlap; 2051 2052 // The tail padding may contain values we need to preserve. 2053 return AggValueSlot::MayOverlap; 2054 } 2055 2056 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 2057 AggValueSlot::Overlap_t MayOverlap, 2058 bool isVolatile) { 2059 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 2060 2061 Address DestPtr = Dest.getAddress(*this); 2062 Address SrcPtr = Src.getAddress(*this); 2063 2064 if (getLangOpts().CPlusPlus) { 2065 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2066 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 2067 assert((Record->hasTrivialCopyConstructor() || 2068 Record->hasTrivialCopyAssignment() || 2069 Record->hasTrivialMoveConstructor() || 2070 Record->hasTrivialMoveAssignment() || 2071 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) && 2072 "Trying to aggregate-copy a type without a trivial copy/move " 2073 "constructor or assignment operator"); 2074 // Ignore empty classes in C++. 2075 if (Record->isEmpty()) 2076 return; 2077 } 2078 } 2079 2080 if (getLangOpts().CUDAIsDevice) { 2081 if (Ty->isCUDADeviceBuiltinSurfaceType()) { 2082 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest, 2083 Src)) 2084 return; 2085 } else if (Ty->isCUDADeviceBuiltinTextureType()) { 2086 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest, 2087 Src)) 2088 return; 2089 } 2090 } 2091 2092 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 2093 // C99 6.5.16.1p3, which states "If the value being stored in an object is 2094 // read from another object that overlaps in anyway the storage of the first 2095 // object, then the overlap shall be exact and the two objects shall have 2096 // qualified or unqualified versions of a compatible type." 2097 // 2098 // memcpy is not defined if the source and destination pointers are exactly 2099 // equal, but other compilers do this optimization, and almost every memcpy 2100 // implementation handles this case safely. If there is a libc that does not 2101 // safely handle this, we can add a target hook. 2102 2103 // Get data size info for this aggregate. Don't copy the tail padding if this 2104 // might be a potentially-overlapping subobject, since the tail padding might 2105 // be occupied by a different object. Otherwise, copying it is fine. 2106 TypeInfoChars TypeInfo; 2107 if (MayOverlap) 2108 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 2109 else 2110 TypeInfo = getContext().getTypeInfoInChars(Ty); 2111 2112 llvm::Value *SizeVal = nullptr; 2113 if (TypeInfo.Width.isZero()) { 2114 // But note that getTypeInfo returns 0 for a VLA. 2115 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 2116 getContext().getAsArrayType(Ty))) { 2117 QualType BaseEltTy; 2118 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 2119 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 2120 assert(!TypeInfo.Width.isZero()); 2121 SizeVal = Builder.CreateNUWMul( 2122 SizeVal, 2123 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity())); 2124 } 2125 } 2126 if (!SizeVal) { 2127 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()); 2128 } 2129 2130 // FIXME: If we have a volatile struct, the optimizer can remove what might 2131 // appear to be `extra' memory ops: 2132 // 2133 // volatile struct { int i; } a, b; 2134 // 2135 // int main() { 2136 // a = b; 2137 // a = b; 2138 // } 2139 // 2140 // we need to use a different call here. We use isVolatile to indicate when 2141 // either the source or the destination is volatile. 2142 2143 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 2144 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 2145 2146 // Don't do any of the memmove_collectable tests if GC isn't set. 2147 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2148 // fall through 2149 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2150 RecordDecl *Record = RecordTy->getDecl(); 2151 if (Record->hasObjectMember()) { 2152 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2153 SizeVal); 2154 return; 2155 } 2156 } else if (Ty->isArrayType()) { 2157 QualType BaseType = getContext().getBaseElementType(Ty); 2158 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2159 if (RecordTy->getDecl()->hasObjectMember()) { 2160 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2161 SizeVal); 2162 return; 2163 } 2164 } 2165 } 2166 2167 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2168 2169 // Determine the metadata to describe the position of any padding in this 2170 // memcpy, as well as the TBAA tags for the members of the struct, in case 2171 // the optimizer wishes to expand it in to scalar memory operations. 2172 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2173 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2174 2175 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2176 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2177 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2178 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2179 } 2180 } 2181