1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Aggregate Expression Emitter 32 //===----------------------------------------------------------------------===// 33 34 namespace { 35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 36 CodeGenFunction &CGF; 37 CGBuilderTy &Builder; 38 AggValueSlot Dest; 39 bool IsResultUnused; 40 41 AggValueSlot EnsureSlot(QualType T) { 42 if (!Dest.isIgnored()) return Dest; 43 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 44 } 45 void EnsureDest(QualType T) { 46 if (!Dest.isIgnored()) return; 47 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 48 } 49 50 // Calls `Fn` with a valid return value slot, potentially creating a temporary 51 // to do so. If a temporary is created, an appropriate copy into `Dest` will 52 // be emitted, as will lifetime markers. 53 // 54 // The given function should take a ReturnValueSlot, and return an RValue that 55 // points to said slot. 56 void withReturnValueSlot(const Expr *E, 57 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 61 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 62 IsResultUnused(IsResultUnused) { } 63 64 //===--------------------------------------------------------------------===// 65 // Utilities 66 //===--------------------------------------------------------------------===// 67 68 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 69 /// represents a value lvalue, this method emits the address of the lvalue, 70 /// then loads the result into DestPtr. 71 void EmitAggLoadOfLValue(const Expr *E); 72 73 enum ExprValueKind { 74 EVK_RValue, 75 EVK_NonRValue 76 }; 77 78 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 79 /// SrcIsRValue is true if source comes from an RValue. 80 void EmitFinalDestCopy(QualType type, const LValue &src, 81 ExprValueKind SrcValueKind = EVK_NonRValue); 82 void EmitFinalDestCopy(QualType type, RValue src); 83 void EmitCopy(QualType type, const AggValueSlot &dest, 84 const AggValueSlot &src); 85 86 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 89 QualType ArrayQTy, InitListExpr *E); 90 91 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 92 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 93 return AggValueSlot::NeedsGCBarriers; 94 return AggValueSlot::DoesNotNeedGCBarriers; 95 } 96 97 bool TypeRequiresGCollection(QualType T); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 void Visit(Expr *E) { 104 ApplyDebugLocation DL(CGF, E); 105 StmtVisitor<AggExprEmitter>::Visit(E); 106 } 107 108 void VisitStmt(Stmt *S) { 109 CGF.ErrorUnsupported(S, "aggregate expression"); 110 } 111 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 112 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 Visit(GE->getResultExpr()); 114 } 115 void VisitCoawaitExpr(CoawaitExpr *E) { 116 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 117 } 118 void VisitCoyieldExpr(CoyieldExpr *E) { 119 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 120 } 121 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 124 return Visit(E->getReplacement()); 125 } 126 127 void VisitConstantExpr(ConstantExpr *E) { 128 return Visit(E->getSubExpr()); 129 } 130 131 // l-values. 132 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 133 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 134 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 135 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 136 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 137 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 void VisitPredefinedExpr(const PredefinedExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 144 // Operators. 145 void VisitCastExpr(CastExpr *E); 146 void VisitCallExpr(const CallExpr *E); 147 void VisitStmtExpr(const StmtExpr *E); 148 void VisitBinaryOperator(const BinaryOperator *BO); 149 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 150 void VisitBinAssign(const BinaryOperator *E); 151 void VisitBinComma(const BinaryOperator *E); 152 void VisitBinCmp(const BinaryOperator *E); 153 154 void VisitObjCMessageExpr(ObjCMessageExpr *E); 155 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 156 EmitAggLoadOfLValue(E); 157 } 158 159 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 160 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 161 void VisitChooseExpr(const ChooseExpr *CE); 162 void VisitInitListExpr(InitListExpr *E); 163 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 164 llvm::Value *outerBegin = nullptr); 165 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 166 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 167 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 168 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 169 Visit(DAE->getExpr()); 170 } 171 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 172 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 173 Visit(DIE->getExpr()); 174 } 175 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 176 void VisitCXXConstructExpr(const CXXConstructExpr *E); 177 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 RValue Res = CGF.EmitAtomicExpr(E); 203 EmitFinalDestCopy(E->getType(), Res); 204 } 205 }; 206 } // end anonymous namespace. 207 208 //===----------------------------------------------------------------------===// 209 // Utilities 210 //===----------------------------------------------------------------------===// 211 212 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 213 /// represents a value lvalue, this method emits the address of the lvalue, 214 /// then loads the result into DestPtr. 215 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 216 LValue LV = CGF.EmitLValue(E); 217 218 // If the type of the l-value is atomic, then do an atomic load. 219 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 220 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 221 return; 222 } 223 224 EmitFinalDestCopy(E->getType(), LV); 225 } 226 227 /// True if the given aggregate type requires special GC API calls. 228 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 229 // Only record types have members that might require garbage collection. 230 const RecordType *RecordTy = T->getAs<RecordType>(); 231 if (!RecordTy) return false; 232 233 // Don't mess with non-trivial C++ types. 234 RecordDecl *Record = RecordTy->getDecl(); 235 if (isa<CXXRecordDecl>(Record) && 236 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 237 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 238 return false; 239 240 // Check whether the type has an object member. 241 return Record->hasObjectMember(); 242 } 243 244 void AggExprEmitter::withReturnValueSlot( 245 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 246 QualType RetTy = E->getType(); 247 bool RequiresDestruction = 248 Dest.isIgnored() && 249 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 250 251 // If it makes no observable difference, save a memcpy + temporary. 252 // 253 // We need to always provide our own temporary if destruction is required. 254 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 255 // its lifetime before we have the chance to emit a proper destructor call. 256 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 257 (RequiresDestruction && !Dest.getAddress().isValid()); 258 259 Address RetAddr = Address::invalid(); 260 Address RetAllocaAddr = Address::invalid(); 261 262 EHScopeStack::stable_iterator LifetimeEndBlock; 263 llvm::Value *LifetimeSizePtr = nullptr; 264 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 265 if (!UseTemp) { 266 RetAddr = Dest.getAddress(); 267 } else { 268 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 269 uint64_t Size = 270 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 271 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 272 if (LifetimeSizePtr) { 273 LifetimeStartInst = 274 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 275 assert(LifetimeStartInst->getIntrinsicID() == 276 llvm::Intrinsic::lifetime_start && 277 "Last insertion wasn't a lifetime.start?"); 278 279 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 280 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 281 LifetimeEndBlock = CGF.EHStack.stable_begin(); 282 } 283 } 284 285 RValue Src = 286 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 287 288 if (RequiresDestruction) 289 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 290 291 if (!UseTemp) 292 return; 293 294 assert(Dest.getPointer() != Src.getAggregatePointer()); 295 EmitFinalDestCopy(E->getType(), Src); 296 297 if (!RequiresDestruction && LifetimeStartInst) { 298 // If there's no dtor to run, the copy was the last use of our temporary. 299 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 300 // eagerly. 301 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 302 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 303 } 304 } 305 306 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 307 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 308 assert(src.isAggregate() && "value must be aggregate value!"); 309 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 310 EmitFinalDestCopy(type, srcLV, EVK_RValue); 311 } 312 313 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 314 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 315 ExprValueKind SrcValueKind) { 316 // If Dest is ignored, then we're evaluating an aggregate expression 317 // in a context that doesn't care about the result. Note that loads 318 // from volatile l-values force the existence of a non-ignored 319 // destination. 320 if (Dest.isIgnored()) 321 return; 322 323 // Copy non-trivial C structs here. 324 LValue DstLV = CGF.MakeAddrLValue( 325 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 326 327 if (SrcValueKind == EVK_RValue) { 328 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 329 if (Dest.isPotentiallyAliased()) 330 CGF.callCStructMoveAssignmentOperator(DstLV, src); 331 else 332 CGF.callCStructMoveConstructor(DstLV, src); 333 return; 334 } 335 } else { 336 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 337 if (Dest.isPotentiallyAliased()) 338 CGF.callCStructCopyAssignmentOperator(DstLV, src); 339 else 340 CGF.callCStructCopyConstructor(DstLV, src); 341 return; 342 } 343 } 344 345 AggValueSlot srcAgg = 346 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 347 needsGC(type), AggValueSlot::IsAliased, 348 AggValueSlot::MayOverlap); 349 EmitCopy(type, Dest, srcAgg); 350 } 351 352 /// Perform a copy from the source into the destination. 353 /// 354 /// \param type - the type of the aggregate being copied; qualifiers are 355 /// ignored 356 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 357 const AggValueSlot &src) { 358 if (dest.requiresGCollection()) { 359 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 360 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 361 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 362 dest.getAddress(), 363 src.getAddress(), 364 size); 365 return; 366 } 367 368 // If the result of the assignment is used, copy the LHS there also. 369 // It's volatile if either side is. Use the minimum alignment of 370 // the two sides. 371 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 372 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 373 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 374 dest.isVolatile() || src.isVolatile()); 375 } 376 377 /// Emit the initializer for a std::initializer_list initialized with a 378 /// real initializer list. 379 void 380 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 381 // Emit an array containing the elements. The array is externally destructed 382 // if the std::initializer_list object is. 383 ASTContext &Ctx = CGF.getContext(); 384 LValue Array = CGF.EmitLValue(E->getSubExpr()); 385 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 386 Address ArrayPtr = Array.getAddress(); 387 388 const ConstantArrayType *ArrayType = 389 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 390 assert(ArrayType && "std::initializer_list constructed from non-array"); 391 392 // FIXME: Perform the checks on the field types in SemaInit. 393 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 394 RecordDecl::field_iterator Field = Record->field_begin(); 395 if (Field == Record->field_end()) { 396 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 397 return; 398 } 399 400 // Start pointer. 401 if (!Field->getType()->isPointerType() || 402 !Ctx.hasSameType(Field->getType()->getPointeeType(), 403 ArrayType->getElementType())) { 404 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 405 return; 406 } 407 408 AggValueSlot Dest = EnsureSlot(E->getType()); 409 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 410 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 411 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 412 llvm::Value *IdxStart[] = { Zero, Zero }; 413 llvm::Value *ArrayStart = 414 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 415 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 416 ++Field; 417 418 if (Field == Record->field_end()) { 419 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 420 return; 421 } 422 423 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 424 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 425 if (Field->getType()->isPointerType() && 426 Ctx.hasSameType(Field->getType()->getPointeeType(), 427 ArrayType->getElementType())) { 428 // End pointer. 429 llvm::Value *IdxEnd[] = { Zero, Size }; 430 llvm::Value *ArrayEnd = 431 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 432 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 433 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 434 // Length. 435 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 436 } else { 437 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 438 return; 439 } 440 } 441 442 /// Determine if E is a trivial array filler, that is, one that is 443 /// equivalent to zero-initialization. 444 static bool isTrivialFiller(Expr *E) { 445 if (!E) 446 return true; 447 448 if (isa<ImplicitValueInitExpr>(E)) 449 return true; 450 451 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 452 if (ILE->getNumInits()) 453 return false; 454 return isTrivialFiller(ILE->getArrayFiller()); 455 } 456 457 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 458 return Cons->getConstructor()->isDefaultConstructor() && 459 Cons->getConstructor()->isTrivial(); 460 461 // FIXME: Are there other cases where we can avoid emitting an initializer? 462 return false; 463 } 464 465 /// Emit initialization of an array from an initializer list. 466 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 467 QualType ArrayQTy, InitListExpr *E) { 468 uint64_t NumInitElements = E->getNumInits(); 469 470 uint64_t NumArrayElements = AType->getNumElements(); 471 assert(NumInitElements <= NumArrayElements); 472 473 QualType elementType = 474 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 475 476 // DestPtr is an array*. Construct an elementType* by drilling 477 // down a level. 478 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 479 llvm::Value *indices[] = { zero, zero }; 480 llvm::Value *begin = 481 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 482 483 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 484 CharUnits elementAlign = 485 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 486 487 // Consider initializing the array by copying from a global. For this to be 488 // more efficient than per-element initialization, the size of the elements 489 // with explicit initializers should be large enough. 490 if (NumInitElements * elementSize.getQuantity() > 16 && 491 elementType.isTriviallyCopyableType(CGF.getContext())) { 492 CodeGen::CodeGenModule &CGM = CGF.CGM; 493 ConstantEmitter Emitter(CGM); 494 LangAS AS = ArrayQTy.getAddressSpace(); 495 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 496 auto GV = new llvm::GlobalVariable( 497 CGM.getModule(), C->getType(), 498 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 499 llvm::GlobalValue::PrivateLinkage, C, "constinit", 500 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 501 CGM.getContext().getTargetAddressSpace(AS)); 502 Emitter.finalize(GV); 503 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 504 GV->setAlignment(Align.getQuantity()); 505 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 506 return; 507 } 508 } 509 510 // Exception safety requires us to destroy all the 511 // already-constructed members if an initializer throws. 512 // For that, we'll need an EH cleanup. 513 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 514 Address endOfInit = Address::invalid(); 515 EHScopeStack::stable_iterator cleanup; 516 llvm::Instruction *cleanupDominator = nullptr; 517 if (CGF.needsEHCleanup(dtorKind)) { 518 // In principle we could tell the cleanup where we are more 519 // directly, but the control flow can get so varied here that it 520 // would actually be quite complex. Therefore we go through an 521 // alloca. 522 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 523 "arrayinit.endOfInit"); 524 cleanupDominator = Builder.CreateStore(begin, endOfInit); 525 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 526 elementAlign, 527 CGF.getDestroyer(dtorKind)); 528 cleanup = CGF.EHStack.stable_begin(); 529 530 // Otherwise, remember that we didn't need a cleanup. 531 } else { 532 dtorKind = QualType::DK_none; 533 } 534 535 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 536 537 // The 'current element to initialize'. The invariants on this 538 // variable are complicated. Essentially, after each iteration of 539 // the loop, it points to the last initialized element, except 540 // that it points to the beginning of the array before any 541 // elements have been initialized. 542 llvm::Value *element = begin; 543 544 // Emit the explicit initializers. 545 for (uint64_t i = 0; i != NumInitElements; ++i) { 546 // Advance to the next element. 547 if (i > 0) { 548 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 549 550 // Tell the cleanup that it needs to destroy up to this 551 // element. TODO: some of these stores can be trivially 552 // observed to be unnecessary. 553 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 554 } 555 556 LValue elementLV = 557 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 558 EmitInitializationToLValue(E->getInit(i), elementLV); 559 } 560 561 // Check whether there's a non-trivial array-fill expression. 562 Expr *filler = E->getArrayFiller(); 563 bool hasTrivialFiller = isTrivialFiller(filler); 564 565 // Any remaining elements need to be zero-initialized, possibly 566 // using the filler expression. We can skip this if the we're 567 // emitting to zeroed memory. 568 if (NumInitElements != NumArrayElements && 569 !(Dest.isZeroed() && hasTrivialFiller && 570 CGF.getTypes().isZeroInitializable(elementType))) { 571 572 // Use an actual loop. This is basically 573 // do { *array++ = filler; } while (array != end); 574 575 // Advance to the start of the rest of the array. 576 if (NumInitElements) { 577 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 578 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 579 } 580 581 // Compute the end of the array. 582 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 583 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 584 "arrayinit.end"); 585 586 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 587 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 588 589 // Jump into the body. 590 CGF.EmitBlock(bodyBB); 591 llvm::PHINode *currentElement = 592 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 593 currentElement->addIncoming(element, entryBB); 594 595 // Emit the actual filler expression. 596 { 597 // C++1z [class.temporary]p5: 598 // when a default constructor is called to initialize an element of 599 // an array with no corresponding initializer [...] the destruction of 600 // every temporary created in a default argument is sequenced before 601 // the construction of the next array element, if any 602 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 603 LValue elementLV = 604 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 605 if (filler) 606 EmitInitializationToLValue(filler, elementLV); 607 else 608 EmitNullInitializationToLValue(elementLV); 609 } 610 611 // Move on to the next element. 612 llvm::Value *nextElement = 613 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 614 615 // Tell the EH cleanup that we finished with the last element. 616 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 617 618 // Leave the loop if we're done. 619 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 620 "arrayinit.done"); 621 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 622 Builder.CreateCondBr(done, endBB, bodyBB); 623 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 624 625 CGF.EmitBlock(endBB); 626 } 627 628 // Leave the partial-array cleanup if we entered one. 629 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // Visitor Methods 634 //===----------------------------------------------------------------------===// 635 636 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 637 Visit(E->GetTemporaryExpr()); 638 } 639 640 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 641 // If this is a unique OVE, just visit its source expression. 642 if (e->isUnique()) 643 Visit(e->getSourceExpr()); 644 else 645 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 646 } 647 648 void 649 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 650 if (Dest.isPotentiallyAliased() && 651 E->getType().isPODType(CGF.getContext())) { 652 // For a POD type, just emit a load of the lvalue + a copy, because our 653 // compound literal might alias the destination. 654 EmitAggLoadOfLValue(E); 655 return; 656 } 657 658 AggValueSlot Slot = EnsureSlot(E->getType()); 659 CGF.EmitAggExpr(E->getInitializer(), Slot); 660 } 661 662 /// Attempt to look through various unimportant expressions to find a 663 /// cast of the given kind. 664 static Expr *findPeephole(Expr *op, CastKind kind) { 665 while (true) { 666 op = op->IgnoreParens(); 667 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 668 if (castE->getCastKind() == kind) 669 return castE->getSubExpr(); 670 if (castE->getCastKind() == CK_NoOp) 671 continue; 672 } 673 return nullptr; 674 } 675 } 676 677 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 678 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 679 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 680 switch (E->getCastKind()) { 681 case CK_Dynamic: { 682 // FIXME: Can this actually happen? We have no test coverage for it. 683 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 684 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 685 CodeGenFunction::TCK_Load); 686 // FIXME: Do we also need to handle property references here? 687 if (LV.isSimple()) 688 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 689 else 690 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 691 692 if (!Dest.isIgnored()) 693 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 694 break; 695 } 696 697 case CK_ToUnion: { 698 // Evaluate even if the destination is ignored. 699 if (Dest.isIgnored()) { 700 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 701 /*ignoreResult=*/true); 702 break; 703 } 704 705 // GCC union extension 706 QualType Ty = E->getSubExpr()->getType(); 707 Address CastPtr = 708 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 709 EmitInitializationToLValue(E->getSubExpr(), 710 CGF.MakeAddrLValue(CastPtr, Ty)); 711 break; 712 } 713 714 case CK_LValueToRValueBitCast: { 715 if (Dest.isIgnored()) { 716 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 717 /*ignoreResult=*/true); 718 break; 719 } 720 721 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 722 Address SourceAddress = 723 Builder.CreateElementBitCast(SourceLV.getAddress(), CGF.Int8Ty); 724 Address DestAddress = 725 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 726 llvm::Value *SizeVal = llvm::ConstantInt::get( 727 CGF.SizeTy, 728 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 729 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 730 break; 731 } 732 733 case CK_DerivedToBase: 734 case CK_BaseToDerived: 735 case CK_UncheckedDerivedToBase: { 736 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 737 "should have been unpacked before we got here"); 738 } 739 740 case CK_NonAtomicToAtomic: 741 case CK_AtomicToNonAtomic: { 742 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 743 744 // Determine the atomic and value types. 745 QualType atomicType = E->getSubExpr()->getType(); 746 QualType valueType = E->getType(); 747 if (isToAtomic) std::swap(atomicType, valueType); 748 749 assert(atomicType->isAtomicType()); 750 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 751 atomicType->castAs<AtomicType>()->getValueType())); 752 753 // Just recurse normally if we're ignoring the result or the 754 // atomic type doesn't change representation. 755 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 756 return Visit(E->getSubExpr()); 757 } 758 759 CastKind peepholeTarget = 760 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 761 762 // These two cases are reverses of each other; try to peephole them. 763 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 764 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 765 E->getType()) && 766 "peephole significantly changed types?"); 767 return Visit(op); 768 } 769 770 // If we're converting an r-value of non-atomic type to an r-value 771 // of atomic type, just emit directly into the relevant sub-object. 772 if (isToAtomic) { 773 AggValueSlot valueDest = Dest; 774 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 775 // Zero-initialize. (Strictly speaking, we only need to initialize 776 // the padding at the end, but this is simpler.) 777 if (!Dest.isZeroed()) 778 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 779 780 // Build a GEP to refer to the subobject. 781 Address valueAddr = 782 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 783 valueDest = AggValueSlot::forAddr(valueAddr, 784 valueDest.getQualifiers(), 785 valueDest.isExternallyDestructed(), 786 valueDest.requiresGCollection(), 787 valueDest.isPotentiallyAliased(), 788 AggValueSlot::DoesNotOverlap, 789 AggValueSlot::IsZeroed); 790 } 791 792 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 793 return; 794 } 795 796 // Otherwise, we're converting an atomic type to a non-atomic type. 797 // Make an atomic temporary, emit into that, and then copy the value out. 798 AggValueSlot atomicSlot = 799 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 800 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 801 802 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 803 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 804 return EmitFinalDestCopy(valueType, rvalue); 805 } 806 case CK_AddressSpaceConversion: 807 return Visit(E->getSubExpr()); 808 809 case CK_LValueToRValue: 810 // If we're loading from a volatile type, force the destination 811 // into existence. 812 if (E->getSubExpr()->getType().isVolatileQualified()) { 813 EnsureDest(E->getType()); 814 return Visit(E->getSubExpr()); 815 } 816 817 LLVM_FALLTHROUGH; 818 819 820 case CK_NoOp: 821 case CK_UserDefinedConversion: 822 case CK_ConstructorConversion: 823 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 824 E->getType()) && 825 "Implicit cast types must be compatible"); 826 Visit(E->getSubExpr()); 827 break; 828 829 case CK_LValueBitCast: 830 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 831 832 case CK_Dependent: 833 case CK_BitCast: 834 case CK_ArrayToPointerDecay: 835 case CK_FunctionToPointerDecay: 836 case CK_NullToPointer: 837 case CK_NullToMemberPointer: 838 case CK_BaseToDerivedMemberPointer: 839 case CK_DerivedToBaseMemberPointer: 840 case CK_MemberPointerToBoolean: 841 case CK_ReinterpretMemberPointer: 842 case CK_IntegralToPointer: 843 case CK_PointerToIntegral: 844 case CK_PointerToBoolean: 845 case CK_ToVoid: 846 case CK_VectorSplat: 847 case CK_IntegralCast: 848 case CK_BooleanToSignedIntegral: 849 case CK_IntegralToBoolean: 850 case CK_IntegralToFloating: 851 case CK_FloatingToIntegral: 852 case CK_FloatingToBoolean: 853 case CK_FloatingCast: 854 case CK_CPointerToObjCPointerCast: 855 case CK_BlockPointerToObjCPointerCast: 856 case CK_AnyPointerToBlockPointerCast: 857 case CK_ObjCObjectLValueCast: 858 case CK_FloatingRealToComplex: 859 case CK_FloatingComplexToReal: 860 case CK_FloatingComplexToBoolean: 861 case CK_FloatingComplexCast: 862 case CK_FloatingComplexToIntegralComplex: 863 case CK_IntegralRealToComplex: 864 case CK_IntegralComplexToReal: 865 case CK_IntegralComplexToBoolean: 866 case CK_IntegralComplexCast: 867 case CK_IntegralComplexToFloatingComplex: 868 case CK_ARCProduceObject: 869 case CK_ARCConsumeObject: 870 case CK_ARCReclaimReturnedObject: 871 case CK_ARCExtendBlockObject: 872 case CK_CopyAndAutoreleaseBlockObject: 873 case CK_BuiltinFnToFnPtr: 874 case CK_ZeroToOCLOpaqueType: 875 876 case CK_IntToOCLSampler: 877 case CK_FixedPointCast: 878 case CK_FixedPointToBoolean: 879 case CK_FixedPointToIntegral: 880 case CK_IntegralToFixedPoint: 881 llvm_unreachable("cast kind invalid for aggregate types"); 882 } 883 } 884 885 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 886 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 887 EmitAggLoadOfLValue(E); 888 return; 889 } 890 891 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 892 return CGF.EmitCallExpr(E, Slot); 893 }); 894 } 895 896 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 897 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 898 return CGF.EmitObjCMessageExpr(E, Slot); 899 }); 900 } 901 902 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 903 CGF.EmitIgnoredExpr(E->getLHS()); 904 Visit(E->getRHS()); 905 } 906 907 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 908 CodeGenFunction::StmtExprEvaluation eval(CGF); 909 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 910 } 911 912 enum CompareKind { 913 CK_Less, 914 CK_Greater, 915 CK_Equal, 916 }; 917 918 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 919 const BinaryOperator *E, llvm::Value *LHS, 920 llvm::Value *RHS, CompareKind Kind, 921 const char *NameSuffix = "") { 922 QualType ArgTy = E->getLHS()->getType(); 923 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 924 ArgTy = CT->getElementType(); 925 926 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 927 assert(Kind == CK_Equal && 928 "member pointers may only be compared for equality"); 929 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 930 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 931 } 932 933 // Compute the comparison instructions for the specified comparison kind. 934 struct CmpInstInfo { 935 const char *Name; 936 llvm::CmpInst::Predicate FCmp; 937 llvm::CmpInst::Predicate SCmp; 938 llvm::CmpInst::Predicate UCmp; 939 }; 940 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 941 using FI = llvm::FCmpInst; 942 using II = llvm::ICmpInst; 943 switch (Kind) { 944 case CK_Less: 945 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 946 case CK_Greater: 947 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 948 case CK_Equal: 949 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 950 } 951 llvm_unreachable("Unrecognised CompareKind enum"); 952 }(); 953 954 if (ArgTy->hasFloatingRepresentation()) 955 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 956 llvm::Twine(InstInfo.Name) + NameSuffix); 957 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 958 auto Inst = 959 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 960 return Builder.CreateICmp(Inst, LHS, RHS, 961 llvm::Twine(InstInfo.Name) + NameSuffix); 962 } 963 964 llvm_unreachable("unsupported aggregate binary expression should have " 965 "already been handled"); 966 } 967 968 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 969 using llvm::BasicBlock; 970 using llvm::PHINode; 971 using llvm::Value; 972 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 973 E->getRHS()->getType())); 974 const ComparisonCategoryInfo &CmpInfo = 975 CGF.getContext().CompCategories.getInfoForType(E->getType()); 976 assert(CmpInfo.Record->isTriviallyCopyable() && 977 "cannot copy non-trivially copyable aggregate"); 978 979 QualType ArgTy = E->getLHS()->getType(); 980 981 // TODO: Handle comparing these types. 982 if (ArgTy->isVectorType()) 983 return CGF.ErrorUnsupported( 984 E, "aggregate three-way comparison with vector arguments"); 985 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 986 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 987 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 988 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 989 } 990 bool IsComplex = ArgTy->isAnyComplexType(); 991 992 // Evaluate the operands to the expression and extract their values. 993 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 994 RValue RV = CGF.EmitAnyExpr(E); 995 if (RV.isScalar()) 996 return {RV.getScalarVal(), nullptr}; 997 if (RV.isAggregate()) 998 return {RV.getAggregatePointer(), nullptr}; 999 assert(RV.isComplex()); 1000 return RV.getComplexVal(); 1001 }; 1002 auto LHSValues = EmitOperand(E->getLHS()), 1003 RHSValues = EmitOperand(E->getRHS()); 1004 1005 auto EmitCmp = [&](CompareKind K) { 1006 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1007 K, IsComplex ? ".r" : ""); 1008 if (!IsComplex) 1009 return Cmp; 1010 assert(K == CompareKind::CK_Equal); 1011 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1012 RHSValues.second, K, ".i"); 1013 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1014 }; 1015 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1016 return Builder.getInt(VInfo->getIntValue()); 1017 }; 1018 1019 Value *Select; 1020 if (ArgTy->isNullPtrType()) { 1021 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1022 } else if (CmpInfo.isEquality()) { 1023 Select = Builder.CreateSelect( 1024 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1025 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 1026 } else if (!CmpInfo.isPartial()) { 1027 Value *SelectOne = 1028 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1029 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1030 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1031 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1032 SelectOne, "sel.eq"); 1033 } else { 1034 Value *SelectEq = Builder.CreateSelect( 1035 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1036 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1037 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1038 EmitCmpRes(CmpInfo.getGreater()), 1039 SelectEq, "sel.gt"); 1040 Select = Builder.CreateSelect( 1041 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1042 } 1043 // Create the return value in the destination slot. 1044 EnsureDest(E->getType()); 1045 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1046 1047 // Emit the address of the first (and only) field in the comparison category 1048 // type, and initialize it from the constant integer value selected above. 1049 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1050 DestLV, *CmpInfo.Record->field_begin()); 1051 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1052 1053 // All done! The result is in the Dest slot. 1054 } 1055 1056 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1057 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1058 VisitPointerToDataMemberBinaryOperator(E); 1059 else 1060 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1061 } 1062 1063 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1064 const BinaryOperator *E) { 1065 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1066 EmitFinalDestCopy(E->getType(), LV); 1067 } 1068 1069 /// Is the value of the given expression possibly a reference to or 1070 /// into a __block variable? 1071 static bool isBlockVarRef(const Expr *E) { 1072 // Make sure we look through parens. 1073 E = E->IgnoreParens(); 1074 1075 // Check for a direct reference to a __block variable. 1076 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1077 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1078 return (var && var->hasAttr<BlocksAttr>()); 1079 } 1080 1081 // More complicated stuff. 1082 1083 // Binary operators. 1084 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1085 // For an assignment or pointer-to-member operation, just care 1086 // about the LHS. 1087 if (op->isAssignmentOp() || op->isPtrMemOp()) 1088 return isBlockVarRef(op->getLHS()); 1089 1090 // For a comma, just care about the RHS. 1091 if (op->getOpcode() == BO_Comma) 1092 return isBlockVarRef(op->getRHS()); 1093 1094 // FIXME: pointer arithmetic? 1095 return false; 1096 1097 // Check both sides of a conditional operator. 1098 } else if (const AbstractConditionalOperator *op 1099 = dyn_cast<AbstractConditionalOperator>(E)) { 1100 return isBlockVarRef(op->getTrueExpr()) 1101 || isBlockVarRef(op->getFalseExpr()); 1102 1103 // OVEs are required to support BinaryConditionalOperators. 1104 } else if (const OpaqueValueExpr *op 1105 = dyn_cast<OpaqueValueExpr>(E)) { 1106 if (const Expr *src = op->getSourceExpr()) 1107 return isBlockVarRef(src); 1108 1109 // Casts are necessary to get things like (*(int*)&var) = foo(). 1110 // We don't really care about the kind of cast here, except 1111 // we don't want to look through l2r casts, because it's okay 1112 // to get the *value* in a __block variable. 1113 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1114 if (cast->getCastKind() == CK_LValueToRValue) 1115 return false; 1116 return isBlockVarRef(cast->getSubExpr()); 1117 1118 // Handle unary operators. Again, just aggressively look through 1119 // it, ignoring the operation. 1120 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1121 return isBlockVarRef(uop->getSubExpr()); 1122 1123 // Look into the base of a field access. 1124 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1125 return isBlockVarRef(mem->getBase()); 1126 1127 // Look into the base of a subscript. 1128 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1129 return isBlockVarRef(sub->getBase()); 1130 } 1131 1132 return false; 1133 } 1134 1135 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1136 // For an assignment to work, the value on the right has 1137 // to be compatible with the value on the left. 1138 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1139 E->getRHS()->getType()) 1140 && "Invalid assignment"); 1141 1142 // If the LHS might be a __block variable, and the RHS can 1143 // potentially cause a block copy, we need to evaluate the RHS first 1144 // so that the assignment goes the right place. 1145 // This is pretty semantically fragile. 1146 if (isBlockVarRef(E->getLHS()) && 1147 E->getRHS()->HasSideEffects(CGF.getContext())) { 1148 // Ensure that we have a destination, and evaluate the RHS into that. 1149 EnsureDest(E->getRHS()->getType()); 1150 Visit(E->getRHS()); 1151 1152 // Now emit the LHS and copy into it. 1153 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1154 1155 // That copy is an atomic copy if the LHS is atomic. 1156 if (LHS.getType()->isAtomicType() || 1157 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1158 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1159 return; 1160 } 1161 1162 EmitCopy(E->getLHS()->getType(), 1163 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1164 needsGC(E->getLHS()->getType()), 1165 AggValueSlot::IsAliased, 1166 AggValueSlot::MayOverlap), 1167 Dest); 1168 return; 1169 } 1170 1171 LValue LHS = CGF.EmitLValue(E->getLHS()); 1172 1173 // If we have an atomic type, evaluate into the destination and then 1174 // do an atomic copy. 1175 if (LHS.getType()->isAtomicType() || 1176 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1177 EnsureDest(E->getRHS()->getType()); 1178 Visit(E->getRHS()); 1179 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1180 return; 1181 } 1182 1183 // Codegen the RHS so that it stores directly into the LHS. 1184 AggValueSlot LHSSlot = 1185 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1186 needsGC(E->getLHS()->getType()), 1187 AggValueSlot::IsAliased, 1188 AggValueSlot::MayOverlap); 1189 // A non-volatile aggregate destination might have volatile member. 1190 if (!LHSSlot.isVolatile() && 1191 CGF.hasVolatileMember(E->getLHS()->getType())) 1192 LHSSlot.setVolatile(true); 1193 1194 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1195 1196 // Copy into the destination if the assignment isn't ignored. 1197 EmitFinalDestCopy(E->getType(), LHS); 1198 } 1199 1200 void AggExprEmitter:: 1201 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1202 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1203 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1204 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1205 1206 // Bind the common expression if necessary. 1207 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1208 1209 CodeGenFunction::ConditionalEvaluation eval(CGF); 1210 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1211 CGF.getProfileCount(E)); 1212 1213 // Save whether the destination's lifetime is externally managed. 1214 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1215 1216 eval.begin(CGF); 1217 CGF.EmitBlock(LHSBlock); 1218 CGF.incrementProfileCounter(E); 1219 Visit(E->getTrueExpr()); 1220 eval.end(CGF); 1221 1222 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1223 CGF.Builder.CreateBr(ContBlock); 1224 1225 // If the result of an agg expression is unused, then the emission 1226 // of the LHS might need to create a destination slot. That's fine 1227 // with us, and we can safely emit the RHS into the same slot, but 1228 // we shouldn't claim that it's already being destructed. 1229 Dest.setExternallyDestructed(isExternallyDestructed); 1230 1231 eval.begin(CGF); 1232 CGF.EmitBlock(RHSBlock); 1233 Visit(E->getFalseExpr()); 1234 eval.end(CGF); 1235 1236 CGF.EmitBlock(ContBlock); 1237 } 1238 1239 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1240 Visit(CE->getChosenSubExpr()); 1241 } 1242 1243 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1244 Address ArgValue = Address::invalid(); 1245 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1246 1247 // If EmitVAArg fails, emit an error. 1248 if (!ArgPtr.isValid()) { 1249 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1250 return; 1251 } 1252 1253 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1254 } 1255 1256 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1257 // Ensure that we have a slot, but if we already do, remember 1258 // whether it was externally destructed. 1259 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1260 EnsureDest(E->getType()); 1261 1262 // We're going to push a destructor if there isn't already one. 1263 Dest.setExternallyDestructed(); 1264 1265 Visit(E->getSubExpr()); 1266 1267 // Push that destructor we promised. 1268 if (!wasExternallyDestructed) 1269 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1270 } 1271 1272 void 1273 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1274 AggValueSlot Slot = EnsureSlot(E->getType()); 1275 CGF.EmitCXXConstructExpr(E, Slot); 1276 } 1277 1278 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1279 const CXXInheritedCtorInitExpr *E) { 1280 AggValueSlot Slot = EnsureSlot(E->getType()); 1281 CGF.EmitInheritedCXXConstructorCall( 1282 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1283 E->inheritedFromVBase(), E); 1284 } 1285 1286 void 1287 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1288 AggValueSlot Slot = EnsureSlot(E->getType()); 1289 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1290 1291 // We'll need to enter cleanup scopes in case any of the element 1292 // initializers throws an exception. 1293 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1294 llvm::Instruction *CleanupDominator = nullptr; 1295 1296 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1297 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1298 e = E->capture_init_end(); 1299 i != e; ++i, ++CurField) { 1300 // Emit initialization 1301 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1302 if (CurField->hasCapturedVLAType()) { 1303 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1304 continue; 1305 } 1306 1307 EmitInitializationToLValue(*i, LV); 1308 1309 // Push a destructor if necessary. 1310 if (QualType::DestructionKind DtorKind = 1311 CurField->getType().isDestructedType()) { 1312 assert(LV.isSimple()); 1313 if (CGF.needsEHCleanup(DtorKind)) { 1314 if (!CleanupDominator) 1315 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1316 CGF.Int8Ty, 1317 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1318 CharUnits::One()); // placeholder 1319 1320 CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(), 1321 CGF.getDestroyer(DtorKind), false); 1322 Cleanups.push_back(CGF.EHStack.stable_begin()); 1323 } 1324 } 1325 } 1326 1327 // Deactivate all the partial cleanups in reverse order, which 1328 // generally means popping them. 1329 for (unsigned i = Cleanups.size(); i != 0; --i) 1330 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1331 1332 // Destroy the placeholder if we made one. 1333 if (CleanupDominator) 1334 CleanupDominator->eraseFromParent(); 1335 } 1336 1337 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1338 CGF.enterFullExpression(E); 1339 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1340 Visit(E->getSubExpr()); 1341 } 1342 1343 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1344 QualType T = E->getType(); 1345 AggValueSlot Slot = EnsureSlot(T); 1346 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1347 } 1348 1349 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1350 QualType T = E->getType(); 1351 AggValueSlot Slot = EnsureSlot(T); 1352 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1353 } 1354 1355 /// isSimpleZero - If emitting this value will obviously just cause a store of 1356 /// zero to memory, return true. This can return false if uncertain, so it just 1357 /// handles simple cases. 1358 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1359 E = E->IgnoreParens(); 1360 1361 // 0 1362 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1363 return IL->getValue() == 0; 1364 // +0.0 1365 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1366 return FL->getValue().isPosZero(); 1367 // int() 1368 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1369 CGF.getTypes().isZeroInitializable(E->getType())) 1370 return true; 1371 // (int*)0 - Null pointer expressions. 1372 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1373 return ICE->getCastKind() == CK_NullToPointer && 1374 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1375 !E->HasSideEffects(CGF.getContext()); 1376 // '\0' 1377 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1378 return CL->getValue() == 0; 1379 1380 // Otherwise, hard case: conservatively return false. 1381 return false; 1382 } 1383 1384 1385 void 1386 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1387 QualType type = LV.getType(); 1388 // FIXME: Ignore result? 1389 // FIXME: Are initializers affected by volatile? 1390 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1391 // Storing "i32 0" to a zero'd memory location is a noop. 1392 return; 1393 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1394 return EmitNullInitializationToLValue(LV); 1395 } else if (isa<NoInitExpr>(E)) { 1396 // Do nothing. 1397 return; 1398 } else if (type->isReferenceType()) { 1399 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1400 return CGF.EmitStoreThroughLValue(RV, LV); 1401 } 1402 1403 switch (CGF.getEvaluationKind(type)) { 1404 case TEK_Complex: 1405 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1406 return; 1407 case TEK_Aggregate: 1408 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1409 AggValueSlot::IsDestructed, 1410 AggValueSlot::DoesNotNeedGCBarriers, 1411 AggValueSlot::IsNotAliased, 1412 AggValueSlot::MayOverlap, 1413 Dest.isZeroed())); 1414 return; 1415 case TEK_Scalar: 1416 if (LV.isSimple()) { 1417 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1418 } else { 1419 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1420 } 1421 return; 1422 } 1423 llvm_unreachable("bad evaluation kind"); 1424 } 1425 1426 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1427 QualType type = lv.getType(); 1428 1429 // If the destination slot is already zeroed out before the aggregate is 1430 // copied into it, we don't have to emit any zeros here. 1431 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1432 return; 1433 1434 if (CGF.hasScalarEvaluationKind(type)) { 1435 // For non-aggregates, we can store the appropriate null constant. 1436 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1437 // Note that the following is not equivalent to 1438 // EmitStoreThroughBitfieldLValue for ARC types. 1439 if (lv.isBitField()) { 1440 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1441 } else { 1442 assert(lv.isSimple()); 1443 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1444 } 1445 } else { 1446 // There's a potential optimization opportunity in combining 1447 // memsets; that would be easy for arrays, but relatively 1448 // difficult for structures with the current code. 1449 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1450 } 1451 } 1452 1453 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1454 #if 0 1455 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1456 // (Length of globals? Chunks of zeroed-out space?). 1457 // 1458 // If we can, prefer a copy from a global; this is a lot less code for long 1459 // globals, and it's easier for the current optimizers to analyze. 1460 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1461 llvm::GlobalVariable* GV = 1462 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1463 llvm::GlobalValue::InternalLinkage, C, ""); 1464 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1465 return; 1466 } 1467 #endif 1468 if (E->hadArrayRangeDesignator()) 1469 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1470 1471 if (E->isTransparent()) 1472 return Visit(E->getInit(0)); 1473 1474 AggValueSlot Dest = EnsureSlot(E->getType()); 1475 1476 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1477 1478 // Handle initialization of an array. 1479 if (E->getType()->isArrayType()) { 1480 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1481 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1482 return; 1483 } 1484 1485 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1486 1487 // Do struct initialization; this code just sets each individual member 1488 // to the approprate value. This makes bitfield support automatic; 1489 // the disadvantage is that the generated code is more difficult for 1490 // the optimizer, especially with bitfields. 1491 unsigned NumInitElements = E->getNumInits(); 1492 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1493 1494 // We'll need to enter cleanup scopes in case any of the element 1495 // initializers throws an exception. 1496 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1497 llvm::Instruction *cleanupDominator = nullptr; 1498 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1499 cleanups.push_back(cleanup); 1500 if (!cleanupDominator) // create placeholder once needed 1501 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1502 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1503 CharUnits::One()); 1504 }; 1505 1506 unsigned curInitIndex = 0; 1507 1508 // Emit initialization of base classes. 1509 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1510 assert(E->getNumInits() >= CXXRD->getNumBases() && 1511 "missing initializer for base class"); 1512 for (auto &Base : CXXRD->bases()) { 1513 assert(!Base.isVirtual() && "should not see vbases here"); 1514 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1515 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1516 Dest.getAddress(), CXXRD, BaseRD, 1517 /*isBaseVirtual*/ false); 1518 AggValueSlot AggSlot = AggValueSlot::forAddr( 1519 V, Qualifiers(), 1520 AggValueSlot::IsDestructed, 1521 AggValueSlot::DoesNotNeedGCBarriers, 1522 AggValueSlot::IsNotAliased, 1523 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1524 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1525 1526 if (QualType::DestructionKind dtorKind = 1527 Base.getType().isDestructedType()) { 1528 CGF.pushDestroy(dtorKind, V, Base.getType()); 1529 addCleanup(CGF.EHStack.stable_begin()); 1530 } 1531 } 1532 } 1533 1534 // Prepare a 'this' for CXXDefaultInitExprs. 1535 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1536 1537 if (record->isUnion()) { 1538 // Only initialize one field of a union. The field itself is 1539 // specified by the initializer list. 1540 if (!E->getInitializedFieldInUnion()) { 1541 // Empty union; we have nothing to do. 1542 1543 #ifndef NDEBUG 1544 // Make sure that it's really an empty and not a failure of 1545 // semantic analysis. 1546 for (const auto *Field : record->fields()) 1547 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1548 #endif 1549 return; 1550 } 1551 1552 // FIXME: volatility 1553 FieldDecl *Field = E->getInitializedFieldInUnion(); 1554 1555 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1556 if (NumInitElements) { 1557 // Store the initializer into the field 1558 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1559 } else { 1560 // Default-initialize to null. 1561 EmitNullInitializationToLValue(FieldLoc); 1562 } 1563 1564 return; 1565 } 1566 1567 // Here we iterate over the fields; this makes it simpler to both 1568 // default-initialize fields and skip over unnamed fields. 1569 for (const auto *field : record->fields()) { 1570 // We're done once we hit the flexible array member. 1571 if (field->getType()->isIncompleteArrayType()) 1572 break; 1573 1574 // Always skip anonymous bitfields. 1575 if (field->isUnnamedBitfield()) 1576 continue; 1577 1578 // We're done if we reach the end of the explicit initializers, we 1579 // have a zeroed object, and the rest of the fields are 1580 // zero-initializable. 1581 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1582 CGF.getTypes().isZeroInitializable(E->getType())) 1583 break; 1584 1585 1586 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1587 // We never generate write-barries for initialized fields. 1588 LV.setNonGC(true); 1589 1590 if (curInitIndex < NumInitElements) { 1591 // Store the initializer into the field. 1592 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1593 } else { 1594 // We're out of initializers; default-initialize to null 1595 EmitNullInitializationToLValue(LV); 1596 } 1597 1598 // Push a destructor if necessary. 1599 // FIXME: if we have an array of structures, all explicitly 1600 // initialized, we can end up pushing a linear number of cleanups. 1601 bool pushedCleanup = false; 1602 if (QualType::DestructionKind dtorKind 1603 = field->getType().isDestructedType()) { 1604 assert(LV.isSimple()); 1605 if (CGF.needsEHCleanup(dtorKind)) { 1606 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1607 CGF.getDestroyer(dtorKind), false); 1608 addCleanup(CGF.EHStack.stable_begin()); 1609 pushedCleanup = true; 1610 } 1611 } 1612 1613 // If the GEP didn't get used because of a dead zero init or something 1614 // else, clean it up for -O0 builds and general tidiness. 1615 if (!pushedCleanup && LV.isSimple()) 1616 if (llvm::GetElementPtrInst *GEP = 1617 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1618 if (GEP->use_empty()) 1619 GEP->eraseFromParent(); 1620 } 1621 1622 // Deactivate all the partial cleanups in reverse order, which 1623 // generally means popping them. 1624 assert((cleanupDominator || cleanups.empty()) && 1625 "Missing cleanupDominator before deactivating cleanup blocks"); 1626 for (unsigned i = cleanups.size(); i != 0; --i) 1627 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1628 1629 // Destroy the placeholder if we made one. 1630 if (cleanupDominator) 1631 cleanupDominator->eraseFromParent(); 1632 } 1633 1634 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1635 llvm::Value *outerBegin) { 1636 // Emit the common subexpression. 1637 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1638 1639 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1640 uint64_t numElements = E->getArraySize().getZExtValue(); 1641 1642 if (!numElements) 1643 return; 1644 1645 // destPtr is an array*. Construct an elementType* by drilling down a level. 1646 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1647 llvm::Value *indices[] = {zero, zero}; 1648 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1649 "arrayinit.begin"); 1650 1651 // Prepare to special-case multidimensional array initialization: we avoid 1652 // emitting multiple destructor loops in that case. 1653 if (!outerBegin) 1654 outerBegin = begin; 1655 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1656 1657 QualType elementType = 1658 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1659 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1660 CharUnits elementAlign = 1661 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1662 1663 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1664 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1665 1666 // Jump into the body. 1667 CGF.EmitBlock(bodyBB); 1668 llvm::PHINode *index = 1669 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1670 index->addIncoming(zero, entryBB); 1671 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1672 1673 // Prepare for a cleanup. 1674 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1675 EHScopeStack::stable_iterator cleanup; 1676 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1677 if (outerBegin->getType() != element->getType()) 1678 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1679 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1680 elementAlign, 1681 CGF.getDestroyer(dtorKind)); 1682 cleanup = CGF.EHStack.stable_begin(); 1683 } else { 1684 dtorKind = QualType::DK_none; 1685 } 1686 1687 // Emit the actual filler expression. 1688 { 1689 // Temporaries created in an array initialization loop are destroyed 1690 // at the end of each iteration. 1691 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1692 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1693 LValue elementLV = 1694 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1695 1696 if (InnerLoop) { 1697 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1698 auto elementSlot = AggValueSlot::forLValue( 1699 elementLV, AggValueSlot::IsDestructed, 1700 AggValueSlot::DoesNotNeedGCBarriers, 1701 AggValueSlot::IsNotAliased, 1702 AggValueSlot::DoesNotOverlap); 1703 AggExprEmitter(CGF, elementSlot, false) 1704 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1705 } else 1706 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1707 } 1708 1709 // Move on to the next element. 1710 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1711 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1712 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1713 1714 // Leave the loop if we're done. 1715 llvm::Value *done = Builder.CreateICmpEQ( 1716 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1717 "arrayinit.done"); 1718 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1719 Builder.CreateCondBr(done, endBB, bodyBB); 1720 1721 CGF.EmitBlock(endBB); 1722 1723 // Leave the partial-array cleanup if we entered one. 1724 if (dtorKind) 1725 CGF.DeactivateCleanupBlock(cleanup, index); 1726 } 1727 1728 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1729 AggValueSlot Dest = EnsureSlot(E->getType()); 1730 1731 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1732 EmitInitializationToLValue(E->getBase(), DestLV); 1733 VisitInitListExpr(E->getUpdater()); 1734 } 1735 1736 //===----------------------------------------------------------------------===// 1737 // Entry Points into this File 1738 //===----------------------------------------------------------------------===// 1739 1740 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1741 /// non-zero bytes that will be stored when outputting the initializer for the 1742 /// specified initializer expression. 1743 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1744 E = E->IgnoreParens(); 1745 1746 // 0 and 0.0 won't require any non-zero stores! 1747 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1748 1749 // If this is an initlist expr, sum up the size of sizes of the (present) 1750 // elements. If this is something weird, assume the whole thing is non-zero. 1751 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1752 while (ILE && ILE->isTransparent()) 1753 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1754 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1755 return CGF.getContext().getTypeSizeInChars(E->getType()); 1756 1757 // InitListExprs for structs have to be handled carefully. If there are 1758 // reference members, we need to consider the size of the reference, not the 1759 // referencee. InitListExprs for unions and arrays can't have references. 1760 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1761 if (!RT->isUnionType()) { 1762 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1763 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1764 1765 unsigned ILEElement = 0; 1766 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1767 while (ILEElement != CXXRD->getNumBases()) 1768 NumNonZeroBytes += 1769 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1770 for (const auto *Field : SD->fields()) { 1771 // We're done once we hit the flexible array member or run out of 1772 // InitListExpr elements. 1773 if (Field->getType()->isIncompleteArrayType() || 1774 ILEElement == ILE->getNumInits()) 1775 break; 1776 if (Field->isUnnamedBitfield()) 1777 continue; 1778 1779 const Expr *E = ILE->getInit(ILEElement++); 1780 1781 // Reference values are always non-null and have the width of a pointer. 1782 if (Field->getType()->isReferenceType()) 1783 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1784 CGF.getTarget().getPointerWidth(0)); 1785 else 1786 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1787 } 1788 1789 return NumNonZeroBytes; 1790 } 1791 } 1792 1793 1794 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1795 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1796 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1797 return NumNonZeroBytes; 1798 } 1799 1800 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1801 /// zeros in it, emit a memset and avoid storing the individual zeros. 1802 /// 1803 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1804 CodeGenFunction &CGF) { 1805 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1806 // volatile stores. 1807 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1808 return; 1809 1810 // C++ objects with a user-declared constructor don't need zero'ing. 1811 if (CGF.getLangOpts().CPlusPlus) 1812 if (const RecordType *RT = CGF.getContext() 1813 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1814 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1815 if (RD->hasUserDeclaredConstructor()) 1816 return; 1817 } 1818 1819 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1820 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1821 if (Size <= CharUnits::fromQuantity(16)) 1822 return; 1823 1824 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1825 // we prefer to emit memset + individual stores for the rest. 1826 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1827 if (NumNonZeroBytes*4 > Size) 1828 return; 1829 1830 // Okay, it seems like a good idea to use an initial memset, emit the call. 1831 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1832 1833 Address Loc = Slot.getAddress(); 1834 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1835 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1836 1837 // Tell the AggExprEmitter that the slot is known zero. 1838 Slot.setZeroed(); 1839 } 1840 1841 1842 1843 1844 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1845 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1846 /// the value of the aggregate expression is not needed. If VolatileDest is 1847 /// true, DestPtr cannot be 0. 1848 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1849 assert(E && hasAggregateEvaluationKind(E->getType()) && 1850 "Invalid aggregate expression to emit"); 1851 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1852 "slot has bits but no address"); 1853 1854 // Optimize the slot if possible. 1855 CheckAggExprForMemSetUse(Slot, E, *this); 1856 1857 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1858 } 1859 1860 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1861 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1862 Address Temp = CreateMemTemp(E->getType()); 1863 LValue LV = MakeAddrLValue(Temp, E->getType()); 1864 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1865 AggValueSlot::DoesNotNeedGCBarriers, 1866 AggValueSlot::IsNotAliased, 1867 AggValueSlot::DoesNotOverlap)); 1868 return LV; 1869 } 1870 1871 AggValueSlot::Overlap_t 1872 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 1873 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 1874 return AggValueSlot::DoesNotOverlap; 1875 1876 // If the field lies entirely within the enclosing class's nvsize, its tail 1877 // padding cannot overlap any already-initialized object. (The only subobjects 1878 // with greater addresses that might already be initialized are vbases.) 1879 const RecordDecl *ClassRD = FD->getParent(); 1880 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 1881 if (Layout.getFieldOffset(FD->getFieldIndex()) + 1882 getContext().getTypeSize(FD->getType()) <= 1883 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 1884 return AggValueSlot::DoesNotOverlap; 1885 1886 // The tail padding may contain values we need to preserve. 1887 return AggValueSlot::MayOverlap; 1888 } 1889 1890 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 1891 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1892 // If the most-derived object is a field declared with [[no_unique_address]], 1893 // the tail padding of any virtual base could be reused for other subobjects 1894 // of that field's class. 1895 if (IsVirtual) 1896 return AggValueSlot::MayOverlap; 1897 1898 // If the base class is laid out entirely within the nvsize of the derived 1899 // class, its tail padding cannot yet be initialized, so we can issue 1900 // stores at the full width of the base class. 1901 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1902 if (Layout.getBaseClassOffset(BaseRD) + 1903 getContext().getASTRecordLayout(BaseRD).getSize() <= 1904 Layout.getNonVirtualSize()) 1905 return AggValueSlot::DoesNotOverlap; 1906 1907 // The tail padding may contain values we need to preserve. 1908 return AggValueSlot::MayOverlap; 1909 } 1910 1911 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1912 AggValueSlot::Overlap_t MayOverlap, 1913 bool isVolatile) { 1914 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1915 1916 Address DestPtr = Dest.getAddress(); 1917 Address SrcPtr = Src.getAddress(); 1918 1919 if (getLangOpts().CPlusPlus) { 1920 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1921 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1922 assert((Record->hasTrivialCopyConstructor() || 1923 Record->hasTrivialCopyAssignment() || 1924 Record->hasTrivialMoveConstructor() || 1925 Record->hasTrivialMoveAssignment() || 1926 Record->isUnion()) && 1927 "Trying to aggregate-copy a type without a trivial copy/move " 1928 "constructor or assignment operator"); 1929 // Ignore empty classes in C++. 1930 if (Record->isEmpty()) 1931 return; 1932 } 1933 } 1934 1935 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1936 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1937 // read from another object that overlaps in anyway the storage of the first 1938 // object, then the overlap shall be exact and the two objects shall have 1939 // qualified or unqualified versions of a compatible type." 1940 // 1941 // memcpy is not defined if the source and destination pointers are exactly 1942 // equal, but other compilers do this optimization, and almost every memcpy 1943 // implementation handles this case safely. If there is a libc that does not 1944 // safely handle this, we can add a target hook. 1945 1946 // Get data size info for this aggregate. Don't copy the tail padding if this 1947 // might be a potentially-overlapping subobject, since the tail padding might 1948 // be occupied by a different object. Otherwise, copying it is fine. 1949 std::pair<CharUnits, CharUnits> TypeInfo; 1950 if (MayOverlap) 1951 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1952 else 1953 TypeInfo = getContext().getTypeInfoInChars(Ty); 1954 1955 llvm::Value *SizeVal = nullptr; 1956 if (TypeInfo.first.isZero()) { 1957 // But note that getTypeInfo returns 0 for a VLA. 1958 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1959 getContext().getAsArrayType(Ty))) { 1960 QualType BaseEltTy; 1961 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1962 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1963 assert(!TypeInfo.first.isZero()); 1964 SizeVal = Builder.CreateNUWMul( 1965 SizeVal, 1966 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1967 } 1968 } 1969 if (!SizeVal) { 1970 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1971 } 1972 1973 // FIXME: If we have a volatile struct, the optimizer can remove what might 1974 // appear to be `extra' memory ops: 1975 // 1976 // volatile struct { int i; } a, b; 1977 // 1978 // int main() { 1979 // a = b; 1980 // a = b; 1981 // } 1982 // 1983 // we need to use a different call here. We use isVolatile to indicate when 1984 // either the source or the destination is volatile. 1985 1986 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1987 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1988 1989 // Don't do any of the memmove_collectable tests if GC isn't set. 1990 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1991 // fall through 1992 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1993 RecordDecl *Record = RecordTy->getDecl(); 1994 if (Record->hasObjectMember()) { 1995 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1996 SizeVal); 1997 return; 1998 } 1999 } else if (Ty->isArrayType()) { 2000 QualType BaseType = getContext().getBaseElementType(Ty); 2001 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2002 if (RecordTy->getDecl()->hasObjectMember()) { 2003 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2004 SizeVal); 2005 return; 2006 } 2007 } 2008 } 2009 2010 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2011 2012 // Determine the metadata to describe the position of any padding in this 2013 // memcpy, as well as the TBAA tags for the members of the struct, in case 2014 // the optimizer wishes to expand it in to scalar memory operations. 2015 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2016 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2017 2018 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2019 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2020 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2021 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2022 } 2023 } 2024