1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Aggregate Expression Emitter 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 38 CodeGenFunction &CGF; 39 CGBuilderTy &Builder; 40 AggValueSlot Dest; 41 bool IsResultUnused; 42 43 AggValueSlot EnsureSlot(QualType T) { 44 if (!Dest.isIgnored()) return Dest; 45 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 46 } 47 void EnsureDest(QualType T) { 48 if (!Dest.isIgnored()) return; 49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 // Calls `Fn` with a valid return value slot, potentially creating a temporary 53 // to do so. If a temporary is created, an appropriate copy into `Dest` will 54 // be emitted, as will lifetime markers. 55 // 56 // The given function should take a ReturnValueSlot, and return an RValue that 57 // points to said slot. 58 void withReturnValueSlot(const Expr *E, 59 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 60 61 public: 62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IsResultUnused(IsResultUnused) { } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 enum ExprValueKind { 76 EVK_RValue, 77 EVK_NonRValue 78 }; 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 /// SrcIsRValue is true if source comes from an RValue. 82 void EmitFinalDestCopy(QualType type, const LValue &src, 83 ExprValueKind SrcValueKind = EVK_NonRValue); 84 void EmitFinalDestCopy(QualType type, RValue src); 85 void EmitCopy(QualType type, const AggValueSlot &dest, 86 const AggValueSlot &src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy, 89 Expr *ExprToVisit, ArrayRef<Expr *> Args, 90 Expr *ArrayFiller); 91 92 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 93 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 94 return AggValueSlot::NeedsGCBarriers; 95 return AggValueSlot::DoesNotNeedGCBarriers; 96 } 97 98 bool TypeRequiresGCollection(QualType T); 99 100 //===--------------------------------------------------------------------===// 101 // Visitor Methods 102 //===--------------------------------------------------------------------===// 103 104 void Visit(Expr *E) { 105 ApplyDebugLocation DL(CGF, E); 106 StmtVisitor<AggExprEmitter>::Visit(E); 107 } 108 109 void VisitStmt(Stmt *S) { 110 CGF.ErrorUnsupported(S, "aggregate expression"); 111 } 112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 114 Visit(GE->getResultExpr()); 115 } 116 void VisitCoawaitExpr(CoawaitExpr *E) { 117 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 118 } 119 void VisitCoyieldExpr(CoyieldExpr *E) { 120 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 121 } 122 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 125 return Visit(E->getReplacement()); 126 } 127 128 void VisitConstantExpr(ConstantExpr *E) { 129 EnsureDest(E->getType()); 130 131 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 132 Address StoreDest = Dest.getAddress(); 133 // The emitted value is guaranteed to have the same size as the 134 // destination but can have a different type. Just do a bitcast in this 135 // case to avoid incorrect GEPs. 136 if (Result->getType() != StoreDest.getType()) 137 StoreDest = StoreDest.withElementType(Result->getType()); 138 139 CGF.EmitAggregateStore(Result, StoreDest, 140 E->getType().isVolatileQualified()); 141 return; 142 } 143 return Visit(E->getSubExpr()); 144 } 145 146 // l-values. 147 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 148 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 149 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 150 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 151 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 152 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 153 EmitAggLoadOfLValue(E); 154 } 155 void VisitPredefinedExpr(const PredefinedExpr *E) { 156 EmitAggLoadOfLValue(E); 157 } 158 159 // Operators. 160 void VisitCastExpr(CastExpr *E); 161 void VisitCallExpr(const CallExpr *E); 162 void VisitStmtExpr(const StmtExpr *E); 163 void VisitBinaryOperator(const BinaryOperator *BO); 164 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 165 void VisitBinAssign(const BinaryOperator *E); 166 void VisitBinComma(const BinaryOperator *E); 167 void VisitBinCmp(const BinaryOperator *E); 168 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 169 Visit(E->getSemanticForm()); 170 } 171 172 void VisitObjCMessageExpr(ObjCMessageExpr *E); 173 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 174 EmitAggLoadOfLValue(E); 175 } 176 177 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 178 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 179 void VisitChooseExpr(const ChooseExpr *CE); 180 void VisitInitListExpr(InitListExpr *E); 181 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args, 182 FieldDecl *InitializedFieldInUnion, 183 Expr *ArrayFiller); 184 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 185 llvm::Value *outerBegin = nullptr); 186 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 187 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 188 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 189 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 190 Visit(DAE->getExpr()); 191 } 192 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 193 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 194 Visit(DIE->getExpr()); 195 } 196 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 197 void VisitCXXConstructExpr(const CXXConstructExpr *E); 198 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 199 void VisitLambdaExpr(LambdaExpr *E); 200 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 201 void VisitExprWithCleanups(ExprWithCleanups *E); 202 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 203 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 204 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 205 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 206 207 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 208 if (E->isGLValue()) { 209 LValue LV = CGF.EmitPseudoObjectLValue(E); 210 return EmitFinalDestCopy(E->getType(), LV); 211 } 212 213 AggValueSlot Slot = EnsureSlot(E->getType()); 214 bool NeedsDestruction = 215 !Slot.isExternallyDestructed() && 216 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 217 if (NeedsDestruction) 218 Slot.setExternallyDestructed(); 219 CGF.EmitPseudoObjectRValue(E, Slot); 220 if (NeedsDestruction) 221 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(), 222 E->getType()); 223 } 224 225 void VisitVAArgExpr(VAArgExpr *E); 226 void VisitCXXParenListInitExpr(CXXParenListInitExpr *E); 227 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args, 228 Expr *ArrayFiller); 229 230 void EmitInitializationToLValue(Expr *E, LValue Address); 231 void EmitNullInitializationToLValue(LValue Address); 232 // case Expr::ChooseExprClass: 233 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 234 void VisitAtomicExpr(AtomicExpr *E) { 235 RValue Res = CGF.EmitAtomicExpr(E); 236 EmitFinalDestCopy(E->getType(), Res); 237 } 238 }; 239 } // end anonymous namespace. 240 241 //===----------------------------------------------------------------------===// 242 // Utilities 243 //===----------------------------------------------------------------------===// 244 245 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 246 /// represents a value lvalue, this method emits the address of the lvalue, 247 /// then loads the result into DestPtr. 248 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 249 LValue LV = CGF.EmitLValue(E); 250 251 // If the type of the l-value is atomic, then do an atomic load. 252 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 253 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 254 return; 255 } 256 257 EmitFinalDestCopy(E->getType(), LV); 258 } 259 260 /// True if the given aggregate type requires special GC API calls. 261 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 262 // Only record types have members that might require garbage collection. 263 const RecordType *RecordTy = T->getAs<RecordType>(); 264 if (!RecordTy) return false; 265 266 // Don't mess with non-trivial C++ types. 267 RecordDecl *Record = RecordTy->getDecl(); 268 if (isa<CXXRecordDecl>(Record) && 269 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 270 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 271 return false; 272 273 // Check whether the type has an object member. 274 return Record->hasObjectMember(); 275 } 276 277 void AggExprEmitter::withReturnValueSlot( 278 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 279 QualType RetTy = E->getType(); 280 bool RequiresDestruction = 281 !Dest.isExternallyDestructed() && 282 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 283 284 // If it makes no observable difference, save a memcpy + temporary. 285 // 286 // We need to always provide our own temporary if destruction is required. 287 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 288 // its lifetime before we have the chance to emit a proper destructor call. 289 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 290 (RequiresDestruction && !Dest.getAddress().isValid()); 291 292 Address RetAddr = Address::invalid(); 293 Address RetAllocaAddr = Address::invalid(); 294 295 EHScopeStack::stable_iterator LifetimeEndBlock; 296 llvm::Value *LifetimeSizePtr = nullptr; 297 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 298 if (!UseTemp) { 299 RetAddr = Dest.getAddress(); 300 } else { 301 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 302 llvm::TypeSize Size = 303 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 304 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 305 if (LifetimeSizePtr) { 306 LifetimeStartInst = 307 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 308 assert(LifetimeStartInst->getIntrinsicID() == 309 llvm::Intrinsic::lifetime_start && 310 "Last insertion wasn't a lifetime.start?"); 311 312 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 313 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 314 LifetimeEndBlock = CGF.EHStack.stable_begin(); 315 } 316 } 317 318 RValue Src = 319 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 320 Dest.isExternallyDestructed())); 321 322 if (!UseTemp) 323 return; 324 325 assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer()); 326 EmitFinalDestCopy(E->getType(), Src); 327 328 if (!RequiresDestruction && LifetimeStartInst) { 329 // If there's no dtor to run, the copy was the last use of our temporary. 330 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 331 // eagerly. 332 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 333 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 334 } 335 } 336 337 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 338 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 339 assert(src.isAggregate() && "value must be aggregate value!"); 340 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 341 EmitFinalDestCopy(type, srcLV, EVK_RValue); 342 } 343 344 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 345 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 346 ExprValueKind SrcValueKind) { 347 // If Dest is ignored, then we're evaluating an aggregate expression 348 // in a context that doesn't care about the result. Note that loads 349 // from volatile l-values force the existence of a non-ignored 350 // destination. 351 if (Dest.isIgnored()) 352 return; 353 354 // Copy non-trivial C structs here. 355 LValue DstLV = CGF.MakeAddrLValue( 356 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 357 358 if (SrcValueKind == EVK_RValue) { 359 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 360 if (Dest.isPotentiallyAliased()) 361 CGF.callCStructMoveAssignmentOperator(DstLV, src); 362 else 363 CGF.callCStructMoveConstructor(DstLV, src); 364 return; 365 } 366 } else { 367 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 368 if (Dest.isPotentiallyAliased()) 369 CGF.callCStructCopyAssignmentOperator(DstLV, src); 370 else 371 CGF.callCStructCopyConstructor(DstLV, src); 372 return; 373 } 374 } 375 376 AggValueSlot srcAgg = AggValueSlot::forLValue( 377 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 378 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 379 EmitCopy(type, Dest, srcAgg); 380 } 381 382 /// Perform a copy from the source into the destination. 383 /// 384 /// \param type - the type of the aggregate being copied; qualifiers are 385 /// ignored 386 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 387 const AggValueSlot &src) { 388 if (dest.requiresGCollection()) { 389 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 390 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 391 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 392 dest.getAddress(), 393 src.getAddress(), 394 size); 395 return; 396 } 397 398 // If the result of the assignment is used, copy the LHS there also. 399 // It's volatile if either side is. Use the minimum alignment of 400 // the two sides. 401 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 402 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 403 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 404 dest.isVolatile() || src.isVolatile()); 405 } 406 407 /// Emit the initializer for a std::initializer_list initialized with a 408 /// real initializer list. 409 void 410 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 411 // Emit an array containing the elements. The array is externally destructed 412 // if the std::initializer_list object is. 413 ASTContext &Ctx = CGF.getContext(); 414 LValue Array = CGF.EmitLValue(E->getSubExpr()); 415 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 416 Address ArrayPtr = Array.getAddress(CGF); 417 418 const ConstantArrayType *ArrayType = 419 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 420 assert(ArrayType && "std::initializer_list constructed from non-array"); 421 422 // FIXME: Perform the checks on the field types in SemaInit. 423 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 424 RecordDecl::field_iterator Field = Record->field_begin(); 425 if (Field == Record->field_end()) { 426 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 427 return; 428 } 429 430 // Start pointer. 431 if (!Field->getType()->isPointerType() || 432 !Ctx.hasSameType(Field->getType()->getPointeeType(), 433 ArrayType->getElementType())) { 434 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 435 return; 436 } 437 438 AggValueSlot Dest = EnsureSlot(E->getType()); 439 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 440 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 441 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 442 llvm::Value *IdxStart[] = { Zero, Zero }; 443 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP( 444 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart"); 445 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 446 ++Field; 447 448 if (Field == Record->field_end()) { 449 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 450 return; 451 } 452 453 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 454 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 455 if (Field->getType()->isPointerType() && 456 Ctx.hasSameType(Field->getType()->getPointeeType(), 457 ArrayType->getElementType())) { 458 // End pointer. 459 llvm::Value *IdxEnd[] = { Zero, Size }; 460 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP( 461 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend"); 462 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 463 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 464 // Length. 465 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 466 } else { 467 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 468 return; 469 } 470 } 471 472 /// Determine if E is a trivial array filler, that is, one that is 473 /// equivalent to zero-initialization. 474 static bool isTrivialFiller(Expr *E) { 475 if (!E) 476 return true; 477 478 if (isa<ImplicitValueInitExpr>(E)) 479 return true; 480 481 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 482 if (ILE->getNumInits()) 483 return false; 484 return isTrivialFiller(ILE->getArrayFiller()); 485 } 486 487 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 488 return Cons->getConstructor()->isDefaultConstructor() && 489 Cons->getConstructor()->isTrivial(); 490 491 // FIXME: Are there other cases where we can avoid emitting an initializer? 492 return false; 493 } 494 495 /// Emit initialization of an array from an initializer list. ExprToVisit must 496 /// be either an InitListEpxr a CXXParenInitListExpr. 497 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 498 QualType ArrayQTy, Expr *ExprToVisit, 499 ArrayRef<Expr *> Args, Expr *ArrayFiller) { 500 uint64_t NumInitElements = Args.size(); 501 502 uint64_t NumArrayElements = AType->getNumElements(); 503 assert(NumInitElements <= NumArrayElements); 504 505 QualType elementType = 506 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 507 508 // DestPtr is an array*. Construct an elementType* by drilling 509 // down a level. 510 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 511 llvm::Value *indices[] = { zero, zero }; 512 llvm::Value *begin = Builder.CreateInBoundsGEP( 513 DestPtr.getElementType(), DestPtr.getPointer(), indices, 514 "arrayinit.begin"); 515 516 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 517 CharUnits elementAlign = 518 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 519 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType); 520 521 // Consider initializing the array by copying from a global. For this to be 522 // more efficient than per-element initialization, the size of the elements 523 // with explicit initializers should be large enough. 524 if (NumInitElements * elementSize.getQuantity() > 16 && 525 elementType.isTriviallyCopyableType(CGF.getContext())) { 526 CodeGen::CodeGenModule &CGM = CGF.CGM; 527 ConstantEmitter Emitter(CGF); 528 LangAS AS = ArrayQTy.getAddressSpace(); 529 if (llvm::Constant *C = 530 Emitter.tryEmitForInitializer(ExprToVisit, AS, ArrayQTy)) { 531 auto GV = new llvm::GlobalVariable( 532 CGM.getModule(), C->getType(), 533 /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C, 534 "constinit", 535 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 536 CGM.getContext().getTargetAddressSpace(AS)); 537 Emitter.finalize(GV); 538 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 539 GV->setAlignment(Align.getAsAlign()); 540 Address GVAddr(GV, GV->getValueType(), Align); 541 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy)); 542 return; 543 } 544 } 545 546 // Exception safety requires us to destroy all the 547 // already-constructed members if an initializer throws. 548 // For that, we'll need an EH cleanup. 549 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 550 Address endOfInit = Address::invalid(); 551 EHScopeStack::stable_iterator cleanup; 552 llvm::Instruction *cleanupDominator = nullptr; 553 if (CGF.needsEHCleanup(dtorKind)) { 554 // In principle we could tell the cleanup where we are more 555 // directly, but the control flow can get so varied here that it 556 // would actually be quite complex. Therefore we go through an 557 // alloca. 558 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 559 "arrayinit.endOfInit"); 560 cleanupDominator = Builder.CreateStore(begin, endOfInit); 561 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 562 elementAlign, 563 CGF.getDestroyer(dtorKind)); 564 cleanup = CGF.EHStack.stable_begin(); 565 566 // Otherwise, remember that we didn't need a cleanup. 567 } else { 568 dtorKind = QualType::DK_none; 569 } 570 571 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 572 573 // The 'current element to initialize'. The invariants on this 574 // variable are complicated. Essentially, after each iteration of 575 // the loop, it points to the last initialized element, except 576 // that it points to the beginning of the array before any 577 // elements have been initialized. 578 llvm::Value *element = begin; 579 580 // Emit the explicit initializers. 581 for (uint64_t i = 0; i != NumInitElements; ++i) { 582 // Advance to the next element. 583 if (i > 0) { 584 element = Builder.CreateInBoundsGEP( 585 llvmElementType, element, one, "arrayinit.element"); 586 587 // Tell the cleanup that it needs to destroy up to this 588 // element. TODO: some of these stores can be trivially 589 // observed to be unnecessary. 590 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 591 } 592 593 LValue elementLV = CGF.MakeAddrLValue( 594 Address(element, llvmElementType, elementAlign), elementType); 595 EmitInitializationToLValue(Args[i], elementLV); 596 } 597 598 // Check whether there's a non-trivial array-fill expression. 599 bool hasTrivialFiller = isTrivialFiller(ArrayFiller); 600 601 // Any remaining elements need to be zero-initialized, possibly 602 // using the filler expression. We can skip this if the we're 603 // emitting to zeroed memory. 604 if (NumInitElements != NumArrayElements && 605 !(Dest.isZeroed() && hasTrivialFiller && 606 CGF.getTypes().isZeroInitializable(elementType))) { 607 608 // Use an actual loop. This is basically 609 // do { *array++ = filler; } while (array != end); 610 611 // Advance to the start of the rest of the array. 612 if (NumInitElements) { 613 element = Builder.CreateInBoundsGEP( 614 llvmElementType, element, one, "arrayinit.start"); 615 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 616 } 617 618 // Compute the end of the array. 619 llvm::Value *end = Builder.CreateInBoundsGEP( 620 llvmElementType, begin, 621 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end"); 622 623 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 624 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 625 626 // Jump into the body. 627 CGF.EmitBlock(bodyBB); 628 llvm::PHINode *currentElement = 629 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 630 currentElement->addIncoming(element, entryBB); 631 632 // Emit the actual filler expression. 633 { 634 // C++1z [class.temporary]p5: 635 // when a default constructor is called to initialize an element of 636 // an array with no corresponding initializer [...] the destruction of 637 // every temporary created in a default argument is sequenced before 638 // the construction of the next array element, if any 639 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 640 LValue elementLV = CGF.MakeAddrLValue( 641 Address(currentElement, llvmElementType, elementAlign), elementType); 642 if (ArrayFiller) 643 EmitInitializationToLValue(ArrayFiller, elementLV); 644 else 645 EmitNullInitializationToLValue(elementLV); 646 } 647 648 // Move on to the next element. 649 llvm::Value *nextElement = Builder.CreateInBoundsGEP( 650 llvmElementType, currentElement, one, "arrayinit.next"); 651 652 // Tell the EH cleanup that we finished with the last element. 653 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 654 655 // Leave the loop if we're done. 656 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 657 "arrayinit.done"); 658 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 659 Builder.CreateCondBr(done, endBB, bodyBB); 660 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 661 662 CGF.EmitBlock(endBB); 663 } 664 665 // Leave the partial-array cleanup if we entered one. 666 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 667 } 668 669 //===----------------------------------------------------------------------===// 670 // Visitor Methods 671 //===----------------------------------------------------------------------===// 672 673 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 674 Visit(E->getSubExpr()); 675 } 676 677 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 678 // If this is a unique OVE, just visit its source expression. 679 if (e->isUnique()) 680 Visit(e->getSourceExpr()); 681 else 682 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 683 } 684 685 void 686 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 687 if (Dest.isPotentiallyAliased() && 688 E->getType().isPODType(CGF.getContext())) { 689 // For a POD type, just emit a load of the lvalue + a copy, because our 690 // compound literal might alias the destination. 691 EmitAggLoadOfLValue(E); 692 return; 693 } 694 695 AggValueSlot Slot = EnsureSlot(E->getType()); 696 697 // Block-scope compound literals are destroyed at the end of the enclosing 698 // scope in C. 699 bool Destruct = 700 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 701 if (Destruct) 702 Slot.setExternallyDestructed(); 703 704 CGF.EmitAggExpr(E->getInitializer(), Slot); 705 706 if (Destruct) 707 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 708 CGF.pushLifetimeExtendedDestroy( 709 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 710 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 711 } 712 713 /// Attempt to look through various unimportant expressions to find a 714 /// cast of the given kind. 715 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) { 716 op = op->IgnoreParenNoopCasts(ctx); 717 if (auto castE = dyn_cast<CastExpr>(op)) { 718 if (castE->getCastKind() == kind) 719 return castE->getSubExpr(); 720 } 721 return nullptr; 722 } 723 724 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 725 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 726 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 727 switch (E->getCastKind()) { 728 case CK_Dynamic: { 729 // FIXME: Can this actually happen? We have no test coverage for it. 730 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 731 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 732 CodeGenFunction::TCK_Load); 733 // FIXME: Do we also need to handle property references here? 734 if (LV.isSimple()) 735 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 736 else 737 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 738 739 if (!Dest.isIgnored()) 740 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 741 break; 742 } 743 744 case CK_ToUnion: { 745 // Evaluate even if the destination is ignored. 746 if (Dest.isIgnored()) { 747 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 748 /*ignoreResult=*/true); 749 break; 750 } 751 752 // GCC union extension 753 QualType Ty = E->getSubExpr()->getType(); 754 Address CastPtr = Dest.getAddress().withElementType(CGF.ConvertType(Ty)); 755 EmitInitializationToLValue(E->getSubExpr(), 756 CGF.MakeAddrLValue(CastPtr, Ty)); 757 break; 758 } 759 760 case CK_LValueToRValueBitCast: { 761 if (Dest.isIgnored()) { 762 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 763 /*ignoreResult=*/true); 764 break; 765 } 766 767 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 768 Address SourceAddress = 769 SourceLV.getAddress(CGF).withElementType(CGF.Int8Ty); 770 Address DestAddress = Dest.getAddress().withElementType(CGF.Int8Ty); 771 llvm::Value *SizeVal = llvm::ConstantInt::get( 772 CGF.SizeTy, 773 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 774 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 775 break; 776 } 777 778 case CK_DerivedToBase: 779 case CK_BaseToDerived: 780 case CK_UncheckedDerivedToBase: { 781 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 782 "should have been unpacked before we got here"); 783 } 784 785 case CK_NonAtomicToAtomic: 786 case CK_AtomicToNonAtomic: { 787 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 788 789 // Determine the atomic and value types. 790 QualType atomicType = E->getSubExpr()->getType(); 791 QualType valueType = E->getType(); 792 if (isToAtomic) std::swap(atomicType, valueType); 793 794 assert(atomicType->isAtomicType()); 795 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 796 atomicType->castAs<AtomicType>()->getValueType())); 797 798 // Just recurse normally if we're ignoring the result or the 799 // atomic type doesn't change representation. 800 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 801 return Visit(E->getSubExpr()); 802 } 803 804 CastKind peepholeTarget = 805 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 806 807 // These two cases are reverses of each other; try to peephole them. 808 if (Expr *op = 809 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) { 810 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 811 E->getType()) && 812 "peephole significantly changed types?"); 813 return Visit(op); 814 } 815 816 // If we're converting an r-value of non-atomic type to an r-value 817 // of atomic type, just emit directly into the relevant sub-object. 818 if (isToAtomic) { 819 AggValueSlot valueDest = Dest; 820 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 821 // Zero-initialize. (Strictly speaking, we only need to initialize 822 // the padding at the end, but this is simpler.) 823 if (!Dest.isZeroed()) 824 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 825 826 // Build a GEP to refer to the subobject. 827 Address valueAddr = 828 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 829 valueDest = AggValueSlot::forAddr(valueAddr, 830 valueDest.getQualifiers(), 831 valueDest.isExternallyDestructed(), 832 valueDest.requiresGCollection(), 833 valueDest.isPotentiallyAliased(), 834 AggValueSlot::DoesNotOverlap, 835 AggValueSlot::IsZeroed); 836 } 837 838 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 839 return; 840 } 841 842 // Otherwise, we're converting an atomic type to a non-atomic type. 843 // Make an atomic temporary, emit into that, and then copy the value out. 844 AggValueSlot atomicSlot = 845 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 846 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 847 848 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 849 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 850 return EmitFinalDestCopy(valueType, rvalue); 851 } 852 case CK_AddressSpaceConversion: 853 return Visit(E->getSubExpr()); 854 855 case CK_LValueToRValue: 856 // If we're loading from a volatile type, force the destination 857 // into existence. 858 if (E->getSubExpr()->getType().isVolatileQualified()) { 859 bool Destruct = 860 !Dest.isExternallyDestructed() && 861 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 862 if (Destruct) 863 Dest.setExternallyDestructed(); 864 EnsureDest(E->getType()); 865 Visit(E->getSubExpr()); 866 867 if (Destruct) 868 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 869 E->getType()); 870 871 return; 872 } 873 874 [[fallthrough]]; 875 876 877 case CK_NoOp: 878 case CK_UserDefinedConversion: 879 case CK_ConstructorConversion: 880 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 881 E->getType()) && 882 "Implicit cast types must be compatible"); 883 Visit(E->getSubExpr()); 884 break; 885 886 case CK_LValueBitCast: 887 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 888 889 case CK_Dependent: 890 case CK_BitCast: 891 case CK_ArrayToPointerDecay: 892 case CK_FunctionToPointerDecay: 893 case CK_NullToPointer: 894 case CK_NullToMemberPointer: 895 case CK_BaseToDerivedMemberPointer: 896 case CK_DerivedToBaseMemberPointer: 897 case CK_MemberPointerToBoolean: 898 case CK_ReinterpretMemberPointer: 899 case CK_IntegralToPointer: 900 case CK_PointerToIntegral: 901 case CK_PointerToBoolean: 902 case CK_ToVoid: 903 case CK_VectorSplat: 904 case CK_IntegralCast: 905 case CK_BooleanToSignedIntegral: 906 case CK_IntegralToBoolean: 907 case CK_IntegralToFloating: 908 case CK_FloatingToIntegral: 909 case CK_FloatingToBoolean: 910 case CK_FloatingCast: 911 case CK_CPointerToObjCPointerCast: 912 case CK_BlockPointerToObjCPointerCast: 913 case CK_AnyPointerToBlockPointerCast: 914 case CK_ObjCObjectLValueCast: 915 case CK_FloatingRealToComplex: 916 case CK_FloatingComplexToReal: 917 case CK_FloatingComplexToBoolean: 918 case CK_FloatingComplexCast: 919 case CK_FloatingComplexToIntegralComplex: 920 case CK_IntegralRealToComplex: 921 case CK_IntegralComplexToReal: 922 case CK_IntegralComplexToBoolean: 923 case CK_IntegralComplexCast: 924 case CK_IntegralComplexToFloatingComplex: 925 case CK_ARCProduceObject: 926 case CK_ARCConsumeObject: 927 case CK_ARCReclaimReturnedObject: 928 case CK_ARCExtendBlockObject: 929 case CK_CopyAndAutoreleaseBlockObject: 930 case CK_BuiltinFnToFnPtr: 931 case CK_ZeroToOCLOpaqueType: 932 case CK_MatrixCast: 933 934 case CK_IntToOCLSampler: 935 case CK_FloatingToFixedPoint: 936 case CK_FixedPointToFloating: 937 case CK_FixedPointCast: 938 case CK_FixedPointToBoolean: 939 case CK_FixedPointToIntegral: 940 case CK_IntegralToFixedPoint: 941 llvm_unreachable("cast kind invalid for aggregate types"); 942 } 943 } 944 945 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 946 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 947 EmitAggLoadOfLValue(E); 948 return; 949 } 950 951 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 952 return CGF.EmitCallExpr(E, Slot); 953 }); 954 } 955 956 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 957 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 958 return CGF.EmitObjCMessageExpr(E, Slot); 959 }); 960 } 961 962 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 963 CGF.EmitIgnoredExpr(E->getLHS()); 964 Visit(E->getRHS()); 965 } 966 967 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 968 CodeGenFunction::StmtExprEvaluation eval(CGF); 969 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 970 } 971 972 enum CompareKind { 973 CK_Less, 974 CK_Greater, 975 CK_Equal, 976 }; 977 978 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 979 const BinaryOperator *E, llvm::Value *LHS, 980 llvm::Value *RHS, CompareKind Kind, 981 const char *NameSuffix = "") { 982 QualType ArgTy = E->getLHS()->getType(); 983 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 984 ArgTy = CT->getElementType(); 985 986 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 987 assert(Kind == CK_Equal && 988 "member pointers may only be compared for equality"); 989 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 990 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 991 } 992 993 // Compute the comparison instructions for the specified comparison kind. 994 struct CmpInstInfo { 995 const char *Name; 996 llvm::CmpInst::Predicate FCmp; 997 llvm::CmpInst::Predicate SCmp; 998 llvm::CmpInst::Predicate UCmp; 999 }; 1000 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 1001 using FI = llvm::FCmpInst; 1002 using II = llvm::ICmpInst; 1003 switch (Kind) { 1004 case CK_Less: 1005 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 1006 case CK_Greater: 1007 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 1008 case CK_Equal: 1009 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 1010 } 1011 llvm_unreachable("Unrecognised CompareKind enum"); 1012 }(); 1013 1014 if (ArgTy->hasFloatingRepresentation()) 1015 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 1016 llvm::Twine(InstInfo.Name) + NameSuffix); 1017 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 1018 auto Inst = 1019 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 1020 return Builder.CreateICmp(Inst, LHS, RHS, 1021 llvm::Twine(InstInfo.Name) + NameSuffix); 1022 } 1023 1024 llvm_unreachable("unsupported aggregate binary expression should have " 1025 "already been handled"); 1026 } 1027 1028 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 1029 using llvm::BasicBlock; 1030 using llvm::PHINode; 1031 using llvm::Value; 1032 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 1033 E->getRHS()->getType())); 1034 const ComparisonCategoryInfo &CmpInfo = 1035 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1036 assert(CmpInfo.Record->isTriviallyCopyable() && 1037 "cannot copy non-trivially copyable aggregate"); 1038 1039 QualType ArgTy = E->getLHS()->getType(); 1040 1041 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1042 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1043 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1044 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1045 } 1046 bool IsComplex = ArgTy->isAnyComplexType(); 1047 1048 // Evaluate the operands to the expression and extract their values. 1049 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1050 RValue RV = CGF.EmitAnyExpr(E); 1051 if (RV.isScalar()) 1052 return {RV.getScalarVal(), nullptr}; 1053 if (RV.isAggregate()) 1054 return {RV.getAggregatePointer(), nullptr}; 1055 assert(RV.isComplex()); 1056 return RV.getComplexVal(); 1057 }; 1058 auto LHSValues = EmitOperand(E->getLHS()), 1059 RHSValues = EmitOperand(E->getRHS()); 1060 1061 auto EmitCmp = [&](CompareKind K) { 1062 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1063 K, IsComplex ? ".r" : ""); 1064 if (!IsComplex) 1065 return Cmp; 1066 assert(K == CompareKind::CK_Equal); 1067 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1068 RHSValues.second, K, ".i"); 1069 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1070 }; 1071 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1072 return Builder.getInt(VInfo->getIntValue()); 1073 }; 1074 1075 Value *Select; 1076 if (ArgTy->isNullPtrType()) { 1077 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1078 } else if (!CmpInfo.isPartial()) { 1079 Value *SelectOne = 1080 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1081 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1082 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1083 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1084 SelectOne, "sel.eq"); 1085 } else { 1086 Value *SelectEq = Builder.CreateSelect( 1087 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1088 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1089 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1090 EmitCmpRes(CmpInfo.getGreater()), 1091 SelectEq, "sel.gt"); 1092 Select = Builder.CreateSelect( 1093 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1094 } 1095 // Create the return value in the destination slot. 1096 EnsureDest(E->getType()); 1097 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1098 1099 // Emit the address of the first (and only) field in the comparison category 1100 // type, and initialize it from the constant integer value selected above. 1101 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1102 DestLV, *CmpInfo.Record->field_begin()); 1103 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1104 1105 // All done! The result is in the Dest slot. 1106 } 1107 1108 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1109 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1110 VisitPointerToDataMemberBinaryOperator(E); 1111 else 1112 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1113 } 1114 1115 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1116 const BinaryOperator *E) { 1117 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1118 EmitFinalDestCopy(E->getType(), LV); 1119 } 1120 1121 /// Is the value of the given expression possibly a reference to or 1122 /// into a __block variable? 1123 static bool isBlockVarRef(const Expr *E) { 1124 // Make sure we look through parens. 1125 E = E->IgnoreParens(); 1126 1127 // Check for a direct reference to a __block variable. 1128 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1129 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1130 return (var && var->hasAttr<BlocksAttr>()); 1131 } 1132 1133 // More complicated stuff. 1134 1135 // Binary operators. 1136 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1137 // For an assignment or pointer-to-member operation, just care 1138 // about the LHS. 1139 if (op->isAssignmentOp() || op->isPtrMemOp()) 1140 return isBlockVarRef(op->getLHS()); 1141 1142 // For a comma, just care about the RHS. 1143 if (op->getOpcode() == BO_Comma) 1144 return isBlockVarRef(op->getRHS()); 1145 1146 // FIXME: pointer arithmetic? 1147 return false; 1148 1149 // Check both sides of a conditional operator. 1150 } else if (const AbstractConditionalOperator *op 1151 = dyn_cast<AbstractConditionalOperator>(E)) { 1152 return isBlockVarRef(op->getTrueExpr()) 1153 || isBlockVarRef(op->getFalseExpr()); 1154 1155 // OVEs are required to support BinaryConditionalOperators. 1156 } else if (const OpaqueValueExpr *op 1157 = dyn_cast<OpaqueValueExpr>(E)) { 1158 if (const Expr *src = op->getSourceExpr()) 1159 return isBlockVarRef(src); 1160 1161 // Casts are necessary to get things like (*(int*)&var) = foo(). 1162 // We don't really care about the kind of cast here, except 1163 // we don't want to look through l2r casts, because it's okay 1164 // to get the *value* in a __block variable. 1165 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1166 if (cast->getCastKind() == CK_LValueToRValue) 1167 return false; 1168 return isBlockVarRef(cast->getSubExpr()); 1169 1170 // Handle unary operators. Again, just aggressively look through 1171 // it, ignoring the operation. 1172 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1173 return isBlockVarRef(uop->getSubExpr()); 1174 1175 // Look into the base of a field access. 1176 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1177 return isBlockVarRef(mem->getBase()); 1178 1179 // Look into the base of a subscript. 1180 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1181 return isBlockVarRef(sub->getBase()); 1182 } 1183 1184 return false; 1185 } 1186 1187 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1188 // For an assignment to work, the value on the right has 1189 // to be compatible with the value on the left. 1190 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1191 E->getRHS()->getType()) 1192 && "Invalid assignment"); 1193 1194 // If the LHS might be a __block variable, and the RHS can 1195 // potentially cause a block copy, we need to evaluate the RHS first 1196 // so that the assignment goes the right place. 1197 // This is pretty semantically fragile. 1198 if (isBlockVarRef(E->getLHS()) && 1199 E->getRHS()->HasSideEffects(CGF.getContext())) { 1200 // Ensure that we have a destination, and evaluate the RHS into that. 1201 EnsureDest(E->getRHS()->getType()); 1202 Visit(E->getRHS()); 1203 1204 // Now emit the LHS and copy into it. 1205 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1206 1207 // That copy is an atomic copy if the LHS is atomic. 1208 if (LHS.getType()->isAtomicType() || 1209 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1210 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1211 return; 1212 } 1213 1214 EmitCopy(E->getLHS()->getType(), 1215 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1216 needsGC(E->getLHS()->getType()), 1217 AggValueSlot::IsAliased, 1218 AggValueSlot::MayOverlap), 1219 Dest); 1220 return; 1221 } 1222 1223 LValue LHS = CGF.EmitLValue(E->getLHS()); 1224 1225 // If we have an atomic type, evaluate into the destination and then 1226 // do an atomic copy. 1227 if (LHS.getType()->isAtomicType() || 1228 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1229 EnsureDest(E->getRHS()->getType()); 1230 Visit(E->getRHS()); 1231 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1232 return; 1233 } 1234 1235 // Codegen the RHS so that it stores directly into the LHS. 1236 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1237 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1238 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1239 // A non-volatile aggregate destination might have volatile member. 1240 if (!LHSSlot.isVolatile() && 1241 CGF.hasVolatileMember(E->getLHS()->getType())) 1242 LHSSlot.setVolatile(true); 1243 1244 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1245 1246 // Copy into the destination if the assignment isn't ignored. 1247 EmitFinalDestCopy(E->getType(), LHS); 1248 1249 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() && 1250 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 1251 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1252 E->getType()); 1253 } 1254 1255 void AggExprEmitter:: 1256 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1257 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1258 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1259 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1260 1261 // Bind the common expression if necessary. 1262 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1263 1264 CodeGenFunction::ConditionalEvaluation eval(CGF); 1265 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1266 CGF.getProfileCount(E)); 1267 1268 // Save whether the destination's lifetime is externally managed. 1269 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1270 bool destructNonTrivialCStruct = 1271 !isExternallyDestructed && 1272 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 1273 isExternallyDestructed |= destructNonTrivialCStruct; 1274 Dest.setExternallyDestructed(isExternallyDestructed); 1275 1276 eval.begin(CGF); 1277 CGF.EmitBlock(LHSBlock); 1278 CGF.incrementProfileCounter(E); 1279 Visit(E->getTrueExpr()); 1280 eval.end(CGF); 1281 1282 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1283 CGF.Builder.CreateBr(ContBlock); 1284 1285 // If the result of an agg expression is unused, then the emission 1286 // of the LHS might need to create a destination slot. That's fine 1287 // with us, and we can safely emit the RHS into the same slot, but 1288 // we shouldn't claim that it's already being destructed. 1289 Dest.setExternallyDestructed(isExternallyDestructed); 1290 1291 eval.begin(CGF); 1292 CGF.EmitBlock(RHSBlock); 1293 Visit(E->getFalseExpr()); 1294 eval.end(CGF); 1295 1296 if (destructNonTrivialCStruct) 1297 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1298 E->getType()); 1299 1300 CGF.EmitBlock(ContBlock); 1301 } 1302 1303 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1304 Visit(CE->getChosenSubExpr()); 1305 } 1306 1307 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1308 Address ArgValue = Address::invalid(); 1309 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1310 1311 // If EmitVAArg fails, emit an error. 1312 if (!ArgPtr.isValid()) { 1313 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1314 return; 1315 } 1316 1317 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1318 } 1319 1320 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1321 // Ensure that we have a slot, but if we already do, remember 1322 // whether it was externally destructed. 1323 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1324 EnsureDest(E->getType()); 1325 1326 // We're going to push a destructor if there isn't already one. 1327 Dest.setExternallyDestructed(); 1328 1329 Visit(E->getSubExpr()); 1330 1331 // Push that destructor we promised. 1332 if (!wasExternallyDestructed) 1333 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1334 } 1335 1336 void 1337 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1338 AggValueSlot Slot = EnsureSlot(E->getType()); 1339 CGF.EmitCXXConstructExpr(E, Slot); 1340 } 1341 1342 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1343 const CXXInheritedCtorInitExpr *E) { 1344 AggValueSlot Slot = EnsureSlot(E->getType()); 1345 CGF.EmitInheritedCXXConstructorCall( 1346 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1347 E->inheritedFromVBase(), E); 1348 } 1349 1350 void 1351 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1352 AggValueSlot Slot = EnsureSlot(E->getType()); 1353 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1354 1355 // We'll need to enter cleanup scopes in case any of the element 1356 // initializers throws an exception. 1357 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1358 llvm::Instruction *CleanupDominator = nullptr; 1359 1360 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1361 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1362 e = E->capture_init_end(); 1363 i != e; ++i, ++CurField) { 1364 // Emit initialization 1365 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1366 if (CurField->hasCapturedVLAType()) { 1367 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1368 continue; 1369 } 1370 1371 EmitInitializationToLValue(*i, LV); 1372 1373 // Push a destructor if necessary. 1374 if (QualType::DestructionKind DtorKind = 1375 CurField->getType().isDestructedType()) { 1376 assert(LV.isSimple()); 1377 if (CGF.needsEHCleanup(DtorKind)) { 1378 if (!CleanupDominator) 1379 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1380 CGF.Int8Ty, 1381 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1382 CharUnits::One()); // placeholder 1383 1384 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1385 CGF.getDestroyer(DtorKind), false); 1386 Cleanups.push_back(CGF.EHStack.stable_begin()); 1387 } 1388 } 1389 } 1390 1391 // Deactivate all the partial cleanups in reverse order, which 1392 // generally means popping them. 1393 for (unsigned i = Cleanups.size(); i != 0; --i) 1394 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1395 1396 // Destroy the placeholder if we made one. 1397 if (CleanupDominator) 1398 CleanupDominator->eraseFromParent(); 1399 } 1400 1401 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1402 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1403 Visit(E->getSubExpr()); 1404 } 1405 1406 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1407 QualType T = E->getType(); 1408 AggValueSlot Slot = EnsureSlot(T); 1409 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1410 } 1411 1412 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1413 QualType T = E->getType(); 1414 AggValueSlot Slot = EnsureSlot(T); 1415 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1416 } 1417 1418 /// Determine whether the given cast kind is known to always convert values 1419 /// with all zero bits in their value representation to values with all zero 1420 /// bits in their value representation. 1421 static bool castPreservesZero(const CastExpr *CE) { 1422 switch (CE->getCastKind()) { 1423 // No-ops. 1424 case CK_NoOp: 1425 case CK_UserDefinedConversion: 1426 case CK_ConstructorConversion: 1427 case CK_BitCast: 1428 case CK_ToUnion: 1429 case CK_ToVoid: 1430 // Conversions between (possibly-complex) integral, (possibly-complex) 1431 // floating-point, and bool. 1432 case CK_BooleanToSignedIntegral: 1433 case CK_FloatingCast: 1434 case CK_FloatingComplexCast: 1435 case CK_FloatingComplexToBoolean: 1436 case CK_FloatingComplexToIntegralComplex: 1437 case CK_FloatingComplexToReal: 1438 case CK_FloatingRealToComplex: 1439 case CK_FloatingToBoolean: 1440 case CK_FloatingToIntegral: 1441 case CK_IntegralCast: 1442 case CK_IntegralComplexCast: 1443 case CK_IntegralComplexToBoolean: 1444 case CK_IntegralComplexToFloatingComplex: 1445 case CK_IntegralComplexToReal: 1446 case CK_IntegralRealToComplex: 1447 case CK_IntegralToBoolean: 1448 case CK_IntegralToFloating: 1449 // Reinterpreting integers as pointers and vice versa. 1450 case CK_IntegralToPointer: 1451 case CK_PointerToIntegral: 1452 // Language extensions. 1453 case CK_VectorSplat: 1454 case CK_MatrixCast: 1455 case CK_NonAtomicToAtomic: 1456 case CK_AtomicToNonAtomic: 1457 return true; 1458 1459 case CK_BaseToDerivedMemberPointer: 1460 case CK_DerivedToBaseMemberPointer: 1461 case CK_MemberPointerToBoolean: 1462 case CK_NullToMemberPointer: 1463 case CK_ReinterpretMemberPointer: 1464 // FIXME: ABI-dependent. 1465 return false; 1466 1467 case CK_AnyPointerToBlockPointerCast: 1468 case CK_BlockPointerToObjCPointerCast: 1469 case CK_CPointerToObjCPointerCast: 1470 case CK_ObjCObjectLValueCast: 1471 case CK_IntToOCLSampler: 1472 case CK_ZeroToOCLOpaqueType: 1473 // FIXME: Check these. 1474 return false; 1475 1476 case CK_FixedPointCast: 1477 case CK_FixedPointToBoolean: 1478 case CK_FixedPointToFloating: 1479 case CK_FixedPointToIntegral: 1480 case CK_FloatingToFixedPoint: 1481 case CK_IntegralToFixedPoint: 1482 // FIXME: Do all fixed-point types represent zero as all 0 bits? 1483 return false; 1484 1485 case CK_AddressSpaceConversion: 1486 case CK_BaseToDerived: 1487 case CK_DerivedToBase: 1488 case CK_Dynamic: 1489 case CK_NullToPointer: 1490 case CK_PointerToBoolean: 1491 // FIXME: Preserves zeroes only if zero pointers and null pointers have the 1492 // same representation in all involved address spaces. 1493 return false; 1494 1495 case CK_ARCConsumeObject: 1496 case CK_ARCExtendBlockObject: 1497 case CK_ARCProduceObject: 1498 case CK_ARCReclaimReturnedObject: 1499 case CK_CopyAndAutoreleaseBlockObject: 1500 case CK_ArrayToPointerDecay: 1501 case CK_FunctionToPointerDecay: 1502 case CK_BuiltinFnToFnPtr: 1503 case CK_Dependent: 1504 case CK_LValueBitCast: 1505 case CK_LValueToRValue: 1506 case CK_LValueToRValueBitCast: 1507 case CK_UncheckedDerivedToBase: 1508 return false; 1509 } 1510 llvm_unreachable("Unhandled clang::CastKind enum"); 1511 } 1512 1513 /// isSimpleZero - If emitting this value will obviously just cause a store of 1514 /// zero to memory, return true. This can return false if uncertain, so it just 1515 /// handles simple cases. 1516 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1517 E = E->IgnoreParens(); 1518 while (auto *CE = dyn_cast<CastExpr>(E)) { 1519 if (!castPreservesZero(CE)) 1520 break; 1521 E = CE->getSubExpr()->IgnoreParens(); 1522 } 1523 1524 // 0 1525 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1526 return IL->getValue() == 0; 1527 // +0.0 1528 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1529 return FL->getValue().isPosZero(); 1530 // int() 1531 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1532 CGF.getTypes().isZeroInitializable(E->getType())) 1533 return true; 1534 // (int*)0 - Null pointer expressions. 1535 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1536 return ICE->getCastKind() == CK_NullToPointer && 1537 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1538 !E->HasSideEffects(CGF.getContext()); 1539 // '\0' 1540 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1541 return CL->getValue() == 0; 1542 1543 // Otherwise, hard case: conservatively return false. 1544 return false; 1545 } 1546 1547 1548 void 1549 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1550 QualType type = LV.getType(); 1551 // FIXME: Ignore result? 1552 // FIXME: Are initializers affected by volatile? 1553 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1554 // Storing "i32 0" to a zero'd memory location is a noop. 1555 return; 1556 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1557 return EmitNullInitializationToLValue(LV); 1558 } else if (isa<NoInitExpr>(E)) { 1559 // Do nothing. 1560 return; 1561 } else if (type->isReferenceType()) { 1562 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1563 return CGF.EmitStoreThroughLValue(RV, LV); 1564 } 1565 1566 switch (CGF.getEvaluationKind(type)) { 1567 case TEK_Complex: 1568 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1569 return; 1570 case TEK_Aggregate: 1571 CGF.EmitAggExpr( 1572 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1573 AggValueSlot::DoesNotNeedGCBarriers, 1574 AggValueSlot::IsNotAliased, 1575 AggValueSlot::MayOverlap, Dest.isZeroed())); 1576 return; 1577 case TEK_Scalar: 1578 if (LV.isSimple()) { 1579 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1580 } else { 1581 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1582 } 1583 return; 1584 } 1585 llvm_unreachable("bad evaluation kind"); 1586 } 1587 1588 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1589 QualType type = lv.getType(); 1590 1591 // If the destination slot is already zeroed out before the aggregate is 1592 // copied into it, we don't have to emit any zeros here. 1593 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1594 return; 1595 1596 if (CGF.hasScalarEvaluationKind(type)) { 1597 // For non-aggregates, we can store the appropriate null constant. 1598 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1599 // Note that the following is not equivalent to 1600 // EmitStoreThroughBitfieldLValue for ARC types. 1601 if (lv.isBitField()) { 1602 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1603 } else { 1604 assert(lv.isSimple()); 1605 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1606 } 1607 } else { 1608 // There's a potential optimization opportunity in combining 1609 // memsets; that would be easy for arrays, but relatively 1610 // difficult for structures with the current code. 1611 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1612 } 1613 } 1614 1615 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) { 1616 VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), 1617 E->getInitializedFieldInUnion(), 1618 E->getArrayFiller()); 1619 } 1620 1621 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1622 if (E->hadArrayRangeDesignator()) 1623 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1624 1625 if (E->isTransparent()) 1626 return Visit(E->getInit(0)); 1627 1628 VisitCXXParenListOrInitListExpr( 1629 E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller()); 1630 } 1631 1632 void AggExprEmitter::VisitCXXParenListOrInitListExpr( 1633 Expr *ExprToVisit, ArrayRef<Expr *> InitExprs, 1634 FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) { 1635 #if 0 1636 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1637 // (Length of globals? Chunks of zeroed-out space?). 1638 // 1639 // If we can, prefer a copy from a global; this is a lot less code for long 1640 // globals, and it's easier for the current optimizers to analyze. 1641 if (llvm::Constant *C = 1642 CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) { 1643 llvm::GlobalVariable* GV = 1644 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1645 llvm::GlobalValue::InternalLinkage, C, ""); 1646 EmitFinalDestCopy(ExprToVisit->getType(), 1647 CGF.MakeAddrLValue(GV, ExprToVisit->getType())); 1648 return; 1649 } 1650 #endif 1651 1652 AggValueSlot Dest = EnsureSlot(ExprToVisit->getType()); 1653 1654 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType()); 1655 1656 // Handle initialization of an array. 1657 if (ExprToVisit->getType()->isConstantArrayType()) { 1658 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1659 EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit, 1660 InitExprs, ArrayFiller); 1661 return; 1662 } else if (ExprToVisit->getType()->isVariableArrayType()) { 1663 // A variable array type that has an initializer can only do empty 1664 // initialization. And because this feature is not exposed as an extension 1665 // in C++, we can safely memset the array memory to zero. 1666 assert(InitExprs.size() == 0 && 1667 "you can only use an empty initializer with VLAs"); 1668 CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType()); 1669 return; 1670 } 1671 1672 assert(ExprToVisit->getType()->isRecordType() && 1673 "Only support structs/unions here!"); 1674 1675 // Do struct initialization; this code just sets each individual member 1676 // to the approprate value. This makes bitfield support automatic; 1677 // the disadvantage is that the generated code is more difficult for 1678 // the optimizer, especially with bitfields. 1679 unsigned NumInitElements = InitExprs.size(); 1680 RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl(); 1681 1682 // We'll need to enter cleanup scopes in case any of the element 1683 // initializers throws an exception. 1684 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1685 llvm::Instruction *cleanupDominator = nullptr; 1686 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1687 cleanups.push_back(cleanup); 1688 if (!cleanupDominator) // create placeholder once needed 1689 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1690 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1691 CharUnits::One()); 1692 }; 1693 1694 unsigned curInitIndex = 0; 1695 1696 // Emit initialization of base classes. 1697 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1698 assert(NumInitElements >= CXXRD->getNumBases() && 1699 "missing initializer for base class"); 1700 for (auto &Base : CXXRD->bases()) { 1701 assert(!Base.isVirtual() && "should not see vbases here"); 1702 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1703 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1704 Dest.getAddress(), CXXRD, BaseRD, 1705 /*isBaseVirtual*/ false); 1706 AggValueSlot AggSlot = AggValueSlot::forAddr( 1707 V, Qualifiers(), 1708 AggValueSlot::IsDestructed, 1709 AggValueSlot::DoesNotNeedGCBarriers, 1710 AggValueSlot::IsNotAliased, 1711 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1712 CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot); 1713 1714 if (QualType::DestructionKind dtorKind = 1715 Base.getType().isDestructedType()) { 1716 CGF.pushDestroy(dtorKind, V, Base.getType()); 1717 addCleanup(CGF.EHStack.stable_begin()); 1718 } 1719 } 1720 } 1721 1722 // Prepare a 'this' for CXXDefaultInitExprs. 1723 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1724 1725 if (record->isUnion()) { 1726 // Only initialize one field of a union. The field itself is 1727 // specified by the initializer list. 1728 if (!InitializedFieldInUnion) { 1729 // Empty union; we have nothing to do. 1730 1731 #ifndef NDEBUG 1732 // Make sure that it's really an empty and not a failure of 1733 // semantic analysis. 1734 for (const auto *Field : record->fields()) 1735 assert((Field->isUnnamedBitfield() || Field->isAnonymousStructOrUnion()) && "Only unnamed bitfields or ananymous class allowed"); 1736 #endif 1737 return; 1738 } 1739 1740 // FIXME: volatility 1741 FieldDecl *Field = InitializedFieldInUnion; 1742 1743 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1744 if (NumInitElements) { 1745 // Store the initializer into the field 1746 EmitInitializationToLValue(InitExprs[0], FieldLoc); 1747 } else { 1748 // Default-initialize to null. 1749 EmitNullInitializationToLValue(FieldLoc); 1750 } 1751 1752 return; 1753 } 1754 1755 // Here we iterate over the fields; this makes it simpler to both 1756 // default-initialize fields and skip over unnamed fields. 1757 for (const auto *field : record->fields()) { 1758 // We're done once we hit the flexible array member. 1759 if (field->getType()->isIncompleteArrayType()) 1760 break; 1761 1762 // Always skip anonymous bitfields. 1763 if (field->isUnnamedBitfield()) 1764 continue; 1765 1766 // We're done if we reach the end of the explicit initializers, we 1767 // have a zeroed object, and the rest of the fields are 1768 // zero-initializable. 1769 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1770 CGF.getTypes().isZeroInitializable(ExprToVisit->getType())) 1771 break; 1772 1773 1774 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1775 // We never generate write-barries for initialized fields. 1776 LV.setNonGC(true); 1777 1778 if (curInitIndex < NumInitElements) { 1779 // Store the initializer into the field. 1780 EmitInitializationToLValue(InitExprs[curInitIndex++], LV); 1781 } else { 1782 // We're out of initializers; default-initialize to null 1783 EmitNullInitializationToLValue(LV); 1784 } 1785 1786 // Push a destructor if necessary. 1787 // FIXME: if we have an array of structures, all explicitly 1788 // initialized, we can end up pushing a linear number of cleanups. 1789 bool pushedCleanup = false; 1790 if (QualType::DestructionKind dtorKind 1791 = field->getType().isDestructedType()) { 1792 assert(LV.isSimple()); 1793 if (CGF.needsEHCleanup(dtorKind)) { 1794 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1795 CGF.getDestroyer(dtorKind), false); 1796 addCleanup(CGF.EHStack.stable_begin()); 1797 pushedCleanup = true; 1798 } 1799 } 1800 1801 // If the GEP didn't get used because of a dead zero init or something 1802 // else, clean it up for -O0 builds and general tidiness. 1803 if (!pushedCleanup && LV.isSimple()) 1804 if (llvm::GetElementPtrInst *GEP = 1805 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1806 if (GEP->use_empty()) 1807 GEP->eraseFromParent(); 1808 } 1809 1810 // Deactivate all the partial cleanups in reverse order, which 1811 // generally means popping them. 1812 assert((cleanupDominator || cleanups.empty()) && 1813 "Missing cleanupDominator before deactivating cleanup blocks"); 1814 for (unsigned i = cleanups.size(); i != 0; --i) 1815 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1816 1817 // Destroy the placeholder if we made one. 1818 if (cleanupDominator) 1819 cleanupDominator->eraseFromParent(); 1820 } 1821 1822 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1823 llvm::Value *outerBegin) { 1824 // Emit the common subexpression. 1825 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1826 1827 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1828 uint64_t numElements = E->getArraySize().getZExtValue(); 1829 1830 if (!numElements) 1831 return; 1832 1833 // destPtr is an array*. Construct an elementType* by drilling down a level. 1834 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1835 llvm::Value *indices[] = {zero, zero}; 1836 llvm::Value *begin = Builder.CreateInBoundsGEP( 1837 destPtr.getElementType(), destPtr.getPointer(), indices, 1838 "arrayinit.begin"); 1839 1840 // Prepare to special-case multidimensional array initialization: we avoid 1841 // emitting multiple destructor loops in that case. 1842 if (!outerBegin) 1843 outerBegin = begin; 1844 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1845 1846 QualType elementType = 1847 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1848 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1849 CharUnits elementAlign = 1850 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1851 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType); 1852 1853 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1854 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1855 1856 // Jump into the body. 1857 CGF.EmitBlock(bodyBB); 1858 llvm::PHINode *index = 1859 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1860 index->addIncoming(zero, entryBB); 1861 llvm::Value *element = 1862 Builder.CreateInBoundsGEP(llvmElementType, begin, index); 1863 1864 // Prepare for a cleanup. 1865 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1866 EHScopeStack::stable_iterator cleanup; 1867 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1868 if (outerBegin->getType() != element->getType()) 1869 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1870 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1871 elementAlign, 1872 CGF.getDestroyer(dtorKind)); 1873 cleanup = CGF.EHStack.stable_begin(); 1874 } else { 1875 dtorKind = QualType::DK_none; 1876 } 1877 1878 // Emit the actual filler expression. 1879 { 1880 // Temporaries created in an array initialization loop are destroyed 1881 // at the end of each iteration. 1882 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1883 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1884 LValue elementLV = CGF.MakeAddrLValue( 1885 Address(element, llvmElementType, elementAlign), elementType); 1886 1887 if (InnerLoop) { 1888 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1889 auto elementSlot = AggValueSlot::forLValue( 1890 elementLV, CGF, AggValueSlot::IsDestructed, 1891 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1892 AggValueSlot::DoesNotOverlap); 1893 AggExprEmitter(CGF, elementSlot, false) 1894 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1895 } else 1896 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1897 } 1898 1899 // Move on to the next element. 1900 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1901 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1902 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1903 1904 // Leave the loop if we're done. 1905 llvm::Value *done = Builder.CreateICmpEQ( 1906 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1907 "arrayinit.done"); 1908 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1909 Builder.CreateCondBr(done, endBB, bodyBB); 1910 1911 CGF.EmitBlock(endBB); 1912 1913 // Leave the partial-array cleanup if we entered one. 1914 if (dtorKind) 1915 CGF.DeactivateCleanupBlock(cleanup, index); 1916 } 1917 1918 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1919 AggValueSlot Dest = EnsureSlot(E->getType()); 1920 1921 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1922 EmitInitializationToLValue(E->getBase(), DestLV); 1923 VisitInitListExpr(E->getUpdater()); 1924 } 1925 1926 //===----------------------------------------------------------------------===// 1927 // Entry Points into this File 1928 //===----------------------------------------------------------------------===// 1929 1930 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1931 /// non-zero bytes that will be stored when outputting the initializer for the 1932 /// specified initializer expression. 1933 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1934 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 1935 E = MTE->getSubExpr(); 1936 E = E->IgnoreParenNoopCasts(CGF.getContext()); 1937 1938 // 0 and 0.0 won't require any non-zero stores! 1939 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1940 1941 // If this is an initlist expr, sum up the size of sizes of the (present) 1942 // elements. If this is something weird, assume the whole thing is non-zero. 1943 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1944 while (ILE && ILE->isTransparent()) 1945 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1946 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1947 return CGF.getContext().getTypeSizeInChars(E->getType()); 1948 1949 // InitListExprs for structs have to be handled carefully. If there are 1950 // reference members, we need to consider the size of the reference, not the 1951 // referencee. InitListExprs for unions and arrays can't have references. 1952 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1953 if (!RT->isUnionType()) { 1954 RecordDecl *SD = RT->getDecl(); 1955 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1956 1957 unsigned ILEElement = 0; 1958 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1959 while (ILEElement != CXXRD->getNumBases()) 1960 NumNonZeroBytes += 1961 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1962 for (const auto *Field : SD->fields()) { 1963 // We're done once we hit the flexible array member or run out of 1964 // InitListExpr elements. 1965 if (Field->getType()->isIncompleteArrayType() || 1966 ILEElement == ILE->getNumInits()) 1967 break; 1968 if (Field->isUnnamedBitfield()) 1969 continue; 1970 1971 const Expr *E = ILE->getInit(ILEElement++); 1972 1973 // Reference values are always non-null and have the width of a pointer. 1974 if (Field->getType()->isReferenceType()) 1975 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1976 CGF.getTarget().getPointerWidth(LangAS::Default)); 1977 else 1978 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1979 } 1980 1981 return NumNonZeroBytes; 1982 } 1983 } 1984 1985 // FIXME: This overestimates the number of non-zero bytes for bit-fields. 1986 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1987 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1988 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1989 return NumNonZeroBytes; 1990 } 1991 1992 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1993 /// zeros in it, emit a memset and avoid storing the individual zeros. 1994 /// 1995 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1996 CodeGenFunction &CGF) { 1997 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1998 // volatile stores. 1999 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 2000 return; 2001 2002 // C++ objects with a user-declared constructor don't need zero'ing. 2003 if (CGF.getLangOpts().CPlusPlus) 2004 if (const RecordType *RT = CGF.getContext() 2005 .getBaseElementType(E->getType())->getAs<RecordType>()) { 2006 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 2007 if (RD->hasUserDeclaredConstructor()) 2008 return; 2009 } 2010 2011 // If the type is 16-bytes or smaller, prefer individual stores over memset. 2012 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 2013 if (Size <= CharUnits::fromQuantity(16)) 2014 return; 2015 2016 // Check to see if over 3/4 of the initializer are known to be zero. If so, 2017 // we prefer to emit memset + individual stores for the rest. 2018 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 2019 if (NumNonZeroBytes*4 > Size) 2020 return; 2021 2022 // Okay, it seems like a good idea to use an initial memset, emit the call. 2023 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 2024 2025 Address Loc = Slot.getAddress().withElementType(CGF.Int8Ty); 2026 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 2027 2028 // Tell the AggExprEmitter that the slot is known zero. 2029 Slot.setZeroed(); 2030 } 2031 2032 2033 2034 2035 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 2036 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 2037 /// the value of the aggregate expression is not needed. If VolatileDest is 2038 /// true, DestPtr cannot be 0. 2039 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 2040 assert(E && hasAggregateEvaluationKind(E->getType()) && 2041 "Invalid aggregate expression to emit"); 2042 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 2043 "slot has bits but no address"); 2044 2045 // Optimize the slot if possible. 2046 CheckAggExprForMemSetUse(Slot, E, *this); 2047 2048 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 2049 } 2050 2051 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 2052 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 2053 Address Temp = CreateMemTemp(E->getType()); 2054 LValue LV = MakeAddrLValue(Temp, E->getType()); 2055 EmitAggExpr(E, AggValueSlot::forLValue( 2056 LV, *this, AggValueSlot::IsNotDestructed, 2057 AggValueSlot::DoesNotNeedGCBarriers, 2058 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 2059 return LV; 2060 } 2061 2062 AggValueSlot::Overlap_t 2063 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 2064 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 2065 return AggValueSlot::DoesNotOverlap; 2066 2067 // If the field lies entirely within the enclosing class's nvsize, its tail 2068 // padding cannot overlap any already-initialized object. (The only subobjects 2069 // with greater addresses that might already be initialized are vbases.) 2070 const RecordDecl *ClassRD = FD->getParent(); 2071 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 2072 if (Layout.getFieldOffset(FD->getFieldIndex()) + 2073 getContext().getTypeSize(FD->getType()) <= 2074 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 2075 return AggValueSlot::DoesNotOverlap; 2076 2077 // The tail padding may contain values we need to preserve. 2078 return AggValueSlot::MayOverlap; 2079 } 2080 2081 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 2082 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 2083 // If the most-derived object is a field declared with [[no_unique_address]], 2084 // the tail padding of any virtual base could be reused for other subobjects 2085 // of that field's class. 2086 if (IsVirtual) 2087 return AggValueSlot::MayOverlap; 2088 2089 // If the base class is laid out entirely within the nvsize of the derived 2090 // class, its tail padding cannot yet be initialized, so we can issue 2091 // stores at the full width of the base class. 2092 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2093 if (Layout.getBaseClassOffset(BaseRD) + 2094 getContext().getASTRecordLayout(BaseRD).getSize() <= 2095 Layout.getNonVirtualSize()) 2096 return AggValueSlot::DoesNotOverlap; 2097 2098 // The tail padding may contain values we need to preserve. 2099 return AggValueSlot::MayOverlap; 2100 } 2101 2102 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 2103 AggValueSlot::Overlap_t MayOverlap, 2104 bool isVolatile) { 2105 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 2106 2107 Address DestPtr = Dest.getAddress(*this); 2108 Address SrcPtr = Src.getAddress(*this); 2109 2110 if (getLangOpts().CPlusPlus) { 2111 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2112 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 2113 assert((Record->hasTrivialCopyConstructor() || 2114 Record->hasTrivialCopyAssignment() || 2115 Record->hasTrivialMoveConstructor() || 2116 Record->hasTrivialMoveAssignment() || 2117 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) && 2118 "Trying to aggregate-copy a type without a trivial copy/move " 2119 "constructor or assignment operator"); 2120 // Ignore empty classes in C++. 2121 if (Record->isEmpty()) 2122 return; 2123 } 2124 } 2125 2126 if (getLangOpts().CUDAIsDevice) { 2127 if (Ty->isCUDADeviceBuiltinSurfaceType()) { 2128 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest, 2129 Src)) 2130 return; 2131 } else if (Ty->isCUDADeviceBuiltinTextureType()) { 2132 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest, 2133 Src)) 2134 return; 2135 } 2136 } 2137 2138 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 2139 // C99 6.5.16.1p3, which states "If the value being stored in an object is 2140 // read from another object that overlaps in anyway the storage of the first 2141 // object, then the overlap shall be exact and the two objects shall have 2142 // qualified or unqualified versions of a compatible type." 2143 // 2144 // memcpy is not defined if the source and destination pointers are exactly 2145 // equal, but other compilers do this optimization, and almost every memcpy 2146 // implementation handles this case safely. If there is a libc that does not 2147 // safely handle this, we can add a target hook. 2148 2149 // Get data size info for this aggregate. Don't copy the tail padding if this 2150 // might be a potentially-overlapping subobject, since the tail padding might 2151 // be occupied by a different object. Otherwise, copying it is fine. 2152 TypeInfoChars TypeInfo; 2153 if (MayOverlap) 2154 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 2155 else 2156 TypeInfo = getContext().getTypeInfoInChars(Ty); 2157 2158 llvm::Value *SizeVal = nullptr; 2159 if (TypeInfo.Width.isZero()) { 2160 // But note that getTypeInfo returns 0 for a VLA. 2161 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 2162 getContext().getAsArrayType(Ty))) { 2163 QualType BaseEltTy; 2164 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 2165 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 2166 assert(!TypeInfo.Width.isZero()); 2167 SizeVal = Builder.CreateNUWMul( 2168 SizeVal, 2169 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity())); 2170 } 2171 } 2172 if (!SizeVal) { 2173 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()); 2174 } 2175 2176 // FIXME: If we have a volatile struct, the optimizer can remove what might 2177 // appear to be `extra' memory ops: 2178 // 2179 // volatile struct { int i; } a, b; 2180 // 2181 // int main() { 2182 // a = b; 2183 // a = b; 2184 // } 2185 // 2186 // we need to use a different call here. We use isVolatile to indicate when 2187 // either the source or the destination is volatile. 2188 2189 DestPtr = DestPtr.withElementType(Int8Ty); 2190 SrcPtr = SrcPtr.withElementType(Int8Ty); 2191 2192 // Don't do any of the memmove_collectable tests if GC isn't set. 2193 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2194 // fall through 2195 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2196 RecordDecl *Record = RecordTy->getDecl(); 2197 if (Record->hasObjectMember()) { 2198 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2199 SizeVal); 2200 return; 2201 } 2202 } else if (Ty->isArrayType()) { 2203 QualType BaseType = getContext().getBaseElementType(Ty); 2204 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2205 if (RecordTy->getDecl()->hasObjectMember()) { 2206 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2207 SizeVal); 2208 return; 2209 } 2210 } 2211 } 2212 2213 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2214 2215 // Determine the metadata to describe the position of any padding in this 2216 // memcpy, as well as the TBAA tags for the members of the struct, in case 2217 // the optimizer wishes to expand it in to scalar memory operations. 2218 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2219 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2220 2221 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2222 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2223 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2224 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2225 } 2226 } 2227