1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/AST/StmtVisitor.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "llvm/ADT/Hashing.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/IntrinsicsWebAssembly.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/Passes/OptimizationLevel.h" 43 #include "llvm/Support/ConvertUTF.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/Path.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Utils/SanitizerStats.h" 49 50 #include <optional> 51 #include <string> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 // Experiment to make sanitizers easier to debug 57 static llvm::cl::opt<bool> ClSanitizeDebugDeoptimization( 58 "ubsan-unique-traps", llvm::cl::Optional, 59 llvm::cl::desc("Deoptimize traps for UBSAN so there is 1 trap per check"), 60 llvm::cl::init(false)); 61 62 //===--------------------------------------------------------------------===// 63 // Miscellaneous Helper Methods 64 //===--------------------------------------------------------------------===// 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align, KnownNonNull); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align, KnownNonNull); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address(Result.getPointer(), VectorTy, Result.getAlignment(), 152 KnownNonNull); 153 } 154 return Result; 155 } 156 157 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 158 const Twine &Name) { 159 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 160 } 161 162 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 163 const Twine &Name) { 164 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 165 Name); 166 } 167 168 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 169 /// expression and compare the result against zero, returning an Int1Ty value. 170 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 171 PGO.setCurrentStmt(E); 172 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 173 llvm::Value *MemPtr = EmitScalarExpr(E); 174 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 175 } 176 177 QualType BoolTy = getContext().BoolTy; 178 SourceLocation Loc = E->getExprLoc(); 179 CGFPOptionsRAII FPOptsRAII(*this, E); 180 if (!E->getType()->isAnyComplexType()) 181 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 182 183 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 184 Loc); 185 } 186 187 /// EmitIgnoredExpr - Emit code to compute the specified expression, 188 /// ignoring the result. 189 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 190 if (E->isPRValue()) 191 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true); 192 193 // if this is a bitfield-resulting conditional operator, we can special case 194 // emit this. The normal 'EmitLValue' version of this is particularly 195 // difficult to codegen for, since creating a single "LValue" for two 196 // different sized arguments here is not particularly doable. 197 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>( 198 E->IgnoreParenNoopCasts(getContext()))) { 199 if (CondOp->getObjectKind() == OK_BitField) 200 return EmitIgnoredConditionalOperator(CondOp); 201 } 202 203 // Just emit it as an l-value and drop the result. 204 EmitLValue(E); 205 } 206 207 /// EmitAnyExpr - Emit code to compute the specified expression which 208 /// can have any type. The result is returned as an RValue struct. 209 /// If this is an aggregate expression, AggSlot indicates where the 210 /// result should be returned. 211 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 212 AggValueSlot aggSlot, 213 bool ignoreResult) { 214 switch (getEvaluationKind(E->getType())) { 215 case TEK_Scalar: 216 return RValue::get(EmitScalarExpr(E, ignoreResult)); 217 case TEK_Complex: 218 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 219 case TEK_Aggregate: 220 if (!ignoreResult && aggSlot.isIgnored()) 221 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 222 EmitAggExpr(E, aggSlot); 223 return aggSlot.asRValue(); 224 } 225 llvm_unreachable("bad evaluation kind"); 226 } 227 228 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 229 /// always be accessible even if no aggregate location is provided. 230 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 231 AggValueSlot AggSlot = AggValueSlot::ignored(); 232 233 if (hasAggregateEvaluationKind(E->getType())) 234 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 235 return EmitAnyExpr(E, AggSlot); 236 } 237 238 /// EmitAnyExprToMem - Evaluate an expression into a given memory 239 /// location. 240 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 241 Address Location, 242 Qualifiers Quals, 243 bool IsInit) { 244 // FIXME: This function should take an LValue as an argument. 245 switch (getEvaluationKind(E->getType())) { 246 case TEK_Complex: 247 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 248 /*isInit*/ false); 249 return; 250 251 case TEK_Aggregate: { 252 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 253 AggValueSlot::IsDestructed_t(IsInit), 254 AggValueSlot::DoesNotNeedGCBarriers, 255 AggValueSlot::IsAliased_t(!IsInit), 256 AggValueSlot::MayOverlap)); 257 return; 258 } 259 260 case TEK_Scalar: { 261 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 262 LValue LV = MakeAddrLValue(Location, E->getType()); 263 EmitStoreThroughLValue(RV, LV); 264 return; 265 } 266 } 267 llvm_unreachable("bad evaluation kind"); 268 } 269 270 static void 271 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 272 const Expr *E, Address ReferenceTemporary) { 273 // Objective-C++ ARC: 274 // If we are binding a reference to a temporary that has ownership, we 275 // need to perform retain/release operations on the temporary. 276 // 277 // FIXME: This should be looking at E, not M. 278 if (auto Lifetime = M->getType().getObjCLifetime()) { 279 switch (Lifetime) { 280 case Qualifiers::OCL_None: 281 case Qualifiers::OCL_ExplicitNone: 282 // Carry on to normal cleanup handling. 283 break; 284 285 case Qualifiers::OCL_Autoreleasing: 286 // Nothing to do; cleaned up by an autorelease pool. 287 return; 288 289 case Qualifiers::OCL_Strong: 290 case Qualifiers::OCL_Weak: 291 switch (StorageDuration Duration = M->getStorageDuration()) { 292 case SD_Static: 293 // Note: we intentionally do not register a cleanup to release 294 // the object on program termination. 295 return; 296 297 case SD_Thread: 298 // FIXME: We should probably register a cleanup in this case. 299 return; 300 301 case SD_Automatic: 302 case SD_FullExpression: 303 CodeGenFunction::Destroyer *Destroy; 304 CleanupKind CleanupKind; 305 if (Lifetime == Qualifiers::OCL_Strong) { 306 const ValueDecl *VD = M->getExtendingDecl(); 307 bool Precise = 308 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 309 CleanupKind = CGF.getARCCleanupKind(); 310 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 311 : &CodeGenFunction::destroyARCStrongImprecise; 312 } else { 313 // __weak objects always get EH cleanups; otherwise, exceptions 314 // could cause really nasty crashes instead of mere leaks. 315 CleanupKind = NormalAndEHCleanup; 316 Destroy = &CodeGenFunction::destroyARCWeak; 317 } 318 if (Duration == SD_FullExpression) 319 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 320 M->getType(), *Destroy, 321 CleanupKind & EHCleanup); 322 else 323 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 324 M->getType(), 325 *Destroy, CleanupKind & EHCleanup); 326 return; 327 328 case SD_Dynamic: 329 llvm_unreachable("temporary cannot have dynamic storage duration"); 330 } 331 llvm_unreachable("unknown storage duration"); 332 } 333 } 334 335 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 336 if (const RecordType *RT = 337 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 338 // Get the destructor for the reference temporary. 339 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 340 if (!ClassDecl->hasTrivialDestructor()) 341 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 342 } 343 344 if (!ReferenceTemporaryDtor) 345 return; 346 347 // Call the destructor for the temporary. 348 switch (M->getStorageDuration()) { 349 case SD_Static: 350 case SD_Thread: { 351 llvm::FunctionCallee CleanupFn; 352 llvm::Constant *CleanupArg; 353 if (E->getType()->isArrayType()) { 354 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 355 ReferenceTemporary, E->getType(), 356 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 357 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 358 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 359 } else { 360 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 361 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 362 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 363 } 364 CGF.CGM.getCXXABI().registerGlobalDtor( 365 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 366 break; 367 } 368 369 case SD_FullExpression: 370 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 371 CodeGenFunction::destroyCXXObject, 372 CGF.getLangOpts().Exceptions); 373 break; 374 375 case SD_Automatic: 376 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 377 ReferenceTemporary, E->getType(), 378 CodeGenFunction::destroyCXXObject, 379 CGF.getLangOpts().Exceptions); 380 break; 381 382 case SD_Dynamic: 383 llvm_unreachable("temporary cannot have dynamic storage duration"); 384 } 385 } 386 387 static Address createReferenceTemporary(CodeGenFunction &CGF, 388 const MaterializeTemporaryExpr *M, 389 const Expr *Inner, 390 Address *Alloca = nullptr) { 391 auto &TCG = CGF.getTargetHooks(); 392 switch (M->getStorageDuration()) { 393 case SD_FullExpression: 394 case SD_Automatic: { 395 // If we have a constant temporary array or record try to promote it into a 396 // constant global under the same rules a normal constant would've been 397 // promoted. This is easier on the optimizer and generally emits fewer 398 // instructions. 399 QualType Ty = Inner->getType(); 400 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 401 (Ty->isArrayType() || Ty->isRecordType()) && 402 Ty.isConstantStorage(CGF.getContext(), true, false)) 403 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 404 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 405 auto *GV = new llvm::GlobalVariable( 406 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 407 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 408 llvm::GlobalValue::NotThreadLocal, 409 CGF.getContext().getTargetAddressSpace(AS)); 410 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 411 GV->setAlignment(alignment.getAsAlign()); 412 llvm::Constant *C = GV; 413 if (AS != LangAS::Default) 414 C = TCG.performAddrSpaceCast( 415 CGF.CGM, GV, AS, LangAS::Default, 416 GV->getValueType()->getPointerTo( 417 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 418 // FIXME: Should we put the new global into a COMDAT? 419 return Address(C, GV->getValueType(), alignment); 420 } 421 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 422 } 423 case SD_Thread: 424 case SD_Static: 425 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 426 427 case SD_Dynamic: 428 llvm_unreachable("temporary can't have dynamic storage duration"); 429 } 430 llvm_unreachable("unknown storage duration"); 431 } 432 433 /// Helper method to check if the underlying ABI is AAPCS 434 static bool isAAPCS(const TargetInfo &TargetInfo) { 435 return TargetInfo.getABI().starts_with("aapcs"); 436 } 437 438 LValue CodeGenFunction:: 439 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 440 const Expr *E = M->getSubExpr(); 441 442 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 443 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 444 "Reference should never be pseudo-strong!"); 445 446 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 447 // as that will cause the lifetime adjustment to be lost for ARC 448 auto ownership = M->getType().getObjCLifetime(); 449 if (ownership != Qualifiers::OCL_None && 450 ownership != Qualifiers::OCL_ExplicitNone) { 451 Address Object = createReferenceTemporary(*this, M, E); 452 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 453 llvm::Type *Ty = ConvertTypeForMem(E->getType()); 454 Object = Object.withElementType(Ty); 455 456 // createReferenceTemporary will promote the temporary to a global with a 457 // constant initializer if it can. It can only do this to a value of 458 // ARC-manageable type if the value is global and therefore "immune" to 459 // ref-counting operations. Therefore we have no need to emit either a 460 // dynamic initialization or a cleanup and we can just return the address 461 // of the temporary. 462 if (Var->hasInitializer()) 463 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 464 465 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 466 } 467 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 468 AlignmentSource::Decl); 469 470 switch (getEvaluationKind(E->getType())) { 471 default: llvm_unreachable("expected scalar or aggregate expression"); 472 case TEK_Scalar: 473 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 474 break; 475 case TEK_Aggregate: { 476 EmitAggExpr(E, AggValueSlot::forAddr(Object, 477 E->getType().getQualifiers(), 478 AggValueSlot::IsDestructed, 479 AggValueSlot::DoesNotNeedGCBarriers, 480 AggValueSlot::IsNotAliased, 481 AggValueSlot::DoesNotOverlap)); 482 break; 483 } 484 } 485 486 pushTemporaryCleanup(*this, M, E, Object); 487 return RefTempDst; 488 } 489 490 SmallVector<const Expr *, 2> CommaLHSs; 491 SmallVector<SubobjectAdjustment, 2> Adjustments; 492 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 493 494 for (const auto &Ignored : CommaLHSs) 495 EmitIgnoredExpr(Ignored); 496 497 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 498 if (opaque->getType()->isRecordType()) { 499 assert(Adjustments.empty()); 500 return EmitOpaqueValueLValue(opaque); 501 } 502 } 503 504 // Create and initialize the reference temporary. 505 Address Alloca = Address::invalid(); 506 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 507 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 508 Object.getPointer()->stripPointerCasts())) { 509 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 510 Object = Object.withElementType(TemporaryType); 511 // If the temporary is a global and has a constant initializer or is a 512 // constant temporary that we promoted to a global, we may have already 513 // initialized it. 514 if (!Var->hasInitializer()) { 515 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 516 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 517 } 518 } else { 519 switch (M->getStorageDuration()) { 520 case SD_Automatic: 521 if (auto *Size = EmitLifetimeStart( 522 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 523 Alloca.getPointer())) { 524 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 525 Alloca, Size); 526 } 527 break; 528 529 case SD_FullExpression: { 530 if (!ShouldEmitLifetimeMarkers) 531 break; 532 533 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 534 // marker. Instead, start the lifetime of a conditional temporary earlier 535 // so that it's unconditional. Don't do this with sanitizers which need 536 // more precise lifetime marks. However when inside an "await.suspend" 537 // block, we should always avoid conditional cleanup because it creates 538 // boolean marker that lives across await_suspend, which can destroy coro 539 // frame. 540 ConditionalEvaluation *OldConditional = nullptr; 541 CGBuilderTy::InsertPoint OldIP; 542 if (isInConditionalBranch() && !E->getType().isDestructedType() && 543 ((!SanOpts.has(SanitizerKind::HWAddress) && 544 !SanOpts.has(SanitizerKind::Memory) && 545 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) || 546 inSuspendBlock())) { 547 OldConditional = OutermostConditional; 548 OutermostConditional = nullptr; 549 550 OldIP = Builder.saveIP(); 551 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 552 Builder.restoreIP(CGBuilderTy::InsertPoint( 553 Block, llvm::BasicBlock::iterator(Block->back()))); 554 } 555 556 if (auto *Size = EmitLifetimeStart( 557 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 558 Alloca.getPointer())) { 559 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 560 Size); 561 } 562 563 if (OldConditional) { 564 OutermostConditional = OldConditional; 565 Builder.restoreIP(OldIP); 566 } 567 break; 568 } 569 570 default: 571 break; 572 } 573 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 574 } 575 pushTemporaryCleanup(*this, M, E, Object); 576 577 // Perform derived-to-base casts and/or field accesses, to get from the 578 // temporary object we created (and, potentially, for which we extended 579 // the lifetime) to the subobject we're binding the reference to. 580 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 581 switch (Adjustment.Kind) { 582 case SubobjectAdjustment::DerivedToBaseAdjustment: 583 Object = 584 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 585 Adjustment.DerivedToBase.BasePath->path_begin(), 586 Adjustment.DerivedToBase.BasePath->path_end(), 587 /*NullCheckValue=*/ false, E->getExprLoc()); 588 break; 589 590 case SubobjectAdjustment::FieldAdjustment: { 591 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 592 LV = EmitLValueForField(LV, Adjustment.Field); 593 assert(LV.isSimple() && 594 "materialized temporary field is not a simple lvalue"); 595 Object = LV.getAddress(*this); 596 break; 597 } 598 599 case SubobjectAdjustment::MemberPointerAdjustment: { 600 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 601 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 602 Adjustment.Ptr.MPT); 603 break; 604 } 605 } 606 } 607 608 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 609 } 610 611 RValue 612 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 613 // Emit the expression as an lvalue. 614 LValue LV = EmitLValue(E); 615 assert(LV.isSimple()); 616 llvm::Value *Value = LV.getPointer(*this); 617 618 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 619 // C++11 [dcl.ref]p5 (as amended by core issue 453): 620 // If a glvalue to which a reference is directly bound designates neither 621 // an existing object or function of an appropriate type nor a region of 622 // storage of suitable size and alignment to contain an object of the 623 // reference's type, the behavior is undefined. 624 QualType Ty = E->getType(); 625 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 626 } 627 628 return RValue::get(Value); 629 } 630 631 632 /// getAccessedFieldNo - Given an encoded value and a result number, return the 633 /// input field number being accessed. 634 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 635 const llvm::Constant *Elts) { 636 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 637 ->getZExtValue(); 638 } 639 640 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 641 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 642 llvm::Value *High) { 643 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 644 llvm::Value *K47 = Builder.getInt64(47); 645 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 646 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 647 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 648 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 649 return Builder.CreateMul(B1, KMul); 650 } 651 652 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 653 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 654 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 655 } 656 657 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 658 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 659 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 660 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 661 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 662 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 663 } 664 665 bool CodeGenFunction::sanitizePerformTypeCheck() const { 666 return SanOpts.has(SanitizerKind::Null) || 667 SanOpts.has(SanitizerKind::Alignment) || 668 SanOpts.has(SanitizerKind::ObjectSize) || 669 SanOpts.has(SanitizerKind::Vptr); 670 } 671 672 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 673 llvm::Value *Ptr, QualType Ty, 674 CharUnits Alignment, 675 SanitizerSet SkippedChecks, 676 llvm::Value *ArraySize) { 677 if (!sanitizePerformTypeCheck()) 678 return; 679 680 // Don't check pointers outside the default address space. The null check 681 // isn't correct, the object-size check isn't supported by LLVM, and we can't 682 // communicate the addresses to the runtime handler for the vptr check. 683 if (Ptr->getType()->getPointerAddressSpace()) 684 return; 685 686 // Don't check pointers to volatile data. The behavior here is implementation- 687 // defined. 688 if (Ty.isVolatileQualified()) 689 return; 690 691 SanitizerScope SanScope(this); 692 693 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 694 llvm::BasicBlock *Done = nullptr; 695 696 // Quickly determine whether we have a pointer to an alloca. It's possible 697 // to skip null checks, and some alignment checks, for these pointers. This 698 // can reduce compile-time significantly. 699 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 700 701 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 702 llvm::Value *IsNonNull = nullptr; 703 bool IsGuaranteedNonNull = 704 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 705 bool AllowNullPointers = isNullPointerAllowed(TCK); 706 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 707 !IsGuaranteedNonNull) { 708 // The glvalue must not be an empty glvalue. 709 IsNonNull = Builder.CreateIsNotNull(Ptr); 710 711 // The IR builder can constant-fold the null check if the pointer points to 712 // a constant. 713 IsGuaranteedNonNull = IsNonNull == True; 714 715 // Skip the null check if the pointer is known to be non-null. 716 if (!IsGuaranteedNonNull) { 717 if (AllowNullPointers) { 718 // When performing pointer casts, it's OK if the value is null. 719 // Skip the remaining checks in that case. 720 Done = createBasicBlock("null"); 721 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 722 Builder.CreateCondBr(IsNonNull, Rest, Done); 723 EmitBlock(Rest); 724 } else { 725 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 726 } 727 } 728 } 729 730 if (SanOpts.has(SanitizerKind::ObjectSize) && 731 !SkippedChecks.has(SanitizerKind::ObjectSize) && 732 !Ty->isIncompleteType()) { 733 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 734 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 735 if (ArraySize) 736 Size = Builder.CreateMul(Size, ArraySize); 737 738 // Degenerate case: new X[0] does not need an objectsize check. 739 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 740 if (!ConstantSize || !ConstantSize->isNullValue()) { 741 // The glvalue must refer to a large enough storage region. 742 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 743 // to check this. 744 // FIXME: Get object address space 745 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 746 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 747 llvm::Value *Min = Builder.getFalse(); 748 llvm::Value *NullIsUnknown = Builder.getFalse(); 749 llvm::Value *Dynamic = Builder.getFalse(); 750 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 751 Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}), Size); 752 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 753 } 754 } 755 756 llvm::MaybeAlign AlignVal; 757 llvm::Value *PtrAsInt = nullptr; 758 759 if (SanOpts.has(SanitizerKind::Alignment) && 760 !SkippedChecks.has(SanitizerKind::Alignment)) { 761 AlignVal = Alignment.getAsMaybeAlign(); 762 if (!Ty->isIncompleteType() && !AlignVal) 763 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 764 /*ForPointeeType=*/true) 765 .getAsMaybeAlign(); 766 767 // The glvalue must be suitably aligned. 768 if (AlignVal && *AlignVal > llvm::Align(1) && 769 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) { 770 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 771 llvm::Value *Align = Builder.CreateAnd( 772 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1)); 773 llvm::Value *Aligned = 774 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 775 if (Aligned != True) 776 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 777 } 778 } 779 780 if (Checks.size() > 0) { 781 llvm::Constant *StaticData[] = { 782 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 783 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1), 784 llvm::ConstantInt::get(Int8Ty, TCK)}; 785 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 786 PtrAsInt ? PtrAsInt : Ptr); 787 } 788 789 // If possible, check that the vptr indicates that there is a subobject of 790 // type Ty at offset zero within this object. 791 // 792 // C++11 [basic.life]p5,6: 793 // [For storage which does not refer to an object within its lifetime] 794 // The program has undefined behavior if: 795 // -- the [pointer or glvalue] is used to access a non-static data member 796 // or call a non-static member function 797 if (SanOpts.has(SanitizerKind::Vptr) && 798 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 799 // Ensure that the pointer is non-null before loading it. If there is no 800 // compile-time guarantee, reuse the run-time null check or emit a new one. 801 if (!IsGuaranteedNonNull) { 802 if (!IsNonNull) 803 IsNonNull = Builder.CreateIsNotNull(Ptr); 804 if (!Done) 805 Done = createBasicBlock("vptr.null"); 806 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 807 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 808 EmitBlock(VptrNotNull); 809 } 810 811 // Compute a hash of the mangled name of the type. 812 // 813 // FIXME: This is not guaranteed to be deterministic! Move to a 814 // fingerprinting mechanism once LLVM provides one. For the time 815 // being the implementation happens to be deterministic. 816 SmallString<64> MangledName; 817 llvm::raw_svector_ostream Out(MangledName); 818 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 819 Out); 820 821 // Contained in NoSanitizeList based on the mangled type. 822 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 823 Out.str())) { 824 llvm::hash_code TypeHash = hash_value(Out.str()); 825 826 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 827 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 828 Address VPtrAddr(Ptr, IntPtrTy, getPointerAlign()); 829 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 830 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 831 832 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 833 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 834 835 // Look the hash up in our cache. 836 const int CacheSize = 128; 837 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 838 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 839 "__ubsan_vptr_type_cache"); 840 llvm::Value *Slot = Builder.CreateAnd(Hash, 841 llvm::ConstantInt::get(IntPtrTy, 842 CacheSize-1)); 843 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 844 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 845 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 846 getPointerAlign()); 847 848 // If the hash isn't in the cache, call a runtime handler to perform the 849 // hard work of checking whether the vptr is for an object of the right 850 // type. This will either fill in the cache and return, or produce a 851 // diagnostic. 852 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 853 llvm::Constant *StaticData[] = { 854 EmitCheckSourceLocation(Loc), 855 EmitCheckTypeDescriptor(Ty), 856 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 857 llvm::ConstantInt::get(Int8Ty, TCK) 858 }; 859 llvm::Value *DynamicData[] = { Ptr, Hash }; 860 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 861 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 862 DynamicData); 863 } 864 } 865 866 if (Done) { 867 Builder.CreateBr(Done); 868 EmitBlock(Done); 869 } 870 } 871 872 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 873 QualType EltTy) { 874 ASTContext &C = getContext(); 875 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 876 if (!EltSize) 877 return nullptr; 878 879 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 880 if (!ArrayDeclRef) 881 return nullptr; 882 883 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 884 if (!ParamDecl) 885 return nullptr; 886 887 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 888 if (!POSAttr) 889 return nullptr; 890 891 // Don't load the size if it's a lower bound. 892 int POSType = POSAttr->getType(); 893 if (POSType != 0 && POSType != 1) 894 return nullptr; 895 896 // Find the implicit size parameter. 897 auto PassedSizeIt = SizeArguments.find(ParamDecl); 898 if (PassedSizeIt == SizeArguments.end()) 899 return nullptr; 900 901 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 902 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 903 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 904 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 905 C.getSizeType(), E->getExprLoc()); 906 llvm::Value *SizeOfElement = 907 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 908 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 909 } 910 911 /// If Base is known to point to the start of an array, return the length of 912 /// that array. Return 0 if the length cannot be determined. 913 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF, 914 const Expr *Base, 915 QualType &IndexedType, 916 LangOptions::StrictFlexArraysLevelKind 917 StrictFlexArraysLevel) { 918 // For the vector indexing extension, the bound is the number of elements. 919 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 920 IndexedType = Base->getType(); 921 return CGF.Builder.getInt32(VT->getNumElements()); 922 } 923 924 Base = Base->IgnoreParens(); 925 926 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 927 if (CE->getCastKind() == CK_ArrayToPointerDecay && 928 !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(), 929 StrictFlexArraysLevel)) { 930 CodeGenFunction::SanitizerScope SanScope(&CGF); 931 932 IndexedType = CE->getSubExpr()->getType(); 933 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 934 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 935 return CGF.Builder.getInt(CAT->getSize()); 936 937 if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 938 return CGF.getVLASize(VAT).NumElts; 939 // Ignore pass_object_size here. It's not applicable on decayed pointers. 940 } 941 } 942 943 CodeGenFunction::SanitizerScope SanScope(&CGF); 944 945 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 946 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 947 IndexedType = Base->getType(); 948 return POS; 949 } 950 951 return nullptr; 952 } 953 954 namespace { 955 956 /// \p StructAccessBase returns the base \p Expr of a field access. It returns 957 /// either a \p DeclRefExpr, representing the base pointer to the struct, i.e.: 958 /// 959 /// p in p-> a.b.c 960 /// 961 /// or a \p MemberExpr, if the \p MemberExpr has the \p RecordDecl we're 962 /// looking for: 963 /// 964 /// struct s { 965 /// struct s *ptr; 966 /// int count; 967 /// char array[] __attribute__((counted_by(count))); 968 /// }; 969 /// 970 /// If we have an expression like \p p->ptr->array[index], we want the 971 /// \p MemberExpr for \p p->ptr instead of \p p. 972 class StructAccessBase 973 : public ConstStmtVisitor<StructAccessBase, const Expr *> { 974 const RecordDecl *ExpectedRD; 975 976 bool IsExpectedRecordDecl(const Expr *E) const { 977 QualType Ty = E->getType(); 978 if (Ty->isPointerType()) 979 Ty = Ty->getPointeeType(); 980 return ExpectedRD == Ty->getAsRecordDecl(); 981 } 982 983 public: 984 StructAccessBase(const RecordDecl *ExpectedRD) : ExpectedRD(ExpectedRD) {} 985 986 //===--------------------------------------------------------------------===// 987 // Visitor Methods 988 //===--------------------------------------------------------------------===// 989 990 // NOTE: If we build C++ support for counted_by, then we'll have to handle 991 // horrors like this: 992 // 993 // struct S { 994 // int x, y; 995 // int blah[] __attribute__((counted_by(x))); 996 // } s; 997 // 998 // int foo(int index, int val) { 999 // int (S::*IHatePMDs)[] = &S::blah; 1000 // (s.*IHatePMDs)[index] = val; 1001 // } 1002 1003 const Expr *Visit(const Expr *E) { 1004 return ConstStmtVisitor<StructAccessBase, const Expr *>::Visit(E); 1005 } 1006 1007 const Expr *VisitStmt(const Stmt *S) { return nullptr; } 1008 1009 // These are the types we expect to return (in order of most to least 1010 // likely): 1011 // 1012 // 1. DeclRefExpr - This is the expression for the base of the structure. 1013 // It's exactly what we want to build an access to the \p counted_by 1014 // field. 1015 // 2. MemberExpr - This is the expression that has the same \p RecordDecl 1016 // as the flexble array member's lexical enclosing \p RecordDecl. This 1017 // allows us to catch things like: "p->p->array" 1018 // 3. CompoundLiteralExpr - This is for people who create something 1019 // heretical like (struct foo has a flexible array member): 1020 // 1021 // (struct foo){ 1, 2 }.blah[idx]; 1022 const Expr *VisitDeclRefExpr(const DeclRefExpr *E) { 1023 return IsExpectedRecordDecl(E) ? E : nullptr; 1024 } 1025 const Expr *VisitMemberExpr(const MemberExpr *E) { 1026 if (IsExpectedRecordDecl(E) && E->isArrow()) 1027 return E; 1028 const Expr *Res = Visit(E->getBase()); 1029 return !Res && IsExpectedRecordDecl(E) ? E : Res; 1030 } 1031 const Expr *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1032 return IsExpectedRecordDecl(E) ? E : nullptr; 1033 } 1034 const Expr *VisitCallExpr(const CallExpr *E) { 1035 return IsExpectedRecordDecl(E) ? E : nullptr; 1036 } 1037 1038 const Expr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1039 if (IsExpectedRecordDecl(E)) 1040 return E; 1041 return Visit(E->getBase()); 1042 } 1043 const Expr *VisitCastExpr(const CastExpr *E) { 1044 return Visit(E->getSubExpr()); 1045 } 1046 const Expr *VisitParenExpr(const ParenExpr *E) { 1047 return Visit(E->getSubExpr()); 1048 } 1049 const Expr *VisitUnaryAddrOf(const UnaryOperator *E) { 1050 return Visit(E->getSubExpr()); 1051 } 1052 const Expr *VisitUnaryDeref(const UnaryOperator *E) { 1053 return Visit(E->getSubExpr()); 1054 } 1055 }; 1056 1057 } // end anonymous namespace 1058 1059 using RecIndicesTy = 1060 SmallVector<std::pair<const RecordDecl *, llvm::Value *>, 8>; 1061 1062 static bool getGEPIndicesToField(CodeGenFunction &CGF, const RecordDecl *RD, 1063 const FieldDecl *FD, RecIndicesTy &Indices) { 1064 const CGRecordLayout &Layout = CGF.CGM.getTypes().getCGRecordLayout(RD); 1065 int64_t FieldNo = -1; 1066 for (const Decl *D : RD->decls()) { 1067 if (const auto *Field = dyn_cast<FieldDecl>(D)) { 1068 FieldNo = Layout.getLLVMFieldNo(Field); 1069 if (FD == Field) { 1070 Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo))); 1071 return true; 1072 } 1073 } 1074 1075 if (const auto *Record = dyn_cast<RecordDecl>(D)) { 1076 ++FieldNo; 1077 if (getGEPIndicesToField(CGF, Record, FD, Indices)) { 1078 if (RD->isUnion()) 1079 FieldNo = 0; 1080 Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo))); 1081 return true; 1082 } 1083 } 1084 } 1085 1086 return false; 1087 } 1088 1089 /// This method is typically called in contexts where we can't generate 1090 /// side-effects, like in __builtin_dynamic_object_size. When finding 1091 /// expressions, only choose those that have either already been emitted or can 1092 /// be loaded without side-effects. 1093 /// 1094 /// - \p FAMDecl: the \p Decl for the flexible array member. It may not be 1095 /// within the top-level struct. 1096 /// - \p CountDecl: must be within the same non-anonymous struct as \p FAMDecl. 1097 llvm::Value *CodeGenFunction::EmitCountedByFieldExpr( 1098 const Expr *Base, const FieldDecl *FAMDecl, const FieldDecl *CountDecl) { 1099 const RecordDecl *RD = CountDecl->getParent()->getOuterLexicalRecordContext(); 1100 1101 // Find the base struct expr (i.e. p in p->a.b.c.d). 1102 const Expr *StructBase = StructAccessBase(RD).Visit(Base); 1103 if (!StructBase || StructBase->HasSideEffects(getContext())) 1104 return nullptr; 1105 1106 llvm::Value *Res = nullptr; 1107 if (const auto *DRE = dyn_cast<DeclRefExpr>(StructBase)) { 1108 Res = EmitDeclRefLValue(DRE).getPointer(*this); 1109 Res = Builder.CreateAlignedLoad(ConvertType(DRE->getType()), Res, 1110 getPointerAlign(), "dre.load"); 1111 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(StructBase)) { 1112 LValue LV = EmitMemberExpr(ME); 1113 Address Addr = LV.getAddress(*this); 1114 Res = Addr.getPointer(); 1115 } else if (StructBase->getType()->isPointerType()) { 1116 LValueBaseInfo BaseInfo; 1117 TBAAAccessInfo TBAAInfo; 1118 Address Addr = EmitPointerWithAlignment(StructBase, &BaseInfo, &TBAAInfo); 1119 Res = Addr.getPointer(); 1120 } else { 1121 return nullptr; 1122 } 1123 1124 llvm::Value *Zero = Builder.getInt32(0); 1125 RecIndicesTy Indices; 1126 1127 getGEPIndicesToField(*this, RD, CountDecl, Indices); 1128 1129 for (auto I = Indices.rbegin(), E = Indices.rend(); I != E; ++I) 1130 Res = Builder.CreateInBoundsGEP( 1131 ConvertType(QualType(I->first->getTypeForDecl(), 0)), Res, 1132 {Zero, I->second}, "..counted_by.gep"); 1133 1134 return Builder.CreateAlignedLoad(ConvertType(CountDecl->getType()), Res, 1135 getIntAlign(), "..counted_by.load"); 1136 } 1137 1138 const FieldDecl *CodeGenFunction::FindCountedByField(const FieldDecl *FD) { 1139 if (!FD || !FD->hasAttr<CountedByAttr>()) 1140 return nullptr; 1141 1142 const auto *CBA = FD->getAttr<CountedByAttr>(); 1143 if (!CBA) 1144 return nullptr; 1145 1146 auto GetNonAnonStructOrUnion = 1147 [](const RecordDecl *RD) -> const RecordDecl * { 1148 while (RD && RD->isAnonymousStructOrUnion()) { 1149 const auto *R = dyn_cast<RecordDecl>(RD->getDeclContext()); 1150 if (!R) 1151 return nullptr; 1152 RD = R; 1153 } 1154 return RD; 1155 }; 1156 const RecordDecl *EnclosingRD = GetNonAnonStructOrUnion(FD->getParent()); 1157 if (!EnclosingRD) 1158 return nullptr; 1159 1160 DeclarationName DName(CBA->getCountedByField()); 1161 DeclContext::lookup_result Lookup = EnclosingRD->lookup(DName); 1162 1163 if (Lookup.empty()) 1164 return nullptr; 1165 1166 const NamedDecl *ND = Lookup.front(); 1167 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) 1168 ND = IFD->getAnonField(); 1169 1170 return dyn_cast<FieldDecl>(ND); 1171 } 1172 1173 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 1174 llvm::Value *Index, QualType IndexType, 1175 bool Accessed) { 1176 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 1177 "should not be called unless adding bounds checks"); 1178 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = 1179 getLangOpts().getStrictFlexArraysLevel(); 1180 QualType IndexedType; 1181 llvm::Value *Bound = 1182 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel); 1183 1184 EmitBoundsCheckImpl(E, Bound, Index, IndexType, IndexedType, Accessed); 1185 } 1186 1187 void CodeGenFunction::EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, 1188 llvm::Value *Index, 1189 QualType IndexType, 1190 QualType IndexedType, bool Accessed) { 1191 if (!Bound) 1192 return; 1193 1194 SanitizerScope SanScope(this); 1195 1196 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 1197 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 1198 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 1199 1200 llvm::Constant *StaticData[] = { 1201 EmitCheckSourceLocation(E->getExprLoc()), 1202 EmitCheckTypeDescriptor(IndexedType), 1203 EmitCheckTypeDescriptor(IndexType) 1204 }; 1205 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1206 : Builder.CreateICmpULE(IndexVal, BoundVal); 1207 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1208 SanitizerHandler::OutOfBounds, StaticData, Index); 1209 } 1210 1211 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1212 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1213 bool isInc, bool isPre) { 1214 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1215 1216 llvm::Value *NextVal; 1217 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1218 uint64_t AmountVal = isInc ? 1 : -1; 1219 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1220 1221 // Add the inc/dec to the real part. 1222 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1223 } else { 1224 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1225 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1226 if (!isInc) 1227 FVal.changeSign(); 1228 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1229 1230 // Add the inc/dec to the real part. 1231 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1232 } 1233 1234 ComplexPairTy IncVal(NextVal, InVal.second); 1235 1236 // Store the updated result through the lvalue. 1237 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1238 if (getLangOpts().OpenMP) 1239 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1240 E->getSubExpr()); 1241 1242 // If this is a postinc, return the value read from memory, otherwise use the 1243 // updated value. 1244 return isPre ? IncVal : InVal; 1245 } 1246 1247 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1248 CodeGenFunction *CGF) { 1249 // Bind VLAs in the cast type. 1250 if (CGF && E->getType()->isVariablyModifiedType()) 1251 CGF->EmitVariablyModifiedType(E->getType()); 1252 1253 if (CGDebugInfo *DI = getModuleDebugInfo()) 1254 DI->EmitExplicitCastType(E->getType()); 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // LValue Expression Emission 1259 //===----------------------------------------------------------------------===// 1260 1261 static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo, 1262 TBAAAccessInfo *TBAAInfo, 1263 KnownNonNull_t IsKnownNonNull, 1264 CodeGenFunction &CGF) { 1265 // We allow this with ObjC object pointers because of fragile ABIs. 1266 assert(E->getType()->isPointerType() || 1267 E->getType()->isObjCObjectPointerType()); 1268 E = E->IgnoreParens(); 1269 1270 // Casts: 1271 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1272 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1273 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 1274 1275 switch (CE->getCastKind()) { 1276 // Non-converting casts (but not C's implicit conversion from void*). 1277 case CK_BitCast: 1278 case CK_NoOp: 1279 case CK_AddressSpaceConversion: 1280 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1281 if (PtrTy->getPointeeType()->isVoidType()) 1282 break; 1283 1284 LValueBaseInfo InnerBaseInfo; 1285 TBAAAccessInfo InnerTBAAInfo; 1286 Address Addr = CGF.EmitPointerWithAlignment( 1287 CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull); 1288 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1289 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1290 1291 if (isa<ExplicitCastExpr>(CE)) { 1292 LValueBaseInfo TargetTypeBaseInfo; 1293 TBAAAccessInfo TargetTypeTBAAInfo; 1294 CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment( 1295 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1296 if (TBAAInfo) 1297 *TBAAInfo = 1298 CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo); 1299 // If the source l-value is opaque, honor the alignment of the 1300 // casted-to type. 1301 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1302 if (BaseInfo) 1303 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1304 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align, 1305 IsKnownNonNull); 1306 } 1307 } 1308 1309 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1310 CE->getCastKind() == CK_BitCast) { 1311 if (auto PT = E->getType()->getAs<PointerType>()) 1312 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 1313 /*MayBeNull=*/true, 1314 CodeGenFunction::CFITCK_UnrelatedCast, 1315 CE->getBeginLoc()); 1316 } 1317 1318 llvm::Type *ElemTy = 1319 CGF.ConvertTypeForMem(E->getType()->getPointeeType()); 1320 Addr = Addr.withElementType(ElemTy); 1321 if (CE->getCastKind() == CK_AddressSpaceConversion) 1322 Addr = CGF.Builder.CreateAddrSpaceCast(Addr, 1323 CGF.ConvertType(E->getType())); 1324 return Addr; 1325 } 1326 break; 1327 1328 // Array-to-pointer decay. 1329 case CK_ArrayToPointerDecay: 1330 return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1331 1332 // Derived-to-base conversions. 1333 case CK_UncheckedDerivedToBase: 1334 case CK_DerivedToBase: { 1335 // TODO: Support accesses to members of base classes in TBAA. For now, we 1336 // conservatively pretend that the complete object is of the base class 1337 // type. 1338 if (TBAAInfo) 1339 *TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType()); 1340 Address Addr = CGF.EmitPointerWithAlignment( 1341 CE->getSubExpr(), BaseInfo, nullptr, 1342 (KnownNonNull_t)(IsKnownNonNull || 1343 CE->getCastKind() == CK_UncheckedDerivedToBase)); 1344 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1345 return CGF.GetAddressOfBaseClass( 1346 Addr, Derived, CE->path_begin(), CE->path_end(), 1347 CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1348 } 1349 1350 // TODO: Is there any reason to treat base-to-derived conversions 1351 // specially? 1352 default: 1353 break; 1354 } 1355 } 1356 1357 // Unary &. 1358 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1359 if (UO->getOpcode() == UO_AddrOf) { 1360 LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull); 1361 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1362 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1363 return LV.getAddress(CGF); 1364 } 1365 } 1366 1367 // std::addressof and variants. 1368 if (auto *Call = dyn_cast<CallExpr>(E)) { 1369 switch (Call->getBuiltinCallee()) { 1370 default: 1371 break; 1372 case Builtin::BIaddressof: 1373 case Builtin::BI__addressof: 1374 case Builtin::BI__builtin_addressof: { 1375 LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull); 1376 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1377 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1378 return LV.getAddress(CGF); 1379 } 1380 } 1381 } 1382 1383 // TODO: conditional operators, comma. 1384 1385 // Otherwise, use the alignment of the type. 1386 CharUnits Align = 1387 CGF.CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1388 llvm::Type *ElemTy = CGF.ConvertTypeForMem(E->getType()->getPointeeType()); 1389 return Address(CGF.EmitScalarExpr(E), ElemTy, Align, IsKnownNonNull); 1390 } 1391 1392 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1393 /// derive a more accurate bound on the alignment of the pointer. 1394 Address CodeGenFunction::EmitPointerWithAlignment( 1395 const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo, 1396 KnownNonNull_t IsKnownNonNull) { 1397 Address Addr = 1398 ::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this); 1399 if (IsKnownNonNull && !Addr.isKnownNonNull()) 1400 Addr.setKnownNonNull(); 1401 return Addr; 1402 } 1403 1404 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1405 llvm::Value *V = RV.getScalarVal(); 1406 if (auto MPT = T->getAs<MemberPointerType>()) 1407 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1408 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1409 } 1410 1411 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1412 if (Ty->isVoidType()) 1413 return RValue::get(nullptr); 1414 1415 switch (getEvaluationKind(Ty)) { 1416 case TEK_Complex: { 1417 llvm::Type *EltTy = 1418 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1419 llvm::Value *U = llvm::UndefValue::get(EltTy); 1420 return RValue::getComplex(std::make_pair(U, U)); 1421 } 1422 1423 // If this is a use of an undefined aggregate type, the aggregate must have an 1424 // identifiable address. Just because the contents of the value are undefined 1425 // doesn't mean that the address can't be taken and compared. 1426 case TEK_Aggregate: { 1427 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1428 return RValue::getAggregate(DestPtr); 1429 } 1430 1431 case TEK_Scalar: 1432 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1433 } 1434 llvm_unreachable("bad evaluation kind"); 1435 } 1436 1437 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1438 const char *Name) { 1439 ErrorUnsupported(E, Name); 1440 return GetUndefRValue(E->getType()); 1441 } 1442 1443 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1444 const char *Name) { 1445 ErrorUnsupported(E, Name); 1446 llvm::Type *ElTy = ConvertType(E->getType()); 1447 llvm::Type *Ty = UnqualPtrTy; 1448 return MakeAddrLValue( 1449 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 1450 } 1451 1452 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1453 const Expr *Base = Obj; 1454 while (!isa<CXXThisExpr>(Base)) { 1455 // The result of a dynamic_cast can be null. 1456 if (isa<CXXDynamicCastExpr>(Base)) 1457 return false; 1458 1459 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1460 Base = CE->getSubExpr(); 1461 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1462 Base = PE->getSubExpr(); 1463 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1464 if (UO->getOpcode() == UO_Extension) 1465 Base = UO->getSubExpr(); 1466 else 1467 return false; 1468 } else { 1469 return false; 1470 } 1471 } 1472 return true; 1473 } 1474 1475 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1476 LValue LV; 1477 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1478 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1479 else 1480 LV = EmitLValue(E); 1481 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1482 SanitizerSet SkippedChecks; 1483 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1484 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1485 if (IsBaseCXXThis) 1486 SkippedChecks.set(SanitizerKind::Alignment, true); 1487 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1488 SkippedChecks.set(SanitizerKind::Null, true); 1489 } 1490 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1491 LV.getAlignment(), SkippedChecks); 1492 } 1493 return LV; 1494 } 1495 1496 /// EmitLValue - Emit code to compute a designator that specifies the location 1497 /// of the expression. 1498 /// 1499 /// This can return one of two things: a simple address or a bitfield reference. 1500 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1501 /// an LLVM pointer type. 1502 /// 1503 /// If this returns a bitfield reference, nothing about the pointee type of the 1504 /// LLVM value is known: For example, it may not be a pointer to an integer. 1505 /// 1506 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1507 /// this method guarantees that the returned pointer type will point to an LLVM 1508 /// type of the same size of the lvalue's type. If the lvalue has a variable 1509 /// length type, this is not possible. 1510 /// 1511 LValue CodeGenFunction::EmitLValue(const Expr *E, 1512 KnownNonNull_t IsKnownNonNull) { 1513 LValue LV = EmitLValueHelper(E, IsKnownNonNull); 1514 if (IsKnownNonNull && !LV.isKnownNonNull()) 1515 LV.setKnownNonNull(); 1516 return LV; 1517 } 1518 1519 static QualType getConstantExprReferredType(const FullExpr *E, 1520 const ASTContext &Ctx) { 1521 const Expr *SE = E->getSubExpr()->IgnoreImplicit(); 1522 if (isa<OpaqueValueExpr>(SE)) 1523 return SE->getType(); 1524 return cast<CallExpr>(SE)->getCallReturnType(Ctx)->getPointeeType(); 1525 } 1526 1527 LValue CodeGenFunction::EmitLValueHelper(const Expr *E, 1528 KnownNonNull_t IsKnownNonNull) { 1529 ApplyDebugLocation DL(*this, E); 1530 switch (E->getStmtClass()) { 1531 default: return EmitUnsupportedLValue(E, "l-value expression"); 1532 1533 case Expr::ObjCPropertyRefExprClass: 1534 llvm_unreachable("cannot emit a property reference directly"); 1535 1536 case Expr::ObjCSelectorExprClass: 1537 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1538 case Expr::ObjCIsaExprClass: 1539 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1540 case Expr::BinaryOperatorClass: 1541 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1542 case Expr::CompoundAssignOperatorClass: { 1543 QualType Ty = E->getType(); 1544 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1545 Ty = AT->getValueType(); 1546 if (!Ty->isAnyComplexType()) 1547 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1548 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1549 } 1550 case Expr::CallExprClass: 1551 case Expr::CXXMemberCallExprClass: 1552 case Expr::CXXOperatorCallExprClass: 1553 case Expr::UserDefinedLiteralClass: 1554 return EmitCallExprLValue(cast<CallExpr>(E)); 1555 case Expr::CXXRewrittenBinaryOperatorClass: 1556 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 1557 IsKnownNonNull); 1558 case Expr::VAArgExprClass: 1559 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1560 case Expr::DeclRefExprClass: 1561 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1562 case Expr::ConstantExprClass: { 1563 const ConstantExpr *CE = cast<ConstantExpr>(E); 1564 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1565 QualType RetType = getConstantExprReferredType(CE, getContext()); 1566 return MakeNaturalAlignAddrLValue(Result, RetType); 1567 } 1568 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull); 1569 } 1570 case Expr::ParenExprClass: 1571 return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull); 1572 case Expr::GenericSelectionExprClass: 1573 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(), 1574 IsKnownNonNull); 1575 case Expr::PredefinedExprClass: 1576 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1577 case Expr::StringLiteralClass: 1578 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1579 case Expr::ObjCEncodeExprClass: 1580 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1581 case Expr::PseudoObjectExprClass: 1582 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1583 case Expr::InitListExprClass: 1584 return EmitInitListLValue(cast<InitListExpr>(E)); 1585 case Expr::CXXTemporaryObjectExprClass: 1586 case Expr::CXXConstructExprClass: 1587 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1588 case Expr::CXXBindTemporaryExprClass: 1589 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1590 case Expr::CXXUuidofExprClass: 1591 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1592 case Expr::LambdaExprClass: 1593 return EmitAggExprToLValue(E); 1594 1595 case Expr::ExprWithCleanupsClass: { 1596 const auto *cleanups = cast<ExprWithCleanups>(E); 1597 RunCleanupsScope Scope(*this); 1598 LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull); 1599 if (LV.isSimple()) { 1600 // Defend against branches out of gnu statement expressions surrounded by 1601 // cleanups. 1602 Address Addr = LV.getAddress(*this); 1603 llvm::Value *V = Addr.getPointer(); 1604 Scope.ForceCleanup({&V}); 1605 return LValue::MakeAddr(Addr.withPointer(V, Addr.isKnownNonNull()), 1606 LV.getType(), getContext(), LV.getBaseInfo(), 1607 LV.getTBAAInfo()); 1608 } 1609 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1610 // bitfield lvalue or some other non-simple lvalue? 1611 return LV; 1612 } 1613 1614 case Expr::CXXDefaultArgExprClass: { 1615 auto *DAE = cast<CXXDefaultArgExpr>(E); 1616 CXXDefaultArgExprScope Scope(*this, DAE); 1617 return EmitLValue(DAE->getExpr(), IsKnownNonNull); 1618 } 1619 case Expr::CXXDefaultInitExprClass: { 1620 auto *DIE = cast<CXXDefaultInitExpr>(E); 1621 CXXDefaultInitExprScope Scope(*this, DIE); 1622 return EmitLValue(DIE->getExpr(), IsKnownNonNull); 1623 } 1624 case Expr::CXXTypeidExprClass: 1625 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1626 1627 case Expr::ObjCMessageExprClass: 1628 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1629 case Expr::ObjCIvarRefExprClass: 1630 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1631 case Expr::StmtExprClass: 1632 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1633 case Expr::UnaryOperatorClass: 1634 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1635 case Expr::ArraySubscriptExprClass: 1636 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1637 case Expr::MatrixSubscriptExprClass: 1638 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1639 case Expr::OMPArraySectionExprClass: 1640 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1641 case Expr::ExtVectorElementExprClass: 1642 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1643 case Expr::CXXThisExprClass: 1644 return MakeAddrLValue(LoadCXXThisAddress(), E->getType()); 1645 case Expr::MemberExprClass: 1646 return EmitMemberExpr(cast<MemberExpr>(E)); 1647 case Expr::CompoundLiteralExprClass: 1648 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1649 case Expr::ConditionalOperatorClass: 1650 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1651 case Expr::BinaryConditionalOperatorClass: 1652 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1653 case Expr::ChooseExprClass: 1654 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull); 1655 case Expr::OpaqueValueExprClass: 1656 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1657 case Expr::SubstNonTypeTemplateParmExprClass: 1658 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), 1659 IsKnownNonNull); 1660 case Expr::ImplicitCastExprClass: 1661 case Expr::CStyleCastExprClass: 1662 case Expr::CXXFunctionalCastExprClass: 1663 case Expr::CXXStaticCastExprClass: 1664 case Expr::CXXDynamicCastExprClass: 1665 case Expr::CXXReinterpretCastExprClass: 1666 case Expr::CXXConstCastExprClass: 1667 case Expr::CXXAddrspaceCastExprClass: 1668 case Expr::ObjCBridgedCastExprClass: 1669 return EmitCastLValue(cast<CastExpr>(E)); 1670 1671 case Expr::MaterializeTemporaryExprClass: 1672 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1673 1674 case Expr::CoawaitExprClass: 1675 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1676 case Expr::CoyieldExprClass: 1677 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1678 } 1679 } 1680 1681 /// Given an object of the given canonical type, can we safely copy a 1682 /// value out of it based on its initializer? 1683 static bool isConstantEmittableObjectType(QualType type) { 1684 assert(type.isCanonical()); 1685 assert(!type->isReferenceType()); 1686 1687 // Must be const-qualified but non-volatile. 1688 Qualifiers qs = type.getLocalQualifiers(); 1689 if (!qs.hasConst() || qs.hasVolatile()) return false; 1690 1691 // Otherwise, all object types satisfy this except C++ classes with 1692 // mutable subobjects or non-trivial copy/destroy behavior. 1693 if (const auto *RT = dyn_cast<RecordType>(type)) 1694 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1695 if (RD->hasMutableFields() || !RD->isTrivial()) 1696 return false; 1697 1698 return true; 1699 } 1700 1701 /// Can we constant-emit a load of a reference to a variable of the 1702 /// given type? This is different from predicates like 1703 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1704 /// in situations that don't necessarily satisfy the language's rules 1705 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1706 /// to do this with const float variables even if those variables 1707 /// aren't marked 'constexpr'. 1708 enum ConstantEmissionKind { 1709 CEK_None, 1710 CEK_AsReferenceOnly, 1711 CEK_AsValueOrReference, 1712 CEK_AsValueOnly 1713 }; 1714 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1715 type = type.getCanonicalType(); 1716 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1717 if (isConstantEmittableObjectType(ref->getPointeeType())) 1718 return CEK_AsValueOrReference; 1719 return CEK_AsReferenceOnly; 1720 } 1721 if (isConstantEmittableObjectType(type)) 1722 return CEK_AsValueOnly; 1723 return CEK_None; 1724 } 1725 1726 /// Try to emit a reference to the given value without producing it as 1727 /// an l-value. This is just an optimization, but it avoids us needing 1728 /// to emit global copies of variables if they're named without triggering 1729 /// a formal use in a context where we can't emit a direct reference to them, 1730 /// for instance if a block or lambda or a member of a local class uses a 1731 /// const int variable or constexpr variable from an enclosing function. 1732 CodeGenFunction::ConstantEmission 1733 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1734 ValueDecl *value = refExpr->getDecl(); 1735 1736 // The value needs to be an enum constant or a constant variable. 1737 ConstantEmissionKind CEK; 1738 if (isa<ParmVarDecl>(value)) { 1739 CEK = CEK_None; 1740 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1741 CEK = checkVarTypeForConstantEmission(var->getType()); 1742 } else if (isa<EnumConstantDecl>(value)) { 1743 CEK = CEK_AsValueOnly; 1744 } else { 1745 CEK = CEK_None; 1746 } 1747 if (CEK == CEK_None) return ConstantEmission(); 1748 1749 Expr::EvalResult result; 1750 bool resultIsReference; 1751 QualType resultType; 1752 1753 // It's best to evaluate all the way as an r-value if that's permitted. 1754 if (CEK != CEK_AsReferenceOnly && 1755 refExpr->EvaluateAsRValue(result, getContext())) { 1756 resultIsReference = false; 1757 resultType = refExpr->getType(); 1758 1759 // Otherwise, try to evaluate as an l-value. 1760 } else if (CEK != CEK_AsValueOnly && 1761 refExpr->EvaluateAsLValue(result, getContext())) { 1762 resultIsReference = true; 1763 resultType = value->getType(); 1764 1765 // Failure. 1766 } else { 1767 return ConstantEmission(); 1768 } 1769 1770 // In any case, if the initializer has side-effects, abandon ship. 1771 if (result.HasSideEffects) 1772 return ConstantEmission(); 1773 1774 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1775 // referencing a global host variable by copy. In this case the lambda should 1776 // make a copy of the value of the global host variable. The DRE of the 1777 // captured reference variable cannot be emitted as load from the host 1778 // global variable as compile time constant, since the host variable is not 1779 // accessible on device. The DRE of the captured reference variable has to be 1780 // loaded from captures. 1781 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1782 refExpr->refersToEnclosingVariableOrCapture()) { 1783 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1784 if (MD && MD->getParent()->isLambda() && 1785 MD->getOverloadedOperator() == OO_Call) { 1786 const APValue::LValueBase &base = result.Val.getLValueBase(); 1787 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1788 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1789 if (!VD->hasAttr<CUDADeviceAttr>()) { 1790 return ConstantEmission(); 1791 } 1792 } 1793 } 1794 } 1795 } 1796 1797 // Emit as a constant. 1798 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1799 result.Val, resultType); 1800 1801 // Make sure we emit a debug reference to the global variable. 1802 // This should probably fire even for 1803 if (isa<VarDecl>(value)) { 1804 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1805 EmitDeclRefExprDbgValue(refExpr, result.Val); 1806 } else { 1807 assert(isa<EnumConstantDecl>(value)); 1808 EmitDeclRefExprDbgValue(refExpr, result.Val); 1809 } 1810 1811 // If we emitted a reference constant, we need to dereference that. 1812 if (resultIsReference) 1813 return ConstantEmission::forReference(C); 1814 1815 return ConstantEmission::forValue(C); 1816 } 1817 1818 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1819 const MemberExpr *ME) { 1820 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1821 // Try to emit static variable member expressions as DREs. 1822 return DeclRefExpr::Create( 1823 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1824 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1825 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1826 } 1827 return nullptr; 1828 } 1829 1830 CodeGenFunction::ConstantEmission 1831 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1832 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1833 return tryEmitAsConstant(DRE); 1834 return ConstantEmission(); 1835 } 1836 1837 llvm::Value *CodeGenFunction::emitScalarConstant( 1838 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1839 assert(Constant && "not a constant"); 1840 if (Constant.isReference()) 1841 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1842 E->getExprLoc()) 1843 .getScalarVal(); 1844 return Constant.getValue(); 1845 } 1846 1847 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1848 SourceLocation Loc) { 1849 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1850 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1851 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1852 } 1853 1854 static bool hasBooleanRepresentation(QualType Ty) { 1855 if (Ty->isBooleanType()) 1856 return true; 1857 1858 if (const EnumType *ET = Ty->getAs<EnumType>()) 1859 return ET->getDecl()->getIntegerType()->isBooleanType(); 1860 1861 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1862 return hasBooleanRepresentation(AT->getValueType()); 1863 1864 return false; 1865 } 1866 1867 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1868 llvm::APInt &Min, llvm::APInt &End, 1869 bool StrictEnums, bool IsBool) { 1870 const EnumType *ET = Ty->getAs<EnumType>(); 1871 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1872 ET && !ET->getDecl()->isFixed(); 1873 if (!IsBool && !IsRegularCPlusPlusEnum) 1874 return false; 1875 1876 if (IsBool) { 1877 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1878 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1879 } else { 1880 const EnumDecl *ED = ET->getDecl(); 1881 ED->getValueRange(End, Min); 1882 } 1883 return true; 1884 } 1885 1886 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1887 llvm::APInt Min, End; 1888 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1889 hasBooleanRepresentation(Ty))) 1890 return nullptr; 1891 1892 llvm::MDBuilder MDHelper(getLLVMContext()); 1893 return MDHelper.createRange(Min, End); 1894 } 1895 1896 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1897 SourceLocation Loc) { 1898 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1899 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1900 if (!HasBoolCheck && !HasEnumCheck) 1901 return false; 1902 1903 bool IsBool = hasBooleanRepresentation(Ty) || 1904 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1905 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1906 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1907 if (!NeedsBoolCheck && !NeedsEnumCheck) 1908 return false; 1909 1910 // Single-bit booleans don't need to be checked. Special-case this to avoid 1911 // a bit width mismatch when handling bitfield values. This is handled by 1912 // EmitFromMemory for the non-bitfield case. 1913 if (IsBool && 1914 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1915 return false; 1916 1917 llvm::APInt Min, End; 1918 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1919 return true; 1920 1921 auto &Ctx = getLLVMContext(); 1922 SanitizerScope SanScope(this); 1923 llvm::Value *Check; 1924 --End; 1925 if (!Min) { 1926 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1927 } else { 1928 llvm::Value *Upper = 1929 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1930 llvm::Value *Lower = 1931 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1932 Check = Builder.CreateAnd(Upper, Lower); 1933 } 1934 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1935 EmitCheckTypeDescriptor(Ty)}; 1936 SanitizerMask Kind = 1937 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1938 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1939 StaticArgs, EmitCheckValue(Value)); 1940 return true; 1941 } 1942 1943 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1944 QualType Ty, 1945 SourceLocation Loc, 1946 LValueBaseInfo BaseInfo, 1947 TBAAAccessInfo TBAAInfo, 1948 bool isNontemporal) { 1949 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer())) 1950 if (GV->isThreadLocal()) 1951 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV), 1952 NotKnownNonNull); 1953 1954 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1955 // Boolean vectors use `iN` as storage type. 1956 if (ClangVecTy->isExtVectorBoolType()) { 1957 llvm::Type *ValTy = ConvertType(Ty); 1958 unsigned ValNumElems = 1959 cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1960 // Load the `iP` storage object (P is the padded vector size). 1961 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits"); 1962 const auto *RawIntTy = RawIntV->getType(); 1963 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors"); 1964 // Bitcast iP --> <P x i1>. 1965 auto *PaddedVecTy = llvm::FixedVectorType::get( 1966 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1967 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy); 1968 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1969 V = emitBoolVecConversion(V, ValNumElems, "extractvec"); 1970 1971 return EmitFromMemory(V, Ty); 1972 } 1973 1974 // Handle vectors of size 3 like size 4 for better performance. 1975 const llvm::Type *EltTy = Addr.getElementType(); 1976 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1977 1978 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) { 1979 1980 llvm::VectorType *vec4Ty = 1981 llvm::FixedVectorType::get(VTy->getElementType(), 4); 1982 Address Cast = Addr.withElementType(vec4Ty); 1983 // Now load value. 1984 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1985 1986 // Shuffle vector to get vec3. 1987 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec"); 1988 return EmitFromMemory(V, Ty); 1989 } 1990 } 1991 1992 // Atomic operations have to be done on integral types. 1993 LValue AtomicLValue = 1994 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1995 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1996 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1997 } 1998 1999 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 2000 if (isNontemporal) { 2001 llvm::MDNode *Node = llvm::MDNode::get( 2002 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 2003 Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node); 2004 } 2005 2006 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 2007 2008 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 2009 // In order to prevent the optimizer from throwing away the check, don't 2010 // attach range metadata to the load. 2011 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 2012 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) { 2013 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 2014 Load->setMetadata(llvm::LLVMContext::MD_noundef, 2015 llvm::MDNode::get(getLLVMContext(), std::nullopt)); 2016 } 2017 2018 return EmitFromMemory(Load, Ty); 2019 } 2020 2021 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 2022 // Bool has a different representation in memory than in registers. 2023 if (hasBooleanRepresentation(Ty)) { 2024 // This should really always be an i1, but sometimes it's already 2025 // an i8, and it's awkward to track those cases down. 2026 if (Value->getType()->isIntegerTy(1)) 2027 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 2028 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 2029 "wrong value rep of bool"); 2030 } 2031 2032 return Value; 2033 } 2034 2035 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 2036 // Bool has a different representation in memory than in registers. 2037 if (hasBooleanRepresentation(Ty)) { 2038 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 2039 "wrong value rep of bool"); 2040 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 2041 } 2042 if (Ty->isExtVectorBoolType()) { 2043 const auto *RawIntTy = Value->getType(); 2044 // Bitcast iP --> <P x i1>. 2045 auto *PaddedVecTy = llvm::FixedVectorType::get( 2046 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 2047 auto *V = Builder.CreateBitCast(Value, PaddedVecTy); 2048 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 2049 llvm::Type *ValTy = ConvertType(Ty); 2050 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 2051 return emitBoolVecConversion(V, ValNumElems, "extractvec"); 2052 } 2053 2054 return Value; 2055 } 2056 2057 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 2058 // MatrixType), if it points to a array (the memory type of MatrixType). 2059 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 2060 bool IsVector = true) { 2061 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 2062 if (ArrayTy && IsVector) { 2063 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 2064 ArrayTy->getNumElements()); 2065 2066 return Addr.withElementType(VectorTy); 2067 } 2068 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 2069 if (VectorTy && !IsVector) { 2070 auto *ArrayTy = llvm::ArrayType::get( 2071 VectorTy->getElementType(), 2072 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 2073 2074 return Addr.withElementType(ArrayTy); 2075 } 2076 2077 return Addr; 2078 } 2079 2080 // Emit a store of a matrix LValue. This may require casting the original 2081 // pointer to memory address (ArrayType) to a pointer to the value type 2082 // (VectorType). 2083 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 2084 bool isInit, CodeGenFunction &CGF) { 2085 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 2086 value->getType()->isVectorTy()); 2087 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 2088 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 2089 lvalue.isNontemporal()); 2090 } 2091 2092 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2093 bool Volatile, QualType Ty, 2094 LValueBaseInfo BaseInfo, 2095 TBAAAccessInfo TBAAInfo, 2096 bool isInit, bool isNontemporal) { 2097 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer())) 2098 if (GV->isThreadLocal()) 2099 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV), 2100 NotKnownNonNull); 2101 2102 llvm::Type *SrcTy = Value->getType(); 2103 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 2104 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy); 2105 if (VecTy && ClangVecTy->isExtVectorBoolType()) { 2106 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType()); 2107 // Expand to the memory bit width. 2108 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits(); 2109 // <N x i1> --> <P x i1>. 2110 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec"); 2111 // <P x i1> --> iP. 2112 Value = Builder.CreateBitCast(Value, MemIntTy); 2113 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) { 2114 // Handle vec3 special. 2115 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 2116 // Our source is a vec3, do a shuffle vector to make it a vec4. 2117 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 2118 "extractVec"); 2119 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 2120 } 2121 if (Addr.getElementType() != SrcTy) { 2122 Addr = Addr.withElementType(SrcTy); 2123 } 2124 } 2125 } 2126 2127 Value = EmitToMemory(Value, Ty); 2128 2129 LValue AtomicLValue = 2130 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 2131 if (Ty->isAtomicType() || 2132 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 2133 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 2134 return; 2135 } 2136 2137 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 2138 if (isNontemporal) { 2139 llvm::MDNode *Node = 2140 llvm::MDNode::get(Store->getContext(), 2141 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 2142 Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node); 2143 } 2144 2145 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2146 } 2147 2148 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 2149 bool isInit) { 2150 if (lvalue.getType()->isConstantMatrixType()) { 2151 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 2152 return; 2153 } 2154 2155 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 2156 lvalue.getType(), lvalue.getBaseInfo(), 2157 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 2158 } 2159 2160 // Emit a load of a LValue of matrix type. This may require casting the pointer 2161 // to memory address (ArrayType) to a pointer to the value type (VectorType). 2162 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 2163 CodeGenFunction &CGF) { 2164 assert(LV.getType()->isConstantMatrixType()); 2165 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 2166 LV.setAddress(Addr); 2167 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 2168 } 2169 2170 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 2171 /// method emits the address of the lvalue, then loads the result as an rvalue, 2172 /// returning the rvalue. 2173 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 2174 if (LV.isObjCWeak()) { 2175 // load of a __weak object. 2176 Address AddrWeakObj = LV.getAddress(*this); 2177 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 2178 AddrWeakObj)); 2179 } 2180 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 2181 // In MRC mode, we do a load+autorelease. 2182 if (!getLangOpts().ObjCAutoRefCount) { 2183 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 2184 } 2185 2186 // In ARC mode, we load retained and then consume the value. 2187 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 2188 Object = EmitObjCConsumeObject(LV.getType(), Object); 2189 return RValue::get(Object); 2190 } 2191 2192 if (LV.isSimple()) { 2193 assert(!LV.getType()->isFunctionType()); 2194 2195 if (LV.getType()->isConstantMatrixType()) 2196 return EmitLoadOfMatrixLValue(LV, Loc, *this); 2197 2198 // Everything needs a load. 2199 return RValue::get(EmitLoadOfScalar(LV, Loc)); 2200 } 2201 2202 if (LV.isVectorElt()) { 2203 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 2204 LV.isVolatileQualified()); 2205 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 2206 "vecext")); 2207 } 2208 2209 // If this is a reference to a subset of the elements of a vector, either 2210 // shuffle the input or extract/insert them as appropriate. 2211 if (LV.isExtVectorElt()) { 2212 return EmitLoadOfExtVectorElementLValue(LV); 2213 } 2214 2215 // Global Register variables always invoke intrinsics 2216 if (LV.isGlobalReg()) 2217 return EmitLoadOfGlobalRegLValue(LV); 2218 2219 if (LV.isMatrixElt()) { 2220 llvm::Value *Idx = LV.getMatrixIdx(); 2221 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2222 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 2223 llvm::MatrixBuilder MB(Builder); 2224 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2225 } 2226 llvm::LoadInst *Load = 2227 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 2228 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 2229 } 2230 2231 assert(LV.isBitField() && "Unknown LValue type!"); 2232 return EmitLoadOfBitfieldLValue(LV, Loc); 2233 } 2234 2235 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 2236 SourceLocation Loc) { 2237 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 2238 2239 // Get the output type. 2240 llvm::Type *ResLTy = ConvertType(LV.getType()); 2241 2242 Address Ptr = LV.getBitFieldAddress(); 2243 llvm::Value *Val = 2244 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 2245 2246 bool UseVolatile = LV.isVolatileQualified() && 2247 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2248 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2249 const unsigned StorageSize = 2250 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2251 if (Info.IsSigned) { 2252 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 2253 unsigned HighBits = StorageSize - Offset - Info.Size; 2254 if (HighBits) 2255 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 2256 if (Offset + HighBits) 2257 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 2258 } else { 2259 if (Offset) 2260 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 2261 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 2262 Val = Builder.CreateAnd( 2263 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 2264 } 2265 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 2266 EmitScalarRangeCheck(Val, LV.getType(), Loc); 2267 return RValue::get(Val); 2268 } 2269 2270 // If this is a reference to a subset of the elements of a vector, create an 2271 // appropriate shufflevector. 2272 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 2273 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 2274 LV.isVolatileQualified()); 2275 2276 // HLSL allows treating scalars as one-element vectors. Converting the scalar 2277 // IR value to a vector here allows the rest of codegen to behave as normal. 2278 if (getLangOpts().HLSL && !Vec->getType()->isVectorTy()) { 2279 llvm::Type *DstTy = llvm::FixedVectorType::get(Vec->getType(), 1); 2280 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2281 Vec = Builder.CreateInsertElement(DstTy, Vec, Zero, "cast.splat"); 2282 } 2283 2284 const llvm::Constant *Elts = LV.getExtVectorElts(); 2285 2286 // If the result of the expression is a non-vector type, we must be extracting 2287 // a single element. Just codegen as an extractelement. 2288 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2289 if (!ExprVT) { 2290 unsigned InIdx = getAccessedFieldNo(0, Elts); 2291 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2292 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2293 } 2294 2295 // Always use shuffle vector to try to retain the original program structure 2296 unsigned NumResultElts = ExprVT->getNumElements(); 2297 2298 SmallVector<int, 4> Mask; 2299 for (unsigned i = 0; i != NumResultElts; ++i) 2300 Mask.push_back(getAccessedFieldNo(i, Elts)); 2301 2302 Vec = Builder.CreateShuffleVector(Vec, Mask); 2303 return RValue::get(Vec); 2304 } 2305 2306 /// Generates lvalue for partial ext_vector access. 2307 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2308 Address VectorAddress = LV.getExtVectorAddress(); 2309 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2310 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2311 2312 Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy); 2313 2314 const llvm::Constant *Elts = LV.getExtVectorElts(); 2315 unsigned ix = getAccessedFieldNo(0, Elts); 2316 2317 Address VectorBasePtrPlusIx = 2318 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2319 "vector.elt"); 2320 2321 return VectorBasePtrPlusIx; 2322 } 2323 2324 /// Load of global gamed gegisters are always calls to intrinsics. 2325 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2326 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2327 "Bad type for register variable"); 2328 llvm::MDNode *RegName = cast<llvm::MDNode>( 2329 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2330 2331 // We accept integer and pointer types only 2332 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2333 llvm::Type *Ty = OrigTy; 2334 if (OrigTy->isPointerTy()) 2335 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2336 llvm::Type *Types[] = { Ty }; 2337 2338 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2339 llvm::Value *Call = Builder.CreateCall( 2340 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2341 if (OrigTy->isPointerTy()) 2342 Call = Builder.CreateIntToPtr(Call, OrigTy); 2343 return RValue::get(Call); 2344 } 2345 2346 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2347 /// lvalue, where both are guaranteed to the have the same type, and that type 2348 /// is 'Ty'. 2349 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2350 bool isInit) { 2351 if (!Dst.isSimple()) { 2352 if (Dst.isVectorElt()) { 2353 // Read/modify/write the vector, inserting the new element. 2354 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2355 Dst.isVolatileQualified()); 2356 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType()); 2357 if (IRStoreTy) { 2358 auto *IRVecTy = llvm::FixedVectorType::get( 2359 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits()); 2360 Vec = Builder.CreateBitCast(Vec, IRVecTy); 2361 // iN --> <N x i1>. 2362 } 2363 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2364 Dst.getVectorIdx(), "vecins"); 2365 if (IRStoreTy) { 2366 // <N x i1> --> <iN>. 2367 Vec = Builder.CreateBitCast(Vec, IRStoreTy); 2368 } 2369 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2370 Dst.isVolatileQualified()); 2371 return; 2372 } 2373 2374 // If this is an update of extended vector elements, insert them as 2375 // appropriate. 2376 if (Dst.isExtVectorElt()) 2377 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2378 2379 if (Dst.isGlobalReg()) 2380 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2381 2382 if (Dst.isMatrixElt()) { 2383 llvm::Value *Idx = Dst.getMatrixIdx(); 2384 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2385 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 2386 llvm::MatrixBuilder MB(Builder); 2387 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2388 } 2389 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2390 llvm::Value *Vec = 2391 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2392 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2393 Dst.isVolatileQualified()); 2394 return; 2395 } 2396 2397 assert(Dst.isBitField() && "Unknown LValue type"); 2398 return EmitStoreThroughBitfieldLValue(Src, Dst); 2399 } 2400 2401 // There's special magic for assigning into an ARC-qualified l-value. 2402 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2403 switch (Lifetime) { 2404 case Qualifiers::OCL_None: 2405 llvm_unreachable("present but none"); 2406 2407 case Qualifiers::OCL_ExplicitNone: 2408 // nothing special 2409 break; 2410 2411 case Qualifiers::OCL_Strong: 2412 if (isInit) { 2413 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2414 break; 2415 } 2416 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2417 return; 2418 2419 case Qualifiers::OCL_Weak: 2420 if (isInit) 2421 // Initialize and then skip the primitive store. 2422 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2423 else 2424 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2425 /*ignore*/ true); 2426 return; 2427 2428 case Qualifiers::OCL_Autoreleasing: 2429 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2430 Src.getScalarVal())); 2431 // fall into the normal path 2432 break; 2433 } 2434 } 2435 2436 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2437 // load of a __weak object. 2438 Address LvalueDst = Dst.getAddress(*this); 2439 llvm::Value *src = Src.getScalarVal(); 2440 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2441 return; 2442 } 2443 2444 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2445 // load of a __strong object. 2446 Address LvalueDst = Dst.getAddress(*this); 2447 llvm::Value *src = Src.getScalarVal(); 2448 if (Dst.isObjCIvar()) { 2449 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2450 llvm::Type *ResultType = IntPtrTy; 2451 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2452 llvm::Value *RHS = dst.getPointer(); 2453 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2454 llvm::Value *LHS = 2455 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2456 "sub.ptr.lhs.cast"); 2457 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2458 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2459 BytesBetween); 2460 } else if (Dst.isGlobalObjCRef()) { 2461 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2462 Dst.isThreadLocalRef()); 2463 } 2464 else 2465 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2466 return; 2467 } 2468 2469 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2470 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2471 } 2472 2473 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2474 llvm::Value **Result) { 2475 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2476 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2477 Address Ptr = Dst.getBitFieldAddress(); 2478 2479 // Get the source value, truncated to the width of the bit-field. 2480 llvm::Value *SrcVal = Src.getScalarVal(); 2481 2482 // Cast the source to the storage type and shift it into place. 2483 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2484 /*isSigned=*/false); 2485 llvm::Value *MaskedVal = SrcVal; 2486 2487 const bool UseVolatile = 2488 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2489 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2490 const unsigned StorageSize = 2491 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2492 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2493 // See if there are other bits in the bitfield's storage we'll need to load 2494 // and mask together with source before storing. 2495 if (StorageSize != Info.Size) { 2496 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2497 llvm::Value *Val = 2498 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2499 2500 // Mask the source value as needed. 2501 if (!hasBooleanRepresentation(Dst.getType())) 2502 SrcVal = Builder.CreateAnd( 2503 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2504 "bf.value"); 2505 MaskedVal = SrcVal; 2506 if (Offset) 2507 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2508 2509 // Mask out the original value. 2510 Val = Builder.CreateAnd( 2511 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2512 "bf.clear"); 2513 2514 // Or together the unchanged values and the source value. 2515 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2516 } else { 2517 assert(Offset == 0); 2518 // According to the AACPS: 2519 // When a volatile bit-field is written, and its container does not overlap 2520 // with any non-bit-field member, its container must be read exactly once 2521 // and written exactly once using the access width appropriate to the type 2522 // of the container. The two accesses are not atomic. 2523 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2524 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2525 Builder.CreateLoad(Ptr, true, "bf.load"); 2526 } 2527 2528 // Write the new value back out. 2529 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2530 2531 // Return the new value of the bit-field, if requested. 2532 if (Result) { 2533 llvm::Value *ResultVal = MaskedVal; 2534 2535 // Sign extend the value if needed. 2536 if (Info.IsSigned) { 2537 assert(Info.Size <= StorageSize); 2538 unsigned HighBits = StorageSize - Info.Size; 2539 if (HighBits) { 2540 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2541 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2542 } 2543 } 2544 2545 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2546 "bf.result.cast"); 2547 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2548 } 2549 } 2550 2551 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2552 LValue Dst) { 2553 // HLSL allows storing to scalar values through ExtVector component LValues. 2554 // To support this we need to handle the case where the destination address is 2555 // a scalar. 2556 Address DstAddr = Dst.getExtVectorAddress(); 2557 if (!DstAddr.getElementType()->isVectorTy()) { 2558 assert(!Dst.getType()->isVectorType() && 2559 "this should only occur for non-vector l-values"); 2560 Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified()); 2561 return; 2562 } 2563 2564 // This access turns into a read/modify/write of the vector. Load the input 2565 // value now. 2566 llvm::Value *Vec = Builder.CreateLoad(DstAddr, Dst.isVolatileQualified()); 2567 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2568 2569 llvm::Value *SrcVal = Src.getScalarVal(); 2570 2571 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2572 unsigned NumSrcElts = VTy->getNumElements(); 2573 unsigned NumDstElts = 2574 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2575 if (NumDstElts == NumSrcElts) { 2576 // Use shuffle vector is the src and destination are the same number of 2577 // elements and restore the vector mask since it is on the side it will be 2578 // stored. 2579 SmallVector<int, 4> Mask(NumDstElts); 2580 for (unsigned i = 0; i != NumSrcElts; ++i) 2581 Mask[getAccessedFieldNo(i, Elts)] = i; 2582 2583 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2584 } else if (NumDstElts > NumSrcElts) { 2585 // Extended the source vector to the same length and then shuffle it 2586 // into the destination. 2587 // FIXME: since we're shuffling with undef, can we just use the indices 2588 // into that? This could be simpler. 2589 SmallVector<int, 4> ExtMask; 2590 for (unsigned i = 0; i != NumSrcElts; ++i) 2591 ExtMask.push_back(i); 2592 ExtMask.resize(NumDstElts, -1); 2593 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2594 // build identity 2595 SmallVector<int, 4> Mask; 2596 for (unsigned i = 0; i != NumDstElts; ++i) 2597 Mask.push_back(i); 2598 2599 // When the vector size is odd and .odd or .hi is used, the last element 2600 // of the Elts constant array will be one past the size of the vector. 2601 // Ignore the last element here, if it is greater than the mask size. 2602 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2603 NumSrcElts--; 2604 2605 // modify when what gets shuffled in 2606 for (unsigned i = 0; i != NumSrcElts; ++i) 2607 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2608 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2609 } else { 2610 // We should never shorten the vector 2611 llvm_unreachable("unexpected shorten vector length"); 2612 } 2613 } else { 2614 // If the Src is a scalar (not a vector), and the target is a vector it must 2615 // be updating one element. 2616 unsigned InIdx = getAccessedFieldNo(0, Elts); 2617 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2618 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2619 } 2620 2621 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2622 Dst.isVolatileQualified()); 2623 } 2624 2625 /// Store of global named registers are always calls to intrinsics. 2626 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2627 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2628 "Bad type for register variable"); 2629 llvm::MDNode *RegName = cast<llvm::MDNode>( 2630 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2631 assert(RegName && "Register LValue is not metadata"); 2632 2633 // We accept integer and pointer types only 2634 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2635 llvm::Type *Ty = OrigTy; 2636 if (OrigTy->isPointerTy()) 2637 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2638 llvm::Type *Types[] = { Ty }; 2639 2640 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2641 llvm::Value *Value = Src.getScalarVal(); 2642 if (OrigTy->isPointerTy()) 2643 Value = Builder.CreatePtrToInt(Value, Ty); 2644 Builder.CreateCall( 2645 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2646 } 2647 2648 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2649 // generating write-barries API. It is currently a global, ivar, 2650 // or neither. 2651 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2652 LValue &LV, 2653 bool IsMemberAccess=false) { 2654 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2655 return; 2656 2657 if (isa<ObjCIvarRefExpr>(E)) { 2658 QualType ExpTy = E->getType(); 2659 if (IsMemberAccess && ExpTy->isPointerType()) { 2660 // If ivar is a structure pointer, assigning to field of 2661 // this struct follows gcc's behavior and makes it a non-ivar 2662 // writer-barrier conservatively. 2663 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2664 if (ExpTy->isRecordType()) { 2665 LV.setObjCIvar(false); 2666 return; 2667 } 2668 } 2669 LV.setObjCIvar(true); 2670 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2671 LV.setBaseIvarExp(Exp->getBase()); 2672 LV.setObjCArray(E->getType()->isArrayType()); 2673 return; 2674 } 2675 2676 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2677 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2678 if (VD->hasGlobalStorage()) { 2679 LV.setGlobalObjCRef(true); 2680 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2681 } 2682 } 2683 LV.setObjCArray(E->getType()->isArrayType()); 2684 return; 2685 } 2686 2687 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2688 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2689 return; 2690 } 2691 2692 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2693 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2694 if (LV.isObjCIvar()) { 2695 // If cast is to a structure pointer, follow gcc's behavior and make it 2696 // a non-ivar write-barrier. 2697 QualType ExpTy = E->getType(); 2698 if (ExpTy->isPointerType()) 2699 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2700 if (ExpTy->isRecordType()) 2701 LV.setObjCIvar(false); 2702 } 2703 return; 2704 } 2705 2706 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2707 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2708 return; 2709 } 2710 2711 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2712 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2713 return; 2714 } 2715 2716 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2717 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2718 return; 2719 } 2720 2721 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2722 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2723 return; 2724 } 2725 2726 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2727 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2728 if (LV.isObjCIvar() && !LV.isObjCArray()) 2729 // Using array syntax to assigning to what an ivar points to is not 2730 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2731 LV.setObjCIvar(false); 2732 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2733 // Using array syntax to assigning to what global points to is not 2734 // same as assigning to the global itself. {id *G;} G[i] = 0; 2735 LV.setGlobalObjCRef(false); 2736 return; 2737 } 2738 2739 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2740 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2741 // We don't know if member is an 'ivar', but this flag is looked at 2742 // only in the context of LV.isObjCIvar(). 2743 LV.setObjCArray(E->getType()->isArrayType()); 2744 return; 2745 } 2746 } 2747 2748 static LValue EmitThreadPrivateVarDeclLValue( 2749 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2750 llvm::Type *RealVarTy, SourceLocation Loc) { 2751 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2752 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2753 CGF, VD, Addr, Loc); 2754 else 2755 Addr = 2756 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2757 2758 Addr = Addr.withElementType(RealVarTy); 2759 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2760 } 2761 2762 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2763 const VarDecl *VD, QualType T) { 2764 std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2765 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2766 // Return an invalid address if variable is MT_To (or MT_Enter starting with 2767 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link 2768 // and MT_To (or MT_Enter) with unified memory, return a valid address. 2769 if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To || 2770 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 2771 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2772 return Address::invalid(); 2773 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2774 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 2775 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 2776 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2777 "Expected link clause OR to clause with unified memory enabled."); 2778 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2779 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2780 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2781 } 2782 2783 Address 2784 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2785 LValueBaseInfo *PointeeBaseInfo, 2786 TBAAAccessInfo *PointeeTBAAInfo) { 2787 llvm::LoadInst *Load = 2788 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2789 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2790 2791 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2792 CharUnits Align = CGM.getNaturalTypeAlignment( 2793 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2794 /* forPointeeType= */ true); 2795 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2796 } 2797 2798 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2799 LValueBaseInfo PointeeBaseInfo; 2800 TBAAAccessInfo PointeeTBAAInfo; 2801 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2802 &PointeeTBAAInfo); 2803 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2804 PointeeBaseInfo, PointeeTBAAInfo); 2805 } 2806 2807 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2808 const PointerType *PtrTy, 2809 LValueBaseInfo *BaseInfo, 2810 TBAAAccessInfo *TBAAInfo) { 2811 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2812 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()), 2813 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, 2814 TBAAInfo, 2815 /*forPointeeType=*/true)); 2816 } 2817 2818 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2819 const PointerType *PtrTy) { 2820 LValueBaseInfo BaseInfo; 2821 TBAAAccessInfo TBAAInfo; 2822 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2823 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2824 } 2825 2826 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2827 const Expr *E, const VarDecl *VD) { 2828 QualType T = E->getType(); 2829 2830 // If it's thread_local, emit a call to its wrapper function instead. 2831 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2832 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2833 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2834 // Check if the variable is marked as declare target with link clause in 2835 // device codegen. 2836 if (CGF.getLangOpts().OpenMPIsTargetDevice) { 2837 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2838 if (Addr.isValid()) 2839 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2840 } 2841 2842 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2843 2844 if (VD->getTLSKind() != VarDecl::TLS_None) 2845 V = CGF.Builder.CreateThreadLocalAddress(V); 2846 2847 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2848 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2849 Address Addr(V, RealVarTy, Alignment); 2850 // Emit reference to the private copy of the variable if it is an OpenMP 2851 // threadprivate variable. 2852 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2853 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2854 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2855 E->getExprLoc()); 2856 } 2857 LValue LV = VD->getType()->isReferenceType() ? 2858 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2859 AlignmentSource::Decl) : 2860 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2861 setObjCGCLValueClass(CGF.getContext(), E, LV); 2862 return LV; 2863 } 2864 2865 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2866 GlobalDecl GD) { 2867 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2868 if (FD->hasAttr<WeakRefAttr>()) { 2869 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2870 return aliasee.getPointer(); 2871 } 2872 2873 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2874 return V; 2875 } 2876 2877 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2878 GlobalDecl GD) { 2879 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2880 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2881 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2882 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2883 AlignmentSource::Decl); 2884 } 2885 2886 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2887 llvm::Value *ThisValue) { 2888 2889 return CGF.EmitLValueForLambdaField(FD, ThisValue); 2890 } 2891 2892 /// Named Registers are named metadata pointing to the register name 2893 /// which will be read from/written to as an argument to the intrinsic 2894 /// @llvm.read/write_register. 2895 /// So far, only the name is being passed down, but other options such as 2896 /// register type, allocation type or even optimization options could be 2897 /// passed down via the metadata node. 2898 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2899 SmallString<64> Name("llvm.named.register."); 2900 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2901 assert(Asm->getLabel().size() < 64-Name.size() && 2902 "Register name too big"); 2903 Name.append(Asm->getLabel()); 2904 llvm::NamedMDNode *M = 2905 CGM.getModule().getOrInsertNamedMetadata(Name); 2906 if (M->getNumOperands() == 0) { 2907 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2908 Asm->getLabel()); 2909 llvm::Metadata *Ops[] = {Str}; 2910 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2911 } 2912 2913 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2914 2915 llvm::Value *Ptr = 2916 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2917 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2918 } 2919 2920 /// Determine whether we can emit a reference to \p VD from the current 2921 /// context, despite not necessarily having seen an odr-use of the variable in 2922 /// this context. 2923 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2924 const DeclRefExpr *E, 2925 const VarDecl *VD) { 2926 // For a variable declared in an enclosing scope, do not emit a spurious 2927 // reference even if we have a capture, as that will emit an unwarranted 2928 // reference to our capture state, and will likely generate worse code than 2929 // emitting a local copy. 2930 if (E->refersToEnclosingVariableOrCapture()) 2931 return false; 2932 2933 // For a local declaration declared in this function, we can always reference 2934 // it even if we don't have an odr-use. 2935 if (VD->hasLocalStorage()) { 2936 return VD->getDeclContext() == 2937 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2938 } 2939 2940 // For a global declaration, we can emit a reference to it if we know 2941 // for sure that we are able to emit a definition of it. 2942 VD = VD->getDefinition(CGF.getContext()); 2943 if (!VD) 2944 return false; 2945 2946 // Don't emit a spurious reference if it might be to a variable that only 2947 // exists on a different device / target. 2948 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2949 // cross-target reference. 2950 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2951 CGF.getLangOpts().OpenCL) { 2952 return false; 2953 } 2954 2955 // We can emit a spurious reference only if the linkage implies that we'll 2956 // be emitting a non-interposable symbol that will be retained until link 2957 // time. 2958 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD)) { 2959 case llvm::GlobalValue::ExternalLinkage: 2960 case llvm::GlobalValue::LinkOnceODRLinkage: 2961 case llvm::GlobalValue::WeakODRLinkage: 2962 case llvm::GlobalValue::InternalLinkage: 2963 case llvm::GlobalValue::PrivateLinkage: 2964 return true; 2965 default: 2966 return false; 2967 } 2968 } 2969 2970 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2971 const NamedDecl *ND = E->getDecl(); 2972 QualType T = E->getType(); 2973 2974 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2975 "should not emit an unevaluated operand"); 2976 2977 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2978 // Global Named registers access via intrinsics only 2979 if (VD->getStorageClass() == SC_Register && 2980 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2981 return EmitGlobalNamedRegister(VD, CGM); 2982 2983 // If this DeclRefExpr does not constitute an odr-use of the variable, 2984 // we're not permitted to emit a reference to it in general, and it might 2985 // not be captured if capture would be necessary for a use. Emit the 2986 // constant value directly instead. 2987 if (E->isNonOdrUse() == NOUR_Constant && 2988 (VD->getType()->isReferenceType() || 2989 !canEmitSpuriousReferenceToVariable(*this, E, VD))) { 2990 VD->getAnyInitializer(VD); 2991 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2992 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2993 assert(Val && "failed to emit constant expression"); 2994 2995 Address Addr = Address::invalid(); 2996 if (!VD->getType()->isReferenceType()) { 2997 // Spill the constant value to a global. 2998 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2999 getContext().getDeclAlign(VD)); 3000 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 3001 auto *PTy = llvm::PointerType::get( 3002 VarTy, getTypes().getTargetAddressSpace(VD->getType())); 3003 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy); 3004 } else { 3005 // Should we be using the alignment of the constant pointer we emitted? 3006 CharUnits Alignment = 3007 CGM.getNaturalTypeAlignment(E->getType(), 3008 /* BaseInfo= */ nullptr, 3009 /* TBAAInfo= */ nullptr, 3010 /* forPointeeType= */ true); 3011 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 3012 } 3013 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 3014 } 3015 3016 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 3017 3018 // Check for captured variables. 3019 if (E->refersToEnclosingVariableOrCapture()) { 3020 VD = VD->getCanonicalDecl(); 3021 if (auto *FD = LambdaCaptureFields.lookup(VD)) 3022 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 3023 if (CapturedStmtInfo) { 3024 auto I = LocalDeclMap.find(VD); 3025 if (I != LocalDeclMap.end()) { 3026 LValue CapLVal; 3027 if (VD->getType()->isReferenceType()) 3028 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 3029 AlignmentSource::Decl); 3030 else 3031 CapLVal = MakeAddrLValue(I->second, T); 3032 // Mark lvalue as nontemporal if the variable is marked as nontemporal 3033 // in simd context. 3034 if (getLangOpts().OpenMP && 3035 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 3036 CapLVal.setNontemporal(/*Value=*/true); 3037 return CapLVal; 3038 } 3039 LValue CapLVal = 3040 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 3041 CapturedStmtInfo->getContextValue()); 3042 Address LValueAddress = CapLVal.getAddress(*this); 3043 CapLVal = MakeAddrLValue( 3044 Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 3045 getContext().getDeclAlign(VD)), 3046 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 3047 CapLVal.getTBAAInfo()); 3048 // Mark lvalue as nontemporal if the variable is marked as nontemporal 3049 // in simd context. 3050 if (getLangOpts().OpenMP && 3051 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 3052 CapLVal.setNontemporal(/*Value=*/true); 3053 return CapLVal; 3054 } 3055 3056 assert(isa<BlockDecl>(CurCodeDecl)); 3057 Address addr = GetAddrOfBlockDecl(VD); 3058 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 3059 } 3060 } 3061 3062 // FIXME: We should be able to assert this for FunctionDecls as well! 3063 // FIXME: We should be able to assert this for all DeclRefExprs, not just 3064 // those with a valid source location. 3065 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 3066 !E->getLocation().isValid()) && 3067 "Should not use decl without marking it used!"); 3068 3069 if (ND->hasAttr<WeakRefAttr>()) { 3070 const auto *VD = cast<ValueDecl>(ND); 3071 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 3072 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 3073 } 3074 3075 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 3076 // Check if this is a global variable. 3077 if (VD->hasLinkage() || VD->isStaticDataMember()) 3078 return EmitGlobalVarDeclLValue(*this, E, VD); 3079 3080 Address addr = Address::invalid(); 3081 3082 // The variable should generally be present in the local decl map. 3083 auto iter = LocalDeclMap.find(VD); 3084 if (iter != LocalDeclMap.end()) { 3085 addr = iter->second; 3086 3087 // Otherwise, it might be static local we haven't emitted yet for 3088 // some reason; most likely, because it's in an outer function. 3089 } else if (VD->isStaticLocal()) { 3090 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 3091 *VD, CGM.getLLVMLinkageVarDefinition(VD)); 3092 addr = Address( 3093 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 3094 3095 // No other cases for now. 3096 } else { 3097 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 3098 } 3099 3100 // Handle threadlocal function locals. 3101 if (VD->getTLSKind() != VarDecl::TLS_None) 3102 addr = addr.withPointer( 3103 Builder.CreateThreadLocalAddress(addr.getPointer()), NotKnownNonNull); 3104 3105 // Check for OpenMP threadprivate variables. 3106 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 3107 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 3108 return EmitThreadPrivateVarDeclLValue( 3109 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 3110 E->getExprLoc()); 3111 } 3112 3113 // Drill into block byref variables. 3114 bool isBlockByref = VD->isEscapingByref(); 3115 if (isBlockByref) { 3116 addr = emitBlockByrefAddress(addr, VD); 3117 } 3118 3119 // Drill into reference types. 3120 LValue LV = VD->getType()->isReferenceType() ? 3121 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 3122 MakeAddrLValue(addr, T, AlignmentSource::Decl); 3123 3124 bool isLocalStorage = VD->hasLocalStorage(); 3125 3126 bool NonGCable = isLocalStorage && 3127 !VD->getType()->isReferenceType() && 3128 !isBlockByref; 3129 if (NonGCable) { 3130 LV.getQuals().removeObjCGCAttr(); 3131 LV.setNonGC(true); 3132 } 3133 3134 bool isImpreciseLifetime = 3135 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 3136 if (isImpreciseLifetime) 3137 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 3138 setObjCGCLValueClass(getContext(), E, LV); 3139 return LV; 3140 } 3141 3142 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 3143 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 3144 3145 // Emit debuginfo for the function declaration if the target wants to. 3146 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 3147 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 3148 auto *Fn = 3149 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 3150 if (!Fn->getSubprogram()) 3151 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 3152 } 3153 } 3154 3155 return LV; 3156 } 3157 3158 // FIXME: While we're emitting a binding from an enclosing scope, all other 3159 // DeclRefExprs we see should be implicitly treated as if they also refer to 3160 // an enclosing scope. 3161 if (const auto *BD = dyn_cast<BindingDecl>(ND)) { 3162 if (E->refersToEnclosingVariableOrCapture()) { 3163 auto *FD = LambdaCaptureFields.lookup(BD); 3164 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 3165 } 3166 return EmitLValue(BD->getBinding()); 3167 } 3168 3169 // We can form DeclRefExprs naming GUID declarations when reconstituting 3170 // non-type template parameters into expressions. 3171 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 3172 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 3173 AlignmentSource::Decl); 3174 3175 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 3176 auto ATPO = CGM.GetAddrOfTemplateParamObject(TPO); 3177 auto AS = getLangASFromTargetAS(ATPO.getAddressSpace()); 3178 3179 if (AS != T.getAddressSpace()) { 3180 auto TargetAS = getContext().getTargetAddressSpace(T.getAddressSpace()); 3181 auto PtrTy = ATPO.getElementType()->getPointerTo(TargetAS); 3182 auto ASC = getTargetHooks().performAddrSpaceCast( 3183 CGM, ATPO.getPointer(), AS, T.getAddressSpace(), PtrTy); 3184 ATPO = ConstantAddress(ASC, ATPO.getElementType(), ATPO.getAlignment()); 3185 } 3186 3187 return MakeAddrLValue(ATPO, T, AlignmentSource::Decl); 3188 } 3189 3190 llvm_unreachable("Unhandled DeclRefExpr"); 3191 } 3192 3193 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 3194 // __extension__ doesn't affect lvalue-ness. 3195 if (E->getOpcode() == UO_Extension) 3196 return EmitLValue(E->getSubExpr()); 3197 3198 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 3199 switch (E->getOpcode()) { 3200 default: llvm_unreachable("Unknown unary operator lvalue!"); 3201 case UO_Deref: { 3202 QualType T = E->getSubExpr()->getType()->getPointeeType(); 3203 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 3204 3205 LValueBaseInfo BaseInfo; 3206 TBAAAccessInfo TBAAInfo; 3207 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 3208 &TBAAInfo); 3209 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 3210 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 3211 3212 // We should not generate __weak write barrier on indirect reference 3213 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 3214 // But, we continue to generate __strong write barrier on indirect write 3215 // into a pointer to object. 3216 if (getLangOpts().ObjC && 3217 getLangOpts().getGC() != LangOptions::NonGC && 3218 LV.isObjCWeak()) 3219 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3220 return LV; 3221 } 3222 case UO_Real: 3223 case UO_Imag: { 3224 LValue LV = EmitLValue(E->getSubExpr()); 3225 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 3226 3227 // __real is valid on scalars. This is a faster way of testing that. 3228 // __imag can only produce an rvalue on scalars. 3229 if (E->getOpcode() == UO_Real && 3230 !LV.getAddress(*this).getElementType()->isStructTy()) { 3231 assert(E->getSubExpr()->getType()->isArithmeticType()); 3232 return LV; 3233 } 3234 3235 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 3236 3237 Address Component = 3238 (E->getOpcode() == UO_Real 3239 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 3240 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 3241 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 3242 CGM.getTBAAInfoForSubobject(LV, T)); 3243 ElemLV.getQuals().addQualifiers(LV.getQuals()); 3244 return ElemLV; 3245 } 3246 case UO_PreInc: 3247 case UO_PreDec: { 3248 LValue LV = EmitLValue(E->getSubExpr()); 3249 bool isInc = E->getOpcode() == UO_PreInc; 3250 3251 if (E->getType()->isAnyComplexType()) 3252 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 3253 else 3254 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 3255 return LV; 3256 } 3257 } 3258 } 3259 3260 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 3261 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 3262 E->getType(), AlignmentSource::Decl); 3263 } 3264 3265 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 3266 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 3267 E->getType(), AlignmentSource::Decl); 3268 } 3269 3270 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 3271 auto SL = E->getFunctionName(); 3272 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 3273 StringRef FnName = CurFn->getName(); 3274 if (FnName.starts_with("\01")) 3275 FnName = FnName.substr(1); 3276 StringRef NameItems[] = { 3277 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 3278 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 3279 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 3280 std::string Name = std::string(SL->getString()); 3281 if (!Name.empty()) { 3282 unsigned Discriminator = 3283 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 3284 if (Discriminator) 3285 Name += "_" + Twine(Discriminator + 1).str(); 3286 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 3287 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3288 } else { 3289 auto C = 3290 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 3291 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3292 } 3293 } 3294 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 3295 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3296 } 3297 3298 /// Emit a type description suitable for use by a runtime sanitizer library. The 3299 /// format of a type descriptor is 3300 /// 3301 /// \code 3302 /// { i16 TypeKind, i16 TypeInfo } 3303 /// \endcode 3304 /// 3305 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 3306 /// integer, 1 for a floating point value, and -1 for anything else. 3307 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 3308 // Only emit each type's descriptor once. 3309 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 3310 return C; 3311 3312 uint16_t TypeKind = -1; 3313 uint16_t TypeInfo = 0; 3314 3315 if (T->isIntegerType()) { 3316 TypeKind = 0; 3317 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 3318 (T->isSignedIntegerType() ? 1 : 0); 3319 } else if (T->isFloatingType()) { 3320 TypeKind = 1; 3321 TypeInfo = getContext().getTypeSize(T); 3322 } 3323 3324 // Format the type name as if for a diagnostic, including quotes and 3325 // optionally an 'aka'. 3326 SmallString<32> Buffer; 3327 CGM.getDiags().ConvertArgToString( 3328 DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(), 3329 StringRef(), std::nullopt, Buffer, std::nullopt); 3330 3331 llvm::Constant *Components[] = { 3332 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3333 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3334 }; 3335 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3336 3337 auto *GV = new llvm::GlobalVariable( 3338 CGM.getModule(), Descriptor->getType(), 3339 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3340 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3341 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3342 3343 // Remember the descriptor for this type. 3344 CGM.setTypeDescriptorInMap(T, GV); 3345 3346 return GV; 3347 } 3348 3349 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3350 llvm::Type *TargetTy = IntPtrTy; 3351 3352 if (V->getType() == TargetTy) 3353 return V; 3354 3355 // Floating-point types which fit into intptr_t are bitcast to integers 3356 // and then passed directly (after zero-extension, if necessary). 3357 if (V->getType()->isFloatingPointTy()) { 3358 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue(); 3359 if (Bits <= TargetTy->getIntegerBitWidth()) 3360 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3361 Bits)); 3362 } 3363 3364 // Integers which fit in intptr_t are zero-extended and passed directly. 3365 if (V->getType()->isIntegerTy() && 3366 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3367 return Builder.CreateZExt(V, TargetTy); 3368 3369 // Pointers are passed directly, everything else is passed by address. 3370 if (!V->getType()->isPointerTy()) { 3371 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3372 Builder.CreateStore(V, Ptr); 3373 V = Ptr.getPointer(); 3374 } 3375 return Builder.CreatePtrToInt(V, TargetTy); 3376 } 3377 3378 /// Emit a representation of a SourceLocation for passing to a handler 3379 /// in a sanitizer runtime library. The format for this data is: 3380 /// \code 3381 /// struct SourceLocation { 3382 /// const char *Filename; 3383 /// int32_t Line, Column; 3384 /// }; 3385 /// \endcode 3386 /// For an invalid SourceLocation, the Filename pointer is null. 3387 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3388 llvm::Constant *Filename; 3389 int Line, Column; 3390 3391 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3392 if (PLoc.isValid()) { 3393 StringRef FilenameString = PLoc.getFilename(); 3394 3395 int PathComponentsToStrip = 3396 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3397 if (PathComponentsToStrip < 0) { 3398 assert(PathComponentsToStrip != INT_MIN); 3399 int PathComponentsToKeep = -PathComponentsToStrip; 3400 auto I = llvm::sys::path::rbegin(FilenameString); 3401 auto E = llvm::sys::path::rend(FilenameString); 3402 while (I != E && --PathComponentsToKeep) 3403 ++I; 3404 3405 FilenameString = FilenameString.substr(I - E); 3406 } else if (PathComponentsToStrip > 0) { 3407 auto I = llvm::sys::path::begin(FilenameString); 3408 auto E = llvm::sys::path::end(FilenameString); 3409 while (I != E && PathComponentsToStrip--) 3410 ++I; 3411 3412 if (I != E) 3413 FilenameString = 3414 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3415 else 3416 FilenameString = llvm::sys::path::filename(FilenameString); 3417 } 3418 3419 auto FilenameGV = 3420 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3421 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3422 cast<llvm::GlobalVariable>( 3423 FilenameGV.getPointer()->stripPointerCasts())); 3424 Filename = FilenameGV.getPointer(); 3425 Line = PLoc.getLine(); 3426 Column = PLoc.getColumn(); 3427 } else { 3428 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3429 Line = Column = 0; 3430 } 3431 3432 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3433 Builder.getInt32(Column)}; 3434 3435 return llvm::ConstantStruct::getAnon(Data); 3436 } 3437 3438 namespace { 3439 /// Specify under what conditions this check can be recovered 3440 enum class CheckRecoverableKind { 3441 /// Always terminate program execution if this check fails. 3442 Unrecoverable, 3443 /// Check supports recovering, runtime has both fatal (noreturn) and 3444 /// non-fatal handlers for this check. 3445 Recoverable, 3446 /// Runtime conditionally aborts, always need to support recovery. 3447 AlwaysRecoverable 3448 }; 3449 } 3450 3451 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3452 assert(Kind.countPopulation() == 1); 3453 if (Kind == SanitizerKind::Vptr) 3454 return CheckRecoverableKind::AlwaysRecoverable; 3455 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3456 return CheckRecoverableKind::Unrecoverable; 3457 else 3458 return CheckRecoverableKind::Recoverable; 3459 } 3460 3461 namespace { 3462 struct SanitizerHandlerInfo { 3463 char const *const Name; 3464 unsigned Version; 3465 }; 3466 } 3467 3468 const SanitizerHandlerInfo SanitizerHandlers[] = { 3469 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3470 LIST_SANITIZER_CHECKS 3471 #undef SANITIZER_CHECK 3472 }; 3473 3474 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3475 llvm::FunctionType *FnType, 3476 ArrayRef<llvm::Value *> FnArgs, 3477 SanitizerHandler CheckHandler, 3478 CheckRecoverableKind RecoverKind, bool IsFatal, 3479 llvm::BasicBlock *ContBB) { 3480 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3481 std::optional<ApplyDebugLocation> DL; 3482 if (!CGF.Builder.getCurrentDebugLocation()) { 3483 // Ensure that the call has at least an artificial debug location. 3484 DL.emplace(CGF, SourceLocation()); 3485 } 3486 bool NeedsAbortSuffix = 3487 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3488 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3489 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3490 const StringRef CheckName = CheckInfo.Name; 3491 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3492 if (CheckInfo.Version && !MinimalRuntime) 3493 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3494 if (MinimalRuntime) 3495 FnName += "_minimal"; 3496 if (NeedsAbortSuffix) 3497 FnName += "_abort"; 3498 bool MayReturn = 3499 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3500 3501 llvm::AttrBuilder B(CGF.getLLVMContext()); 3502 if (!MayReturn) { 3503 B.addAttribute(llvm::Attribute::NoReturn) 3504 .addAttribute(llvm::Attribute::NoUnwind); 3505 } 3506 B.addUWTableAttr(llvm::UWTableKind::Default); 3507 3508 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3509 FnType, FnName, 3510 llvm::AttributeList::get(CGF.getLLVMContext(), 3511 llvm::AttributeList::FunctionIndex, B), 3512 /*Local=*/true); 3513 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3514 if (!MayReturn) { 3515 HandlerCall->setDoesNotReturn(); 3516 CGF.Builder.CreateUnreachable(); 3517 } else { 3518 CGF.Builder.CreateBr(ContBB); 3519 } 3520 } 3521 3522 void CodeGenFunction::EmitCheck( 3523 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3524 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3525 ArrayRef<llvm::Value *> DynamicArgs) { 3526 assert(IsSanitizerScope); 3527 assert(Checked.size() > 0); 3528 assert(CheckHandler >= 0 && 3529 size_t(CheckHandler) < std::size(SanitizerHandlers)); 3530 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3531 3532 llvm::Value *FatalCond = nullptr; 3533 llvm::Value *RecoverableCond = nullptr; 3534 llvm::Value *TrapCond = nullptr; 3535 for (int i = 0, n = Checked.size(); i < n; ++i) { 3536 llvm::Value *Check = Checked[i].first; 3537 // -fsanitize-trap= overrides -fsanitize-recover=. 3538 llvm::Value *&Cond = 3539 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3540 ? TrapCond 3541 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3542 ? RecoverableCond 3543 : FatalCond; 3544 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3545 } 3546 3547 if (TrapCond) 3548 EmitTrapCheck(TrapCond, CheckHandler); 3549 if (!FatalCond && !RecoverableCond) 3550 return; 3551 3552 llvm::Value *JointCond; 3553 if (FatalCond && RecoverableCond) 3554 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3555 else 3556 JointCond = FatalCond ? FatalCond : RecoverableCond; 3557 assert(JointCond); 3558 3559 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3560 assert(SanOpts.has(Checked[0].second)); 3561 #ifndef NDEBUG 3562 for (int i = 1, n = Checked.size(); i < n; ++i) { 3563 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3564 "All recoverable kinds in a single check must be same!"); 3565 assert(SanOpts.has(Checked[i].second)); 3566 } 3567 #endif 3568 3569 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3570 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3571 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3572 // Give hint that we very much don't expect to execute the handler 3573 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3574 llvm::MDBuilder MDHelper(getLLVMContext()); 3575 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3576 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3577 EmitBlock(Handlers); 3578 3579 // Handler functions take an i8* pointing to the (handler-specific) static 3580 // information block, followed by a sequence of intptr_t arguments 3581 // representing operand values. 3582 SmallVector<llvm::Value *, 4> Args; 3583 SmallVector<llvm::Type *, 4> ArgTypes; 3584 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3585 Args.reserve(DynamicArgs.size() + 1); 3586 ArgTypes.reserve(DynamicArgs.size() + 1); 3587 3588 // Emit handler arguments and create handler function type. 3589 if (!StaticArgs.empty()) { 3590 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3591 auto *InfoPtr = new llvm::GlobalVariable( 3592 CGM.getModule(), Info->getType(), false, 3593 llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr, 3594 llvm::GlobalVariable::NotThreadLocal, 3595 CGM.getDataLayout().getDefaultGlobalsAddressSpace()); 3596 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3597 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3598 Args.push_back(InfoPtr); 3599 ArgTypes.push_back(Args.back()->getType()); 3600 } 3601 3602 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3603 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3604 ArgTypes.push_back(IntPtrTy); 3605 } 3606 } 3607 3608 llvm::FunctionType *FnType = 3609 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3610 3611 if (!FatalCond || !RecoverableCond) { 3612 // Simple case: we need to generate a single handler call, either 3613 // fatal, or non-fatal. 3614 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3615 (FatalCond != nullptr), Cont); 3616 } else { 3617 // Emit two handler calls: first one for set of unrecoverable checks, 3618 // another one for recoverable. 3619 llvm::BasicBlock *NonFatalHandlerBB = 3620 createBasicBlock("non_fatal." + CheckName); 3621 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3622 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3623 EmitBlock(FatalHandlerBB); 3624 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3625 NonFatalHandlerBB); 3626 EmitBlock(NonFatalHandlerBB); 3627 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3628 Cont); 3629 } 3630 3631 EmitBlock(Cont); 3632 } 3633 3634 void CodeGenFunction::EmitCfiSlowPathCheck( 3635 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3636 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3637 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3638 3639 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3640 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3641 3642 llvm::MDBuilder MDHelper(getLLVMContext()); 3643 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3644 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3645 3646 EmitBlock(CheckBB); 3647 3648 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3649 3650 llvm::CallInst *CheckCall; 3651 llvm::FunctionCallee SlowPathFn; 3652 if (WithDiag) { 3653 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3654 auto *InfoPtr = 3655 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3656 llvm::GlobalVariable::PrivateLinkage, Info); 3657 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3658 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3659 3660 SlowPathFn = CGM.getModule().getOrInsertFunction( 3661 "__cfi_slowpath_diag", 3662 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3663 false)); 3664 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr, InfoPtr}); 3665 } else { 3666 SlowPathFn = CGM.getModule().getOrInsertFunction( 3667 "__cfi_slowpath", 3668 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3669 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3670 } 3671 3672 CGM.setDSOLocal( 3673 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3674 CheckCall->setDoesNotThrow(); 3675 3676 EmitBlock(Cont); 3677 } 3678 3679 // Emit a stub for __cfi_check function so that the linker knows about this 3680 // symbol in LTO mode. 3681 void CodeGenFunction::EmitCfiCheckStub() { 3682 llvm::Module *M = &CGM.getModule(); 3683 auto &Ctx = M->getContext(); 3684 llvm::Function *F = llvm::Function::Create( 3685 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3686 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3687 F->setAlignment(llvm::Align(4096)); 3688 CGM.setDSOLocal(F); 3689 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3690 // CrossDSOCFI pass is not executed if there is no executable code. 3691 SmallVector<llvm::Value*> Args{F->getArg(2), F->getArg(1)}; 3692 llvm::CallInst::Create(M->getFunction("__cfi_check_fail"), Args, "", BB); 3693 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3694 } 3695 3696 // This function is basically a switch over the CFI failure kind, which is 3697 // extracted from CFICheckFailData (1st function argument). Each case is either 3698 // llvm.trap or a call to one of the two runtime handlers, based on 3699 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3700 // failure kind) traps, but this should really never happen. CFICheckFailData 3701 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3702 // check kind; in this case __cfi_check_fail traps as well. 3703 void CodeGenFunction::EmitCfiCheckFail() { 3704 SanitizerScope SanScope(this); 3705 FunctionArgList Args; 3706 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3707 ImplicitParamKind::Other); 3708 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3709 ImplicitParamKind::Other); 3710 Args.push_back(&ArgData); 3711 Args.push_back(&ArgAddr); 3712 3713 const CGFunctionInfo &FI = 3714 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3715 3716 llvm::Function *F = llvm::Function::Create( 3717 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3718 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3719 3720 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3721 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3722 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3723 3724 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3725 SourceLocation()); 3726 3727 // This function is not affected by NoSanitizeList. This function does 3728 // not have a source location, but "src:*" would still apply. Revert any 3729 // changes to SanOpts made in StartFunction. 3730 SanOpts = CGM.getLangOpts().Sanitize; 3731 3732 llvm::Value *Data = 3733 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3734 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3735 llvm::Value *Addr = 3736 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3737 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3738 3739 // Data == nullptr means the calling module has trap behaviour for this check. 3740 llvm::Value *DataIsNotNullPtr = 3741 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3742 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3743 3744 llvm::StructType *SourceLocationTy = 3745 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3746 llvm::StructType *CfiCheckFailDataTy = 3747 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3748 3749 llvm::Value *V = Builder.CreateConstGEP2_32( 3750 CfiCheckFailDataTy, 3751 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3752 0); 3753 3754 Address CheckKindAddr(V, Int8Ty, getIntAlign()); 3755 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3756 3757 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3758 CGM.getLLVMContext(), 3759 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3760 llvm::Value *ValidVtable = Builder.CreateZExt( 3761 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3762 {Addr, AllVtables}), 3763 IntPtrTy); 3764 3765 const std::pair<int, SanitizerMask> CheckKinds[] = { 3766 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3767 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3768 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3769 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3770 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3771 3772 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3773 for (auto CheckKindMaskPair : CheckKinds) { 3774 int Kind = CheckKindMaskPair.first; 3775 SanitizerMask Mask = CheckKindMaskPair.second; 3776 llvm::Value *Cond = 3777 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3778 if (CGM.getLangOpts().Sanitize.has(Mask)) 3779 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3780 {Data, Addr, ValidVtable}); 3781 else 3782 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3783 } 3784 3785 FinishFunction(); 3786 // The only reference to this function will be created during LTO link. 3787 // Make sure it survives until then. 3788 CGM.addUsedGlobal(F); 3789 } 3790 3791 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3792 if (SanOpts.has(SanitizerKind::Unreachable)) { 3793 SanitizerScope SanScope(this); 3794 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3795 SanitizerKind::Unreachable), 3796 SanitizerHandler::BuiltinUnreachable, 3797 EmitCheckSourceLocation(Loc), std::nullopt); 3798 } 3799 Builder.CreateUnreachable(); 3800 } 3801 3802 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3803 SanitizerHandler CheckHandlerID) { 3804 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3805 3806 // If we're optimizing, collapse all calls to trap down to just one per 3807 // check-type per function to save on code size. 3808 if (TrapBBs.size() <= CheckHandlerID) 3809 TrapBBs.resize(CheckHandlerID + 1); 3810 3811 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3812 3813 if (!ClSanitizeDebugDeoptimization && 3814 CGM.getCodeGenOpts().OptimizationLevel && TrapBB && 3815 (!CurCodeDecl || !CurCodeDecl->hasAttr<OptimizeNoneAttr>())) { 3816 auto Call = TrapBB->begin(); 3817 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3818 3819 Call->applyMergedLocation(Call->getDebugLoc(), 3820 Builder.getCurrentDebugLocation()); 3821 Builder.CreateCondBr(Checked, Cont, TrapBB); 3822 } else { 3823 TrapBB = createBasicBlock("trap"); 3824 Builder.CreateCondBr(Checked, Cont, TrapBB); 3825 EmitBlock(TrapBB); 3826 3827 llvm::CallInst *TrapCall = Builder.CreateCall( 3828 CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3829 llvm::ConstantInt::get(CGM.Int8Ty, ClSanitizeDebugDeoptimization 3830 ? TrapBB->getParent()->size() 3831 : CheckHandlerID)); 3832 3833 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3834 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3835 CGM.getCodeGenOpts().TrapFuncName); 3836 TrapCall->addFnAttr(A); 3837 } 3838 TrapCall->setDoesNotReturn(); 3839 TrapCall->setDoesNotThrow(); 3840 Builder.CreateUnreachable(); 3841 } 3842 3843 EmitBlock(Cont); 3844 } 3845 3846 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3847 llvm::CallInst *TrapCall = 3848 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3849 3850 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3851 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3852 CGM.getCodeGenOpts().TrapFuncName); 3853 TrapCall->addFnAttr(A); 3854 } 3855 3856 return TrapCall; 3857 } 3858 3859 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3860 LValueBaseInfo *BaseInfo, 3861 TBAAAccessInfo *TBAAInfo) { 3862 assert(E->getType()->isArrayType() && 3863 "Array to pointer decay must have array source type!"); 3864 3865 // Expressions of array type can't be bitfields or vector elements. 3866 LValue LV = EmitLValue(E); 3867 Address Addr = LV.getAddress(*this); 3868 3869 // If the array type was an incomplete type, we need to make sure 3870 // the decay ends up being the right type. 3871 llvm::Type *NewTy = ConvertType(E->getType()); 3872 Addr = Addr.withElementType(NewTy); 3873 3874 // Note that VLA pointers are always decayed, so we don't need to do 3875 // anything here. 3876 if (!E->getType()->isVariableArrayType()) { 3877 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3878 "Expected pointer to array"); 3879 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3880 } 3881 3882 // The result of this decay conversion points to an array element within the 3883 // base lvalue. However, since TBAA currently does not support representing 3884 // accesses to elements of member arrays, we conservatively represent accesses 3885 // to the pointee object as if it had no any base lvalue specified. 3886 // TODO: Support TBAA for member arrays. 3887 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3888 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3889 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3890 3891 return Addr.withElementType(ConvertTypeForMem(EltType)); 3892 } 3893 3894 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3895 /// array to pointer, return the array subexpression. 3896 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3897 // If this isn't just an array->pointer decay, bail out. 3898 const auto *CE = dyn_cast<CastExpr>(E); 3899 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3900 return nullptr; 3901 3902 // If this is a decay from variable width array, bail out. 3903 const Expr *SubExpr = CE->getSubExpr(); 3904 if (SubExpr->getType()->isVariableArrayType()) 3905 return nullptr; 3906 3907 return SubExpr; 3908 } 3909 3910 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3911 llvm::Type *elemType, 3912 llvm::Value *ptr, 3913 ArrayRef<llvm::Value*> indices, 3914 bool inbounds, 3915 bool signedIndices, 3916 SourceLocation loc, 3917 const llvm::Twine &name = "arrayidx") { 3918 if (inbounds) { 3919 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3920 CodeGenFunction::NotSubtraction, loc, 3921 name); 3922 } else { 3923 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3924 } 3925 } 3926 3927 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3928 llvm::Value *idx, 3929 CharUnits eltSize) { 3930 // If we have a constant index, we can use the exact offset of the 3931 // element we're accessing. 3932 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3933 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3934 return arrayAlign.alignmentAtOffset(offset); 3935 3936 // Otherwise, use the worst-case alignment for any element. 3937 } else { 3938 return arrayAlign.alignmentOfArrayElement(eltSize); 3939 } 3940 } 3941 3942 static QualType getFixedSizeElementType(const ASTContext &ctx, 3943 const VariableArrayType *vla) { 3944 QualType eltType; 3945 do { 3946 eltType = vla->getElementType(); 3947 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3948 return eltType; 3949 } 3950 3951 static bool hasBPFPreserveStaticOffset(const RecordDecl *D) { 3952 return D && D->hasAttr<BPFPreserveStaticOffsetAttr>(); 3953 } 3954 3955 static bool hasBPFPreserveStaticOffset(const Expr *E) { 3956 if (!E) 3957 return false; 3958 QualType PointeeType = E->getType()->getPointeeType(); 3959 if (PointeeType.isNull()) 3960 return false; 3961 if (const auto *BaseDecl = PointeeType->getAsRecordDecl()) 3962 return hasBPFPreserveStaticOffset(BaseDecl); 3963 return false; 3964 } 3965 3966 // Wraps Addr with a call to llvm.preserve.static.offset intrinsic. 3967 static Address wrapWithBPFPreserveStaticOffset(CodeGenFunction &CGF, 3968 Address &Addr) { 3969 if (!CGF.getTarget().getTriple().isBPF()) 3970 return Addr; 3971 3972 llvm::Function *Fn = 3973 CGF.CGM.getIntrinsic(llvm::Intrinsic::preserve_static_offset); 3974 llvm::CallInst *Call = CGF.Builder.CreateCall(Fn, {Addr.getPointer()}); 3975 return Address(Call, Addr.getElementType(), Addr.getAlignment()); 3976 } 3977 3978 /// Given an array base, check whether its member access belongs to a record 3979 /// with preserve_access_index attribute or not. 3980 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3981 if (!ArrayBase || !CGF.getDebugInfo()) 3982 return false; 3983 3984 // Only support base as either a MemberExpr or DeclRefExpr. 3985 // DeclRefExpr to cover cases like: 3986 // struct s { int a; int b[10]; }; 3987 // struct s *p; 3988 // p[1].a 3989 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3990 // p->b[5] is a MemberExpr example. 3991 const Expr *E = ArrayBase->IgnoreImpCasts(); 3992 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3993 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3994 3995 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3996 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3997 if (!VarDef) 3998 return false; 3999 4000 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 4001 if (!PtrT) 4002 return false; 4003 4004 const auto *PointeeT = PtrT->getPointeeType() 4005 ->getUnqualifiedDesugaredType(); 4006 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 4007 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 4008 return false; 4009 } 4010 4011 return false; 4012 } 4013 4014 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 4015 ArrayRef<llvm::Value *> indices, 4016 QualType eltType, bool inbounds, 4017 bool signedIndices, SourceLocation loc, 4018 QualType *arrayType = nullptr, 4019 const Expr *Base = nullptr, 4020 const llvm::Twine &name = "arrayidx") { 4021 // All the indices except that last must be zero. 4022 #ifndef NDEBUG 4023 for (auto *idx : indices.drop_back()) 4024 assert(isa<llvm::ConstantInt>(idx) && 4025 cast<llvm::ConstantInt>(idx)->isZero()); 4026 #endif 4027 4028 // Determine the element size of the statically-sized base. This is 4029 // the thing that the indices are expressed in terms of. 4030 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 4031 eltType = getFixedSizeElementType(CGF.getContext(), vla); 4032 } 4033 4034 // We can use that to compute the best alignment of the element. 4035 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 4036 CharUnits eltAlign = 4037 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 4038 4039 if (hasBPFPreserveStaticOffset(Base)) 4040 addr = wrapWithBPFPreserveStaticOffset(CGF, addr); 4041 4042 llvm::Value *eltPtr; 4043 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 4044 if (!LastIndex || 4045 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 4046 eltPtr = emitArraySubscriptGEP( 4047 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 4048 signedIndices, loc, name); 4049 } else { 4050 // Remember the original array subscript for bpf target 4051 unsigned idx = LastIndex->getZExtValue(); 4052 llvm::DIType *DbgInfo = nullptr; 4053 if (arrayType) 4054 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 4055 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 4056 addr.getPointer(), 4057 indices.size() - 1, 4058 idx, DbgInfo); 4059 } 4060 4061 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 4062 } 4063 4064 /// The offset of a field from the beginning of the record. 4065 static bool getFieldOffsetInBits(CodeGenFunction &CGF, const RecordDecl *RD, 4066 const FieldDecl *FD, int64_t &Offset) { 4067 ASTContext &Ctx = CGF.getContext(); 4068 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD); 4069 unsigned FieldNo = 0; 4070 4071 for (const Decl *D : RD->decls()) { 4072 if (const auto *Record = dyn_cast<RecordDecl>(D)) 4073 if (getFieldOffsetInBits(CGF, Record, FD, Offset)) { 4074 Offset += Layout.getFieldOffset(FieldNo); 4075 return true; 4076 } 4077 4078 if (const auto *Field = dyn_cast<FieldDecl>(D)) 4079 if (FD == Field) { 4080 Offset += Layout.getFieldOffset(FieldNo); 4081 return true; 4082 } 4083 4084 if (isa<FieldDecl>(D)) 4085 ++FieldNo; 4086 } 4087 4088 return false; 4089 } 4090 4091 /// Returns the relative offset difference between \p FD1 and \p FD2. 4092 /// \code 4093 /// offsetof(struct foo, FD1) - offsetof(struct foo, FD2) 4094 /// \endcode 4095 /// Both fields must be within the same struct. 4096 static std::optional<int64_t> getOffsetDifferenceInBits(CodeGenFunction &CGF, 4097 const FieldDecl *FD1, 4098 const FieldDecl *FD2) { 4099 const RecordDecl *FD1OuterRec = 4100 FD1->getParent()->getOuterLexicalRecordContext(); 4101 const RecordDecl *FD2OuterRec = 4102 FD2->getParent()->getOuterLexicalRecordContext(); 4103 4104 if (FD1OuterRec != FD2OuterRec) 4105 // Fields must be within the same RecordDecl. 4106 return std::optional<int64_t>(); 4107 4108 int64_t FD1Offset = 0; 4109 if (!getFieldOffsetInBits(CGF, FD1OuterRec, FD1, FD1Offset)) 4110 return std::optional<int64_t>(); 4111 4112 int64_t FD2Offset = 0; 4113 if (!getFieldOffsetInBits(CGF, FD2OuterRec, FD2, FD2Offset)) 4114 return std::optional<int64_t>(); 4115 4116 return std::make_optional<int64_t>(FD1Offset - FD2Offset); 4117 } 4118 4119 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 4120 bool Accessed) { 4121 // The index must always be an integer, which is not an aggregate. Emit it 4122 // in lexical order (this complexity is, sadly, required by C++17). 4123 llvm::Value *IdxPre = 4124 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 4125 bool SignedIndices = false; 4126 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 4127 auto *Idx = IdxPre; 4128 if (E->getLHS() != E->getIdx()) { 4129 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 4130 Idx = EmitScalarExpr(E->getIdx()); 4131 } 4132 4133 QualType IdxTy = E->getIdx()->getType(); 4134 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 4135 SignedIndices |= IdxSigned; 4136 4137 if (SanOpts.has(SanitizerKind::ArrayBounds)) 4138 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 4139 4140 // Extend or truncate the index type to 32 or 64-bits. 4141 if (Promote && Idx->getType() != IntPtrTy) 4142 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 4143 4144 return Idx; 4145 }; 4146 IdxPre = nullptr; 4147 4148 // If the base is a vector type, then we are forming a vector element lvalue 4149 // with this subscript. 4150 if (E->getBase()->getType()->isVectorType() && 4151 !isa<ExtVectorElementExpr>(E->getBase())) { 4152 // Emit the vector as an lvalue to get its address. 4153 LValue LHS = EmitLValue(E->getBase()); 4154 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 4155 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 4156 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 4157 E->getBase()->getType(), LHS.getBaseInfo(), 4158 TBAAAccessInfo()); 4159 } 4160 4161 // All the other cases basically behave like simple offsetting. 4162 4163 // Handle the extvector case we ignored above. 4164 if (isa<ExtVectorElementExpr>(E->getBase())) { 4165 LValue LV = EmitLValue(E->getBase()); 4166 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 4167 Address Addr = EmitExtVectorElementLValue(LV); 4168 4169 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 4170 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 4171 SignedIndices, E->getExprLoc()); 4172 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 4173 CGM.getTBAAInfoForSubobject(LV, EltType)); 4174 } 4175 4176 LValueBaseInfo EltBaseInfo; 4177 TBAAAccessInfo EltTBAAInfo; 4178 Address Addr = Address::invalid(); 4179 if (const VariableArrayType *vla = 4180 getContext().getAsVariableArrayType(E->getType())) { 4181 // The base must be a pointer, which is not an aggregate. Emit 4182 // it. It needs to be emitted first in case it's what captures 4183 // the VLA bounds. 4184 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 4185 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 4186 4187 // The element count here is the total number of non-VLA elements. 4188 llvm::Value *numElements = getVLASize(vla).NumElts; 4189 4190 // Effectively, the multiply by the VLA size is part of the GEP. 4191 // GEP indexes are signed, and scaling an index isn't permitted to 4192 // signed-overflow, so we use the same semantics for our explicit 4193 // multiply. We suppress this if overflow is not undefined behavior. 4194 if (getLangOpts().isSignedOverflowDefined()) { 4195 Idx = Builder.CreateMul(Idx, numElements); 4196 } else { 4197 Idx = Builder.CreateNSWMul(Idx, numElements); 4198 } 4199 4200 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 4201 !getLangOpts().isSignedOverflowDefined(), 4202 SignedIndices, E->getExprLoc()); 4203 4204 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 4205 // Indexing over an interface, as in "NSString *P; P[4];" 4206 4207 // Emit the base pointer. 4208 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 4209 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 4210 4211 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 4212 llvm::Value *InterfaceSizeVal = 4213 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 4214 4215 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 4216 4217 // We don't necessarily build correct LLVM struct types for ObjC 4218 // interfaces, so we can't rely on GEP to do this scaling 4219 // correctly, so we need to cast to i8*. FIXME: is this actually 4220 // true? A lot of other things in the fragile ABI would break... 4221 llvm::Type *OrigBaseElemTy = Addr.getElementType(); 4222 4223 // Do the GEP. 4224 CharUnits EltAlign = 4225 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 4226 llvm::Value *EltPtr = 4227 emitArraySubscriptGEP(*this, Int8Ty, Addr.getPointer(), ScaledIdx, 4228 false, SignedIndices, E->getExprLoc()); 4229 Addr = Address(EltPtr, OrigBaseElemTy, EltAlign); 4230 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4231 // If this is A[i] where A is an array, the frontend will have decayed the 4232 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4233 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4234 // "gep x, i" here. Emit one "gep A, 0, i". 4235 assert(Array->getType()->isArrayType() && 4236 "Array to pointer decay must have array source type!"); 4237 LValue ArrayLV; 4238 // For simple multidimensional array indexing, set the 'accessed' flag for 4239 // better bounds-checking of the base expression. 4240 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4241 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4242 else 4243 ArrayLV = EmitLValue(Array); 4244 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 4245 4246 if (SanOpts.has(SanitizerKind::ArrayBounds)) { 4247 // If the array being accessed has a "counted_by" attribute, generate 4248 // bounds checking code. The "count" field is at the top level of the 4249 // struct or in an anonymous struct, that's also at the top level. Future 4250 // expansions may allow the "count" to reside at any place in the struct, 4251 // but the value of "counted_by" will be a "simple" path to the count, 4252 // i.e. "a.b.count", so we shouldn't need the full force of EmitLValue or 4253 // similar to emit the correct GEP. 4254 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = 4255 getLangOpts().getStrictFlexArraysLevel(); 4256 4257 if (const auto *ME = dyn_cast<MemberExpr>(Array); 4258 ME && 4259 ME->isFlexibleArrayMemberLike(getContext(), StrictFlexArraysLevel) && 4260 ME->getMemberDecl()->hasAttr<CountedByAttr>()) { 4261 const FieldDecl *FAMDecl = dyn_cast<FieldDecl>(ME->getMemberDecl()); 4262 if (const FieldDecl *CountFD = FindCountedByField(FAMDecl)) { 4263 if (std::optional<int64_t> Diff = 4264 getOffsetDifferenceInBits(*this, CountFD, FAMDecl)) { 4265 CharUnits OffsetDiff = CGM.getContext().toCharUnitsFromBits(*Diff); 4266 4267 // Create a GEP with a byte offset between the FAM and count and 4268 // use that to load the count value. 4269 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast( 4270 ArrayLV.getAddress(*this), Int8PtrTy, Int8Ty); 4271 4272 llvm::Type *CountTy = ConvertType(CountFD->getType()); 4273 llvm::Value *Res = Builder.CreateInBoundsGEP( 4274 Int8Ty, Addr.getPointer(), 4275 Builder.getInt32(OffsetDiff.getQuantity()), ".counted_by.gep"); 4276 Res = Builder.CreateAlignedLoad(CountTy, Res, getIntAlign(), 4277 ".counted_by.load"); 4278 4279 // Now emit the bounds checking. 4280 EmitBoundsCheckImpl(E, Res, Idx, E->getIdx()->getType(), 4281 Array->getType(), Accessed); 4282 } 4283 } 4284 } 4285 } 4286 4287 // Propagate the alignment from the array itself to the result. 4288 QualType arrayType = Array->getType(); 4289 Addr = emitArraySubscriptGEP( 4290 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4291 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 4292 E->getExprLoc(), &arrayType, E->getBase()); 4293 EltBaseInfo = ArrayLV.getBaseInfo(); 4294 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 4295 } else { 4296 // The base must be a pointer; emit it with an estimate of its alignment. 4297 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 4298 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 4299 QualType ptrType = E->getBase()->getType(); 4300 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 4301 !getLangOpts().isSignedOverflowDefined(), 4302 SignedIndices, E->getExprLoc(), &ptrType, 4303 E->getBase()); 4304 } 4305 4306 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 4307 4308 if (getLangOpts().ObjC && 4309 getLangOpts().getGC() != LangOptions::NonGC) { 4310 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 4311 setObjCGCLValueClass(getContext(), E, LV); 4312 } 4313 return LV; 4314 } 4315 4316 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 4317 assert( 4318 !E->isIncomplete() && 4319 "incomplete matrix subscript expressions should be rejected during Sema"); 4320 LValue Base = EmitLValue(E->getBase()); 4321 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 4322 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 4323 llvm::Value *NumRows = Builder.getIntN( 4324 RowIdx->getType()->getScalarSizeInBits(), 4325 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 4326 llvm::Value *FinalIdx = 4327 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 4328 return LValue::MakeMatrixElt( 4329 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 4330 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 4331 } 4332 4333 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 4334 LValueBaseInfo &BaseInfo, 4335 TBAAAccessInfo &TBAAInfo, 4336 QualType BaseTy, QualType ElTy, 4337 bool IsLowerBound) { 4338 LValue BaseLVal; 4339 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 4340 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 4341 if (BaseTy->isArrayType()) { 4342 Address Addr = BaseLVal.getAddress(CGF); 4343 BaseInfo = BaseLVal.getBaseInfo(); 4344 4345 // If the array type was an incomplete type, we need to make sure 4346 // the decay ends up being the right type. 4347 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 4348 Addr = Addr.withElementType(NewTy); 4349 4350 // Note that VLA pointers are always decayed, so we don't need to do 4351 // anything here. 4352 if (!BaseTy->isVariableArrayType()) { 4353 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 4354 "Expected pointer to array"); 4355 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 4356 } 4357 4358 return Addr.withElementType(CGF.ConvertTypeForMem(ElTy)); 4359 } 4360 LValueBaseInfo TypeBaseInfo; 4361 TBAAAccessInfo TypeTBAAInfo; 4362 CharUnits Align = 4363 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 4364 BaseInfo.mergeForCast(TypeBaseInfo); 4365 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 4366 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 4367 CGF.ConvertTypeForMem(ElTy), Align); 4368 } 4369 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 4370 } 4371 4372 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 4373 bool IsLowerBound) { 4374 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 4375 QualType ResultExprTy; 4376 if (auto *AT = getContext().getAsArrayType(BaseTy)) 4377 ResultExprTy = AT->getElementType(); 4378 else 4379 ResultExprTy = BaseTy->getPointeeType(); 4380 llvm::Value *Idx = nullptr; 4381 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 4382 // Requesting lower bound or upper bound, but without provided length and 4383 // without ':' symbol for the default length -> length = 1. 4384 // Idx = LowerBound ?: 0; 4385 if (auto *LowerBound = E->getLowerBound()) { 4386 Idx = Builder.CreateIntCast( 4387 EmitScalarExpr(LowerBound), IntPtrTy, 4388 LowerBound->getType()->hasSignedIntegerRepresentation()); 4389 } else 4390 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 4391 } else { 4392 // Try to emit length or lower bound as constant. If this is possible, 1 4393 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 4394 // IR (LB + Len) - 1. 4395 auto &C = CGM.getContext(); 4396 auto *Length = E->getLength(); 4397 llvm::APSInt ConstLength; 4398 if (Length) { 4399 // Idx = LowerBound + Length - 1; 4400 if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 4401 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 4402 Length = nullptr; 4403 } 4404 auto *LowerBound = E->getLowerBound(); 4405 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 4406 if (LowerBound) { 4407 if (std::optional<llvm::APSInt> LB = 4408 LowerBound->getIntegerConstantExpr(C)) { 4409 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 4410 LowerBound = nullptr; 4411 } 4412 } 4413 if (!Length) 4414 --ConstLength; 4415 else if (!LowerBound) 4416 --ConstLowerBound; 4417 4418 if (Length || LowerBound) { 4419 auto *LowerBoundVal = 4420 LowerBound 4421 ? Builder.CreateIntCast( 4422 EmitScalarExpr(LowerBound), IntPtrTy, 4423 LowerBound->getType()->hasSignedIntegerRepresentation()) 4424 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 4425 auto *LengthVal = 4426 Length 4427 ? Builder.CreateIntCast( 4428 EmitScalarExpr(Length), IntPtrTy, 4429 Length->getType()->hasSignedIntegerRepresentation()) 4430 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 4431 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 4432 /*HasNUW=*/false, 4433 !getLangOpts().isSignedOverflowDefined()); 4434 if (Length && LowerBound) { 4435 Idx = Builder.CreateSub( 4436 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 4437 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4438 } 4439 } else 4440 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 4441 } else { 4442 // Idx = ArraySize - 1; 4443 QualType ArrayTy = BaseTy->isPointerType() 4444 ? E->getBase()->IgnoreParenImpCasts()->getType() 4445 : BaseTy; 4446 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 4447 Length = VAT->getSizeExpr(); 4448 if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4449 ConstLength = *L; 4450 Length = nullptr; 4451 } 4452 } else { 4453 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4454 assert(CAT && "unexpected type for array initializer"); 4455 ConstLength = CAT->getSize(); 4456 } 4457 if (Length) { 4458 auto *LengthVal = Builder.CreateIntCast( 4459 EmitScalarExpr(Length), IntPtrTy, 4460 Length->getType()->hasSignedIntegerRepresentation()); 4461 Idx = Builder.CreateSub( 4462 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4463 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4464 } else { 4465 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4466 --ConstLength; 4467 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4468 } 4469 } 4470 } 4471 assert(Idx); 4472 4473 Address EltPtr = Address::invalid(); 4474 LValueBaseInfo BaseInfo; 4475 TBAAAccessInfo TBAAInfo; 4476 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4477 // The base must be a pointer, which is not an aggregate. Emit 4478 // it. It needs to be emitted first in case it's what captures 4479 // the VLA bounds. 4480 Address Base = 4481 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4482 BaseTy, VLA->getElementType(), IsLowerBound); 4483 // The element count here is the total number of non-VLA elements. 4484 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4485 4486 // Effectively, the multiply by the VLA size is part of the GEP. 4487 // GEP indexes are signed, and scaling an index isn't permitted to 4488 // signed-overflow, so we use the same semantics for our explicit 4489 // multiply. We suppress this if overflow is not undefined behavior. 4490 if (getLangOpts().isSignedOverflowDefined()) 4491 Idx = Builder.CreateMul(Idx, NumElements); 4492 else 4493 Idx = Builder.CreateNSWMul(Idx, NumElements); 4494 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4495 !getLangOpts().isSignedOverflowDefined(), 4496 /*signedIndices=*/false, E->getExprLoc()); 4497 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4498 // If this is A[i] where A is an array, the frontend will have decayed the 4499 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4500 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4501 // "gep x, i" here. Emit one "gep A, 0, i". 4502 assert(Array->getType()->isArrayType() && 4503 "Array to pointer decay must have array source type!"); 4504 LValue ArrayLV; 4505 // For simple multidimensional array indexing, set the 'accessed' flag for 4506 // better bounds-checking of the base expression. 4507 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4508 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4509 else 4510 ArrayLV = EmitLValue(Array); 4511 4512 // Propagate the alignment from the array itself to the result. 4513 EltPtr = emitArraySubscriptGEP( 4514 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4515 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4516 /*signedIndices=*/false, E->getExprLoc()); 4517 BaseInfo = ArrayLV.getBaseInfo(); 4518 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4519 } else { 4520 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4521 TBAAInfo, BaseTy, ResultExprTy, 4522 IsLowerBound); 4523 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4524 !getLangOpts().isSignedOverflowDefined(), 4525 /*signedIndices=*/false, E->getExprLoc()); 4526 } 4527 4528 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4529 } 4530 4531 LValue CodeGenFunction:: 4532 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4533 // Emit the base vector as an l-value. 4534 LValue Base; 4535 4536 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4537 if (E->isArrow()) { 4538 // If it is a pointer to a vector, emit the address and form an lvalue with 4539 // it. 4540 LValueBaseInfo BaseInfo; 4541 TBAAAccessInfo TBAAInfo; 4542 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4543 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4544 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4545 Base.getQuals().removeObjCGCAttr(); 4546 } else if (E->getBase()->isGLValue()) { 4547 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4548 // emit the base as an lvalue. 4549 assert(E->getBase()->getType()->isVectorType()); 4550 Base = EmitLValue(E->getBase()); 4551 } else { 4552 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4553 assert(E->getBase()->getType()->isVectorType() && 4554 "Result must be a vector"); 4555 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4556 4557 // Store the vector to memory (because LValue wants an address). 4558 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4559 Builder.CreateStore(Vec, VecMem); 4560 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4561 AlignmentSource::Decl); 4562 } 4563 4564 QualType type = 4565 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4566 4567 // Encode the element access list into a vector of unsigned indices. 4568 SmallVector<uint32_t, 4> Indices; 4569 E->getEncodedElementAccess(Indices); 4570 4571 if (Base.isSimple()) { 4572 llvm::Constant *CV = 4573 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4574 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4575 Base.getBaseInfo(), TBAAAccessInfo()); 4576 } 4577 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4578 4579 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4580 SmallVector<llvm::Constant *, 4> CElts; 4581 4582 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4583 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4584 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4585 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4586 Base.getBaseInfo(), TBAAAccessInfo()); 4587 } 4588 4589 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4590 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4591 EmitIgnoredExpr(E->getBase()); 4592 return EmitDeclRefLValue(DRE); 4593 } 4594 4595 Expr *BaseExpr = E->getBase(); 4596 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4597 LValue BaseLV; 4598 if (E->isArrow()) { 4599 LValueBaseInfo BaseInfo; 4600 TBAAAccessInfo TBAAInfo; 4601 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4602 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4603 SanitizerSet SkippedChecks; 4604 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4605 if (IsBaseCXXThis) 4606 SkippedChecks.set(SanitizerKind::Alignment, true); 4607 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4608 SkippedChecks.set(SanitizerKind::Null, true); 4609 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4610 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4611 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4612 } else 4613 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4614 4615 NamedDecl *ND = E->getMemberDecl(); 4616 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4617 LValue LV = EmitLValueForField(BaseLV, Field); 4618 setObjCGCLValueClass(getContext(), E, LV); 4619 if (getLangOpts().OpenMP) { 4620 // If the member was explicitly marked as nontemporal, mark it as 4621 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4622 // to children as nontemporal too. 4623 if ((IsWrappedCXXThis(BaseExpr) && 4624 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4625 BaseLV.isNontemporal()) 4626 LV.setNontemporal(/*Value=*/true); 4627 } 4628 return LV; 4629 } 4630 4631 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4632 return EmitFunctionDeclLValue(*this, E, FD); 4633 4634 llvm_unreachable("Unhandled member declaration!"); 4635 } 4636 4637 /// Given that we are currently emitting a lambda, emit an l-value for 4638 /// one of its members. 4639 /// 4640 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field, 4641 llvm::Value *ThisValue) { 4642 bool HasExplicitObjectParameter = false; 4643 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(CurCodeDecl)) { 4644 HasExplicitObjectParameter = MD->isExplicitObjectMemberFunction(); 4645 assert(MD->getParent()->isLambda()); 4646 assert(MD->getParent() == Field->getParent()); 4647 } 4648 LValue LambdaLV; 4649 if (HasExplicitObjectParameter) { 4650 const VarDecl *D = cast<CXXMethodDecl>(CurCodeDecl)->getParamDecl(0); 4651 auto It = LocalDeclMap.find(D); 4652 assert(It != LocalDeclMap.end() && "explicit parameter not loaded?"); 4653 Address AddrOfExplicitObject = It->getSecond(); 4654 if (D->getType()->isReferenceType()) 4655 LambdaLV = EmitLoadOfReferenceLValue(AddrOfExplicitObject, D->getType(), 4656 AlignmentSource::Decl); 4657 else 4658 LambdaLV = MakeNaturalAlignAddrLValue(AddrOfExplicitObject.getPointer(), 4659 D->getType().getNonReferenceType()); 4660 } else { 4661 QualType LambdaTagType = getContext().getTagDeclType(Field->getParent()); 4662 LambdaLV = MakeNaturalAlignAddrLValue(ThisValue, LambdaTagType); 4663 } 4664 return EmitLValueForField(LambdaLV, Field); 4665 } 4666 4667 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4668 return EmitLValueForLambdaField(Field, CXXABIThisValue); 4669 } 4670 4671 /// Get the field index in the debug info. The debug info structure/union 4672 /// will ignore the unnamed bitfields. 4673 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4674 unsigned FieldIndex) { 4675 unsigned I = 0, Skipped = 0; 4676 4677 for (auto *F : Rec->getDefinition()->fields()) { 4678 if (I == FieldIndex) 4679 break; 4680 if (F->isUnnamedBitfield()) 4681 Skipped++; 4682 I++; 4683 } 4684 4685 return FieldIndex - Skipped; 4686 } 4687 4688 /// Get the address of a zero-sized field within a record. The resulting 4689 /// address doesn't necessarily have the right type. 4690 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4691 const FieldDecl *Field) { 4692 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4693 CGF.getContext().getFieldOffset(Field)); 4694 if (Offset.isZero()) 4695 return Base; 4696 Base = Base.withElementType(CGF.Int8Ty); 4697 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4698 } 4699 4700 /// Drill down to the storage of a field without walking into 4701 /// reference types. 4702 /// 4703 /// The resulting address doesn't necessarily have the right type. 4704 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4705 const FieldDecl *field) { 4706 if (field->isZeroSize(CGF.getContext())) 4707 return emitAddrOfZeroSizeField(CGF, base, field); 4708 4709 const RecordDecl *rec = field->getParent(); 4710 4711 unsigned idx = 4712 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4713 4714 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4715 } 4716 4717 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4718 Address addr, const FieldDecl *field) { 4719 const RecordDecl *rec = field->getParent(); 4720 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4721 base.getType(), rec->getLocation()); 4722 4723 unsigned idx = 4724 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4725 4726 return CGF.Builder.CreatePreserveStructAccessIndex( 4727 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4728 } 4729 4730 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4731 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4732 if (!RD) 4733 return false; 4734 4735 if (RD->isDynamicClass()) 4736 return true; 4737 4738 for (const auto &Base : RD->bases()) 4739 if (hasAnyVptr(Base.getType(), Context)) 4740 return true; 4741 4742 for (const FieldDecl *Field : RD->fields()) 4743 if (hasAnyVptr(Field->getType(), Context)) 4744 return true; 4745 4746 return false; 4747 } 4748 4749 LValue CodeGenFunction::EmitLValueForField(LValue base, 4750 const FieldDecl *field) { 4751 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4752 4753 if (field->isBitField()) { 4754 const CGRecordLayout &RL = 4755 CGM.getTypes().getCGRecordLayout(field->getParent()); 4756 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4757 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4758 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4759 Info.VolatileStorageSize != 0 && 4760 field->getType() 4761 .withCVRQualifiers(base.getVRQualifiers()) 4762 .isVolatileQualified(); 4763 Address Addr = base.getAddress(*this); 4764 unsigned Idx = RL.getLLVMFieldNo(field); 4765 const RecordDecl *rec = field->getParent(); 4766 if (hasBPFPreserveStaticOffset(rec)) 4767 Addr = wrapWithBPFPreserveStaticOffset(*this, Addr); 4768 if (!UseVolatile) { 4769 if (!IsInPreservedAIRegion && 4770 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4771 if (Idx != 0) 4772 // For structs, we GEP to the field that the record layout suggests. 4773 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4774 } else { 4775 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4776 getContext().getRecordType(rec), rec->getLocation()); 4777 Addr = Builder.CreatePreserveStructAccessIndex( 4778 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4779 DbgInfo); 4780 } 4781 } 4782 const unsigned SS = 4783 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4784 // Get the access type. 4785 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4786 Addr = Addr.withElementType(FieldIntTy); 4787 if (UseVolatile) { 4788 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4789 if (VolatileOffset) 4790 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4791 } 4792 4793 QualType fieldType = 4794 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4795 // TODO: Support TBAA for bit fields. 4796 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4797 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4798 TBAAAccessInfo()); 4799 } 4800 4801 // Fields of may-alias structures are may-alias themselves. 4802 // FIXME: this should get propagated down through anonymous structs 4803 // and unions. 4804 QualType FieldType = field->getType(); 4805 const RecordDecl *rec = field->getParent(); 4806 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4807 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4808 TBAAAccessInfo FieldTBAAInfo; 4809 if (base.getTBAAInfo().isMayAlias() || 4810 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4811 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4812 } else if (rec->isUnion()) { 4813 // TODO: Support TBAA for unions. 4814 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4815 } else { 4816 // If no base type been assigned for the base access, then try to generate 4817 // one for this base lvalue. 4818 FieldTBAAInfo = base.getTBAAInfo(); 4819 if (!FieldTBAAInfo.BaseType) { 4820 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4821 assert(!FieldTBAAInfo.Offset && 4822 "Nonzero offset for an access with no base type!"); 4823 } 4824 4825 // Adjust offset to be relative to the base type. 4826 const ASTRecordLayout &Layout = 4827 getContext().getASTRecordLayout(field->getParent()); 4828 unsigned CharWidth = getContext().getCharWidth(); 4829 if (FieldTBAAInfo.BaseType) 4830 FieldTBAAInfo.Offset += 4831 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4832 4833 // Update the final access type and size. 4834 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4835 FieldTBAAInfo.Size = 4836 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4837 } 4838 4839 Address addr = base.getAddress(*this); 4840 if (hasBPFPreserveStaticOffset(rec)) 4841 addr = wrapWithBPFPreserveStaticOffset(*this, addr); 4842 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4843 if (CGM.getCodeGenOpts().StrictVTablePointers && 4844 ClassDef->isDynamicClass()) { 4845 // Getting to any field of dynamic object requires stripping dynamic 4846 // information provided by invariant.group. This is because accessing 4847 // fields may leak the real address of dynamic object, which could result 4848 // in miscompilation when leaked pointer would be compared. 4849 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4850 addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 4851 } 4852 } 4853 4854 unsigned RecordCVR = base.getVRQualifiers(); 4855 if (rec->isUnion()) { 4856 // For unions, there is no pointer adjustment. 4857 if (CGM.getCodeGenOpts().StrictVTablePointers && 4858 hasAnyVptr(FieldType, getContext())) 4859 // Because unions can easily skip invariant.barriers, we need to add 4860 // a barrier every time CXXRecord field with vptr is referenced. 4861 addr = Builder.CreateLaunderInvariantGroup(addr); 4862 4863 if (IsInPreservedAIRegion || 4864 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4865 // Remember the original union field index 4866 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4867 rec->getLocation()); 4868 addr = Address( 4869 Builder.CreatePreserveUnionAccessIndex( 4870 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4871 addr.getElementType(), addr.getAlignment()); 4872 } 4873 4874 if (FieldType->isReferenceType()) 4875 addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType)); 4876 } else { 4877 if (!IsInPreservedAIRegion && 4878 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4879 // For structs, we GEP to the field that the record layout suggests. 4880 addr = emitAddrOfFieldStorage(*this, addr, field); 4881 else 4882 // Remember the original struct field index 4883 addr = emitPreserveStructAccess(*this, base, addr, field); 4884 } 4885 4886 // If this is a reference field, load the reference right now. 4887 if (FieldType->isReferenceType()) { 4888 LValue RefLVal = 4889 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4890 if (RecordCVR & Qualifiers::Volatile) 4891 RefLVal.getQuals().addVolatile(); 4892 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4893 4894 // Qualifiers on the struct don't apply to the referencee. 4895 RecordCVR = 0; 4896 FieldType = FieldType->getPointeeType(); 4897 } 4898 4899 // Make sure that the address is pointing to the right type. This is critical 4900 // for both unions and structs. 4901 addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType)); 4902 4903 if (field->hasAttr<AnnotateAttr>()) 4904 addr = EmitFieldAnnotations(field, addr); 4905 4906 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4907 LV.getQuals().addCVRQualifiers(RecordCVR); 4908 4909 // __weak attribute on a field is ignored. 4910 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4911 LV.getQuals().removeObjCGCAttr(); 4912 4913 return LV; 4914 } 4915 4916 LValue 4917 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4918 const FieldDecl *Field) { 4919 QualType FieldType = Field->getType(); 4920 4921 if (!FieldType->isReferenceType()) 4922 return EmitLValueForField(Base, Field); 4923 4924 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4925 4926 // Make sure that the address is pointing to the right type. 4927 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4928 V = V.withElementType(llvmType); 4929 4930 // TODO: Generate TBAA information that describes this access as a structure 4931 // member access and not just an access to an object of the field's type. This 4932 // should be similar to what we do in EmitLValueForField(). 4933 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4934 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4935 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4936 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4937 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4938 } 4939 4940 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4941 if (E->isFileScope()) { 4942 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4943 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4944 } 4945 if (E->getType()->isVariablyModifiedType()) 4946 // make sure to emit the VLA size. 4947 EmitVariablyModifiedType(E->getType()); 4948 4949 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4950 const Expr *InitExpr = E->getInitializer(); 4951 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4952 4953 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4954 /*Init*/ true); 4955 4956 // Block-scope compound literals are destroyed at the end of the enclosing 4957 // scope in C. 4958 if (!getLangOpts().CPlusPlus) 4959 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4960 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4961 E->getType(), getDestroyer(DtorKind), 4962 DtorKind & EHCleanup); 4963 4964 return Result; 4965 } 4966 4967 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4968 if (!E->isGLValue()) 4969 // Initializing an aggregate temporary in C++11: T{...}. 4970 return EmitAggExprToLValue(E); 4971 4972 // An lvalue initializer list must be initializing a reference. 4973 assert(E->isTransparent() && "non-transparent glvalue init list"); 4974 return EmitLValue(E->getInit(0)); 4975 } 4976 4977 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4978 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4979 /// LValue is returned and the current block has been terminated. 4980 static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4981 const Expr *Operand) { 4982 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4983 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4984 return std::nullopt; 4985 } 4986 4987 return CGF.EmitLValue(Operand); 4988 } 4989 4990 namespace { 4991 // Handle the case where the condition is a constant evaluatable simple integer, 4992 // which means we don't have to separately handle the true/false blocks. 4993 std::optional<LValue> HandleConditionalOperatorLValueSimpleCase( 4994 CodeGenFunction &CGF, const AbstractConditionalOperator *E) { 4995 const Expr *condExpr = E->getCond(); 4996 bool CondExprBool; 4997 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4998 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr(); 4999 if (!CondExprBool) 5000 std::swap(Live, Dead); 5001 5002 if (!CGF.ContainsLabel(Dead)) { 5003 // If the true case is live, we need to track its region. 5004 if (CondExprBool) 5005 CGF.incrementProfileCounter(E); 5006 // If a throw expression we emit it and return an undefined lvalue 5007 // because it can't be used. 5008 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) { 5009 CGF.EmitCXXThrowExpr(ThrowExpr); 5010 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType()); 5011 llvm::Type *Ty = CGF.UnqualPtrTy; 5012 return CGF.MakeAddrLValue( 5013 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 5014 Dead->getType()); 5015 } 5016 return CGF.EmitLValue(Live); 5017 } 5018 } 5019 return std::nullopt; 5020 } 5021 struct ConditionalInfo { 5022 llvm::BasicBlock *lhsBlock, *rhsBlock; 5023 std::optional<LValue> LHS, RHS; 5024 }; 5025 5026 // Create and generate the 3 blocks for a conditional operator. 5027 // Leaves the 'current block' in the continuation basic block. 5028 template<typename FuncTy> 5029 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF, 5030 const AbstractConditionalOperator *E, 5031 const FuncTy &BranchGenFunc) { 5032 ConditionalInfo Info{CGF.createBasicBlock("cond.true"), 5033 CGF.createBasicBlock("cond.false"), std::nullopt, 5034 std::nullopt}; 5035 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end"); 5036 5037 CodeGenFunction::ConditionalEvaluation eval(CGF); 5038 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock, 5039 CGF.getProfileCount(E)); 5040 5041 // Any temporaries created here are conditional. 5042 CGF.EmitBlock(Info.lhsBlock); 5043 CGF.incrementProfileCounter(E); 5044 eval.begin(CGF); 5045 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr()); 5046 eval.end(CGF); 5047 Info.lhsBlock = CGF.Builder.GetInsertBlock(); 5048 5049 if (Info.LHS) 5050 CGF.Builder.CreateBr(endBlock); 5051 5052 // Any temporaries created here are conditional. 5053 CGF.EmitBlock(Info.rhsBlock); 5054 eval.begin(CGF); 5055 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr()); 5056 eval.end(CGF); 5057 Info.rhsBlock = CGF.Builder.GetInsertBlock(); 5058 CGF.EmitBlock(endBlock); 5059 5060 return Info; 5061 } 5062 } // namespace 5063 5064 void CodeGenFunction::EmitIgnoredConditionalOperator( 5065 const AbstractConditionalOperator *E) { 5066 if (!E->isGLValue()) { 5067 // ?: here should be an aggregate. 5068 assert(hasAggregateEvaluationKind(E->getType()) && 5069 "Unexpected conditional operator!"); 5070 return (void)EmitAggExprToLValue(E); 5071 } 5072 5073 OpaqueValueMapping binding(*this, E); 5074 if (HandleConditionalOperatorLValueSimpleCase(*this, E)) 5075 return; 5076 5077 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) { 5078 CGF.EmitIgnoredExpr(E); 5079 return LValue{}; 5080 }); 5081 } 5082 LValue CodeGenFunction::EmitConditionalOperatorLValue( 5083 const AbstractConditionalOperator *expr) { 5084 if (!expr->isGLValue()) { 5085 // ?: here should be an aggregate. 5086 assert(hasAggregateEvaluationKind(expr->getType()) && 5087 "Unexpected conditional operator!"); 5088 return EmitAggExprToLValue(expr); 5089 } 5090 5091 OpaqueValueMapping binding(*this, expr); 5092 if (std::optional<LValue> Res = 5093 HandleConditionalOperatorLValueSimpleCase(*this, expr)) 5094 return *Res; 5095 5096 ConditionalInfo Info = EmitConditionalBlocks( 5097 *this, expr, [](CodeGenFunction &CGF, const Expr *E) { 5098 return EmitLValueOrThrowExpression(CGF, E); 5099 }); 5100 5101 if ((Info.LHS && !Info.LHS->isSimple()) || 5102 (Info.RHS && !Info.RHS->isSimple())) 5103 return EmitUnsupportedLValue(expr, "conditional operator"); 5104 5105 if (Info.LHS && Info.RHS) { 5106 Address lhsAddr = Info.LHS->getAddress(*this); 5107 Address rhsAddr = Info.RHS->getAddress(*this); 5108 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 5109 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock); 5110 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock); 5111 Address result(phi, lhsAddr.getElementType(), 5112 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 5113 AlignmentSource alignSource = 5114 std::max(Info.LHS->getBaseInfo().getAlignmentSource(), 5115 Info.RHS->getBaseInfo().getAlignmentSource()); 5116 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 5117 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo()); 5118 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 5119 TBAAInfo); 5120 } else { 5121 assert((Info.LHS || Info.RHS) && 5122 "both operands of glvalue conditional are throw-expressions?"); 5123 return Info.LHS ? *Info.LHS : *Info.RHS; 5124 } 5125 } 5126 5127 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 5128 /// type. If the cast is to a reference, we can have the usual lvalue result, 5129 /// otherwise if a cast is needed by the code generator in an lvalue context, 5130 /// then it must mean that we need the address of an aggregate in order to 5131 /// access one of its members. This can happen for all the reasons that casts 5132 /// are permitted with aggregate result, including noop aggregate casts, and 5133 /// cast from scalar to union. 5134 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 5135 switch (E->getCastKind()) { 5136 case CK_ToVoid: 5137 case CK_BitCast: 5138 case CK_LValueToRValueBitCast: 5139 case CK_ArrayToPointerDecay: 5140 case CK_FunctionToPointerDecay: 5141 case CK_NullToMemberPointer: 5142 case CK_NullToPointer: 5143 case CK_IntegralToPointer: 5144 case CK_PointerToIntegral: 5145 case CK_PointerToBoolean: 5146 case CK_IntegralCast: 5147 case CK_BooleanToSignedIntegral: 5148 case CK_IntegralToBoolean: 5149 case CK_IntegralToFloating: 5150 case CK_FloatingToIntegral: 5151 case CK_FloatingToBoolean: 5152 case CK_FloatingCast: 5153 case CK_FloatingRealToComplex: 5154 case CK_FloatingComplexToReal: 5155 case CK_FloatingComplexToBoolean: 5156 case CK_FloatingComplexCast: 5157 case CK_FloatingComplexToIntegralComplex: 5158 case CK_IntegralRealToComplex: 5159 case CK_IntegralComplexToReal: 5160 case CK_IntegralComplexToBoolean: 5161 case CK_IntegralComplexCast: 5162 case CK_IntegralComplexToFloatingComplex: 5163 case CK_DerivedToBaseMemberPointer: 5164 case CK_BaseToDerivedMemberPointer: 5165 case CK_MemberPointerToBoolean: 5166 case CK_ReinterpretMemberPointer: 5167 case CK_AnyPointerToBlockPointerCast: 5168 case CK_ARCProduceObject: 5169 case CK_ARCConsumeObject: 5170 case CK_ARCReclaimReturnedObject: 5171 case CK_ARCExtendBlockObject: 5172 case CK_CopyAndAutoreleaseBlockObject: 5173 case CK_IntToOCLSampler: 5174 case CK_FloatingToFixedPoint: 5175 case CK_FixedPointToFloating: 5176 case CK_FixedPointCast: 5177 case CK_FixedPointToBoolean: 5178 case CK_FixedPointToIntegral: 5179 case CK_IntegralToFixedPoint: 5180 case CK_MatrixCast: 5181 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 5182 5183 case CK_Dependent: 5184 llvm_unreachable("dependent cast kind in IR gen!"); 5185 5186 case CK_BuiltinFnToFnPtr: 5187 llvm_unreachable("builtin functions are handled elsewhere"); 5188 5189 // These are never l-values; just use the aggregate emission code. 5190 case CK_NonAtomicToAtomic: 5191 case CK_AtomicToNonAtomic: 5192 return EmitAggExprToLValue(E); 5193 5194 case CK_Dynamic: { 5195 LValue LV = EmitLValue(E->getSubExpr()); 5196 Address V = LV.getAddress(*this); 5197 const auto *DCE = cast<CXXDynamicCastExpr>(E); 5198 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 5199 } 5200 5201 case CK_ConstructorConversion: 5202 case CK_UserDefinedConversion: 5203 case CK_CPointerToObjCPointerCast: 5204 case CK_BlockPointerToObjCPointerCast: 5205 case CK_LValueToRValue: 5206 return EmitLValue(E->getSubExpr()); 5207 5208 case CK_NoOp: { 5209 // CK_NoOp can model a qualification conversion, which can remove an array 5210 // bound and change the IR type. 5211 // FIXME: Once pointee types are removed from IR, remove this. 5212 LValue LV = EmitLValue(E->getSubExpr()); 5213 // Propagate the volatile qualifer to LValue, if exist in E. 5214 if (E->changesVolatileQualification()) 5215 LV.getQuals() = E->getType().getQualifiers(); 5216 if (LV.isSimple()) { 5217 Address V = LV.getAddress(*this); 5218 if (V.isValid()) { 5219 llvm::Type *T = ConvertTypeForMem(E->getType()); 5220 if (V.getElementType() != T) 5221 LV.setAddress(V.withElementType(T)); 5222 } 5223 } 5224 return LV; 5225 } 5226 5227 case CK_UncheckedDerivedToBase: 5228 case CK_DerivedToBase: { 5229 const auto *DerivedClassTy = 5230 E->getSubExpr()->getType()->castAs<RecordType>(); 5231 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 5232 5233 LValue LV = EmitLValue(E->getSubExpr()); 5234 Address This = LV.getAddress(*this); 5235 5236 // Perform the derived-to-base conversion 5237 Address Base = GetAddressOfBaseClass( 5238 This, DerivedClassDecl, E->path_begin(), E->path_end(), 5239 /*NullCheckValue=*/false, E->getExprLoc()); 5240 5241 // TODO: Support accesses to members of base classes in TBAA. For now, we 5242 // conservatively pretend that the complete object is of the base class 5243 // type. 5244 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 5245 CGM.getTBAAInfoForSubobject(LV, E->getType())); 5246 } 5247 case CK_ToUnion: 5248 return EmitAggExprToLValue(E); 5249 case CK_BaseToDerived: { 5250 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 5251 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 5252 5253 LValue LV = EmitLValue(E->getSubExpr()); 5254 5255 // Perform the base-to-derived conversion 5256 Address Derived = GetAddressOfDerivedClass( 5257 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 5258 /*NullCheckValue=*/false); 5259 5260 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 5261 // performed and the object is not of the derived type. 5262 if (sanitizePerformTypeCheck()) 5263 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 5264 Derived.getPointer(), E->getType()); 5265 5266 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 5267 EmitVTablePtrCheckForCast(E->getType(), Derived, 5268 /*MayBeNull=*/false, CFITCK_DerivedCast, 5269 E->getBeginLoc()); 5270 5271 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 5272 CGM.getTBAAInfoForSubobject(LV, E->getType())); 5273 } 5274 case CK_LValueBitCast: { 5275 // This must be a reinterpret_cast (or c-style equivalent). 5276 const auto *CE = cast<ExplicitCastExpr>(E); 5277 5278 CGM.EmitExplicitCastExprType(CE, this); 5279 LValue LV = EmitLValue(E->getSubExpr()); 5280 Address V = LV.getAddress(*this).withElementType( 5281 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 5282 5283 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 5284 EmitVTablePtrCheckForCast(E->getType(), V, 5285 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 5286 E->getBeginLoc()); 5287 5288 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 5289 CGM.getTBAAInfoForSubobject(LV, E->getType())); 5290 } 5291 case CK_AddressSpaceConversion: { 5292 LValue LV = EmitLValue(E->getSubExpr()); 5293 QualType DestTy = getContext().getPointerType(E->getType()); 5294 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 5295 *this, LV.getPointer(*this), 5296 E->getSubExpr()->getType().getAddressSpace(), 5297 E->getType().getAddressSpace(), ConvertType(DestTy)); 5298 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 5299 LV.getAddress(*this).getAlignment()), 5300 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 5301 } 5302 case CK_ObjCObjectLValueCast: { 5303 LValue LV = EmitLValue(E->getSubExpr()); 5304 Address V = LV.getAddress(*this).withElementType(ConvertType(E->getType())); 5305 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 5306 CGM.getTBAAInfoForSubobject(LV, E->getType())); 5307 } 5308 case CK_ZeroToOCLOpaqueType: 5309 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 5310 5311 case CK_VectorSplat: { 5312 // LValue results of vector splats are only supported in HLSL. 5313 if (!getLangOpts().HLSL) 5314 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 5315 return EmitLValue(E->getSubExpr()); 5316 } 5317 } 5318 5319 llvm_unreachable("Unhandled lvalue cast kind?"); 5320 } 5321 5322 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 5323 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 5324 return getOrCreateOpaqueLValueMapping(e); 5325 } 5326 5327 LValue 5328 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 5329 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 5330 5331 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 5332 it = OpaqueLValues.find(e); 5333 5334 if (it != OpaqueLValues.end()) 5335 return it->second; 5336 5337 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 5338 return EmitLValue(e->getSourceExpr()); 5339 } 5340 5341 RValue 5342 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 5343 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 5344 5345 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 5346 it = OpaqueRValues.find(e); 5347 5348 if (it != OpaqueRValues.end()) 5349 return it->second; 5350 5351 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 5352 return EmitAnyExpr(e->getSourceExpr()); 5353 } 5354 5355 RValue CodeGenFunction::EmitRValueForField(LValue LV, 5356 const FieldDecl *FD, 5357 SourceLocation Loc) { 5358 QualType FT = FD->getType(); 5359 LValue FieldLV = EmitLValueForField(LV, FD); 5360 switch (getEvaluationKind(FT)) { 5361 case TEK_Complex: 5362 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 5363 case TEK_Aggregate: 5364 return FieldLV.asAggregateRValue(*this); 5365 case TEK_Scalar: 5366 // This routine is used to load fields one-by-one to perform a copy, so 5367 // don't load reference fields. 5368 if (FD->getType()->isReferenceType()) 5369 return RValue::get(FieldLV.getPointer(*this)); 5370 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 5371 // primitive load. 5372 if (FieldLV.isBitField()) 5373 return EmitLoadOfLValue(FieldLV, Loc); 5374 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 5375 } 5376 llvm_unreachable("bad evaluation kind"); 5377 } 5378 5379 //===--------------------------------------------------------------------===// 5380 // Expression Emission 5381 //===--------------------------------------------------------------------===// 5382 5383 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 5384 ReturnValueSlot ReturnValue) { 5385 // Builtins never have block type. 5386 if (E->getCallee()->getType()->isBlockPointerType()) 5387 return EmitBlockCallExpr(E, ReturnValue); 5388 5389 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 5390 return EmitCXXMemberCallExpr(CE, ReturnValue); 5391 5392 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 5393 return EmitCUDAKernelCallExpr(CE, ReturnValue); 5394 5395 // A CXXOperatorCallExpr is created even for explicit object methods, but 5396 // these should be treated like static function call. 5397 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 5398 if (const auto *MD = 5399 dyn_cast_if_present<CXXMethodDecl>(CE->getCalleeDecl()); 5400 MD && MD->isImplicitObjectMemberFunction()) 5401 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 5402 5403 CGCallee callee = EmitCallee(E->getCallee()); 5404 5405 if (callee.isBuiltin()) { 5406 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 5407 E, ReturnValue); 5408 } 5409 5410 if (callee.isPseudoDestructor()) { 5411 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 5412 } 5413 5414 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 5415 } 5416 5417 /// Emit a CallExpr without considering whether it might be a subclass. 5418 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 5419 ReturnValueSlot ReturnValue) { 5420 CGCallee Callee = EmitCallee(E->getCallee()); 5421 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 5422 } 5423 5424 // Detect the unusual situation where an inline version is shadowed by a 5425 // non-inline version. In that case we should pick the external one 5426 // everywhere. That's GCC behavior too. 5427 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) { 5428 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl()) 5429 if (!PD->isInlineBuiltinDeclaration()) 5430 return false; 5431 return true; 5432 } 5433 5434 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 5435 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 5436 5437 if (auto builtinID = FD->getBuiltinID()) { 5438 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str(); 5439 std::string NoBuiltins = "no-builtins"; 5440 5441 StringRef Ident = CGF.CGM.getMangledName(GD); 5442 std::string FDInlineName = (Ident + ".inline").str(); 5443 5444 bool IsPredefinedLibFunction = 5445 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID); 5446 bool HasAttributeNoBuiltin = 5447 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) || 5448 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins); 5449 5450 // When directing calling an inline builtin, call it through it's mangled 5451 // name to make it clear it's not the actual builtin. 5452 if (CGF.CurFn->getName() != FDInlineName && 5453 OnlyHasInlineBuiltinDeclaration(FD)) { 5454 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5455 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 5456 llvm::Module *M = Fn->getParent(); 5457 llvm::Function *Clone = M->getFunction(FDInlineName); 5458 if (!Clone) { 5459 Clone = llvm::Function::Create(Fn->getFunctionType(), 5460 llvm::GlobalValue::InternalLinkage, 5461 Fn->getAddressSpace(), FDInlineName, M); 5462 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 5463 } 5464 return CGCallee::forDirect(Clone, GD); 5465 } 5466 5467 // Replaceable builtins provide their own implementation of a builtin. If we 5468 // are in an inline builtin implementation, avoid trivial infinite 5469 // recursion. Honor __attribute__((no_builtin("foo"))) or 5470 // __attribute__((no_builtin)) on the current function unless foo is 5471 // not a predefined library function which means we must generate the 5472 // builtin no matter what. 5473 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin) 5474 return CGCallee::forBuiltin(builtinID, FD); 5475 } 5476 5477 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5478 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 5479 FD->hasAttr<CUDAGlobalAttr>()) 5480 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 5481 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 5482 5483 return CGCallee::forDirect(CalleePtr, GD); 5484 } 5485 5486 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 5487 E = E->IgnoreParens(); 5488 5489 // Look through function-to-pointer decay. 5490 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 5491 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 5492 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 5493 return EmitCallee(ICE->getSubExpr()); 5494 } 5495 5496 // Resolve direct calls. 5497 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 5498 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 5499 return EmitDirectCallee(*this, FD); 5500 } 5501 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 5502 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 5503 EmitIgnoredExpr(ME->getBase()); 5504 return EmitDirectCallee(*this, FD); 5505 } 5506 5507 // Look through template substitutions. 5508 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 5509 return EmitCallee(NTTP->getReplacement()); 5510 5511 // Treat pseudo-destructor calls differently. 5512 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 5513 return CGCallee::forPseudoDestructor(PDE); 5514 } 5515 5516 // Otherwise, we have an indirect reference. 5517 llvm::Value *calleePtr; 5518 QualType functionType; 5519 if (auto ptrType = E->getType()->getAs<PointerType>()) { 5520 calleePtr = EmitScalarExpr(E); 5521 functionType = ptrType->getPointeeType(); 5522 } else { 5523 functionType = E->getType(); 5524 calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this); 5525 } 5526 assert(functionType->isFunctionType()); 5527 5528 GlobalDecl GD; 5529 if (const auto *VD = 5530 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 5531 GD = GlobalDecl(VD); 5532 5533 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 5534 CGCallee callee(calleeInfo, calleePtr); 5535 return callee; 5536 } 5537 5538 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 5539 // Comma expressions just emit their LHS then their RHS as an l-value. 5540 if (E->getOpcode() == BO_Comma) { 5541 EmitIgnoredExpr(E->getLHS()); 5542 EnsureInsertPoint(); 5543 return EmitLValue(E->getRHS()); 5544 } 5545 5546 if (E->getOpcode() == BO_PtrMemD || 5547 E->getOpcode() == BO_PtrMemI) 5548 return EmitPointerToDataMemberBinaryExpr(E); 5549 5550 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5551 5552 // Note that in all of these cases, __block variables need the RHS 5553 // evaluated first just in case the variable gets moved by the RHS. 5554 5555 switch (getEvaluationKind(E->getType())) { 5556 case TEK_Scalar: { 5557 switch (E->getLHS()->getType().getObjCLifetime()) { 5558 case Qualifiers::OCL_Strong: 5559 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5560 5561 case Qualifiers::OCL_Autoreleasing: 5562 return EmitARCStoreAutoreleasing(E).first; 5563 5564 // No reason to do any of these differently. 5565 case Qualifiers::OCL_None: 5566 case Qualifiers::OCL_ExplicitNone: 5567 case Qualifiers::OCL_Weak: 5568 break; 5569 } 5570 5571 RValue RV = EmitAnyExpr(E->getRHS()); 5572 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5573 if (RV.isScalar()) 5574 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5575 EmitStoreThroughLValue(RV, LV); 5576 if (getLangOpts().OpenMP) 5577 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5578 E->getLHS()); 5579 return LV; 5580 } 5581 5582 case TEK_Complex: 5583 return EmitComplexAssignmentLValue(E); 5584 5585 case TEK_Aggregate: 5586 return EmitAggExprToLValue(E); 5587 } 5588 llvm_unreachable("bad evaluation kind"); 5589 } 5590 5591 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5592 RValue RV = EmitCallExpr(E); 5593 5594 if (!RV.isScalar()) 5595 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5596 AlignmentSource::Decl); 5597 5598 assert(E->getCallReturnType(getContext())->isReferenceType() && 5599 "Can't have a scalar return unless the return type is a " 5600 "reference type!"); 5601 5602 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5603 } 5604 5605 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5606 // FIXME: This shouldn't require another copy. 5607 return EmitAggExprToLValue(E); 5608 } 5609 5610 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5611 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5612 && "binding l-value to type which needs a temporary"); 5613 AggValueSlot Slot = CreateAggTemp(E->getType()); 5614 EmitCXXConstructExpr(E, Slot); 5615 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5616 } 5617 5618 LValue 5619 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5620 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5621 } 5622 5623 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5624 return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()) 5625 .withElementType(ConvertType(E->getType())); 5626 } 5627 5628 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5629 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5630 AlignmentSource::Decl); 5631 } 5632 5633 LValue 5634 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5635 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5636 Slot.setExternallyDestructed(); 5637 EmitAggExpr(E->getSubExpr(), Slot); 5638 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5639 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5640 } 5641 5642 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5643 RValue RV = EmitObjCMessageExpr(E); 5644 5645 if (!RV.isScalar()) 5646 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5647 AlignmentSource::Decl); 5648 5649 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5650 "Can't have a scalar return unless the return type is a " 5651 "reference type!"); 5652 5653 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5654 } 5655 5656 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5657 Address V = 5658 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5659 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5660 } 5661 5662 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5663 const ObjCIvarDecl *Ivar) { 5664 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5665 } 5666 5667 llvm::Value * 5668 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 5669 const ObjCIvarDecl *Ivar) { 5670 llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar); 5671 QualType PointerDiffType = getContext().getPointerDiffType(); 5672 return Builder.CreateZExtOrTrunc(OffsetValue, 5673 getTypes().ConvertType(PointerDiffType)); 5674 } 5675 5676 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5677 llvm::Value *BaseValue, 5678 const ObjCIvarDecl *Ivar, 5679 unsigned CVRQualifiers) { 5680 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5681 Ivar, CVRQualifiers); 5682 } 5683 5684 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5685 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5686 llvm::Value *BaseValue = nullptr; 5687 const Expr *BaseExpr = E->getBase(); 5688 Qualifiers BaseQuals; 5689 QualType ObjectTy; 5690 if (E->isArrow()) { 5691 BaseValue = EmitScalarExpr(BaseExpr); 5692 ObjectTy = BaseExpr->getType()->getPointeeType(); 5693 BaseQuals = ObjectTy.getQualifiers(); 5694 } else { 5695 LValue BaseLV = EmitLValue(BaseExpr); 5696 BaseValue = BaseLV.getPointer(*this); 5697 ObjectTy = BaseExpr->getType(); 5698 BaseQuals = ObjectTy.getQualifiers(); 5699 } 5700 5701 LValue LV = 5702 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5703 BaseQuals.getCVRQualifiers()); 5704 setObjCGCLValueClass(getContext(), E, LV); 5705 return LV; 5706 } 5707 5708 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5709 // Can only get l-value for message expression returning aggregate type 5710 RValue RV = EmitAnyExprToTemp(E); 5711 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5712 AlignmentSource::Decl); 5713 } 5714 5715 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5716 const CallExpr *E, ReturnValueSlot ReturnValue, 5717 llvm::Value *Chain) { 5718 // Get the actual function type. The callee type will always be a pointer to 5719 // function type or a block pointer type. 5720 assert(CalleeType->isFunctionPointerType() && 5721 "Call must have function pointer type!"); 5722 5723 const Decl *TargetDecl = 5724 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5725 5726 assert((!isa_and_present<FunctionDecl>(TargetDecl) || 5727 !cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) && 5728 "trying to emit a call to an immediate function"); 5729 5730 CalleeType = getContext().getCanonicalType(CalleeType); 5731 5732 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5733 5734 CGCallee Callee = OrigCallee; 5735 5736 if (SanOpts.has(SanitizerKind::Function) && 5737 (!TargetDecl || !isa<FunctionDecl>(TargetDecl)) && 5738 !isa<FunctionNoProtoType>(PointeeType)) { 5739 if (llvm::Constant *PrefixSig = 5740 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5741 SanitizerScope SanScope(this); 5742 auto *TypeHash = getUBSanFunctionTypeHash(PointeeType); 5743 5744 llvm::Type *PrefixSigType = PrefixSig->getType(); 5745 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5746 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5747 5748 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5749 5750 // On 32-bit Arm, the low bit of a function pointer indicates whether 5751 // it's using the Arm or Thumb instruction set. The actual first 5752 // instruction lives at the same address either way, so we must clear 5753 // that low bit before using the function address to find the prefix 5754 // structure. 5755 // 5756 // This applies to both Arm and Thumb target triples, because 5757 // either one could be used in an interworking context where it 5758 // might be passed function pointers of both types. 5759 llvm::Value *AlignedCalleePtr; 5760 if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) { 5761 llvm::Value *CalleeAddress = 5762 Builder.CreatePtrToInt(CalleePtr, IntPtrTy); 5763 llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1); 5764 llvm::Value *AlignedCalleeAddress = 5765 Builder.CreateAnd(CalleeAddress, Mask); 5766 AlignedCalleePtr = 5767 Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType()); 5768 } else { 5769 AlignedCalleePtr = CalleePtr; 5770 } 5771 5772 llvm::Value *CalleePrefixStruct = AlignedCalleePtr; 5773 llvm::Value *CalleeSigPtr = 5774 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0); 5775 llvm::Value *CalleeSig = 5776 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5777 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5778 5779 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5780 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5781 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5782 5783 EmitBlock(TypeCheck); 5784 llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad( 5785 Int32Ty, 5786 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1), 5787 getPointerAlign()); 5788 llvm::Value *CalleeTypeHashMatch = 5789 Builder.CreateICmpEQ(CalleeTypeHash, TypeHash); 5790 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5791 EmitCheckTypeDescriptor(CalleeType)}; 5792 EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::Function), 5793 SanitizerHandler::FunctionTypeMismatch, StaticData, 5794 {CalleePtr}); 5795 5796 Builder.CreateBr(Cont); 5797 EmitBlock(Cont); 5798 } 5799 } 5800 5801 const auto *FnType = cast<FunctionType>(PointeeType); 5802 5803 // If we are checking indirect calls and this call is indirect, check that the 5804 // function pointer is a member of the bit set for the function type. 5805 if (SanOpts.has(SanitizerKind::CFIICall) && 5806 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5807 SanitizerScope SanScope(this); 5808 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5809 5810 llvm::Metadata *MD; 5811 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5812 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5813 else 5814 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5815 5816 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5817 5818 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5819 llvm::Value *TypeTest = Builder.CreateCall( 5820 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CalleePtr, TypeId}); 5821 5822 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5823 llvm::Constant *StaticData[] = { 5824 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5825 EmitCheckSourceLocation(E->getBeginLoc()), 5826 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5827 }; 5828 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5829 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5830 CalleePtr, StaticData); 5831 } else { 5832 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5833 SanitizerHandler::CFICheckFail, StaticData, 5834 {CalleePtr, llvm::UndefValue::get(IntPtrTy)}); 5835 } 5836 } 5837 5838 CallArgList Args; 5839 if (Chain) 5840 Args.add(RValue::get(Chain), CGM.getContext().VoidPtrTy); 5841 5842 // C++17 requires that we evaluate arguments to a call using assignment syntax 5843 // right-to-left, and that we evaluate arguments to certain other operators 5844 // left-to-right. Note that we allow this to override the order dictated by 5845 // the calling convention on the MS ABI, which means that parameter 5846 // destruction order is not necessarily reverse construction order. 5847 // FIXME: Revisit this based on C++ committee response to unimplementability. 5848 EvaluationOrder Order = EvaluationOrder::Default; 5849 bool StaticOperator = false; 5850 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5851 if (OCE->isAssignmentOp()) 5852 Order = EvaluationOrder::ForceRightToLeft; 5853 else { 5854 switch (OCE->getOperator()) { 5855 case OO_LessLess: 5856 case OO_GreaterGreater: 5857 case OO_AmpAmp: 5858 case OO_PipePipe: 5859 case OO_Comma: 5860 case OO_ArrowStar: 5861 Order = EvaluationOrder::ForceLeftToRight; 5862 break; 5863 default: 5864 break; 5865 } 5866 } 5867 5868 if (const auto *MD = 5869 dyn_cast_if_present<CXXMethodDecl>(OCE->getCalleeDecl()); 5870 MD && MD->isStatic()) 5871 StaticOperator = true; 5872 } 5873 5874 auto Arguments = E->arguments(); 5875 if (StaticOperator) { 5876 // If we're calling a static operator, we need to emit the object argument 5877 // and ignore it. 5878 EmitIgnoredExpr(E->getArg(0)); 5879 Arguments = drop_begin(Arguments, 1); 5880 } 5881 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), Arguments, 5882 E->getDirectCallee(), /*ParamsToSkip=*/0, Order); 5883 5884 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5885 Args, FnType, /*ChainCall=*/Chain); 5886 5887 // C99 6.5.2.2p6: 5888 // If the expression that denotes the called function has a type 5889 // that does not include a prototype, [the default argument 5890 // promotions are performed]. If the number of arguments does not 5891 // equal the number of parameters, the behavior is undefined. If 5892 // the function is defined with a type that includes a prototype, 5893 // and either the prototype ends with an ellipsis (, ...) or the 5894 // types of the arguments after promotion are not compatible with 5895 // the types of the parameters, the behavior is undefined. If the 5896 // function is defined with a type that does not include a 5897 // prototype, and the types of the arguments after promotion are 5898 // not compatible with those of the parameters after promotion, 5899 // the behavior is undefined [except in some trivial cases]. 5900 // That is, in the general case, we should assume that a call 5901 // through an unprototyped function type works like a *non-variadic* 5902 // call. The way we make this work is to cast to the exact type 5903 // of the promoted arguments. 5904 // 5905 // Chain calls use this same code path to add the invisible chain parameter 5906 // to the function type. 5907 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5908 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5909 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5910 CalleeTy = CalleeTy->getPointerTo(AS); 5911 5912 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5913 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5914 Callee.setFunctionPointer(CalleePtr); 5915 } 5916 5917 // HIP function pointer contains kernel handle when it is used in triple 5918 // chevron. The kernel stub needs to be loaded from kernel handle and used 5919 // as callee. 5920 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5921 isa<CUDAKernelCallExpr>(E) && 5922 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5923 llvm::Value *Handle = Callee.getFunctionPointer(); 5924 auto *Stub = Builder.CreateLoad( 5925 Address(Handle, Handle->getType(), CGM.getPointerAlign())); 5926 Callee.setFunctionPointer(Stub); 5927 } 5928 llvm::CallBase *CallOrInvoke = nullptr; 5929 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5930 E == MustTailCall, E->getExprLoc()); 5931 5932 // Generate function declaration DISuprogram in order to be used 5933 // in debug info about call sites. 5934 if (CGDebugInfo *DI = getDebugInfo()) { 5935 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5936 FunctionArgList Args; 5937 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5938 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5939 DI->getFunctionType(CalleeDecl, ResTy, Args), 5940 CalleeDecl); 5941 } 5942 } 5943 5944 return Call; 5945 } 5946 5947 LValue CodeGenFunction:: 5948 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5949 Address BaseAddr = Address::invalid(); 5950 if (E->getOpcode() == BO_PtrMemI) { 5951 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5952 } else { 5953 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5954 } 5955 5956 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5957 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5958 5959 LValueBaseInfo BaseInfo; 5960 TBAAAccessInfo TBAAInfo; 5961 Address MemberAddr = 5962 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5963 &TBAAInfo); 5964 5965 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5966 } 5967 5968 /// Given the address of a temporary variable, produce an r-value of 5969 /// its type. 5970 RValue CodeGenFunction::convertTempToRValue(Address addr, 5971 QualType type, 5972 SourceLocation loc) { 5973 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5974 switch (getEvaluationKind(type)) { 5975 case TEK_Complex: 5976 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5977 case TEK_Aggregate: 5978 return lvalue.asAggregateRValue(*this); 5979 case TEK_Scalar: 5980 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5981 } 5982 llvm_unreachable("bad evaluation kind"); 5983 } 5984 5985 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5986 assert(Val->getType()->isFPOrFPVectorTy()); 5987 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5988 return; 5989 5990 llvm::MDBuilder MDHelper(getLLVMContext()); 5991 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5992 5993 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5994 } 5995 5996 void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) { 5997 llvm::Type *EltTy = Val->getType()->getScalarType(); 5998 if (!EltTy->isFloatTy()) 5999 return; 6000 6001 if ((getLangOpts().OpenCL && 6002 !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 6003 (getLangOpts().HIP && getLangOpts().CUDAIsDevice && 6004 !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 6005 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp 6006 // 6007 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 6008 // build option allows an application to specify that single precision 6009 // floating-point divide (x/y and 1/x) and sqrt used in the program 6010 // source are correctly rounded. 6011 // 6012 // TODO: CUDA has a prec-sqrt flag 6013 SetFPAccuracy(Val, 3.0f); 6014 } 6015 } 6016 6017 void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) { 6018 llvm::Type *EltTy = Val->getType()->getScalarType(); 6019 if (!EltTy->isFloatTy()) 6020 return; 6021 6022 if ((getLangOpts().OpenCL && 6023 !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 6024 (getLangOpts().HIP && getLangOpts().CUDAIsDevice && 6025 !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 6026 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 6027 // 6028 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 6029 // build option allows an application to specify that single precision 6030 // floating-point divide (x/y and 1/x) and sqrt used in the program 6031 // source are correctly rounded. 6032 // 6033 // TODO: CUDA has a prec-div flag 6034 SetFPAccuracy(Val, 2.5f); 6035 } 6036 } 6037 6038 namespace { 6039 struct LValueOrRValue { 6040 LValue LV; 6041 RValue RV; 6042 }; 6043 } 6044 6045 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 6046 const PseudoObjectExpr *E, 6047 bool forLValue, 6048 AggValueSlot slot) { 6049 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 6050 6051 // Find the result expression, if any. 6052 const Expr *resultExpr = E->getResultExpr(); 6053 LValueOrRValue result; 6054 6055 for (PseudoObjectExpr::const_semantics_iterator 6056 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 6057 const Expr *semantic = *i; 6058 6059 // If this semantic expression is an opaque value, bind it 6060 // to the result of its source expression. 6061 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 6062 // Skip unique OVEs. 6063 if (ov->isUnique()) { 6064 assert(ov != resultExpr && 6065 "A unique OVE cannot be used as the result expression"); 6066 continue; 6067 } 6068 6069 // If this is the result expression, we may need to evaluate 6070 // directly into the slot. 6071 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 6072 OVMA opaqueData; 6073 if (ov == resultExpr && ov->isPRValue() && !forLValue && 6074 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 6075 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 6076 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 6077 AlignmentSource::Decl); 6078 opaqueData = OVMA::bind(CGF, ov, LV); 6079 result.RV = slot.asRValue(); 6080 6081 // Otherwise, emit as normal. 6082 } else { 6083 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 6084 6085 // If this is the result, also evaluate the result now. 6086 if (ov == resultExpr) { 6087 if (forLValue) 6088 result.LV = CGF.EmitLValue(ov); 6089 else 6090 result.RV = CGF.EmitAnyExpr(ov, slot); 6091 } 6092 } 6093 6094 opaques.push_back(opaqueData); 6095 6096 // Otherwise, if the expression is the result, evaluate it 6097 // and remember the result. 6098 } else if (semantic == resultExpr) { 6099 if (forLValue) 6100 result.LV = CGF.EmitLValue(semantic); 6101 else 6102 result.RV = CGF.EmitAnyExpr(semantic, slot); 6103 6104 // Otherwise, evaluate the expression in an ignored context. 6105 } else { 6106 CGF.EmitIgnoredExpr(semantic); 6107 } 6108 } 6109 6110 // Unbind all the opaques now. 6111 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 6112 opaques[i].unbind(CGF); 6113 6114 return result; 6115 } 6116 6117 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 6118 AggValueSlot slot) { 6119 return emitPseudoObjectExpr(*this, E, false, slot).RV; 6120 } 6121 6122 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 6123 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 6124 } 6125