xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExpr.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfoImpl.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CGRecordLayout.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenModule.h"
24 #include "ConstantEmitter.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/Attr.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/NSAPI.h"
30 #include "clang/AST/StmtVisitor.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "llvm/ADT/Hashing.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsWebAssembly.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/MatrixBuilder.h"
43 #include "llvm/Passes/OptimizationLevel.h"
44 #include "llvm/Support/ConvertUTF.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Utils/SanitizerStats.h"
50 
51 #include <optional>
52 #include <string>
53 
54 using namespace clang;
55 using namespace CodeGen;
56 
57 // Experiment to make sanitizers easier to debug
58 static llvm::cl::opt<bool> ClSanitizeDebugDeoptimization(
59     "ubsan-unique-traps", llvm::cl::Optional,
60     llvm::cl::desc("Deoptimize traps for UBSAN so there is 1 trap per check."));
61 
62 // TODO: Introduce frontend options to enabled per sanitizers, similar to
63 // `fsanitize-trap`.
64 static llvm::cl::opt<bool> ClSanitizeGuardChecks(
65     "ubsan-guard-checks", llvm::cl::Optional,
66     llvm::cl::desc("Guard UBSAN checks with `llvm.allow.ubsan.check()`."));
67 
68 //===--------------------------------------------------------------------===//
69 //                        Miscellaneous Helper Methods
70 //===--------------------------------------------------------------------===//
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block.
74 RawAddress
75 CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits Align,
76                                              const Twine &Name,
77                                              llvm::Value *ArraySize) {
78   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
79   Alloca->setAlignment(Align.getAsAlign());
80   return RawAddress(Alloca, Ty, Align, KnownNonNull);
81 }
82 
83 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
84 /// block. The alloca is casted to default address space if necessary.
85 RawAddress CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
86                                              const Twine &Name,
87                                              llvm::Value *ArraySize,
88                                              RawAddress *AllocaAddr) {
89   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
90   if (AllocaAddr)
91     *AllocaAddr = Alloca;
92   llvm::Value *V = Alloca.getPointer();
93   // Alloca always returns a pointer in alloca address space, which may
94   // be different from the type defined by the language. For example,
95   // in C++ the auto variables are in the default address space. Therefore
96   // cast alloca to the default address space when necessary.
97   if (getASTAllocaAddressSpace() != LangAS::Default) {
98     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
99     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
100     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
101     // otherwise alloca is inserted at the current insertion point of the
102     // builder.
103     if (!ArraySize)
104       Builder.SetInsertPoint(getPostAllocaInsertPoint());
105     V = getTargetHooks().performAddrSpaceCast(
106         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
107         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
108   }
109 
110   return RawAddress(V, Ty, Align, KnownNonNull);
111 }
112 
113 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
114 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
115 /// insertion point of the builder.
116 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
117                                                     const Twine &Name,
118                                                     llvm::Value *ArraySize) {
119   llvm::AllocaInst *Alloca;
120   if (ArraySize)
121     Alloca = Builder.CreateAlloca(Ty, ArraySize, Name);
122   else
123     Alloca = new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
124                                   ArraySize, Name, &*AllocaInsertPt);
125   if (Allocas) {
126     Allocas->Add(Alloca);
127   }
128   return Alloca;
129 }
130 
131 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
132 /// default alignment of the corresponding LLVM type, which is *not*
133 /// guaranteed to be related in any way to the expected alignment of
134 /// an AST type that might have been lowered to Ty.
135 RawAddress CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
136                                                          const Twine &Name) {
137   CharUnits Align =
138       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty));
139   return CreateTempAlloca(Ty, Align, Name);
140 }
141 
142 RawAddress CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
143   CharUnits Align = getContext().getTypeAlignInChars(Ty);
144   return CreateTempAlloca(ConvertType(Ty), Align, Name);
145 }
146 
147 RawAddress CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
148                                           RawAddress *Alloca) {
149   // FIXME: Should we prefer the preferred type alignment here?
150   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
151 }
152 
153 RawAddress CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
154                                           const Twine &Name,
155                                           RawAddress *Alloca) {
156   RawAddress Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
157                                        /*ArraySize=*/nullptr, Alloca);
158 
159   if (Ty->isConstantMatrixType()) {
160     auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
161     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
162                                                 ArrayTy->getNumElements());
163 
164     Result = Address(Result.getPointer(), VectorTy, Result.getAlignment(),
165                      KnownNonNull);
166   }
167   return Result;
168 }
169 
170 RawAddress CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
171                                                      CharUnits Align,
172                                                      const Twine &Name) {
173   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
174 }
175 
176 RawAddress CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
177                                                      const Twine &Name) {
178   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
179                                   Name);
180 }
181 
182 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
183 /// expression and compare the result against zero, returning an Int1Ty value.
184 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
185   PGO.setCurrentStmt(E);
186   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
187     llvm::Value *MemPtr = EmitScalarExpr(E);
188     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
189   }
190 
191   QualType BoolTy = getContext().BoolTy;
192   SourceLocation Loc = E->getExprLoc();
193   CGFPOptionsRAII FPOptsRAII(*this, E);
194   if (!E->getType()->isAnyComplexType())
195     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
196 
197   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
198                                        Loc);
199 }
200 
201 /// EmitIgnoredExpr - Emit code to compute the specified expression,
202 /// ignoring the result.
203 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
204   if (E->isPRValue())
205     return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
206 
207   // if this is a bitfield-resulting conditional operator, we can special case
208   // emit this. The normal 'EmitLValue' version of this is particularly
209   // difficult to codegen for, since creating a single "LValue" for two
210   // different sized arguments here is not particularly doable.
211   if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
212           E->IgnoreParenNoopCasts(getContext()))) {
213     if (CondOp->getObjectKind() == OK_BitField)
214       return EmitIgnoredConditionalOperator(CondOp);
215   }
216 
217   // Just emit it as an l-value and drop the result.
218   EmitLValue(E);
219 }
220 
221 /// EmitAnyExpr - Emit code to compute the specified expression which
222 /// can have any type.  The result is returned as an RValue struct.
223 /// If this is an aggregate expression, AggSlot indicates where the
224 /// result should be returned.
225 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
226                                     AggValueSlot aggSlot,
227                                     bool ignoreResult) {
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Scalar:
230     return RValue::get(EmitScalarExpr(E, ignoreResult));
231   case TEK_Complex:
232     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
233   case TEK_Aggregate:
234     if (!ignoreResult && aggSlot.isIgnored())
235       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
236     EmitAggExpr(E, aggSlot);
237     return aggSlot.asRValue();
238   }
239   llvm_unreachable("bad evaluation kind");
240 }
241 
242 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
243 /// always be accessible even if no aggregate location is provided.
244 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
245   AggValueSlot AggSlot = AggValueSlot::ignored();
246 
247   if (hasAggregateEvaluationKind(E->getType()))
248     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
249   return EmitAnyExpr(E, AggSlot);
250 }
251 
252 /// EmitAnyExprToMem - Evaluate an expression into a given memory
253 /// location.
254 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
255                                        Address Location,
256                                        Qualifiers Quals,
257                                        bool IsInit) {
258   // FIXME: This function should take an LValue as an argument.
259   switch (getEvaluationKind(E->getType())) {
260   case TEK_Complex:
261     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
262                               /*isInit*/ false);
263     return;
264 
265   case TEK_Aggregate: {
266     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
267                                          AggValueSlot::IsDestructed_t(IsInit),
268                                          AggValueSlot::DoesNotNeedGCBarriers,
269                                          AggValueSlot::IsAliased_t(!IsInit),
270                                          AggValueSlot::MayOverlap));
271     return;
272   }
273 
274   case TEK_Scalar: {
275     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
276     LValue LV = MakeAddrLValue(Location, E->getType());
277     EmitStoreThroughLValue(RV, LV);
278     return;
279   }
280   }
281   llvm_unreachable("bad evaluation kind");
282 }
283 
284 static void
285 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
286                      const Expr *E, Address ReferenceTemporary) {
287   // Objective-C++ ARC:
288   //   If we are binding a reference to a temporary that has ownership, we
289   //   need to perform retain/release operations on the temporary.
290   //
291   // FIXME: This should be looking at E, not M.
292   if (auto Lifetime = M->getType().getObjCLifetime()) {
293     switch (Lifetime) {
294     case Qualifiers::OCL_None:
295     case Qualifiers::OCL_ExplicitNone:
296       // Carry on to normal cleanup handling.
297       break;
298 
299     case Qualifiers::OCL_Autoreleasing:
300       // Nothing to do; cleaned up by an autorelease pool.
301       return;
302 
303     case Qualifiers::OCL_Strong:
304     case Qualifiers::OCL_Weak:
305       switch (StorageDuration Duration = M->getStorageDuration()) {
306       case SD_Static:
307         // Note: we intentionally do not register a cleanup to release
308         // the object on program termination.
309         return;
310 
311       case SD_Thread:
312         // FIXME: We should probably register a cleanup in this case.
313         return;
314 
315       case SD_Automatic:
316       case SD_FullExpression:
317         CodeGenFunction::Destroyer *Destroy;
318         CleanupKind CleanupKind;
319         if (Lifetime == Qualifiers::OCL_Strong) {
320           const ValueDecl *VD = M->getExtendingDecl();
321           bool Precise = isa_and_nonnull<VarDecl>(VD) &&
322                          VD->hasAttr<ObjCPreciseLifetimeAttr>();
323           CleanupKind = CGF.getARCCleanupKind();
324           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
325                             : &CodeGenFunction::destroyARCStrongImprecise;
326         } else {
327           // __weak objects always get EH cleanups; otherwise, exceptions
328           // could cause really nasty crashes instead of mere leaks.
329           CleanupKind = NormalAndEHCleanup;
330           Destroy = &CodeGenFunction::destroyARCWeak;
331         }
332         if (Duration == SD_FullExpression)
333           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
334                           M->getType(), *Destroy,
335                           CleanupKind & EHCleanup);
336         else
337           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
338                                           M->getType(),
339                                           *Destroy, CleanupKind & EHCleanup);
340         return;
341 
342       case SD_Dynamic:
343         llvm_unreachable("temporary cannot have dynamic storage duration");
344       }
345       llvm_unreachable("unknown storage duration");
346     }
347   }
348 
349   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
350   if (const RecordType *RT =
351           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
352     // Get the destructor for the reference temporary.
353     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
354     if (!ClassDecl->hasTrivialDestructor())
355       ReferenceTemporaryDtor = ClassDecl->getDestructor();
356   }
357 
358   if (!ReferenceTemporaryDtor)
359     return;
360 
361   // Call the destructor for the temporary.
362   switch (M->getStorageDuration()) {
363   case SD_Static:
364   case SD_Thread: {
365     llvm::FunctionCallee CleanupFn;
366     llvm::Constant *CleanupArg;
367     if (E->getType()->isArrayType()) {
368       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
369           ReferenceTemporary, E->getType(),
370           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
371           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
372       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
373     } else {
374       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
375           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
376       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.emitRawPointer(CGF));
377     }
378     CGF.CGM.getCXXABI().registerGlobalDtor(
379         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
380     break;
381   }
382 
383   case SD_FullExpression:
384     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
385                     CodeGenFunction::destroyCXXObject,
386                     CGF.getLangOpts().Exceptions);
387     break;
388 
389   case SD_Automatic:
390     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
391                                     ReferenceTemporary, E->getType(),
392                                     CodeGenFunction::destroyCXXObject,
393                                     CGF.getLangOpts().Exceptions);
394     break;
395 
396   case SD_Dynamic:
397     llvm_unreachable("temporary cannot have dynamic storage duration");
398   }
399 }
400 
401 static RawAddress createReferenceTemporary(CodeGenFunction &CGF,
402                                            const MaterializeTemporaryExpr *M,
403                                            const Expr *Inner,
404                                            RawAddress *Alloca = nullptr) {
405   auto &TCG = CGF.getTargetHooks();
406   switch (M->getStorageDuration()) {
407   case SD_FullExpression:
408   case SD_Automatic: {
409     // If we have a constant temporary array or record try to promote it into a
410     // constant global under the same rules a normal constant would've been
411     // promoted. This is easier on the optimizer and generally emits fewer
412     // instructions.
413     QualType Ty = Inner->getType();
414     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
415         (Ty->isArrayType() || Ty->isRecordType()) &&
416         Ty.isConstantStorage(CGF.getContext(), true, false))
417       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
418         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
419         auto *GV = new llvm::GlobalVariable(
420             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
421             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
422             llvm::GlobalValue::NotThreadLocal,
423             CGF.getContext().getTargetAddressSpace(AS));
424         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
425         GV->setAlignment(alignment.getAsAlign());
426         llvm::Constant *C = GV;
427         if (AS != LangAS::Default)
428           C = TCG.performAddrSpaceCast(
429               CGF.CGM, GV, AS, LangAS::Default,
430               GV->getValueType()->getPointerTo(
431                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
432         // FIXME: Should we put the new global into a COMDAT?
433         return RawAddress(C, GV->getValueType(), alignment);
434       }
435     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
436   }
437   case SD_Thread:
438   case SD_Static:
439     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
440 
441   case SD_Dynamic:
442     llvm_unreachable("temporary can't have dynamic storage duration");
443   }
444   llvm_unreachable("unknown storage duration");
445 }
446 
447 /// Helper method to check if the underlying ABI is AAPCS
448 static bool isAAPCS(const TargetInfo &TargetInfo) {
449   return TargetInfo.getABI().starts_with("aapcs");
450 }
451 
452 LValue CodeGenFunction::
453 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
454   const Expr *E = M->getSubExpr();
455 
456   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
457           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
458          "Reference should never be pseudo-strong!");
459 
460   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
461   // as that will cause the lifetime adjustment to be lost for ARC
462   auto ownership = M->getType().getObjCLifetime();
463   if (ownership != Qualifiers::OCL_None &&
464       ownership != Qualifiers::OCL_ExplicitNone) {
465     RawAddress Object = createReferenceTemporary(*this, M, E);
466     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
467       llvm::Type *Ty = ConvertTypeForMem(E->getType());
468       Object = Object.withElementType(Ty);
469 
470       // createReferenceTemporary will promote the temporary to a global with a
471       // constant initializer if it can.  It can only do this to a value of
472       // ARC-manageable type if the value is global and therefore "immune" to
473       // ref-counting operations.  Therefore we have no need to emit either a
474       // dynamic initialization or a cleanup and we can just return the address
475       // of the temporary.
476       if (Var->hasInitializer())
477         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
478 
479       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
480     }
481     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
482                                        AlignmentSource::Decl);
483 
484     switch (getEvaluationKind(E->getType())) {
485     default: llvm_unreachable("expected scalar or aggregate expression");
486     case TEK_Scalar:
487       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
488       break;
489     case TEK_Aggregate: {
490       EmitAggExpr(E, AggValueSlot::forAddr(Object,
491                                            E->getType().getQualifiers(),
492                                            AggValueSlot::IsDestructed,
493                                            AggValueSlot::DoesNotNeedGCBarriers,
494                                            AggValueSlot::IsNotAliased,
495                                            AggValueSlot::DoesNotOverlap));
496       break;
497     }
498     }
499 
500     pushTemporaryCleanup(*this, M, E, Object);
501     return RefTempDst;
502   }
503 
504   SmallVector<const Expr *, 2> CommaLHSs;
505   SmallVector<SubobjectAdjustment, 2> Adjustments;
506   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
507 
508   for (const auto &Ignored : CommaLHSs)
509     EmitIgnoredExpr(Ignored);
510 
511   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
512     if (opaque->getType()->isRecordType()) {
513       assert(Adjustments.empty());
514       return EmitOpaqueValueLValue(opaque);
515     }
516   }
517 
518   // Create and initialize the reference temporary.
519   RawAddress Alloca = Address::invalid();
520   RawAddress Object = createReferenceTemporary(*this, M, E, &Alloca);
521   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
522           Object.getPointer()->stripPointerCasts())) {
523     llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
524     Object = Object.withElementType(TemporaryType);
525     // If the temporary is a global and has a constant initializer or is a
526     // constant temporary that we promoted to a global, we may have already
527     // initialized it.
528     if (!Var->hasInitializer()) {
529       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
530       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
531     }
532   } else {
533     switch (M->getStorageDuration()) {
534     case SD_Automatic:
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
539                                                   Alloca, Size);
540       }
541       break;
542 
543     case SD_FullExpression: {
544       if (!ShouldEmitLifetimeMarkers)
545         break;
546 
547       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
548       // marker. Instead, start the lifetime of a conditional temporary earlier
549       // so that it's unconditional. Don't do this with sanitizers which need
550       // more precise lifetime marks. However when inside an "await.suspend"
551       // block, we should always avoid conditional cleanup because it creates
552       // boolean marker that lives across await_suspend, which can destroy coro
553       // frame.
554       ConditionalEvaluation *OldConditional = nullptr;
555       CGBuilderTy::InsertPoint OldIP;
556       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
557           ((!SanOpts.has(SanitizerKind::HWAddress) &&
558             !SanOpts.has(SanitizerKind::Memory) &&
559             !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) ||
560            inSuspendBlock())) {
561         OldConditional = OutermostConditional;
562         OutermostConditional = nullptr;
563 
564         OldIP = Builder.saveIP();
565         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
566         Builder.restoreIP(CGBuilderTy::InsertPoint(
567             Block, llvm::BasicBlock::iterator(Block->back())));
568       }
569 
570       if (auto *Size = EmitLifetimeStart(
571               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
572               Alloca.getPointer())) {
573         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
574                                              Size);
575       }
576 
577       if (OldConditional) {
578         OutermostConditional = OldConditional;
579         Builder.restoreIP(OldIP);
580       }
581       break;
582     }
583 
584     default:
585       break;
586     }
587     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
588   }
589   pushTemporaryCleanup(*this, M, E, Object);
590 
591   // Perform derived-to-base casts and/or field accesses, to get from the
592   // temporary object we created (and, potentially, for which we extended
593   // the lifetime) to the subobject we're binding the reference to.
594   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
595     switch (Adjustment.Kind) {
596     case SubobjectAdjustment::DerivedToBaseAdjustment:
597       Object =
598           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
599                                 Adjustment.DerivedToBase.BasePath->path_begin(),
600                                 Adjustment.DerivedToBase.BasePath->path_end(),
601                                 /*NullCheckValue=*/ false, E->getExprLoc());
602       break;
603 
604     case SubobjectAdjustment::FieldAdjustment: {
605       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
606       LV = EmitLValueForField(LV, Adjustment.Field);
607       assert(LV.isSimple() &&
608              "materialized temporary field is not a simple lvalue");
609       Object = LV.getAddress();
610       break;
611     }
612 
613     case SubobjectAdjustment::MemberPointerAdjustment: {
614       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
615       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
616                                                Adjustment.Ptr.MPT);
617       break;
618     }
619     }
620   }
621 
622   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
623 }
624 
625 RValue
626 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
627   // Emit the expression as an lvalue.
628   LValue LV = EmitLValue(E);
629   assert(LV.isSimple());
630   llvm::Value *Value = LV.getPointer(*this);
631 
632   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
633     // C++11 [dcl.ref]p5 (as amended by core issue 453):
634     //   If a glvalue to which a reference is directly bound designates neither
635     //   an existing object or function of an appropriate type nor a region of
636     //   storage of suitable size and alignment to contain an object of the
637     //   reference's type, the behavior is undefined.
638     QualType Ty = E->getType();
639     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
640   }
641 
642   return RValue::get(Value);
643 }
644 
645 
646 /// getAccessedFieldNo - Given an encoded value and a result number, return the
647 /// input field number being accessed.
648 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
649                                              const llvm::Constant *Elts) {
650   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
651       ->getZExtValue();
652 }
653 
654 static llvm::Value *emitHashMix(CGBuilderTy &Builder, llvm::Value *Acc,
655                                 llvm::Value *Ptr) {
656   llvm::Value *A0 =
657       Builder.CreateMul(Ptr, Builder.getInt64(0xbf58476d1ce4e5b9u));
658   llvm::Value *A1 =
659       Builder.CreateXor(A0, Builder.CreateLShr(A0, Builder.getInt64(31)));
660   return Builder.CreateXor(Acc, A1);
661 }
662 
663 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
664   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
665          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
666 }
667 
668 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
669   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
670   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
671          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
672           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
673           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
674 }
675 
676 bool CodeGenFunction::sanitizePerformTypeCheck() const {
677   return SanOpts.has(SanitizerKind::Null) ||
678          SanOpts.has(SanitizerKind::Alignment) ||
679          SanOpts.has(SanitizerKind::ObjectSize) ||
680          SanOpts.has(SanitizerKind::Vptr);
681 }
682 
683 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
684                                     llvm::Value *Ptr, QualType Ty,
685                                     CharUnits Alignment,
686                                     SanitizerSet SkippedChecks,
687                                     llvm::Value *ArraySize) {
688   if (!sanitizePerformTypeCheck())
689     return;
690 
691   // Don't check pointers outside the default address space. The null check
692   // isn't correct, the object-size check isn't supported by LLVM, and we can't
693   // communicate the addresses to the runtime handler for the vptr check.
694   if (Ptr->getType()->getPointerAddressSpace())
695     return;
696 
697   // Don't check pointers to volatile data. The behavior here is implementation-
698   // defined.
699   if (Ty.isVolatileQualified())
700     return;
701 
702   SanitizerScope SanScope(this);
703 
704   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
705   llvm::BasicBlock *Done = nullptr;
706 
707   // Quickly determine whether we have a pointer to an alloca. It's possible
708   // to skip null checks, and some alignment checks, for these pointers. This
709   // can reduce compile-time significantly.
710   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
711 
712   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
713   llvm::Value *IsNonNull = nullptr;
714   bool IsGuaranteedNonNull =
715       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
716   bool AllowNullPointers = isNullPointerAllowed(TCK);
717   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
718       !IsGuaranteedNonNull) {
719     // The glvalue must not be an empty glvalue.
720     IsNonNull = Builder.CreateIsNotNull(Ptr);
721 
722     // The IR builder can constant-fold the null check if the pointer points to
723     // a constant.
724     IsGuaranteedNonNull = IsNonNull == True;
725 
726     // Skip the null check if the pointer is known to be non-null.
727     if (!IsGuaranteedNonNull) {
728       if (AllowNullPointers) {
729         // When performing pointer casts, it's OK if the value is null.
730         // Skip the remaining checks in that case.
731         Done = createBasicBlock("null");
732         llvm::BasicBlock *Rest = createBasicBlock("not.null");
733         Builder.CreateCondBr(IsNonNull, Rest, Done);
734         EmitBlock(Rest);
735       } else {
736         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
737       }
738     }
739   }
740 
741   if (SanOpts.has(SanitizerKind::ObjectSize) &&
742       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
743       !Ty->isIncompleteType()) {
744     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
745     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
746     if (ArraySize)
747       Size = Builder.CreateMul(Size, ArraySize);
748 
749     // Degenerate case: new X[0] does not need an objectsize check.
750     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
751     if (!ConstantSize || !ConstantSize->isNullValue()) {
752       // The glvalue must refer to a large enough storage region.
753       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
754       //        to check this.
755       // FIXME: Get object address space
756       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
757       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
758       llvm::Value *Min = Builder.getFalse();
759       llvm::Value *NullIsUnknown = Builder.getFalse();
760       llvm::Value *Dynamic = Builder.getFalse();
761       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
762           Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}), Size);
763       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
764     }
765   }
766 
767   llvm::MaybeAlign AlignVal;
768   llvm::Value *PtrAsInt = nullptr;
769 
770   if (SanOpts.has(SanitizerKind::Alignment) &&
771       !SkippedChecks.has(SanitizerKind::Alignment)) {
772     AlignVal = Alignment.getAsMaybeAlign();
773     if (!Ty->isIncompleteType() && !AlignVal)
774       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
775                                              /*ForPointeeType=*/true)
776                      .getAsMaybeAlign();
777 
778     // The glvalue must be suitably aligned.
779     if (AlignVal && *AlignVal > llvm::Align(1) &&
780         (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
781       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
782       llvm::Value *Align = Builder.CreateAnd(
783           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
784       llvm::Value *Aligned =
785           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
786       if (Aligned != True)
787         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
788     }
789   }
790 
791   if (Checks.size() > 0) {
792     llvm::Constant *StaticData[] = {
793         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
794         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
795         llvm::ConstantInt::get(Int8Ty, TCK)};
796     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
797               PtrAsInt ? PtrAsInt : Ptr);
798   }
799 
800   // If possible, check that the vptr indicates that there is a subobject of
801   // type Ty at offset zero within this object.
802   //
803   // C++11 [basic.life]p5,6:
804   //   [For storage which does not refer to an object within its lifetime]
805   //   The program has undefined behavior if:
806   //    -- the [pointer or glvalue] is used to access a non-static data member
807   //       or call a non-static member function
808   if (SanOpts.has(SanitizerKind::Vptr) &&
809       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
810     // Ensure that the pointer is non-null before loading it. If there is no
811     // compile-time guarantee, reuse the run-time null check or emit a new one.
812     if (!IsGuaranteedNonNull) {
813       if (!IsNonNull)
814         IsNonNull = Builder.CreateIsNotNull(Ptr);
815       if (!Done)
816         Done = createBasicBlock("vptr.null");
817       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
818       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
819       EmitBlock(VptrNotNull);
820     }
821 
822     // Compute a deterministic hash of the mangled name of the type.
823     SmallString<64> MangledName;
824     llvm::raw_svector_ostream Out(MangledName);
825     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
826                                                      Out);
827 
828     // Contained in NoSanitizeList based on the mangled type.
829     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
830                                                            Out.str())) {
831       // Load the vptr, and mix it with TypeHash.
832       llvm::Value *TypeHash =
833           llvm::ConstantInt::get(Int64Ty, xxh3_64bits(Out.str()));
834 
835       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
836       Address VPtrAddr(Ptr, IntPtrTy, getPointerAlign());
837       llvm::Value *VPtrVal = GetVTablePtr(VPtrAddr, VPtrTy,
838                                           Ty->getAsCXXRecordDecl(),
839                                           VTableAuthMode::UnsafeUbsanStrip);
840       VPtrVal = Builder.CreateBitOrPointerCast(VPtrVal, IntPtrTy);
841 
842       llvm::Value *Hash =
843           emitHashMix(Builder, TypeHash, Builder.CreateZExt(VPtrVal, Int64Ty));
844       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
845 
846       // Look the hash up in our cache.
847       const int CacheSize = 128;
848       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
849       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
850                                                      "__ubsan_vptr_type_cache");
851       llvm::Value *Slot = Builder.CreateAnd(Hash,
852                                             llvm::ConstantInt::get(IntPtrTy,
853                                                                    CacheSize-1));
854       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
855       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
856           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
857           getPointerAlign());
858 
859       // If the hash isn't in the cache, call a runtime handler to perform the
860       // hard work of checking whether the vptr is for an object of the right
861       // type. This will either fill in the cache and return, or produce a
862       // diagnostic.
863       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
864       llvm::Constant *StaticData[] = {
865         EmitCheckSourceLocation(Loc),
866         EmitCheckTypeDescriptor(Ty),
867         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
868         llvm::ConstantInt::get(Int8Ty, TCK)
869       };
870       llvm::Value *DynamicData[] = { Ptr, Hash };
871       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
872                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
873                 DynamicData);
874     }
875   }
876 
877   if (Done) {
878     Builder.CreateBr(Done);
879     EmitBlock(Done);
880   }
881 }
882 
883 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
884                                                    QualType EltTy) {
885   ASTContext &C = getContext();
886   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
887   if (!EltSize)
888     return nullptr;
889 
890   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
891   if (!ArrayDeclRef)
892     return nullptr;
893 
894   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
895   if (!ParamDecl)
896     return nullptr;
897 
898   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
899   if (!POSAttr)
900     return nullptr;
901 
902   // Don't load the size if it's a lower bound.
903   int POSType = POSAttr->getType();
904   if (POSType != 0 && POSType != 1)
905     return nullptr;
906 
907   // Find the implicit size parameter.
908   auto PassedSizeIt = SizeArguments.find(ParamDecl);
909   if (PassedSizeIt == SizeArguments.end())
910     return nullptr;
911 
912   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
913   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
914   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
915   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
916                                               C.getSizeType(), E->getExprLoc());
917   llvm::Value *SizeOfElement =
918       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
919   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
920 }
921 
922 /// If Base is known to point to the start of an array, return the length of
923 /// that array. Return 0 if the length cannot be determined.
924 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
925                                           const Expr *Base,
926                                           QualType &IndexedType,
927                                           LangOptions::StrictFlexArraysLevelKind
928                                           StrictFlexArraysLevel) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(),
940                                                      StrictFlexArraysLevel)) {
941       CodeGenFunction::SanitizerScope SanScope(&CGF);
942 
943       IndexedType = CE->getSubExpr()->getType();
944       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
945       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
946         return CGF.Builder.getInt(CAT->getSize());
947 
948       if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
949         return CGF.getVLASize(VAT).NumElts;
950       // Ignore pass_object_size here. It's not applicable on decayed pointers.
951     }
952   }
953 
954   CodeGenFunction::SanitizerScope SanScope(&CGF);
955 
956   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
957   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
958     IndexedType = Base->getType();
959     return POS;
960   }
961 
962   return nullptr;
963 }
964 
965 namespace {
966 
967 /// \p StructAccessBase returns the base \p Expr of a field access. It returns
968 /// either a \p DeclRefExpr, representing the base pointer to the struct, i.e.:
969 ///
970 ///     p in p-> a.b.c
971 ///
972 /// or a \p MemberExpr, if the \p MemberExpr has the \p RecordDecl we're
973 /// looking for:
974 ///
975 ///     struct s {
976 ///       struct s *ptr;
977 ///       int count;
978 ///       char array[] __attribute__((counted_by(count)));
979 ///     };
980 ///
981 /// If we have an expression like \p p->ptr->array[index], we want the
982 /// \p MemberExpr for \p p->ptr instead of \p p.
983 class StructAccessBase
984     : public ConstStmtVisitor<StructAccessBase, const Expr *> {
985   const RecordDecl *ExpectedRD;
986 
987   bool IsExpectedRecordDecl(const Expr *E) const {
988     QualType Ty = E->getType();
989     if (Ty->isPointerType())
990       Ty = Ty->getPointeeType();
991     return ExpectedRD == Ty->getAsRecordDecl();
992   }
993 
994 public:
995   StructAccessBase(const RecordDecl *ExpectedRD) : ExpectedRD(ExpectedRD) {}
996 
997   //===--------------------------------------------------------------------===//
998   //                            Visitor Methods
999   //===--------------------------------------------------------------------===//
1000 
1001   // NOTE: If we build C++ support for counted_by, then we'll have to handle
1002   // horrors like this:
1003   //
1004   //     struct S {
1005   //       int x, y;
1006   //       int blah[] __attribute__((counted_by(x)));
1007   //     } s;
1008   //
1009   //     int foo(int index, int val) {
1010   //       int (S::*IHatePMDs)[] = &S::blah;
1011   //       (s.*IHatePMDs)[index] = val;
1012   //     }
1013 
1014   const Expr *Visit(const Expr *E) {
1015     return ConstStmtVisitor<StructAccessBase, const Expr *>::Visit(E);
1016   }
1017 
1018   const Expr *VisitStmt(const Stmt *S) { return nullptr; }
1019 
1020   // These are the types we expect to return (in order of most to least
1021   // likely):
1022   //
1023   //   1. DeclRefExpr - This is the expression for the base of the structure.
1024   //      It's exactly what we want to build an access to the \p counted_by
1025   //      field.
1026   //   2. MemberExpr - This is the expression that has the same \p RecordDecl
1027   //      as the flexble array member's lexical enclosing \p RecordDecl. This
1028   //      allows us to catch things like: "p->p->array"
1029   //   3. CompoundLiteralExpr - This is for people who create something
1030   //      heretical like (struct foo has a flexible array member):
1031   //
1032   //        (struct foo){ 1, 2 }.blah[idx];
1033   const Expr *VisitDeclRefExpr(const DeclRefExpr *E) {
1034     return IsExpectedRecordDecl(E) ? E : nullptr;
1035   }
1036   const Expr *VisitMemberExpr(const MemberExpr *E) {
1037     if (IsExpectedRecordDecl(E) && E->isArrow())
1038       return E;
1039     const Expr *Res = Visit(E->getBase());
1040     return !Res && IsExpectedRecordDecl(E) ? E : Res;
1041   }
1042   const Expr *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1043     return IsExpectedRecordDecl(E) ? E : nullptr;
1044   }
1045   const Expr *VisitCallExpr(const CallExpr *E) {
1046     return IsExpectedRecordDecl(E) ? E : nullptr;
1047   }
1048 
1049   const Expr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1050     if (IsExpectedRecordDecl(E))
1051       return E;
1052     return Visit(E->getBase());
1053   }
1054   const Expr *VisitCastExpr(const CastExpr *E) {
1055     if (E->getCastKind() == CK_LValueToRValue)
1056       return IsExpectedRecordDecl(E) ? E : nullptr;
1057     return Visit(E->getSubExpr());
1058   }
1059   const Expr *VisitParenExpr(const ParenExpr *E) {
1060     return Visit(E->getSubExpr());
1061   }
1062   const Expr *VisitUnaryAddrOf(const UnaryOperator *E) {
1063     return Visit(E->getSubExpr());
1064   }
1065   const Expr *VisitUnaryDeref(const UnaryOperator *E) {
1066     return Visit(E->getSubExpr());
1067   }
1068 };
1069 
1070 } // end anonymous namespace
1071 
1072 using RecIndicesTy =
1073     SmallVector<std::pair<const RecordDecl *, llvm::Value *>, 8>;
1074 
1075 static bool getGEPIndicesToField(CodeGenFunction &CGF, const RecordDecl *RD,
1076                                  const FieldDecl *Field,
1077                                  RecIndicesTy &Indices) {
1078   const CGRecordLayout &Layout = CGF.CGM.getTypes().getCGRecordLayout(RD);
1079   int64_t FieldNo = -1;
1080   for (const FieldDecl *FD : RD->fields()) {
1081     if (!Layout.containsFieldDecl(FD))
1082       // This could happen if the field has a struct type that's empty. I don't
1083       // know why either.
1084       continue;
1085 
1086     FieldNo = Layout.getLLVMFieldNo(FD);
1087     if (FD == Field) {
1088       Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo)));
1089       return true;
1090     }
1091 
1092     QualType Ty = FD->getType();
1093     if (Ty->isRecordType()) {
1094       if (getGEPIndicesToField(CGF, Ty->getAsRecordDecl(), Field, Indices)) {
1095         if (RD->isUnion())
1096           FieldNo = 0;
1097         Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo)));
1098         return true;
1099       }
1100     }
1101   }
1102 
1103   return false;
1104 }
1105 
1106 /// This method is typically called in contexts where we can't generate
1107 /// side-effects, like in __builtin_dynamic_object_size. When finding
1108 /// expressions, only choose those that have either already been emitted or can
1109 /// be loaded without side-effects.
1110 ///
1111 /// - \p FAMDecl: the \p Decl for the flexible array member. It may not be
1112 ///   within the top-level struct.
1113 /// - \p CountDecl: must be within the same non-anonymous struct as \p FAMDecl.
1114 llvm::Value *CodeGenFunction::EmitCountedByFieldExpr(
1115     const Expr *Base, const FieldDecl *FAMDecl, const FieldDecl *CountDecl) {
1116   const RecordDecl *RD = CountDecl->getParent()->getOuterLexicalRecordContext();
1117 
1118   // Find the base struct expr (i.e. p in p->a.b.c.d).
1119   const Expr *StructBase = StructAccessBase(RD).Visit(Base);
1120   if (!StructBase || StructBase->HasSideEffects(getContext()))
1121     return nullptr;
1122 
1123   llvm::Value *Res = nullptr;
1124   if (StructBase->getType()->isPointerType()) {
1125     LValueBaseInfo BaseInfo;
1126     TBAAAccessInfo TBAAInfo;
1127     Address Addr = EmitPointerWithAlignment(StructBase, &BaseInfo, &TBAAInfo);
1128     Res = Addr.emitRawPointer(*this);
1129   } else if (StructBase->isLValue()) {
1130     LValue LV = EmitLValue(StructBase);
1131     Address Addr = LV.getAddress();
1132     Res = Addr.emitRawPointer(*this);
1133   } else {
1134     return nullptr;
1135   }
1136 
1137   llvm::Value *Zero = Builder.getInt32(0);
1138   RecIndicesTy Indices;
1139 
1140   getGEPIndicesToField(*this, RD, CountDecl, Indices);
1141 
1142   for (auto I = Indices.rbegin(), E = Indices.rend(); I != E; ++I)
1143     Res = Builder.CreateInBoundsGEP(
1144         ConvertType(QualType(I->first->getTypeForDecl(), 0)), Res,
1145         {Zero, I->second}, "..counted_by.gep");
1146 
1147   return Builder.CreateAlignedLoad(ConvertType(CountDecl->getType()), Res,
1148                                    getIntAlign(), "..counted_by.load");
1149 }
1150 
1151 const FieldDecl *CodeGenFunction::FindCountedByField(const FieldDecl *FD) {
1152   if (!FD)
1153     return nullptr;
1154 
1155   const auto *CAT = FD->getType()->getAs<CountAttributedType>();
1156   if (!CAT)
1157     return nullptr;
1158 
1159   const auto *CountDRE = cast<DeclRefExpr>(CAT->getCountExpr());
1160   const auto *CountDecl = CountDRE->getDecl();
1161   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(CountDecl))
1162     CountDecl = IFD->getAnonField();
1163 
1164   return dyn_cast<FieldDecl>(CountDecl);
1165 }
1166 
1167 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
1168                                       llvm::Value *Index, QualType IndexType,
1169                                       bool Accessed) {
1170   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
1171          "should not be called unless adding bounds checks");
1172   const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
1173       getLangOpts().getStrictFlexArraysLevel();
1174   QualType IndexedType;
1175   llvm::Value *Bound =
1176       getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
1177 
1178   EmitBoundsCheckImpl(E, Bound, Index, IndexType, IndexedType, Accessed);
1179 }
1180 
1181 void CodeGenFunction::EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
1182                                           llvm::Value *Index,
1183                                           QualType IndexType,
1184                                           QualType IndexedType, bool Accessed) {
1185   if (!Bound)
1186     return;
1187 
1188   SanitizerScope SanScope(this);
1189 
1190   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1191   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1192   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1193 
1194   llvm::Constant *StaticData[] = {
1195     EmitCheckSourceLocation(E->getExprLoc()),
1196     EmitCheckTypeDescriptor(IndexedType),
1197     EmitCheckTypeDescriptor(IndexType)
1198   };
1199   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1200                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1201   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1202             SanitizerHandler::OutOfBounds, StaticData, Index);
1203 }
1204 
1205 CodeGenFunction::ComplexPairTy CodeGenFunction::
1206 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1207                          bool isInc, bool isPre) {
1208   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1209 
1210   llvm::Value *NextVal;
1211   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1212     uint64_t AmountVal = isInc ? 1 : -1;
1213     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1214 
1215     // Add the inc/dec to the real part.
1216     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1217   } else {
1218     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1219     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1220     if (!isInc)
1221       FVal.changeSign();
1222     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1223 
1224     // Add the inc/dec to the real part.
1225     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1226   }
1227 
1228   ComplexPairTy IncVal(NextVal, InVal.second);
1229 
1230   // Store the updated result through the lvalue.
1231   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1232   if (getLangOpts().OpenMP)
1233     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1234                                                               E->getSubExpr());
1235 
1236   // If this is a postinc, return the value read from memory, otherwise use the
1237   // updated value.
1238   return isPre ? IncVal : InVal;
1239 }
1240 
1241 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1242                                              CodeGenFunction *CGF) {
1243   // Bind VLAs in the cast type.
1244   if (CGF && E->getType()->isVariablyModifiedType())
1245     CGF->EmitVariablyModifiedType(E->getType());
1246 
1247   if (CGDebugInfo *DI = getModuleDebugInfo())
1248     DI->EmitExplicitCastType(E->getType());
1249 }
1250 
1251 //===----------------------------------------------------------------------===//
1252 //                         LValue Expression Emission
1253 //===----------------------------------------------------------------------===//
1254 
1255 static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo,
1256                                         TBAAAccessInfo *TBAAInfo,
1257                                         KnownNonNull_t IsKnownNonNull,
1258                                         CodeGenFunction &CGF) {
1259   // We allow this with ObjC object pointers because of fragile ABIs.
1260   assert(E->getType()->isPointerType() ||
1261          E->getType()->isObjCObjectPointerType());
1262   E = E->IgnoreParens();
1263 
1264   // Casts:
1265   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1266     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1267       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
1268 
1269     switch (CE->getCastKind()) {
1270     // Non-converting casts (but not C's implicit conversion from void*).
1271     case CK_BitCast:
1272     case CK_NoOp:
1273     case CK_AddressSpaceConversion:
1274       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1275         if (PtrTy->getPointeeType()->isVoidType())
1276           break;
1277 
1278         LValueBaseInfo InnerBaseInfo;
1279         TBAAAccessInfo InnerTBAAInfo;
1280         Address Addr = CGF.EmitPointerWithAlignment(
1281             CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull);
1282         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1283         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1284 
1285         if (isa<ExplicitCastExpr>(CE)) {
1286           LValueBaseInfo TargetTypeBaseInfo;
1287           TBAAAccessInfo TargetTypeTBAAInfo;
1288           CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(
1289               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1290           if (TBAAInfo)
1291             *TBAAInfo =
1292                 CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo);
1293           // If the source l-value is opaque, honor the alignment of the
1294           // casted-to type.
1295           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1296             if (BaseInfo)
1297               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1298             Addr.setAlignment(Align);
1299           }
1300         }
1301 
1302         if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1303             CE->getCastKind() == CK_BitCast) {
1304           if (auto PT = E->getType()->getAs<PointerType>())
1305             CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1306                                           /*MayBeNull=*/true,
1307                                           CodeGenFunction::CFITCK_UnrelatedCast,
1308                                           CE->getBeginLoc());
1309         }
1310 
1311         llvm::Type *ElemTy =
1312             CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1313         Addr = Addr.withElementType(ElemTy);
1314         if (CE->getCastKind() == CK_AddressSpaceConversion)
1315           Addr = CGF.Builder.CreateAddrSpaceCast(
1316               Addr, CGF.ConvertType(E->getType()), ElemTy);
1317         return CGF.authPointerToPointerCast(Addr, CE->getSubExpr()->getType(),
1318                                             CE->getType());
1319       }
1320       break;
1321 
1322     // Array-to-pointer decay.
1323     case CK_ArrayToPointerDecay:
1324       return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1325 
1326     // Derived-to-base conversions.
1327     case CK_UncheckedDerivedToBase:
1328     case CK_DerivedToBase: {
1329       // TODO: Support accesses to members of base classes in TBAA. For now, we
1330       // conservatively pretend that the complete object is of the base class
1331       // type.
1332       if (TBAAInfo)
1333         *TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType());
1334       Address Addr = CGF.EmitPointerWithAlignment(
1335           CE->getSubExpr(), BaseInfo, nullptr,
1336           (KnownNonNull_t)(IsKnownNonNull ||
1337                            CE->getCastKind() == CK_UncheckedDerivedToBase));
1338       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1339       return CGF.GetAddressOfBaseClass(
1340           Addr, Derived, CE->path_begin(), CE->path_end(),
1341           CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1342     }
1343 
1344     // TODO: Is there any reason to treat base-to-derived conversions
1345     // specially?
1346     default:
1347       break;
1348     }
1349   }
1350 
1351   // Unary &.
1352   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1353     if (UO->getOpcode() == UO_AddrOf) {
1354       LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull);
1355       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1356       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1357       return LV.getAddress();
1358     }
1359   }
1360 
1361   // std::addressof and variants.
1362   if (auto *Call = dyn_cast<CallExpr>(E)) {
1363     switch (Call->getBuiltinCallee()) {
1364     default:
1365       break;
1366     case Builtin::BIaddressof:
1367     case Builtin::BI__addressof:
1368     case Builtin::BI__builtin_addressof: {
1369       LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull);
1370       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1371       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1372       return LV.getAddress();
1373     }
1374     }
1375   }
1376 
1377   // TODO: conditional operators, comma.
1378 
1379   // Otherwise, use the alignment of the type.
1380   return CGF.makeNaturalAddressForPointer(
1381       CGF.EmitScalarExpr(E), E->getType()->getPointeeType(), CharUnits(),
1382       /*ForPointeeType=*/true, BaseInfo, TBAAInfo, IsKnownNonNull);
1383 }
1384 
1385 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1386 /// derive a more accurate bound on the alignment of the pointer.
1387 Address CodeGenFunction::EmitPointerWithAlignment(
1388     const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo,
1389     KnownNonNull_t IsKnownNonNull) {
1390   Address Addr =
1391       ::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this);
1392   if (IsKnownNonNull && !Addr.isKnownNonNull())
1393     Addr.setKnownNonNull();
1394   return Addr;
1395 }
1396 
1397 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1398   llvm::Value *V = RV.getScalarVal();
1399   if (auto MPT = T->getAs<MemberPointerType>())
1400     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1401   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1402 }
1403 
1404 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1405   if (Ty->isVoidType())
1406     return RValue::get(nullptr);
1407 
1408   switch (getEvaluationKind(Ty)) {
1409   case TEK_Complex: {
1410     llvm::Type *EltTy =
1411       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1412     llvm::Value *U = llvm::UndefValue::get(EltTy);
1413     return RValue::getComplex(std::make_pair(U, U));
1414   }
1415 
1416   // If this is a use of an undefined aggregate type, the aggregate must have an
1417   // identifiable address.  Just because the contents of the value are undefined
1418   // doesn't mean that the address can't be taken and compared.
1419   case TEK_Aggregate: {
1420     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1421     return RValue::getAggregate(DestPtr);
1422   }
1423 
1424   case TEK_Scalar:
1425     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1426   }
1427   llvm_unreachable("bad evaluation kind");
1428 }
1429 
1430 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1431                                               const char *Name) {
1432   ErrorUnsupported(E, Name);
1433   return GetUndefRValue(E->getType());
1434 }
1435 
1436 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1437                                               const char *Name) {
1438   ErrorUnsupported(E, Name);
1439   llvm::Type *ElTy = ConvertType(E->getType());
1440   llvm::Type *Ty = UnqualPtrTy;
1441   return MakeAddrLValue(
1442       Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1443 }
1444 
1445 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1446   const Expr *Base = Obj;
1447   while (!isa<CXXThisExpr>(Base)) {
1448     // The result of a dynamic_cast can be null.
1449     if (isa<CXXDynamicCastExpr>(Base))
1450       return false;
1451 
1452     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1453       Base = CE->getSubExpr();
1454     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1455       Base = PE->getSubExpr();
1456     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1457       if (UO->getOpcode() == UO_Extension)
1458         Base = UO->getSubExpr();
1459       else
1460         return false;
1461     } else {
1462       return false;
1463     }
1464   }
1465   return true;
1466 }
1467 
1468 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1469   LValue LV;
1470   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1471     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1472   else
1473     LV = EmitLValue(E);
1474   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1475     SanitizerSet SkippedChecks;
1476     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1477       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1478       if (IsBaseCXXThis)
1479         SkippedChecks.set(SanitizerKind::Alignment, true);
1480       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1481         SkippedChecks.set(SanitizerKind::Null, true);
1482     }
1483     EmitTypeCheck(TCK, E->getExprLoc(), LV, E->getType(), SkippedChecks);
1484   }
1485   return LV;
1486 }
1487 
1488 /// EmitLValue - Emit code to compute a designator that specifies the location
1489 /// of the expression.
1490 ///
1491 /// This can return one of two things: a simple address or a bitfield reference.
1492 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1493 /// an LLVM pointer type.
1494 ///
1495 /// If this returns a bitfield reference, nothing about the pointee type of the
1496 /// LLVM value is known: For example, it may not be a pointer to an integer.
1497 ///
1498 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1499 /// this method guarantees that the returned pointer type will point to an LLVM
1500 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1501 /// length type, this is not possible.
1502 ///
1503 LValue CodeGenFunction::EmitLValue(const Expr *E,
1504                                    KnownNonNull_t IsKnownNonNull) {
1505   LValue LV = EmitLValueHelper(E, IsKnownNonNull);
1506   if (IsKnownNonNull && !LV.isKnownNonNull())
1507     LV.setKnownNonNull();
1508   return LV;
1509 }
1510 
1511 static QualType getConstantExprReferredType(const FullExpr *E,
1512                                             const ASTContext &Ctx) {
1513   const Expr *SE = E->getSubExpr()->IgnoreImplicit();
1514   if (isa<OpaqueValueExpr>(SE))
1515     return SE->getType();
1516   return cast<CallExpr>(SE)->getCallReturnType(Ctx)->getPointeeType();
1517 }
1518 
1519 LValue CodeGenFunction::EmitLValueHelper(const Expr *E,
1520                                          KnownNonNull_t IsKnownNonNull) {
1521   ApplyDebugLocation DL(*this, E);
1522   switch (E->getStmtClass()) {
1523   default: return EmitUnsupportedLValue(E, "l-value expression");
1524 
1525   case Expr::ObjCPropertyRefExprClass:
1526     llvm_unreachable("cannot emit a property reference directly");
1527 
1528   case Expr::ObjCSelectorExprClass:
1529     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1530   case Expr::ObjCIsaExprClass:
1531     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1532   case Expr::BinaryOperatorClass:
1533     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1534   case Expr::CompoundAssignOperatorClass: {
1535     QualType Ty = E->getType();
1536     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1537       Ty = AT->getValueType();
1538     if (!Ty->isAnyComplexType())
1539       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1540     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1541   }
1542   case Expr::CallExprClass:
1543   case Expr::CXXMemberCallExprClass:
1544   case Expr::CXXOperatorCallExprClass:
1545   case Expr::UserDefinedLiteralClass:
1546     return EmitCallExprLValue(cast<CallExpr>(E));
1547   case Expr::CXXRewrittenBinaryOperatorClass:
1548     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
1549                       IsKnownNonNull);
1550   case Expr::VAArgExprClass:
1551     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1552   case Expr::DeclRefExprClass:
1553     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1554   case Expr::ConstantExprClass: {
1555     const ConstantExpr *CE = cast<ConstantExpr>(E);
1556     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1557       QualType RetType = getConstantExprReferredType(CE, getContext());
1558       return MakeNaturalAlignAddrLValue(Result, RetType);
1559     }
1560     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull);
1561   }
1562   case Expr::ParenExprClass:
1563     return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull);
1564   case Expr::GenericSelectionExprClass:
1565     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(),
1566                       IsKnownNonNull);
1567   case Expr::PredefinedExprClass:
1568     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1569   case Expr::StringLiteralClass:
1570     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1571   case Expr::ObjCEncodeExprClass:
1572     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1573   case Expr::PseudoObjectExprClass:
1574     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1575   case Expr::InitListExprClass:
1576     return EmitInitListLValue(cast<InitListExpr>(E));
1577   case Expr::CXXTemporaryObjectExprClass:
1578   case Expr::CXXConstructExprClass:
1579     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1580   case Expr::CXXBindTemporaryExprClass:
1581     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1582   case Expr::CXXUuidofExprClass:
1583     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1584   case Expr::LambdaExprClass:
1585     return EmitAggExprToLValue(E);
1586 
1587   case Expr::ExprWithCleanupsClass: {
1588     const auto *cleanups = cast<ExprWithCleanups>(E);
1589     RunCleanupsScope Scope(*this);
1590     LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull);
1591     if (LV.isSimple()) {
1592       // Defend against branches out of gnu statement expressions surrounded by
1593       // cleanups.
1594       Address Addr = LV.getAddress();
1595       llvm::Value *V = Addr.getBasePointer();
1596       Scope.ForceCleanup({&V});
1597       Addr.replaceBasePointer(V);
1598       return LValue::MakeAddr(Addr, LV.getType(), getContext(),
1599                               LV.getBaseInfo(), LV.getTBAAInfo());
1600     }
1601     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1602     // bitfield lvalue or some other non-simple lvalue?
1603     return LV;
1604   }
1605 
1606   case Expr::CXXDefaultArgExprClass: {
1607     auto *DAE = cast<CXXDefaultArgExpr>(E);
1608     CXXDefaultArgExprScope Scope(*this, DAE);
1609     return EmitLValue(DAE->getExpr(), IsKnownNonNull);
1610   }
1611   case Expr::CXXDefaultInitExprClass: {
1612     auto *DIE = cast<CXXDefaultInitExpr>(E);
1613     CXXDefaultInitExprScope Scope(*this, DIE);
1614     return EmitLValue(DIE->getExpr(), IsKnownNonNull);
1615   }
1616   case Expr::CXXTypeidExprClass:
1617     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1618 
1619   case Expr::ObjCMessageExprClass:
1620     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1621   case Expr::ObjCIvarRefExprClass:
1622     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1623   case Expr::StmtExprClass:
1624     return EmitStmtExprLValue(cast<StmtExpr>(E));
1625   case Expr::UnaryOperatorClass:
1626     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1627   case Expr::ArraySubscriptExprClass:
1628     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1629   case Expr::MatrixSubscriptExprClass:
1630     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1631   case Expr::ArraySectionExprClass:
1632     return EmitArraySectionExpr(cast<ArraySectionExpr>(E));
1633   case Expr::ExtVectorElementExprClass:
1634     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1635   case Expr::CXXThisExprClass:
1636     return MakeAddrLValue(LoadCXXThisAddress(), E->getType());
1637   case Expr::MemberExprClass:
1638     return EmitMemberExpr(cast<MemberExpr>(E));
1639   case Expr::CompoundLiteralExprClass:
1640     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1641   case Expr::ConditionalOperatorClass:
1642     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1643   case Expr::BinaryConditionalOperatorClass:
1644     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1645   case Expr::ChooseExprClass:
1646     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull);
1647   case Expr::OpaqueValueExprClass:
1648     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1649   case Expr::SubstNonTypeTemplateParmExprClass:
1650     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
1651                       IsKnownNonNull);
1652   case Expr::ImplicitCastExprClass:
1653   case Expr::CStyleCastExprClass:
1654   case Expr::CXXFunctionalCastExprClass:
1655   case Expr::CXXStaticCastExprClass:
1656   case Expr::CXXDynamicCastExprClass:
1657   case Expr::CXXReinterpretCastExprClass:
1658   case Expr::CXXConstCastExprClass:
1659   case Expr::CXXAddrspaceCastExprClass:
1660   case Expr::ObjCBridgedCastExprClass:
1661     return EmitCastLValue(cast<CastExpr>(E));
1662 
1663   case Expr::MaterializeTemporaryExprClass:
1664     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1665 
1666   case Expr::CoawaitExprClass:
1667     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1668   case Expr::CoyieldExprClass:
1669     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1670   case Expr::PackIndexingExprClass:
1671     return EmitLValue(cast<PackIndexingExpr>(E)->getSelectedExpr());
1672   }
1673 }
1674 
1675 /// Given an object of the given canonical type, can we safely copy a
1676 /// value out of it based on its initializer?
1677 static bool isConstantEmittableObjectType(QualType type) {
1678   assert(type.isCanonical());
1679   assert(!type->isReferenceType());
1680 
1681   // Must be const-qualified but non-volatile.
1682   Qualifiers qs = type.getLocalQualifiers();
1683   if (!qs.hasConst() || qs.hasVolatile()) return false;
1684 
1685   // Otherwise, all object types satisfy this except C++ classes with
1686   // mutable subobjects or non-trivial copy/destroy behavior.
1687   if (const auto *RT = dyn_cast<RecordType>(type))
1688     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1689       if (RD->hasMutableFields() || !RD->isTrivial())
1690         return false;
1691 
1692   return true;
1693 }
1694 
1695 /// Can we constant-emit a load of a reference to a variable of the
1696 /// given type?  This is different from predicates like
1697 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1698 /// in situations that don't necessarily satisfy the language's rules
1699 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1700 /// to do this with const float variables even if those variables
1701 /// aren't marked 'constexpr'.
1702 enum ConstantEmissionKind {
1703   CEK_None,
1704   CEK_AsReferenceOnly,
1705   CEK_AsValueOrReference,
1706   CEK_AsValueOnly
1707 };
1708 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1709   type = type.getCanonicalType();
1710   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1711     if (isConstantEmittableObjectType(ref->getPointeeType()))
1712       return CEK_AsValueOrReference;
1713     return CEK_AsReferenceOnly;
1714   }
1715   if (isConstantEmittableObjectType(type))
1716     return CEK_AsValueOnly;
1717   return CEK_None;
1718 }
1719 
1720 /// Try to emit a reference to the given value without producing it as
1721 /// an l-value.  This is just an optimization, but it avoids us needing
1722 /// to emit global copies of variables if they're named without triggering
1723 /// a formal use in a context where we can't emit a direct reference to them,
1724 /// for instance if a block or lambda or a member of a local class uses a
1725 /// const int variable or constexpr variable from an enclosing function.
1726 CodeGenFunction::ConstantEmission
1727 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1728   ValueDecl *value = refExpr->getDecl();
1729 
1730   // The value needs to be an enum constant or a constant variable.
1731   ConstantEmissionKind CEK;
1732   if (isa<ParmVarDecl>(value)) {
1733     CEK = CEK_None;
1734   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1735     CEK = checkVarTypeForConstantEmission(var->getType());
1736   } else if (isa<EnumConstantDecl>(value)) {
1737     CEK = CEK_AsValueOnly;
1738   } else {
1739     CEK = CEK_None;
1740   }
1741   if (CEK == CEK_None) return ConstantEmission();
1742 
1743   Expr::EvalResult result;
1744   bool resultIsReference;
1745   QualType resultType;
1746 
1747   // It's best to evaluate all the way as an r-value if that's permitted.
1748   if (CEK != CEK_AsReferenceOnly &&
1749       refExpr->EvaluateAsRValue(result, getContext())) {
1750     resultIsReference = false;
1751     resultType = refExpr->getType();
1752 
1753   // Otherwise, try to evaluate as an l-value.
1754   } else if (CEK != CEK_AsValueOnly &&
1755              refExpr->EvaluateAsLValue(result, getContext())) {
1756     resultIsReference = true;
1757     resultType = value->getType();
1758 
1759   // Failure.
1760   } else {
1761     return ConstantEmission();
1762   }
1763 
1764   // In any case, if the initializer has side-effects, abandon ship.
1765   if (result.HasSideEffects)
1766     return ConstantEmission();
1767 
1768   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1769   // referencing a global host variable by copy. In this case the lambda should
1770   // make a copy of the value of the global host variable. The DRE of the
1771   // captured reference variable cannot be emitted as load from the host
1772   // global variable as compile time constant, since the host variable is not
1773   // accessible on device. The DRE of the captured reference variable has to be
1774   // loaded from captures.
1775   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1776       refExpr->refersToEnclosingVariableOrCapture()) {
1777     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1778     if (MD && MD->getParent()->isLambda() &&
1779         MD->getOverloadedOperator() == OO_Call) {
1780       const APValue::LValueBase &base = result.Val.getLValueBase();
1781       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1782         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1783           if (!VD->hasAttr<CUDADeviceAttr>()) {
1784             return ConstantEmission();
1785           }
1786         }
1787       }
1788     }
1789   }
1790 
1791   // Emit as a constant.
1792   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1793                                                result.Val, resultType);
1794 
1795   // Make sure we emit a debug reference to the global variable.
1796   // This should probably fire even for
1797   if (isa<VarDecl>(value)) {
1798     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1799       EmitDeclRefExprDbgValue(refExpr, result.Val);
1800   } else {
1801     assert(isa<EnumConstantDecl>(value));
1802     EmitDeclRefExprDbgValue(refExpr, result.Val);
1803   }
1804 
1805   // If we emitted a reference constant, we need to dereference that.
1806   if (resultIsReference)
1807     return ConstantEmission::forReference(C);
1808 
1809   return ConstantEmission::forValue(C);
1810 }
1811 
1812 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1813                                                         const MemberExpr *ME) {
1814   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1815     // Try to emit static variable member expressions as DREs.
1816     return DeclRefExpr::Create(
1817         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1818         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1819         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1820   }
1821   return nullptr;
1822 }
1823 
1824 CodeGenFunction::ConstantEmission
1825 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1826   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1827     return tryEmitAsConstant(DRE);
1828   return ConstantEmission();
1829 }
1830 
1831 llvm::Value *CodeGenFunction::emitScalarConstant(
1832     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1833   assert(Constant && "not a constant");
1834   if (Constant.isReference())
1835     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1836                             E->getExprLoc())
1837         .getScalarVal();
1838   return Constant.getValue();
1839 }
1840 
1841 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1842                                                SourceLocation Loc) {
1843   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1844                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1845                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1846 }
1847 
1848 static bool hasBooleanRepresentation(QualType Ty) {
1849   if (Ty->isBooleanType())
1850     return true;
1851 
1852   if (const EnumType *ET = Ty->getAs<EnumType>())
1853     return ET->getDecl()->getIntegerType()->isBooleanType();
1854 
1855   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1856     return hasBooleanRepresentation(AT->getValueType());
1857 
1858   return false;
1859 }
1860 
1861 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1862                             llvm::APInt &Min, llvm::APInt &End,
1863                             bool StrictEnums, bool IsBool) {
1864   const EnumType *ET = Ty->getAs<EnumType>();
1865   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1866                                 ET && !ET->getDecl()->isFixed();
1867   if (!IsBool && !IsRegularCPlusPlusEnum)
1868     return false;
1869 
1870   if (IsBool) {
1871     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1872     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1873   } else {
1874     const EnumDecl *ED = ET->getDecl();
1875     ED->getValueRange(End, Min);
1876   }
1877   return true;
1878 }
1879 
1880 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1881   llvm::APInt Min, End;
1882   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1883                        hasBooleanRepresentation(Ty)))
1884     return nullptr;
1885 
1886   llvm::MDBuilder MDHelper(getLLVMContext());
1887   return MDHelper.createRange(Min, End);
1888 }
1889 
1890 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1891                                            SourceLocation Loc) {
1892   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1893   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1894   if (!HasBoolCheck && !HasEnumCheck)
1895     return false;
1896 
1897   bool IsBool = hasBooleanRepresentation(Ty) ||
1898                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1899   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1900   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1901   if (!NeedsBoolCheck && !NeedsEnumCheck)
1902     return false;
1903 
1904   // Single-bit booleans don't need to be checked. Special-case this to avoid
1905   // a bit width mismatch when handling bitfield values. This is handled by
1906   // EmitFromMemory for the non-bitfield case.
1907   if (IsBool &&
1908       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1909     return false;
1910 
1911   llvm::APInt Min, End;
1912   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1913     return true;
1914 
1915   auto &Ctx = getLLVMContext();
1916   SanitizerScope SanScope(this);
1917   llvm::Value *Check;
1918   --End;
1919   if (!Min) {
1920     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1921   } else {
1922     llvm::Value *Upper =
1923         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1924     llvm::Value *Lower =
1925         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1926     Check = Builder.CreateAnd(Upper, Lower);
1927   }
1928   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1929                                   EmitCheckTypeDescriptor(Ty)};
1930   SanitizerMask Kind =
1931       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1932   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1933             StaticArgs, EmitCheckValue(Value));
1934   return true;
1935 }
1936 
1937 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1938                                                QualType Ty,
1939                                                SourceLocation Loc,
1940                                                LValueBaseInfo BaseInfo,
1941                                                TBAAAccessInfo TBAAInfo,
1942                                                bool isNontemporal) {
1943   if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getBasePointer()))
1944     if (GV->isThreadLocal())
1945       Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
1946                               NotKnownNonNull);
1947 
1948   if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1949     // Boolean vectors use `iN` as storage type.
1950     if (ClangVecTy->isExtVectorBoolType()) {
1951       llvm::Type *ValTy = ConvertType(Ty);
1952       unsigned ValNumElems =
1953           cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1954       // Load the `iP` storage object (P is the padded vector size).
1955       auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1956       const auto *RawIntTy = RawIntV->getType();
1957       assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1958       // Bitcast iP --> <P x i1>.
1959       auto *PaddedVecTy = llvm::FixedVectorType::get(
1960           Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1961       llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1962       // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1963       V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1964 
1965       return EmitFromMemory(V, Ty);
1966     }
1967 
1968     // Handle vectors of size 3 like size 4 for better performance.
1969     const llvm::Type *EltTy = Addr.getElementType();
1970     const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1971 
1972     if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1973 
1974       llvm::VectorType *vec4Ty =
1975           llvm::FixedVectorType::get(VTy->getElementType(), 4);
1976       Address Cast = Addr.withElementType(vec4Ty);
1977       // Now load value.
1978       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1979 
1980       // Shuffle vector to get vec3.
1981       V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1982       return EmitFromMemory(V, Ty);
1983     }
1984   }
1985 
1986   // Atomic operations have to be done on integral types.
1987   LValue AtomicLValue =
1988       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1989   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1990     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1991   }
1992 
1993   Addr =
1994       Addr.withElementType(convertTypeForLoadStore(Ty, Addr.getElementType()));
1995 
1996   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1997   if (isNontemporal) {
1998     llvm::MDNode *Node = llvm::MDNode::get(
1999         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
2000     Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
2001   }
2002 
2003   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
2004 
2005   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
2006     // In order to prevent the optimizer from throwing away the check, don't
2007     // attach range metadata to the load.
2008   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
2009     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) {
2010       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
2011       Load->setMetadata(llvm::LLVMContext::MD_noundef,
2012                         llvm::MDNode::get(getLLVMContext(), std::nullopt));
2013     }
2014 
2015   return EmitFromMemory(Load, Ty);
2016 }
2017 
2018 /// Converts a scalar value from its primary IR type (as returned
2019 /// by ConvertType) to its load/store type (as returned by
2020 /// convertTypeForLoadStore).
2021 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
2022   if (hasBooleanRepresentation(Ty) || Ty->isBitIntType()) {
2023     llvm::Type *StoreTy = convertTypeForLoadStore(Ty, Value->getType());
2024     bool Signed = Ty->isSignedIntegerOrEnumerationType();
2025     return Builder.CreateIntCast(Value, StoreTy, Signed, "storedv");
2026   }
2027 
2028   if (Ty->isExtVectorBoolType()) {
2029     llvm::Type *StoreTy = convertTypeForLoadStore(Ty, Value->getType());
2030     // Expand to the memory bit width.
2031     unsigned MemNumElems = StoreTy->getPrimitiveSizeInBits();
2032     // <N x i1> --> <P x i1>.
2033     Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
2034     // <P x i1> --> iP.
2035     Value = Builder.CreateBitCast(Value, StoreTy);
2036   }
2037 
2038   return Value;
2039 }
2040 
2041 /// Converts a scalar value from its load/store type (as returned
2042 /// by convertTypeForLoadStore) to its primary IR type (as returned
2043 /// by ConvertType).
2044 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
2045   if (Ty->isExtVectorBoolType()) {
2046     const auto *RawIntTy = Value->getType();
2047     // Bitcast iP --> <P x i1>.
2048     auto *PaddedVecTy = llvm::FixedVectorType::get(
2049         Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
2050     auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
2051     // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
2052     llvm::Type *ValTy = ConvertType(Ty);
2053     unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
2054     return emitBoolVecConversion(V, ValNumElems, "extractvec");
2055   }
2056 
2057   if (hasBooleanRepresentation(Ty) || Ty->isBitIntType()) {
2058     llvm::Type *ResTy = ConvertType(Ty);
2059     return Builder.CreateTrunc(Value, ResTy, "loadedv");
2060   }
2061 
2062   return Value;
2063 }
2064 
2065 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
2066 // MatrixType), if it points to a array (the memory type of MatrixType).
2067 static RawAddress MaybeConvertMatrixAddress(RawAddress Addr,
2068                                             CodeGenFunction &CGF,
2069                                             bool IsVector = true) {
2070   auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
2071   if (ArrayTy && IsVector) {
2072     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
2073                                                 ArrayTy->getNumElements());
2074 
2075     return Addr.withElementType(VectorTy);
2076   }
2077   auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
2078   if (VectorTy && !IsVector) {
2079     auto *ArrayTy = llvm::ArrayType::get(
2080         VectorTy->getElementType(),
2081         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
2082 
2083     return Addr.withElementType(ArrayTy);
2084   }
2085 
2086   return Addr;
2087 }
2088 
2089 // Emit a store of a matrix LValue. This may require casting the original
2090 // pointer to memory address (ArrayType) to a pointer to the value type
2091 // (VectorType).
2092 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
2093                                     bool isInit, CodeGenFunction &CGF) {
2094   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(), CGF,
2095                                            value->getType()->isVectorTy());
2096   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
2097                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
2098                         lvalue.isNontemporal());
2099 }
2100 
2101 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2102                                         bool Volatile, QualType Ty,
2103                                         LValueBaseInfo BaseInfo,
2104                                         TBAAAccessInfo TBAAInfo,
2105                                         bool isInit, bool isNontemporal) {
2106   if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getBasePointer()))
2107     if (GV->isThreadLocal())
2108       Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
2109                               NotKnownNonNull);
2110 
2111   llvm::Type *SrcTy = Value->getType();
2112   if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
2113     auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
2114     if (!CGM.getCodeGenOpts().PreserveVec3Type) {
2115       // Handle vec3 special.
2116       if (VecTy && !ClangVecTy->isExtVectorBoolType() &&
2117           cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
2118         // Our source is a vec3, do a shuffle vector to make it a vec4.
2119         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
2120                                             "extractVec");
2121         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
2122       }
2123       if (Addr.getElementType() != SrcTy) {
2124         Addr = Addr.withElementType(SrcTy);
2125       }
2126     }
2127   }
2128 
2129   Value = EmitToMemory(Value, Ty);
2130 
2131   LValue AtomicLValue =
2132       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
2133   if (Ty->isAtomicType() ||
2134       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
2135     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
2136     return;
2137   }
2138 
2139   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
2140   if (isNontemporal) {
2141     llvm::MDNode *Node =
2142         llvm::MDNode::get(Store->getContext(),
2143                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
2144     Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
2145   }
2146 
2147   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2148 }
2149 
2150 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
2151                                         bool isInit) {
2152   if (lvalue.getType()->isConstantMatrixType()) {
2153     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
2154     return;
2155   }
2156 
2157   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
2158                     lvalue.getType(), lvalue.getBaseInfo(),
2159                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
2160 }
2161 
2162 // Emit a load of a LValue of matrix type. This may require casting the pointer
2163 // to memory address (ArrayType) to a pointer to the value type (VectorType).
2164 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
2165                                      CodeGenFunction &CGF) {
2166   assert(LV.getType()->isConstantMatrixType());
2167   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(), CGF);
2168   LV.setAddress(Addr);
2169   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
2170 }
2171 
2172 RValue CodeGenFunction::EmitLoadOfAnyValue(LValue LV, AggValueSlot Slot,
2173                                            SourceLocation Loc) {
2174   QualType Ty = LV.getType();
2175   switch (getEvaluationKind(Ty)) {
2176   case TEK_Scalar:
2177     return EmitLoadOfLValue(LV, Loc);
2178   case TEK_Complex:
2179     return RValue::getComplex(EmitLoadOfComplex(LV, Loc));
2180   case TEK_Aggregate:
2181     EmitAggFinalDestCopy(Ty, Slot, LV, EVK_NonRValue);
2182     return Slot.asRValue();
2183   }
2184   llvm_unreachable("bad evaluation kind");
2185 }
2186 
2187 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
2188 /// method emits the address of the lvalue, then loads the result as an rvalue,
2189 /// returning the rvalue.
2190 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
2191   if (LV.isObjCWeak()) {
2192     // load of a __weak object.
2193     Address AddrWeakObj = LV.getAddress();
2194     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
2195                                                              AddrWeakObj));
2196   }
2197   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
2198     // In MRC mode, we do a load+autorelease.
2199     if (!getLangOpts().ObjCAutoRefCount) {
2200       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
2201     }
2202 
2203     // In ARC mode, we load retained and then consume the value.
2204     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
2205     Object = EmitObjCConsumeObject(LV.getType(), Object);
2206     return RValue::get(Object);
2207   }
2208 
2209   if (LV.isSimple()) {
2210     assert(!LV.getType()->isFunctionType());
2211 
2212     if (LV.getType()->isConstantMatrixType())
2213       return EmitLoadOfMatrixLValue(LV, Loc, *this);
2214 
2215     // Everything needs a load.
2216     return RValue::get(EmitLoadOfScalar(LV, Loc));
2217   }
2218 
2219   if (LV.isVectorElt()) {
2220     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
2221                                               LV.isVolatileQualified());
2222     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
2223                                                     "vecext"));
2224   }
2225 
2226   // If this is a reference to a subset of the elements of a vector, either
2227   // shuffle the input or extract/insert them as appropriate.
2228   if (LV.isExtVectorElt()) {
2229     return EmitLoadOfExtVectorElementLValue(LV);
2230   }
2231 
2232   // Global Register variables always invoke intrinsics
2233   if (LV.isGlobalReg())
2234     return EmitLoadOfGlobalRegLValue(LV);
2235 
2236   if (LV.isMatrixElt()) {
2237     llvm::Value *Idx = LV.getMatrixIdx();
2238     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2239       const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
2240       llvm::MatrixBuilder MB(Builder);
2241       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2242     }
2243     llvm::LoadInst *Load =
2244         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2245     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2246   }
2247 
2248   assert(LV.isBitField() && "Unknown LValue type!");
2249   return EmitLoadOfBitfieldLValue(LV, Loc);
2250 }
2251 
2252 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2253                                                  SourceLocation Loc) {
2254   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2255 
2256   // Get the output type.
2257   llvm::Type *ResLTy = ConvertType(LV.getType());
2258 
2259   Address Ptr = LV.getBitFieldAddress();
2260   llvm::Value *Val =
2261       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2262 
2263   bool UseVolatile = LV.isVolatileQualified() &&
2264                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2265   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2266   const unsigned StorageSize =
2267       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2268   if (Info.IsSigned) {
2269     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2270     unsigned HighBits = StorageSize - Offset - Info.Size;
2271     if (HighBits)
2272       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2273     if (Offset + HighBits)
2274       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2275   } else {
2276     if (Offset)
2277       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2278     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2279       Val = Builder.CreateAnd(
2280           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2281   }
2282   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2283   EmitScalarRangeCheck(Val, LV.getType(), Loc);
2284   return RValue::get(Val);
2285 }
2286 
2287 // If this is a reference to a subset of the elements of a vector, create an
2288 // appropriate shufflevector.
2289 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2290   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2291                                         LV.isVolatileQualified());
2292 
2293   // HLSL allows treating scalars as one-element vectors. Converting the scalar
2294   // IR value to a vector here allows the rest of codegen to behave as normal.
2295   if (getLangOpts().HLSL && !Vec->getType()->isVectorTy()) {
2296     llvm::Type *DstTy = llvm::FixedVectorType::get(Vec->getType(), 1);
2297     llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2298     Vec = Builder.CreateInsertElement(DstTy, Vec, Zero, "cast.splat");
2299   }
2300 
2301   const llvm::Constant *Elts = LV.getExtVectorElts();
2302 
2303   // If the result of the expression is a non-vector type, we must be extracting
2304   // a single element.  Just codegen as an extractelement.
2305   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2306   if (!ExprVT) {
2307     unsigned InIdx = getAccessedFieldNo(0, Elts);
2308     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2309     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2310   }
2311 
2312   // Always use shuffle vector to try to retain the original program structure
2313   unsigned NumResultElts = ExprVT->getNumElements();
2314 
2315   SmallVector<int, 4> Mask;
2316   for (unsigned i = 0; i != NumResultElts; ++i)
2317     Mask.push_back(getAccessedFieldNo(i, Elts));
2318 
2319   Vec = Builder.CreateShuffleVector(Vec, Mask);
2320   return RValue::get(Vec);
2321 }
2322 
2323 /// Generates lvalue for partial ext_vector access.
2324 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2325   Address VectorAddress = LV.getExtVectorAddress();
2326   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2327   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2328 
2329   Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy);
2330 
2331   const llvm::Constant *Elts = LV.getExtVectorElts();
2332   unsigned ix = getAccessedFieldNo(0, Elts);
2333 
2334   Address VectorBasePtrPlusIx =
2335     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2336                                    "vector.elt");
2337 
2338   return VectorBasePtrPlusIx;
2339 }
2340 
2341 /// Load of global gamed gegisters are always calls to intrinsics.
2342 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2343   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2344          "Bad type for register variable");
2345   llvm::MDNode *RegName = cast<llvm::MDNode>(
2346       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2347 
2348   // We accept integer and pointer types only
2349   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2350   llvm::Type *Ty = OrigTy;
2351   if (OrigTy->isPointerTy())
2352     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2353   llvm::Type *Types[] = { Ty };
2354 
2355   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2356   llvm::Value *Call = Builder.CreateCall(
2357       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2358   if (OrigTy->isPointerTy())
2359     Call = Builder.CreateIntToPtr(Call, OrigTy);
2360   return RValue::get(Call);
2361 }
2362 
2363 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2364 /// lvalue, where both are guaranteed to the have the same type, and that type
2365 /// is 'Ty'.
2366 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2367                                              bool isInit) {
2368   if (!Dst.isSimple()) {
2369     if (Dst.isVectorElt()) {
2370       // Read/modify/write the vector, inserting the new element.
2371       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2372                                             Dst.isVolatileQualified());
2373       auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2374       if (IRStoreTy) {
2375         auto *IRVecTy = llvm::FixedVectorType::get(
2376             Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2377         Vec = Builder.CreateBitCast(Vec, IRVecTy);
2378         // iN --> <N x i1>.
2379       }
2380       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2381                                         Dst.getVectorIdx(), "vecins");
2382       if (IRStoreTy) {
2383         // <N x i1> --> <iN>.
2384         Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2385       }
2386       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2387                           Dst.isVolatileQualified());
2388       return;
2389     }
2390 
2391     // If this is an update of extended vector elements, insert them as
2392     // appropriate.
2393     if (Dst.isExtVectorElt())
2394       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2395 
2396     if (Dst.isGlobalReg())
2397       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2398 
2399     if (Dst.isMatrixElt()) {
2400       llvm::Value *Idx = Dst.getMatrixIdx();
2401       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2402         const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2403         llvm::MatrixBuilder MB(Builder);
2404         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2405       }
2406       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2407       llvm::Value *Vec =
2408           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2409       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2410                           Dst.isVolatileQualified());
2411       return;
2412     }
2413 
2414     assert(Dst.isBitField() && "Unknown LValue type");
2415     return EmitStoreThroughBitfieldLValue(Src, Dst);
2416   }
2417 
2418   // There's special magic for assigning into an ARC-qualified l-value.
2419   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2420     switch (Lifetime) {
2421     case Qualifiers::OCL_None:
2422       llvm_unreachable("present but none");
2423 
2424     case Qualifiers::OCL_ExplicitNone:
2425       // nothing special
2426       break;
2427 
2428     case Qualifiers::OCL_Strong:
2429       if (isInit) {
2430         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2431         break;
2432       }
2433       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2434       return;
2435 
2436     case Qualifiers::OCL_Weak:
2437       if (isInit)
2438         // Initialize and then skip the primitive store.
2439         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
2440       else
2441         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(),
2442                          /*ignore*/ true);
2443       return;
2444 
2445     case Qualifiers::OCL_Autoreleasing:
2446       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2447                                                      Src.getScalarVal()));
2448       // fall into the normal path
2449       break;
2450     }
2451   }
2452 
2453   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2454     // load of a __weak object.
2455     Address LvalueDst = Dst.getAddress();
2456     llvm::Value *src = Src.getScalarVal();
2457      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2458     return;
2459   }
2460 
2461   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2462     // load of a __strong object.
2463     Address LvalueDst = Dst.getAddress();
2464     llvm::Value *src = Src.getScalarVal();
2465     if (Dst.isObjCIvar()) {
2466       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2467       llvm::Type *ResultType = IntPtrTy;
2468       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2469       llvm::Value *RHS = dst.emitRawPointer(*this);
2470       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2471       llvm::Value *LHS = Builder.CreatePtrToInt(LvalueDst.emitRawPointer(*this),
2472                                                 ResultType, "sub.ptr.lhs.cast");
2473       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2474       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, BytesBetween);
2475     } else if (Dst.isGlobalObjCRef()) {
2476       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2477                                                 Dst.isThreadLocalRef());
2478     }
2479     else
2480       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2481     return;
2482   }
2483 
2484   assert(Src.isScalar() && "Can't emit an agg store with this method");
2485   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2486 }
2487 
2488 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2489                                                      llvm::Value **Result) {
2490   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2491   llvm::Type *ResLTy = convertTypeForLoadStore(Dst.getType());
2492   Address Ptr = Dst.getBitFieldAddress();
2493 
2494   // Get the source value, truncated to the width of the bit-field.
2495   llvm::Value *SrcVal = Src.getScalarVal();
2496 
2497   // Cast the source to the storage type and shift it into place.
2498   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2499                                  /*isSigned=*/false);
2500   llvm::Value *MaskedVal = SrcVal;
2501 
2502   const bool UseVolatile =
2503       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2504       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2505   const unsigned StorageSize =
2506       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2507   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2508   // See if there are other bits in the bitfield's storage we'll need to load
2509   // and mask together with source before storing.
2510   if (StorageSize != Info.Size) {
2511     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2512     llvm::Value *Val =
2513         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2514 
2515     // Mask the source value as needed.
2516     if (!hasBooleanRepresentation(Dst.getType()))
2517       SrcVal = Builder.CreateAnd(
2518           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2519           "bf.value");
2520     MaskedVal = SrcVal;
2521     if (Offset)
2522       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2523 
2524     // Mask out the original value.
2525     Val = Builder.CreateAnd(
2526         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2527         "bf.clear");
2528 
2529     // Or together the unchanged values and the source value.
2530     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2531   } else {
2532     assert(Offset == 0);
2533     // According to the AACPS:
2534     // When a volatile bit-field is written, and its container does not overlap
2535     // with any non-bit-field member, its container must be read exactly once
2536     // and written exactly once using the access width appropriate to the type
2537     // of the container. The two accesses are not atomic.
2538     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2539         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2540       Builder.CreateLoad(Ptr, true, "bf.load");
2541   }
2542 
2543   // Write the new value back out.
2544   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2545 
2546   // Return the new value of the bit-field, if requested.
2547   if (Result) {
2548     llvm::Value *ResultVal = MaskedVal;
2549 
2550     // Sign extend the value if needed.
2551     if (Info.IsSigned) {
2552       assert(Info.Size <= StorageSize);
2553       unsigned HighBits = StorageSize - Info.Size;
2554       if (HighBits) {
2555         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2556         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2557       }
2558     }
2559 
2560     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2561                                       "bf.result.cast");
2562     *Result = EmitFromMemory(ResultVal, Dst.getType());
2563   }
2564 }
2565 
2566 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2567                                                                LValue Dst) {
2568   // HLSL allows storing to scalar values through ExtVector component LValues.
2569   // To support this we need to handle the case where the destination address is
2570   // a scalar.
2571   Address DstAddr = Dst.getExtVectorAddress();
2572   if (!DstAddr.getElementType()->isVectorTy()) {
2573     assert(!Dst.getType()->isVectorType() &&
2574            "this should only occur for non-vector l-values");
2575     Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified());
2576     return;
2577   }
2578 
2579   // This access turns into a read/modify/write of the vector.  Load the input
2580   // value now.
2581   llvm::Value *Vec = Builder.CreateLoad(DstAddr, Dst.isVolatileQualified());
2582   const llvm::Constant *Elts = Dst.getExtVectorElts();
2583 
2584   llvm::Value *SrcVal = Src.getScalarVal();
2585 
2586   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2587     unsigned NumSrcElts = VTy->getNumElements();
2588     unsigned NumDstElts =
2589         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2590     if (NumDstElts == NumSrcElts) {
2591       // Use shuffle vector is the src and destination are the same number of
2592       // elements and restore the vector mask since it is on the side it will be
2593       // stored.
2594       SmallVector<int, 4> Mask(NumDstElts);
2595       for (unsigned i = 0; i != NumSrcElts; ++i)
2596         Mask[getAccessedFieldNo(i, Elts)] = i;
2597 
2598       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2599     } else if (NumDstElts > NumSrcElts) {
2600       // Extended the source vector to the same length and then shuffle it
2601       // into the destination.
2602       // FIXME: since we're shuffling with undef, can we just use the indices
2603       //        into that?  This could be simpler.
2604       SmallVector<int, 4> ExtMask;
2605       for (unsigned i = 0; i != NumSrcElts; ++i)
2606         ExtMask.push_back(i);
2607       ExtMask.resize(NumDstElts, -1);
2608       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2609       // build identity
2610       SmallVector<int, 4> Mask;
2611       for (unsigned i = 0; i != NumDstElts; ++i)
2612         Mask.push_back(i);
2613 
2614       // When the vector size is odd and .odd or .hi is used, the last element
2615       // of the Elts constant array will be one past the size of the vector.
2616       // Ignore the last element here, if it is greater than the mask size.
2617       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2618         NumSrcElts--;
2619 
2620       // modify when what gets shuffled in
2621       for (unsigned i = 0; i != NumSrcElts; ++i)
2622         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2623       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2624     } else {
2625       // We should never shorten the vector
2626       llvm_unreachable("unexpected shorten vector length");
2627     }
2628   } else {
2629     // If the Src is a scalar (not a vector), and the target is a vector it must
2630     // be updating one element.
2631     unsigned InIdx = getAccessedFieldNo(0, Elts);
2632     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2633     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2634   }
2635 
2636   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2637                       Dst.isVolatileQualified());
2638 }
2639 
2640 /// Store of global named registers are always calls to intrinsics.
2641 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2642   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2643          "Bad type for register variable");
2644   llvm::MDNode *RegName = cast<llvm::MDNode>(
2645       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2646   assert(RegName && "Register LValue is not metadata");
2647 
2648   // We accept integer and pointer types only
2649   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2650   llvm::Type *Ty = OrigTy;
2651   if (OrigTy->isPointerTy())
2652     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2653   llvm::Type *Types[] = { Ty };
2654 
2655   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2656   llvm::Value *Value = Src.getScalarVal();
2657   if (OrigTy->isPointerTy())
2658     Value = Builder.CreatePtrToInt(Value, Ty);
2659   Builder.CreateCall(
2660       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2661 }
2662 
2663 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2664 // generating write-barries API. It is currently a global, ivar,
2665 // or neither.
2666 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2667                                  LValue &LV,
2668                                  bool IsMemberAccess=false) {
2669   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2670     return;
2671 
2672   if (isa<ObjCIvarRefExpr>(E)) {
2673     QualType ExpTy = E->getType();
2674     if (IsMemberAccess && ExpTy->isPointerType()) {
2675       // If ivar is a structure pointer, assigning to field of
2676       // this struct follows gcc's behavior and makes it a non-ivar
2677       // writer-barrier conservatively.
2678       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2679       if (ExpTy->isRecordType()) {
2680         LV.setObjCIvar(false);
2681         return;
2682       }
2683     }
2684     LV.setObjCIvar(true);
2685     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2686     LV.setBaseIvarExp(Exp->getBase());
2687     LV.setObjCArray(E->getType()->isArrayType());
2688     return;
2689   }
2690 
2691   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2692     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2693       if (VD->hasGlobalStorage()) {
2694         LV.setGlobalObjCRef(true);
2695         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2696       }
2697     }
2698     LV.setObjCArray(E->getType()->isArrayType());
2699     return;
2700   }
2701 
2702   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2703     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2704     return;
2705   }
2706 
2707   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2708     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2709     if (LV.isObjCIvar()) {
2710       // If cast is to a structure pointer, follow gcc's behavior and make it
2711       // a non-ivar write-barrier.
2712       QualType ExpTy = E->getType();
2713       if (ExpTy->isPointerType())
2714         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2715       if (ExpTy->isRecordType())
2716         LV.setObjCIvar(false);
2717     }
2718     return;
2719   }
2720 
2721   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2722     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2723     return;
2724   }
2725 
2726   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2727     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2728     return;
2729   }
2730 
2731   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2732     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2733     return;
2734   }
2735 
2736   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2737     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2738     return;
2739   }
2740 
2741   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2742     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2743     if (LV.isObjCIvar() && !LV.isObjCArray())
2744       // Using array syntax to assigning to what an ivar points to is not
2745       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2746       LV.setObjCIvar(false);
2747     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2748       // Using array syntax to assigning to what global points to is not
2749       // same as assigning to the global itself. {id *G;} G[i] = 0;
2750       LV.setGlobalObjCRef(false);
2751     return;
2752   }
2753 
2754   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2755     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2756     // We don't know if member is an 'ivar', but this flag is looked at
2757     // only in the context of LV.isObjCIvar().
2758     LV.setObjCArray(E->getType()->isArrayType());
2759     return;
2760   }
2761 }
2762 
2763 static LValue EmitThreadPrivateVarDeclLValue(
2764     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2765     llvm::Type *RealVarTy, SourceLocation Loc) {
2766   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2767     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2768         CGF, VD, Addr, Loc);
2769   else
2770     Addr =
2771         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2772 
2773   Addr = Addr.withElementType(RealVarTy);
2774   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2775 }
2776 
2777 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2778                                            const VarDecl *VD, QualType T) {
2779   std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2780       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2781   // Return an invalid address if variable is MT_To (or MT_Enter starting with
2782   // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2783   // and MT_To (or MT_Enter) with unified memory, return a valid address.
2784   if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2785                 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2786                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2787     return Address::invalid();
2788   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2789           ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2790             *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2791            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2792          "Expected link clause OR to clause with unified memory enabled.");
2793   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2794   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2795   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2796 }
2797 
2798 Address
2799 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2800                                      LValueBaseInfo *PointeeBaseInfo,
2801                                      TBAAAccessInfo *PointeeTBAAInfo) {
2802   llvm::LoadInst *Load =
2803       Builder.CreateLoad(RefLVal.getAddress(), RefLVal.isVolatile());
2804   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2805   return makeNaturalAddressForPointer(Load, RefLVal.getType()->getPointeeType(),
2806                                       CharUnits(), /*ForPointeeType=*/true,
2807                                       PointeeBaseInfo, PointeeTBAAInfo);
2808 }
2809 
2810 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2811   LValueBaseInfo PointeeBaseInfo;
2812   TBAAAccessInfo PointeeTBAAInfo;
2813   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2814                                             &PointeeTBAAInfo);
2815   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2816                         PointeeBaseInfo, PointeeTBAAInfo);
2817 }
2818 
2819 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2820                                            const PointerType *PtrTy,
2821                                            LValueBaseInfo *BaseInfo,
2822                                            TBAAAccessInfo *TBAAInfo) {
2823   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2824   return makeNaturalAddressForPointer(Addr, PtrTy->getPointeeType(),
2825                                       CharUnits(), /*ForPointeeType=*/true,
2826                                       BaseInfo, TBAAInfo);
2827 }
2828 
2829 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2830                                                 const PointerType *PtrTy) {
2831   LValueBaseInfo BaseInfo;
2832   TBAAAccessInfo TBAAInfo;
2833   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2834   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2835 }
2836 
2837 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2838                                       const Expr *E, const VarDecl *VD) {
2839   QualType T = E->getType();
2840 
2841   // If it's thread_local, emit a call to its wrapper function instead.
2842   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2843       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2844     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2845   // Check if the variable is marked as declare target with link clause in
2846   // device codegen.
2847   if (CGF.getLangOpts().OpenMPIsTargetDevice) {
2848     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2849     if (Addr.isValid())
2850       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2851   }
2852 
2853   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2854 
2855   if (VD->getTLSKind() != VarDecl::TLS_None)
2856     V = CGF.Builder.CreateThreadLocalAddress(V);
2857 
2858   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2859   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2860   Address Addr(V, RealVarTy, Alignment);
2861   // Emit reference to the private copy of the variable if it is an OpenMP
2862   // threadprivate variable.
2863   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2864       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2865     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2866                                           E->getExprLoc());
2867   }
2868   LValue LV = VD->getType()->isReferenceType() ?
2869       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2870                                     AlignmentSource::Decl) :
2871       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2872   setObjCGCLValueClass(CGF.getContext(), E, LV);
2873   return LV;
2874 }
2875 
2876 llvm::Constant *CodeGenModule::getRawFunctionPointer(GlobalDecl GD,
2877                                                      llvm::Type *Ty) {
2878   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2879   if (FD->hasAttr<WeakRefAttr>()) {
2880     ConstantAddress aliasee = GetWeakRefReference(FD);
2881     return aliasee.getPointer();
2882   }
2883 
2884   llvm::Constant *V = GetAddrOfFunction(GD, Ty);
2885   return V;
2886 }
2887 
2888 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2889                                      GlobalDecl GD) {
2890   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2891   llvm::Constant *V = CGF.CGM.getFunctionPointer(GD);
2892   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2893   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2894                             AlignmentSource::Decl);
2895 }
2896 
2897 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2898                                       llvm::Value *ThisValue) {
2899 
2900   return CGF.EmitLValueForLambdaField(FD, ThisValue);
2901 }
2902 
2903 /// Named Registers are named metadata pointing to the register name
2904 /// which will be read from/written to as an argument to the intrinsic
2905 /// @llvm.read/write_register.
2906 /// So far, only the name is being passed down, but other options such as
2907 /// register type, allocation type or even optimization options could be
2908 /// passed down via the metadata node.
2909 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2910   SmallString<64> Name("llvm.named.register.");
2911   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2912   assert(Asm->getLabel().size() < 64-Name.size() &&
2913       "Register name too big");
2914   Name.append(Asm->getLabel());
2915   llvm::NamedMDNode *M =
2916     CGM.getModule().getOrInsertNamedMetadata(Name);
2917   if (M->getNumOperands() == 0) {
2918     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2919                                               Asm->getLabel());
2920     llvm::Metadata *Ops[] = {Str};
2921     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2922   }
2923 
2924   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2925 
2926   llvm::Value *Ptr =
2927     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2928   return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2929 }
2930 
2931 /// Determine whether we can emit a reference to \p VD from the current
2932 /// context, despite not necessarily having seen an odr-use of the variable in
2933 /// this context.
2934 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2935                                                const DeclRefExpr *E,
2936                                                const VarDecl *VD) {
2937   // For a variable declared in an enclosing scope, do not emit a spurious
2938   // reference even if we have a capture, as that will emit an unwarranted
2939   // reference to our capture state, and will likely generate worse code than
2940   // emitting a local copy.
2941   if (E->refersToEnclosingVariableOrCapture())
2942     return false;
2943 
2944   // For a local declaration declared in this function, we can always reference
2945   // it even if we don't have an odr-use.
2946   if (VD->hasLocalStorage()) {
2947     return VD->getDeclContext() ==
2948            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2949   }
2950 
2951   // For a global declaration, we can emit a reference to it if we know
2952   // for sure that we are able to emit a definition of it.
2953   VD = VD->getDefinition(CGF.getContext());
2954   if (!VD)
2955     return false;
2956 
2957   // Don't emit a spurious reference if it might be to a variable that only
2958   // exists on a different device / target.
2959   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2960   // cross-target reference.
2961   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2962       CGF.getLangOpts().OpenCL) {
2963     return false;
2964   }
2965 
2966   // We can emit a spurious reference only if the linkage implies that we'll
2967   // be emitting a non-interposable symbol that will be retained until link
2968   // time.
2969   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD)) {
2970   case llvm::GlobalValue::ExternalLinkage:
2971   case llvm::GlobalValue::LinkOnceODRLinkage:
2972   case llvm::GlobalValue::WeakODRLinkage:
2973   case llvm::GlobalValue::InternalLinkage:
2974   case llvm::GlobalValue::PrivateLinkage:
2975     return true;
2976   default:
2977     return false;
2978   }
2979 }
2980 
2981 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2982   const NamedDecl *ND = E->getDecl();
2983   QualType T = E->getType();
2984 
2985   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2986          "should not emit an unevaluated operand");
2987 
2988   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2989     // Global Named registers access via intrinsics only
2990     if (VD->getStorageClass() == SC_Register &&
2991         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2992       return EmitGlobalNamedRegister(VD, CGM);
2993 
2994     // If this DeclRefExpr does not constitute an odr-use of the variable,
2995     // we're not permitted to emit a reference to it in general, and it might
2996     // not be captured if capture would be necessary for a use. Emit the
2997     // constant value directly instead.
2998     if (E->isNonOdrUse() == NOUR_Constant &&
2999         (VD->getType()->isReferenceType() ||
3000          !canEmitSpuriousReferenceToVariable(*this, E, VD))) {
3001       VD->getAnyInitializer(VD);
3002       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
3003           E->getLocation(), *VD->evaluateValue(), VD->getType());
3004       assert(Val && "failed to emit constant expression");
3005 
3006       Address Addr = Address::invalid();
3007       if (!VD->getType()->isReferenceType()) {
3008         // Spill the constant value to a global.
3009         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
3010                                            getContext().getDeclAlign(VD));
3011         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
3012         auto *PTy = llvm::PointerType::get(
3013             VarTy, getTypes().getTargetAddressSpace(VD->getType()));
3014         Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
3015       } else {
3016         // Should we be using the alignment of the constant pointer we emitted?
3017         CharUnits Alignment =
3018             CGM.getNaturalTypeAlignment(E->getType(),
3019                                         /* BaseInfo= */ nullptr,
3020                                         /* TBAAInfo= */ nullptr,
3021                                         /* forPointeeType= */ true);
3022         Addr = makeNaturalAddressForPointer(Val, T, Alignment);
3023       }
3024       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
3025     }
3026 
3027     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
3028 
3029     // Check for captured variables.
3030     if (E->refersToEnclosingVariableOrCapture()) {
3031       VD = VD->getCanonicalDecl();
3032       if (auto *FD = LambdaCaptureFields.lookup(VD))
3033         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
3034       if (CapturedStmtInfo) {
3035         auto I = LocalDeclMap.find(VD);
3036         if (I != LocalDeclMap.end()) {
3037           LValue CapLVal;
3038           if (VD->getType()->isReferenceType())
3039             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
3040                                                 AlignmentSource::Decl);
3041           else
3042             CapLVal = MakeAddrLValue(I->second, T);
3043           // Mark lvalue as nontemporal if the variable is marked as nontemporal
3044           // in simd context.
3045           if (getLangOpts().OpenMP &&
3046               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
3047             CapLVal.setNontemporal(/*Value=*/true);
3048           return CapLVal;
3049         }
3050         LValue CapLVal =
3051             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
3052                                     CapturedStmtInfo->getContextValue());
3053         Address LValueAddress = CapLVal.getAddress();
3054         CapLVal = MakeAddrLValue(Address(LValueAddress.emitRawPointer(*this),
3055                                          LValueAddress.getElementType(),
3056                                          getContext().getDeclAlign(VD)),
3057                                  CapLVal.getType(),
3058                                  LValueBaseInfo(AlignmentSource::Decl),
3059                                  CapLVal.getTBAAInfo());
3060         // Mark lvalue as nontemporal if the variable is marked as nontemporal
3061         // in simd context.
3062         if (getLangOpts().OpenMP &&
3063             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
3064           CapLVal.setNontemporal(/*Value=*/true);
3065         return CapLVal;
3066       }
3067 
3068       assert(isa<BlockDecl>(CurCodeDecl));
3069       Address addr = GetAddrOfBlockDecl(VD);
3070       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
3071     }
3072   }
3073 
3074   // FIXME: We should be able to assert this for FunctionDecls as well!
3075   // FIXME: We should be able to assert this for all DeclRefExprs, not just
3076   // those with a valid source location.
3077   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
3078           !E->getLocation().isValid()) &&
3079          "Should not use decl without marking it used!");
3080 
3081   if (ND->hasAttr<WeakRefAttr>()) {
3082     const auto *VD = cast<ValueDecl>(ND);
3083     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
3084     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
3085   }
3086 
3087   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
3088     // Check if this is a global variable.
3089     if (VD->hasLinkage() || VD->isStaticDataMember())
3090       return EmitGlobalVarDeclLValue(*this, E, VD);
3091 
3092     Address addr = Address::invalid();
3093 
3094     // The variable should generally be present in the local decl map.
3095     auto iter = LocalDeclMap.find(VD);
3096     if (iter != LocalDeclMap.end()) {
3097       addr = iter->second;
3098 
3099     // Otherwise, it might be static local we haven't emitted yet for
3100     // some reason; most likely, because it's in an outer function.
3101     } else if (VD->isStaticLocal()) {
3102       llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
3103           *VD, CGM.getLLVMLinkageVarDefinition(VD));
3104       addr = Address(
3105           var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
3106 
3107     // No other cases for now.
3108     } else {
3109       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
3110     }
3111 
3112     // Handle threadlocal function locals.
3113     if (VD->getTLSKind() != VarDecl::TLS_None)
3114       addr = addr.withPointer(
3115           Builder.CreateThreadLocalAddress(addr.getBasePointer()),
3116           NotKnownNonNull);
3117 
3118     // Check for OpenMP threadprivate variables.
3119     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
3120         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
3121       return EmitThreadPrivateVarDeclLValue(
3122           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
3123           E->getExprLoc());
3124     }
3125 
3126     // Drill into block byref variables.
3127     bool isBlockByref = VD->isEscapingByref();
3128     if (isBlockByref) {
3129       addr = emitBlockByrefAddress(addr, VD);
3130     }
3131 
3132     // Drill into reference types.
3133     LValue LV = VD->getType()->isReferenceType() ?
3134         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
3135         MakeAddrLValue(addr, T, AlignmentSource::Decl);
3136 
3137     bool isLocalStorage = VD->hasLocalStorage();
3138 
3139     bool NonGCable = isLocalStorage &&
3140                      !VD->getType()->isReferenceType() &&
3141                      !isBlockByref;
3142     if (NonGCable) {
3143       LV.getQuals().removeObjCGCAttr();
3144       LV.setNonGC(true);
3145     }
3146 
3147     bool isImpreciseLifetime =
3148       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
3149     if (isImpreciseLifetime)
3150       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
3151     setObjCGCLValueClass(getContext(), E, LV);
3152     return LV;
3153   }
3154 
3155   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3156     return EmitFunctionDeclLValue(*this, E, FD);
3157 
3158   // FIXME: While we're emitting a binding from an enclosing scope, all other
3159   // DeclRefExprs we see should be implicitly treated as if they also refer to
3160   // an enclosing scope.
3161   if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
3162     if (E->refersToEnclosingVariableOrCapture()) {
3163       auto *FD = LambdaCaptureFields.lookup(BD);
3164       return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
3165     }
3166     return EmitLValue(BD->getBinding());
3167   }
3168 
3169   // We can form DeclRefExprs naming GUID declarations when reconstituting
3170   // non-type template parameters into expressions.
3171   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
3172     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
3173                           AlignmentSource::Decl);
3174 
3175   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
3176     auto ATPO = CGM.GetAddrOfTemplateParamObject(TPO);
3177     auto AS = getLangASFromTargetAS(ATPO.getAddressSpace());
3178 
3179     if (AS != T.getAddressSpace()) {
3180       auto TargetAS = getContext().getTargetAddressSpace(T.getAddressSpace());
3181       auto PtrTy = ATPO.getElementType()->getPointerTo(TargetAS);
3182       auto ASC = getTargetHooks().performAddrSpaceCast(
3183           CGM, ATPO.getPointer(), AS, T.getAddressSpace(), PtrTy);
3184       ATPO = ConstantAddress(ASC, ATPO.getElementType(), ATPO.getAlignment());
3185     }
3186 
3187     return MakeAddrLValue(ATPO, T, AlignmentSource::Decl);
3188   }
3189 
3190   llvm_unreachable("Unhandled DeclRefExpr");
3191 }
3192 
3193 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
3194   // __extension__ doesn't affect lvalue-ness.
3195   if (E->getOpcode() == UO_Extension)
3196     return EmitLValue(E->getSubExpr());
3197 
3198   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
3199   switch (E->getOpcode()) {
3200   default: llvm_unreachable("Unknown unary operator lvalue!");
3201   case UO_Deref: {
3202     QualType T = E->getSubExpr()->getType()->getPointeeType();
3203     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
3204 
3205     LValueBaseInfo BaseInfo;
3206     TBAAAccessInfo TBAAInfo;
3207     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
3208                                             &TBAAInfo);
3209     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
3210     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
3211 
3212     // We should not generate __weak write barrier on indirect reference
3213     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
3214     // But, we continue to generate __strong write barrier on indirect write
3215     // into a pointer to object.
3216     if (getLangOpts().ObjC &&
3217         getLangOpts().getGC() != LangOptions::NonGC &&
3218         LV.isObjCWeak())
3219       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3220     return LV;
3221   }
3222   case UO_Real:
3223   case UO_Imag: {
3224     LValue LV = EmitLValue(E->getSubExpr());
3225     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
3226 
3227     // __real is valid on scalars.  This is a faster way of testing that.
3228     // __imag can only produce an rvalue on scalars.
3229     if (E->getOpcode() == UO_Real &&
3230         !LV.getAddress().getElementType()->isStructTy()) {
3231       assert(E->getSubExpr()->getType()->isArithmeticType());
3232       return LV;
3233     }
3234 
3235     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
3236 
3237     Address Component =
3238         (E->getOpcode() == UO_Real
3239              ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
3240              : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
3241     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
3242                                    CGM.getTBAAInfoForSubobject(LV, T));
3243     ElemLV.getQuals().addQualifiers(LV.getQuals());
3244     return ElemLV;
3245   }
3246   case UO_PreInc:
3247   case UO_PreDec: {
3248     LValue LV = EmitLValue(E->getSubExpr());
3249     bool isInc = E->getOpcode() == UO_PreInc;
3250 
3251     if (E->getType()->isAnyComplexType())
3252       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3253     else
3254       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3255     return LV;
3256   }
3257   }
3258 }
3259 
3260 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3261   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3262                         E->getType(), AlignmentSource::Decl);
3263 }
3264 
3265 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3266   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3267                         E->getType(), AlignmentSource::Decl);
3268 }
3269 
3270 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3271   auto SL = E->getFunctionName();
3272   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3273   StringRef FnName = CurFn->getName();
3274   if (FnName.starts_with("\01"))
3275     FnName = FnName.substr(1);
3276   StringRef NameItems[] = {
3277       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3278   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3279   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3280     std::string Name = std::string(SL->getString());
3281     if (!Name.empty()) {
3282       unsigned Discriminator =
3283           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3284       if (Discriminator)
3285         Name += "_" + Twine(Discriminator + 1).str();
3286       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3287       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3288     } else {
3289       auto C =
3290           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3291       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3292     }
3293   }
3294   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3295   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3296 }
3297 
3298 /// Emit a type description suitable for use by a runtime sanitizer library. The
3299 /// format of a type descriptor is
3300 ///
3301 /// \code
3302 ///   { i16 TypeKind, i16 TypeInfo }
3303 /// \endcode
3304 ///
3305 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3306 /// integer, 1 for a floating point value, and -1 for anything else.
3307 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3308   // Only emit each type's descriptor once.
3309   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3310     return C;
3311 
3312   uint16_t TypeKind = -1;
3313   uint16_t TypeInfo = 0;
3314 
3315   if (T->isIntegerType()) {
3316     TypeKind = 0;
3317     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3318                (T->isSignedIntegerType() ? 1 : 0);
3319   } else if (T->isFloatingType()) {
3320     TypeKind = 1;
3321     TypeInfo = getContext().getTypeSize(T);
3322   }
3323 
3324   // Format the type name as if for a diagnostic, including quotes and
3325   // optionally an 'aka'.
3326   SmallString<32> Buffer;
3327   CGM.getDiags().ConvertArgToString(
3328       DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(),
3329       StringRef(), std::nullopt, Buffer, std::nullopt);
3330 
3331   llvm::Constant *Components[] = {
3332     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3333     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3334   };
3335   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3336 
3337   auto *GV = new llvm::GlobalVariable(
3338       CGM.getModule(), Descriptor->getType(),
3339       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3340   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3341   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3342 
3343   // Remember the descriptor for this type.
3344   CGM.setTypeDescriptorInMap(T, GV);
3345 
3346   return GV;
3347 }
3348 
3349 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3350   llvm::Type *TargetTy = IntPtrTy;
3351 
3352   if (V->getType() == TargetTy)
3353     return V;
3354 
3355   // Floating-point types which fit into intptr_t are bitcast to integers
3356   // and then passed directly (after zero-extension, if necessary).
3357   if (V->getType()->isFloatingPointTy()) {
3358     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue();
3359     if (Bits <= TargetTy->getIntegerBitWidth())
3360       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3361                                                          Bits));
3362   }
3363 
3364   // Integers which fit in intptr_t are zero-extended and passed directly.
3365   if (V->getType()->isIntegerTy() &&
3366       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3367     return Builder.CreateZExt(V, TargetTy);
3368 
3369   // Pointers are passed directly, everything else is passed by address.
3370   if (!V->getType()->isPointerTy()) {
3371     RawAddress Ptr = CreateDefaultAlignTempAlloca(V->getType());
3372     Builder.CreateStore(V, Ptr);
3373     V = Ptr.getPointer();
3374   }
3375   return Builder.CreatePtrToInt(V, TargetTy);
3376 }
3377 
3378 /// Emit a representation of a SourceLocation for passing to a handler
3379 /// in a sanitizer runtime library. The format for this data is:
3380 /// \code
3381 ///   struct SourceLocation {
3382 ///     const char *Filename;
3383 ///     int32_t Line, Column;
3384 ///   };
3385 /// \endcode
3386 /// For an invalid SourceLocation, the Filename pointer is null.
3387 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3388   llvm::Constant *Filename;
3389   int Line, Column;
3390 
3391   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3392   if (PLoc.isValid()) {
3393     StringRef FilenameString = PLoc.getFilename();
3394 
3395     int PathComponentsToStrip =
3396         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3397     if (PathComponentsToStrip < 0) {
3398       assert(PathComponentsToStrip != INT_MIN);
3399       int PathComponentsToKeep = -PathComponentsToStrip;
3400       auto I = llvm::sys::path::rbegin(FilenameString);
3401       auto E = llvm::sys::path::rend(FilenameString);
3402       while (I != E && --PathComponentsToKeep)
3403         ++I;
3404 
3405       FilenameString = FilenameString.substr(I - E);
3406     } else if (PathComponentsToStrip > 0) {
3407       auto I = llvm::sys::path::begin(FilenameString);
3408       auto E = llvm::sys::path::end(FilenameString);
3409       while (I != E && PathComponentsToStrip--)
3410         ++I;
3411 
3412       if (I != E)
3413         FilenameString =
3414             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3415       else
3416         FilenameString = llvm::sys::path::filename(FilenameString);
3417     }
3418 
3419     auto FilenameGV =
3420         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3421     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3422         cast<llvm::GlobalVariable>(
3423             FilenameGV.getPointer()->stripPointerCasts()));
3424     Filename = FilenameGV.getPointer();
3425     Line = PLoc.getLine();
3426     Column = PLoc.getColumn();
3427   } else {
3428     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3429     Line = Column = 0;
3430   }
3431 
3432   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3433                             Builder.getInt32(Column)};
3434 
3435   return llvm::ConstantStruct::getAnon(Data);
3436 }
3437 
3438 namespace {
3439 /// Specify under what conditions this check can be recovered
3440 enum class CheckRecoverableKind {
3441   /// Always terminate program execution if this check fails.
3442   Unrecoverable,
3443   /// Check supports recovering, runtime has both fatal (noreturn) and
3444   /// non-fatal handlers for this check.
3445   Recoverable,
3446   /// Runtime conditionally aborts, always need to support recovery.
3447   AlwaysRecoverable
3448 };
3449 }
3450 
3451 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3452   assert(Kind.countPopulation() == 1);
3453   if (Kind == SanitizerKind::Vptr)
3454     return CheckRecoverableKind::AlwaysRecoverable;
3455   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3456     return CheckRecoverableKind::Unrecoverable;
3457   else
3458     return CheckRecoverableKind::Recoverable;
3459 }
3460 
3461 namespace {
3462 struct SanitizerHandlerInfo {
3463   char const *const Name;
3464   unsigned Version;
3465 };
3466 }
3467 
3468 const SanitizerHandlerInfo SanitizerHandlers[] = {
3469 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3470     LIST_SANITIZER_CHECKS
3471 #undef SANITIZER_CHECK
3472 };
3473 
3474 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3475                                  llvm::FunctionType *FnType,
3476                                  ArrayRef<llvm::Value *> FnArgs,
3477                                  SanitizerHandler CheckHandler,
3478                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3479                                  llvm::BasicBlock *ContBB) {
3480   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3481   std::optional<ApplyDebugLocation> DL;
3482   if (!CGF.Builder.getCurrentDebugLocation()) {
3483     // Ensure that the call has at least an artificial debug location.
3484     DL.emplace(CGF, SourceLocation());
3485   }
3486   bool NeedsAbortSuffix =
3487       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3488   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3489   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3490   const StringRef CheckName = CheckInfo.Name;
3491   std::string FnName = "__ubsan_handle_" + CheckName.str();
3492   if (CheckInfo.Version && !MinimalRuntime)
3493     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3494   if (MinimalRuntime)
3495     FnName += "_minimal";
3496   if (NeedsAbortSuffix)
3497     FnName += "_abort";
3498   bool MayReturn =
3499       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3500 
3501   llvm::AttrBuilder B(CGF.getLLVMContext());
3502   if (!MayReturn) {
3503     B.addAttribute(llvm::Attribute::NoReturn)
3504         .addAttribute(llvm::Attribute::NoUnwind);
3505   }
3506   B.addUWTableAttr(llvm::UWTableKind::Default);
3507 
3508   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3509       FnType, FnName,
3510       llvm::AttributeList::get(CGF.getLLVMContext(),
3511                                llvm::AttributeList::FunctionIndex, B),
3512       /*Local=*/true);
3513   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3514   if (!MayReturn) {
3515     HandlerCall->setDoesNotReturn();
3516     CGF.Builder.CreateUnreachable();
3517   } else {
3518     CGF.Builder.CreateBr(ContBB);
3519   }
3520 }
3521 
3522 void CodeGenFunction::EmitCheck(
3523     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3524     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3525     ArrayRef<llvm::Value *> DynamicArgs) {
3526   assert(IsSanitizerScope);
3527   assert(Checked.size() > 0);
3528   assert(CheckHandler >= 0 &&
3529          size_t(CheckHandler) < std::size(SanitizerHandlers));
3530   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3531 
3532   llvm::Value *FatalCond = nullptr;
3533   llvm::Value *RecoverableCond = nullptr;
3534   llvm::Value *TrapCond = nullptr;
3535   for (int i = 0, n = Checked.size(); i < n; ++i) {
3536     llvm::Value *Check = Checked[i].first;
3537     // -fsanitize-trap= overrides -fsanitize-recover=.
3538     llvm::Value *&Cond =
3539         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3540             ? TrapCond
3541             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3542                   ? RecoverableCond
3543                   : FatalCond;
3544     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3545   }
3546 
3547   if (ClSanitizeGuardChecks) {
3548     llvm::Value *Allow =
3549         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::allow_ubsan_check),
3550                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandler));
3551 
3552     for (llvm::Value **Cond : {&FatalCond, &RecoverableCond, &TrapCond}) {
3553       if (*Cond)
3554         *Cond = Builder.CreateOr(*Cond, Builder.CreateNot(Allow));
3555     }
3556   }
3557 
3558   if (TrapCond)
3559     EmitTrapCheck(TrapCond, CheckHandler);
3560   if (!FatalCond && !RecoverableCond)
3561     return;
3562 
3563   llvm::Value *JointCond;
3564   if (FatalCond && RecoverableCond)
3565     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3566   else
3567     JointCond = FatalCond ? FatalCond : RecoverableCond;
3568   assert(JointCond);
3569 
3570   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3571   assert(SanOpts.has(Checked[0].second));
3572 #ifndef NDEBUG
3573   for (int i = 1, n = Checked.size(); i < n; ++i) {
3574     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3575            "All recoverable kinds in a single check must be same!");
3576     assert(SanOpts.has(Checked[i].second));
3577   }
3578 #endif
3579 
3580   llvm::BasicBlock *Cont = createBasicBlock("cont");
3581   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3582   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3583   // Give hint that we very much don't expect to execute the handler
3584   llvm::MDBuilder MDHelper(getLLVMContext());
3585   llvm::MDNode *Node = MDHelper.createLikelyBranchWeights();
3586   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3587   EmitBlock(Handlers);
3588 
3589   // Handler functions take an i8* pointing to the (handler-specific) static
3590   // information block, followed by a sequence of intptr_t arguments
3591   // representing operand values.
3592   SmallVector<llvm::Value *, 4> Args;
3593   SmallVector<llvm::Type *, 4> ArgTypes;
3594   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3595     Args.reserve(DynamicArgs.size() + 1);
3596     ArgTypes.reserve(DynamicArgs.size() + 1);
3597 
3598     // Emit handler arguments and create handler function type.
3599     if (!StaticArgs.empty()) {
3600       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3601       auto *InfoPtr = new llvm::GlobalVariable(
3602           CGM.getModule(), Info->getType(), false,
3603           llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr,
3604           llvm::GlobalVariable::NotThreadLocal,
3605           CGM.getDataLayout().getDefaultGlobalsAddressSpace());
3606       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3607       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3608       Args.push_back(InfoPtr);
3609       ArgTypes.push_back(Args.back()->getType());
3610     }
3611 
3612     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3613       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3614       ArgTypes.push_back(IntPtrTy);
3615     }
3616   }
3617 
3618   llvm::FunctionType *FnType =
3619     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3620 
3621   if (!FatalCond || !RecoverableCond) {
3622     // Simple case: we need to generate a single handler call, either
3623     // fatal, or non-fatal.
3624     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3625                          (FatalCond != nullptr), Cont);
3626   } else {
3627     // Emit two handler calls: first one for set of unrecoverable checks,
3628     // another one for recoverable.
3629     llvm::BasicBlock *NonFatalHandlerBB =
3630         createBasicBlock("non_fatal." + CheckName);
3631     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3632     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3633     EmitBlock(FatalHandlerBB);
3634     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3635                          NonFatalHandlerBB);
3636     EmitBlock(NonFatalHandlerBB);
3637     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3638                          Cont);
3639   }
3640 
3641   EmitBlock(Cont);
3642 }
3643 
3644 void CodeGenFunction::EmitCfiSlowPathCheck(
3645     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3646     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3647   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3648 
3649   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3650   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3651 
3652   llvm::MDBuilder MDHelper(getLLVMContext());
3653   llvm::MDNode *Node = MDHelper.createLikelyBranchWeights();
3654   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3655 
3656   EmitBlock(CheckBB);
3657 
3658   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3659 
3660   llvm::CallInst *CheckCall;
3661   llvm::FunctionCallee SlowPathFn;
3662   if (WithDiag) {
3663     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3664     auto *InfoPtr =
3665         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3666                                  llvm::GlobalVariable::PrivateLinkage, Info);
3667     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3668     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3669 
3670     SlowPathFn = CGM.getModule().getOrInsertFunction(
3671         "__cfi_slowpath_diag",
3672         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3673                                 false));
3674     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr, InfoPtr});
3675   } else {
3676     SlowPathFn = CGM.getModule().getOrInsertFunction(
3677         "__cfi_slowpath",
3678         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3679     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3680   }
3681 
3682   CGM.setDSOLocal(
3683       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3684   CheckCall->setDoesNotThrow();
3685 
3686   EmitBlock(Cont);
3687 }
3688 
3689 // Emit a stub for __cfi_check function so that the linker knows about this
3690 // symbol in LTO mode.
3691 void CodeGenFunction::EmitCfiCheckStub() {
3692   llvm::Module *M = &CGM.getModule();
3693   ASTContext &C = getContext();
3694   QualType QInt64Ty = C.getIntTypeForBitwidth(64, false);
3695 
3696   FunctionArgList FnArgs;
3697   ImplicitParamDecl ArgCallsiteTypeId(C, QInt64Ty, ImplicitParamKind::Other);
3698   ImplicitParamDecl ArgAddr(C, C.VoidPtrTy, ImplicitParamKind::Other);
3699   ImplicitParamDecl ArgCFICheckFailData(C, C.VoidPtrTy,
3700                                         ImplicitParamKind::Other);
3701   FnArgs.push_back(&ArgCallsiteTypeId);
3702   FnArgs.push_back(&ArgAddr);
3703   FnArgs.push_back(&ArgCFICheckFailData);
3704   const CGFunctionInfo &FI =
3705       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, FnArgs);
3706 
3707   llvm::Function *F = llvm::Function::Create(
3708       llvm::FunctionType::get(VoidTy, {Int64Ty, VoidPtrTy, VoidPtrTy}, false),
3709       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3710   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3711   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3712   F->setAlignment(llvm::Align(4096));
3713   CGM.setDSOLocal(F);
3714 
3715   llvm::LLVMContext &Ctx = M->getContext();
3716   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3717   // CrossDSOCFI pass is not executed if there is no executable code.
3718   SmallVector<llvm::Value*> Args{F->getArg(2), F->getArg(1)};
3719   llvm::CallInst::Create(M->getFunction("__cfi_check_fail"), Args, "", BB);
3720   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3721 }
3722 
3723 // This function is basically a switch over the CFI failure kind, which is
3724 // extracted from CFICheckFailData (1st function argument). Each case is either
3725 // llvm.trap or a call to one of the two runtime handlers, based on
3726 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3727 // failure kind) traps, but this should really never happen.  CFICheckFailData
3728 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3729 // check kind; in this case __cfi_check_fail traps as well.
3730 void CodeGenFunction::EmitCfiCheckFail() {
3731   SanitizerScope SanScope(this);
3732   FunctionArgList Args;
3733   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3734                             ImplicitParamKind::Other);
3735   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3736                             ImplicitParamKind::Other);
3737   Args.push_back(&ArgData);
3738   Args.push_back(&ArgAddr);
3739 
3740   const CGFunctionInfo &FI =
3741     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3742 
3743   llvm::Function *F = llvm::Function::Create(
3744       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3745       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3746 
3747   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3748   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3749   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3750 
3751   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3752                 SourceLocation());
3753 
3754   // This function is not affected by NoSanitizeList. This function does
3755   // not have a source location, but "src:*" would still apply. Revert any
3756   // changes to SanOpts made in StartFunction.
3757   SanOpts = CGM.getLangOpts().Sanitize;
3758 
3759   llvm::Value *Data =
3760       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3761                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3762   llvm::Value *Addr =
3763       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3764                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3765 
3766   // Data == nullptr means the calling module has trap behaviour for this check.
3767   llvm::Value *DataIsNotNullPtr =
3768       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3769   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3770 
3771   llvm::StructType *SourceLocationTy =
3772       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3773   llvm::StructType *CfiCheckFailDataTy =
3774       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3775 
3776   llvm::Value *V = Builder.CreateConstGEP2_32(
3777       CfiCheckFailDataTy,
3778       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3779       0);
3780 
3781   Address CheckKindAddr(V, Int8Ty, getIntAlign());
3782   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3783 
3784   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3785       CGM.getLLVMContext(),
3786       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3787   llvm::Value *ValidVtable = Builder.CreateZExt(
3788       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3789                          {Addr, AllVtables}),
3790       IntPtrTy);
3791 
3792   const std::pair<int, SanitizerMask> CheckKinds[] = {
3793       {CFITCK_VCall, SanitizerKind::CFIVCall},
3794       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3795       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3796       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3797       {CFITCK_ICall, SanitizerKind::CFIICall}};
3798 
3799   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3800   for (auto CheckKindMaskPair : CheckKinds) {
3801     int Kind = CheckKindMaskPair.first;
3802     SanitizerMask Mask = CheckKindMaskPair.second;
3803     llvm::Value *Cond =
3804         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3805     if (CGM.getLangOpts().Sanitize.has(Mask))
3806       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3807                 {Data, Addr, ValidVtable});
3808     else
3809       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3810   }
3811 
3812   FinishFunction();
3813   // The only reference to this function will be created during LTO link.
3814   // Make sure it survives until then.
3815   CGM.addUsedGlobal(F);
3816 }
3817 
3818 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3819   if (SanOpts.has(SanitizerKind::Unreachable)) {
3820     SanitizerScope SanScope(this);
3821     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3822                              SanitizerKind::Unreachable),
3823               SanitizerHandler::BuiltinUnreachable,
3824               EmitCheckSourceLocation(Loc), std::nullopt);
3825   }
3826   Builder.CreateUnreachable();
3827 }
3828 
3829 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3830                                     SanitizerHandler CheckHandlerID) {
3831   llvm::BasicBlock *Cont = createBasicBlock("cont");
3832 
3833   // If we're optimizing, collapse all calls to trap down to just one per
3834   // check-type per function to save on code size.
3835   if ((int)TrapBBs.size() <= CheckHandlerID)
3836     TrapBBs.resize(CheckHandlerID + 1);
3837 
3838   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3839 
3840   if (!ClSanitizeDebugDeoptimization &&
3841       CGM.getCodeGenOpts().OptimizationLevel && TrapBB &&
3842       (!CurCodeDecl || !CurCodeDecl->hasAttr<OptimizeNoneAttr>())) {
3843     auto Call = TrapBB->begin();
3844     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3845 
3846     Call->applyMergedLocation(Call->getDebugLoc(),
3847                               Builder.getCurrentDebugLocation());
3848     Builder.CreateCondBr(Checked, Cont, TrapBB);
3849   } else {
3850     TrapBB = createBasicBlock("trap");
3851     Builder.CreateCondBr(Checked, Cont, TrapBB);
3852     EmitBlock(TrapBB);
3853 
3854     llvm::CallInst *TrapCall = Builder.CreateCall(
3855         CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3856         llvm::ConstantInt::get(CGM.Int8Ty,
3857                                ClSanitizeDebugDeoptimization
3858                                    ? TrapBB->getParent()->size()
3859                                    : static_cast<uint64_t>(CheckHandlerID)));
3860 
3861     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3862       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3863                                     CGM.getCodeGenOpts().TrapFuncName);
3864       TrapCall->addFnAttr(A);
3865     }
3866     TrapCall->setDoesNotReturn();
3867     TrapCall->setDoesNotThrow();
3868     Builder.CreateUnreachable();
3869   }
3870 
3871   EmitBlock(Cont);
3872 }
3873 
3874 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3875   llvm::CallInst *TrapCall =
3876       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3877 
3878   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3879     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3880                                   CGM.getCodeGenOpts().TrapFuncName);
3881     TrapCall->addFnAttr(A);
3882   }
3883 
3884   return TrapCall;
3885 }
3886 
3887 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3888                                                  LValueBaseInfo *BaseInfo,
3889                                                  TBAAAccessInfo *TBAAInfo) {
3890   assert(E->getType()->isArrayType() &&
3891          "Array to pointer decay must have array source type!");
3892 
3893   // Expressions of array type can't be bitfields or vector elements.
3894   LValue LV = EmitLValue(E);
3895   Address Addr = LV.getAddress();
3896 
3897   // If the array type was an incomplete type, we need to make sure
3898   // the decay ends up being the right type.
3899   llvm::Type *NewTy = ConvertType(E->getType());
3900   Addr = Addr.withElementType(NewTy);
3901 
3902   // Note that VLA pointers are always decayed, so we don't need to do
3903   // anything here.
3904   if (!E->getType()->isVariableArrayType()) {
3905     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3906            "Expected pointer to array");
3907     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3908   }
3909 
3910   // The result of this decay conversion points to an array element within the
3911   // base lvalue. However, since TBAA currently does not support representing
3912   // accesses to elements of member arrays, we conservatively represent accesses
3913   // to the pointee object as if it had no any base lvalue specified.
3914   // TODO: Support TBAA for member arrays.
3915   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3916   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3917   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3918 
3919   return Addr.withElementType(ConvertTypeForMem(EltType));
3920 }
3921 
3922 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3923 /// array to pointer, return the array subexpression.
3924 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3925   // If this isn't just an array->pointer decay, bail out.
3926   const auto *CE = dyn_cast<CastExpr>(E);
3927   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3928     return nullptr;
3929 
3930   // If this is a decay from variable width array, bail out.
3931   const Expr *SubExpr = CE->getSubExpr();
3932   if (SubExpr->getType()->isVariableArrayType())
3933     return nullptr;
3934 
3935   return SubExpr;
3936 }
3937 
3938 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3939                                           llvm::Type *elemType,
3940                                           llvm::Value *ptr,
3941                                           ArrayRef<llvm::Value*> indices,
3942                                           bool inbounds,
3943                                           bool signedIndices,
3944                                           SourceLocation loc,
3945                                     const llvm::Twine &name = "arrayidx") {
3946   if (inbounds) {
3947     return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3948                                       CodeGenFunction::NotSubtraction, loc,
3949                                       name);
3950   } else {
3951     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3952   }
3953 }
3954 
3955 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3956                                      ArrayRef<llvm::Value *> indices,
3957                                      llvm::Type *elementType, bool inbounds,
3958                                      bool signedIndices, SourceLocation loc,
3959                                      CharUnits align,
3960                                      const llvm::Twine &name = "arrayidx") {
3961   if (inbounds) {
3962     return CGF.EmitCheckedInBoundsGEP(addr, indices, elementType, signedIndices,
3963                                       CodeGenFunction::NotSubtraction, loc,
3964                                       align, name);
3965   } else {
3966     return CGF.Builder.CreateGEP(addr, indices, elementType, align, name);
3967   }
3968 }
3969 
3970 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3971                                       llvm::Value *idx,
3972                                       CharUnits eltSize) {
3973   // If we have a constant index, we can use the exact offset of the
3974   // element we're accessing.
3975   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3976     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3977     return arrayAlign.alignmentAtOffset(offset);
3978 
3979   // Otherwise, use the worst-case alignment for any element.
3980   } else {
3981     return arrayAlign.alignmentOfArrayElement(eltSize);
3982   }
3983 }
3984 
3985 static QualType getFixedSizeElementType(const ASTContext &ctx,
3986                                         const VariableArrayType *vla) {
3987   QualType eltType;
3988   do {
3989     eltType = vla->getElementType();
3990   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3991   return eltType;
3992 }
3993 
3994 static bool hasBPFPreserveStaticOffset(const RecordDecl *D) {
3995   return D && D->hasAttr<BPFPreserveStaticOffsetAttr>();
3996 }
3997 
3998 static bool hasBPFPreserveStaticOffset(const Expr *E) {
3999   if (!E)
4000     return false;
4001   QualType PointeeType = E->getType()->getPointeeType();
4002   if (PointeeType.isNull())
4003     return false;
4004   if (const auto *BaseDecl = PointeeType->getAsRecordDecl())
4005     return hasBPFPreserveStaticOffset(BaseDecl);
4006   return false;
4007 }
4008 
4009 // Wraps Addr with a call to llvm.preserve.static.offset intrinsic.
4010 static Address wrapWithBPFPreserveStaticOffset(CodeGenFunction &CGF,
4011                                                Address &Addr) {
4012   if (!CGF.getTarget().getTriple().isBPF())
4013     return Addr;
4014 
4015   llvm::Function *Fn =
4016       CGF.CGM.getIntrinsic(llvm::Intrinsic::preserve_static_offset);
4017   llvm::CallInst *Call = CGF.Builder.CreateCall(Fn, {Addr.emitRawPointer(CGF)});
4018   return Address(Call, Addr.getElementType(), Addr.getAlignment());
4019 }
4020 
4021 /// Given an array base, check whether its member access belongs to a record
4022 /// with preserve_access_index attribute or not.
4023 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
4024   if (!ArrayBase || !CGF.getDebugInfo())
4025     return false;
4026 
4027   // Only support base as either a MemberExpr or DeclRefExpr.
4028   // DeclRefExpr to cover cases like:
4029   //    struct s { int a; int b[10]; };
4030   //    struct s *p;
4031   //    p[1].a
4032   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
4033   // p->b[5] is a MemberExpr example.
4034   const Expr *E = ArrayBase->IgnoreImpCasts();
4035   if (const auto *ME = dyn_cast<MemberExpr>(E))
4036     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
4037 
4038   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
4039     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
4040     if (!VarDef)
4041       return false;
4042 
4043     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
4044     if (!PtrT)
4045       return false;
4046 
4047     const auto *PointeeT = PtrT->getPointeeType()
4048                              ->getUnqualifiedDesugaredType();
4049     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
4050       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
4051     return false;
4052   }
4053 
4054   return false;
4055 }
4056 
4057 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
4058                                      ArrayRef<llvm::Value *> indices,
4059                                      QualType eltType, bool inbounds,
4060                                      bool signedIndices, SourceLocation loc,
4061                                      QualType *arrayType = nullptr,
4062                                      const Expr *Base = nullptr,
4063                                      const llvm::Twine &name = "arrayidx") {
4064   // All the indices except that last must be zero.
4065 #ifndef NDEBUG
4066   for (auto *idx : indices.drop_back())
4067     assert(isa<llvm::ConstantInt>(idx) &&
4068            cast<llvm::ConstantInt>(idx)->isZero());
4069 #endif
4070 
4071   // Determine the element size of the statically-sized base.  This is
4072   // the thing that the indices are expressed in terms of.
4073   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
4074     eltType = getFixedSizeElementType(CGF.getContext(), vla);
4075   }
4076 
4077   // We can use that to compute the best alignment of the element.
4078   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
4079   CharUnits eltAlign =
4080       getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
4081 
4082   if (hasBPFPreserveStaticOffset(Base))
4083     addr = wrapWithBPFPreserveStaticOffset(CGF, addr);
4084 
4085   llvm::Value *eltPtr;
4086   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
4087   if (!LastIndex ||
4088       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
4089     addr = emitArraySubscriptGEP(CGF, addr, indices,
4090                                  CGF.ConvertTypeForMem(eltType), inbounds,
4091                                  signedIndices, loc, eltAlign, name);
4092     return addr;
4093   } else {
4094     // Remember the original array subscript for bpf target
4095     unsigned idx = LastIndex->getZExtValue();
4096     llvm::DIType *DbgInfo = nullptr;
4097     if (arrayType)
4098       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
4099     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(
4100         addr.getElementType(), addr.emitRawPointer(CGF), indices.size() - 1,
4101         idx, DbgInfo);
4102   }
4103 
4104   return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
4105 }
4106 
4107 /// The offset of a field from the beginning of the record.
4108 static bool getFieldOffsetInBits(CodeGenFunction &CGF, const RecordDecl *RD,
4109                                  const FieldDecl *FD, int64_t &Offset) {
4110   ASTContext &Ctx = CGF.getContext();
4111   const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
4112   unsigned FieldNo = 0;
4113 
4114   for (const Decl *D : RD->decls()) {
4115     if (const auto *Record = dyn_cast<RecordDecl>(D))
4116       if (getFieldOffsetInBits(CGF, Record, FD, Offset)) {
4117         Offset += Layout.getFieldOffset(FieldNo);
4118         return true;
4119       }
4120 
4121     if (const auto *Field = dyn_cast<FieldDecl>(D))
4122       if (FD == Field) {
4123         Offset += Layout.getFieldOffset(FieldNo);
4124         return true;
4125       }
4126 
4127     if (isa<FieldDecl>(D))
4128       ++FieldNo;
4129   }
4130 
4131   return false;
4132 }
4133 
4134 /// Returns the relative offset difference between \p FD1 and \p FD2.
4135 /// \code
4136 ///   offsetof(struct foo, FD1) - offsetof(struct foo, FD2)
4137 /// \endcode
4138 /// Both fields must be within the same struct.
4139 static std::optional<int64_t> getOffsetDifferenceInBits(CodeGenFunction &CGF,
4140                                                         const FieldDecl *FD1,
4141                                                         const FieldDecl *FD2) {
4142   const RecordDecl *FD1OuterRec =
4143       FD1->getParent()->getOuterLexicalRecordContext();
4144   const RecordDecl *FD2OuterRec =
4145       FD2->getParent()->getOuterLexicalRecordContext();
4146 
4147   if (FD1OuterRec != FD2OuterRec)
4148     // Fields must be within the same RecordDecl.
4149     return std::optional<int64_t>();
4150 
4151   int64_t FD1Offset = 0;
4152   if (!getFieldOffsetInBits(CGF, FD1OuterRec, FD1, FD1Offset))
4153     return std::optional<int64_t>();
4154 
4155   int64_t FD2Offset = 0;
4156   if (!getFieldOffsetInBits(CGF, FD2OuterRec, FD2, FD2Offset))
4157     return std::optional<int64_t>();
4158 
4159   return std::make_optional<int64_t>(FD1Offset - FD2Offset);
4160 }
4161 
4162 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4163                                                bool Accessed) {
4164   // The index must always be an integer, which is not an aggregate.  Emit it
4165   // in lexical order (this complexity is, sadly, required by C++17).
4166   llvm::Value *IdxPre =
4167       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
4168   bool SignedIndices = false;
4169   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
4170     auto *Idx = IdxPre;
4171     if (E->getLHS() != E->getIdx()) {
4172       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
4173       Idx = EmitScalarExpr(E->getIdx());
4174     }
4175 
4176     QualType IdxTy = E->getIdx()->getType();
4177     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
4178     SignedIndices |= IdxSigned;
4179 
4180     if (SanOpts.has(SanitizerKind::ArrayBounds))
4181       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
4182 
4183     // Extend or truncate the index type to 32 or 64-bits.
4184     if (Promote && Idx->getType() != IntPtrTy)
4185       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
4186 
4187     return Idx;
4188   };
4189   IdxPre = nullptr;
4190 
4191   // If the base is a vector type, then we are forming a vector element lvalue
4192   // with this subscript.
4193   if (E->getBase()->getType()->isSubscriptableVectorType() &&
4194       !isa<ExtVectorElementExpr>(E->getBase())) {
4195     // Emit the vector as an lvalue to get its address.
4196     LValue LHS = EmitLValue(E->getBase());
4197     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
4198     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
4199     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
4200                                  LHS.getBaseInfo(), TBAAAccessInfo());
4201   }
4202 
4203   // All the other cases basically behave like simple offsetting.
4204 
4205   // Handle the extvector case we ignored above.
4206   if (isa<ExtVectorElementExpr>(E->getBase())) {
4207     LValue LV = EmitLValue(E->getBase());
4208     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4209     Address Addr = EmitExtVectorElementLValue(LV);
4210 
4211     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
4212     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
4213                                  SignedIndices, E->getExprLoc());
4214     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
4215                           CGM.getTBAAInfoForSubobject(LV, EltType));
4216   }
4217 
4218   LValueBaseInfo EltBaseInfo;
4219   TBAAAccessInfo EltTBAAInfo;
4220   Address Addr = Address::invalid();
4221   if (const VariableArrayType *vla =
4222            getContext().getAsVariableArrayType(E->getType())) {
4223     // The base must be a pointer, which is not an aggregate.  Emit
4224     // it.  It needs to be emitted first in case it's what captures
4225     // the VLA bounds.
4226     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4227     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4228 
4229     // The element count here is the total number of non-VLA elements.
4230     llvm::Value *numElements = getVLASize(vla).NumElts;
4231 
4232     // Effectively, the multiply by the VLA size is part of the GEP.
4233     // GEP indexes are signed, and scaling an index isn't permitted to
4234     // signed-overflow, so we use the same semantics for our explicit
4235     // multiply.  We suppress this if overflow is not undefined behavior.
4236     if (getLangOpts().isSignedOverflowDefined()) {
4237       Idx = Builder.CreateMul(Idx, numElements);
4238     } else {
4239       Idx = Builder.CreateNSWMul(Idx, numElements);
4240     }
4241 
4242     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
4243                                  !getLangOpts().isSignedOverflowDefined(),
4244                                  SignedIndices, E->getExprLoc());
4245 
4246   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
4247     // Indexing over an interface, as in "NSString *P; P[4];"
4248 
4249     // Emit the base pointer.
4250     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4251     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4252 
4253     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
4254     llvm::Value *InterfaceSizeVal =
4255         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
4256 
4257     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
4258 
4259     // We don't necessarily build correct LLVM struct types for ObjC
4260     // interfaces, so we can't rely on GEP to do this scaling
4261     // correctly, so we need to cast to i8*.  FIXME: is this actually
4262     // true?  A lot of other things in the fragile ABI would break...
4263     llvm::Type *OrigBaseElemTy = Addr.getElementType();
4264 
4265     // Do the GEP.
4266     CharUnits EltAlign =
4267       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
4268     llvm::Value *EltPtr =
4269         emitArraySubscriptGEP(*this, Int8Ty, Addr.emitRawPointer(*this),
4270                               ScaledIdx, false, SignedIndices, E->getExprLoc());
4271     Addr = Address(EltPtr, OrigBaseElemTy, EltAlign);
4272   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4273     // If this is A[i] where A is an array, the frontend will have decayed the
4274     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4275     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4276     // "gep x, i" here.  Emit one "gep A, 0, i".
4277     assert(Array->getType()->isArrayType() &&
4278            "Array to pointer decay must have array source type!");
4279     LValue ArrayLV;
4280     // For simple multidimensional array indexing, set the 'accessed' flag for
4281     // better bounds-checking of the base expression.
4282     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4283       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4284     else
4285       ArrayLV = EmitLValue(Array);
4286     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4287 
4288     if (SanOpts.has(SanitizerKind::ArrayBounds)) {
4289       // If the array being accessed has a "counted_by" attribute, generate
4290       // bounds checking code. The "count" field is at the top level of the
4291       // struct or in an anonymous struct, that's also at the top level. Future
4292       // expansions may allow the "count" to reside at any place in the struct,
4293       // but the value of "counted_by" will be a "simple" path to the count,
4294       // i.e. "a.b.count", so we shouldn't need the full force of EmitLValue or
4295       // similar to emit the correct GEP.
4296       const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
4297           getLangOpts().getStrictFlexArraysLevel();
4298 
4299       if (const auto *ME = dyn_cast<MemberExpr>(Array);
4300           ME &&
4301           ME->isFlexibleArrayMemberLike(getContext(), StrictFlexArraysLevel) &&
4302           ME->getMemberDecl()->getType()->isCountAttributedType()) {
4303         const FieldDecl *FAMDecl = dyn_cast<FieldDecl>(ME->getMemberDecl());
4304         if (const FieldDecl *CountFD = FindCountedByField(FAMDecl)) {
4305           if (std::optional<int64_t> Diff =
4306                   getOffsetDifferenceInBits(*this, CountFD, FAMDecl)) {
4307             CharUnits OffsetDiff = CGM.getContext().toCharUnitsFromBits(*Diff);
4308 
4309             // Create a GEP with a byte offset between the FAM and count and
4310             // use that to load the count value.
4311             Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(
4312                 ArrayLV.getAddress(), Int8PtrTy, Int8Ty);
4313 
4314             llvm::Type *CountTy = ConvertType(CountFD->getType());
4315             llvm::Value *Res = Builder.CreateInBoundsGEP(
4316                 Int8Ty, Addr.emitRawPointer(*this),
4317                 Builder.getInt32(OffsetDiff.getQuantity()), ".counted_by.gep");
4318             Res = Builder.CreateAlignedLoad(CountTy, Res, getIntAlign(),
4319                                             ".counted_by.load");
4320 
4321             // Now emit the bounds checking.
4322             EmitBoundsCheckImpl(E, Res, Idx, E->getIdx()->getType(),
4323                                 Array->getType(), Accessed);
4324           }
4325         }
4326       }
4327     }
4328 
4329     // Propagate the alignment from the array itself to the result.
4330     QualType arrayType = Array->getType();
4331     Addr = emitArraySubscriptGEP(
4332         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
4333         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
4334         E->getExprLoc(), &arrayType, E->getBase());
4335     EltBaseInfo = ArrayLV.getBaseInfo();
4336     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
4337   } else {
4338     // The base must be a pointer; emit it with an estimate of its alignment.
4339     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4340     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4341     QualType ptrType = E->getBase()->getType();
4342     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
4343                                  !getLangOpts().isSignedOverflowDefined(),
4344                                  SignedIndices, E->getExprLoc(), &ptrType,
4345                                  E->getBase());
4346   }
4347 
4348   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
4349 
4350   if (getLangOpts().ObjC &&
4351       getLangOpts().getGC() != LangOptions::NonGC) {
4352     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
4353     setObjCGCLValueClass(getContext(), E, LV);
4354   }
4355   return LV;
4356 }
4357 
4358 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
4359   assert(
4360       !E->isIncomplete() &&
4361       "incomplete matrix subscript expressions should be rejected during Sema");
4362   LValue Base = EmitLValue(E->getBase());
4363   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
4364   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
4365   llvm::Value *NumRows = Builder.getIntN(
4366       RowIdx->getType()->getScalarSizeInBits(),
4367       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
4368   llvm::Value *FinalIdx =
4369       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
4370   return LValue::MakeMatrixElt(
4371       MaybeConvertMatrixAddress(Base.getAddress(), *this), FinalIdx,
4372       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
4373 }
4374 
4375 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
4376                                        LValueBaseInfo &BaseInfo,
4377                                        TBAAAccessInfo &TBAAInfo,
4378                                        QualType BaseTy, QualType ElTy,
4379                                        bool IsLowerBound) {
4380   LValue BaseLVal;
4381   if (auto *ASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParenImpCasts())) {
4382     BaseLVal = CGF.EmitArraySectionExpr(ASE, IsLowerBound);
4383     if (BaseTy->isArrayType()) {
4384       Address Addr = BaseLVal.getAddress();
4385       BaseInfo = BaseLVal.getBaseInfo();
4386 
4387       // If the array type was an incomplete type, we need to make sure
4388       // the decay ends up being the right type.
4389       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
4390       Addr = Addr.withElementType(NewTy);
4391 
4392       // Note that VLA pointers are always decayed, so we don't need to do
4393       // anything here.
4394       if (!BaseTy->isVariableArrayType()) {
4395         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
4396                "Expected pointer to array");
4397         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
4398       }
4399 
4400       return Addr.withElementType(CGF.ConvertTypeForMem(ElTy));
4401     }
4402     LValueBaseInfo TypeBaseInfo;
4403     TBAAAccessInfo TypeTBAAInfo;
4404     CharUnits Align =
4405         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
4406     BaseInfo.mergeForCast(TypeBaseInfo);
4407     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
4408     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()),
4409                    CGF.ConvertTypeForMem(ElTy), Align);
4410   }
4411   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4412 }
4413 
4414 LValue CodeGenFunction::EmitArraySectionExpr(const ArraySectionExpr *E,
4415                                              bool IsLowerBound) {
4416 
4417   assert(!E->isOpenACCArraySection() &&
4418          "OpenACC Array section codegen not implemented");
4419 
4420   QualType BaseTy = ArraySectionExpr::getBaseOriginalType(E->getBase());
4421   QualType ResultExprTy;
4422   if (auto *AT = getContext().getAsArrayType(BaseTy))
4423     ResultExprTy = AT->getElementType();
4424   else
4425     ResultExprTy = BaseTy->getPointeeType();
4426   llvm::Value *Idx = nullptr;
4427   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4428     // Requesting lower bound or upper bound, but without provided length and
4429     // without ':' symbol for the default length -> length = 1.
4430     // Idx = LowerBound ?: 0;
4431     if (auto *LowerBound = E->getLowerBound()) {
4432       Idx = Builder.CreateIntCast(
4433           EmitScalarExpr(LowerBound), IntPtrTy,
4434           LowerBound->getType()->hasSignedIntegerRepresentation());
4435     } else
4436       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4437   } else {
4438     // Try to emit length or lower bound as constant. If this is possible, 1
4439     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4440     // IR (LB + Len) - 1.
4441     auto &C = CGM.getContext();
4442     auto *Length = E->getLength();
4443     llvm::APSInt ConstLength;
4444     if (Length) {
4445       // Idx = LowerBound + Length - 1;
4446       if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4447         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4448         Length = nullptr;
4449       }
4450       auto *LowerBound = E->getLowerBound();
4451       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4452       if (LowerBound) {
4453         if (std::optional<llvm::APSInt> LB =
4454                 LowerBound->getIntegerConstantExpr(C)) {
4455           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4456           LowerBound = nullptr;
4457         }
4458       }
4459       if (!Length)
4460         --ConstLength;
4461       else if (!LowerBound)
4462         --ConstLowerBound;
4463 
4464       if (Length || LowerBound) {
4465         auto *LowerBoundVal =
4466             LowerBound
4467                 ? Builder.CreateIntCast(
4468                       EmitScalarExpr(LowerBound), IntPtrTy,
4469                       LowerBound->getType()->hasSignedIntegerRepresentation())
4470                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4471         auto *LengthVal =
4472             Length
4473                 ? Builder.CreateIntCast(
4474                       EmitScalarExpr(Length), IntPtrTy,
4475                       Length->getType()->hasSignedIntegerRepresentation())
4476                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4477         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4478                                 /*HasNUW=*/false,
4479                                 !getLangOpts().isSignedOverflowDefined());
4480         if (Length && LowerBound) {
4481           Idx = Builder.CreateSub(
4482               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4483               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4484         }
4485       } else
4486         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4487     } else {
4488       // Idx = ArraySize - 1;
4489       QualType ArrayTy = BaseTy->isPointerType()
4490                              ? E->getBase()->IgnoreParenImpCasts()->getType()
4491                              : BaseTy;
4492       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4493         Length = VAT->getSizeExpr();
4494         if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4495           ConstLength = *L;
4496           Length = nullptr;
4497         }
4498       } else {
4499         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4500         assert(CAT && "unexpected type for array initializer");
4501         ConstLength = CAT->getSize();
4502       }
4503       if (Length) {
4504         auto *LengthVal = Builder.CreateIntCast(
4505             EmitScalarExpr(Length), IntPtrTy,
4506             Length->getType()->hasSignedIntegerRepresentation());
4507         Idx = Builder.CreateSub(
4508             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4509             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4510       } else {
4511         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4512         --ConstLength;
4513         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4514       }
4515     }
4516   }
4517   assert(Idx);
4518 
4519   Address EltPtr = Address::invalid();
4520   LValueBaseInfo BaseInfo;
4521   TBAAAccessInfo TBAAInfo;
4522   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4523     // The base must be a pointer, which is not an aggregate.  Emit
4524     // it.  It needs to be emitted first in case it's what captures
4525     // the VLA bounds.
4526     Address Base =
4527         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4528                                 BaseTy, VLA->getElementType(), IsLowerBound);
4529     // The element count here is the total number of non-VLA elements.
4530     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4531 
4532     // Effectively, the multiply by the VLA size is part of the GEP.
4533     // GEP indexes are signed, and scaling an index isn't permitted to
4534     // signed-overflow, so we use the same semantics for our explicit
4535     // multiply.  We suppress this if overflow is not undefined behavior.
4536     if (getLangOpts().isSignedOverflowDefined())
4537       Idx = Builder.CreateMul(Idx, NumElements);
4538     else
4539       Idx = Builder.CreateNSWMul(Idx, NumElements);
4540     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4541                                    !getLangOpts().isSignedOverflowDefined(),
4542                                    /*signedIndices=*/false, E->getExprLoc());
4543   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4544     // If this is A[i] where A is an array, the frontend will have decayed the
4545     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4546     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4547     // "gep x, i" here.  Emit one "gep A, 0, i".
4548     assert(Array->getType()->isArrayType() &&
4549            "Array to pointer decay must have array source type!");
4550     LValue ArrayLV;
4551     // For simple multidimensional array indexing, set the 'accessed' flag for
4552     // better bounds-checking of the base expression.
4553     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4554       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4555     else
4556       ArrayLV = EmitLValue(Array);
4557 
4558     // Propagate the alignment from the array itself to the result.
4559     EltPtr = emitArraySubscriptGEP(
4560         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
4561         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4562         /*signedIndices=*/false, E->getExprLoc());
4563     BaseInfo = ArrayLV.getBaseInfo();
4564     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4565   } else {
4566     Address Base =
4567         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, BaseTy,
4568                                 ResultExprTy, IsLowerBound);
4569     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4570                                    !getLangOpts().isSignedOverflowDefined(),
4571                                    /*signedIndices=*/false, E->getExprLoc());
4572   }
4573 
4574   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4575 }
4576 
4577 LValue CodeGenFunction::
4578 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4579   // Emit the base vector as an l-value.
4580   LValue Base;
4581 
4582   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4583   if (E->isArrow()) {
4584     // If it is a pointer to a vector, emit the address and form an lvalue with
4585     // it.
4586     LValueBaseInfo BaseInfo;
4587     TBAAAccessInfo TBAAInfo;
4588     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4589     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4590     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4591     Base.getQuals().removeObjCGCAttr();
4592   } else if (E->getBase()->isGLValue()) {
4593     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4594     // emit the base as an lvalue.
4595     assert(E->getBase()->getType()->isVectorType());
4596     Base = EmitLValue(E->getBase());
4597   } else {
4598     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4599     assert(E->getBase()->getType()->isVectorType() &&
4600            "Result must be a vector");
4601     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4602 
4603     // Store the vector to memory (because LValue wants an address).
4604     Address VecMem = CreateMemTemp(E->getBase()->getType());
4605     Builder.CreateStore(Vec, VecMem);
4606     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4607                           AlignmentSource::Decl);
4608   }
4609 
4610   QualType type =
4611     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4612 
4613   // Encode the element access list into a vector of unsigned indices.
4614   SmallVector<uint32_t, 4> Indices;
4615   E->getEncodedElementAccess(Indices);
4616 
4617   if (Base.isSimple()) {
4618     llvm::Constant *CV =
4619         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4620     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
4621                                     Base.getBaseInfo(), TBAAAccessInfo());
4622   }
4623   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4624 
4625   llvm::Constant *BaseElts = Base.getExtVectorElts();
4626   SmallVector<llvm::Constant *, 4> CElts;
4627 
4628   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4629     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4630   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4631   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4632                                   Base.getBaseInfo(), TBAAAccessInfo());
4633 }
4634 
4635 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4636   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4637     EmitIgnoredExpr(E->getBase());
4638     return EmitDeclRefLValue(DRE);
4639   }
4640 
4641   Expr *BaseExpr = E->getBase();
4642   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4643   LValue BaseLV;
4644   if (E->isArrow()) {
4645     LValueBaseInfo BaseInfo;
4646     TBAAAccessInfo TBAAInfo;
4647     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4648     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4649     SanitizerSet SkippedChecks;
4650     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4651     if (IsBaseCXXThis)
4652       SkippedChecks.set(SanitizerKind::Alignment, true);
4653     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4654       SkippedChecks.set(SanitizerKind::Null, true);
4655     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr, PtrTy,
4656                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4657     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4658   } else
4659     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4660 
4661   NamedDecl *ND = E->getMemberDecl();
4662   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4663     LValue LV = EmitLValueForField(BaseLV, Field);
4664     setObjCGCLValueClass(getContext(), E, LV);
4665     if (getLangOpts().OpenMP) {
4666       // If the member was explicitly marked as nontemporal, mark it as
4667       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4668       // to children as nontemporal too.
4669       if ((IsWrappedCXXThis(BaseExpr) &&
4670            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4671           BaseLV.isNontemporal())
4672         LV.setNontemporal(/*Value=*/true);
4673     }
4674     return LV;
4675   }
4676 
4677   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4678     return EmitFunctionDeclLValue(*this, E, FD);
4679 
4680   llvm_unreachable("Unhandled member declaration!");
4681 }
4682 
4683 /// Given that we are currently emitting a lambda, emit an l-value for
4684 /// one of its members.
4685 ///
4686 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field,
4687                                                  llvm::Value *ThisValue) {
4688   bool HasExplicitObjectParameter = false;
4689   const auto *MD = dyn_cast_if_present<CXXMethodDecl>(CurCodeDecl);
4690   if (MD) {
4691     HasExplicitObjectParameter = MD->isExplicitObjectMemberFunction();
4692     assert(MD->getParent()->isLambda());
4693     assert(MD->getParent() == Field->getParent());
4694   }
4695   LValue LambdaLV;
4696   if (HasExplicitObjectParameter) {
4697     const VarDecl *D = cast<CXXMethodDecl>(CurCodeDecl)->getParamDecl(0);
4698     auto It = LocalDeclMap.find(D);
4699     assert(It != LocalDeclMap.end() && "explicit parameter not loaded?");
4700     Address AddrOfExplicitObject = It->getSecond();
4701     if (D->getType()->isReferenceType())
4702       LambdaLV = EmitLoadOfReferenceLValue(AddrOfExplicitObject, D->getType(),
4703                                            AlignmentSource::Decl);
4704     else
4705       LambdaLV = MakeAddrLValue(AddrOfExplicitObject,
4706                                 D->getType().getNonReferenceType());
4707 
4708     // Make sure we have an lvalue to the lambda itself and not a derived class.
4709     auto *ThisTy = D->getType().getNonReferenceType()->getAsCXXRecordDecl();
4710     auto *LambdaTy = cast<CXXRecordDecl>(Field->getParent());
4711     if (ThisTy != LambdaTy) {
4712       const CXXCastPath &BasePathArray = getContext().LambdaCastPaths.at(MD);
4713       Address Base = GetAddressOfBaseClass(
4714           LambdaLV.getAddress(), ThisTy, BasePathArray.begin(),
4715           BasePathArray.end(), /*NullCheckValue=*/false, SourceLocation());
4716       LambdaLV = MakeAddrLValue(Base, QualType{LambdaTy->getTypeForDecl(), 0});
4717     }
4718   } else {
4719     QualType LambdaTagType = getContext().getTagDeclType(Field->getParent());
4720     LambdaLV = MakeNaturalAlignAddrLValue(ThisValue, LambdaTagType);
4721   }
4722   return EmitLValueForField(LambdaLV, Field);
4723 }
4724 
4725 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4726   return EmitLValueForLambdaField(Field, CXXABIThisValue);
4727 }
4728 
4729 /// Get the field index in the debug info. The debug info structure/union
4730 /// will ignore the unnamed bitfields.
4731 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4732                                              unsigned FieldIndex) {
4733   unsigned I = 0, Skipped = 0;
4734 
4735   for (auto *F : Rec->getDefinition()->fields()) {
4736     if (I == FieldIndex)
4737       break;
4738     if (F->isUnnamedBitField())
4739       Skipped++;
4740     I++;
4741   }
4742 
4743   return FieldIndex - Skipped;
4744 }
4745 
4746 /// Get the address of a zero-sized field within a record. The resulting
4747 /// address doesn't necessarily have the right type.
4748 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4749                                        const FieldDecl *Field) {
4750   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4751       CGF.getContext().getFieldOffset(Field));
4752   if (Offset.isZero())
4753     return Base;
4754   Base = Base.withElementType(CGF.Int8Ty);
4755   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4756 }
4757 
4758 /// Drill down to the storage of a field without walking into
4759 /// reference types.
4760 ///
4761 /// The resulting address doesn't necessarily have the right type.
4762 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4763                                       const FieldDecl *field) {
4764   if (isEmptyFieldForLayout(CGF.getContext(), field))
4765     return emitAddrOfZeroSizeField(CGF, base, field);
4766 
4767   const RecordDecl *rec = field->getParent();
4768 
4769   unsigned idx =
4770     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4771 
4772   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4773 }
4774 
4775 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4776                                         Address addr, const FieldDecl *field) {
4777   const RecordDecl *rec = field->getParent();
4778   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4779       base.getType(), rec->getLocation());
4780 
4781   unsigned idx =
4782       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4783 
4784   return CGF.Builder.CreatePreserveStructAccessIndex(
4785       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4786 }
4787 
4788 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4789   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4790   if (!RD)
4791     return false;
4792 
4793   if (RD->isDynamicClass())
4794     return true;
4795 
4796   for (const auto &Base : RD->bases())
4797     if (hasAnyVptr(Base.getType(), Context))
4798       return true;
4799 
4800   for (const FieldDecl *Field : RD->fields())
4801     if (hasAnyVptr(Field->getType(), Context))
4802       return true;
4803 
4804   return false;
4805 }
4806 
4807 LValue CodeGenFunction::EmitLValueForField(LValue base,
4808                                            const FieldDecl *field) {
4809   LValueBaseInfo BaseInfo = base.getBaseInfo();
4810 
4811   if (field->isBitField()) {
4812     const CGRecordLayout &RL =
4813         CGM.getTypes().getCGRecordLayout(field->getParent());
4814     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4815     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4816                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4817                              Info.VolatileStorageSize != 0 &&
4818                              field->getType()
4819                                  .withCVRQualifiers(base.getVRQualifiers())
4820                                  .isVolatileQualified();
4821     Address Addr = base.getAddress();
4822     unsigned Idx = RL.getLLVMFieldNo(field);
4823     const RecordDecl *rec = field->getParent();
4824     if (hasBPFPreserveStaticOffset(rec))
4825       Addr = wrapWithBPFPreserveStaticOffset(*this, Addr);
4826     if (!UseVolatile) {
4827       if (!IsInPreservedAIRegion &&
4828           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4829         if (Idx != 0)
4830           // For structs, we GEP to the field that the record layout suggests.
4831           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4832       } else {
4833         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4834             getContext().getRecordType(rec), rec->getLocation());
4835         Addr = Builder.CreatePreserveStructAccessIndex(
4836             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4837             DbgInfo);
4838       }
4839     }
4840     const unsigned SS =
4841         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4842     // Get the access type.
4843     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4844     Addr = Addr.withElementType(FieldIntTy);
4845     if (UseVolatile) {
4846       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4847       if (VolatileOffset)
4848         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4849     }
4850 
4851     QualType fieldType =
4852         field->getType().withCVRQualifiers(base.getVRQualifiers());
4853     // TODO: Support TBAA for bit fields.
4854     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4855     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4856                                 TBAAAccessInfo());
4857   }
4858 
4859   // Fields of may-alias structures are may-alias themselves.
4860   // FIXME: this should get propagated down through anonymous structs
4861   // and unions.
4862   QualType FieldType = field->getType();
4863   const RecordDecl *rec = field->getParent();
4864   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4865   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4866   TBAAAccessInfo FieldTBAAInfo;
4867   if (base.getTBAAInfo().isMayAlias() ||
4868           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4869     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4870   } else if (rec->isUnion()) {
4871     // TODO: Support TBAA for unions.
4872     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4873   } else {
4874     // If no base type been assigned for the base access, then try to generate
4875     // one for this base lvalue.
4876     FieldTBAAInfo = base.getTBAAInfo();
4877     if (!FieldTBAAInfo.BaseType) {
4878         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4879         assert(!FieldTBAAInfo.Offset &&
4880                "Nonzero offset for an access with no base type!");
4881     }
4882 
4883     // Adjust offset to be relative to the base type.
4884     const ASTRecordLayout &Layout =
4885         getContext().getASTRecordLayout(field->getParent());
4886     unsigned CharWidth = getContext().getCharWidth();
4887     if (FieldTBAAInfo.BaseType)
4888       FieldTBAAInfo.Offset +=
4889           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4890 
4891     // Update the final access type and size.
4892     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4893     FieldTBAAInfo.Size =
4894         getContext().getTypeSizeInChars(FieldType).getQuantity();
4895   }
4896 
4897   Address addr = base.getAddress();
4898   if (hasBPFPreserveStaticOffset(rec))
4899     addr = wrapWithBPFPreserveStaticOffset(*this, addr);
4900   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4901     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4902         ClassDef->isDynamicClass()) {
4903       // Getting to any field of dynamic object requires stripping dynamic
4904       // information provided by invariant.group.  This is because accessing
4905       // fields may leak the real address of dynamic object, which could result
4906       // in miscompilation when leaked pointer would be compared.
4907       auto *stripped =
4908           Builder.CreateStripInvariantGroup(addr.emitRawPointer(*this));
4909       addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4910     }
4911   }
4912 
4913   unsigned RecordCVR = base.getVRQualifiers();
4914   if (rec->isUnion()) {
4915     // For unions, there is no pointer adjustment.
4916     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4917         hasAnyVptr(FieldType, getContext()))
4918       // Because unions can easily skip invariant.barriers, we need to add
4919       // a barrier every time CXXRecord field with vptr is referenced.
4920       addr = Builder.CreateLaunderInvariantGroup(addr);
4921 
4922     if (IsInPreservedAIRegion ||
4923         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4924       // Remember the original union field index
4925       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4926           rec->getLocation());
4927       addr =
4928           Address(Builder.CreatePreserveUnionAccessIndex(
4929                       addr.emitRawPointer(*this),
4930                       getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4931                   addr.getElementType(), addr.getAlignment());
4932     }
4933 
4934     if (FieldType->isReferenceType())
4935       addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4936   } else {
4937     if (!IsInPreservedAIRegion &&
4938         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4939       // For structs, we GEP to the field that the record layout suggests.
4940       addr = emitAddrOfFieldStorage(*this, addr, field);
4941     else
4942       // Remember the original struct field index
4943       addr = emitPreserveStructAccess(*this, base, addr, field);
4944   }
4945 
4946   // If this is a reference field, load the reference right now.
4947   if (FieldType->isReferenceType()) {
4948     LValue RefLVal =
4949         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4950     if (RecordCVR & Qualifiers::Volatile)
4951       RefLVal.getQuals().addVolatile();
4952     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4953 
4954     // Qualifiers on the struct don't apply to the referencee.
4955     RecordCVR = 0;
4956     FieldType = FieldType->getPointeeType();
4957   }
4958 
4959   // Make sure that the address is pointing to the right type.  This is critical
4960   // for both unions and structs.
4961   addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4962 
4963   if (field->hasAttr<AnnotateAttr>())
4964     addr = EmitFieldAnnotations(field, addr);
4965 
4966   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4967   LV.getQuals().addCVRQualifiers(RecordCVR);
4968 
4969   // __weak attribute on a field is ignored.
4970   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4971     LV.getQuals().removeObjCGCAttr();
4972 
4973   return LV;
4974 }
4975 
4976 LValue
4977 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4978                                                   const FieldDecl *Field) {
4979   QualType FieldType = Field->getType();
4980 
4981   if (!FieldType->isReferenceType())
4982     return EmitLValueForField(Base, Field);
4983 
4984   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4985 
4986   // Make sure that the address is pointing to the right type.
4987   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4988   V = V.withElementType(llvmType);
4989 
4990   // TODO: Generate TBAA information that describes this access as a structure
4991   // member access and not just an access to an object of the field's type. This
4992   // should be similar to what we do in EmitLValueForField().
4993   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4994   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4995   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4996   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4997                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4998 }
4999 
5000 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
5001   if (E->isFileScope()) {
5002     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
5003     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
5004   }
5005   if (E->getType()->isVariablyModifiedType())
5006     // make sure to emit the VLA size.
5007     EmitVariablyModifiedType(E->getType());
5008 
5009   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
5010   const Expr *InitExpr = E->getInitializer();
5011   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
5012 
5013   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
5014                    /*Init*/ true);
5015 
5016   // Block-scope compound literals are destroyed at the end of the enclosing
5017   // scope in C.
5018   if (!getLangOpts().CPlusPlus)
5019     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
5020       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
5021                                   E->getType(), getDestroyer(DtorKind),
5022                                   DtorKind & EHCleanup);
5023 
5024   return Result;
5025 }
5026 
5027 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
5028   if (!E->isGLValue())
5029     // Initializing an aggregate temporary in C++11: T{...}.
5030     return EmitAggExprToLValue(E);
5031 
5032   // An lvalue initializer list must be initializing a reference.
5033   assert(E->isTransparent() && "non-transparent glvalue init list");
5034   return EmitLValue(E->getInit(0));
5035 }
5036 
5037 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
5038 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
5039 /// LValue is returned and the current block has been terminated.
5040 static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
5041                                                          const Expr *Operand) {
5042   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
5043     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
5044     return std::nullopt;
5045   }
5046 
5047   return CGF.EmitLValue(Operand);
5048 }
5049 
5050 namespace {
5051 // Handle the case where the condition is a constant evaluatable simple integer,
5052 // which means we don't have to separately handle the true/false blocks.
5053 std::optional<LValue> HandleConditionalOperatorLValueSimpleCase(
5054     CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
5055   const Expr *condExpr = E->getCond();
5056   bool CondExprBool;
5057   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
5058     const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
5059     if (!CondExprBool)
5060       std::swap(Live, Dead);
5061 
5062     if (!CGF.ContainsLabel(Dead)) {
5063       // If the true case is live, we need to track its region.
5064       if (CondExprBool)
5065         CGF.incrementProfileCounter(E);
5066       // If a throw expression we emit it and return an undefined lvalue
5067       // because it can't be used.
5068       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
5069         CGF.EmitCXXThrowExpr(ThrowExpr);
5070         llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
5071         llvm::Type *Ty = CGF.UnqualPtrTy;
5072         return CGF.MakeAddrLValue(
5073             Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
5074             Dead->getType());
5075       }
5076       return CGF.EmitLValue(Live);
5077     }
5078   }
5079   return std::nullopt;
5080 }
5081 struct ConditionalInfo {
5082   llvm::BasicBlock *lhsBlock, *rhsBlock;
5083   std::optional<LValue> LHS, RHS;
5084 };
5085 
5086 // Create and generate the 3 blocks for a conditional operator.
5087 // Leaves the 'current block' in the continuation basic block.
5088 template<typename FuncTy>
5089 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
5090                                       const AbstractConditionalOperator *E,
5091                                       const FuncTy &BranchGenFunc) {
5092   ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
5093                        CGF.createBasicBlock("cond.false"), std::nullopt,
5094                        std::nullopt};
5095   llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
5096 
5097   CodeGenFunction::ConditionalEvaluation eval(CGF);
5098   CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
5099                            CGF.getProfileCount(E));
5100 
5101   // Any temporaries created here are conditional.
5102   CGF.EmitBlock(Info.lhsBlock);
5103   CGF.incrementProfileCounter(E);
5104   eval.begin(CGF);
5105   Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
5106   eval.end(CGF);
5107   Info.lhsBlock = CGF.Builder.GetInsertBlock();
5108 
5109   if (Info.LHS)
5110     CGF.Builder.CreateBr(endBlock);
5111 
5112   // Any temporaries created here are conditional.
5113   CGF.EmitBlock(Info.rhsBlock);
5114   eval.begin(CGF);
5115   Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
5116   eval.end(CGF);
5117   Info.rhsBlock = CGF.Builder.GetInsertBlock();
5118   CGF.EmitBlock(endBlock);
5119 
5120   return Info;
5121 }
5122 } // namespace
5123 
5124 void CodeGenFunction::EmitIgnoredConditionalOperator(
5125     const AbstractConditionalOperator *E) {
5126   if (!E->isGLValue()) {
5127     // ?: here should be an aggregate.
5128     assert(hasAggregateEvaluationKind(E->getType()) &&
5129            "Unexpected conditional operator!");
5130     return (void)EmitAggExprToLValue(E);
5131   }
5132 
5133   OpaqueValueMapping binding(*this, E);
5134   if (HandleConditionalOperatorLValueSimpleCase(*this, E))
5135     return;
5136 
5137   EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
5138     CGF.EmitIgnoredExpr(E);
5139     return LValue{};
5140   });
5141 }
5142 LValue CodeGenFunction::EmitConditionalOperatorLValue(
5143     const AbstractConditionalOperator *expr) {
5144   if (!expr->isGLValue()) {
5145     // ?: here should be an aggregate.
5146     assert(hasAggregateEvaluationKind(expr->getType()) &&
5147            "Unexpected conditional operator!");
5148     return EmitAggExprToLValue(expr);
5149   }
5150 
5151   OpaqueValueMapping binding(*this, expr);
5152   if (std::optional<LValue> Res =
5153           HandleConditionalOperatorLValueSimpleCase(*this, expr))
5154     return *Res;
5155 
5156   ConditionalInfo Info = EmitConditionalBlocks(
5157       *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
5158         return EmitLValueOrThrowExpression(CGF, E);
5159       });
5160 
5161   if ((Info.LHS && !Info.LHS->isSimple()) ||
5162       (Info.RHS && !Info.RHS->isSimple()))
5163     return EmitUnsupportedLValue(expr, "conditional operator");
5164 
5165   if (Info.LHS && Info.RHS) {
5166     Address lhsAddr = Info.LHS->getAddress();
5167     Address rhsAddr = Info.RHS->getAddress();
5168     Address result = mergeAddressesInConditionalExpr(
5169         lhsAddr, rhsAddr, Info.lhsBlock, Info.rhsBlock,
5170         Builder.GetInsertBlock(), expr->getType());
5171     AlignmentSource alignSource =
5172         std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
5173                  Info.RHS->getBaseInfo().getAlignmentSource());
5174     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
5175         Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
5176     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
5177                           TBAAInfo);
5178   } else {
5179     assert((Info.LHS || Info.RHS) &&
5180            "both operands of glvalue conditional are throw-expressions?");
5181     return Info.LHS ? *Info.LHS : *Info.RHS;
5182   }
5183 }
5184 
5185 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
5186 /// type. If the cast is to a reference, we can have the usual lvalue result,
5187 /// otherwise if a cast is needed by the code generator in an lvalue context,
5188 /// then it must mean that we need the address of an aggregate in order to
5189 /// access one of its members.  This can happen for all the reasons that casts
5190 /// are permitted with aggregate result, including noop aggregate casts, and
5191 /// cast from scalar to union.
5192 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
5193   switch (E->getCastKind()) {
5194   case CK_ToVoid:
5195   case CK_BitCast:
5196   case CK_LValueToRValueBitCast:
5197   case CK_ArrayToPointerDecay:
5198   case CK_FunctionToPointerDecay:
5199   case CK_NullToMemberPointer:
5200   case CK_NullToPointer:
5201   case CK_IntegralToPointer:
5202   case CK_PointerToIntegral:
5203   case CK_PointerToBoolean:
5204   case CK_IntegralCast:
5205   case CK_BooleanToSignedIntegral:
5206   case CK_IntegralToBoolean:
5207   case CK_IntegralToFloating:
5208   case CK_FloatingToIntegral:
5209   case CK_FloatingToBoolean:
5210   case CK_FloatingCast:
5211   case CK_FloatingRealToComplex:
5212   case CK_FloatingComplexToReal:
5213   case CK_FloatingComplexToBoolean:
5214   case CK_FloatingComplexCast:
5215   case CK_FloatingComplexToIntegralComplex:
5216   case CK_IntegralRealToComplex:
5217   case CK_IntegralComplexToReal:
5218   case CK_IntegralComplexToBoolean:
5219   case CK_IntegralComplexCast:
5220   case CK_IntegralComplexToFloatingComplex:
5221   case CK_DerivedToBaseMemberPointer:
5222   case CK_BaseToDerivedMemberPointer:
5223   case CK_MemberPointerToBoolean:
5224   case CK_ReinterpretMemberPointer:
5225   case CK_AnyPointerToBlockPointerCast:
5226   case CK_ARCProduceObject:
5227   case CK_ARCConsumeObject:
5228   case CK_ARCReclaimReturnedObject:
5229   case CK_ARCExtendBlockObject:
5230   case CK_CopyAndAutoreleaseBlockObject:
5231   case CK_IntToOCLSampler:
5232   case CK_FloatingToFixedPoint:
5233   case CK_FixedPointToFloating:
5234   case CK_FixedPointCast:
5235   case CK_FixedPointToBoolean:
5236   case CK_FixedPointToIntegral:
5237   case CK_IntegralToFixedPoint:
5238   case CK_MatrixCast:
5239   case CK_HLSLVectorTruncation:
5240   case CK_HLSLArrayRValue:
5241     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
5242 
5243   case CK_Dependent:
5244     llvm_unreachable("dependent cast kind in IR gen!");
5245 
5246   case CK_BuiltinFnToFnPtr:
5247     llvm_unreachable("builtin functions are handled elsewhere");
5248 
5249   // These are never l-values; just use the aggregate emission code.
5250   case CK_NonAtomicToAtomic:
5251   case CK_AtomicToNonAtomic:
5252     return EmitAggExprToLValue(E);
5253 
5254   case CK_Dynamic: {
5255     LValue LV = EmitLValue(E->getSubExpr());
5256     Address V = LV.getAddress();
5257     const auto *DCE = cast<CXXDynamicCastExpr>(E);
5258     return MakeNaturalAlignRawAddrLValue(EmitDynamicCast(V, DCE), E->getType());
5259   }
5260 
5261   case CK_ConstructorConversion:
5262   case CK_UserDefinedConversion:
5263   case CK_CPointerToObjCPointerCast:
5264   case CK_BlockPointerToObjCPointerCast:
5265   case CK_LValueToRValue:
5266     return EmitLValue(E->getSubExpr());
5267 
5268   case CK_NoOp: {
5269     // CK_NoOp can model a qualification conversion, which can remove an array
5270     // bound and change the IR type.
5271     // FIXME: Once pointee types are removed from IR, remove this.
5272     LValue LV = EmitLValue(E->getSubExpr());
5273     // Propagate the volatile qualifer to LValue, if exist in E.
5274     if (E->changesVolatileQualification())
5275       LV.getQuals() = E->getType().getQualifiers();
5276     if (LV.isSimple()) {
5277       Address V = LV.getAddress();
5278       if (V.isValid()) {
5279         llvm::Type *T = ConvertTypeForMem(E->getType());
5280         if (V.getElementType() != T)
5281           LV.setAddress(V.withElementType(T));
5282       }
5283     }
5284     return LV;
5285   }
5286 
5287   case CK_UncheckedDerivedToBase:
5288   case CK_DerivedToBase: {
5289     const auto *DerivedClassTy =
5290         E->getSubExpr()->getType()->castAs<RecordType>();
5291     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
5292 
5293     LValue LV = EmitLValue(E->getSubExpr());
5294     Address This = LV.getAddress();
5295 
5296     // Perform the derived-to-base conversion
5297     Address Base = GetAddressOfBaseClass(
5298         This, DerivedClassDecl, E->path_begin(), E->path_end(),
5299         /*NullCheckValue=*/false, E->getExprLoc());
5300 
5301     // TODO: Support accesses to members of base classes in TBAA. For now, we
5302     // conservatively pretend that the complete object is of the base class
5303     // type.
5304     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
5305                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
5306   }
5307   case CK_ToUnion:
5308     return EmitAggExprToLValue(E);
5309   case CK_BaseToDerived: {
5310     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
5311     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
5312 
5313     LValue LV = EmitLValue(E->getSubExpr());
5314 
5315     // Perform the base-to-derived conversion
5316     Address Derived = GetAddressOfDerivedClass(
5317         LV.getAddress(), DerivedClassDecl, E->path_begin(), E->path_end(),
5318         /*NullCheckValue=*/false);
5319 
5320     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
5321     // performed and the object is not of the derived type.
5322     if (sanitizePerformTypeCheck())
5323       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), Derived,
5324                     E->getType());
5325 
5326     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
5327       EmitVTablePtrCheckForCast(E->getType(), Derived,
5328                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
5329                                 E->getBeginLoc());
5330 
5331     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
5332                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
5333   }
5334   case CK_LValueBitCast: {
5335     // This must be a reinterpret_cast (or c-style equivalent).
5336     const auto *CE = cast<ExplicitCastExpr>(E);
5337 
5338     CGM.EmitExplicitCastExprType(CE, this);
5339     LValue LV = EmitLValue(E->getSubExpr());
5340     Address V = LV.getAddress().withElementType(
5341         ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
5342 
5343     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
5344       EmitVTablePtrCheckForCast(E->getType(), V,
5345                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
5346                                 E->getBeginLoc());
5347 
5348     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
5349                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
5350   }
5351   case CK_AddressSpaceConversion: {
5352     LValue LV = EmitLValue(E->getSubExpr());
5353     QualType DestTy = getContext().getPointerType(E->getType());
5354     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
5355         *this, LV.getPointer(*this),
5356         E->getSubExpr()->getType().getAddressSpace(),
5357         E->getType().getAddressSpace(), ConvertType(DestTy));
5358     return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
5359                                   LV.getAddress().getAlignment()),
5360                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
5361   }
5362   case CK_ObjCObjectLValueCast: {
5363     LValue LV = EmitLValue(E->getSubExpr());
5364     Address V = LV.getAddress().withElementType(ConvertType(E->getType()));
5365     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
5366                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
5367   }
5368   case CK_ZeroToOCLOpaqueType:
5369     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
5370 
5371   case CK_VectorSplat: {
5372     // LValue results of vector splats are only supported in HLSL.
5373     if (!getLangOpts().HLSL)
5374       return EmitUnsupportedLValue(E, "unexpected cast lvalue");
5375     return EmitLValue(E->getSubExpr());
5376   }
5377   }
5378 
5379   llvm_unreachable("Unhandled lvalue cast kind?");
5380 }
5381 
5382 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
5383   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
5384   return getOrCreateOpaqueLValueMapping(e);
5385 }
5386 
5387 LValue
5388 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
5389   assert(OpaqueValueMapping::shouldBindAsLValue(e));
5390 
5391   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
5392       it = OpaqueLValues.find(e);
5393 
5394   if (it != OpaqueLValues.end())
5395     return it->second;
5396 
5397   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
5398   return EmitLValue(e->getSourceExpr());
5399 }
5400 
5401 RValue
5402 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
5403   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
5404 
5405   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
5406       it = OpaqueRValues.find(e);
5407 
5408   if (it != OpaqueRValues.end())
5409     return it->second;
5410 
5411   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
5412   return EmitAnyExpr(e->getSourceExpr());
5413 }
5414 
5415 RValue CodeGenFunction::EmitRValueForField(LValue LV,
5416                                            const FieldDecl *FD,
5417                                            SourceLocation Loc) {
5418   QualType FT = FD->getType();
5419   LValue FieldLV = EmitLValueForField(LV, FD);
5420   switch (getEvaluationKind(FT)) {
5421   case TEK_Complex:
5422     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
5423   case TEK_Aggregate:
5424     return FieldLV.asAggregateRValue();
5425   case TEK_Scalar:
5426     // This routine is used to load fields one-by-one to perform a copy, so
5427     // don't load reference fields.
5428     if (FD->getType()->isReferenceType())
5429       return RValue::get(FieldLV.getPointer(*this));
5430     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
5431     // primitive load.
5432     if (FieldLV.isBitField())
5433       return EmitLoadOfLValue(FieldLV, Loc);
5434     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
5435   }
5436   llvm_unreachable("bad evaluation kind");
5437 }
5438 
5439 //===--------------------------------------------------------------------===//
5440 //                             Expression Emission
5441 //===--------------------------------------------------------------------===//
5442 
5443 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
5444                                      ReturnValueSlot ReturnValue) {
5445   // Builtins never have block type.
5446   if (E->getCallee()->getType()->isBlockPointerType())
5447     return EmitBlockCallExpr(E, ReturnValue);
5448 
5449   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
5450     return EmitCXXMemberCallExpr(CE, ReturnValue);
5451 
5452   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
5453     return EmitCUDAKernelCallExpr(CE, ReturnValue);
5454 
5455   // A CXXOperatorCallExpr is created even for explicit object methods, but
5456   // these should be treated like static function call.
5457   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
5458     if (const auto *MD =
5459             dyn_cast_if_present<CXXMethodDecl>(CE->getCalleeDecl());
5460         MD && MD->isImplicitObjectMemberFunction())
5461       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5462 
5463   CGCallee callee = EmitCallee(E->getCallee());
5464 
5465   if (callee.isBuiltin()) {
5466     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5467                            E, ReturnValue);
5468   }
5469 
5470   if (callee.isPseudoDestructor()) {
5471     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5472   }
5473 
5474   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5475 }
5476 
5477 /// Emit a CallExpr without considering whether it might be a subclass.
5478 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5479                                            ReturnValueSlot ReturnValue) {
5480   CGCallee Callee = EmitCallee(E->getCallee());
5481   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5482 }
5483 
5484 // Detect the unusual situation where an inline version is shadowed by a
5485 // non-inline version. In that case we should pick the external one
5486 // everywhere. That's GCC behavior too.
5487 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5488   for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5489     if (!PD->isInlineBuiltinDeclaration())
5490       return false;
5491   return true;
5492 }
5493 
5494 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5495   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5496 
5497   if (auto builtinID = FD->getBuiltinID()) {
5498     std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5499     std::string NoBuiltins = "no-builtins";
5500 
5501     StringRef Ident = CGF.CGM.getMangledName(GD);
5502     std::string FDInlineName = (Ident + ".inline").str();
5503 
5504     bool IsPredefinedLibFunction =
5505         CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5506     bool HasAttributeNoBuiltin =
5507         CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5508         CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5509 
5510     // When directing calling an inline builtin, call it through it's mangled
5511     // name to make it clear it's not the actual builtin.
5512     if (CGF.CurFn->getName() != FDInlineName &&
5513         OnlyHasInlineBuiltinDeclaration(FD)) {
5514       llvm::Constant *CalleePtr = CGF.CGM.getRawFunctionPointer(GD);
5515       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5516       llvm::Module *M = Fn->getParent();
5517       llvm::Function *Clone = M->getFunction(FDInlineName);
5518       if (!Clone) {
5519         Clone = llvm::Function::Create(Fn->getFunctionType(),
5520                                        llvm::GlobalValue::InternalLinkage,
5521                                        Fn->getAddressSpace(), FDInlineName, M);
5522         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5523       }
5524       return CGCallee::forDirect(Clone, GD);
5525     }
5526 
5527     // Replaceable builtins provide their own implementation of a builtin. If we
5528     // are in an inline builtin implementation, avoid trivial infinite
5529     // recursion. Honor __attribute__((no_builtin("foo"))) or
5530     // __attribute__((no_builtin)) on the current function unless foo is
5531     // not a predefined library function which means we must generate the
5532     // builtin no matter what.
5533     else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5534       return CGCallee::forBuiltin(builtinID, FD);
5535   }
5536 
5537   llvm::Constant *CalleePtr = CGF.CGM.getRawFunctionPointer(GD);
5538   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5539       FD->hasAttr<CUDAGlobalAttr>())
5540     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5541         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5542 
5543   return CGCallee::forDirect(CalleePtr, GD);
5544 }
5545 
5546 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5547   E = E->IgnoreParens();
5548 
5549   // Look through function-to-pointer decay.
5550   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5551     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5552         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5553       return EmitCallee(ICE->getSubExpr());
5554     }
5555 
5556   // Resolve direct calls.
5557   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5558     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5559       return EmitDirectCallee(*this, FD);
5560     }
5561   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5562     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5563       EmitIgnoredExpr(ME->getBase());
5564       return EmitDirectCallee(*this, FD);
5565     }
5566 
5567   // Look through template substitutions.
5568   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5569     return EmitCallee(NTTP->getReplacement());
5570 
5571   // Treat pseudo-destructor calls differently.
5572   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5573     return CGCallee::forPseudoDestructor(PDE);
5574   }
5575 
5576   // Otherwise, we have an indirect reference.
5577   llvm::Value *calleePtr;
5578   QualType functionType;
5579   if (auto ptrType = E->getType()->getAs<PointerType>()) {
5580     calleePtr = EmitScalarExpr(E);
5581     functionType = ptrType->getPointeeType();
5582   } else {
5583     functionType = E->getType();
5584     calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this);
5585   }
5586   assert(functionType->isFunctionType());
5587 
5588   GlobalDecl GD;
5589   if (const auto *VD =
5590           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5591     GD = GlobalDecl(VD);
5592 
5593   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5594   CGPointerAuthInfo pointerAuth = CGM.getFunctionPointerAuthInfo(functionType);
5595   CGCallee callee(calleeInfo, calleePtr, pointerAuth);
5596   return callee;
5597 }
5598 
5599 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5600   // Comma expressions just emit their LHS then their RHS as an l-value.
5601   if (E->getOpcode() == BO_Comma) {
5602     EmitIgnoredExpr(E->getLHS());
5603     EnsureInsertPoint();
5604     return EmitLValue(E->getRHS());
5605   }
5606 
5607   if (E->getOpcode() == BO_PtrMemD ||
5608       E->getOpcode() == BO_PtrMemI)
5609     return EmitPointerToDataMemberBinaryExpr(E);
5610 
5611   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5612 
5613   // Note that in all of these cases, __block variables need the RHS
5614   // evaluated first just in case the variable gets moved by the RHS.
5615 
5616   switch (getEvaluationKind(E->getType())) {
5617   case TEK_Scalar: {
5618     switch (E->getLHS()->getType().getObjCLifetime()) {
5619     case Qualifiers::OCL_Strong:
5620       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5621 
5622     case Qualifiers::OCL_Autoreleasing:
5623       return EmitARCStoreAutoreleasing(E).first;
5624 
5625     // No reason to do any of these differently.
5626     case Qualifiers::OCL_None:
5627     case Qualifiers::OCL_ExplicitNone:
5628     case Qualifiers::OCL_Weak:
5629       break;
5630     }
5631 
5632     // TODO: Can we de-duplicate this code with the corresponding code in
5633     // CGExprScalar, similar to the way EmitCompoundAssignmentLValue works?
5634     RValue RV;
5635     llvm::Value *Previous = nullptr;
5636     QualType SrcType = E->getRHS()->getType();
5637     // Check if LHS is a bitfield, if RHS contains an implicit cast expression
5638     // we want to extract that value and potentially (if the bitfield sanitizer
5639     // is enabled) use it to check for an implicit conversion.
5640     if (E->getLHS()->refersToBitField()) {
5641       llvm::Value *RHS =
5642           EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
5643       RV = RValue::get(RHS);
5644     } else
5645       RV = EmitAnyExpr(E->getRHS());
5646 
5647     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5648 
5649     if (RV.isScalar())
5650       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5651 
5652     if (LV.isBitField()) {
5653       llvm::Value *Result = nullptr;
5654       // If bitfield sanitizers are enabled we want to use the result
5655       // to check whether a truncation or sign change has occurred.
5656       if (SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
5657         EmitStoreThroughBitfieldLValue(RV, LV, &Result);
5658       else
5659         EmitStoreThroughBitfieldLValue(RV, LV);
5660 
5661       // If the expression contained an implicit conversion, make sure
5662       // to use the value before the scalar conversion.
5663       llvm::Value *Src = Previous ? Previous : RV.getScalarVal();
5664       QualType DstType = E->getLHS()->getType();
5665       EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
5666                                   LV.getBitFieldInfo(), E->getExprLoc());
5667     } else
5668       EmitStoreThroughLValue(RV, LV);
5669 
5670     if (getLangOpts().OpenMP)
5671       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5672                                                                 E->getLHS());
5673     return LV;
5674   }
5675 
5676   case TEK_Complex:
5677     return EmitComplexAssignmentLValue(E);
5678 
5679   case TEK_Aggregate:
5680     return EmitAggExprToLValue(E);
5681   }
5682   llvm_unreachable("bad evaluation kind");
5683 }
5684 
5685 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5686   RValue RV = EmitCallExpr(E);
5687 
5688   if (!RV.isScalar())
5689     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5690                           AlignmentSource::Decl);
5691 
5692   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5693          "Can't have a scalar return unless the return type is a "
5694          "reference type!");
5695 
5696   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5697 }
5698 
5699 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5700   // FIXME: This shouldn't require another copy.
5701   return EmitAggExprToLValue(E);
5702 }
5703 
5704 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5705   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5706          && "binding l-value to type which needs a temporary");
5707   AggValueSlot Slot = CreateAggTemp(E->getType());
5708   EmitCXXConstructExpr(E, Slot);
5709   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5710 }
5711 
5712 LValue
5713 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5714   return MakeNaturalAlignRawAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5715 }
5716 
5717 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5718   return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl())
5719       .withElementType(ConvertType(E->getType()));
5720 }
5721 
5722 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5723   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5724                         AlignmentSource::Decl);
5725 }
5726 
5727 LValue
5728 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5729   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5730   Slot.setExternallyDestructed();
5731   EmitAggExpr(E->getSubExpr(), Slot);
5732   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5733   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5734 }
5735 
5736 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5737   RValue RV = EmitObjCMessageExpr(E);
5738 
5739   if (!RV.isScalar())
5740     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5741                           AlignmentSource::Decl);
5742 
5743   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5744          "Can't have a scalar return unless the return type is a "
5745          "reference type!");
5746 
5747   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5748 }
5749 
5750 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5751   Address V =
5752     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5753   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5754 }
5755 
5756 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5757                                              const ObjCIvarDecl *Ivar) {
5758   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5759 }
5760 
5761 llvm::Value *
5762 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
5763                                              const ObjCIvarDecl *Ivar) {
5764   llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar);
5765   QualType PointerDiffType = getContext().getPointerDiffType();
5766   return Builder.CreateZExtOrTrunc(OffsetValue,
5767                                    getTypes().ConvertType(PointerDiffType));
5768 }
5769 
5770 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5771                                           llvm::Value *BaseValue,
5772                                           const ObjCIvarDecl *Ivar,
5773                                           unsigned CVRQualifiers) {
5774   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5775                                                    Ivar, CVRQualifiers);
5776 }
5777 
5778 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5779   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5780   llvm::Value *BaseValue = nullptr;
5781   const Expr *BaseExpr = E->getBase();
5782   Qualifiers BaseQuals;
5783   QualType ObjectTy;
5784   if (E->isArrow()) {
5785     BaseValue = EmitScalarExpr(BaseExpr);
5786     ObjectTy = BaseExpr->getType()->getPointeeType();
5787     BaseQuals = ObjectTy.getQualifiers();
5788   } else {
5789     LValue BaseLV = EmitLValue(BaseExpr);
5790     BaseValue = BaseLV.getPointer(*this);
5791     ObjectTy = BaseExpr->getType();
5792     BaseQuals = ObjectTy.getQualifiers();
5793   }
5794 
5795   LValue LV =
5796     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5797                       BaseQuals.getCVRQualifiers());
5798   setObjCGCLValueClass(getContext(), E, LV);
5799   return LV;
5800 }
5801 
5802 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5803   // Can only get l-value for message expression returning aggregate type
5804   RValue RV = EmitAnyExprToTemp(E);
5805   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5806                         AlignmentSource::Decl);
5807 }
5808 
5809 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5810                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5811                                  llvm::Value *Chain) {
5812   // Get the actual function type. The callee type will always be a pointer to
5813   // function type or a block pointer type.
5814   assert(CalleeType->isFunctionPointerType() &&
5815          "Call must have function pointer type!");
5816 
5817   const Decl *TargetDecl =
5818       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5819 
5820   assert((!isa_and_present<FunctionDecl>(TargetDecl) ||
5821           !cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) &&
5822          "trying to emit a call to an immediate function");
5823 
5824   CalleeType = getContext().getCanonicalType(CalleeType);
5825 
5826   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5827 
5828   CGCallee Callee = OrigCallee;
5829 
5830   if (SanOpts.has(SanitizerKind::Function) &&
5831       (!TargetDecl || !isa<FunctionDecl>(TargetDecl)) &&
5832       !isa<FunctionNoProtoType>(PointeeType)) {
5833     if (llvm::Constant *PrefixSig =
5834             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5835       SanitizerScope SanScope(this);
5836       auto *TypeHash = getUBSanFunctionTypeHash(PointeeType);
5837 
5838       llvm::Type *PrefixSigType = PrefixSig->getType();
5839       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5840           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5841 
5842       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5843       if (CGM.getCodeGenOpts().PointerAuth.FunctionPointers) {
5844         // Use raw pointer since we are using the callee pointer as data here.
5845         Address Addr =
5846             Address(CalleePtr, CalleePtr->getType(),
5847                     CharUnits::fromQuantity(
5848                         CalleePtr->getPointerAlignment(CGM.getDataLayout())),
5849                     Callee.getPointerAuthInfo(), nullptr);
5850         CalleePtr = Addr.emitRawPointer(*this);
5851       }
5852 
5853       // On 32-bit Arm, the low bit of a function pointer indicates whether
5854       // it's using the Arm or Thumb instruction set. The actual first
5855       // instruction lives at the same address either way, so we must clear
5856       // that low bit before using the function address to find the prefix
5857       // structure.
5858       //
5859       // This applies to both Arm and Thumb target triples, because
5860       // either one could be used in an interworking context where it
5861       // might be passed function pointers of both types.
5862       llvm::Value *AlignedCalleePtr;
5863       if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) {
5864         llvm::Value *CalleeAddress =
5865             Builder.CreatePtrToInt(CalleePtr, IntPtrTy);
5866         llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1);
5867         llvm::Value *AlignedCalleeAddress =
5868             Builder.CreateAnd(CalleeAddress, Mask);
5869         AlignedCalleePtr =
5870             Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType());
5871       } else {
5872         AlignedCalleePtr = CalleePtr;
5873       }
5874 
5875       llvm::Value *CalleePrefixStruct = AlignedCalleePtr;
5876       llvm::Value *CalleeSigPtr =
5877           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0);
5878       llvm::Value *CalleeSig =
5879           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5880       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5881 
5882       llvm::BasicBlock *Cont = createBasicBlock("cont");
5883       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5884       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5885 
5886       EmitBlock(TypeCheck);
5887       llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad(
5888           Int32Ty,
5889           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1),
5890           getPointerAlign());
5891       llvm::Value *CalleeTypeHashMatch =
5892           Builder.CreateICmpEQ(CalleeTypeHash, TypeHash);
5893       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5894                                       EmitCheckTypeDescriptor(CalleeType)};
5895       EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::Function),
5896                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5897                 {CalleePtr});
5898 
5899       Builder.CreateBr(Cont);
5900       EmitBlock(Cont);
5901     }
5902   }
5903 
5904   const auto *FnType = cast<FunctionType>(PointeeType);
5905 
5906   // If we are checking indirect calls and this call is indirect, check that the
5907   // function pointer is a member of the bit set for the function type.
5908   if (SanOpts.has(SanitizerKind::CFIICall) &&
5909       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5910     SanitizerScope SanScope(this);
5911     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5912 
5913     llvm::Metadata *MD;
5914     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5915       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5916     else
5917       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5918 
5919     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5920 
5921     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5922     llvm::Value *TypeTest = Builder.CreateCall(
5923         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CalleePtr, TypeId});
5924 
5925     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5926     llvm::Constant *StaticData[] = {
5927         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5928         EmitCheckSourceLocation(E->getBeginLoc()),
5929         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5930     };
5931     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5932       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5933                            CalleePtr, StaticData);
5934     } else {
5935       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5936                 SanitizerHandler::CFICheckFail, StaticData,
5937                 {CalleePtr, llvm::UndefValue::get(IntPtrTy)});
5938     }
5939   }
5940 
5941   CallArgList Args;
5942   if (Chain)
5943     Args.add(RValue::get(Chain), CGM.getContext().VoidPtrTy);
5944 
5945   // C++17 requires that we evaluate arguments to a call using assignment syntax
5946   // right-to-left, and that we evaluate arguments to certain other operators
5947   // left-to-right. Note that we allow this to override the order dictated by
5948   // the calling convention on the MS ABI, which means that parameter
5949   // destruction order is not necessarily reverse construction order.
5950   // FIXME: Revisit this based on C++ committee response to unimplementability.
5951   EvaluationOrder Order = EvaluationOrder::Default;
5952   bool StaticOperator = false;
5953   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5954     if (OCE->isAssignmentOp())
5955       Order = EvaluationOrder::ForceRightToLeft;
5956     else {
5957       switch (OCE->getOperator()) {
5958       case OO_LessLess:
5959       case OO_GreaterGreater:
5960       case OO_AmpAmp:
5961       case OO_PipePipe:
5962       case OO_Comma:
5963       case OO_ArrowStar:
5964         Order = EvaluationOrder::ForceLeftToRight;
5965         break;
5966       default:
5967         break;
5968       }
5969     }
5970 
5971     if (const auto *MD =
5972             dyn_cast_if_present<CXXMethodDecl>(OCE->getCalleeDecl());
5973         MD && MD->isStatic())
5974       StaticOperator = true;
5975   }
5976 
5977   auto Arguments = E->arguments();
5978   if (StaticOperator) {
5979     // If we're calling a static operator, we need to emit the object argument
5980     // and ignore it.
5981     EmitIgnoredExpr(E->getArg(0));
5982     Arguments = drop_begin(Arguments, 1);
5983   }
5984   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), Arguments,
5985                E->getDirectCallee(), /*ParamsToSkip=*/0, Order);
5986 
5987   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5988       Args, FnType, /*ChainCall=*/Chain);
5989 
5990   // C99 6.5.2.2p6:
5991   //   If the expression that denotes the called function has a type
5992   //   that does not include a prototype, [the default argument
5993   //   promotions are performed]. If the number of arguments does not
5994   //   equal the number of parameters, the behavior is undefined. If
5995   //   the function is defined with a type that includes a prototype,
5996   //   and either the prototype ends with an ellipsis (, ...) or the
5997   //   types of the arguments after promotion are not compatible with
5998   //   the types of the parameters, the behavior is undefined. If the
5999   //   function is defined with a type that does not include a
6000   //   prototype, and the types of the arguments after promotion are
6001   //   not compatible with those of the parameters after promotion,
6002   //   the behavior is undefined [except in some trivial cases].
6003   // That is, in the general case, we should assume that a call
6004   // through an unprototyped function type works like a *non-variadic*
6005   // call.  The way we make this work is to cast to the exact type
6006   // of the promoted arguments.
6007   //
6008   // Chain calls use this same code path to add the invisible chain parameter
6009   // to the function type.
6010   if (isa<FunctionNoProtoType>(FnType) || Chain) {
6011     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
6012     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
6013     CalleeTy = CalleeTy->getPointerTo(AS);
6014 
6015     llvm::Value *CalleePtr = Callee.getFunctionPointer();
6016     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
6017     Callee.setFunctionPointer(CalleePtr);
6018   }
6019 
6020   // HIP function pointer contains kernel handle when it is used in triple
6021   // chevron. The kernel stub needs to be loaded from kernel handle and used
6022   // as callee.
6023   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
6024       isa<CUDAKernelCallExpr>(E) &&
6025       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
6026     llvm::Value *Handle = Callee.getFunctionPointer();
6027     auto *Stub = Builder.CreateLoad(
6028         Address(Handle, Handle->getType(), CGM.getPointerAlign()));
6029     Callee.setFunctionPointer(Stub);
6030   }
6031   llvm::CallBase *CallOrInvoke = nullptr;
6032   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
6033                          E == MustTailCall, E->getExprLoc());
6034 
6035   // Generate function declaration DISuprogram in order to be used
6036   // in debug info about call sites.
6037   if (CGDebugInfo *DI = getDebugInfo()) {
6038     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
6039       FunctionArgList Args;
6040       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
6041       DI->EmitFuncDeclForCallSite(CallOrInvoke,
6042                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
6043                                   CalleeDecl);
6044     }
6045   }
6046 
6047   return Call;
6048 }
6049 
6050 LValue CodeGenFunction::
6051 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
6052   Address BaseAddr = Address::invalid();
6053   if (E->getOpcode() == BO_PtrMemI) {
6054     BaseAddr = EmitPointerWithAlignment(E->getLHS());
6055   } else {
6056     BaseAddr = EmitLValue(E->getLHS()).getAddress();
6057   }
6058 
6059   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
6060   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
6061 
6062   LValueBaseInfo BaseInfo;
6063   TBAAAccessInfo TBAAInfo;
6064   Address MemberAddr =
6065     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
6066                                     &TBAAInfo);
6067 
6068   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
6069 }
6070 
6071 /// Given the address of a temporary variable, produce an r-value of
6072 /// its type.
6073 RValue CodeGenFunction::convertTempToRValue(Address addr,
6074                                             QualType type,
6075                                             SourceLocation loc) {
6076   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
6077   switch (getEvaluationKind(type)) {
6078   case TEK_Complex:
6079     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
6080   case TEK_Aggregate:
6081     return lvalue.asAggregateRValue();
6082   case TEK_Scalar:
6083     return RValue::get(EmitLoadOfScalar(lvalue, loc));
6084   }
6085   llvm_unreachable("bad evaluation kind");
6086 }
6087 
6088 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
6089   assert(Val->getType()->isFPOrFPVectorTy());
6090   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
6091     return;
6092 
6093   llvm::MDBuilder MDHelper(getLLVMContext());
6094   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
6095 
6096   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
6097 }
6098 
6099 void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) {
6100   llvm::Type *EltTy = Val->getType()->getScalarType();
6101   if (!EltTy->isFloatTy())
6102     return;
6103 
6104   if ((getLangOpts().OpenCL &&
6105        !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
6106       (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
6107        !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
6108     // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp
6109     //
6110     // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
6111     // build option allows an application to specify that single precision
6112     // floating-point divide (x/y and 1/x) and sqrt used in the program
6113     // source are correctly rounded.
6114     //
6115     // TODO: CUDA has a prec-sqrt flag
6116     SetFPAccuracy(Val, 3.0f);
6117   }
6118 }
6119 
6120 void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) {
6121   llvm::Type *EltTy = Val->getType()->getScalarType();
6122   if (!EltTy->isFloatTy())
6123     return;
6124 
6125   if ((getLangOpts().OpenCL &&
6126        !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
6127       (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
6128        !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
6129     // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
6130     //
6131     // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
6132     // build option allows an application to specify that single precision
6133     // floating-point divide (x/y and 1/x) and sqrt used in the program
6134     // source are correctly rounded.
6135     //
6136     // TODO: CUDA has a prec-div flag
6137     SetFPAccuracy(Val, 2.5f);
6138   }
6139 }
6140 
6141 namespace {
6142   struct LValueOrRValue {
6143     LValue LV;
6144     RValue RV;
6145   };
6146 }
6147 
6148 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
6149                                            const PseudoObjectExpr *E,
6150                                            bool forLValue,
6151                                            AggValueSlot slot) {
6152   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
6153 
6154   // Find the result expression, if any.
6155   const Expr *resultExpr = E->getResultExpr();
6156   LValueOrRValue result;
6157 
6158   for (PseudoObjectExpr::const_semantics_iterator
6159          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
6160     const Expr *semantic = *i;
6161 
6162     // If this semantic expression is an opaque value, bind it
6163     // to the result of its source expression.
6164     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
6165       // Skip unique OVEs.
6166       if (ov->isUnique()) {
6167         assert(ov != resultExpr &&
6168                "A unique OVE cannot be used as the result expression");
6169         continue;
6170       }
6171 
6172       // If this is the result expression, we may need to evaluate
6173       // directly into the slot.
6174       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
6175       OVMA opaqueData;
6176       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
6177           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
6178         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
6179         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
6180                                        AlignmentSource::Decl);
6181         opaqueData = OVMA::bind(CGF, ov, LV);
6182         result.RV = slot.asRValue();
6183 
6184       // Otherwise, emit as normal.
6185       } else {
6186         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
6187 
6188         // If this is the result, also evaluate the result now.
6189         if (ov == resultExpr) {
6190           if (forLValue)
6191             result.LV = CGF.EmitLValue(ov);
6192           else
6193             result.RV = CGF.EmitAnyExpr(ov, slot);
6194         }
6195       }
6196 
6197       opaques.push_back(opaqueData);
6198 
6199     // Otherwise, if the expression is the result, evaluate it
6200     // and remember the result.
6201     } else if (semantic == resultExpr) {
6202       if (forLValue)
6203         result.LV = CGF.EmitLValue(semantic);
6204       else
6205         result.RV = CGF.EmitAnyExpr(semantic, slot);
6206 
6207     // Otherwise, evaluate the expression in an ignored context.
6208     } else {
6209       CGF.EmitIgnoredExpr(semantic);
6210     }
6211   }
6212 
6213   // Unbind all the opaques now.
6214   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
6215     opaques[i].unbind(CGF);
6216 
6217   return result;
6218 }
6219 
6220 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
6221                                                AggValueSlot slot) {
6222   return emitPseudoObjectExpr(*this, E, false, slot).RV;
6223 }
6224 
6225 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
6226   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
6227 }
6228