1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Aggregate Expression Emitter 32 //===----------------------------------------------------------------------===// 33 34 namespace { 35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 36 CodeGenFunction &CGF; 37 CGBuilderTy &Builder; 38 AggValueSlot Dest; 39 bool IsResultUnused; 40 41 AggValueSlot EnsureSlot(QualType T) { 42 if (!Dest.isIgnored()) return Dest; 43 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 44 } 45 void EnsureDest(QualType T) { 46 if (!Dest.isIgnored()) return; 47 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 48 } 49 50 // Calls `Fn` with a valid return value slot, potentially creating a temporary 51 // to do so. If a temporary is created, an appropriate copy into `Dest` will 52 // be emitted, as will lifetime markers. 53 // 54 // The given function should take a ReturnValueSlot, and return an RValue that 55 // points to said slot. 56 void withReturnValueSlot(const Expr *E, 57 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 61 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 62 IsResultUnused(IsResultUnused) { } 63 64 //===--------------------------------------------------------------------===// 65 // Utilities 66 //===--------------------------------------------------------------------===// 67 68 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 69 /// represents a value lvalue, this method emits the address of the lvalue, 70 /// then loads the result into DestPtr. 71 void EmitAggLoadOfLValue(const Expr *E); 72 73 enum ExprValueKind { 74 EVK_RValue, 75 EVK_NonRValue 76 }; 77 78 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 79 /// SrcIsRValue is true if source comes from an RValue. 80 void EmitFinalDestCopy(QualType type, const LValue &src, 81 ExprValueKind SrcValueKind = EVK_NonRValue); 82 void EmitFinalDestCopy(QualType type, RValue src); 83 void EmitCopy(QualType type, const AggValueSlot &dest, 84 const AggValueSlot &src); 85 86 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 89 QualType ArrayQTy, InitListExpr *E); 90 91 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 92 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 93 return AggValueSlot::NeedsGCBarriers; 94 return AggValueSlot::DoesNotNeedGCBarriers; 95 } 96 97 bool TypeRequiresGCollection(QualType T); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 void Visit(Expr *E) { 104 ApplyDebugLocation DL(CGF, E); 105 StmtVisitor<AggExprEmitter>::Visit(E); 106 } 107 108 void VisitStmt(Stmt *S) { 109 CGF.ErrorUnsupported(S, "aggregate expression"); 110 } 111 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 112 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 Visit(GE->getResultExpr()); 114 } 115 void VisitCoawaitExpr(CoawaitExpr *E) { 116 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 117 } 118 void VisitCoyieldExpr(CoyieldExpr *E) { 119 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 120 } 121 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 124 return Visit(E->getReplacement()); 125 } 126 127 void VisitConstantExpr(ConstantExpr *E) { 128 return Visit(E->getSubExpr()); 129 } 130 131 // l-values. 132 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 133 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 134 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 135 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 136 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 137 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 void VisitPredefinedExpr(const PredefinedExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 144 // Operators. 145 void VisitCastExpr(CastExpr *E); 146 void VisitCallExpr(const CallExpr *E); 147 void VisitStmtExpr(const StmtExpr *E); 148 void VisitBinaryOperator(const BinaryOperator *BO); 149 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 150 void VisitBinAssign(const BinaryOperator *E); 151 void VisitBinComma(const BinaryOperator *E); 152 void VisitBinCmp(const BinaryOperator *E); 153 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 154 Visit(E->getSemanticForm()); 155 } 156 157 void VisitObjCMessageExpr(ObjCMessageExpr *E); 158 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 159 EmitAggLoadOfLValue(E); 160 } 161 162 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 163 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 164 void VisitChooseExpr(const ChooseExpr *CE); 165 void VisitInitListExpr(InitListExpr *E); 166 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 167 llvm::Value *outerBegin = nullptr); 168 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 169 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 170 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 171 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 172 Visit(DAE->getExpr()); 173 } 174 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 175 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 176 Visit(DIE->getExpr()); 177 } 178 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 179 void VisitCXXConstructExpr(const CXXConstructExpr *E); 180 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 181 void VisitLambdaExpr(LambdaExpr *E); 182 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 183 void VisitExprWithCleanups(ExprWithCleanups *E); 184 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 185 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 186 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 187 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 188 189 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 190 if (E->isGLValue()) { 191 LValue LV = CGF.EmitPseudoObjectLValue(E); 192 return EmitFinalDestCopy(E->getType(), LV); 193 } 194 195 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 196 } 197 198 void VisitVAArgExpr(VAArgExpr *E); 199 200 void EmitInitializationToLValue(Expr *E, LValue Address); 201 void EmitNullInitializationToLValue(LValue Address); 202 // case Expr::ChooseExprClass: 203 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 204 void VisitAtomicExpr(AtomicExpr *E) { 205 RValue Res = CGF.EmitAtomicExpr(E); 206 EmitFinalDestCopy(E->getType(), Res); 207 } 208 }; 209 } // end anonymous namespace. 210 211 //===----------------------------------------------------------------------===// 212 // Utilities 213 //===----------------------------------------------------------------------===// 214 215 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 216 /// represents a value lvalue, this method emits the address of the lvalue, 217 /// then loads the result into DestPtr. 218 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 219 LValue LV = CGF.EmitLValue(E); 220 221 // If the type of the l-value is atomic, then do an atomic load. 222 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 223 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 224 return; 225 } 226 227 EmitFinalDestCopy(E->getType(), LV); 228 } 229 230 /// True if the given aggregate type requires special GC API calls. 231 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 232 // Only record types have members that might require garbage collection. 233 const RecordType *RecordTy = T->getAs<RecordType>(); 234 if (!RecordTy) return false; 235 236 // Don't mess with non-trivial C++ types. 237 RecordDecl *Record = RecordTy->getDecl(); 238 if (isa<CXXRecordDecl>(Record) && 239 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 240 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 241 return false; 242 243 // Check whether the type has an object member. 244 return Record->hasObjectMember(); 245 } 246 247 void AggExprEmitter::withReturnValueSlot( 248 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 249 QualType RetTy = E->getType(); 250 bool RequiresDestruction = 251 Dest.isIgnored() && 252 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 253 254 // If it makes no observable difference, save a memcpy + temporary. 255 // 256 // We need to always provide our own temporary if destruction is required. 257 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 258 // its lifetime before we have the chance to emit a proper destructor call. 259 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 260 (RequiresDestruction && !Dest.getAddress().isValid()); 261 262 Address RetAddr = Address::invalid(); 263 Address RetAllocaAddr = Address::invalid(); 264 265 EHScopeStack::stable_iterator LifetimeEndBlock; 266 llvm::Value *LifetimeSizePtr = nullptr; 267 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 268 if (!UseTemp) { 269 RetAddr = Dest.getAddress(); 270 } else { 271 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 272 uint64_t Size = 273 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 274 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 275 if (LifetimeSizePtr) { 276 LifetimeStartInst = 277 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 278 assert(LifetimeStartInst->getIntrinsicID() == 279 llvm::Intrinsic::lifetime_start && 280 "Last insertion wasn't a lifetime.start?"); 281 282 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 283 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 284 LifetimeEndBlock = CGF.EHStack.stable_begin(); 285 } 286 } 287 288 RValue Src = 289 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 290 291 if (RequiresDestruction) 292 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 293 294 if (!UseTemp) 295 return; 296 297 assert(Dest.getPointer() != Src.getAggregatePointer()); 298 EmitFinalDestCopy(E->getType(), Src); 299 300 if (!RequiresDestruction && LifetimeStartInst) { 301 // If there's no dtor to run, the copy was the last use of our temporary. 302 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 303 // eagerly. 304 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 305 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 306 } 307 } 308 309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 310 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 311 assert(src.isAggregate() && "value must be aggregate value!"); 312 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 313 EmitFinalDestCopy(type, srcLV, EVK_RValue); 314 } 315 316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 317 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 318 ExprValueKind SrcValueKind) { 319 // If Dest is ignored, then we're evaluating an aggregate expression 320 // in a context that doesn't care about the result. Note that loads 321 // from volatile l-values force the existence of a non-ignored 322 // destination. 323 if (Dest.isIgnored()) 324 return; 325 326 // Copy non-trivial C structs here. 327 LValue DstLV = CGF.MakeAddrLValue( 328 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 329 330 if (SrcValueKind == EVK_RValue) { 331 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 332 if (Dest.isPotentiallyAliased()) 333 CGF.callCStructMoveAssignmentOperator(DstLV, src); 334 else 335 CGF.callCStructMoveConstructor(DstLV, src); 336 return; 337 } 338 } else { 339 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 340 if (Dest.isPotentiallyAliased()) 341 CGF.callCStructCopyAssignmentOperator(DstLV, src); 342 else 343 CGF.callCStructCopyConstructor(DstLV, src); 344 return; 345 } 346 } 347 348 AggValueSlot srcAgg = 349 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 350 needsGC(type), AggValueSlot::IsAliased, 351 AggValueSlot::MayOverlap); 352 EmitCopy(type, Dest, srcAgg); 353 } 354 355 /// Perform a copy from the source into the destination. 356 /// 357 /// \param type - the type of the aggregate being copied; qualifiers are 358 /// ignored 359 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 360 const AggValueSlot &src) { 361 if (dest.requiresGCollection()) { 362 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 363 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 364 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 365 dest.getAddress(), 366 src.getAddress(), 367 size); 368 return; 369 } 370 371 // If the result of the assignment is used, copy the LHS there also. 372 // It's volatile if either side is. Use the minimum alignment of 373 // the two sides. 374 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 375 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 376 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 377 dest.isVolatile() || src.isVolatile()); 378 } 379 380 /// Emit the initializer for a std::initializer_list initialized with a 381 /// real initializer list. 382 void 383 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 384 // Emit an array containing the elements. The array is externally destructed 385 // if the std::initializer_list object is. 386 ASTContext &Ctx = CGF.getContext(); 387 LValue Array = CGF.EmitLValue(E->getSubExpr()); 388 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 389 Address ArrayPtr = Array.getAddress(); 390 391 const ConstantArrayType *ArrayType = 392 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 393 assert(ArrayType && "std::initializer_list constructed from non-array"); 394 395 // FIXME: Perform the checks on the field types in SemaInit. 396 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 397 RecordDecl::field_iterator Field = Record->field_begin(); 398 if (Field == Record->field_end()) { 399 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 400 return; 401 } 402 403 // Start pointer. 404 if (!Field->getType()->isPointerType() || 405 !Ctx.hasSameType(Field->getType()->getPointeeType(), 406 ArrayType->getElementType())) { 407 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 408 return; 409 } 410 411 AggValueSlot Dest = EnsureSlot(E->getType()); 412 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 413 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 414 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 415 llvm::Value *IdxStart[] = { Zero, Zero }; 416 llvm::Value *ArrayStart = 417 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 418 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 419 ++Field; 420 421 if (Field == Record->field_end()) { 422 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 423 return; 424 } 425 426 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 427 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 428 if (Field->getType()->isPointerType() && 429 Ctx.hasSameType(Field->getType()->getPointeeType(), 430 ArrayType->getElementType())) { 431 // End pointer. 432 llvm::Value *IdxEnd[] = { Zero, Size }; 433 llvm::Value *ArrayEnd = 434 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 435 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 436 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 437 // Length. 438 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 439 } else { 440 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 441 return; 442 } 443 } 444 445 /// Determine if E is a trivial array filler, that is, one that is 446 /// equivalent to zero-initialization. 447 static bool isTrivialFiller(Expr *E) { 448 if (!E) 449 return true; 450 451 if (isa<ImplicitValueInitExpr>(E)) 452 return true; 453 454 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 455 if (ILE->getNumInits()) 456 return false; 457 return isTrivialFiller(ILE->getArrayFiller()); 458 } 459 460 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 461 return Cons->getConstructor()->isDefaultConstructor() && 462 Cons->getConstructor()->isTrivial(); 463 464 // FIXME: Are there other cases where we can avoid emitting an initializer? 465 return false; 466 } 467 468 /// Emit initialization of an array from an initializer list. 469 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 470 QualType ArrayQTy, InitListExpr *E) { 471 uint64_t NumInitElements = E->getNumInits(); 472 473 uint64_t NumArrayElements = AType->getNumElements(); 474 assert(NumInitElements <= NumArrayElements); 475 476 QualType elementType = 477 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 478 479 // DestPtr is an array*. Construct an elementType* by drilling 480 // down a level. 481 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 482 llvm::Value *indices[] = { zero, zero }; 483 llvm::Value *begin = 484 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 485 486 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 487 CharUnits elementAlign = 488 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 489 490 // Consider initializing the array by copying from a global. For this to be 491 // more efficient than per-element initialization, the size of the elements 492 // with explicit initializers should be large enough. 493 if (NumInitElements * elementSize.getQuantity() > 16 && 494 elementType.isTriviallyCopyableType(CGF.getContext())) { 495 CodeGen::CodeGenModule &CGM = CGF.CGM; 496 ConstantEmitter Emitter(CGM); 497 LangAS AS = ArrayQTy.getAddressSpace(); 498 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 499 auto GV = new llvm::GlobalVariable( 500 CGM.getModule(), C->getType(), 501 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 502 llvm::GlobalValue::PrivateLinkage, C, "constinit", 503 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 504 CGM.getContext().getTargetAddressSpace(AS)); 505 Emitter.finalize(GV); 506 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 507 GV->setAlignment(Align.getAsAlign()); 508 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 509 return; 510 } 511 } 512 513 // Exception safety requires us to destroy all the 514 // already-constructed members if an initializer throws. 515 // For that, we'll need an EH cleanup. 516 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 517 Address endOfInit = Address::invalid(); 518 EHScopeStack::stable_iterator cleanup; 519 llvm::Instruction *cleanupDominator = nullptr; 520 if (CGF.needsEHCleanup(dtorKind)) { 521 // In principle we could tell the cleanup where we are more 522 // directly, but the control flow can get so varied here that it 523 // would actually be quite complex. Therefore we go through an 524 // alloca. 525 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 526 "arrayinit.endOfInit"); 527 cleanupDominator = Builder.CreateStore(begin, endOfInit); 528 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 529 elementAlign, 530 CGF.getDestroyer(dtorKind)); 531 cleanup = CGF.EHStack.stable_begin(); 532 533 // Otherwise, remember that we didn't need a cleanup. 534 } else { 535 dtorKind = QualType::DK_none; 536 } 537 538 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 539 540 // The 'current element to initialize'. The invariants on this 541 // variable are complicated. Essentially, after each iteration of 542 // the loop, it points to the last initialized element, except 543 // that it points to the beginning of the array before any 544 // elements have been initialized. 545 llvm::Value *element = begin; 546 547 // Emit the explicit initializers. 548 for (uint64_t i = 0; i != NumInitElements; ++i) { 549 // Advance to the next element. 550 if (i > 0) { 551 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 552 553 // Tell the cleanup that it needs to destroy up to this 554 // element. TODO: some of these stores can be trivially 555 // observed to be unnecessary. 556 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 557 } 558 559 LValue elementLV = 560 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 561 EmitInitializationToLValue(E->getInit(i), elementLV); 562 } 563 564 // Check whether there's a non-trivial array-fill expression. 565 Expr *filler = E->getArrayFiller(); 566 bool hasTrivialFiller = isTrivialFiller(filler); 567 568 // Any remaining elements need to be zero-initialized, possibly 569 // using the filler expression. We can skip this if the we're 570 // emitting to zeroed memory. 571 if (NumInitElements != NumArrayElements && 572 !(Dest.isZeroed() && hasTrivialFiller && 573 CGF.getTypes().isZeroInitializable(elementType))) { 574 575 // Use an actual loop. This is basically 576 // do { *array++ = filler; } while (array != end); 577 578 // Advance to the start of the rest of the array. 579 if (NumInitElements) { 580 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 581 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 582 } 583 584 // Compute the end of the array. 585 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 586 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 587 "arrayinit.end"); 588 589 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 590 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 591 592 // Jump into the body. 593 CGF.EmitBlock(bodyBB); 594 llvm::PHINode *currentElement = 595 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 596 currentElement->addIncoming(element, entryBB); 597 598 // Emit the actual filler expression. 599 { 600 // C++1z [class.temporary]p5: 601 // when a default constructor is called to initialize an element of 602 // an array with no corresponding initializer [...] the destruction of 603 // every temporary created in a default argument is sequenced before 604 // the construction of the next array element, if any 605 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 606 LValue elementLV = 607 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 608 if (filler) 609 EmitInitializationToLValue(filler, elementLV); 610 else 611 EmitNullInitializationToLValue(elementLV); 612 } 613 614 // Move on to the next element. 615 llvm::Value *nextElement = 616 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 617 618 // Tell the EH cleanup that we finished with the last element. 619 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 620 621 // Leave the loop if we're done. 622 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 623 "arrayinit.done"); 624 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 625 Builder.CreateCondBr(done, endBB, bodyBB); 626 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 627 628 CGF.EmitBlock(endBB); 629 } 630 631 // Leave the partial-array cleanup if we entered one. 632 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 633 } 634 635 //===----------------------------------------------------------------------===// 636 // Visitor Methods 637 //===----------------------------------------------------------------------===// 638 639 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 640 Visit(E->GetTemporaryExpr()); 641 } 642 643 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 644 // If this is a unique OVE, just visit its source expression. 645 if (e->isUnique()) 646 Visit(e->getSourceExpr()); 647 else 648 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 649 } 650 651 void 652 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 653 if (Dest.isPotentiallyAliased() && 654 E->getType().isPODType(CGF.getContext())) { 655 // For a POD type, just emit a load of the lvalue + a copy, because our 656 // compound literal might alias the destination. 657 EmitAggLoadOfLValue(E); 658 return; 659 } 660 661 AggValueSlot Slot = EnsureSlot(E->getType()); 662 CGF.EmitAggExpr(E->getInitializer(), Slot); 663 } 664 665 /// Attempt to look through various unimportant expressions to find a 666 /// cast of the given kind. 667 static Expr *findPeephole(Expr *op, CastKind kind) { 668 while (true) { 669 op = op->IgnoreParens(); 670 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 671 if (castE->getCastKind() == kind) 672 return castE->getSubExpr(); 673 if (castE->getCastKind() == CK_NoOp) 674 continue; 675 } 676 return nullptr; 677 } 678 } 679 680 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 681 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 682 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 683 switch (E->getCastKind()) { 684 case CK_Dynamic: { 685 // FIXME: Can this actually happen? We have no test coverage for it. 686 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 687 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 688 CodeGenFunction::TCK_Load); 689 // FIXME: Do we also need to handle property references here? 690 if (LV.isSimple()) 691 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 692 else 693 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 694 695 if (!Dest.isIgnored()) 696 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 697 break; 698 } 699 700 case CK_ToUnion: { 701 // Evaluate even if the destination is ignored. 702 if (Dest.isIgnored()) { 703 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 704 /*ignoreResult=*/true); 705 break; 706 } 707 708 // GCC union extension 709 QualType Ty = E->getSubExpr()->getType(); 710 Address CastPtr = 711 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 712 EmitInitializationToLValue(E->getSubExpr(), 713 CGF.MakeAddrLValue(CastPtr, Ty)); 714 break; 715 } 716 717 case CK_LValueToRValueBitCast: { 718 if (Dest.isIgnored()) { 719 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 720 /*ignoreResult=*/true); 721 break; 722 } 723 724 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 725 Address SourceAddress = 726 Builder.CreateElementBitCast(SourceLV.getAddress(), CGF.Int8Ty); 727 Address DestAddress = 728 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 729 llvm::Value *SizeVal = llvm::ConstantInt::get( 730 CGF.SizeTy, 731 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 732 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 733 break; 734 } 735 736 case CK_DerivedToBase: 737 case CK_BaseToDerived: 738 case CK_UncheckedDerivedToBase: { 739 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 740 "should have been unpacked before we got here"); 741 } 742 743 case CK_NonAtomicToAtomic: 744 case CK_AtomicToNonAtomic: { 745 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 746 747 // Determine the atomic and value types. 748 QualType atomicType = E->getSubExpr()->getType(); 749 QualType valueType = E->getType(); 750 if (isToAtomic) std::swap(atomicType, valueType); 751 752 assert(atomicType->isAtomicType()); 753 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 754 atomicType->castAs<AtomicType>()->getValueType())); 755 756 // Just recurse normally if we're ignoring the result or the 757 // atomic type doesn't change representation. 758 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 759 return Visit(E->getSubExpr()); 760 } 761 762 CastKind peepholeTarget = 763 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 764 765 // These two cases are reverses of each other; try to peephole them. 766 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 767 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 768 E->getType()) && 769 "peephole significantly changed types?"); 770 return Visit(op); 771 } 772 773 // If we're converting an r-value of non-atomic type to an r-value 774 // of atomic type, just emit directly into the relevant sub-object. 775 if (isToAtomic) { 776 AggValueSlot valueDest = Dest; 777 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 778 // Zero-initialize. (Strictly speaking, we only need to initialize 779 // the padding at the end, but this is simpler.) 780 if (!Dest.isZeroed()) 781 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 782 783 // Build a GEP to refer to the subobject. 784 Address valueAddr = 785 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 786 valueDest = AggValueSlot::forAddr(valueAddr, 787 valueDest.getQualifiers(), 788 valueDest.isExternallyDestructed(), 789 valueDest.requiresGCollection(), 790 valueDest.isPotentiallyAliased(), 791 AggValueSlot::DoesNotOverlap, 792 AggValueSlot::IsZeroed); 793 } 794 795 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 796 return; 797 } 798 799 // Otherwise, we're converting an atomic type to a non-atomic type. 800 // Make an atomic temporary, emit into that, and then copy the value out. 801 AggValueSlot atomicSlot = 802 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 803 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 804 805 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 806 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 807 return EmitFinalDestCopy(valueType, rvalue); 808 } 809 case CK_AddressSpaceConversion: 810 return Visit(E->getSubExpr()); 811 812 case CK_LValueToRValue: 813 // If we're loading from a volatile type, force the destination 814 // into existence. 815 if (E->getSubExpr()->getType().isVolatileQualified()) { 816 EnsureDest(E->getType()); 817 return Visit(E->getSubExpr()); 818 } 819 820 LLVM_FALLTHROUGH; 821 822 823 case CK_NoOp: 824 case CK_UserDefinedConversion: 825 case CK_ConstructorConversion: 826 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 827 E->getType()) && 828 "Implicit cast types must be compatible"); 829 Visit(E->getSubExpr()); 830 break; 831 832 case CK_LValueBitCast: 833 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 834 835 case CK_Dependent: 836 case CK_BitCast: 837 case CK_ArrayToPointerDecay: 838 case CK_FunctionToPointerDecay: 839 case CK_NullToPointer: 840 case CK_NullToMemberPointer: 841 case CK_BaseToDerivedMemberPointer: 842 case CK_DerivedToBaseMemberPointer: 843 case CK_MemberPointerToBoolean: 844 case CK_ReinterpretMemberPointer: 845 case CK_IntegralToPointer: 846 case CK_PointerToIntegral: 847 case CK_PointerToBoolean: 848 case CK_ToVoid: 849 case CK_VectorSplat: 850 case CK_IntegralCast: 851 case CK_BooleanToSignedIntegral: 852 case CK_IntegralToBoolean: 853 case CK_IntegralToFloating: 854 case CK_FloatingToIntegral: 855 case CK_FloatingToBoolean: 856 case CK_FloatingCast: 857 case CK_CPointerToObjCPointerCast: 858 case CK_BlockPointerToObjCPointerCast: 859 case CK_AnyPointerToBlockPointerCast: 860 case CK_ObjCObjectLValueCast: 861 case CK_FloatingRealToComplex: 862 case CK_FloatingComplexToReal: 863 case CK_FloatingComplexToBoolean: 864 case CK_FloatingComplexCast: 865 case CK_FloatingComplexToIntegralComplex: 866 case CK_IntegralRealToComplex: 867 case CK_IntegralComplexToReal: 868 case CK_IntegralComplexToBoolean: 869 case CK_IntegralComplexCast: 870 case CK_IntegralComplexToFloatingComplex: 871 case CK_ARCProduceObject: 872 case CK_ARCConsumeObject: 873 case CK_ARCReclaimReturnedObject: 874 case CK_ARCExtendBlockObject: 875 case CK_CopyAndAutoreleaseBlockObject: 876 case CK_BuiltinFnToFnPtr: 877 case CK_ZeroToOCLOpaqueType: 878 879 case CK_IntToOCLSampler: 880 case CK_FixedPointCast: 881 case CK_FixedPointToBoolean: 882 case CK_FixedPointToIntegral: 883 case CK_IntegralToFixedPoint: 884 llvm_unreachable("cast kind invalid for aggregate types"); 885 } 886 } 887 888 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 889 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 890 EmitAggLoadOfLValue(E); 891 return; 892 } 893 894 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 895 return CGF.EmitCallExpr(E, Slot); 896 }); 897 } 898 899 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 900 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 901 return CGF.EmitObjCMessageExpr(E, Slot); 902 }); 903 } 904 905 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 906 CGF.EmitIgnoredExpr(E->getLHS()); 907 Visit(E->getRHS()); 908 } 909 910 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 911 CodeGenFunction::StmtExprEvaluation eval(CGF); 912 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 913 } 914 915 enum CompareKind { 916 CK_Less, 917 CK_Greater, 918 CK_Equal, 919 }; 920 921 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 922 const BinaryOperator *E, llvm::Value *LHS, 923 llvm::Value *RHS, CompareKind Kind, 924 const char *NameSuffix = "") { 925 QualType ArgTy = E->getLHS()->getType(); 926 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 927 ArgTy = CT->getElementType(); 928 929 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 930 assert(Kind == CK_Equal && 931 "member pointers may only be compared for equality"); 932 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 933 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 934 } 935 936 // Compute the comparison instructions for the specified comparison kind. 937 struct CmpInstInfo { 938 const char *Name; 939 llvm::CmpInst::Predicate FCmp; 940 llvm::CmpInst::Predicate SCmp; 941 llvm::CmpInst::Predicate UCmp; 942 }; 943 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 944 using FI = llvm::FCmpInst; 945 using II = llvm::ICmpInst; 946 switch (Kind) { 947 case CK_Less: 948 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 949 case CK_Greater: 950 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 951 case CK_Equal: 952 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 953 } 954 llvm_unreachable("Unrecognised CompareKind enum"); 955 }(); 956 957 if (ArgTy->hasFloatingRepresentation()) 958 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 959 llvm::Twine(InstInfo.Name) + NameSuffix); 960 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 961 auto Inst = 962 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 963 return Builder.CreateICmp(Inst, LHS, RHS, 964 llvm::Twine(InstInfo.Name) + NameSuffix); 965 } 966 967 llvm_unreachable("unsupported aggregate binary expression should have " 968 "already been handled"); 969 } 970 971 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 972 using llvm::BasicBlock; 973 using llvm::PHINode; 974 using llvm::Value; 975 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 976 E->getRHS()->getType())); 977 const ComparisonCategoryInfo &CmpInfo = 978 CGF.getContext().CompCategories.getInfoForType(E->getType()); 979 assert(CmpInfo.Record->isTriviallyCopyable() && 980 "cannot copy non-trivially copyable aggregate"); 981 982 QualType ArgTy = E->getLHS()->getType(); 983 984 // TODO: Handle comparing these types. 985 if (ArgTy->isVectorType()) 986 return CGF.ErrorUnsupported( 987 E, "aggregate three-way comparison with vector arguments"); 988 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 989 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 990 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 991 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 992 } 993 bool IsComplex = ArgTy->isAnyComplexType(); 994 995 // Evaluate the operands to the expression and extract their values. 996 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 997 RValue RV = CGF.EmitAnyExpr(E); 998 if (RV.isScalar()) 999 return {RV.getScalarVal(), nullptr}; 1000 if (RV.isAggregate()) 1001 return {RV.getAggregatePointer(), nullptr}; 1002 assert(RV.isComplex()); 1003 return RV.getComplexVal(); 1004 }; 1005 auto LHSValues = EmitOperand(E->getLHS()), 1006 RHSValues = EmitOperand(E->getRHS()); 1007 1008 auto EmitCmp = [&](CompareKind K) { 1009 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1010 K, IsComplex ? ".r" : ""); 1011 if (!IsComplex) 1012 return Cmp; 1013 assert(K == CompareKind::CK_Equal); 1014 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1015 RHSValues.second, K, ".i"); 1016 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1017 }; 1018 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1019 return Builder.getInt(VInfo->getIntValue()); 1020 }; 1021 1022 Value *Select; 1023 if (ArgTy->isNullPtrType()) { 1024 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1025 } else if (CmpInfo.isEquality()) { 1026 Select = Builder.CreateSelect( 1027 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1028 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 1029 } else if (!CmpInfo.isPartial()) { 1030 Value *SelectOne = 1031 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1032 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1033 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1034 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1035 SelectOne, "sel.eq"); 1036 } else { 1037 Value *SelectEq = Builder.CreateSelect( 1038 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1039 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1040 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1041 EmitCmpRes(CmpInfo.getGreater()), 1042 SelectEq, "sel.gt"); 1043 Select = Builder.CreateSelect( 1044 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1045 } 1046 // Create the return value in the destination slot. 1047 EnsureDest(E->getType()); 1048 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1049 1050 // Emit the address of the first (and only) field in the comparison category 1051 // type, and initialize it from the constant integer value selected above. 1052 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1053 DestLV, *CmpInfo.Record->field_begin()); 1054 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1055 1056 // All done! The result is in the Dest slot. 1057 } 1058 1059 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1060 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1061 VisitPointerToDataMemberBinaryOperator(E); 1062 else 1063 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1064 } 1065 1066 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1067 const BinaryOperator *E) { 1068 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1069 EmitFinalDestCopy(E->getType(), LV); 1070 } 1071 1072 /// Is the value of the given expression possibly a reference to or 1073 /// into a __block variable? 1074 static bool isBlockVarRef(const Expr *E) { 1075 // Make sure we look through parens. 1076 E = E->IgnoreParens(); 1077 1078 // Check for a direct reference to a __block variable. 1079 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1080 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1081 return (var && var->hasAttr<BlocksAttr>()); 1082 } 1083 1084 // More complicated stuff. 1085 1086 // Binary operators. 1087 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1088 // For an assignment or pointer-to-member operation, just care 1089 // about the LHS. 1090 if (op->isAssignmentOp() || op->isPtrMemOp()) 1091 return isBlockVarRef(op->getLHS()); 1092 1093 // For a comma, just care about the RHS. 1094 if (op->getOpcode() == BO_Comma) 1095 return isBlockVarRef(op->getRHS()); 1096 1097 // FIXME: pointer arithmetic? 1098 return false; 1099 1100 // Check both sides of a conditional operator. 1101 } else if (const AbstractConditionalOperator *op 1102 = dyn_cast<AbstractConditionalOperator>(E)) { 1103 return isBlockVarRef(op->getTrueExpr()) 1104 || isBlockVarRef(op->getFalseExpr()); 1105 1106 // OVEs are required to support BinaryConditionalOperators. 1107 } else if (const OpaqueValueExpr *op 1108 = dyn_cast<OpaqueValueExpr>(E)) { 1109 if (const Expr *src = op->getSourceExpr()) 1110 return isBlockVarRef(src); 1111 1112 // Casts are necessary to get things like (*(int*)&var) = foo(). 1113 // We don't really care about the kind of cast here, except 1114 // we don't want to look through l2r casts, because it's okay 1115 // to get the *value* in a __block variable. 1116 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1117 if (cast->getCastKind() == CK_LValueToRValue) 1118 return false; 1119 return isBlockVarRef(cast->getSubExpr()); 1120 1121 // Handle unary operators. Again, just aggressively look through 1122 // it, ignoring the operation. 1123 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1124 return isBlockVarRef(uop->getSubExpr()); 1125 1126 // Look into the base of a field access. 1127 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1128 return isBlockVarRef(mem->getBase()); 1129 1130 // Look into the base of a subscript. 1131 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1132 return isBlockVarRef(sub->getBase()); 1133 } 1134 1135 return false; 1136 } 1137 1138 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1139 // For an assignment to work, the value on the right has 1140 // to be compatible with the value on the left. 1141 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1142 E->getRHS()->getType()) 1143 && "Invalid assignment"); 1144 1145 // If the LHS might be a __block variable, and the RHS can 1146 // potentially cause a block copy, we need to evaluate the RHS first 1147 // so that the assignment goes the right place. 1148 // This is pretty semantically fragile. 1149 if (isBlockVarRef(E->getLHS()) && 1150 E->getRHS()->HasSideEffects(CGF.getContext())) { 1151 // Ensure that we have a destination, and evaluate the RHS into that. 1152 EnsureDest(E->getRHS()->getType()); 1153 Visit(E->getRHS()); 1154 1155 // Now emit the LHS and copy into it. 1156 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1157 1158 // That copy is an atomic copy if the LHS is atomic. 1159 if (LHS.getType()->isAtomicType() || 1160 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1161 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1162 return; 1163 } 1164 1165 EmitCopy(E->getLHS()->getType(), 1166 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1167 needsGC(E->getLHS()->getType()), 1168 AggValueSlot::IsAliased, 1169 AggValueSlot::MayOverlap), 1170 Dest); 1171 return; 1172 } 1173 1174 LValue LHS = CGF.EmitLValue(E->getLHS()); 1175 1176 // If we have an atomic type, evaluate into the destination and then 1177 // do an atomic copy. 1178 if (LHS.getType()->isAtomicType() || 1179 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1180 EnsureDest(E->getRHS()->getType()); 1181 Visit(E->getRHS()); 1182 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1183 return; 1184 } 1185 1186 // Codegen the RHS so that it stores directly into the LHS. 1187 AggValueSlot LHSSlot = 1188 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1189 needsGC(E->getLHS()->getType()), 1190 AggValueSlot::IsAliased, 1191 AggValueSlot::MayOverlap); 1192 // A non-volatile aggregate destination might have volatile member. 1193 if (!LHSSlot.isVolatile() && 1194 CGF.hasVolatileMember(E->getLHS()->getType())) 1195 LHSSlot.setVolatile(true); 1196 1197 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1198 1199 // Copy into the destination if the assignment isn't ignored. 1200 EmitFinalDestCopy(E->getType(), LHS); 1201 } 1202 1203 void AggExprEmitter:: 1204 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1205 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1206 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1207 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1208 1209 // Bind the common expression if necessary. 1210 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1211 1212 CodeGenFunction::ConditionalEvaluation eval(CGF); 1213 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1214 CGF.getProfileCount(E)); 1215 1216 // Save whether the destination's lifetime is externally managed. 1217 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1218 1219 eval.begin(CGF); 1220 CGF.EmitBlock(LHSBlock); 1221 CGF.incrementProfileCounter(E); 1222 Visit(E->getTrueExpr()); 1223 eval.end(CGF); 1224 1225 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1226 CGF.Builder.CreateBr(ContBlock); 1227 1228 // If the result of an agg expression is unused, then the emission 1229 // of the LHS might need to create a destination slot. That's fine 1230 // with us, and we can safely emit the RHS into the same slot, but 1231 // we shouldn't claim that it's already being destructed. 1232 Dest.setExternallyDestructed(isExternallyDestructed); 1233 1234 eval.begin(CGF); 1235 CGF.EmitBlock(RHSBlock); 1236 Visit(E->getFalseExpr()); 1237 eval.end(CGF); 1238 1239 CGF.EmitBlock(ContBlock); 1240 } 1241 1242 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1243 Visit(CE->getChosenSubExpr()); 1244 } 1245 1246 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1247 Address ArgValue = Address::invalid(); 1248 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1249 1250 // If EmitVAArg fails, emit an error. 1251 if (!ArgPtr.isValid()) { 1252 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1253 return; 1254 } 1255 1256 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1257 } 1258 1259 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1260 // Ensure that we have a slot, but if we already do, remember 1261 // whether it was externally destructed. 1262 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1263 EnsureDest(E->getType()); 1264 1265 // We're going to push a destructor if there isn't already one. 1266 Dest.setExternallyDestructed(); 1267 1268 Visit(E->getSubExpr()); 1269 1270 // Push that destructor we promised. 1271 if (!wasExternallyDestructed) 1272 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1273 } 1274 1275 void 1276 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1277 AggValueSlot Slot = EnsureSlot(E->getType()); 1278 CGF.EmitCXXConstructExpr(E, Slot); 1279 } 1280 1281 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1282 const CXXInheritedCtorInitExpr *E) { 1283 AggValueSlot Slot = EnsureSlot(E->getType()); 1284 CGF.EmitInheritedCXXConstructorCall( 1285 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1286 E->inheritedFromVBase(), E); 1287 } 1288 1289 void 1290 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1291 AggValueSlot Slot = EnsureSlot(E->getType()); 1292 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1293 1294 // We'll need to enter cleanup scopes in case any of the element 1295 // initializers throws an exception. 1296 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1297 llvm::Instruction *CleanupDominator = nullptr; 1298 1299 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1300 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1301 e = E->capture_init_end(); 1302 i != e; ++i, ++CurField) { 1303 // Emit initialization 1304 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1305 if (CurField->hasCapturedVLAType()) { 1306 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1307 continue; 1308 } 1309 1310 EmitInitializationToLValue(*i, LV); 1311 1312 // Push a destructor if necessary. 1313 if (QualType::DestructionKind DtorKind = 1314 CurField->getType().isDestructedType()) { 1315 assert(LV.isSimple()); 1316 if (CGF.needsEHCleanup(DtorKind)) { 1317 if (!CleanupDominator) 1318 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1319 CGF.Int8Ty, 1320 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1321 CharUnits::One()); // placeholder 1322 1323 CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(), 1324 CGF.getDestroyer(DtorKind), false); 1325 Cleanups.push_back(CGF.EHStack.stable_begin()); 1326 } 1327 } 1328 } 1329 1330 // Deactivate all the partial cleanups in reverse order, which 1331 // generally means popping them. 1332 for (unsigned i = Cleanups.size(); i != 0; --i) 1333 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1334 1335 // Destroy the placeholder if we made one. 1336 if (CleanupDominator) 1337 CleanupDominator->eraseFromParent(); 1338 } 1339 1340 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1341 CGF.enterFullExpression(E); 1342 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1343 Visit(E->getSubExpr()); 1344 } 1345 1346 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1347 QualType T = E->getType(); 1348 AggValueSlot Slot = EnsureSlot(T); 1349 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1350 } 1351 1352 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1353 QualType T = E->getType(); 1354 AggValueSlot Slot = EnsureSlot(T); 1355 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1356 } 1357 1358 /// isSimpleZero - If emitting this value will obviously just cause a store of 1359 /// zero to memory, return true. This can return false if uncertain, so it just 1360 /// handles simple cases. 1361 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1362 E = E->IgnoreParens(); 1363 1364 // 0 1365 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1366 return IL->getValue() == 0; 1367 // +0.0 1368 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1369 return FL->getValue().isPosZero(); 1370 // int() 1371 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1372 CGF.getTypes().isZeroInitializable(E->getType())) 1373 return true; 1374 // (int*)0 - Null pointer expressions. 1375 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1376 return ICE->getCastKind() == CK_NullToPointer && 1377 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1378 !E->HasSideEffects(CGF.getContext()); 1379 // '\0' 1380 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1381 return CL->getValue() == 0; 1382 1383 // Otherwise, hard case: conservatively return false. 1384 return false; 1385 } 1386 1387 1388 void 1389 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1390 QualType type = LV.getType(); 1391 // FIXME: Ignore result? 1392 // FIXME: Are initializers affected by volatile? 1393 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1394 // Storing "i32 0" to a zero'd memory location is a noop. 1395 return; 1396 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1397 return EmitNullInitializationToLValue(LV); 1398 } else if (isa<NoInitExpr>(E)) { 1399 // Do nothing. 1400 return; 1401 } else if (type->isReferenceType()) { 1402 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1403 return CGF.EmitStoreThroughLValue(RV, LV); 1404 } 1405 1406 switch (CGF.getEvaluationKind(type)) { 1407 case TEK_Complex: 1408 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1409 return; 1410 case TEK_Aggregate: 1411 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1412 AggValueSlot::IsDestructed, 1413 AggValueSlot::DoesNotNeedGCBarriers, 1414 AggValueSlot::IsNotAliased, 1415 AggValueSlot::MayOverlap, 1416 Dest.isZeroed())); 1417 return; 1418 case TEK_Scalar: 1419 if (LV.isSimple()) { 1420 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1421 } else { 1422 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1423 } 1424 return; 1425 } 1426 llvm_unreachable("bad evaluation kind"); 1427 } 1428 1429 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1430 QualType type = lv.getType(); 1431 1432 // If the destination slot is already zeroed out before the aggregate is 1433 // copied into it, we don't have to emit any zeros here. 1434 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1435 return; 1436 1437 if (CGF.hasScalarEvaluationKind(type)) { 1438 // For non-aggregates, we can store the appropriate null constant. 1439 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1440 // Note that the following is not equivalent to 1441 // EmitStoreThroughBitfieldLValue for ARC types. 1442 if (lv.isBitField()) { 1443 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1444 } else { 1445 assert(lv.isSimple()); 1446 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1447 } 1448 } else { 1449 // There's a potential optimization opportunity in combining 1450 // memsets; that would be easy for arrays, but relatively 1451 // difficult for structures with the current code. 1452 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1453 } 1454 } 1455 1456 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1457 #if 0 1458 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1459 // (Length of globals? Chunks of zeroed-out space?). 1460 // 1461 // If we can, prefer a copy from a global; this is a lot less code for long 1462 // globals, and it's easier for the current optimizers to analyze. 1463 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1464 llvm::GlobalVariable* GV = 1465 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1466 llvm::GlobalValue::InternalLinkage, C, ""); 1467 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1468 return; 1469 } 1470 #endif 1471 if (E->hadArrayRangeDesignator()) 1472 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1473 1474 if (E->isTransparent()) 1475 return Visit(E->getInit(0)); 1476 1477 AggValueSlot Dest = EnsureSlot(E->getType()); 1478 1479 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1480 1481 // Handle initialization of an array. 1482 if (E->getType()->isArrayType()) { 1483 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1484 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1485 return; 1486 } 1487 1488 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1489 1490 // Do struct initialization; this code just sets each individual member 1491 // to the approprate value. This makes bitfield support automatic; 1492 // the disadvantage is that the generated code is more difficult for 1493 // the optimizer, especially with bitfields. 1494 unsigned NumInitElements = E->getNumInits(); 1495 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1496 1497 // We'll need to enter cleanup scopes in case any of the element 1498 // initializers throws an exception. 1499 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1500 llvm::Instruction *cleanupDominator = nullptr; 1501 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1502 cleanups.push_back(cleanup); 1503 if (!cleanupDominator) // create placeholder once needed 1504 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1505 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1506 CharUnits::One()); 1507 }; 1508 1509 unsigned curInitIndex = 0; 1510 1511 // Emit initialization of base classes. 1512 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1513 assert(E->getNumInits() >= CXXRD->getNumBases() && 1514 "missing initializer for base class"); 1515 for (auto &Base : CXXRD->bases()) { 1516 assert(!Base.isVirtual() && "should not see vbases here"); 1517 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1518 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1519 Dest.getAddress(), CXXRD, BaseRD, 1520 /*isBaseVirtual*/ false); 1521 AggValueSlot AggSlot = AggValueSlot::forAddr( 1522 V, Qualifiers(), 1523 AggValueSlot::IsDestructed, 1524 AggValueSlot::DoesNotNeedGCBarriers, 1525 AggValueSlot::IsNotAliased, 1526 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1527 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1528 1529 if (QualType::DestructionKind dtorKind = 1530 Base.getType().isDestructedType()) { 1531 CGF.pushDestroy(dtorKind, V, Base.getType()); 1532 addCleanup(CGF.EHStack.stable_begin()); 1533 } 1534 } 1535 } 1536 1537 // Prepare a 'this' for CXXDefaultInitExprs. 1538 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1539 1540 if (record->isUnion()) { 1541 // Only initialize one field of a union. The field itself is 1542 // specified by the initializer list. 1543 if (!E->getInitializedFieldInUnion()) { 1544 // Empty union; we have nothing to do. 1545 1546 #ifndef NDEBUG 1547 // Make sure that it's really an empty and not a failure of 1548 // semantic analysis. 1549 for (const auto *Field : record->fields()) 1550 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1551 #endif 1552 return; 1553 } 1554 1555 // FIXME: volatility 1556 FieldDecl *Field = E->getInitializedFieldInUnion(); 1557 1558 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1559 if (NumInitElements) { 1560 // Store the initializer into the field 1561 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1562 } else { 1563 // Default-initialize to null. 1564 EmitNullInitializationToLValue(FieldLoc); 1565 } 1566 1567 return; 1568 } 1569 1570 // Here we iterate over the fields; this makes it simpler to both 1571 // default-initialize fields and skip over unnamed fields. 1572 for (const auto *field : record->fields()) { 1573 // We're done once we hit the flexible array member. 1574 if (field->getType()->isIncompleteArrayType()) 1575 break; 1576 1577 // Always skip anonymous bitfields. 1578 if (field->isUnnamedBitfield()) 1579 continue; 1580 1581 // We're done if we reach the end of the explicit initializers, we 1582 // have a zeroed object, and the rest of the fields are 1583 // zero-initializable. 1584 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1585 CGF.getTypes().isZeroInitializable(E->getType())) 1586 break; 1587 1588 1589 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1590 // We never generate write-barries for initialized fields. 1591 LV.setNonGC(true); 1592 1593 if (curInitIndex < NumInitElements) { 1594 // Store the initializer into the field. 1595 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1596 } else { 1597 // We're out of initializers; default-initialize to null 1598 EmitNullInitializationToLValue(LV); 1599 } 1600 1601 // Push a destructor if necessary. 1602 // FIXME: if we have an array of structures, all explicitly 1603 // initialized, we can end up pushing a linear number of cleanups. 1604 bool pushedCleanup = false; 1605 if (QualType::DestructionKind dtorKind 1606 = field->getType().isDestructedType()) { 1607 assert(LV.isSimple()); 1608 if (CGF.needsEHCleanup(dtorKind)) { 1609 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1610 CGF.getDestroyer(dtorKind), false); 1611 addCleanup(CGF.EHStack.stable_begin()); 1612 pushedCleanup = true; 1613 } 1614 } 1615 1616 // If the GEP didn't get used because of a dead zero init or something 1617 // else, clean it up for -O0 builds and general tidiness. 1618 if (!pushedCleanup && LV.isSimple()) 1619 if (llvm::GetElementPtrInst *GEP = 1620 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1621 if (GEP->use_empty()) 1622 GEP->eraseFromParent(); 1623 } 1624 1625 // Deactivate all the partial cleanups in reverse order, which 1626 // generally means popping them. 1627 assert((cleanupDominator || cleanups.empty()) && 1628 "Missing cleanupDominator before deactivating cleanup blocks"); 1629 for (unsigned i = cleanups.size(); i != 0; --i) 1630 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1631 1632 // Destroy the placeholder if we made one. 1633 if (cleanupDominator) 1634 cleanupDominator->eraseFromParent(); 1635 } 1636 1637 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1638 llvm::Value *outerBegin) { 1639 // Emit the common subexpression. 1640 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1641 1642 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1643 uint64_t numElements = E->getArraySize().getZExtValue(); 1644 1645 if (!numElements) 1646 return; 1647 1648 // destPtr is an array*. Construct an elementType* by drilling down a level. 1649 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1650 llvm::Value *indices[] = {zero, zero}; 1651 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1652 "arrayinit.begin"); 1653 1654 // Prepare to special-case multidimensional array initialization: we avoid 1655 // emitting multiple destructor loops in that case. 1656 if (!outerBegin) 1657 outerBegin = begin; 1658 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1659 1660 QualType elementType = 1661 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1662 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1663 CharUnits elementAlign = 1664 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1665 1666 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1667 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1668 1669 // Jump into the body. 1670 CGF.EmitBlock(bodyBB); 1671 llvm::PHINode *index = 1672 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1673 index->addIncoming(zero, entryBB); 1674 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1675 1676 // Prepare for a cleanup. 1677 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1678 EHScopeStack::stable_iterator cleanup; 1679 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1680 if (outerBegin->getType() != element->getType()) 1681 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1682 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1683 elementAlign, 1684 CGF.getDestroyer(dtorKind)); 1685 cleanup = CGF.EHStack.stable_begin(); 1686 } else { 1687 dtorKind = QualType::DK_none; 1688 } 1689 1690 // Emit the actual filler expression. 1691 { 1692 // Temporaries created in an array initialization loop are destroyed 1693 // at the end of each iteration. 1694 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1695 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1696 LValue elementLV = 1697 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1698 1699 if (InnerLoop) { 1700 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1701 auto elementSlot = AggValueSlot::forLValue( 1702 elementLV, AggValueSlot::IsDestructed, 1703 AggValueSlot::DoesNotNeedGCBarriers, 1704 AggValueSlot::IsNotAliased, 1705 AggValueSlot::DoesNotOverlap); 1706 AggExprEmitter(CGF, elementSlot, false) 1707 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1708 } else 1709 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1710 } 1711 1712 // Move on to the next element. 1713 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1714 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1715 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1716 1717 // Leave the loop if we're done. 1718 llvm::Value *done = Builder.CreateICmpEQ( 1719 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1720 "arrayinit.done"); 1721 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1722 Builder.CreateCondBr(done, endBB, bodyBB); 1723 1724 CGF.EmitBlock(endBB); 1725 1726 // Leave the partial-array cleanup if we entered one. 1727 if (dtorKind) 1728 CGF.DeactivateCleanupBlock(cleanup, index); 1729 } 1730 1731 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1732 AggValueSlot Dest = EnsureSlot(E->getType()); 1733 1734 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1735 EmitInitializationToLValue(E->getBase(), DestLV); 1736 VisitInitListExpr(E->getUpdater()); 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Entry Points into this File 1741 //===----------------------------------------------------------------------===// 1742 1743 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1744 /// non-zero bytes that will be stored when outputting the initializer for the 1745 /// specified initializer expression. 1746 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1747 E = E->IgnoreParens(); 1748 1749 // 0 and 0.0 won't require any non-zero stores! 1750 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1751 1752 // If this is an initlist expr, sum up the size of sizes of the (present) 1753 // elements. If this is something weird, assume the whole thing is non-zero. 1754 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1755 while (ILE && ILE->isTransparent()) 1756 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1757 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1758 return CGF.getContext().getTypeSizeInChars(E->getType()); 1759 1760 // InitListExprs for structs have to be handled carefully. If there are 1761 // reference members, we need to consider the size of the reference, not the 1762 // referencee. InitListExprs for unions and arrays can't have references. 1763 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1764 if (!RT->isUnionType()) { 1765 RecordDecl *SD = RT->getDecl(); 1766 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1767 1768 unsigned ILEElement = 0; 1769 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1770 while (ILEElement != CXXRD->getNumBases()) 1771 NumNonZeroBytes += 1772 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1773 for (const auto *Field : SD->fields()) { 1774 // We're done once we hit the flexible array member or run out of 1775 // InitListExpr elements. 1776 if (Field->getType()->isIncompleteArrayType() || 1777 ILEElement == ILE->getNumInits()) 1778 break; 1779 if (Field->isUnnamedBitfield()) 1780 continue; 1781 1782 const Expr *E = ILE->getInit(ILEElement++); 1783 1784 // Reference values are always non-null and have the width of a pointer. 1785 if (Field->getType()->isReferenceType()) 1786 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1787 CGF.getTarget().getPointerWidth(0)); 1788 else 1789 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1790 } 1791 1792 return NumNonZeroBytes; 1793 } 1794 } 1795 1796 1797 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1798 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1799 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1800 return NumNonZeroBytes; 1801 } 1802 1803 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1804 /// zeros in it, emit a memset and avoid storing the individual zeros. 1805 /// 1806 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1807 CodeGenFunction &CGF) { 1808 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1809 // volatile stores. 1810 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1811 return; 1812 1813 // C++ objects with a user-declared constructor don't need zero'ing. 1814 if (CGF.getLangOpts().CPlusPlus) 1815 if (const RecordType *RT = CGF.getContext() 1816 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1817 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1818 if (RD->hasUserDeclaredConstructor()) 1819 return; 1820 } 1821 1822 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1823 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1824 if (Size <= CharUnits::fromQuantity(16)) 1825 return; 1826 1827 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1828 // we prefer to emit memset + individual stores for the rest. 1829 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1830 if (NumNonZeroBytes*4 > Size) 1831 return; 1832 1833 // Okay, it seems like a good idea to use an initial memset, emit the call. 1834 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1835 1836 Address Loc = Slot.getAddress(); 1837 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1838 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1839 1840 // Tell the AggExprEmitter that the slot is known zero. 1841 Slot.setZeroed(); 1842 } 1843 1844 1845 1846 1847 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1848 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1849 /// the value of the aggregate expression is not needed. If VolatileDest is 1850 /// true, DestPtr cannot be 0. 1851 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1852 assert(E && hasAggregateEvaluationKind(E->getType()) && 1853 "Invalid aggregate expression to emit"); 1854 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1855 "slot has bits but no address"); 1856 1857 // Optimize the slot if possible. 1858 CheckAggExprForMemSetUse(Slot, E, *this); 1859 1860 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1861 } 1862 1863 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1864 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1865 Address Temp = CreateMemTemp(E->getType()); 1866 LValue LV = MakeAddrLValue(Temp, E->getType()); 1867 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1868 AggValueSlot::DoesNotNeedGCBarriers, 1869 AggValueSlot::IsNotAliased, 1870 AggValueSlot::DoesNotOverlap)); 1871 return LV; 1872 } 1873 1874 AggValueSlot::Overlap_t 1875 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 1876 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 1877 return AggValueSlot::DoesNotOverlap; 1878 1879 // If the field lies entirely within the enclosing class's nvsize, its tail 1880 // padding cannot overlap any already-initialized object. (The only subobjects 1881 // with greater addresses that might already be initialized are vbases.) 1882 const RecordDecl *ClassRD = FD->getParent(); 1883 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 1884 if (Layout.getFieldOffset(FD->getFieldIndex()) + 1885 getContext().getTypeSize(FD->getType()) <= 1886 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 1887 return AggValueSlot::DoesNotOverlap; 1888 1889 // The tail padding may contain values we need to preserve. 1890 return AggValueSlot::MayOverlap; 1891 } 1892 1893 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 1894 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1895 // If the most-derived object is a field declared with [[no_unique_address]], 1896 // the tail padding of any virtual base could be reused for other subobjects 1897 // of that field's class. 1898 if (IsVirtual) 1899 return AggValueSlot::MayOverlap; 1900 1901 // If the base class is laid out entirely within the nvsize of the derived 1902 // class, its tail padding cannot yet be initialized, so we can issue 1903 // stores at the full width of the base class. 1904 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1905 if (Layout.getBaseClassOffset(BaseRD) + 1906 getContext().getASTRecordLayout(BaseRD).getSize() <= 1907 Layout.getNonVirtualSize()) 1908 return AggValueSlot::DoesNotOverlap; 1909 1910 // The tail padding may contain values we need to preserve. 1911 return AggValueSlot::MayOverlap; 1912 } 1913 1914 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1915 AggValueSlot::Overlap_t MayOverlap, 1916 bool isVolatile) { 1917 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1918 1919 Address DestPtr = Dest.getAddress(); 1920 Address SrcPtr = Src.getAddress(); 1921 1922 if (getLangOpts().CPlusPlus) { 1923 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1924 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1925 assert((Record->hasTrivialCopyConstructor() || 1926 Record->hasTrivialCopyAssignment() || 1927 Record->hasTrivialMoveConstructor() || 1928 Record->hasTrivialMoveAssignment() || 1929 Record->isUnion()) && 1930 "Trying to aggregate-copy a type without a trivial copy/move " 1931 "constructor or assignment operator"); 1932 // Ignore empty classes in C++. 1933 if (Record->isEmpty()) 1934 return; 1935 } 1936 } 1937 1938 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1939 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1940 // read from another object that overlaps in anyway the storage of the first 1941 // object, then the overlap shall be exact and the two objects shall have 1942 // qualified or unqualified versions of a compatible type." 1943 // 1944 // memcpy is not defined if the source and destination pointers are exactly 1945 // equal, but other compilers do this optimization, and almost every memcpy 1946 // implementation handles this case safely. If there is a libc that does not 1947 // safely handle this, we can add a target hook. 1948 1949 // Get data size info for this aggregate. Don't copy the tail padding if this 1950 // might be a potentially-overlapping subobject, since the tail padding might 1951 // be occupied by a different object. Otherwise, copying it is fine. 1952 std::pair<CharUnits, CharUnits> TypeInfo; 1953 if (MayOverlap) 1954 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1955 else 1956 TypeInfo = getContext().getTypeInfoInChars(Ty); 1957 1958 llvm::Value *SizeVal = nullptr; 1959 if (TypeInfo.first.isZero()) { 1960 // But note that getTypeInfo returns 0 for a VLA. 1961 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1962 getContext().getAsArrayType(Ty))) { 1963 QualType BaseEltTy; 1964 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1965 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1966 assert(!TypeInfo.first.isZero()); 1967 SizeVal = Builder.CreateNUWMul( 1968 SizeVal, 1969 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1970 } 1971 } 1972 if (!SizeVal) { 1973 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1974 } 1975 1976 // FIXME: If we have a volatile struct, the optimizer can remove what might 1977 // appear to be `extra' memory ops: 1978 // 1979 // volatile struct { int i; } a, b; 1980 // 1981 // int main() { 1982 // a = b; 1983 // a = b; 1984 // } 1985 // 1986 // we need to use a different call here. We use isVolatile to indicate when 1987 // either the source or the destination is volatile. 1988 1989 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1990 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1991 1992 // Don't do any of the memmove_collectable tests if GC isn't set. 1993 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1994 // fall through 1995 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1996 RecordDecl *Record = RecordTy->getDecl(); 1997 if (Record->hasObjectMember()) { 1998 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1999 SizeVal); 2000 return; 2001 } 2002 } else if (Ty->isArrayType()) { 2003 QualType BaseType = getContext().getBaseElementType(Ty); 2004 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2005 if (RecordTy->getDecl()->hasObjectMember()) { 2006 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2007 SizeVal); 2008 return; 2009 } 2010 } 2011 } 2012 2013 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2014 2015 // Determine the metadata to describe the position of any padding in this 2016 // memcpy, as well as the TBAA tags for the members of the struct, in case 2017 // the optimizer wishes to expand it in to scalar memory operations. 2018 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2019 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2020 2021 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2022 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2023 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2024 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2025 } 2026 } 2027