xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "EHScopeStack.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Attr.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                        Aggregate Expression Emitter
36 //===----------------------------------------------------------------------===//
37 
38 namespace llvm {
39 extern cl::opt<bool> EnableSingleByteCoverage;
40 } // namespace llvm
41 
42 namespace  {
43 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
44   CodeGenFunction &CGF;
45   CGBuilderTy &Builder;
46   AggValueSlot Dest;
47   bool IsResultUnused;
48 
49   AggValueSlot EnsureSlot(QualType T) {
50     if (!Dest.isIgnored()) return Dest;
51     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
52   }
53   void EnsureDest(QualType T) {
54     if (!Dest.isIgnored()) return;
55     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
56   }
57 
58   // Calls `Fn` with a valid return value slot, potentially creating a temporary
59   // to do so. If a temporary is created, an appropriate copy into `Dest` will
60   // be emitted, as will lifetime markers.
61   //
62   // The given function should take a ReturnValueSlot, and return an RValue that
63   // points to said slot.
64   void withReturnValueSlot(const Expr *E,
65                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
66 
67 public:
68   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
69     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
70     IsResultUnused(IsResultUnused) { }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
77   /// represents a value lvalue, this method emits the address of the lvalue,
78   /// then loads the result into DestPtr.
79   void EmitAggLoadOfLValue(const Expr *E);
80 
81   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
82   /// SrcIsRValue is true if source comes from an RValue.
83   void EmitFinalDestCopy(QualType type, const LValue &src,
84                          CodeGenFunction::ExprValueKind SrcValueKind =
85                              CodeGenFunction::EVK_NonRValue);
86   void EmitFinalDestCopy(QualType type, RValue src);
87   void EmitCopy(QualType type, const AggValueSlot &dest,
88                 const AggValueSlot &src);
89 
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
91                      Expr *ExprToVisit, ArrayRef<Expr *> Args,
92                      Expr *ArrayFiller);
93 
94   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
95     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
96       return AggValueSlot::NeedsGCBarriers;
97     return AggValueSlot::DoesNotNeedGCBarriers;
98   }
99 
100   bool TypeRequiresGCollection(QualType T);
101 
102   //===--------------------------------------------------------------------===//
103   //                            Visitor Methods
104   //===--------------------------------------------------------------------===//
105 
106   void Visit(Expr *E) {
107     ApplyDebugLocation DL(CGF, E);
108     StmtVisitor<AggExprEmitter>::Visit(E);
109   }
110 
111   void VisitStmt(Stmt *S) {
112     CGF.ErrorUnsupported(S, "aggregate expression");
113   }
114   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
115   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
116     Visit(GE->getResultExpr());
117   }
118   void VisitCoawaitExpr(CoawaitExpr *E) {
119     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitCoyieldExpr(CoyieldExpr *E) {
122     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
123   }
124   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
125   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
126   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
127     return Visit(E->getReplacement());
128   }
129 
130   void VisitConstantExpr(ConstantExpr *E) {
131     EnsureDest(E->getType());
132 
133     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
134       CGF.CreateCoercedStore(
135           Result, Dest.getAddress(),
136           llvm::TypeSize::getFixed(
137               Dest.getPreferredSize(CGF.getContext(), E->getType())
138                   .getQuantity()),
139           E->getType().isVolatileQualified());
140       return;
141     }
142     return Visit(E->getSubExpr());
143   }
144 
145   // l-values.
146   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
147   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
148   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
149   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
150   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
151   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
152     EmitAggLoadOfLValue(E);
153   }
154   void VisitPredefinedExpr(const PredefinedExpr *E) {
155     EmitAggLoadOfLValue(E);
156   }
157 
158   // Operators.
159   void VisitCastExpr(CastExpr *E);
160   void VisitCallExpr(const CallExpr *E);
161   void VisitStmtExpr(const StmtExpr *E);
162   void VisitBinaryOperator(const BinaryOperator *BO);
163   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
164   void VisitBinAssign(const BinaryOperator *E);
165   void VisitBinComma(const BinaryOperator *E);
166   void VisitBinCmp(const BinaryOperator *E);
167   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
168     Visit(E->getSemanticForm());
169   }
170 
171   void VisitObjCMessageExpr(ObjCMessageExpr *E);
172   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
173     EmitAggLoadOfLValue(E);
174   }
175 
176   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
177   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
178   void VisitChooseExpr(const ChooseExpr *CE);
179   void VisitInitListExpr(InitListExpr *E);
180   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
181                                        FieldDecl *InitializedFieldInUnion,
182                                        Expr *ArrayFiller);
183   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
184                               llvm::Value *outerBegin = nullptr);
185   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
186   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
187   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
188     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
189     Visit(DAE->getExpr());
190   }
191   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
192     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
193     Visit(DIE->getExpr());
194   }
195   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
196   void VisitCXXConstructExpr(const CXXConstructExpr *E);
197   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
198   void VisitLambdaExpr(LambdaExpr *E);
199   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
200   void VisitExprWithCleanups(ExprWithCleanups *E);
201   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
202   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
203   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
204   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
205 
206   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
207     if (E->isGLValue()) {
208       LValue LV = CGF.EmitPseudoObjectLValue(E);
209       return EmitFinalDestCopy(E->getType(), LV);
210     }
211 
212     AggValueSlot Slot = EnsureSlot(E->getType());
213     bool NeedsDestruction =
214         !Slot.isExternallyDestructed() &&
215         E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
216     if (NeedsDestruction)
217       Slot.setExternallyDestructed();
218     CGF.EmitPseudoObjectRValue(E, Slot);
219     if (NeedsDestruction)
220       CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
221                       E->getType());
222   }
223 
224   void VisitVAArgExpr(VAArgExpr *E);
225   void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
226   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
227                                        Expr *ArrayFiller);
228 
229   void EmitInitializationToLValue(Expr *E, LValue Address);
230   void EmitNullInitializationToLValue(LValue Address);
231   //  case Expr::ChooseExprClass:
232   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
233   void VisitAtomicExpr(AtomicExpr *E) {
234     RValue Res = CGF.EmitAtomicExpr(E);
235     EmitFinalDestCopy(E->getType(), Res);
236   }
237   void VisitPackIndexingExpr(PackIndexingExpr *E) {
238     Visit(E->getSelectedExpr());
239   }
240 };
241 }  // end anonymous namespace.
242 
243 //===----------------------------------------------------------------------===//
244 //                                Utilities
245 //===----------------------------------------------------------------------===//
246 
247 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
248 /// represents a value lvalue, this method emits the address of the lvalue,
249 /// then loads the result into DestPtr.
250 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
251   LValue LV = CGF.EmitLValue(E);
252 
253   // If the type of the l-value is atomic, then do an atomic load.
254   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
255     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
256     return;
257   }
258 
259   EmitFinalDestCopy(E->getType(), LV);
260 }
261 
262 /// True if the given aggregate type requires special GC API calls.
263 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
264   // Only record types have members that might require garbage collection.
265   const RecordType *RecordTy = T->getAs<RecordType>();
266   if (!RecordTy) return false;
267 
268   // Don't mess with non-trivial C++ types.
269   RecordDecl *Record = RecordTy->getDecl();
270   if (isa<CXXRecordDecl>(Record) &&
271       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
272        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
273     return false;
274 
275   // Check whether the type has an object member.
276   return Record->hasObjectMember();
277 }
278 
279 void AggExprEmitter::withReturnValueSlot(
280     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
281   QualType RetTy = E->getType();
282   bool RequiresDestruction =
283       !Dest.isExternallyDestructed() &&
284       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
285 
286   // If it makes no observable difference, save a memcpy + temporary.
287   //
288   // We need to always provide our own temporary if destruction is required.
289   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
290   // its lifetime before we have the chance to emit a proper destructor call.
291   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
292                  (RequiresDestruction && Dest.isIgnored());
293 
294   Address RetAddr = Address::invalid();
295   RawAddress RetAllocaAddr = RawAddress::invalid();
296 
297   EHScopeStack::stable_iterator LifetimeEndBlock;
298   llvm::Value *LifetimeSizePtr = nullptr;
299   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
300   if (!UseTemp) {
301     RetAddr = Dest.getAddress();
302   } else {
303     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
304     llvm::TypeSize Size =
305         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
306     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
307     if (LifetimeSizePtr) {
308       LifetimeStartInst =
309           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
310       assert(LifetimeStartInst->getIntrinsicID() ==
311                  llvm::Intrinsic::lifetime_start &&
312              "Last insertion wasn't a lifetime.start?");
313 
314       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
315           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
316       LifetimeEndBlock = CGF.EHStack.stable_begin();
317     }
318   }
319 
320   RValue Src =
321       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
322                                Dest.isExternallyDestructed()));
323 
324   if (!UseTemp)
325     return;
326 
327   assert(Dest.isIgnored() || Dest.emitRawPointer(CGF) !=
328                                  Src.getAggregatePointer(E->getType(), CGF));
329   EmitFinalDestCopy(E->getType(), Src);
330 
331   if (!RequiresDestruction && LifetimeStartInst) {
332     // If there's no dtor to run, the copy was the last use of our temporary.
333     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
334     // eagerly.
335     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
336     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
337   }
338 }
339 
340 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
341 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
342   assert(src.isAggregate() && "value must be aggregate value!");
343   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
344   EmitFinalDestCopy(type, srcLV, CodeGenFunction::EVK_RValue);
345 }
346 
347 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
348 void AggExprEmitter::EmitFinalDestCopy(
349     QualType type, const LValue &src,
350     CodeGenFunction::ExprValueKind SrcValueKind) {
351   // If Dest is ignored, then we're evaluating an aggregate expression
352   // in a context that doesn't care about the result.  Note that loads
353   // from volatile l-values force the existence of a non-ignored
354   // destination.
355   if (Dest.isIgnored())
356     return;
357 
358   // Copy non-trivial C structs here.
359   LValue DstLV = CGF.MakeAddrLValue(
360       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
361 
362   if (SrcValueKind == CodeGenFunction::EVK_RValue) {
363     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
364       if (Dest.isPotentiallyAliased())
365         CGF.callCStructMoveAssignmentOperator(DstLV, src);
366       else
367         CGF.callCStructMoveConstructor(DstLV, src);
368       return;
369     }
370   } else {
371     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
372       if (Dest.isPotentiallyAliased())
373         CGF.callCStructCopyAssignmentOperator(DstLV, src);
374       else
375         CGF.callCStructCopyConstructor(DstLV, src);
376       return;
377     }
378   }
379 
380   AggValueSlot srcAgg = AggValueSlot::forLValue(
381       src, AggValueSlot::IsDestructed, needsGC(type), AggValueSlot::IsAliased,
382       AggValueSlot::MayOverlap);
383   EmitCopy(type, Dest, srcAgg);
384 }
385 
386 /// Perform a copy from the source into the destination.
387 ///
388 /// \param type - the type of the aggregate being copied; qualifiers are
389 ///   ignored
390 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
391                               const AggValueSlot &src) {
392   if (dest.requiresGCollection()) {
393     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
394     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
395     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
396                                                       dest.getAddress(),
397                                                       src.getAddress(),
398                                                       size);
399     return;
400   }
401 
402   // If the result of the assignment is used, copy the LHS there also.
403   // It's volatile if either side is.  Use the minimum alignment of
404   // the two sides.
405   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
406   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
407   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
408                         dest.isVolatile() || src.isVolatile());
409 }
410 
411 /// Emit the initializer for a std::initializer_list initialized with a
412 /// real initializer list.
413 void
414 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
415   // Emit an array containing the elements.  The array is externally destructed
416   // if the std::initializer_list object is.
417   ASTContext &Ctx = CGF.getContext();
418   LValue Array = CGF.EmitLValue(E->getSubExpr());
419   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
420   Address ArrayPtr = Array.getAddress();
421 
422   const ConstantArrayType *ArrayType =
423       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
424   assert(ArrayType && "std::initializer_list constructed from non-array");
425 
426   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
427   RecordDecl::field_iterator Field = Record->field_begin();
428   assert(Field != Record->field_end() &&
429          Ctx.hasSameType(Field->getType()->getPointeeType(),
430                          ArrayType->getElementType()) &&
431          "Expected std::initializer_list first field to be const E *");
432 
433   // Start pointer.
434   AggValueSlot Dest = EnsureSlot(E->getType());
435   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
436   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
437   llvm::Value *ArrayStart = ArrayPtr.emitRawPointer(CGF);
438   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
439   ++Field;
440   assert(Field != Record->field_end() &&
441          "Expected std::initializer_list to have two fields");
442 
443   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
444   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
445   if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
446     // Length.
447     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
448 
449   } else {
450     // End pointer.
451     assert(Field->getType()->isPointerType() &&
452            Ctx.hasSameType(Field->getType()->getPointeeType(),
453                            ArrayType->getElementType()) &&
454            "Expected std::initializer_list second field to be const E *");
455     llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
456     llvm::Value *IdxEnd[] = { Zero, Size };
457     llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
458         ArrayPtr.getElementType(), ArrayPtr.emitRawPointer(CGF), IdxEnd,
459         "arrayend");
460     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
461   }
462 
463   assert(++Field == Record->field_end() &&
464          "Expected std::initializer_list to only have two fields");
465 }
466 
467 /// Determine if E is a trivial array filler, that is, one that is
468 /// equivalent to zero-initialization.
469 static bool isTrivialFiller(Expr *E) {
470   if (!E)
471     return true;
472 
473   if (isa<ImplicitValueInitExpr>(E))
474     return true;
475 
476   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
477     if (ILE->getNumInits())
478       return false;
479     return isTrivialFiller(ILE->getArrayFiller());
480   }
481 
482   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
483     return Cons->getConstructor()->isDefaultConstructor() &&
484            Cons->getConstructor()->isTrivial();
485 
486   // FIXME: Are there other cases where we can avoid emitting an initializer?
487   return false;
488 }
489 
490 /// Emit initialization of an array from an initializer list. ExprToVisit must
491 /// be either an InitListEpxr a CXXParenInitListExpr.
492 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
493                                    QualType ArrayQTy, Expr *ExprToVisit,
494                                    ArrayRef<Expr *> Args, Expr *ArrayFiller) {
495   uint64_t NumInitElements = Args.size();
496 
497   uint64_t NumArrayElements = AType->getNumElements();
498   for (const auto *Init : Args) {
499     if (const auto *Embed = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
500       NumInitElements += Embed->getDataElementCount() - 1;
501       if (NumInitElements > NumArrayElements) {
502         NumInitElements = NumArrayElements;
503         break;
504       }
505     }
506   }
507 
508   assert(NumInitElements <= NumArrayElements);
509 
510   QualType elementType =
511       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
512   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
513   CharUnits elementAlign =
514     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
515   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
516 
517   // Consider initializing the array by copying from a global. For this to be
518   // more efficient than per-element initialization, the size of the elements
519   // with explicit initializers should be large enough.
520   if (NumInitElements * elementSize.getQuantity() > 16 &&
521       elementType.isTriviallyCopyableType(CGF.getContext())) {
522     CodeGen::CodeGenModule &CGM = CGF.CGM;
523     ConstantEmitter Emitter(CGF);
524     QualType GVArrayQTy = CGM.getContext().getAddrSpaceQualType(
525         CGM.getContext().removeAddrSpaceQualType(ArrayQTy),
526         CGM.GetGlobalConstantAddressSpace());
527     LangAS AS = GVArrayQTy.getAddressSpace();
528     if (llvm::Constant *C =
529             Emitter.tryEmitForInitializer(ExprToVisit, AS, GVArrayQTy)) {
530       auto GV = new llvm::GlobalVariable(
531           CGM.getModule(), C->getType(),
532           /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C,
533           "constinit",
534           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
535           CGM.getContext().getTargetAddressSpace(AS));
536       Emitter.finalize(GV);
537       CharUnits Align = CGM.getContext().getTypeAlignInChars(GVArrayQTy);
538       GV->setAlignment(Align.getAsAlign());
539       Address GVAddr(GV, GV->getValueType(), Align);
540       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, GVArrayQTy));
541       return;
542     }
543   }
544 
545   // Exception safety requires us to destroy all the
546   // already-constructed members if an initializer throws.
547   // For that, we'll need an EH cleanup.
548   QualType::DestructionKind dtorKind = elementType.isDestructedType();
549   Address endOfInit = Address::invalid();
550   CodeGenFunction::CleanupDeactivationScope deactivation(CGF);
551 
552   llvm::Value *begin = DestPtr.emitRawPointer(CGF);
553   if (dtorKind) {
554     CodeGenFunction::AllocaTrackerRAII allocaTracker(CGF);
555     // In principle we could tell the cleanup where we are more
556     // directly, but the control flow can get so varied here that it
557     // would actually be quite complex.  Therefore we go through an
558     // alloca.
559     llvm::Instruction *dominatingIP =
560         Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(CGF.Int8PtrTy));
561     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
562                                      "arrayinit.endOfInit");
563     Builder.CreateStore(begin, endOfInit);
564     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
565                                          elementAlign,
566                                          CGF.getDestroyer(dtorKind));
567     cast<EHCleanupScope>(*CGF.EHStack.find(CGF.EHStack.stable_begin()))
568         .AddAuxAllocas(allocaTracker.Take());
569 
570     CGF.DeferredDeactivationCleanupStack.push_back(
571         {CGF.EHStack.stable_begin(), dominatingIP});
572   }
573 
574   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
575 
576   auto Emit = [&](Expr *Init, uint64_t ArrayIndex) {
577     llvm::Value *element = begin;
578     if (ArrayIndex > 0) {
579       element = Builder.CreateInBoundsGEP(
580           llvmElementType, begin,
581           llvm::ConstantInt::get(CGF.SizeTy, ArrayIndex), "arrayinit.element");
582 
583       // Tell the cleanup that it needs to destroy up to this
584       // element.  TODO: some of these stores can be trivially
585       // observed to be unnecessary.
586       if (endOfInit.isValid())
587         Builder.CreateStore(element, endOfInit);
588     }
589 
590     LValue elementLV = CGF.MakeAddrLValue(
591         Address(element, llvmElementType, elementAlign), elementType);
592     EmitInitializationToLValue(Init, elementLV);
593     return true;
594   };
595 
596   unsigned ArrayIndex = 0;
597   // Emit the explicit initializers.
598   for (uint64_t i = 0; i != NumInitElements; ++i) {
599     if (ArrayIndex >= NumInitElements)
600       break;
601     if (auto *EmbedS = dyn_cast<EmbedExpr>(Args[i]->IgnoreParenImpCasts())) {
602       EmbedS->doForEachDataElement(Emit, ArrayIndex);
603     } else {
604       Emit(Args[i], ArrayIndex);
605       ArrayIndex++;
606     }
607   }
608 
609   // Check whether there's a non-trivial array-fill expression.
610   bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
611 
612   // Any remaining elements need to be zero-initialized, possibly
613   // using the filler expression.  We can skip this if the we're
614   // emitting to zeroed memory.
615   if (NumInitElements != NumArrayElements &&
616       !(Dest.isZeroed() && hasTrivialFiller &&
617         CGF.getTypes().isZeroInitializable(elementType))) {
618 
619     // Use an actual loop.  This is basically
620     //   do { *array++ = filler; } while (array != end);
621 
622     // Advance to the start of the rest of the array.
623     llvm::Value *element = begin;
624     if (NumInitElements) {
625       element = Builder.CreateInBoundsGEP(
626           llvmElementType, element,
627           llvm::ConstantInt::get(CGF.SizeTy, NumInitElements),
628           "arrayinit.start");
629       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
630     }
631 
632     // Compute the end of the array.
633     llvm::Value *end = Builder.CreateInBoundsGEP(
634         llvmElementType, begin,
635         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
636 
637     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
638     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
639 
640     // Jump into the body.
641     CGF.EmitBlock(bodyBB);
642     llvm::PHINode *currentElement =
643       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
644     currentElement->addIncoming(element, entryBB);
645 
646     // Emit the actual filler expression.
647     {
648       // C++1z [class.temporary]p5:
649       //   when a default constructor is called to initialize an element of
650       //   an array with no corresponding initializer [...] the destruction of
651       //   every temporary created in a default argument is sequenced before
652       //   the construction of the next array element, if any
653       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
654       LValue elementLV = CGF.MakeAddrLValue(
655           Address(currentElement, llvmElementType, elementAlign), elementType);
656       if (ArrayFiller)
657         EmitInitializationToLValue(ArrayFiller, elementLV);
658       else
659         EmitNullInitializationToLValue(elementLV);
660     }
661 
662     // Move on to the next element.
663     llvm::Value *nextElement = Builder.CreateInBoundsGEP(
664         llvmElementType, currentElement, one, "arrayinit.next");
665 
666     // Tell the EH cleanup that we finished with the last element.
667     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
668 
669     // Leave the loop if we're done.
670     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
671                                              "arrayinit.done");
672     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
673     Builder.CreateCondBr(done, endBB, bodyBB);
674     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
675 
676     CGF.EmitBlock(endBB);
677   }
678 }
679 
680 //===----------------------------------------------------------------------===//
681 //                            Visitor Methods
682 //===----------------------------------------------------------------------===//
683 
684 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
685   Visit(E->getSubExpr());
686 }
687 
688 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
689   // If this is a unique OVE, just visit its source expression.
690   if (e->isUnique())
691     Visit(e->getSourceExpr());
692   else
693     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
694 }
695 
696 void
697 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
698   if (Dest.isPotentiallyAliased() &&
699       E->getType().isPODType(CGF.getContext())) {
700     // For a POD type, just emit a load of the lvalue + a copy, because our
701     // compound literal might alias the destination.
702     EmitAggLoadOfLValue(E);
703     return;
704   }
705 
706   AggValueSlot Slot = EnsureSlot(E->getType());
707 
708   // Block-scope compound literals are destroyed at the end of the enclosing
709   // scope in C.
710   bool Destruct =
711       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
712   if (Destruct)
713     Slot.setExternallyDestructed();
714 
715   CGF.EmitAggExpr(E->getInitializer(), Slot);
716 
717   if (Destruct)
718     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
719       CGF.pushLifetimeExtendedDestroy(
720           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
721           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
722 }
723 
724 /// Attempt to look through various unimportant expressions to find a
725 /// cast of the given kind.
726 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
727   op = op->IgnoreParenNoopCasts(ctx);
728   if (auto castE = dyn_cast<CastExpr>(op)) {
729     if (castE->getCastKind() == kind)
730       return castE->getSubExpr();
731   }
732   return nullptr;
733 }
734 
735 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
736   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
737     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
738   switch (E->getCastKind()) {
739   case CK_Dynamic: {
740     // FIXME: Can this actually happen? We have no test coverage for it.
741     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
742     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
743                                       CodeGenFunction::TCK_Load);
744     // FIXME: Do we also need to handle property references here?
745     if (LV.isSimple())
746       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
747     else
748       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
749 
750     if (!Dest.isIgnored())
751       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
752     break;
753   }
754 
755   case CK_ToUnion: {
756     // Evaluate even if the destination is ignored.
757     if (Dest.isIgnored()) {
758       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
759                       /*ignoreResult=*/true);
760       break;
761     }
762 
763     // GCC union extension
764     QualType Ty = E->getSubExpr()->getType();
765     Address CastPtr = Dest.getAddress().withElementType(CGF.ConvertType(Ty));
766     EmitInitializationToLValue(E->getSubExpr(),
767                                CGF.MakeAddrLValue(CastPtr, Ty));
768     break;
769   }
770 
771   case CK_LValueToRValueBitCast: {
772     if (Dest.isIgnored()) {
773       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
774                       /*ignoreResult=*/true);
775       break;
776     }
777 
778     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
779     Address SourceAddress = SourceLV.getAddress().withElementType(CGF.Int8Ty);
780     Address DestAddress = Dest.getAddress().withElementType(CGF.Int8Ty);
781     llvm::Value *SizeVal = llvm::ConstantInt::get(
782         CGF.SizeTy,
783         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
784     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
785     break;
786   }
787 
788   case CK_DerivedToBase:
789   case CK_BaseToDerived:
790   case CK_UncheckedDerivedToBase: {
791     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
792                 "should have been unpacked before we got here");
793   }
794 
795   case CK_NonAtomicToAtomic:
796   case CK_AtomicToNonAtomic: {
797     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
798 
799     // Determine the atomic and value types.
800     QualType atomicType = E->getSubExpr()->getType();
801     QualType valueType = E->getType();
802     if (isToAtomic) std::swap(atomicType, valueType);
803 
804     assert(atomicType->isAtomicType());
805     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
806                           atomicType->castAs<AtomicType>()->getValueType()));
807 
808     // Just recurse normally if we're ignoring the result or the
809     // atomic type doesn't change representation.
810     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
811       return Visit(E->getSubExpr());
812     }
813 
814     CastKind peepholeTarget =
815       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
816 
817     // These two cases are reverses of each other; try to peephole them.
818     if (Expr *op =
819             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
820       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
821                                                      E->getType()) &&
822            "peephole significantly changed types?");
823       return Visit(op);
824     }
825 
826     // If we're converting an r-value of non-atomic type to an r-value
827     // of atomic type, just emit directly into the relevant sub-object.
828     if (isToAtomic) {
829       AggValueSlot valueDest = Dest;
830       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
831         // Zero-initialize.  (Strictly speaking, we only need to initialize
832         // the padding at the end, but this is simpler.)
833         if (!Dest.isZeroed())
834           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
835 
836         // Build a GEP to refer to the subobject.
837         Address valueAddr =
838             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
839         valueDest = AggValueSlot::forAddr(valueAddr,
840                                           valueDest.getQualifiers(),
841                                           valueDest.isExternallyDestructed(),
842                                           valueDest.requiresGCollection(),
843                                           valueDest.isPotentiallyAliased(),
844                                           AggValueSlot::DoesNotOverlap,
845                                           AggValueSlot::IsZeroed);
846       }
847 
848       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
849       return;
850     }
851 
852     // Otherwise, we're converting an atomic type to a non-atomic type.
853     // Make an atomic temporary, emit into that, and then copy the value out.
854     AggValueSlot atomicSlot =
855       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
856     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
857 
858     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
859     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
860     return EmitFinalDestCopy(valueType, rvalue);
861   }
862   case CK_AddressSpaceConversion:
863      return Visit(E->getSubExpr());
864 
865   case CK_LValueToRValue:
866     // If we're loading from a volatile type, force the destination
867     // into existence.
868     if (E->getSubExpr()->getType().isVolatileQualified()) {
869       bool Destruct =
870           !Dest.isExternallyDestructed() &&
871           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
872       if (Destruct)
873         Dest.setExternallyDestructed();
874       EnsureDest(E->getType());
875       Visit(E->getSubExpr());
876 
877       if (Destruct)
878         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
879                         E->getType());
880 
881       return;
882     }
883 
884     [[fallthrough]];
885 
886   case CK_HLSLArrayRValue:
887     Visit(E->getSubExpr());
888     break;
889 
890   case CK_NoOp:
891   case CK_UserDefinedConversion:
892   case CK_ConstructorConversion:
893     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
894                                                    E->getType()) &&
895            "Implicit cast types must be compatible");
896     Visit(E->getSubExpr());
897     break;
898 
899   case CK_LValueBitCast:
900     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
901 
902   case CK_Dependent:
903   case CK_BitCast:
904   case CK_ArrayToPointerDecay:
905   case CK_FunctionToPointerDecay:
906   case CK_NullToPointer:
907   case CK_NullToMemberPointer:
908   case CK_BaseToDerivedMemberPointer:
909   case CK_DerivedToBaseMemberPointer:
910   case CK_MemberPointerToBoolean:
911   case CK_ReinterpretMemberPointer:
912   case CK_IntegralToPointer:
913   case CK_PointerToIntegral:
914   case CK_PointerToBoolean:
915   case CK_ToVoid:
916   case CK_VectorSplat:
917   case CK_IntegralCast:
918   case CK_BooleanToSignedIntegral:
919   case CK_IntegralToBoolean:
920   case CK_IntegralToFloating:
921   case CK_FloatingToIntegral:
922   case CK_FloatingToBoolean:
923   case CK_FloatingCast:
924   case CK_CPointerToObjCPointerCast:
925   case CK_BlockPointerToObjCPointerCast:
926   case CK_AnyPointerToBlockPointerCast:
927   case CK_ObjCObjectLValueCast:
928   case CK_FloatingRealToComplex:
929   case CK_FloatingComplexToReal:
930   case CK_FloatingComplexToBoolean:
931   case CK_FloatingComplexCast:
932   case CK_FloatingComplexToIntegralComplex:
933   case CK_IntegralRealToComplex:
934   case CK_IntegralComplexToReal:
935   case CK_IntegralComplexToBoolean:
936   case CK_IntegralComplexCast:
937   case CK_IntegralComplexToFloatingComplex:
938   case CK_ARCProduceObject:
939   case CK_ARCConsumeObject:
940   case CK_ARCReclaimReturnedObject:
941   case CK_ARCExtendBlockObject:
942   case CK_CopyAndAutoreleaseBlockObject:
943   case CK_BuiltinFnToFnPtr:
944   case CK_ZeroToOCLOpaqueType:
945   case CK_MatrixCast:
946   case CK_HLSLVectorTruncation:
947 
948   case CK_IntToOCLSampler:
949   case CK_FloatingToFixedPoint:
950   case CK_FixedPointToFloating:
951   case CK_FixedPointCast:
952   case CK_FixedPointToBoolean:
953   case CK_FixedPointToIntegral:
954   case CK_IntegralToFixedPoint:
955     llvm_unreachable("cast kind invalid for aggregate types");
956   }
957 }
958 
959 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
960   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
961     EmitAggLoadOfLValue(E);
962     return;
963   }
964 
965   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
966     return CGF.EmitCallExpr(E, Slot);
967   });
968 }
969 
970 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
971   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
972     return CGF.EmitObjCMessageExpr(E, Slot);
973   });
974 }
975 
976 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
977   CGF.EmitIgnoredExpr(E->getLHS());
978   Visit(E->getRHS());
979 }
980 
981 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
982   CodeGenFunction::StmtExprEvaluation eval(CGF);
983   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
984 }
985 
986 enum CompareKind {
987   CK_Less,
988   CK_Greater,
989   CK_Equal,
990 };
991 
992 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
993                                 const BinaryOperator *E, llvm::Value *LHS,
994                                 llvm::Value *RHS, CompareKind Kind,
995                                 const char *NameSuffix = "") {
996   QualType ArgTy = E->getLHS()->getType();
997   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
998     ArgTy = CT->getElementType();
999 
1000   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
1001     assert(Kind == CK_Equal &&
1002            "member pointers may only be compared for equality");
1003     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1004         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
1005   }
1006 
1007   // Compute the comparison instructions for the specified comparison kind.
1008   struct CmpInstInfo {
1009     const char *Name;
1010     llvm::CmpInst::Predicate FCmp;
1011     llvm::CmpInst::Predicate SCmp;
1012     llvm::CmpInst::Predicate UCmp;
1013   };
1014   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
1015     using FI = llvm::FCmpInst;
1016     using II = llvm::ICmpInst;
1017     switch (Kind) {
1018     case CK_Less:
1019       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1020     case CK_Greater:
1021       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1022     case CK_Equal:
1023       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1024     }
1025     llvm_unreachable("Unrecognised CompareKind enum");
1026   }();
1027 
1028   if (ArgTy->hasFloatingRepresentation())
1029     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1030                               llvm::Twine(InstInfo.Name) + NameSuffix);
1031   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1032     auto Inst =
1033         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1034     return Builder.CreateICmp(Inst, LHS, RHS,
1035                               llvm::Twine(InstInfo.Name) + NameSuffix);
1036   }
1037 
1038   llvm_unreachable("unsupported aggregate binary expression should have "
1039                    "already been handled");
1040 }
1041 
1042 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1043   using llvm::BasicBlock;
1044   using llvm::PHINode;
1045   using llvm::Value;
1046   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1047                                       E->getRHS()->getType()));
1048   const ComparisonCategoryInfo &CmpInfo =
1049       CGF.getContext().CompCategories.getInfoForType(E->getType());
1050   assert(CmpInfo.Record->isTriviallyCopyable() &&
1051          "cannot copy non-trivially copyable aggregate");
1052 
1053   QualType ArgTy = E->getLHS()->getType();
1054 
1055   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1056       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1057       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1058     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1059   }
1060   bool IsComplex = ArgTy->isAnyComplexType();
1061 
1062   // Evaluate the operands to the expression and extract their values.
1063   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1064     RValue RV = CGF.EmitAnyExpr(E);
1065     if (RV.isScalar())
1066       return {RV.getScalarVal(), nullptr};
1067     if (RV.isAggregate())
1068       return {RV.getAggregatePointer(E->getType(), CGF), nullptr};
1069     assert(RV.isComplex());
1070     return RV.getComplexVal();
1071   };
1072   auto LHSValues = EmitOperand(E->getLHS()),
1073        RHSValues = EmitOperand(E->getRHS());
1074 
1075   auto EmitCmp = [&](CompareKind K) {
1076     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1077                              K, IsComplex ? ".r" : "");
1078     if (!IsComplex)
1079       return Cmp;
1080     assert(K == CompareKind::CK_Equal);
1081     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1082                                  RHSValues.second, K, ".i");
1083     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1084   };
1085   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1086     return Builder.getInt(VInfo->getIntValue());
1087   };
1088 
1089   Value *Select;
1090   if (ArgTy->isNullPtrType()) {
1091     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1092   } else if (!CmpInfo.isPartial()) {
1093     Value *SelectOne =
1094         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1095                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1096     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1097                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1098                                   SelectOne, "sel.eq");
1099   } else {
1100     Value *SelectEq = Builder.CreateSelect(
1101         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1102         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1103     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1104                                            EmitCmpRes(CmpInfo.getGreater()),
1105                                            SelectEq, "sel.gt");
1106     Select = Builder.CreateSelect(
1107         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1108   }
1109   // Create the return value in the destination slot.
1110   EnsureDest(E->getType());
1111   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1112 
1113   // Emit the address of the first (and only) field in the comparison category
1114   // type, and initialize it from the constant integer value selected above.
1115   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1116       DestLV, *CmpInfo.Record->field_begin());
1117   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1118 
1119   // All done! The result is in the Dest slot.
1120 }
1121 
1122 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1123   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1124     VisitPointerToDataMemberBinaryOperator(E);
1125   else
1126     CGF.ErrorUnsupported(E, "aggregate binary expression");
1127 }
1128 
1129 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1130                                                     const BinaryOperator *E) {
1131   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1132   EmitFinalDestCopy(E->getType(), LV);
1133 }
1134 
1135 /// Is the value of the given expression possibly a reference to or
1136 /// into a __block variable?
1137 static bool isBlockVarRef(const Expr *E) {
1138   // Make sure we look through parens.
1139   E = E->IgnoreParens();
1140 
1141   // Check for a direct reference to a __block variable.
1142   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1143     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1144     return (var && var->hasAttr<BlocksAttr>());
1145   }
1146 
1147   // More complicated stuff.
1148 
1149   // Binary operators.
1150   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1151     // For an assignment or pointer-to-member operation, just care
1152     // about the LHS.
1153     if (op->isAssignmentOp() || op->isPtrMemOp())
1154       return isBlockVarRef(op->getLHS());
1155 
1156     // For a comma, just care about the RHS.
1157     if (op->getOpcode() == BO_Comma)
1158       return isBlockVarRef(op->getRHS());
1159 
1160     // FIXME: pointer arithmetic?
1161     return false;
1162 
1163   // Check both sides of a conditional operator.
1164   } else if (const AbstractConditionalOperator *op
1165                = dyn_cast<AbstractConditionalOperator>(E)) {
1166     return isBlockVarRef(op->getTrueExpr())
1167         || isBlockVarRef(op->getFalseExpr());
1168 
1169   // OVEs are required to support BinaryConditionalOperators.
1170   } else if (const OpaqueValueExpr *op
1171                = dyn_cast<OpaqueValueExpr>(E)) {
1172     if (const Expr *src = op->getSourceExpr())
1173       return isBlockVarRef(src);
1174 
1175   // Casts are necessary to get things like (*(int*)&var) = foo().
1176   // We don't really care about the kind of cast here, except
1177   // we don't want to look through l2r casts, because it's okay
1178   // to get the *value* in a __block variable.
1179   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1180     if (cast->getCastKind() == CK_LValueToRValue)
1181       return false;
1182     return isBlockVarRef(cast->getSubExpr());
1183 
1184   // Handle unary operators.  Again, just aggressively look through
1185   // it, ignoring the operation.
1186   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1187     return isBlockVarRef(uop->getSubExpr());
1188 
1189   // Look into the base of a field access.
1190   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1191     return isBlockVarRef(mem->getBase());
1192 
1193   // Look into the base of a subscript.
1194   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1195     return isBlockVarRef(sub->getBase());
1196   }
1197 
1198   return false;
1199 }
1200 
1201 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1202   // For an assignment to work, the value on the right has
1203   // to be compatible with the value on the left.
1204   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1205                                                  E->getRHS()->getType())
1206          && "Invalid assignment");
1207 
1208   // If the LHS might be a __block variable, and the RHS can
1209   // potentially cause a block copy, we need to evaluate the RHS first
1210   // so that the assignment goes the right place.
1211   // This is pretty semantically fragile.
1212   if (isBlockVarRef(E->getLHS()) &&
1213       E->getRHS()->HasSideEffects(CGF.getContext())) {
1214     // Ensure that we have a destination, and evaluate the RHS into that.
1215     EnsureDest(E->getRHS()->getType());
1216     Visit(E->getRHS());
1217 
1218     // Now emit the LHS and copy into it.
1219     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1220 
1221     // That copy is an atomic copy if the LHS is atomic.
1222     if (LHS.getType()->isAtomicType() ||
1223         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1224       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1225       return;
1226     }
1227 
1228     EmitCopy(E->getLHS()->getType(),
1229              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1230                                      needsGC(E->getLHS()->getType()),
1231                                      AggValueSlot::IsAliased,
1232                                      AggValueSlot::MayOverlap),
1233              Dest);
1234     return;
1235   }
1236 
1237   LValue LHS = CGF.EmitLValue(E->getLHS());
1238 
1239   // If we have an atomic type, evaluate into the destination and then
1240   // do an atomic copy.
1241   if (LHS.getType()->isAtomicType() ||
1242       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1243     EnsureDest(E->getRHS()->getType());
1244     Visit(E->getRHS());
1245     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1246     return;
1247   }
1248 
1249   // Codegen the RHS so that it stores directly into the LHS.
1250   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1251       LHS, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1252       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1253   // A non-volatile aggregate destination might have volatile member.
1254   if (!LHSSlot.isVolatile() &&
1255       CGF.hasVolatileMember(E->getLHS()->getType()))
1256     LHSSlot.setVolatile(true);
1257 
1258   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1259 
1260   // Copy into the destination if the assignment isn't ignored.
1261   EmitFinalDestCopy(E->getType(), LHS);
1262 
1263   if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1264       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1265     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1266                     E->getType());
1267 }
1268 
1269 void AggExprEmitter::
1270 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1271   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1272   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1273   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1274 
1275   // Bind the common expression if necessary.
1276   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1277 
1278   CodeGenFunction::ConditionalEvaluation eval(CGF);
1279   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1280                            CGF.getProfileCount(E));
1281 
1282   // Save whether the destination's lifetime is externally managed.
1283   bool isExternallyDestructed = Dest.isExternallyDestructed();
1284   bool destructNonTrivialCStruct =
1285       !isExternallyDestructed &&
1286       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1287   isExternallyDestructed |= destructNonTrivialCStruct;
1288   Dest.setExternallyDestructed(isExternallyDestructed);
1289 
1290   eval.begin(CGF);
1291   CGF.EmitBlock(LHSBlock);
1292   if (llvm::EnableSingleByteCoverage)
1293     CGF.incrementProfileCounter(E->getTrueExpr());
1294   else
1295     CGF.incrementProfileCounter(E);
1296   Visit(E->getTrueExpr());
1297   eval.end(CGF);
1298 
1299   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1300   CGF.Builder.CreateBr(ContBlock);
1301 
1302   // If the result of an agg expression is unused, then the emission
1303   // of the LHS might need to create a destination slot.  That's fine
1304   // with us, and we can safely emit the RHS into the same slot, but
1305   // we shouldn't claim that it's already being destructed.
1306   Dest.setExternallyDestructed(isExternallyDestructed);
1307 
1308   eval.begin(CGF);
1309   CGF.EmitBlock(RHSBlock);
1310   if (llvm::EnableSingleByteCoverage)
1311     CGF.incrementProfileCounter(E->getFalseExpr());
1312   Visit(E->getFalseExpr());
1313   eval.end(CGF);
1314 
1315   if (destructNonTrivialCStruct)
1316     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1317                     E->getType());
1318 
1319   CGF.EmitBlock(ContBlock);
1320   if (llvm::EnableSingleByteCoverage)
1321     CGF.incrementProfileCounter(E);
1322 }
1323 
1324 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1325   Visit(CE->getChosenSubExpr());
1326 }
1327 
1328 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1329   Address ArgValue = Address::invalid();
1330   CGF.EmitVAArg(VE, ArgValue, Dest);
1331 
1332   // If EmitVAArg fails, emit an error.
1333   if (!ArgValue.isValid()) {
1334     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1335     return;
1336   }
1337 }
1338 
1339 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1340   // Ensure that we have a slot, but if we already do, remember
1341   // whether it was externally destructed.
1342   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1343   EnsureDest(E->getType());
1344 
1345   // We're going to push a destructor if there isn't already one.
1346   Dest.setExternallyDestructed();
1347 
1348   Visit(E->getSubExpr());
1349 
1350   // Push that destructor we promised.
1351   if (!wasExternallyDestructed)
1352     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1353 }
1354 
1355 void
1356 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1357   AggValueSlot Slot = EnsureSlot(E->getType());
1358   CGF.EmitCXXConstructExpr(E, Slot);
1359 }
1360 
1361 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1362     const CXXInheritedCtorInitExpr *E) {
1363   AggValueSlot Slot = EnsureSlot(E->getType());
1364   CGF.EmitInheritedCXXConstructorCall(
1365       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1366       E->inheritedFromVBase(), E);
1367 }
1368 
1369 void
1370 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1371   AggValueSlot Slot = EnsureSlot(E->getType());
1372   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1373 
1374   // We'll need to enter cleanup scopes in case any of the element
1375   // initializers throws an exception or contains branch out of the expressions.
1376   CodeGenFunction::CleanupDeactivationScope scope(CGF);
1377 
1378   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1379   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1380                                                e = E->capture_init_end();
1381        i != e; ++i, ++CurField) {
1382     // Emit initialization
1383     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1384     if (CurField->hasCapturedVLAType()) {
1385       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1386       continue;
1387     }
1388 
1389     EmitInitializationToLValue(*i, LV);
1390 
1391     // Push a destructor if necessary.
1392     if (QualType::DestructionKind DtorKind =
1393             CurField->getType().isDestructedType()) {
1394       assert(LV.isSimple());
1395       if (DtorKind)
1396         CGF.pushDestroyAndDeferDeactivation(NormalAndEHCleanup, LV.getAddress(),
1397                                             CurField->getType(),
1398                                             CGF.getDestroyer(DtorKind), false);
1399     }
1400   }
1401 }
1402 
1403 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1404   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1405   Visit(E->getSubExpr());
1406 }
1407 
1408 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1409   QualType T = E->getType();
1410   AggValueSlot Slot = EnsureSlot(T);
1411   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1412 }
1413 
1414 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1415   QualType T = E->getType();
1416   AggValueSlot Slot = EnsureSlot(T);
1417   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1418 }
1419 
1420 /// Determine whether the given cast kind is known to always convert values
1421 /// with all zero bits in their value representation to values with all zero
1422 /// bits in their value representation.
1423 static bool castPreservesZero(const CastExpr *CE) {
1424   switch (CE->getCastKind()) {
1425     // No-ops.
1426   case CK_NoOp:
1427   case CK_UserDefinedConversion:
1428   case CK_ConstructorConversion:
1429   case CK_BitCast:
1430   case CK_ToUnion:
1431   case CK_ToVoid:
1432     // Conversions between (possibly-complex) integral, (possibly-complex)
1433     // floating-point, and bool.
1434   case CK_BooleanToSignedIntegral:
1435   case CK_FloatingCast:
1436   case CK_FloatingComplexCast:
1437   case CK_FloatingComplexToBoolean:
1438   case CK_FloatingComplexToIntegralComplex:
1439   case CK_FloatingComplexToReal:
1440   case CK_FloatingRealToComplex:
1441   case CK_FloatingToBoolean:
1442   case CK_FloatingToIntegral:
1443   case CK_IntegralCast:
1444   case CK_IntegralComplexCast:
1445   case CK_IntegralComplexToBoolean:
1446   case CK_IntegralComplexToFloatingComplex:
1447   case CK_IntegralComplexToReal:
1448   case CK_IntegralRealToComplex:
1449   case CK_IntegralToBoolean:
1450   case CK_IntegralToFloating:
1451     // Reinterpreting integers as pointers and vice versa.
1452   case CK_IntegralToPointer:
1453   case CK_PointerToIntegral:
1454     // Language extensions.
1455   case CK_VectorSplat:
1456   case CK_MatrixCast:
1457   case CK_NonAtomicToAtomic:
1458   case CK_AtomicToNonAtomic:
1459   case CK_HLSLVectorTruncation:
1460     return true;
1461 
1462   case CK_BaseToDerivedMemberPointer:
1463   case CK_DerivedToBaseMemberPointer:
1464   case CK_MemberPointerToBoolean:
1465   case CK_NullToMemberPointer:
1466   case CK_ReinterpretMemberPointer:
1467     // FIXME: ABI-dependent.
1468     return false;
1469 
1470   case CK_AnyPointerToBlockPointerCast:
1471   case CK_BlockPointerToObjCPointerCast:
1472   case CK_CPointerToObjCPointerCast:
1473   case CK_ObjCObjectLValueCast:
1474   case CK_IntToOCLSampler:
1475   case CK_ZeroToOCLOpaqueType:
1476     // FIXME: Check these.
1477     return false;
1478 
1479   case CK_FixedPointCast:
1480   case CK_FixedPointToBoolean:
1481   case CK_FixedPointToFloating:
1482   case CK_FixedPointToIntegral:
1483   case CK_FloatingToFixedPoint:
1484   case CK_IntegralToFixedPoint:
1485     // FIXME: Do all fixed-point types represent zero as all 0 bits?
1486     return false;
1487 
1488   case CK_AddressSpaceConversion:
1489   case CK_BaseToDerived:
1490   case CK_DerivedToBase:
1491   case CK_Dynamic:
1492   case CK_NullToPointer:
1493   case CK_PointerToBoolean:
1494     // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1495     // same representation in all involved address spaces.
1496     return false;
1497 
1498   case CK_ARCConsumeObject:
1499   case CK_ARCExtendBlockObject:
1500   case CK_ARCProduceObject:
1501   case CK_ARCReclaimReturnedObject:
1502   case CK_CopyAndAutoreleaseBlockObject:
1503   case CK_ArrayToPointerDecay:
1504   case CK_FunctionToPointerDecay:
1505   case CK_BuiltinFnToFnPtr:
1506   case CK_Dependent:
1507   case CK_LValueBitCast:
1508   case CK_LValueToRValue:
1509   case CK_LValueToRValueBitCast:
1510   case CK_UncheckedDerivedToBase:
1511   case CK_HLSLArrayRValue:
1512     return false;
1513   }
1514   llvm_unreachable("Unhandled clang::CastKind enum");
1515 }
1516 
1517 /// isSimpleZero - If emitting this value will obviously just cause a store of
1518 /// zero to memory, return true.  This can return false if uncertain, so it just
1519 /// handles simple cases.
1520 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1521   E = E->IgnoreParens();
1522   while (auto *CE = dyn_cast<CastExpr>(E)) {
1523     if (!castPreservesZero(CE))
1524       break;
1525     E = CE->getSubExpr()->IgnoreParens();
1526   }
1527 
1528   // 0
1529   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1530     return IL->getValue() == 0;
1531   // +0.0
1532   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1533     return FL->getValue().isPosZero();
1534   // int()
1535   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1536       CGF.getTypes().isZeroInitializable(E->getType()))
1537     return true;
1538   // (int*)0 - Null pointer expressions.
1539   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1540     return ICE->getCastKind() == CK_NullToPointer &&
1541            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1542            !E->HasSideEffects(CGF.getContext());
1543   // '\0'
1544   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1545     return CL->getValue() == 0;
1546 
1547   // Otherwise, hard case: conservatively return false.
1548   return false;
1549 }
1550 
1551 
1552 void
1553 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1554   QualType type = LV.getType();
1555   // FIXME: Ignore result?
1556   // FIXME: Are initializers affected by volatile?
1557   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1558     // Storing "i32 0" to a zero'd memory location is a noop.
1559     return;
1560   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1561     return EmitNullInitializationToLValue(LV);
1562   } else if (isa<NoInitExpr>(E)) {
1563     // Do nothing.
1564     return;
1565   } else if (type->isReferenceType()) {
1566     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1567     return CGF.EmitStoreThroughLValue(RV, LV);
1568   }
1569 
1570   switch (CGF.getEvaluationKind(type)) {
1571   case TEK_Complex:
1572     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1573     return;
1574   case TEK_Aggregate:
1575     CGF.EmitAggExpr(
1576         E, AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1577                                    AggValueSlot::DoesNotNeedGCBarriers,
1578                                    AggValueSlot::IsNotAliased,
1579                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1580     return;
1581   case TEK_Scalar:
1582     if (LV.isSimple()) {
1583       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1584     } else {
1585       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1586     }
1587     return;
1588   }
1589   llvm_unreachable("bad evaluation kind");
1590 }
1591 
1592 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1593   QualType type = lv.getType();
1594 
1595   // If the destination slot is already zeroed out before the aggregate is
1596   // copied into it, we don't have to emit any zeros here.
1597   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1598     return;
1599 
1600   if (CGF.hasScalarEvaluationKind(type)) {
1601     // For non-aggregates, we can store the appropriate null constant.
1602     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1603     // Note that the following is not equivalent to
1604     // EmitStoreThroughBitfieldLValue for ARC types.
1605     if (lv.isBitField()) {
1606       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1607     } else {
1608       assert(lv.isSimple());
1609       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1610     }
1611   } else {
1612     // There's a potential optimization opportunity in combining
1613     // memsets; that would be easy for arrays, but relatively
1614     // difficult for structures with the current code.
1615     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1616   }
1617 }
1618 
1619 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1620   VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1621                                   E->getInitializedFieldInUnion(),
1622                                   E->getArrayFiller());
1623 }
1624 
1625 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1626   if (E->hadArrayRangeDesignator())
1627     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1628 
1629   if (E->isTransparent())
1630     return Visit(E->getInit(0));
1631 
1632   VisitCXXParenListOrInitListExpr(
1633       E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1634 }
1635 
1636 void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1637     Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1638     FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1639 #if 0
1640   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1641   // (Length of globals? Chunks of zeroed-out space?).
1642   //
1643   // If we can, prefer a copy from a global; this is a lot less code for long
1644   // globals, and it's easier for the current optimizers to analyze.
1645   if (llvm::Constant *C =
1646           CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1647     llvm::GlobalVariable* GV =
1648     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1649                              llvm::GlobalValue::InternalLinkage, C, "");
1650     EmitFinalDestCopy(ExprToVisit->getType(),
1651                       CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1652     return;
1653   }
1654 #endif
1655 
1656   AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1657 
1658   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1659 
1660   // Handle initialization of an array.
1661   if (ExprToVisit->getType()->isConstantArrayType()) {
1662     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1663     EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1664                   InitExprs, ArrayFiller);
1665     return;
1666   } else if (ExprToVisit->getType()->isVariableArrayType()) {
1667     // A variable array type that has an initializer can only do empty
1668     // initialization. And because this feature is not exposed as an extension
1669     // in C++, we can safely memset the array memory to zero.
1670     assert(InitExprs.size() == 0 &&
1671            "you can only use an empty initializer with VLAs");
1672     CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType());
1673     return;
1674   }
1675 
1676   assert(ExprToVisit->getType()->isRecordType() &&
1677          "Only support structs/unions here!");
1678 
1679   // Do struct initialization; this code just sets each individual member
1680   // to the approprate value.  This makes bitfield support automatic;
1681   // the disadvantage is that the generated code is more difficult for
1682   // the optimizer, especially with bitfields.
1683   unsigned NumInitElements = InitExprs.size();
1684   RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1685 
1686   // We'll need to enter cleanup scopes in case any of the element
1687   // initializers throws an exception.
1688   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1689   CodeGenFunction::CleanupDeactivationScope DeactivateCleanups(CGF);
1690 
1691   unsigned curInitIndex = 0;
1692 
1693   // Emit initialization of base classes.
1694   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1695     assert(NumInitElements >= CXXRD->getNumBases() &&
1696            "missing initializer for base class");
1697     for (auto &Base : CXXRD->bases()) {
1698       assert(!Base.isVirtual() && "should not see vbases here");
1699       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1700       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1701           Dest.getAddress(), CXXRD, BaseRD,
1702           /*isBaseVirtual*/ false);
1703       AggValueSlot AggSlot = AggValueSlot::forAddr(
1704           V, Qualifiers(),
1705           AggValueSlot::IsDestructed,
1706           AggValueSlot::DoesNotNeedGCBarriers,
1707           AggValueSlot::IsNotAliased,
1708           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1709       CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1710 
1711       if (QualType::DestructionKind dtorKind =
1712               Base.getType().isDestructedType())
1713         CGF.pushDestroyAndDeferDeactivation(dtorKind, V, Base.getType());
1714     }
1715   }
1716 
1717   // Prepare a 'this' for CXXDefaultInitExprs.
1718   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1719 
1720   if (record->isUnion()) {
1721     // Only initialize one field of a union. The field itself is
1722     // specified by the initializer list.
1723     if (!InitializedFieldInUnion) {
1724       // Empty union; we have nothing to do.
1725 
1726 #ifndef NDEBUG
1727       // Make sure that it's really an empty and not a failure of
1728       // semantic analysis.
1729       for (const auto *Field : record->fields())
1730         assert(
1731             (Field->isUnnamedBitField() || Field->isAnonymousStructOrUnion()) &&
1732             "Only unnamed bitfields or anonymous class allowed");
1733 #endif
1734       return;
1735     }
1736 
1737     // FIXME: volatility
1738     FieldDecl *Field = InitializedFieldInUnion;
1739 
1740     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1741     if (NumInitElements) {
1742       // Store the initializer into the field
1743       EmitInitializationToLValue(InitExprs[0], FieldLoc);
1744     } else {
1745       // Default-initialize to null.
1746       EmitNullInitializationToLValue(FieldLoc);
1747     }
1748 
1749     return;
1750   }
1751 
1752   // Here we iterate over the fields; this makes it simpler to both
1753   // default-initialize fields and skip over unnamed fields.
1754   for (const auto *field : record->fields()) {
1755     // We're done once we hit the flexible array member.
1756     if (field->getType()->isIncompleteArrayType())
1757       break;
1758 
1759     // Always skip anonymous bitfields.
1760     if (field->isUnnamedBitField())
1761       continue;
1762 
1763     // We're done if we reach the end of the explicit initializers, we
1764     // have a zeroed object, and the rest of the fields are
1765     // zero-initializable.
1766     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1767         CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1768       break;
1769 
1770 
1771     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1772     // We never generate write-barries for initialized fields.
1773     LV.setNonGC(true);
1774 
1775     if (curInitIndex < NumInitElements) {
1776       // Store the initializer into the field.
1777       EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1778     } else {
1779       // We're out of initializers; default-initialize to null
1780       EmitNullInitializationToLValue(LV);
1781     }
1782 
1783     // Push a destructor if necessary.
1784     // FIXME: if we have an array of structures, all explicitly
1785     // initialized, we can end up pushing a linear number of cleanups.
1786     if (QualType::DestructionKind dtorKind
1787           = field->getType().isDestructedType()) {
1788       assert(LV.isSimple());
1789       if (dtorKind) {
1790         CGF.pushDestroyAndDeferDeactivation(NormalAndEHCleanup, LV.getAddress(),
1791                                             field->getType(),
1792                                             CGF.getDestroyer(dtorKind), false);
1793       }
1794     }
1795   }
1796 }
1797 
1798 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1799                                             llvm::Value *outerBegin) {
1800   // Emit the common subexpression.
1801   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1802 
1803   Address destPtr = EnsureSlot(E->getType()).getAddress();
1804   uint64_t numElements = E->getArraySize().getZExtValue();
1805 
1806   if (!numElements)
1807     return;
1808 
1809   // destPtr is an array*. Construct an elementType* by drilling down a level.
1810   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1811   llvm::Value *indices[] = {zero, zero};
1812   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getElementType(),
1813                                                  destPtr.emitRawPointer(CGF),
1814                                                  indices, "arrayinit.begin");
1815 
1816   // Prepare to special-case multidimensional array initialization: we avoid
1817   // emitting multiple destructor loops in that case.
1818   if (!outerBegin)
1819     outerBegin = begin;
1820   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1821 
1822   QualType elementType =
1823       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1824   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1825   CharUnits elementAlign =
1826       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1827   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1828 
1829   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1830   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1831 
1832   // Jump into the body.
1833   CGF.EmitBlock(bodyBB);
1834   llvm::PHINode *index =
1835       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1836   index->addIncoming(zero, entryBB);
1837   llvm::Value *element =
1838       Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1839 
1840   // Prepare for a cleanup.
1841   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1842   EHScopeStack::stable_iterator cleanup;
1843   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1844     if (outerBegin->getType() != element->getType())
1845       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1846     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1847                                        elementAlign,
1848                                        CGF.getDestroyer(dtorKind));
1849     cleanup = CGF.EHStack.stable_begin();
1850   } else {
1851     dtorKind = QualType::DK_none;
1852   }
1853 
1854   // Emit the actual filler expression.
1855   {
1856     // Temporaries created in an array initialization loop are destroyed
1857     // at the end of each iteration.
1858     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1859     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1860     LValue elementLV = CGF.MakeAddrLValue(
1861         Address(element, llvmElementType, elementAlign), elementType);
1862 
1863     if (InnerLoop) {
1864       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1865       auto elementSlot = AggValueSlot::forLValue(
1866           elementLV, AggValueSlot::IsDestructed,
1867           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1868           AggValueSlot::DoesNotOverlap);
1869       AggExprEmitter(CGF, elementSlot, false)
1870           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1871     } else
1872       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1873   }
1874 
1875   // Move on to the next element.
1876   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1877       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1878   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1879 
1880   // Leave the loop if we're done.
1881   llvm::Value *done = Builder.CreateICmpEQ(
1882       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1883       "arrayinit.done");
1884   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1885   Builder.CreateCondBr(done, endBB, bodyBB);
1886 
1887   CGF.EmitBlock(endBB);
1888 
1889   // Leave the partial-array cleanup if we entered one.
1890   if (dtorKind)
1891     CGF.DeactivateCleanupBlock(cleanup, index);
1892 }
1893 
1894 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1895   AggValueSlot Dest = EnsureSlot(E->getType());
1896 
1897   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1898   EmitInitializationToLValue(E->getBase(), DestLV);
1899   VisitInitListExpr(E->getUpdater());
1900 }
1901 
1902 //===----------------------------------------------------------------------===//
1903 //                        Entry Points into this File
1904 //===----------------------------------------------------------------------===//
1905 
1906 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1907 /// non-zero bytes that will be stored when outputting the initializer for the
1908 /// specified initializer expression.
1909 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1910   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1911     E = MTE->getSubExpr();
1912   E = E->IgnoreParenNoopCasts(CGF.getContext());
1913 
1914   // 0 and 0.0 won't require any non-zero stores!
1915   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1916 
1917   // If this is an initlist expr, sum up the size of sizes of the (present)
1918   // elements.  If this is something weird, assume the whole thing is non-zero.
1919   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1920   while (ILE && ILE->isTransparent())
1921     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1922   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1923     return CGF.getContext().getTypeSizeInChars(E->getType());
1924 
1925   // InitListExprs for structs have to be handled carefully.  If there are
1926   // reference members, we need to consider the size of the reference, not the
1927   // referencee.  InitListExprs for unions and arrays can't have references.
1928   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1929     if (!RT->isUnionType()) {
1930       RecordDecl *SD = RT->getDecl();
1931       CharUnits NumNonZeroBytes = CharUnits::Zero();
1932 
1933       unsigned ILEElement = 0;
1934       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1935         while (ILEElement != CXXRD->getNumBases())
1936           NumNonZeroBytes +=
1937               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1938       for (const auto *Field : SD->fields()) {
1939         // We're done once we hit the flexible array member or run out of
1940         // InitListExpr elements.
1941         if (Field->getType()->isIncompleteArrayType() ||
1942             ILEElement == ILE->getNumInits())
1943           break;
1944         if (Field->isUnnamedBitField())
1945           continue;
1946 
1947         const Expr *E = ILE->getInit(ILEElement++);
1948 
1949         // Reference values are always non-null and have the width of a pointer.
1950         if (Field->getType()->isReferenceType())
1951           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1952               CGF.getTarget().getPointerWidth(LangAS::Default));
1953         else
1954           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1955       }
1956 
1957       return NumNonZeroBytes;
1958     }
1959   }
1960 
1961   // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1962   CharUnits NumNonZeroBytes = CharUnits::Zero();
1963   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1964     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1965   return NumNonZeroBytes;
1966 }
1967 
1968 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1969 /// zeros in it, emit a memset and avoid storing the individual zeros.
1970 ///
1971 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1972                                      CodeGenFunction &CGF) {
1973   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1974   // volatile stores.
1975   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1976     return;
1977 
1978   // C++ objects with a user-declared constructor don't need zero'ing.
1979   if (CGF.getLangOpts().CPlusPlus)
1980     if (const RecordType *RT = CGF.getContext()
1981                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1982       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1983       if (RD->hasUserDeclaredConstructor())
1984         return;
1985     }
1986 
1987   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1988   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1989   if (Size <= CharUnits::fromQuantity(16))
1990     return;
1991 
1992   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1993   // we prefer to emit memset + individual stores for the rest.
1994   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1995   if (NumNonZeroBytes*4 > Size)
1996     return;
1997 
1998   // Okay, it seems like a good idea to use an initial memset, emit the call.
1999   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2000 
2001   Address Loc = Slot.getAddress().withElementType(CGF.Int8Ty);
2002   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2003 
2004   // Tell the AggExprEmitter that the slot is known zero.
2005   Slot.setZeroed();
2006 }
2007 
2008 
2009 
2010 
2011 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
2012 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
2013 /// the value of the aggregate expression is not needed.  If VolatileDest is
2014 /// true, DestPtr cannot be 0.
2015 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2016   assert(E && hasAggregateEvaluationKind(E->getType()) &&
2017          "Invalid aggregate expression to emit");
2018   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2019          "slot has bits but no address");
2020 
2021   // Optimize the slot if possible.
2022   CheckAggExprForMemSetUse(Slot, E, *this);
2023 
2024   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2025 }
2026 
2027 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2028   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2029   Address Temp = CreateMemTemp(E->getType());
2030   LValue LV = MakeAddrLValue(Temp, E->getType());
2031   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
2032                                          AggValueSlot::DoesNotNeedGCBarriers,
2033                                          AggValueSlot::IsNotAliased,
2034                                          AggValueSlot::DoesNotOverlap));
2035   return LV;
2036 }
2037 
2038 void CodeGenFunction::EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest,
2039                                            const LValue &Src,
2040                                            ExprValueKind SrcKind) {
2041   return AggExprEmitter(*this, Dest, Dest.isIgnored())
2042       .EmitFinalDestCopy(Type, Src, SrcKind);
2043 }
2044 
2045 AggValueSlot::Overlap_t
2046 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2047   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2048     return AggValueSlot::DoesNotOverlap;
2049 
2050   // Empty fields can overlap earlier fields.
2051   if (FD->getType()->getAsCXXRecordDecl()->isEmpty())
2052     return AggValueSlot::MayOverlap;
2053 
2054   // If the field lies entirely within the enclosing class's nvsize, its tail
2055   // padding cannot overlap any already-initialized object. (The only subobjects
2056   // with greater addresses that might already be initialized are vbases.)
2057   const RecordDecl *ClassRD = FD->getParent();
2058   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2059   if (Layout.getFieldOffset(FD->getFieldIndex()) +
2060           getContext().getTypeSize(FD->getType()) <=
2061       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2062     return AggValueSlot::DoesNotOverlap;
2063 
2064   // The tail padding may contain values we need to preserve.
2065   return AggValueSlot::MayOverlap;
2066 }
2067 
2068 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2069     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2070   // If the most-derived object is a field declared with [[no_unique_address]],
2071   // the tail padding of any virtual base could be reused for other subobjects
2072   // of that field's class.
2073   if (IsVirtual)
2074     return AggValueSlot::MayOverlap;
2075 
2076   // Empty bases can overlap earlier bases.
2077   if (BaseRD->isEmpty())
2078     return AggValueSlot::MayOverlap;
2079 
2080   // If the base class is laid out entirely within the nvsize of the derived
2081   // class, its tail padding cannot yet be initialized, so we can issue
2082   // stores at the full width of the base class.
2083   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2084   if (Layout.getBaseClassOffset(BaseRD) +
2085           getContext().getASTRecordLayout(BaseRD).getSize() <=
2086       Layout.getNonVirtualSize())
2087     return AggValueSlot::DoesNotOverlap;
2088 
2089   // The tail padding may contain values we need to preserve.
2090   return AggValueSlot::MayOverlap;
2091 }
2092 
2093 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2094                                         AggValueSlot::Overlap_t MayOverlap,
2095                                         bool isVolatile) {
2096   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2097 
2098   Address DestPtr = Dest.getAddress();
2099   Address SrcPtr = Src.getAddress();
2100 
2101   if (getLangOpts().CPlusPlus) {
2102     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2103       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2104       assert((Record->hasTrivialCopyConstructor() ||
2105               Record->hasTrivialCopyAssignment() ||
2106               Record->hasTrivialMoveConstructor() ||
2107               Record->hasTrivialMoveAssignment() ||
2108               Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2109              "Trying to aggregate-copy a type without a trivial copy/move "
2110              "constructor or assignment operator");
2111       // Ignore empty classes in C++.
2112       if (Record->isEmpty())
2113         return;
2114     }
2115   }
2116 
2117   if (getLangOpts().CUDAIsDevice) {
2118     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2119       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2120                                                                   Src))
2121         return;
2122     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2123       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2124                                                                   Src))
2125         return;
2126     }
2127   }
2128 
2129   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2130   // C99 6.5.16.1p3, which states "If the value being stored in an object is
2131   // read from another object that overlaps in anyway the storage of the first
2132   // object, then the overlap shall be exact and the two objects shall have
2133   // qualified or unqualified versions of a compatible type."
2134   //
2135   // memcpy is not defined if the source and destination pointers are exactly
2136   // equal, but other compilers do this optimization, and almost every memcpy
2137   // implementation handles this case safely.  If there is a libc that does not
2138   // safely handle this, we can add a target hook.
2139 
2140   // Get data size info for this aggregate. Don't copy the tail padding if this
2141   // might be a potentially-overlapping subobject, since the tail padding might
2142   // be occupied by a different object. Otherwise, copying it is fine.
2143   TypeInfoChars TypeInfo;
2144   if (MayOverlap)
2145     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2146   else
2147     TypeInfo = getContext().getTypeInfoInChars(Ty);
2148 
2149   llvm::Value *SizeVal = nullptr;
2150   if (TypeInfo.Width.isZero()) {
2151     // But note that getTypeInfo returns 0 for a VLA.
2152     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2153             getContext().getAsArrayType(Ty))) {
2154       QualType BaseEltTy;
2155       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2156       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2157       assert(!TypeInfo.Width.isZero());
2158       SizeVal = Builder.CreateNUWMul(
2159           SizeVal,
2160           llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2161     }
2162   }
2163   if (!SizeVal) {
2164     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2165   }
2166 
2167   // FIXME: If we have a volatile struct, the optimizer can remove what might
2168   // appear to be `extra' memory ops:
2169   //
2170   // volatile struct { int i; } a, b;
2171   //
2172   // int main() {
2173   //   a = b;
2174   //   a = b;
2175   // }
2176   //
2177   // we need to use a different call here.  We use isVolatile to indicate when
2178   // either the source or the destination is volatile.
2179 
2180   DestPtr = DestPtr.withElementType(Int8Ty);
2181   SrcPtr = SrcPtr.withElementType(Int8Ty);
2182 
2183   // Don't do any of the memmove_collectable tests if GC isn't set.
2184   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2185     // fall through
2186   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2187     RecordDecl *Record = RecordTy->getDecl();
2188     if (Record->hasObjectMember()) {
2189       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2190                                                     SizeVal);
2191       return;
2192     }
2193   } else if (Ty->isArrayType()) {
2194     QualType BaseType = getContext().getBaseElementType(Ty);
2195     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2196       if (RecordTy->getDecl()->hasObjectMember()) {
2197         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2198                                                       SizeVal);
2199         return;
2200       }
2201     }
2202   }
2203 
2204   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2205 
2206   // Determine the metadata to describe the position of any padding in this
2207   // memcpy, as well as the TBAA tags for the members of the struct, in case
2208   // the optimizer wishes to expand it in to scalar memory operations.
2209   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2210     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2211 
2212   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2213     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2214         Dest.getTBAAInfo(), Src.getTBAAInfo());
2215     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2216   }
2217 }
2218