1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 VectorTy, Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // if this is a bitfield-resulting conditional operator, we can special case 195 // emit this. The normal 'EmitLValue' version of this is particularly 196 // difficult to codegen for, since creating a single "LValue" for two 197 // different sized arguments here is not particularly doable. 198 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>( 199 E->IgnoreParenNoopCasts(getContext()))) { 200 if (CondOp->getObjectKind() == OK_BitField) 201 return EmitIgnoredConditionalOperator(CondOp); 202 } 203 204 // Just emit it as an l-value and drop the result. 205 EmitLValue(E); 206 } 207 208 /// EmitAnyExpr - Emit code to compute the specified expression which 209 /// can have any type. The result is returned as an RValue struct. 210 /// If this is an aggregate expression, AggSlot indicates where the 211 /// result should be returned. 212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 213 AggValueSlot aggSlot, 214 bool ignoreResult) { 215 switch (getEvaluationKind(E->getType())) { 216 case TEK_Scalar: 217 return RValue::get(EmitScalarExpr(E, ignoreResult)); 218 case TEK_Complex: 219 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 220 case TEK_Aggregate: 221 if (!ignoreResult && aggSlot.isIgnored()) 222 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 223 EmitAggExpr(E, aggSlot); 224 return aggSlot.asRValue(); 225 } 226 llvm_unreachable("bad evaluation kind"); 227 } 228 229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 230 /// always be accessible even if no aggregate location is provided. 231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 232 AggValueSlot AggSlot = AggValueSlot::ignored(); 233 234 if (hasAggregateEvaluationKind(E->getType())) 235 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 236 return EmitAnyExpr(E, AggSlot); 237 } 238 239 /// EmitAnyExprToMem - Evaluate an expression into a given memory 240 /// location. 241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 242 Address Location, 243 Qualifiers Quals, 244 bool IsInit) { 245 // FIXME: This function should take an LValue as an argument. 246 switch (getEvaluationKind(E->getType())) { 247 case TEK_Complex: 248 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 249 /*isInit*/ false); 250 return; 251 252 case TEK_Aggregate: { 253 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 254 AggValueSlot::IsDestructed_t(IsInit), 255 AggValueSlot::DoesNotNeedGCBarriers, 256 AggValueSlot::IsAliased_t(!IsInit), 257 AggValueSlot::MayOverlap)); 258 return; 259 } 260 261 case TEK_Scalar: { 262 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 263 LValue LV = MakeAddrLValue(Location, E->getType()); 264 EmitStoreThroughLValue(RV, LV); 265 return; 266 } 267 } 268 llvm_unreachable("bad evaluation kind"); 269 } 270 271 static void 272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 273 const Expr *E, Address ReferenceTemporary) { 274 // Objective-C++ ARC: 275 // If we are binding a reference to a temporary that has ownership, we 276 // need to perform retain/release operations on the temporary. 277 // 278 // FIXME: This should be looking at E, not M. 279 if (auto Lifetime = M->getType().getObjCLifetime()) { 280 switch (Lifetime) { 281 case Qualifiers::OCL_None: 282 case Qualifiers::OCL_ExplicitNone: 283 // Carry on to normal cleanup handling. 284 break; 285 286 case Qualifiers::OCL_Autoreleasing: 287 // Nothing to do; cleaned up by an autorelease pool. 288 return; 289 290 case Qualifiers::OCL_Strong: 291 case Qualifiers::OCL_Weak: 292 switch (StorageDuration Duration = M->getStorageDuration()) { 293 case SD_Static: 294 // Note: we intentionally do not register a cleanup to release 295 // the object on program termination. 296 return; 297 298 case SD_Thread: 299 // FIXME: We should probably register a cleanup in this case. 300 return; 301 302 case SD_Automatic: 303 case SD_FullExpression: 304 CodeGenFunction::Destroyer *Destroy; 305 CleanupKind CleanupKind; 306 if (Lifetime == Qualifiers::OCL_Strong) { 307 const ValueDecl *VD = M->getExtendingDecl(); 308 bool Precise = 309 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 310 CleanupKind = CGF.getARCCleanupKind(); 311 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 312 : &CodeGenFunction::destroyARCStrongImprecise; 313 } else { 314 // __weak objects always get EH cleanups; otherwise, exceptions 315 // could cause really nasty crashes instead of mere leaks. 316 CleanupKind = NormalAndEHCleanup; 317 Destroy = &CodeGenFunction::destroyARCWeak; 318 } 319 if (Duration == SD_FullExpression) 320 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 321 M->getType(), *Destroy, 322 CleanupKind & EHCleanup); 323 else 324 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 325 M->getType(), 326 *Destroy, CleanupKind & EHCleanup); 327 return; 328 329 case SD_Dynamic: 330 llvm_unreachable("temporary cannot have dynamic storage duration"); 331 } 332 llvm_unreachable("unknown storage duration"); 333 } 334 } 335 336 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 337 if (const RecordType *RT = 338 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 339 // Get the destructor for the reference temporary. 340 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 341 if (!ClassDecl->hasTrivialDestructor()) 342 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 343 } 344 345 if (!ReferenceTemporaryDtor) 346 return; 347 348 // Call the destructor for the temporary. 349 switch (M->getStorageDuration()) { 350 case SD_Static: 351 case SD_Thread: { 352 llvm::FunctionCallee CleanupFn; 353 llvm::Constant *CleanupArg; 354 if (E->getType()->isArrayType()) { 355 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 356 ReferenceTemporary, E->getType(), 357 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 358 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 359 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 360 } else { 361 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 362 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 363 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 364 } 365 CGF.CGM.getCXXABI().registerGlobalDtor( 366 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 367 break; 368 } 369 370 case SD_FullExpression: 371 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 372 CodeGenFunction::destroyCXXObject, 373 CGF.getLangOpts().Exceptions); 374 break; 375 376 case SD_Automatic: 377 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 378 ReferenceTemporary, E->getType(), 379 CodeGenFunction::destroyCXXObject, 380 CGF.getLangOpts().Exceptions); 381 break; 382 383 case SD_Dynamic: 384 llvm_unreachable("temporary cannot have dynamic storage duration"); 385 } 386 } 387 388 static Address createReferenceTemporary(CodeGenFunction &CGF, 389 const MaterializeTemporaryExpr *M, 390 const Expr *Inner, 391 Address *Alloca = nullptr) { 392 auto &TCG = CGF.getTargetHooks(); 393 switch (M->getStorageDuration()) { 394 case SD_FullExpression: 395 case SD_Automatic: { 396 // If we have a constant temporary array or record try to promote it into a 397 // constant global under the same rules a normal constant would've been 398 // promoted. This is easier on the optimizer and generally emits fewer 399 // instructions. 400 QualType Ty = Inner->getType(); 401 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 402 (Ty->isArrayType() || Ty->isRecordType()) && 403 CGF.CGM.isTypeConstant(Ty, true)) 404 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 405 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 406 auto *GV = new llvm::GlobalVariable( 407 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 408 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 409 llvm::GlobalValue::NotThreadLocal, 410 CGF.getContext().getTargetAddressSpace(AS)); 411 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 412 GV->setAlignment(alignment.getAsAlign()); 413 llvm::Constant *C = GV; 414 if (AS != LangAS::Default) 415 C = TCG.performAddrSpaceCast( 416 CGF.CGM, GV, AS, LangAS::Default, 417 GV->getValueType()->getPointerTo( 418 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 419 // FIXME: Should we put the new global into a COMDAT? 420 return Address(C, GV->getValueType(), alignment); 421 } 422 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 423 } 424 case SD_Thread: 425 case SD_Static: 426 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 427 428 case SD_Dynamic: 429 llvm_unreachable("temporary can't have dynamic storage duration"); 430 } 431 llvm_unreachable("unknown storage duration"); 432 } 433 434 /// Helper method to check if the underlying ABI is AAPCS 435 static bool isAAPCS(const TargetInfo &TargetInfo) { 436 return TargetInfo.getABI().startswith("aapcs"); 437 } 438 439 LValue CodeGenFunction:: 440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 441 const Expr *E = M->getSubExpr(); 442 443 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 444 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 445 "Reference should never be pseudo-strong!"); 446 447 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 448 // as that will cause the lifetime adjustment to be lost for ARC 449 auto ownership = M->getType().getObjCLifetime(); 450 if (ownership != Qualifiers::OCL_None && 451 ownership != Qualifiers::OCL_ExplicitNone) { 452 Address Object = createReferenceTemporary(*this, M, E); 453 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 454 llvm::Type *Ty = ConvertTypeForMem(E->getType()); 455 Object = Address(llvm::ConstantExpr::getBitCast( 456 Var, Ty->getPointerTo(Object.getAddressSpace())), 457 Ty, Object.getAlignment()); 458 459 // createReferenceTemporary will promote the temporary to a global with a 460 // constant initializer if it can. It can only do this to a value of 461 // ARC-manageable type if the value is global and therefore "immune" to 462 // ref-counting operations. Therefore we have no need to emit either a 463 // dynamic initialization or a cleanup and we can just return the address 464 // of the temporary. 465 if (Var->hasInitializer()) 466 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 467 468 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 469 } 470 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 471 AlignmentSource::Decl); 472 473 switch (getEvaluationKind(E->getType())) { 474 default: llvm_unreachable("expected scalar or aggregate expression"); 475 case TEK_Scalar: 476 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 477 break; 478 case TEK_Aggregate: { 479 EmitAggExpr(E, AggValueSlot::forAddr(Object, 480 E->getType().getQualifiers(), 481 AggValueSlot::IsDestructed, 482 AggValueSlot::DoesNotNeedGCBarriers, 483 AggValueSlot::IsNotAliased, 484 AggValueSlot::DoesNotOverlap)); 485 break; 486 } 487 } 488 489 pushTemporaryCleanup(*this, M, E, Object); 490 return RefTempDst; 491 } 492 493 SmallVector<const Expr *, 2> CommaLHSs; 494 SmallVector<SubobjectAdjustment, 2> Adjustments; 495 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 496 497 for (const auto &Ignored : CommaLHSs) 498 EmitIgnoredExpr(Ignored); 499 500 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 501 if (opaque->getType()->isRecordType()) { 502 assert(Adjustments.empty()); 503 return EmitOpaqueValueLValue(opaque); 504 } 505 } 506 507 // Create and initialize the reference temporary. 508 Address Alloca = Address::invalid(); 509 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 510 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 511 Object.getPointer()->stripPointerCasts())) { 512 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 513 Object = Address(llvm::ConstantExpr::getBitCast( 514 cast<llvm::Constant>(Object.getPointer()), 515 TemporaryType->getPointerTo()), 516 TemporaryType, 517 Object.getAlignment()); 518 // If the temporary is a global and has a constant initializer or is a 519 // constant temporary that we promoted to a global, we may have already 520 // initialized it. 521 if (!Var->hasInitializer()) { 522 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 524 } 525 } else { 526 switch (M->getStorageDuration()) { 527 case SD_Automatic: 528 if (auto *Size = EmitLifetimeStart( 529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 530 Alloca.getPointer())) { 531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 532 Alloca, Size); 533 } 534 break; 535 536 case SD_FullExpression: { 537 if (!ShouldEmitLifetimeMarkers) 538 break; 539 540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 541 // marker. Instead, start the lifetime of a conditional temporary earlier 542 // so that it's unconditional. Don't do this with sanitizers which need 543 // more precise lifetime marks. 544 ConditionalEvaluation *OldConditional = nullptr; 545 CGBuilderTy::InsertPoint OldIP; 546 if (isInConditionalBranch() && !E->getType().isDestructedType() && 547 !SanOpts.has(SanitizerKind::HWAddress) && 548 !SanOpts.has(SanitizerKind::Memory) && 549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 550 OldConditional = OutermostConditional; 551 OutermostConditional = nullptr; 552 553 OldIP = Builder.saveIP(); 554 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 555 Builder.restoreIP(CGBuilderTy::InsertPoint( 556 Block, llvm::BasicBlock::iterator(Block->back()))); 557 } 558 559 if (auto *Size = EmitLifetimeStart( 560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 561 Alloca.getPointer())) { 562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 563 Size); 564 } 565 566 if (OldConditional) { 567 OutermostConditional = OldConditional; 568 Builder.restoreIP(OldIP); 569 } 570 break; 571 } 572 573 default: 574 break; 575 } 576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 577 } 578 pushTemporaryCleanup(*this, M, E, Object); 579 580 // Perform derived-to-base casts and/or field accesses, to get from the 581 // temporary object we created (and, potentially, for which we extended 582 // the lifetime) to the subobject we're binding the reference to. 583 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 584 switch (Adjustment.Kind) { 585 case SubobjectAdjustment::DerivedToBaseAdjustment: 586 Object = 587 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 588 Adjustment.DerivedToBase.BasePath->path_begin(), 589 Adjustment.DerivedToBase.BasePath->path_end(), 590 /*NullCheckValue=*/ false, E->getExprLoc()); 591 break; 592 593 case SubobjectAdjustment::FieldAdjustment: { 594 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 595 LV = EmitLValueForField(LV, Adjustment.Field); 596 assert(LV.isSimple() && 597 "materialized temporary field is not a simple lvalue"); 598 Object = LV.getAddress(*this); 599 break; 600 } 601 602 case SubobjectAdjustment::MemberPointerAdjustment: { 603 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 604 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 605 Adjustment.Ptr.MPT); 606 break; 607 } 608 } 609 } 610 611 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 612 } 613 614 RValue 615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 616 // Emit the expression as an lvalue. 617 LValue LV = EmitLValue(E); 618 assert(LV.isSimple()); 619 llvm::Value *Value = LV.getPointer(*this); 620 621 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 622 // C++11 [dcl.ref]p5 (as amended by core issue 453): 623 // If a glvalue to which a reference is directly bound designates neither 624 // an existing object or function of an appropriate type nor a region of 625 // storage of suitable size and alignment to contain an object of the 626 // reference's type, the behavior is undefined. 627 QualType Ty = E->getType(); 628 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 629 } 630 631 return RValue::get(Value); 632 } 633 634 635 /// getAccessedFieldNo - Given an encoded value and a result number, return the 636 /// input field number being accessed. 637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 638 const llvm::Constant *Elts) { 639 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 640 ->getZExtValue(); 641 } 642 643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 645 llvm::Value *High) { 646 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 647 llvm::Value *K47 = Builder.getInt64(47); 648 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 649 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 650 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 651 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 652 return Builder.CreateMul(B1, KMul); 653 } 654 655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 656 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 657 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 658 } 659 660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 661 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 662 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 663 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 664 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 665 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 666 } 667 668 bool CodeGenFunction::sanitizePerformTypeCheck() const { 669 return SanOpts.has(SanitizerKind::Null) || 670 SanOpts.has(SanitizerKind::Alignment) || 671 SanOpts.has(SanitizerKind::ObjectSize) || 672 SanOpts.has(SanitizerKind::Vptr); 673 } 674 675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 676 llvm::Value *Ptr, QualType Ty, 677 CharUnits Alignment, 678 SanitizerSet SkippedChecks, 679 llvm::Value *ArraySize) { 680 if (!sanitizePerformTypeCheck()) 681 return; 682 683 // Don't check pointers outside the default address space. The null check 684 // isn't correct, the object-size check isn't supported by LLVM, and we can't 685 // communicate the addresses to the runtime handler for the vptr check. 686 if (Ptr->getType()->getPointerAddressSpace()) 687 return; 688 689 // Don't check pointers to volatile data. The behavior here is implementation- 690 // defined. 691 if (Ty.isVolatileQualified()) 692 return; 693 694 SanitizerScope SanScope(this); 695 696 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 697 llvm::BasicBlock *Done = nullptr; 698 699 // Quickly determine whether we have a pointer to an alloca. It's possible 700 // to skip null checks, and some alignment checks, for these pointers. This 701 // can reduce compile-time significantly. 702 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 703 704 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 705 llvm::Value *IsNonNull = nullptr; 706 bool IsGuaranteedNonNull = 707 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 708 bool AllowNullPointers = isNullPointerAllowed(TCK); 709 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 710 !IsGuaranteedNonNull) { 711 // The glvalue must not be an empty glvalue. 712 IsNonNull = Builder.CreateIsNotNull(Ptr); 713 714 // The IR builder can constant-fold the null check if the pointer points to 715 // a constant. 716 IsGuaranteedNonNull = IsNonNull == True; 717 718 // Skip the null check if the pointer is known to be non-null. 719 if (!IsGuaranteedNonNull) { 720 if (AllowNullPointers) { 721 // When performing pointer casts, it's OK if the value is null. 722 // Skip the remaining checks in that case. 723 Done = createBasicBlock("null"); 724 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 725 Builder.CreateCondBr(IsNonNull, Rest, Done); 726 EmitBlock(Rest); 727 } else { 728 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 729 } 730 } 731 } 732 733 if (SanOpts.has(SanitizerKind::ObjectSize) && 734 !SkippedChecks.has(SanitizerKind::ObjectSize) && 735 !Ty->isIncompleteType()) { 736 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 737 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 738 if (ArraySize) 739 Size = Builder.CreateMul(Size, ArraySize); 740 741 // Degenerate case: new X[0] does not need an objectsize check. 742 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 743 if (!ConstantSize || !ConstantSize->isNullValue()) { 744 // The glvalue must refer to a large enough storage region. 745 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 746 // to check this. 747 // FIXME: Get object address space 748 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 749 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 750 llvm::Value *Min = Builder.getFalse(); 751 llvm::Value *NullIsUnknown = Builder.getFalse(); 752 llvm::Value *Dynamic = Builder.getFalse(); 753 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 754 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 755 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 756 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 757 } 758 } 759 760 llvm::MaybeAlign AlignVal; 761 llvm::Value *PtrAsInt = nullptr; 762 763 if (SanOpts.has(SanitizerKind::Alignment) && 764 !SkippedChecks.has(SanitizerKind::Alignment)) { 765 AlignVal = Alignment.getAsMaybeAlign(); 766 if (!Ty->isIncompleteType() && !AlignVal) 767 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 768 /*ForPointeeType=*/true) 769 .getAsMaybeAlign(); 770 771 // The glvalue must be suitably aligned. 772 if (AlignVal && *AlignVal > llvm::Align(1) && 773 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) { 774 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 775 llvm::Value *Align = Builder.CreateAnd( 776 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1)); 777 llvm::Value *Aligned = 778 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 779 if (Aligned != True) 780 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 781 } 782 } 783 784 if (Checks.size() > 0) { 785 llvm::Constant *StaticData[] = { 786 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 787 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1), 788 llvm::ConstantInt::get(Int8Ty, TCK)}; 789 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 790 PtrAsInt ? PtrAsInt : Ptr); 791 } 792 793 // If possible, check that the vptr indicates that there is a subobject of 794 // type Ty at offset zero within this object. 795 // 796 // C++11 [basic.life]p5,6: 797 // [For storage which does not refer to an object within its lifetime] 798 // The program has undefined behavior if: 799 // -- the [pointer or glvalue] is used to access a non-static data member 800 // or call a non-static member function 801 if (SanOpts.has(SanitizerKind::Vptr) && 802 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 803 // Ensure that the pointer is non-null before loading it. If there is no 804 // compile-time guarantee, reuse the run-time null check or emit a new one. 805 if (!IsGuaranteedNonNull) { 806 if (!IsNonNull) 807 IsNonNull = Builder.CreateIsNotNull(Ptr); 808 if (!Done) 809 Done = createBasicBlock("vptr.null"); 810 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 811 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 812 EmitBlock(VptrNotNull); 813 } 814 815 // Compute a hash of the mangled name of the type. 816 // 817 // FIXME: This is not guaranteed to be deterministic! Move to a 818 // fingerprinting mechanism once LLVM provides one. For the time 819 // being the implementation happens to be deterministic. 820 SmallString<64> MangledName; 821 llvm::raw_svector_ostream Out(MangledName); 822 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 823 Out); 824 825 // Contained in NoSanitizeList based on the mangled type. 826 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 827 Out.str())) { 828 llvm::hash_code TypeHash = hash_value(Out.str()); 829 830 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 831 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 832 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 833 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy, 834 getPointerAlign()); 835 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 836 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 837 838 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 839 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 840 841 // Look the hash up in our cache. 842 const int CacheSize = 128; 843 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 844 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 845 "__ubsan_vptr_type_cache"); 846 llvm::Value *Slot = Builder.CreateAnd(Hash, 847 llvm::ConstantInt::get(IntPtrTy, 848 CacheSize-1)); 849 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 850 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 851 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 852 getPointerAlign()); 853 854 // If the hash isn't in the cache, call a runtime handler to perform the 855 // hard work of checking whether the vptr is for an object of the right 856 // type. This will either fill in the cache and return, or produce a 857 // diagnostic. 858 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 859 llvm::Constant *StaticData[] = { 860 EmitCheckSourceLocation(Loc), 861 EmitCheckTypeDescriptor(Ty), 862 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 863 llvm::ConstantInt::get(Int8Ty, TCK) 864 }; 865 llvm::Value *DynamicData[] = { Ptr, Hash }; 866 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 867 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 868 DynamicData); 869 } 870 } 871 872 if (Done) { 873 Builder.CreateBr(Done); 874 EmitBlock(Done); 875 } 876 } 877 878 /// Determine whether this expression refers to a flexible array member in a 879 /// struct. We disable array bounds checks for such members. 880 static bool isFlexibleArrayMemberExpr(const Expr *E, 881 unsigned StrictFlexArraysLevel) { 882 // For compatibility with existing code, we treat arrays of length 0 or 883 // 1 as flexible array members. 884 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 885 // the two mechanisms. 886 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 887 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 888 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 889 // was produced by macro expansion. 890 if (StrictFlexArraysLevel >= 2 && CAT->getSize().ugt(0)) 891 return false; 892 // FIXME: While the default -fstrict-flex-arrays=0 permits Size>1 trailing 893 // arrays to be treated as flexible-array-members, we still emit ubsan 894 // checks as if they are not. 895 if (CAT->getSize().ugt(1)) 896 return false; 897 } else if (!isa<IncompleteArrayType>(AT)) 898 return false; 899 900 E = E->IgnoreParens(); 901 902 // A flexible array member must be the last member in the class. 903 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 904 // FIXME: If the base type of the member expr is not FD->getParent(), 905 // this should not be treated as a flexible array member access. 906 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 907 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 908 // member, only a T[0] or T[] member gets that treatment. 909 // Under StrictFlexArraysLevel, obey c99+ that disallows FAM in union, see 910 // C11 6.7.2.1 §18 911 if (FD->getParent()->isUnion()) 912 return StrictFlexArraysLevel < 2; 913 RecordDecl::field_iterator FI( 914 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 915 return ++FI == FD->getParent()->field_end(); 916 } 917 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 918 return IRE->getDecl()->getNextIvar() == nullptr; 919 } 920 921 return false; 922 } 923 924 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 925 QualType EltTy) { 926 ASTContext &C = getContext(); 927 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 928 if (!EltSize) 929 return nullptr; 930 931 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 932 if (!ArrayDeclRef) 933 return nullptr; 934 935 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 936 if (!ParamDecl) 937 return nullptr; 938 939 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 940 if (!POSAttr) 941 return nullptr; 942 943 // Don't load the size if it's a lower bound. 944 int POSType = POSAttr->getType(); 945 if (POSType != 0 && POSType != 1) 946 return nullptr; 947 948 // Find the implicit size parameter. 949 auto PassedSizeIt = SizeArguments.find(ParamDecl); 950 if (PassedSizeIt == SizeArguments.end()) 951 return nullptr; 952 953 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 954 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 955 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 956 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 957 C.getSizeType(), E->getExprLoc()); 958 llvm::Value *SizeOfElement = 959 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 960 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 961 } 962 963 /// If Base is known to point to the start of an array, return the length of 964 /// that array. Return 0 if the length cannot be determined. 965 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF, 966 const Expr *Base, 967 QualType &IndexedType, 968 unsigned StrictFlexArraysLevel) { 969 // For the vector indexing extension, the bound is the number of elements. 970 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 971 IndexedType = Base->getType(); 972 return CGF.Builder.getInt32(VT->getNumElements()); 973 } 974 975 Base = Base->IgnoreParens(); 976 977 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 978 if (CE->getCastKind() == CK_ArrayToPointerDecay && 979 !isFlexibleArrayMemberExpr(CE->getSubExpr(), StrictFlexArraysLevel)) { 980 IndexedType = CE->getSubExpr()->getType(); 981 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 982 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 983 return CGF.Builder.getInt(CAT->getSize()); 984 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 985 return CGF.getVLASize(VAT).NumElts; 986 // Ignore pass_object_size here. It's not applicable on decayed pointers. 987 } 988 } 989 990 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 991 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 992 IndexedType = Base->getType(); 993 return POS; 994 } 995 996 return nullptr; 997 } 998 999 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 1000 llvm::Value *Index, QualType IndexType, 1001 bool Accessed) { 1002 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 1003 "should not be called unless adding bounds checks"); 1004 SanitizerScope SanScope(this); 1005 1006 const unsigned StrictFlexArraysLevel = getLangOpts().StrictFlexArrays; 1007 1008 QualType IndexedType; 1009 llvm::Value *Bound = 1010 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel); 1011 if (!Bound) 1012 return; 1013 1014 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 1015 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 1016 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 1017 1018 llvm::Constant *StaticData[] = { 1019 EmitCheckSourceLocation(E->getExprLoc()), 1020 EmitCheckTypeDescriptor(IndexedType), 1021 EmitCheckTypeDescriptor(IndexType) 1022 }; 1023 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1024 : Builder.CreateICmpULE(IndexVal, BoundVal); 1025 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1026 SanitizerHandler::OutOfBounds, StaticData, Index); 1027 } 1028 1029 1030 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1031 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1032 bool isInc, bool isPre) { 1033 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1034 1035 llvm::Value *NextVal; 1036 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1037 uint64_t AmountVal = isInc ? 1 : -1; 1038 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1039 1040 // Add the inc/dec to the real part. 1041 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1042 } else { 1043 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1044 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1045 if (!isInc) 1046 FVal.changeSign(); 1047 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1048 1049 // Add the inc/dec to the real part. 1050 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1051 } 1052 1053 ComplexPairTy IncVal(NextVal, InVal.second); 1054 1055 // Store the updated result through the lvalue. 1056 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1057 if (getLangOpts().OpenMP) 1058 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1059 E->getSubExpr()); 1060 1061 // If this is a postinc, return the value read from memory, otherwise use the 1062 // updated value. 1063 return isPre ? IncVal : InVal; 1064 } 1065 1066 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1067 CodeGenFunction *CGF) { 1068 // Bind VLAs in the cast type. 1069 if (CGF && E->getType()->isVariablyModifiedType()) 1070 CGF->EmitVariablyModifiedType(E->getType()); 1071 1072 if (CGDebugInfo *DI = getModuleDebugInfo()) 1073 DI->EmitExplicitCastType(E->getType()); 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // LValue Expression Emission 1078 //===----------------------------------------------------------------------===// 1079 1080 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1081 /// derive a more accurate bound on the alignment of the pointer. 1082 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1083 LValueBaseInfo *BaseInfo, 1084 TBAAAccessInfo *TBAAInfo) { 1085 // We allow this with ObjC object pointers because of fragile ABIs. 1086 assert(E->getType()->isPointerType() || 1087 E->getType()->isObjCObjectPointerType()); 1088 E = E->IgnoreParens(); 1089 1090 // Casts: 1091 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1092 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1093 CGM.EmitExplicitCastExprType(ECE, this); 1094 1095 switch (CE->getCastKind()) { 1096 // Non-converting casts (but not C's implicit conversion from void*). 1097 case CK_BitCast: 1098 case CK_NoOp: 1099 case CK_AddressSpaceConversion: 1100 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1101 if (PtrTy->getPointeeType()->isVoidType()) 1102 break; 1103 1104 LValueBaseInfo InnerBaseInfo; 1105 TBAAAccessInfo InnerTBAAInfo; 1106 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1107 &InnerBaseInfo, 1108 &InnerTBAAInfo); 1109 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1110 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1111 1112 if (isa<ExplicitCastExpr>(CE)) { 1113 LValueBaseInfo TargetTypeBaseInfo; 1114 TBAAAccessInfo TargetTypeTBAAInfo; 1115 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1116 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1117 if (TBAAInfo) 1118 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1119 TargetTypeTBAAInfo); 1120 // If the source l-value is opaque, honor the alignment of the 1121 // casted-to type. 1122 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1123 if (BaseInfo) 1124 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1125 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align); 1126 } 1127 } 1128 1129 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1130 CE->getCastKind() == CK_BitCast) { 1131 if (auto PT = E->getType()->getAs<PointerType>()) 1132 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 1133 /*MayBeNull=*/true, 1134 CodeGenFunction::CFITCK_UnrelatedCast, 1135 CE->getBeginLoc()); 1136 } 1137 1138 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1139 Addr = Builder.CreateElementBitCast(Addr, ElemTy); 1140 if (CE->getCastKind() == CK_AddressSpaceConversion) 1141 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType())); 1142 return Addr; 1143 } 1144 break; 1145 1146 // Array-to-pointer decay. 1147 case CK_ArrayToPointerDecay: 1148 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1149 1150 // Derived-to-base conversions. 1151 case CK_UncheckedDerivedToBase: 1152 case CK_DerivedToBase: { 1153 // TODO: Support accesses to members of base classes in TBAA. For now, we 1154 // conservatively pretend that the complete object is of the base class 1155 // type. 1156 if (TBAAInfo) 1157 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1158 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1159 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1160 return GetAddressOfBaseClass(Addr, Derived, 1161 CE->path_begin(), CE->path_end(), 1162 ShouldNullCheckClassCastValue(CE), 1163 CE->getExprLoc()); 1164 } 1165 1166 // TODO: Is there any reason to treat base-to-derived conversions 1167 // specially? 1168 default: 1169 break; 1170 } 1171 } 1172 1173 // Unary &. 1174 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1175 if (UO->getOpcode() == UO_AddrOf) { 1176 LValue LV = EmitLValue(UO->getSubExpr()); 1177 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1178 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1179 return LV.getAddress(*this); 1180 } 1181 } 1182 1183 // std::addressof and variants. 1184 if (auto *Call = dyn_cast<CallExpr>(E)) { 1185 switch (Call->getBuiltinCallee()) { 1186 default: 1187 break; 1188 case Builtin::BIaddressof: 1189 case Builtin::BI__addressof: 1190 case Builtin::BI__builtin_addressof: { 1191 LValue LV = EmitLValue(Call->getArg(0)); 1192 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1193 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1194 return LV.getAddress(*this); 1195 } 1196 } 1197 } 1198 1199 // TODO: conditional operators, comma. 1200 1201 // Otherwise, use the alignment of the type. 1202 CharUnits Align = 1203 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1204 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1205 return Address(EmitScalarExpr(E), ElemTy, Align); 1206 } 1207 1208 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1209 llvm::Value *V = RV.getScalarVal(); 1210 if (auto MPT = T->getAs<MemberPointerType>()) 1211 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1212 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1213 } 1214 1215 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1216 if (Ty->isVoidType()) 1217 return RValue::get(nullptr); 1218 1219 switch (getEvaluationKind(Ty)) { 1220 case TEK_Complex: { 1221 llvm::Type *EltTy = 1222 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1223 llvm::Value *U = llvm::UndefValue::get(EltTy); 1224 return RValue::getComplex(std::make_pair(U, U)); 1225 } 1226 1227 // If this is a use of an undefined aggregate type, the aggregate must have an 1228 // identifiable address. Just because the contents of the value are undefined 1229 // doesn't mean that the address can't be taken and compared. 1230 case TEK_Aggregate: { 1231 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1232 return RValue::getAggregate(DestPtr); 1233 } 1234 1235 case TEK_Scalar: 1236 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1237 } 1238 llvm_unreachable("bad evaluation kind"); 1239 } 1240 1241 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1242 const char *Name) { 1243 ErrorUnsupported(E, Name); 1244 return GetUndefRValue(E->getType()); 1245 } 1246 1247 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1248 const char *Name) { 1249 ErrorUnsupported(E, Name); 1250 llvm::Type *ElTy = ConvertType(E->getType()); 1251 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy); 1252 return MakeAddrLValue( 1253 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 1254 } 1255 1256 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1257 const Expr *Base = Obj; 1258 while (!isa<CXXThisExpr>(Base)) { 1259 // The result of a dynamic_cast can be null. 1260 if (isa<CXXDynamicCastExpr>(Base)) 1261 return false; 1262 1263 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1264 Base = CE->getSubExpr(); 1265 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1266 Base = PE->getSubExpr(); 1267 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1268 if (UO->getOpcode() == UO_Extension) 1269 Base = UO->getSubExpr(); 1270 else 1271 return false; 1272 } else { 1273 return false; 1274 } 1275 } 1276 return true; 1277 } 1278 1279 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1280 LValue LV; 1281 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1282 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1283 else 1284 LV = EmitLValue(E); 1285 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1286 SanitizerSet SkippedChecks; 1287 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1288 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1289 if (IsBaseCXXThis) 1290 SkippedChecks.set(SanitizerKind::Alignment, true); 1291 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1292 SkippedChecks.set(SanitizerKind::Null, true); 1293 } 1294 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1295 LV.getAlignment(), SkippedChecks); 1296 } 1297 return LV; 1298 } 1299 1300 /// EmitLValue - Emit code to compute a designator that specifies the location 1301 /// of the expression. 1302 /// 1303 /// This can return one of two things: a simple address or a bitfield reference. 1304 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1305 /// an LLVM pointer type. 1306 /// 1307 /// If this returns a bitfield reference, nothing about the pointee type of the 1308 /// LLVM value is known: For example, it may not be a pointer to an integer. 1309 /// 1310 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1311 /// this method guarantees that the returned pointer type will point to an LLVM 1312 /// type of the same size of the lvalue's type. If the lvalue has a variable 1313 /// length type, this is not possible. 1314 /// 1315 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1316 ApplyDebugLocation DL(*this, E); 1317 switch (E->getStmtClass()) { 1318 default: return EmitUnsupportedLValue(E, "l-value expression"); 1319 1320 case Expr::ObjCPropertyRefExprClass: 1321 llvm_unreachable("cannot emit a property reference directly"); 1322 1323 case Expr::ObjCSelectorExprClass: 1324 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1325 case Expr::ObjCIsaExprClass: 1326 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1327 case Expr::BinaryOperatorClass: 1328 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1329 case Expr::CompoundAssignOperatorClass: { 1330 QualType Ty = E->getType(); 1331 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1332 Ty = AT->getValueType(); 1333 if (!Ty->isAnyComplexType()) 1334 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1335 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1336 } 1337 case Expr::CallExprClass: 1338 case Expr::CXXMemberCallExprClass: 1339 case Expr::CXXOperatorCallExprClass: 1340 case Expr::UserDefinedLiteralClass: 1341 return EmitCallExprLValue(cast<CallExpr>(E)); 1342 case Expr::CXXRewrittenBinaryOperatorClass: 1343 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1344 case Expr::VAArgExprClass: 1345 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1346 case Expr::DeclRefExprClass: 1347 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1348 case Expr::ConstantExprClass: { 1349 const ConstantExpr *CE = cast<ConstantExpr>(E); 1350 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1351 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1352 ->getCallReturnType(getContext()) 1353 ->getPointeeType(); 1354 return MakeNaturalAlignAddrLValue(Result, RetType); 1355 } 1356 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1357 } 1358 case Expr::ParenExprClass: 1359 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1360 case Expr::GenericSelectionExprClass: 1361 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1362 case Expr::PredefinedExprClass: 1363 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1364 case Expr::StringLiteralClass: 1365 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1366 case Expr::ObjCEncodeExprClass: 1367 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1368 case Expr::PseudoObjectExprClass: 1369 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1370 case Expr::InitListExprClass: 1371 return EmitInitListLValue(cast<InitListExpr>(E)); 1372 case Expr::CXXTemporaryObjectExprClass: 1373 case Expr::CXXConstructExprClass: 1374 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1375 case Expr::CXXBindTemporaryExprClass: 1376 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1377 case Expr::CXXUuidofExprClass: 1378 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1379 case Expr::LambdaExprClass: 1380 return EmitAggExprToLValue(E); 1381 1382 case Expr::ExprWithCleanupsClass: { 1383 const auto *cleanups = cast<ExprWithCleanups>(E); 1384 RunCleanupsScope Scope(*this); 1385 LValue LV = EmitLValue(cleanups->getSubExpr()); 1386 if (LV.isSimple()) { 1387 // Defend against branches out of gnu statement expressions surrounded by 1388 // cleanups. 1389 Address Addr = LV.getAddress(*this); 1390 llvm::Value *V = Addr.getPointer(); 1391 Scope.ForceCleanup({&V}); 1392 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(), 1393 LV.getBaseInfo(), LV.getTBAAInfo()); 1394 } 1395 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1396 // bitfield lvalue or some other non-simple lvalue? 1397 return LV; 1398 } 1399 1400 case Expr::CXXDefaultArgExprClass: { 1401 auto *DAE = cast<CXXDefaultArgExpr>(E); 1402 CXXDefaultArgExprScope Scope(*this, DAE); 1403 return EmitLValue(DAE->getExpr()); 1404 } 1405 case Expr::CXXDefaultInitExprClass: { 1406 auto *DIE = cast<CXXDefaultInitExpr>(E); 1407 CXXDefaultInitExprScope Scope(*this, DIE); 1408 return EmitLValue(DIE->getExpr()); 1409 } 1410 case Expr::CXXTypeidExprClass: 1411 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1412 1413 case Expr::ObjCMessageExprClass: 1414 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1415 case Expr::ObjCIvarRefExprClass: 1416 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1417 case Expr::StmtExprClass: 1418 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1419 case Expr::UnaryOperatorClass: 1420 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1421 case Expr::ArraySubscriptExprClass: 1422 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1423 case Expr::MatrixSubscriptExprClass: 1424 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1425 case Expr::OMPArraySectionExprClass: 1426 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1427 case Expr::ExtVectorElementExprClass: 1428 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1429 case Expr::MemberExprClass: 1430 return EmitMemberExpr(cast<MemberExpr>(E)); 1431 case Expr::CompoundLiteralExprClass: 1432 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1433 case Expr::ConditionalOperatorClass: 1434 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1435 case Expr::BinaryConditionalOperatorClass: 1436 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1437 case Expr::ChooseExprClass: 1438 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1439 case Expr::OpaqueValueExprClass: 1440 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1441 case Expr::SubstNonTypeTemplateParmExprClass: 1442 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1443 case Expr::ImplicitCastExprClass: 1444 case Expr::CStyleCastExprClass: 1445 case Expr::CXXFunctionalCastExprClass: 1446 case Expr::CXXStaticCastExprClass: 1447 case Expr::CXXDynamicCastExprClass: 1448 case Expr::CXXReinterpretCastExprClass: 1449 case Expr::CXXConstCastExprClass: 1450 case Expr::CXXAddrspaceCastExprClass: 1451 case Expr::ObjCBridgedCastExprClass: 1452 return EmitCastLValue(cast<CastExpr>(E)); 1453 1454 case Expr::MaterializeTemporaryExprClass: 1455 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1456 1457 case Expr::CoawaitExprClass: 1458 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1459 case Expr::CoyieldExprClass: 1460 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1461 } 1462 } 1463 1464 /// Given an object of the given canonical type, can we safely copy a 1465 /// value out of it based on its initializer? 1466 static bool isConstantEmittableObjectType(QualType type) { 1467 assert(type.isCanonical()); 1468 assert(!type->isReferenceType()); 1469 1470 // Must be const-qualified but non-volatile. 1471 Qualifiers qs = type.getLocalQualifiers(); 1472 if (!qs.hasConst() || qs.hasVolatile()) return false; 1473 1474 // Otherwise, all object types satisfy this except C++ classes with 1475 // mutable subobjects or non-trivial copy/destroy behavior. 1476 if (const auto *RT = dyn_cast<RecordType>(type)) 1477 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1478 if (RD->hasMutableFields() || !RD->isTrivial()) 1479 return false; 1480 1481 return true; 1482 } 1483 1484 /// Can we constant-emit a load of a reference to a variable of the 1485 /// given type? This is different from predicates like 1486 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1487 /// in situations that don't necessarily satisfy the language's rules 1488 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1489 /// to do this with const float variables even if those variables 1490 /// aren't marked 'constexpr'. 1491 enum ConstantEmissionKind { 1492 CEK_None, 1493 CEK_AsReferenceOnly, 1494 CEK_AsValueOrReference, 1495 CEK_AsValueOnly 1496 }; 1497 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1498 type = type.getCanonicalType(); 1499 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1500 if (isConstantEmittableObjectType(ref->getPointeeType())) 1501 return CEK_AsValueOrReference; 1502 return CEK_AsReferenceOnly; 1503 } 1504 if (isConstantEmittableObjectType(type)) 1505 return CEK_AsValueOnly; 1506 return CEK_None; 1507 } 1508 1509 /// Try to emit a reference to the given value without producing it as 1510 /// an l-value. This is just an optimization, but it avoids us needing 1511 /// to emit global copies of variables if they're named without triggering 1512 /// a formal use in a context where we can't emit a direct reference to them, 1513 /// for instance if a block or lambda or a member of a local class uses a 1514 /// const int variable or constexpr variable from an enclosing function. 1515 CodeGenFunction::ConstantEmission 1516 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1517 ValueDecl *value = refExpr->getDecl(); 1518 1519 // The value needs to be an enum constant or a constant variable. 1520 ConstantEmissionKind CEK; 1521 if (isa<ParmVarDecl>(value)) { 1522 CEK = CEK_None; 1523 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1524 CEK = checkVarTypeForConstantEmission(var->getType()); 1525 } else if (isa<EnumConstantDecl>(value)) { 1526 CEK = CEK_AsValueOnly; 1527 } else { 1528 CEK = CEK_None; 1529 } 1530 if (CEK == CEK_None) return ConstantEmission(); 1531 1532 Expr::EvalResult result; 1533 bool resultIsReference; 1534 QualType resultType; 1535 1536 // It's best to evaluate all the way as an r-value if that's permitted. 1537 if (CEK != CEK_AsReferenceOnly && 1538 refExpr->EvaluateAsRValue(result, getContext())) { 1539 resultIsReference = false; 1540 resultType = refExpr->getType(); 1541 1542 // Otherwise, try to evaluate as an l-value. 1543 } else if (CEK != CEK_AsValueOnly && 1544 refExpr->EvaluateAsLValue(result, getContext())) { 1545 resultIsReference = true; 1546 resultType = value->getType(); 1547 1548 // Failure. 1549 } else { 1550 return ConstantEmission(); 1551 } 1552 1553 // In any case, if the initializer has side-effects, abandon ship. 1554 if (result.HasSideEffects) 1555 return ConstantEmission(); 1556 1557 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1558 // referencing a global host variable by copy. In this case the lambda should 1559 // make a copy of the value of the global host variable. The DRE of the 1560 // captured reference variable cannot be emitted as load from the host 1561 // global variable as compile time constant, since the host variable is not 1562 // accessible on device. The DRE of the captured reference variable has to be 1563 // loaded from captures. 1564 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1565 refExpr->refersToEnclosingVariableOrCapture()) { 1566 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1567 if (MD && MD->getParent()->isLambda() && 1568 MD->getOverloadedOperator() == OO_Call) { 1569 const APValue::LValueBase &base = result.Val.getLValueBase(); 1570 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1571 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1572 if (!VD->hasAttr<CUDADeviceAttr>()) { 1573 return ConstantEmission(); 1574 } 1575 } 1576 } 1577 } 1578 } 1579 1580 // Emit as a constant. 1581 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1582 result.Val, resultType); 1583 1584 // Make sure we emit a debug reference to the global variable. 1585 // This should probably fire even for 1586 if (isa<VarDecl>(value)) { 1587 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1588 EmitDeclRefExprDbgValue(refExpr, result.Val); 1589 } else { 1590 assert(isa<EnumConstantDecl>(value)); 1591 EmitDeclRefExprDbgValue(refExpr, result.Val); 1592 } 1593 1594 // If we emitted a reference constant, we need to dereference that. 1595 if (resultIsReference) 1596 return ConstantEmission::forReference(C); 1597 1598 return ConstantEmission::forValue(C); 1599 } 1600 1601 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1602 const MemberExpr *ME) { 1603 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1604 // Try to emit static variable member expressions as DREs. 1605 return DeclRefExpr::Create( 1606 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1607 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1608 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1609 } 1610 return nullptr; 1611 } 1612 1613 CodeGenFunction::ConstantEmission 1614 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1615 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1616 return tryEmitAsConstant(DRE); 1617 return ConstantEmission(); 1618 } 1619 1620 llvm::Value *CodeGenFunction::emitScalarConstant( 1621 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1622 assert(Constant && "not a constant"); 1623 if (Constant.isReference()) 1624 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1625 E->getExprLoc()) 1626 .getScalarVal(); 1627 return Constant.getValue(); 1628 } 1629 1630 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1631 SourceLocation Loc) { 1632 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1633 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1634 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1635 } 1636 1637 static bool hasBooleanRepresentation(QualType Ty) { 1638 if (Ty->isBooleanType()) 1639 return true; 1640 1641 if (const EnumType *ET = Ty->getAs<EnumType>()) 1642 return ET->getDecl()->getIntegerType()->isBooleanType(); 1643 1644 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1645 return hasBooleanRepresentation(AT->getValueType()); 1646 1647 return false; 1648 } 1649 1650 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1651 llvm::APInt &Min, llvm::APInt &End, 1652 bool StrictEnums, bool IsBool) { 1653 const EnumType *ET = Ty->getAs<EnumType>(); 1654 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1655 ET && !ET->getDecl()->isFixed(); 1656 if (!IsBool && !IsRegularCPlusPlusEnum) 1657 return false; 1658 1659 if (IsBool) { 1660 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1661 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1662 } else { 1663 const EnumDecl *ED = ET->getDecl(); 1664 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1665 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1666 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1667 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1668 1669 if (NumNegativeBits) { 1670 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1671 assert(NumBits <= Bitwidth); 1672 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1673 Min = -End; 1674 } else { 1675 assert(NumPositiveBits <= Bitwidth); 1676 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1677 Min = llvm::APInt::getZero(Bitwidth); 1678 } 1679 } 1680 return true; 1681 } 1682 1683 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1684 llvm::APInt Min, End; 1685 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1686 hasBooleanRepresentation(Ty))) 1687 return nullptr; 1688 1689 llvm::MDBuilder MDHelper(getLLVMContext()); 1690 return MDHelper.createRange(Min, End); 1691 } 1692 1693 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1694 SourceLocation Loc) { 1695 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1696 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1697 if (!HasBoolCheck && !HasEnumCheck) 1698 return false; 1699 1700 bool IsBool = hasBooleanRepresentation(Ty) || 1701 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1702 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1703 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1704 if (!NeedsBoolCheck && !NeedsEnumCheck) 1705 return false; 1706 1707 // Single-bit booleans don't need to be checked. Special-case this to avoid 1708 // a bit width mismatch when handling bitfield values. This is handled by 1709 // EmitFromMemory for the non-bitfield case. 1710 if (IsBool && 1711 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1712 return false; 1713 1714 llvm::APInt Min, End; 1715 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1716 return true; 1717 1718 auto &Ctx = getLLVMContext(); 1719 SanitizerScope SanScope(this); 1720 llvm::Value *Check; 1721 --End; 1722 if (!Min) { 1723 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1724 } else { 1725 llvm::Value *Upper = 1726 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1727 llvm::Value *Lower = 1728 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1729 Check = Builder.CreateAnd(Upper, Lower); 1730 } 1731 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1732 EmitCheckTypeDescriptor(Ty)}; 1733 SanitizerMask Kind = 1734 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1735 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1736 StaticArgs, EmitCheckValue(Value)); 1737 return true; 1738 } 1739 1740 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1741 QualType Ty, 1742 SourceLocation Loc, 1743 LValueBaseInfo BaseInfo, 1744 TBAAAccessInfo TBAAInfo, 1745 bool isNontemporal) { 1746 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1747 // Boolean vectors use `iN` as storage type. 1748 if (ClangVecTy->isExtVectorBoolType()) { 1749 llvm::Type *ValTy = ConvertType(Ty); 1750 unsigned ValNumElems = 1751 cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1752 // Load the `iP` storage object (P is the padded vector size). 1753 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits"); 1754 const auto *RawIntTy = RawIntV->getType(); 1755 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors"); 1756 // Bitcast iP --> <P x i1>. 1757 auto *PaddedVecTy = llvm::FixedVectorType::get( 1758 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1759 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy); 1760 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1761 V = emitBoolVecConversion(V, ValNumElems, "extractvec"); 1762 1763 return EmitFromMemory(V, Ty); 1764 } 1765 1766 // Handle vectors of size 3 like size 4 for better performance. 1767 const llvm::Type *EltTy = Addr.getElementType(); 1768 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1769 1770 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) { 1771 1772 // Bitcast to vec4 type. 1773 llvm::VectorType *vec4Ty = 1774 llvm::FixedVectorType::get(VTy->getElementType(), 4); 1775 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1776 // Now load value. 1777 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1778 1779 // Shuffle vector to get vec3. 1780 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec"); 1781 return EmitFromMemory(V, Ty); 1782 } 1783 } 1784 1785 // Atomic operations have to be done on integral types. 1786 LValue AtomicLValue = 1787 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1788 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1789 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1790 } 1791 1792 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1793 if (isNontemporal) { 1794 llvm::MDNode *Node = llvm::MDNode::get( 1795 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1796 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1797 } 1798 1799 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1800 1801 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1802 // In order to prevent the optimizer from throwing away the check, don't 1803 // attach range metadata to the load. 1804 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1805 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1806 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1807 1808 return EmitFromMemory(Load, Ty); 1809 } 1810 1811 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1812 // Bool has a different representation in memory than in registers. 1813 if (hasBooleanRepresentation(Ty)) { 1814 // This should really always be an i1, but sometimes it's already 1815 // an i8, and it's awkward to track those cases down. 1816 if (Value->getType()->isIntegerTy(1)) 1817 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1818 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1819 "wrong value rep of bool"); 1820 } 1821 1822 return Value; 1823 } 1824 1825 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1826 // Bool has a different representation in memory than in registers. 1827 if (hasBooleanRepresentation(Ty)) { 1828 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1829 "wrong value rep of bool"); 1830 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1831 } 1832 if (Ty->isExtVectorBoolType()) { 1833 const auto *RawIntTy = Value->getType(); 1834 // Bitcast iP --> <P x i1>. 1835 auto *PaddedVecTy = llvm::FixedVectorType::get( 1836 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1837 auto *V = Builder.CreateBitCast(Value, PaddedVecTy); 1838 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1839 llvm::Type *ValTy = ConvertType(Ty); 1840 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1841 return emitBoolVecConversion(V, ValNumElems, "extractvec"); 1842 } 1843 1844 return Value; 1845 } 1846 1847 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1848 // MatrixType), if it points to a array (the memory type of MatrixType). 1849 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1850 bool IsVector = true) { 1851 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1852 if (ArrayTy && IsVector) { 1853 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1854 ArrayTy->getNumElements()); 1855 1856 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1857 } 1858 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1859 if (VectorTy && !IsVector) { 1860 auto *ArrayTy = llvm::ArrayType::get( 1861 VectorTy->getElementType(), 1862 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1863 1864 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1865 } 1866 1867 return Addr; 1868 } 1869 1870 // Emit a store of a matrix LValue. This may require casting the original 1871 // pointer to memory address (ArrayType) to a pointer to the value type 1872 // (VectorType). 1873 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1874 bool isInit, CodeGenFunction &CGF) { 1875 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1876 value->getType()->isVectorTy()); 1877 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1878 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1879 lvalue.isNontemporal()); 1880 } 1881 1882 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1883 bool Volatile, QualType Ty, 1884 LValueBaseInfo BaseInfo, 1885 TBAAAccessInfo TBAAInfo, 1886 bool isInit, bool isNontemporal) { 1887 llvm::Type *SrcTy = Value->getType(); 1888 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1889 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy); 1890 if (VecTy && ClangVecTy->isExtVectorBoolType()) { 1891 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType()); 1892 // Expand to the memory bit width. 1893 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits(); 1894 // <N x i1> --> <P x i1>. 1895 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec"); 1896 // <P x i1> --> iP. 1897 Value = Builder.CreateBitCast(Value, MemIntTy); 1898 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1899 // Handle vec3 special. 1900 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1901 // Our source is a vec3, do a shuffle vector to make it a vec4. 1902 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1903 "extractVec"); 1904 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1905 } 1906 if (Addr.getElementType() != SrcTy) { 1907 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1908 } 1909 } 1910 } 1911 1912 Value = EmitToMemory(Value, Ty); 1913 1914 LValue AtomicLValue = 1915 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1916 if (Ty->isAtomicType() || 1917 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1918 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1919 return; 1920 } 1921 1922 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1923 if (isNontemporal) { 1924 llvm::MDNode *Node = 1925 llvm::MDNode::get(Store->getContext(), 1926 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1927 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1928 } 1929 1930 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1931 } 1932 1933 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1934 bool isInit) { 1935 if (lvalue.getType()->isConstantMatrixType()) { 1936 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1937 return; 1938 } 1939 1940 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1941 lvalue.getType(), lvalue.getBaseInfo(), 1942 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1943 } 1944 1945 // Emit a load of a LValue of matrix type. This may require casting the pointer 1946 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1947 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1948 CodeGenFunction &CGF) { 1949 assert(LV.getType()->isConstantMatrixType()); 1950 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1951 LV.setAddress(Addr); 1952 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1953 } 1954 1955 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1956 /// method emits the address of the lvalue, then loads the result as an rvalue, 1957 /// returning the rvalue. 1958 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1959 if (LV.isObjCWeak()) { 1960 // load of a __weak object. 1961 Address AddrWeakObj = LV.getAddress(*this); 1962 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1963 AddrWeakObj)); 1964 } 1965 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1966 // In MRC mode, we do a load+autorelease. 1967 if (!getLangOpts().ObjCAutoRefCount) { 1968 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1969 } 1970 1971 // In ARC mode, we load retained and then consume the value. 1972 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1973 Object = EmitObjCConsumeObject(LV.getType(), Object); 1974 return RValue::get(Object); 1975 } 1976 1977 if (LV.isSimple()) { 1978 assert(!LV.getType()->isFunctionType()); 1979 1980 if (LV.getType()->isConstantMatrixType()) 1981 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1982 1983 // Everything needs a load. 1984 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1985 } 1986 1987 if (LV.isVectorElt()) { 1988 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1989 LV.isVolatileQualified()); 1990 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1991 "vecext")); 1992 } 1993 1994 // If this is a reference to a subset of the elements of a vector, either 1995 // shuffle the input or extract/insert them as appropriate. 1996 if (LV.isExtVectorElt()) { 1997 return EmitLoadOfExtVectorElementLValue(LV); 1998 } 1999 2000 // Global Register variables always invoke intrinsics 2001 if (LV.isGlobalReg()) 2002 return EmitLoadOfGlobalRegLValue(LV); 2003 2004 if (LV.isMatrixElt()) { 2005 llvm::Value *Idx = LV.getMatrixIdx(); 2006 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2007 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 2008 llvm::MatrixBuilder MB(Builder); 2009 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2010 } 2011 llvm::LoadInst *Load = 2012 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 2013 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 2014 } 2015 2016 assert(LV.isBitField() && "Unknown LValue type!"); 2017 return EmitLoadOfBitfieldLValue(LV, Loc); 2018 } 2019 2020 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 2021 SourceLocation Loc) { 2022 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 2023 2024 // Get the output type. 2025 llvm::Type *ResLTy = ConvertType(LV.getType()); 2026 2027 Address Ptr = LV.getBitFieldAddress(); 2028 llvm::Value *Val = 2029 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 2030 2031 bool UseVolatile = LV.isVolatileQualified() && 2032 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2033 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2034 const unsigned StorageSize = 2035 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2036 if (Info.IsSigned) { 2037 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 2038 unsigned HighBits = StorageSize - Offset - Info.Size; 2039 if (HighBits) 2040 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 2041 if (Offset + HighBits) 2042 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 2043 } else { 2044 if (Offset) 2045 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 2046 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 2047 Val = Builder.CreateAnd( 2048 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 2049 } 2050 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 2051 EmitScalarRangeCheck(Val, LV.getType(), Loc); 2052 return RValue::get(Val); 2053 } 2054 2055 // If this is a reference to a subset of the elements of a vector, create an 2056 // appropriate shufflevector. 2057 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 2058 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 2059 LV.isVolatileQualified()); 2060 2061 const llvm::Constant *Elts = LV.getExtVectorElts(); 2062 2063 // If the result of the expression is a non-vector type, we must be extracting 2064 // a single element. Just codegen as an extractelement. 2065 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2066 if (!ExprVT) { 2067 unsigned InIdx = getAccessedFieldNo(0, Elts); 2068 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2069 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2070 } 2071 2072 // Always use shuffle vector to try to retain the original program structure 2073 unsigned NumResultElts = ExprVT->getNumElements(); 2074 2075 SmallVector<int, 4> Mask; 2076 for (unsigned i = 0; i != NumResultElts; ++i) 2077 Mask.push_back(getAccessedFieldNo(i, Elts)); 2078 2079 Vec = Builder.CreateShuffleVector(Vec, Mask); 2080 return RValue::get(Vec); 2081 } 2082 2083 /// Generates lvalue for partial ext_vector access. 2084 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2085 Address VectorAddress = LV.getExtVectorAddress(); 2086 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2087 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2088 2089 Address CastToPointerElement = 2090 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2091 "conv.ptr.element"); 2092 2093 const llvm::Constant *Elts = LV.getExtVectorElts(); 2094 unsigned ix = getAccessedFieldNo(0, Elts); 2095 2096 Address VectorBasePtrPlusIx = 2097 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2098 "vector.elt"); 2099 2100 return VectorBasePtrPlusIx; 2101 } 2102 2103 /// Load of global gamed gegisters are always calls to intrinsics. 2104 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2105 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2106 "Bad type for register variable"); 2107 llvm::MDNode *RegName = cast<llvm::MDNode>( 2108 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2109 2110 // We accept integer and pointer types only 2111 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2112 llvm::Type *Ty = OrigTy; 2113 if (OrigTy->isPointerTy()) 2114 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2115 llvm::Type *Types[] = { Ty }; 2116 2117 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2118 llvm::Value *Call = Builder.CreateCall( 2119 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2120 if (OrigTy->isPointerTy()) 2121 Call = Builder.CreateIntToPtr(Call, OrigTy); 2122 return RValue::get(Call); 2123 } 2124 2125 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2126 /// lvalue, where both are guaranteed to the have the same type, and that type 2127 /// is 'Ty'. 2128 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2129 bool isInit) { 2130 if (!Dst.isSimple()) { 2131 if (Dst.isVectorElt()) { 2132 // Read/modify/write the vector, inserting the new element. 2133 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2134 Dst.isVolatileQualified()); 2135 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType()); 2136 if (IRStoreTy) { 2137 auto *IRVecTy = llvm::FixedVectorType::get( 2138 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits()); 2139 Vec = Builder.CreateBitCast(Vec, IRVecTy); 2140 // iN --> <N x i1>. 2141 } 2142 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2143 Dst.getVectorIdx(), "vecins"); 2144 if (IRStoreTy) { 2145 // <N x i1> --> <iN>. 2146 Vec = Builder.CreateBitCast(Vec, IRStoreTy); 2147 } 2148 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2149 Dst.isVolatileQualified()); 2150 return; 2151 } 2152 2153 // If this is an update of extended vector elements, insert them as 2154 // appropriate. 2155 if (Dst.isExtVectorElt()) 2156 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2157 2158 if (Dst.isGlobalReg()) 2159 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2160 2161 if (Dst.isMatrixElt()) { 2162 llvm::Value *Idx = Dst.getMatrixIdx(); 2163 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2164 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 2165 llvm::MatrixBuilder MB(Builder); 2166 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2167 } 2168 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2169 llvm::Value *Vec = 2170 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2171 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2172 Dst.isVolatileQualified()); 2173 return; 2174 } 2175 2176 assert(Dst.isBitField() && "Unknown LValue type"); 2177 return EmitStoreThroughBitfieldLValue(Src, Dst); 2178 } 2179 2180 // There's special magic for assigning into an ARC-qualified l-value. 2181 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2182 switch (Lifetime) { 2183 case Qualifiers::OCL_None: 2184 llvm_unreachable("present but none"); 2185 2186 case Qualifiers::OCL_ExplicitNone: 2187 // nothing special 2188 break; 2189 2190 case Qualifiers::OCL_Strong: 2191 if (isInit) { 2192 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2193 break; 2194 } 2195 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2196 return; 2197 2198 case Qualifiers::OCL_Weak: 2199 if (isInit) 2200 // Initialize and then skip the primitive store. 2201 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2202 else 2203 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2204 /*ignore*/ true); 2205 return; 2206 2207 case Qualifiers::OCL_Autoreleasing: 2208 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2209 Src.getScalarVal())); 2210 // fall into the normal path 2211 break; 2212 } 2213 } 2214 2215 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2216 // load of a __weak object. 2217 Address LvalueDst = Dst.getAddress(*this); 2218 llvm::Value *src = Src.getScalarVal(); 2219 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2220 return; 2221 } 2222 2223 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2224 // load of a __strong object. 2225 Address LvalueDst = Dst.getAddress(*this); 2226 llvm::Value *src = Src.getScalarVal(); 2227 if (Dst.isObjCIvar()) { 2228 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2229 llvm::Type *ResultType = IntPtrTy; 2230 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2231 llvm::Value *RHS = dst.getPointer(); 2232 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2233 llvm::Value *LHS = 2234 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2235 "sub.ptr.lhs.cast"); 2236 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2237 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2238 BytesBetween); 2239 } else if (Dst.isGlobalObjCRef()) { 2240 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2241 Dst.isThreadLocalRef()); 2242 } 2243 else 2244 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2245 return; 2246 } 2247 2248 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2249 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2250 } 2251 2252 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2253 llvm::Value **Result) { 2254 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2255 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2256 Address Ptr = Dst.getBitFieldAddress(); 2257 2258 // Get the source value, truncated to the width of the bit-field. 2259 llvm::Value *SrcVal = Src.getScalarVal(); 2260 2261 // Cast the source to the storage type and shift it into place. 2262 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2263 /*isSigned=*/false); 2264 llvm::Value *MaskedVal = SrcVal; 2265 2266 const bool UseVolatile = 2267 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2268 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2269 const unsigned StorageSize = 2270 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2271 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2272 // See if there are other bits in the bitfield's storage we'll need to load 2273 // and mask together with source before storing. 2274 if (StorageSize != Info.Size) { 2275 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2276 llvm::Value *Val = 2277 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2278 2279 // Mask the source value as needed. 2280 if (!hasBooleanRepresentation(Dst.getType())) 2281 SrcVal = Builder.CreateAnd( 2282 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2283 "bf.value"); 2284 MaskedVal = SrcVal; 2285 if (Offset) 2286 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2287 2288 // Mask out the original value. 2289 Val = Builder.CreateAnd( 2290 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2291 "bf.clear"); 2292 2293 // Or together the unchanged values and the source value. 2294 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2295 } else { 2296 assert(Offset == 0); 2297 // According to the AACPS: 2298 // When a volatile bit-field is written, and its container does not overlap 2299 // with any non-bit-field member, its container must be read exactly once 2300 // and written exactly once using the access width appropriate to the type 2301 // of the container. The two accesses are not atomic. 2302 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2303 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2304 Builder.CreateLoad(Ptr, true, "bf.load"); 2305 } 2306 2307 // Write the new value back out. 2308 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2309 2310 // Return the new value of the bit-field, if requested. 2311 if (Result) { 2312 llvm::Value *ResultVal = MaskedVal; 2313 2314 // Sign extend the value if needed. 2315 if (Info.IsSigned) { 2316 assert(Info.Size <= StorageSize); 2317 unsigned HighBits = StorageSize - Info.Size; 2318 if (HighBits) { 2319 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2320 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2321 } 2322 } 2323 2324 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2325 "bf.result.cast"); 2326 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2327 } 2328 } 2329 2330 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2331 LValue Dst) { 2332 // This access turns into a read/modify/write of the vector. Load the input 2333 // value now. 2334 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2335 Dst.isVolatileQualified()); 2336 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2337 2338 llvm::Value *SrcVal = Src.getScalarVal(); 2339 2340 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2341 unsigned NumSrcElts = VTy->getNumElements(); 2342 unsigned NumDstElts = 2343 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2344 if (NumDstElts == NumSrcElts) { 2345 // Use shuffle vector is the src and destination are the same number of 2346 // elements and restore the vector mask since it is on the side it will be 2347 // stored. 2348 SmallVector<int, 4> Mask(NumDstElts); 2349 for (unsigned i = 0; i != NumSrcElts; ++i) 2350 Mask[getAccessedFieldNo(i, Elts)] = i; 2351 2352 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2353 } else if (NumDstElts > NumSrcElts) { 2354 // Extended the source vector to the same length and then shuffle it 2355 // into the destination. 2356 // FIXME: since we're shuffling with undef, can we just use the indices 2357 // into that? This could be simpler. 2358 SmallVector<int, 4> ExtMask; 2359 for (unsigned i = 0; i != NumSrcElts; ++i) 2360 ExtMask.push_back(i); 2361 ExtMask.resize(NumDstElts, -1); 2362 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2363 // build identity 2364 SmallVector<int, 4> Mask; 2365 for (unsigned i = 0; i != NumDstElts; ++i) 2366 Mask.push_back(i); 2367 2368 // When the vector size is odd and .odd or .hi is used, the last element 2369 // of the Elts constant array will be one past the size of the vector. 2370 // Ignore the last element here, if it is greater than the mask size. 2371 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2372 NumSrcElts--; 2373 2374 // modify when what gets shuffled in 2375 for (unsigned i = 0; i != NumSrcElts; ++i) 2376 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2377 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2378 } else { 2379 // We should never shorten the vector 2380 llvm_unreachable("unexpected shorten vector length"); 2381 } 2382 } else { 2383 // If the Src is a scalar (not a vector) it must be updating one element. 2384 unsigned InIdx = getAccessedFieldNo(0, Elts); 2385 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2386 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2387 } 2388 2389 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2390 Dst.isVolatileQualified()); 2391 } 2392 2393 /// Store of global named registers are always calls to intrinsics. 2394 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2395 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2396 "Bad type for register variable"); 2397 llvm::MDNode *RegName = cast<llvm::MDNode>( 2398 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2399 assert(RegName && "Register LValue is not metadata"); 2400 2401 // We accept integer and pointer types only 2402 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2403 llvm::Type *Ty = OrigTy; 2404 if (OrigTy->isPointerTy()) 2405 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2406 llvm::Type *Types[] = { Ty }; 2407 2408 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2409 llvm::Value *Value = Src.getScalarVal(); 2410 if (OrigTy->isPointerTy()) 2411 Value = Builder.CreatePtrToInt(Value, Ty); 2412 Builder.CreateCall( 2413 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2414 } 2415 2416 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2417 // generating write-barries API. It is currently a global, ivar, 2418 // or neither. 2419 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2420 LValue &LV, 2421 bool IsMemberAccess=false) { 2422 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2423 return; 2424 2425 if (isa<ObjCIvarRefExpr>(E)) { 2426 QualType ExpTy = E->getType(); 2427 if (IsMemberAccess && ExpTy->isPointerType()) { 2428 // If ivar is a structure pointer, assigning to field of 2429 // this struct follows gcc's behavior and makes it a non-ivar 2430 // writer-barrier conservatively. 2431 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2432 if (ExpTy->isRecordType()) { 2433 LV.setObjCIvar(false); 2434 return; 2435 } 2436 } 2437 LV.setObjCIvar(true); 2438 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2439 LV.setBaseIvarExp(Exp->getBase()); 2440 LV.setObjCArray(E->getType()->isArrayType()); 2441 return; 2442 } 2443 2444 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2445 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2446 if (VD->hasGlobalStorage()) { 2447 LV.setGlobalObjCRef(true); 2448 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2449 } 2450 } 2451 LV.setObjCArray(E->getType()->isArrayType()); 2452 return; 2453 } 2454 2455 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2456 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2457 return; 2458 } 2459 2460 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2461 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2462 if (LV.isObjCIvar()) { 2463 // If cast is to a structure pointer, follow gcc's behavior and make it 2464 // a non-ivar write-barrier. 2465 QualType ExpTy = E->getType(); 2466 if (ExpTy->isPointerType()) 2467 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2468 if (ExpTy->isRecordType()) 2469 LV.setObjCIvar(false); 2470 } 2471 return; 2472 } 2473 2474 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2475 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2476 return; 2477 } 2478 2479 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2480 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2481 return; 2482 } 2483 2484 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2485 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2486 return; 2487 } 2488 2489 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2490 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2491 return; 2492 } 2493 2494 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2495 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2496 if (LV.isObjCIvar() && !LV.isObjCArray()) 2497 // Using array syntax to assigning to what an ivar points to is not 2498 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2499 LV.setObjCIvar(false); 2500 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2501 // Using array syntax to assigning to what global points to is not 2502 // same as assigning to the global itself. {id *G;} G[i] = 0; 2503 LV.setGlobalObjCRef(false); 2504 return; 2505 } 2506 2507 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2508 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2509 // We don't know if member is an 'ivar', but this flag is looked at 2510 // only in the context of LV.isObjCIvar(). 2511 LV.setObjCArray(E->getType()->isArrayType()); 2512 return; 2513 } 2514 } 2515 2516 static llvm::Value * 2517 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2518 llvm::Value *V, llvm::Type *IRType, 2519 StringRef Name = StringRef()) { 2520 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2521 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2522 } 2523 2524 static LValue EmitThreadPrivateVarDeclLValue( 2525 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2526 llvm::Type *RealVarTy, SourceLocation Loc) { 2527 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2528 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2529 CGF, VD, Addr, Loc); 2530 else 2531 Addr = 2532 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2533 2534 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2535 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2536 } 2537 2538 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2539 const VarDecl *VD, QualType T) { 2540 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2541 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2542 // Return an invalid address if variable is MT_To and unified 2543 // memory is not enabled. For all other cases: MT_Link and 2544 // MT_To with unified memory, return a valid address. 2545 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2546 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2547 return Address::invalid(); 2548 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2549 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2550 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2551 "Expected link clause OR to clause with unified memory enabled."); 2552 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2553 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2554 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2555 } 2556 2557 Address 2558 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2559 LValueBaseInfo *PointeeBaseInfo, 2560 TBAAAccessInfo *PointeeTBAAInfo) { 2561 llvm::LoadInst *Load = 2562 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2563 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2564 2565 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2566 CharUnits Align = CGM.getNaturalTypeAlignment( 2567 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2568 /* forPointeeType= */ true); 2569 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2570 } 2571 2572 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2573 LValueBaseInfo PointeeBaseInfo; 2574 TBAAAccessInfo PointeeTBAAInfo; 2575 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2576 &PointeeTBAAInfo); 2577 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2578 PointeeBaseInfo, PointeeTBAAInfo); 2579 } 2580 2581 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2582 const PointerType *PtrTy, 2583 LValueBaseInfo *BaseInfo, 2584 TBAAAccessInfo *TBAAInfo) { 2585 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2586 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()), 2587 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, 2588 TBAAInfo, 2589 /*forPointeeType=*/true)); 2590 } 2591 2592 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2593 const PointerType *PtrTy) { 2594 LValueBaseInfo BaseInfo; 2595 TBAAAccessInfo TBAAInfo; 2596 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2597 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2598 } 2599 2600 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2601 const Expr *E, const VarDecl *VD) { 2602 QualType T = E->getType(); 2603 2604 // If it's thread_local, emit a call to its wrapper function instead. 2605 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2606 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2607 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2608 // Check if the variable is marked as declare target with link clause in 2609 // device codegen. 2610 if (CGF.getLangOpts().OpenMPIsDevice) { 2611 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2612 if (Addr.isValid()) 2613 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2614 } 2615 2616 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2617 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2618 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2619 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2620 Address Addr(V, RealVarTy, Alignment); 2621 // Emit reference to the private copy of the variable if it is an OpenMP 2622 // threadprivate variable. 2623 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2624 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2625 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2626 E->getExprLoc()); 2627 } 2628 LValue LV = VD->getType()->isReferenceType() ? 2629 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2630 AlignmentSource::Decl) : 2631 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2632 setObjCGCLValueClass(CGF.getContext(), E, LV); 2633 return LV; 2634 } 2635 2636 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2637 GlobalDecl GD) { 2638 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2639 if (FD->hasAttr<WeakRefAttr>()) { 2640 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2641 return aliasee.getPointer(); 2642 } 2643 2644 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2645 if (!FD->hasPrototype()) { 2646 if (const FunctionProtoType *Proto = 2647 FD->getType()->getAs<FunctionProtoType>()) { 2648 // Ugly case: for a K&R-style definition, the type of the definition 2649 // isn't the same as the type of a use. Correct for this with a 2650 // bitcast. 2651 QualType NoProtoType = 2652 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2653 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2654 V = llvm::ConstantExpr::getBitCast(V, 2655 CGM.getTypes().ConvertType(NoProtoType)); 2656 } 2657 } 2658 return V; 2659 } 2660 2661 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2662 GlobalDecl GD) { 2663 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2664 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2665 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2666 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2667 AlignmentSource::Decl); 2668 } 2669 2670 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2671 llvm::Value *ThisValue) { 2672 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2673 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2674 return CGF.EmitLValueForField(LV, FD); 2675 } 2676 2677 /// Named Registers are named metadata pointing to the register name 2678 /// which will be read from/written to as an argument to the intrinsic 2679 /// @llvm.read/write_register. 2680 /// So far, only the name is being passed down, but other options such as 2681 /// register type, allocation type or even optimization options could be 2682 /// passed down via the metadata node. 2683 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2684 SmallString<64> Name("llvm.named.register."); 2685 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2686 assert(Asm->getLabel().size() < 64-Name.size() && 2687 "Register name too big"); 2688 Name.append(Asm->getLabel()); 2689 llvm::NamedMDNode *M = 2690 CGM.getModule().getOrInsertNamedMetadata(Name); 2691 if (M->getNumOperands() == 0) { 2692 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2693 Asm->getLabel()); 2694 llvm::Metadata *Ops[] = {Str}; 2695 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2696 } 2697 2698 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2699 2700 llvm::Value *Ptr = 2701 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2702 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2703 } 2704 2705 /// Determine whether we can emit a reference to \p VD from the current 2706 /// context, despite not necessarily having seen an odr-use of the variable in 2707 /// this context. 2708 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2709 const DeclRefExpr *E, 2710 const VarDecl *VD, 2711 bool IsConstant) { 2712 // For a variable declared in an enclosing scope, do not emit a spurious 2713 // reference even if we have a capture, as that will emit an unwarranted 2714 // reference to our capture state, and will likely generate worse code than 2715 // emitting a local copy. 2716 if (E->refersToEnclosingVariableOrCapture()) 2717 return false; 2718 2719 // For a local declaration declared in this function, we can always reference 2720 // it even if we don't have an odr-use. 2721 if (VD->hasLocalStorage()) { 2722 return VD->getDeclContext() == 2723 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2724 } 2725 2726 // For a global declaration, we can emit a reference to it if we know 2727 // for sure that we are able to emit a definition of it. 2728 VD = VD->getDefinition(CGF.getContext()); 2729 if (!VD) 2730 return false; 2731 2732 // Don't emit a spurious reference if it might be to a variable that only 2733 // exists on a different device / target. 2734 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2735 // cross-target reference. 2736 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2737 CGF.getLangOpts().OpenCL) { 2738 return false; 2739 } 2740 2741 // We can emit a spurious reference only if the linkage implies that we'll 2742 // be emitting a non-interposable symbol that will be retained until link 2743 // time. 2744 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2745 case llvm::GlobalValue::ExternalLinkage: 2746 case llvm::GlobalValue::LinkOnceODRLinkage: 2747 case llvm::GlobalValue::WeakODRLinkage: 2748 case llvm::GlobalValue::InternalLinkage: 2749 case llvm::GlobalValue::PrivateLinkage: 2750 return true; 2751 default: 2752 return false; 2753 } 2754 } 2755 2756 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2757 const NamedDecl *ND = E->getDecl(); 2758 QualType T = E->getType(); 2759 2760 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2761 "should not emit an unevaluated operand"); 2762 2763 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2764 // Global Named registers access via intrinsics only 2765 if (VD->getStorageClass() == SC_Register && 2766 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2767 return EmitGlobalNamedRegister(VD, CGM); 2768 2769 // If this DeclRefExpr does not constitute an odr-use of the variable, 2770 // we're not permitted to emit a reference to it in general, and it might 2771 // not be captured if capture would be necessary for a use. Emit the 2772 // constant value directly instead. 2773 if (E->isNonOdrUse() == NOUR_Constant && 2774 (VD->getType()->isReferenceType() || 2775 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2776 VD->getAnyInitializer(VD); 2777 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2778 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2779 assert(Val && "failed to emit constant expression"); 2780 2781 Address Addr = Address::invalid(); 2782 if (!VD->getType()->isReferenceType()) { 2783 // Spill the constant value to a global. 2784 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2785 getContext().getDeclAlign(VD)); 2786 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2787 auto *PTy = llvm::PointerType::get( 2788 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2789 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy); 2790 } else { 2791 // Should we be using the alignment of the constant pointer we emitted? 2792 CharUnits Alignment = 2793 CGM.getNaturalTypeAlignment(E->getType(), 2794 /* BaseInfo= */ nullptr, 2795 /* TBAAInfo= */ nullptr, 2796 /* forPointeeType= */ true); 2797 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 2798 } 2799 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2800 } 2801 2802 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2803 2804 // Check for captured variables. 2805 if (E->refersToEnclosingVariableOrCapture()) { 2806 VD = VD->getCanonicalDecl(); 2807 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2808 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2809 if (CapturedStmtInfo) { 2810 auto I = LocalDeclMap.find(VD); 2811 if (I != LocalDeclMap.end()) { 2812 LValue CapLVal; 2813 if (VD->getType()->isReferenceType()) 2814 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2815 AlignmentSource::Decl); 2816 else 2817 CapLVal = MakeAddrLValue(I->second, T); 2818 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2819 // in simd context. 2820 if (getLangOpts().OpenMP && 2821 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2822 CapLVal.setNontemporal(/*Value=*/true); 2823 return CapLVal; 2824 } 2825 LValue CapLVal = 2826 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2827 CapturedStmtInfo->getContextValue()); 2828 Address LValueAddress = CapLVal.getAddress(*this); 2829 CapLVal = MakeAddrLValue( 2830 Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 2831 getContext().getDeclAlign(VD)), 2832 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2833 CapLVal.getTBAAInfo()); 2834 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2835 // in simd context. 2836 if (getLangOpts().OpenMP && 2837 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2838 CapLVal.setNontemporal(/*Value=*/true); 2839 return CapLVal; 2840 } 2841 2842 assert(isa<BlockDecl>(CurCodeDecl)); 2843 Address addr = GetAddrOfBlockDecl(VD); 2844 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2845 } 2846 } 2847 2848 // FIXME: We should be able to assert this for FunctionDecls as well! 2849 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2850 // those with a valid source location. 2851 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2852 !E->getLocation().isValid()) && 2853 "Should not use decl without marking it used!"); 2854 2855 if (ND->hasAttr<WeakRefAttr>()) { 2856 const auto *VD = cast<ValueDecl>(ND); 2857 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2858 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2859 } 2860 2861 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2862 // Check if this is a global variable. 2863 if (VD->hasLinkage() || VD->isStaticDataMember()) 2864 return EmitGlobalVarDeclLValue(*this, E, VD); 2865 2866 Address addr = Address::invalid(); 2867 2868 // The variable should generally be present in the local decl map. 2869 auto iter = LocalDeclMap.find(VD); 2870 if (iter != LocalDeclMap.end()) { 2871 addr = iter->second; 2872 2873 // Otherwise, it might be static local we haven't emitted yet for 2874 // some reason; most likely, because it's in an outer function. 2875 } else if (VD->isStaticLocal()) { 2876 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 2877 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 2878 addr = Address( 2879 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 2880 2881 // No other cases for now. 2882 } else { 2883 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2884 } 2885 2886 2887 // Check for OpenMP threadprivate variables. 2888 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2889 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2890 return EmitThreadPrivateVarDeclLValue( 2891 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2892 E->getExprLoc()); 2893 } 2894 2895 // Drill into block byref variables. 2896 bool isBlockByref = VD->isEscapingByref(); 2897 if (isBlockByref) { 2898 addr = emitBlockByrefAddress(addr, VD); 2899 } 2900 2901 // Drill into reference types. 2902 LValue LV = VD->getType()->isReferenceType() ? 2903 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2904 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2905 2906 bool isLocalStorage = VD->hasLocalStorage(); 2907 2908 bool NonGCable = isLocalStorage && 2909 !VD->getType()->isReferenceType() && 2910 !isBlockByref; 2911 if (NonGCable) { 2912 LV.getQuals().removeObjCGCAttr(); 2913 LV.setNonGC(true); 2914 } 2915 2916 bool isImpreciseLifetime = 2917 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2918 if (isImpreciseLifetime) 2919 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2920 setObjCGCLValueClass(getContext(), E, LV); 2921 return LV; 2922 } 2923 2924 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2925 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2926 2927 // Emit debuginfo for the function declaration if the target wants to. 2928 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2929 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2930 auto *Fn = 2931 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2932 if (!Fn->getSubprogram()) 2933 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2934 } 2935 } 2936 2937 return LV; 2938 } 2939 2940 // FIXME: While we're emitting a binding from an enclosing scope, all other 2941 // DeclRefExprs we see should be implicitly treated as if they also refer to 2942 // an enclosing scope. 2943 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2944 return EmitLValue(BD->getBinding()); 2945 2946 // We can form DeclRefExprs naming GUID declarations when reconstituting 2947 // non-type template parameters into expressions. 2948 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2949 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2950 AlignmentSource::Decl); 2951 2952 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2953 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2954 AlignmentSource::Decl); 2955 2956 llvm_unreachable("Unhandled DeclRefExpr"); 2957 } 2958 2959 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2960 // __extension__ doesn't affect lvalue-ness. 2961 if (E->getOpcode() == UO_Extension) 2962 return EmitLValue(E->getSubExpr()); 2963 2964 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2965 switch (E->getOpcode()) { 2966 default: llvm_unreachable("Unknown unary operator lvalue!"); 2967 case UO_Deref: { 2968 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2969 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2970 2971 LValueBaseInfo BaseInfo; 2972 TBAAAccessInfo TBAAInfo; 2973 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2974 &TBAAInfo); 2975 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2976 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2977 2978 // We should not generate __weak write barrier on indirect reference 2979 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2980 // But, we continue to generate __strong write barrier on indirect write 2981 // into a pointer to object. 2982 if (getLangOpts().ObjC && 2983 getLangOpts().getGC() != LangOptions::NonGC && 2984 LV.isObjCWeak()) 2985 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2986 return LV; 2987 } 2988 case UO_Real: 2989 case UO_Imag: { 2990 LValue LV = EmitLValue(E->getSubExpr()); 2991 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2992 2993 // __real is valid on scalars. This is a faster way of testing that. 2994 // __imag can only produce an rvalue on scalars. 2995 if (E->getOpcode() == UO_Real && 2996 !LV.getAddress(*this).getElementType()->isStructTy()) { 2997 assert(E->getSubExpr()->getType()->isArithmeticType()); 2998 return LV; 2999 } 3000 3001 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 3002 3003 Address Component = 3004 (E->getOpcode() == UO_Real 3005 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 3006 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 3007 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 3008 CGM.getTBAAInfoForSubobject(LV, T)); 3009 ElemLV.getQuals().addQualifiers(LV.getQuals()); 3010 return ElemLV; 3011 } 3012 case UO_PreInc: 3013 case UO_PreDec: { 3014 LValue LV = EmitLValue(E->getSubExpr()); 3015 bool isInc = E->getOpcode() == UO_PreInc; 3016 3017 if (E->getType()->isAnyComplexType()) 3018 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 3019 else 3020 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 3021 return LV; 3022 } 3023 } 3024 } 3025 3026 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 3027 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 3028 E->getType(), AlignmentSource::Decl); 3029 } 3030 3031 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 3032 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 3033 E->getType(), AlignmentSource::Decl); 3034 } 3035 3036 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 3037 auto SL = E->getFunctionName(); 3038 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 3039 StringRef FnName = CurFn->getName(); 3040 if (FnName.startswith("\01")) 3041 FnName = FnName.substr(1); 3042 StringRef NameItems[] = { 3043 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 3044 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 3045 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 3046 std::string Name = std::string(SL->getString()); 3047 if (!Name.empty()) { 3048 unsigned Discriminator = 3049 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 3050 if (Discriminator) 3051 Name += "_" + Twine(Discriminator + 1).str(); 3052 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 3053 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3054 } else { 3055 auto C = 3056 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 3057 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3058 } 3059 } 3060 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 3061 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3062 } 3063 3064 /// Emit a type description suitable for use by a runtime sanitizer library. The 3065 /// format of a type descriptor is 3066 /// 3067 /// \code 3068 /// { i16 TypeKind, i16 TypeInfo } 3069 /// \endcode 3070 /// 3071 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 3072 /// integer, 1 for a floating point value, and -1 for anything else. 3073 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 3074 // Only emit each type's descriptor once. 3075 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 3076 return C; 3077 3078 uint16_t TypeKind = -1; 3079 uint16_t TypeInfo = 0; 3080 3081 if (T->isIntegerType()) { 3082 TypeKind = 0; 3083 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 3084 (T->isSignedIntegerType() ? 1 : 0); 3085 } else if (T->isFloatingType()) { 3086 TypeKind = 1; 3087 TypeInfo = getContext().getTypeSize(T); 3088 } 3089 3090 // Format the type name as if for a diagnostic, including quotes and 3091 // optionally an 'aka'. 3092 SmallString<32> Buffer; 3093 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3094 (intptr_t)T.getAsOpaquePtr(), 3095 StringRef(), StringRef(), None, Buffer, 3096 None); 3097 3098 llvm::Constant *Components[] = { 3099 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3100 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3101 }; 3102 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3103 3104 auto *GV = new llvm::GlobalVariable( 3105 CGM.getModule(), Descriptor->getType(), 3106 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3107 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3108 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3109 3110 // Remember the descriptor for this type. 3111 CGM.setTypeDescriptorInMap(T, GV); 3112 3113 return GV; 3114 } 3115 3116 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3117 llvm::Type *TargetTy = IntPtrTy; 3118 3119 if (V->getType() == TargetTy) 3120 return V; 3121 3122 // Floating-point types which fit into intptr_t are bitcast to integers 3123 // and then passed directly (after zero-extension, if necessary). 3124 if (V->getType()->isFloatingPointTy()) { 3125 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3126 if (Bits <= TargetTy->getIntegerBitWidth()) 3127 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3128 Bits)); 3129 } 3130 3131 // Integers which fit in intptr_t are zero-extended and passed directly. 3132 if (V->getType()->isIntegerTy() && 3133 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3134 return Builder.CreateZExt(V, TargetTy); 3135 3136 // Pointers are passed directly, everything else is passed by address. 3137 if (!V->getType()->isPointerTy()) { 3138 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3139 Builder.CreateStore(V, Ptr); 3140 V = Ptr.getPointer(); 3141 } 3142 return Builder.CreatePtrToInt(V, TargetTy); 3143 } 3144 3145 /// Emit a representation of a SourceLocation for passing to a handler 3146 /// in a sanitizer runtime library. The format for this data is: 3147 /// \code 3148 /// struct SourceLocation { 3149 /// const char *Filename; 3150 /// int32_t Line, Column; 3151 /// }; 3152 /// \endcode 3153 /// For an invalid SourceLocation, the Filename pointer is null. 3154 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3155 llvm::Constant *Filename; 3156 int Line, Column; 3157 3158 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3159 if (PLoc.isValid()) { 3160 StringRef FilenameString = PLoc.getFilename(); 3161 3162 int PathComponentsToStrip = 3163 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3164 if (PathComponentsToStrip < 0) { 3165 assert(PathComponentsToStrip != INT_MIN); 3166 int PathComponentsToKeep = -PathComponentsToStrip; 3167 auto I = llvm::sys::path::rbegin(FilenameString); 3168 auto E = llvm::sys::path::rend(FilenameString); 3169 while (I != E && --PathComponentsToKeep) 3170 ++I; 3171 3172 FilenameString = FilenameString.substr(I - E); 3173 } else if (PathComponentsToStrip > 0) { 3174 auto I = llvm::sys::path::begin(FilenameString); 3175 auto E = llvm::sys::path::end(FilenameString); 3176 while (I != E && PathComponentsToStrip--) 3177 ++I; 3178 3179 if (I != E) 3180 FilenameString = 3181 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3182 else 3183 FilenameString = llvm::sys::path::filename(FilenameString); 3184 } 3185 3186 auto FilenameGV = 3187 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3188 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3189 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3190 Filename = FilenameGV.getPointer(); 3191 Line = PLoc.getLine(); 3192 Column = PLoc.getColumn(); 3193 } else { 3194 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3195 Line = Column = 0; 3196 } 3197 3198 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3199 Builder.getInt32(Column)}; 3200 3201 return llvm::ConstantStruct::getAnon(Data); 3202 } 3203 3204 namespace { 3205 /// Specify under what conditions this check can be recovered 3206 enum class CheckRecoverableKind { 3207 /// Always terminate program execution if this check fails. 3208 Unrecoverable, 3209 /// Check supports recovering, runtime has both fatal (noreturn) and 3210 /// non-fatal handlers for this check. 3211 Recoverable, 3212 /// Runtime conditionally aborts, always need to support recovery. 3213 AlwaysRecoverable 3214 }; 3215 } 3216 3217 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3218 assert(Kind.countPopulation() == 1); 3219 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3220 return CheckRecoverableKind::AlwaysRecoverable; 3221 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3222 return CheckRecoverableKind::Unrecoverable; 3223 else 3224 return CheckRecoverableKind::Recoverable; 3225 } 3226 3227 namespace { 3228 struct SanitizerHandlerInfo { 3229 char const *const Name; 3230 unsigned Version; 3231 }; 3232 } 3233 3234 const SanitizerHandlerInfo SanitizerHandlers[] = { 3235 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3236 LIST_SANITIZER_CHECKS 3237 #undef SANITIZER_CHECK 3238 }; 3239 3240 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3241 llvm::FunctionType *FnType, 3242 ArrayRef<llvm::Value *> FnArgs, 3243 SanitizerHandler CheckHandler, 3244 CheckRecoverableKind RecoverKind, bool IsFatal, 3245 llvm::BasicBlock *ContBB) { 3246 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3247 Optional<ApplyDebugLocation> DL; 3248 if (!CGF.Builder.getCurrentDebugLocation()) { 3249 // Ensure that the call has at least an artificial debug location. 3250 DL.emplace(CGF, SourceLocation()); 3251 } 3252 bool NeedsAbortSuffix = 3253 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3254 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3255 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3256 const StringRef CheckName = CheckInfo.Name; 3257 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3258 if (CheckInfo.Version && !MinimalRuntime) 3259 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3260 if (MinimalRuntime) 3261 FnName += "_minimal"; 3262 if (NeedsAbortSuffix) 3263 FnName += "_abort"; 3264 bool MayReturn = 3265 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3266 3267 llvm::AttrBuilder B(CGF.getLLVMContext()); 3268 if (!MayReturn) { 3269 B.addAttribute(llvm::Attribute::NoReturn) 3270 .addAttribute(llvm::Attribute::NoUnwind); 3271 } 3272 B.addUWTableAttr(llvm::UWTableKind::Default); 3273 3274 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3275 FnType, FnName, 3276 llvm::AttributeList::get(CGF.getLLVMContext(), 3277 llvm::AttributeList::FunctionIndex, B), 3278 /*Local=*/true); 3279 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3280 if (!MayReturn) { 3281 HandlerCall->setDoesNotReturn(); 3282 CGF.Builder.CreateUnreachable(); 3283 } else { 3284 CGF.Builder.CreateBr(ContBB); 3285 } 3286 } 3287 3288 void CodeGenFunction::EmitCheck( 3289 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3290 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3291 ArrayRef<llvm::Value *> DynamicArgs) { 3292 assert(IsSanitizerScope); 3293 assert(Checked.size() > 0); 3294 assert(CheckHandler >= 0 && 3295 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3296 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3297 3298 llvm::Value *FatalCond = nullptr; 3299 llvm::Value *RecoverableCond = nullptr; 3300 llvm::Value *TrapCond = nullptr; 3301 for (int i = 0, n = Checked.size(); i < n; ++i) { 3302 llvm::Value *Check = Checked[i].first; 3303 // -fsanitize-trap= overrides -fsanitize-recover=. 3304 llvm::Value *&Cond = 3305 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3306 ? TrapCond 3307 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3308 ? RecoverableCond 3309 : FatalCond; 3310 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3311 } 3312 3313 if (TrapCond) 3314 EmitTrapCheck(TrapCond, CheckHandler); 3315 if (!FatalCond && !RecoverableCond) 3316 return; 3317 3318 llvm::Value *JointCond; 3319 if (FatalCond && RecoverableCond) 3320 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3321 else 3322 JointCond = FatalCond ? FatalCond : RecoverableCond; 3323 assert(JointCond); 3324 3325 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3326 assert(SanOpts.has(Checked[0].second)); 3327 #ifndef NDEBUG 3328 for (int i = 1, n = Checked.size(); i < n; ++i) { 3329 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3330 "All recoverable kinds in a single check must be same!"); 3331 assert(SanOpts.has(Checked[i].second)); 3332 } 3333 #endif 3334 3335 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3336 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3337 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3338 // Give hint that we very much don't expect to execute the handler 3339 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3340 llvm::MDBuilder MDHelper(getLLVMContext()); 3341 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3342 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3343 EmitBlock(Handlers); 3344 3345 // Handler functions take an i8* pointing to the (handler-specific) static 3346 // information block, followed by a sequence of intptr_t arguments 3347 // representing operand values. 3348 SmallVector<llvm::Value *, 4> Args; 3349 SmallVector<llvm::Type *, 4> ArgTypes; 3350 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3351 Args.reserve(DynamicArgs.size() + 1); 3352 ArgTypes.reserve(DynamicArgs.size() + 1); 3353 3354 // Emit handler arguments and create handler function type. 3355 if (!StaticArgs.empty()) { 3356 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3357 auto *InfoPtr = 3358 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3359 llvm::GlobalVariable::PrivateLinkage, Info); 3360 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3361 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3362 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3363 ArgTypes.push_back(Int8PtrTy); 3364 } 3365 3366 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3367 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3368 ArgTypes.push_back(IntPtrTy); 3369 } 3370 } 3371 3372 llvm::FunctionType *FnType = 3373 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3374 3375 if (!FatalCond || !RecoverableCond) { 3376 // Simple case: we need to generate a single handler call, either 3377 // fatal, or non-fatal. 3378 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3379 (FatalCond != nullptr), Cont); 3380 } else { 3381 // Emit two handler calls: first one for set of unrecoverable checks, 3382 // another one for recoverable. 3383 llvm::BasicBlock *NonFatalHandlerBB = 3384 createBasicBlock("non_fatal." + CheckName); 3385 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3386 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3387 EmitBlock(FatalHandlerBB); 3388 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3389 NonFatalHandlerBB); 3390 EmitBlock(NonFatalHandlerBB); 3391 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3392 Cont); 3393 } 3394 3395 EmitBlock(Cont); 3396 } 3397 3398 void CodeGenFunction::EmitCfiSlowPathCheck( 3399 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3400 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3401 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3402 3403 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3404 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3405 3406 llvm::MDBuilder MDHelper(getLLVMContext()); 3407 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3408 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3409 3410 EmitBlock(CheckBB); 3411 3412 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3413 3414 llvm::CallInst *CheckCall; 3415 llvm::FunctionCallee SlowPathFn; 3416 if (WithDiag) { 3417 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3418 auto *InfoPtr = 3419 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3420 llvm::GlobalVariable::PrivateLinkage, Info); 3421 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3422 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3423 3424 SlowPathFn = CGM.getModule().getOrInsertFunction( 3425 "__cfi_slowpath_diag", 3426 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3427 false)); 3428 CheckCall = Builder.CreateCall( 3429 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3430 } else { 3431 SlowPathFn = CGM.getModule().getOrInsertFunction( 3432 "__cfi_slowpath", 3433 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3434 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3435 } 3436 3437 CGM.setDSOLocal( 3438 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3439 CheckCall->setDoesNotThrow(); 3440 3441 EmitBlock(Cont); 3442 } 3443 3444 // Emit a stub for __cfi_check function so that the linker knows about this 3445 // symbol in LTO mode. 3446 void CodeGenFunction::EmitCfiCheckStub() { 3447 llvm::Module *M = &CGM.getModule(); 3448 auto &Ctx = M->getContext(); 3449 llvm::Function *F = llvm::Function::Create( 3450 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3451 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3452 CGM.setDSOLocal(F); 3453 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3454 // FIXME: consider emitting an intrinsic call like 3455 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3456 // which can be lowered in CrossDSOCFI pass to the actual contents of 3457 // __cfi_check. This would allow inlining of __cfi_check calls. 3458 llvm::CallInst::Create( 3459 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3460 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3461 } 3462 3463 // This function is basically a switch over the CFI failure kind, which is 3464 // extracted from CFICheckFailData (1st function argument). Each case is either 3465 // llvm.trap or a call to one of the two runtime handlers, based on 3466 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3467 // failure kind) traps, but this should really never happen. CFICheckFailData 3468 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3469 // check kind; in this case __cfi_check_fail traps as well. 3470 void CodeGenFunction::EmitCfiCheckFail() { 3471 SanitizerScope SanScope(this); 3472 FunctionArgList Args; 3473 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3474 ImplicitParamDecl::Other); 3475 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3476 ImplicitParamDecl::Other); 3477 Args.push_back(&ArgData); 3478 Args.push_back(&ArgAddr); 3479 3480 const CGFunctionInfo &FI = 3481 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3482 3483 llvm::Function *F = llvm::Function::Create( 3484 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3485 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3486 3487 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3488 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3489 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3490 3491 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3492 SourceLocation()); 3493 3494 // This function is not affected by NoSanitizeList. This function does 3495 // not have a source location, but "src:*" would still apply. Revert any 3496 // changes to SanOpts made in StartFunction. 3497 SanOpts = CGM.getLangOpts().Sanitize; 3498 3499 llvm::Value *Data = 3500 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3501 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3502 llvm::Value *Addr = 3503 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3504 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3505 3506 // Data == nullptr means the calling module has trap behaviour for this check. 3507 llvm::Value *DataIsNotNullPtr = 3508 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3509 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3510 3511 llvm::StructType *SourceLocationTy = 3512 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3513 llvm::StructType *CfiCheckFailDataTy = 3514 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3515 3516 llvm::Value *V = Builder.CreateConstGEP2_32( 3517 CfiCheckFailDataTy, 3518 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3519 0); 3520 3521 Address CheckKindAddr(V, Int8Ty, getIntAlign()); 3522 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3523 3524 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3525 CGM.getLLVMContext(), 3526 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3527 llvm::Value *ValidVtable = Builder.CreateZExt( 3528 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3529 {Addr, AllVtables}), 3530 IntPtrTy); 3531 3532 const std::pair<int, SanitizerMask> CheckKinds[] = { 3533 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3534 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3535 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3536 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3537 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3538 3539 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3540 for (auto CheckKindMaskPair : CheckKinds) { 3541 int Kind = CheckKindMaskPair.first; 3542 SanitizerMask Mask = CheckKindMaskPair.second; 3543 llvm::Value *Cond = 3544 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3545 if (CGM.getLangOpts().Sanitize.has(Mask)) 3546 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3547 {Data, Addr, ValidVtable}); 3548 else 3549 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3550 } 3551 3552 FinishFunction(); 3553 // The only reference to this function will be created during LTO link. 3554 // Make sure it survives until then. 3555 CGM.addUsedGlobal(F); 3556 } 3557 3558 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3559 if (SanOpts.has(SanitizerKind::Unreachable)) { 3560 SanitizerScope SanScope(this); 3561 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3562 SanitizerKind::Unreachable), 3563 SanitizerHandler::BuiltinUnreachable, 3564 EmitCheckSourceLocation(Loc), None); 3565 } 3566 Builder.CreateUnreachable(); 3567 } 3568 3569 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3570 SanitizerHandler CheckHandlerID) { 3571 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3572 3573 // If we're optimizing, collapse all calls to trap down to just one per 3574 // check-type per function to save on code size. 3575 if (TrapBBs.size() <= CheckHandlerID) 3576 TrapBBs.resize(CheckHandlerID + 1); 3577 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3578 3579 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3580 TrapBB = createBasicBlock("trap"); 3581 Builder.CreateCondBr(Checked, Cont, TrapBB); 3582 EmitBlock(TrapBB); 3583 3584 llvm::CallInst *TrapCall = 3585 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3586 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3587 3588 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3589 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3590 CGM.getCodeGenOpts().TrapFuncName); 3591 TrapCall->addFnAttr(A); 3592 } 3593 TrapCall->setDoesNotReturn(); 3594 TrapCall->setDoesNotThrow(); 3595 Builder.CreateUnreachable(); 3596 } else { 3597 auto Call = TrapBB->begin(); 3598 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3599 3600 Call->applyMergedLocation(Call->getDebugLoc(), 3601 Builder.getCurrentDebugLocation()); 3602 Builder.CreateCondBr(Checked, Cont, TrapBB); 3603 } 3604 3605 EmitBlock(Cont); 3606 } 3607 3608 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3609 llvm::CallInst *TrapCall = 3610 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3611 3612 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3613 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3614 CGM.getCodeGenOpts().TrapFuncName); 3615 TrapCall->addFnAttr(A); 3616 } 3617 3618 return TrapCall; 3619 } 3620 3621 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3622 LValueBaseInfo *BaseInfo, 3623 TBAAAccessInfo *TBAAInfo) { 3624 assert(E->getType()->isArrayType() && 3625 "Array to pointer decay must have array source type!"); 3626 3627 // Expressions of array type can't be bitfields or vector elements. 3628 LValue LV = EmitLValue(E); 3629 Address Addr = LV.getAddress(*this); 3630 3631 // If the array type was an incomplete type, we need to make sure 3632 // the decay ends up being the right type. 3633 llvm::Type *NewTy = ConvertType(E->getType()); 3634 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3635 3636 // Note that VLA pointers are always decayed, so we don't need to do 3637 // anything here. 3638 if (!E->getType()->isVariableArrayType()) { 3639 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3640 "Expected pointer to array"); 3641 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3642 } 3643 3644 // The result of this decay conversion points to an array element within the 3645 // base lvalue. However, since TBAA currently does not support representing 3646 // accesses to elements of member arrays, we conservatively represent accesses 3647 // to the pointee object as if it had no any base lvalue specified. 3648 // TODO: Support TBAA for member arrays. 3649 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3650 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3651 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3652 3653 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3654 } 3655 3656 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3657 /// array to pointer, return the array subexpression. 3658 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3659 // If this isn't just an array->pointer decay, bail out. 3660 const auto *CE = dyn_cast<CastExpr>(E); 3661 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3662 return nullptr; 3663 3664 // If this is a decay from variable width array, bail out. 3665 const Expr *SubExpr = CE->getSubExpr(); 3666 if (SubExpr->getType()->isVariableArrayType()) 3667 return nullptr; 3668 3669 return SubExpr; 3670 } 3671 3672 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3673 llvm::Type *elemType, 3674 llvm::Value *ptr, 3675 ArrayRef<llvm::Value*> indices, 3676 bool inbounds, 3677 bool signedIndices, 3678 SourceLocation loc, 3679 const llvm::Twine &name = "arrayidx") { 3680 if (inbounds) { 3681 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3682 CodeGenFunction::NotSubtraction, loc, 3683 name); 3684 } else { 3685 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3686 } 3687 } 3688 3689 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3690 llvm::Value *idx, 3691 CharUnits eltSize) { 3692 // If we have a constant index, we can use the exact offset of the 3693 // element we're accessing. 3694 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3695 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3696 return arrayAlign.alignmentAtOffset(offset); 3697 3698 // Otherwise, use the worst-case alignment for any element. 3699 } else { 3700 return arrayAlign.alignmentOfArrayElement(eltSize); 3701 } 3702 } 3703 3704 static QualType getFixedSizeElementType(const ASTContext &ctx, 3705 const VariableArrayType *vla) { 3706 QualType eltType; 3707 do { 3708 eltType = vla->getElementType(); 3709 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3710 return eltType; 3711 } 3712 3713 /// Given an array base, check whether its member access belongs to a record 3714 /// with preserve_access_index attribute or not. 3715 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3716 if (!ArrayBase || !CGF.getDebugInfo()) 3717 return false; 3718 3719 // Only support base as either a MemberExpr or DeclRefExpr. 3720 // DeclRefExpr to cover cases like: 3721 // struct s { int a; int b[10]; }; 3722 // struct s *p; 3723 // p[1].a 3724 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3725 // p->b[5] is a MemberExpr example. 3726 const Expr *E = ArrayBase->IgnoreImpCasts(); 3727 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3728 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3729 3730 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3731 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3732 if (!VarDef) 3733 return false; 3734 3735 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3736 if (!PtrT) 3737 return false; 3738 3739 const auto *PointeeT = PtrT->getPointeeType() 3740 ->getUnqualifiedDesugaredType(); 3741 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3742 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3743 return false; 3744 } 3745 3746 return false; 3747 } 3748 3749 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3750 ArrayRef<llvm::Value *> indices, 3751 QualType eltType, bool inbounds, 3752 bool signedIndices, SourceLocation loc, 3753 QualType *arrayType = nullptr, 3754 const Expr *Base = nullptr, 3755 const llvm::Twine &name = "arrayidx") { 3756 // All the indices except that last must be zero. 3757 #ifndef NDEBUG 3758 for (auto idx : indices.drop_back()) 3759 assert(isa<llvm::ConstantInt>(idx) && 3760 cast<llvm::ConstantInt>(idx)->isZero()); 3761 #endif 3762 3763 // Determine the element size of the statically-sized base. This is 3764 // the thing that the indices are expressed in terms of. 3765 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3766 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3767 } 3768 3769 // We can use that to compute the best alignment of the element. 3770 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3771 CharUnits eltAlign = 3772 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3773 3774 llvm::Value *eltPtr; 3775 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3776 if (!LastIndex || 3777 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3778 eltPtr = emitArraySubscriptGEP( 3779 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3780 signedIndices, loc, name); 3781 } else { 3782 // Remember the original array subscript for bpf target 3783 unsigned idx = LastIndex->getZExtValue(); 3784 llvm::DIType *DbgInfo = nullptr; 3785 if (arrayType) 3786 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3787 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3788 addr.getPointer(), 3789 indices.size() - 1, 3790 idx, DbgInfo); 3791 } 3792 3793 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3794 } 3795 3796 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3797 bool Accessed) { 3798 // The index must always be an integer, which is not an aggregate. Emit it 3799 // in lexical order (this complexity is, sadly, required by C++17). 3800 llvm::Value *IdxPre = 3801 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3802 bool SignedIndices = false; 3803 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3804 auto *Idx = IdxPre; 3805 if (E->getLHS() != E->getIdx()) { 3806 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3807 Idx = EmitScalarExpr(E->getIdx()); 3808 } 3809 3810 QualType IdxTy = E->getIdx()->getType(); 3811 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3812 SignedIndices |= IdxSigned; 3813 3814 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3815 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3816 3817 // Extend or truncate the index type to 32 or 64-bits. 3818 if (Promote && Idx->getType() != IntPtrTy) 3819 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3820 3821 return Idx; 3822 }; 3823 IdxPre = nullptr; 3824 3825 // If the base is a vector type, then we are forming a vector element lvalue 3826 // with this subscript. 3827 if (E->getBase()->getType()->isVectorType() && 3828 !isa<ExtVectorElementExpr>(E->getBase())) { 3829 // Emit the vector as an lvalue to get its address. 3830 LValue LHS = EmitLValue(E->getBase()); 3831 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3832 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3833 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3834 E->getBase()->getType(), LHS.getBaseInfo(), 3835 TBAAAccessInfo()); 3836 } 3837 3838 // All the other cases basically behave like simple offsetting. 3839 3840 // Handle the extvector case we ignored above. 3841 if (isa<ExtVectorElementExpr>(E->getBase())) { 3842 LValue LV = EmitLValue(E->getBase()); 3843 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3844 Address Addr = EmitExtVectorElementLValue(LV); 3845 3846 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3847 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3848 SignedIndices, E->getExprLoc()); 3849 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3850 CGM.getTBAAInfoForSubobject(LV, EltType)); 3851 } 3852 3853 LValueBaseInfo EltBaseInfo; 3854 TBAAAccessInfo EltTBAAInfo; 3855 Address Addr = Address::invalid(); 3856 if (const VariableArrayType *vla = 3857 getContext().getAsVariableArrayType(E->getType())) { 3858 // The base must be a pointer, which is not an aggregate. Emit 3859 // it. It needs to be emitted first in case it's what captures 3860 // the VLA bounds. 3861 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3862 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3863 3864 // The element count here is the total number of non-VLA elements. 3865 llvm::Value *numElements = getVLASize(vla).NumElts; 3866 3867 // Effectively, the multiply by the VLA size is part of the GEP. 3868 // GEP indexes are signed, and scaling an index isn't permitted to 3869 // signed-overflow, so we use the same semantics for our explicit 3870 // multiply. We suppress this if overflow is not undefined behavior. 3871 if (getLangOpts().isSignedOverflowDefined()) { 3872 Idx = Builder.CreateMul(Idx, numElements); 3873 } else { 3874 Idx = Builder.CreateNSWMul(Idx, numElements); 3875 } 3876 3877 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3878 !getLangOpts().isSignedOverflowDefined(), 3879 SignedIndices, E->getExprLoc()); 3880 3881 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3882 // Indexing over an interface, as in "NSString *P; P[4];" 3883 3884 // Emit the base pointer. 3885 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3886 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3887 3888 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3889 llvm::Value *InterfaceSizeVal = 3890 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3891 3892 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3893 3894 // We don't necessarily build correct LLVM struct types for ObjC 3895 // interfaces, so we can't rely on GEP to do this scaling 3896 // correctly, so we need to cast to i8*. FIXME: is this actually 3897 // true? A lot of other things in the fragile ABI would break... 3898 llvm::Type *OrigBaseElemTy = Addr.getElementType(); 3899 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3900 3901 // Do the GEP. 3902 CharUnits EltAlign = 3903 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3904 llvm::Value *EltPtr = 3905 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3906 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3907 Addr = Address(EltPtr, Addr.getElementType(), EltAlign); 3908 3909 // Cast back. 3910 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy); 3911 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3912 // If this is A[i] where A is an array, the frontend will have decayed the 3913 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3914 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3915 // "gep x, i" here. Emit one "gep A, 0, i". 3916 assert(Array->getType()->isArrayType() && 3917 "Array to pointer decay must have array source type!"); 3918 LValue ArrayLV; 3919 // For simple multidimensional array indexing, set the 'accessed' flag for 3920 // better bounds-checking of the base expression. 3921 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3922 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3923 else 3924 ArrayLV = EmitLValue(Array); 3925 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3926 3927 // Propagate the alignment from the array itself to the result. 3928 QualType arrayType = Array->getType(); 3929 Addr = emitArraySubscriptGEP( 3930 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3931 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3932 E->getExprLoc(), &arrayType, E->getBase()); 3933 EltBaseInfo = ArrayLV.getBaseInfo(); 3934 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3935 } else { 3936 // The base must be a pointer; emit it with an estimate of its alignment. 3937 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3938 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3939 QualType ptrType = E->getBase()->getType(); 3940 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3941 !getLangOpts().isSignedOverflowDefined(), 3942 SignedIndices, E->getExprLoc(), &ptrType, 3943 E->getBase()); 3944 } 3945 3946 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3947 3948 if (getLangOpts().ObjC && 3949 getLangOpts().getGC() != LangOptions::NonGC) { 3950 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3951 setObjCGCLValueClass(getContext(), E, LV); 3952 } 3953 return LV; 3954 } 3955 3956 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3957 assert( 3958 !E->isIncomplete() && 3959 "incomplete matrix subscript expressions should be rejected during Sema"); 3960 LValue Base = EmitLValue(E->getBase()); 3961 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3962 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3963 llvm::Value *NumRows = Builder.getIntN( 3964 RowIdx->getType()->getScalarSizeInBits(), 3965 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3966 llvm::Value *FinalIdx = 3967 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3968 return LValue::MakeMatrixElt( 3969 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3970 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3971 } 3972 3973 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3974 LValueBaseInfo &BaseInfo, 3975 TBAAAccessInfo &TBAAInfo, 3976 QualType BaseTy, QualType ElTy, 3977 bool IsLowerBound) { 3978 LValue BaseLVal; 3979 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3980 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3981 if (BaseTy->isArrayType()) { 3982 Address Addr = BaseLVal.getAddress(CGF); 3983 BaseInfo = BaseLVal.getBaseInfo(); 3984 3985 // If the array type was an incomplete type, we need to make sure 3986 // the decay ends up being the right type. 3987 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3988 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3989 3990 // Note that VLA pointers are always decayed, so we don't need to do 3991 // anything here. 3992 if (!BaseTy->isVariableArrayType()) { 3993 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3994 "Expected pointer to array"); 3995 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3996 } 3997 3998 return CGF.Builder.CreateElementBitCast(Addr, 3999 CGF.ConvertTypeForMem(ElTy)); 4000 } 4001 LValueBaseInfo TypeBaseInfo; 4002 TBAAAccessInfo TypeTBAAInfo; 4003 CharUnits Align = 4004 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 4005 BaseInfo.mergeForCast(TypeBaseInfo); 4006 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 4007 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 4008 CGF.ConvertTypeForMem(ElTy), Align); 4009 } 4010 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 4011 } 4012 4013 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 4014 bool IsLowerBound) { 4015 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 4016 QualType ResultExprTy; 4017 if (auto *AT = getContext().getAsArrayType(BaseTy)) 4018 ResultExprTy = AT->getElementType(); 4019 else 4020 ResultExprTy = BaseTy->getPointeeType(); 4021 llvm::Value *Idx = nullptr; 4022 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 4023 // Requesting lower bound or upper bound, but without provided length and 4024 // without ':' symbol for the default length -> length = 1. 4025 // Idx = LowerBound ?: 0; 4026 if (auto *LowerBound = E->getLowerBound()) { 4027 Idx = Builder.CreateIntCast( 4028 EmitScalarExpr(LowerBound), IntPtrTy, 4029 LowerBound->getType()->hasSignedIntegerRepresentation()); 4030 } else 4031 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 4032 } else { 4033 // Try to emit length or lower bound as constant. If this is possible, 1 4034 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 4035 // IR (LB + Len) - 1. 4036 auto &C = CGM.getContext(); 4037 auto *Length = E->getLength(); 4038 llvm::APSInt ConstLength; 4039 if (Length) { 4040 // Idx = LowerBound + Length - 1; 4041 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 4042 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 4043 Length = nullptr; 4044 } 4045 auto *LowerBound = E->getLowerBound(); 4046 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 4047 if (LowerBound) { 4048 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 4049 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 4050 LowerBound = nullptr; 4051 } 4052 } 4053 if (!Length) 4054 --ConstLength; 4055 else if (!LowerBound) 4056 --ConstLowerBound; 4057 4058 if (Length || LowerBound) { 4059 auto *LowerBoundVal = 4060 LowerBound 4061 ? Builder.CreateIntCast( 4062 EmitScalarExpr(LowerBound), IntPtrTy, 4063 LowerBound->getType()->hasSignedIntegerRepresentation()) 4064 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 4065 auto *LengthVal = 4066 Length 4067 ? Builder.CreateIntCast( 4068 EmitScalarExpr(Length), IntPtrTy, 4069 Length->getType()->hasSignedIntegerRepresentation()) 4070 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 4071 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 4072 /*HasNUW=*/false, 4073 !getLangOpts().isSignedOverflowDefined()); 4074 if (Length && LowerBound) { 4075 Idx = Builder.CreateSub( 4076 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 4077 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4078 } 4079 } else 4080 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 4081 } else { 4082 // Idx = ArraySize - 1; 4083 QualType ArrayTy = BaseTy->isPointerType() 4084 ? E->getBase()->IgnoreParenImpCasts()->getType() 4085 : BaseTy; 4086 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 4087 Length = VAT->getSizeExpr(); 4088 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4089 ConstLength = *L; 4090 Length = nullptr; 4091 } 4092 } else { 4093 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4094 ConstLength = CAT->getSize(); 4095 } 4096 if (Length) { 4097 auto *LengthVal = Builder.CreateIntCast( 4098 EmitScalarExpr(Length), IntPtrTy, 4099 Length->getType()->hasSignedIntegerRepresentation()); 4100 Idx = Builder.CreateSub( 4101 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4102 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4103 } else { 4104 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4105 --ConstLength; 4106 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4107 } 4108 } 4109 } 4110 assert(Idx); 4111 4112 Address EltPtr = Address::invalid(); 4113 LValueBaseInfo BaseInfo; 4114 TBAAAccessInfo TBAAInfo; 4115 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4116 // The base must be a pointer, which is not an aggregate. Emit 4117 // it. It needs to be emitted first in case it's what captures 4118 // the VLA bounds. 4119 Address Base = 4120 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4121 BaseTy, VLA->getElementType(), IsLowerBound); 4122 // The element count here is the total number of non-VLA elements. 4123 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4124 4125 // Effectively, the multiply by the VLA size is part of the GEP. 4126 // GEP indexes are signed, and scaling an index isn't permitted to 4127 // signed-overflow, so we use the same semantics for our explicit 4128 // multiply. We suppress this if overflow is not undefined behavior. 4129 if (getLangOpts().isSignedOverflowDefined()) 4130 Idx = Builder.CreateMul(Idx, NumElements); 4131 else 4132 Idx = Builder.CreateNSWMul(Idx, NumElements); 4133 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4134 !getLangOpts().isSignedOverflowDefined(), 4135 /*signedIndices=*/false, E->getExprLoc()); 4136 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4137 // If this is A[i] where A is an array, the frontend will have decayed the 4138 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4139 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4140 // "gep x, i" here. Emit one "gep A, 0, i". 4141 assert(Array->getType()->isArrayType() && 4142 "Array to pointer decay must have array source type!"); 4143 LValue ArrayLV; 4144 // For simple multidimensional array indexing, set the 'accessed' flag for 4145 // better bounds-checking of the base expression. 4146 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4147 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4148 else 4149 ArrayLV = EmitLValue(Array); 4150 4151 // Propagate the alignment from the array itself to the result. 4152 EltPtr = emitArraySubscriptGEP( 4153 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4154 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4155 /*signedIndices=*/false, E->getExprLoc()); 4156 BaseInfo = ArrayLV.getBaseInfo(); 4157 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4158 } else { 4159 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4160 TBAAInfo, BaseTy, ResultExprTy, 4161 IsLowerBound); 4162 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4163 !getLangOpts().isSignedOverflowDefined(), 4164 /*signedIndices=*/false, E->getExprLoc()); 4165 } 4166 4167 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4168 } 4169 4170 LValue CodeGenFunction:: 4171 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4172 // Emit the base vector as an l-value. 4173 LValue Base; 4174 4175 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4176 if (E->isArrow()) { 4177 // If it is a pointer to a vector, emit the address and form an lvalue with 4178 // it. 4179 LValueBaseInfo BaseInfo; 4180 TBAAAccessInfo TBAAInfo; 4181 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4182 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4183 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4184 Base.getQuals().removeObjCGCAttr(); 4185 } else if (E->getBase()->isGLValue()) { 4186 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4187 // emit the base as an lvalue. 4188 assert(E->getBase()->getType()->isVectorType()); 4189 Base = EmitLValue(E->getBase()); 4190 } else { 4191 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4192 assert(E->getBase()->getType()->isVectorType() && 4193 "Result must be a vector"); 4194 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4195 4196 // Store the vector to memory (because LValue wants an address). 4197 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4198 Builder.CreateStore(Vec, VecMem); 4199 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4200 AlignmentSource::Decl); 4201 } 4202 4203 QualType type = 4204 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4205 4206 // Encode the element access list into a vector of unsigned indices. 4207 SmallVector<uint32_t, 4> Indices; 4208 E->getEncodedElementAccess(Indices); 4209 4210 if (Base.isSimple()) { 4211 llvm::Constant *CV = 4212 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4213 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4214 Base.getBaseInfo(), TBAAAccessInfo()); 4215 } 4216 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4217 4218 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4219 SmallVector<llvm::Constant *, 4> CElts; 4220 4221 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4222 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4223 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4224 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4225 Base.getBaseInfo(), TBAAAccessInfo()); 4226 } 4227 4228 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4229 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4230 EmitIgnoredExpr(E->getBase()); 4231 return EmitDeclRefLValue(DRE); 4232 } 4233 4234 Expr *BaseExpr = E->getBase(); 4235 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4236 LValue BaseLV; 4237 if (E->isArrow()) { 4238 LValueBaseInfo BaseInfo; 4239 TBAAAccessInfo TBAAInfo; 4240 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4241 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4242 SanitizerSet SkippedChecks; 4243 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4244 if (IsBaseCXXThis) 4245 SkippedChecks.set(SanitizerKind::Alignment, true); 4246 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4247 SkippedChecks.set(SanitizerKind::Null, true); 4248 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4249 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4250 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4251 } else 4252 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4253 4254 NamedDecl *ND = E->getMemberDecl(); 4255 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4256 LValue LV = EmitLValueForField(BaseLV, Field); 4257 setObjCGCLValueClass(getContext(), E, LV); 4258 if (getLangOpts().OpenMP) { 4259 // If the member was explicitly marked as nontemporal, mark it as 4260 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4261 // to children as nontemporal too. 4262 if ((IsWrappedCXXThis(BaseExpr) && 4263 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4264 BaseLV.isNontemporal()) 4265 LV.setNontemporal(/*Value=*/true); 4266 } 4267 return LV; 4268 } 4269 4270 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4271 return EmitFunctionDeclLValue(*this, E, FD); 4272 4273 llvm_unreachable("Unhandled member declaration!"); 4274 } 4275 4276 /// Given that we are currently emitting a lambda, emit an l-value for 4277 /// one of its members. 4278 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4279 if (CurCodeDecl) { 4280 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4281 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4282 } 4283 QualType LambdaTagType = 4284 getContext().getTagDeclType(Field->getParent()); 4285 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4286 return EmitLValueForField(LambdaLV, Field); 4287 } 4288 4289 /// Get the field index in the debug info. The debug info structure/union 4290 /// will ignore the unnamed bitfields. 4291 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4292 unsigned FieldIndex) { 4293 unsigned I = 0, Skipped = 0; 4294 4295 for (auto F : Rec->getDefinition()->fields()) { 4296 if (I == FieldIndex) 4297 break; 4298 if (F->isUnnamedBitfield()) 4299 Skipped++; 4300 I++; 4301 } 4302 4303 return FieldIndex - Skipped; 4304 } 4305 4306 /// Get the address of a zero-sized field within a record. The resulting 4307 /// address doesn't necessarily have the right type. 4308 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4309 const FieldDecl *Field) { 4310 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4311 CGF.getContext().getFieldOffset(Field)); 4312 if (Offset.isZero()) 4313 return Base; 4314 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4315 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4316 } 4317 4318 /// Drill down to the storage of a field without walking into 4319 /// reference types. 4320 /// 4321 /// The resulting address doesn't necessarily have the right type. 4322 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4323 const FieldDecl *field) { 4324 if (field->isZeroSize(CGF.getContext())) 4325 return emitAddrOfZeroSizeField(CGF, base, field); 4326 4327 const RecordDecl *rec = field->getParent(); 4328 4329 unsigned idx = 4330 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4331 4332 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4333 } 4334 4335 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4336 Address addr, const FieldDecl *field) { 4337 const RecordDecl *rec = field->getParent(); 4338 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4339 base.getType(), rec->getLocation()); 4340 4341 unsigned idx = 4342 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4343 4344 return CGF.Builder.CreatePreserveStructAccessIndex( 4345 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4346 } 4347 4348 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4349 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4350 if (!RD) 4351 return false; 4352 4353 if (RD->isDynamicClass()) 4354 return true; 4355 4356 for (const auto &Base : RD->bases()) 4357 if (hasAnyVptr(Base.getType(), Context)) 4358 return true; 4359 4360 for (const FieldDecl *Field : RD->fields()) 4361 if (hasAnyVptr(Field->getType(), Context)) 4362 return true; 4363 4364 return false; 4365 } 4366 4367 LValue CodeGenFunction::EmitLValueForField(LValue base, 4368 const FieldDecl *field) { 4369 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4370 4371 if (field->isBitField()) { 4372 const CGRecordLayout &RL = 4373 CGM.getTypes().getCGRecordLayout(field->getParent()); 4374 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4375 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4376 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4377 Info.VolatileStorageSize != 0 && 4378 field->getType() 4379 .withCVRQualifiers(base.getVRQualifiers()) 4380 .isVolatileQualified(); 4381 Address Addr = base.getAddress(*this); 4382 unsigned Idx = RL.getLLVMFieldNo(field); 4383 const RecordDecl *rec = field->getParent(); 4384 if (!UseVolatile) { 4385 if (!IsInPreservedAIRegion && 4386 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4387 if (Idx != 0) 4388 // For structs, we GEP to the field that the record layout suggests. 4389 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4390 } else { 4391 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4392 getContext().getRecordType(rec), rec->getLocation()); 4393 Addr = Builder.CreatePreserveStructAccessIndex( 4394 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4395 DbgInfo); 4396 } 4397 } 4398 const unsigned SS = 4399 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4400 // Get the access type. 4401 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4402 if (Addr.getElementType() != FieldIntTy) 4403 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4404 if (UseVolatile) { 4405 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4406 if (VolatileOffset) 4407 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4408 } 4409 4410 QualType fieldType = 4411 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4412 // TODO: Support TBAA for bit fields. 4413 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4414 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4415 TBAAAccessInfo()); 4416 } 4417 4418 // Fields of may-alias structures are may-alias themselves. 4419 // FIXME: this should get propagated down through anonymous structs 4420 // and unions. 4421 QualType FieldType = field->getType(); 4422 const RecordDecl *rec = field->getParent(); 4423 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4424 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4425 TBAAAccessInfo FieldTBAAInfo; 4426 if (base.getTBAAInfo().isMayAlias() || 4427 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4428 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4429 } else if (rec->isUnion()) { 4430 // TODO: Support TBAA for unions. 4431 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4432 } else { 4433 // If no base type been assigned for the base access, then try to generate 4434 // one for this base lvalue. 4435 FieldTBAAInfo = base.getTBAAInfo(); 4436 if (!FieldTBAAInfo.BaseType) { 4437 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4438 assert(!FieldTBAAInfo.Offset && 4439 "Nonzero offset for an access with no base type!"); 4440 } 4441 4442 // Adjust offset to be relative to the base type. 4443 const ASTRecordLayout &Layout = 4444 getContext().getASTRecordLayout(field->getParent()); 4445 unsigned CharWidth = getContext().getCharWidth(); 4446 if (FieldTBAAInfo.BaseType) 4447 FieldTBAAInfo.Offset += 4448 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4449 4450 // Update the final access type and size. 4451 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4452 FieldTBAAInfo.Size = 4453 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4454 } 4455 4456 Address addr = base.getAddress(*this); 4457 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4458 if (CGM.getCodeGenOpts().StrictVTablePointers && 4459 ClassDef->isDynamicClass()) { 4460 // Getting to any field of dynamic object requires stripping dynamic 4461 // information provided by invariant.group. This is because accessing 4462 // fields may leak the real address of dynamic object, which could result 4463 // in miscompilation when leaked pointer would be compared. 4464 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4465 addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 4466 } 4467 } 4468 4469 unsigned RecordCVR = base.getVRQualifiers(); 4470 if (rec->isUnion()) { 4471 // For unions, there is no pointer adjustment. 4472 if (CGM.getCodeGenOpts().StrictVTablePointers && 4473 hasAnyVptr(FieldType, getContext())) 4474 // Because unions can easily skip invariant.barriers, we need to add 4475 // a barrier every time CXXRecord field with vptr is referenced. 4476 addr = Builder.CreateLaunderInvariantGroup(addr); 4477 4478 if (IsInPreservedAIRegion || 4479 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4480 // Remember the original union field index 4481 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4482 rec->getLocation()); 4483 addr = Address( 4484 Builder.CreatePreserveUnionAccessIndex( 4485 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4486 addr.getElementType(), addr.getAlignment()); 4487 } 4488 4489 if (FieldType->isReferenceType()) 4490 addr = Builder.CreateElementBitCast( 4491 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4492 } else { 4493 if (!IsInPreservedAIRegion && 4494 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4495 // For structs, we GEP to the field that the record layout suggests. 4496 addr = emitAddrOfFieldStorage(*this, addr, field); 4497 else 4498 // Remember the original struct field index 4499 addr = emitPreserveStructAccess(*this, base, addr, field); 4500 } 4501 4502 // If this is a reference field, load the reference right now. 4503 if (FieldType->isReferenceType()) { 4504 LValue RefLVal = 4505 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4506 if (RecordCVR & Qualifiers::Volatile) 4507 RefLVal.getQuals().addVolatile(); 4508 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4509 4510 // Qualifiers on the struct don't apply to the referencee. 4511 RecordCVR = 0; 4512 FieldType = FieldType->getPointeeType(); 4513 } 4514 4515 // Make sure that the address is pointing to the right type. This is critical 4516 // for both unions and structs. A union needs a bitcast, a struct element 4517 // will need a bitcast if the LLVM type laid out doesn't match the desired 4518 // type. 4519 addr = Builder.CreateElementBitCast( 4520 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4521 4522 if (field->hasAttr<AnnotateAttr>()) 4523 addr = EmitFieldAnnotations(field, addr); 4524 4525 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4526 LV.getQuals().addCVRQualifiers(RecordCVR); 4527 4528 // __weak attribute on a field is ignored. 4529 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4530 LV.getQuals().removeObjCGCAttr(); 4531 4532 return LV; 4533 } 4534 4535 LValue 4536 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4537 const FieldDecl *Field) { 4538 QualType FieldType = Field->getType(); 4539 4540 if (!FieldType->isReferenceType()) 4541 return EmitLValueForField(Base, Field); 4542 4543 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4544 4545 // Make sure that the address is pointing to the right type. 4546 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4547 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4548 4549 // TODO: Generate TBAA information that describes this access as a structure 4550 // member access and not just an access to an object of the field's type. This 4551 // should be similar to what we do in EmitLValueForField(). 4552 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4553 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4554 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4555 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4556 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4557 } 4558 4559 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4560 if (E->isFileScope()) { 4561 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4562 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4563 } 4564 if (E->getType()->isVariablyModifiedType()) 4565 // make sure to emit the VLA size. 4566 EmitVariablyModifiedType(E->getType()); 4567 4568 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4569 const Expr *InitExpr = E->getInitializer(); 4570 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4571 4572 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4573 /*Init*/ true); 4574 4575 // Block-scope compound literals are destroyed at the end of the enclosing 4576 // scope in C. 4577 if (!getLangOpts().CPlusPlus) 4578 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4579 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4580 E->getType(), getDestroyer(DtorKind), 4581 DtorKind & EHCleanup); 4582 4583 return Result; 4584 } 4585 4586 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4587 if (!E->isGLValue()) 4588 // Initializing an aggregate temporary in C++11: T{...}. 4589 return EmitAggExprToLValue(E); 4590 4591 // An lvalue initializer list must be initializing a reference. 4592 assert(E->isTransparent() && "non-transparent glvalue init list"); 4593 return EmitLValue(E->getInit(0)); 4594 } 4595 4596 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4597 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4598 /// LValue is returned and the current block has been terminated. 4599 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4600 const Expr *Operand) { 4601 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4602 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4603 return None; 4604 } 4605 4606 return CGF.EmitLValue(Operand); 4607 } 4608 4609 namespace { 4610 // Handle the case where the condition is a constant evaluatable simple integer, 4611 // which means we don't have to separately handle the true/false blocks. 4612 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase( 4613 CodeGenFunction &CGF, const AbstractConditionalOperator *E) { 4614 const Expr *condExpr = E->getCond(); 4615 bool CondExprBool; 4616 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4617 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr(); 4618 if (!CondExprBool) 4619 std::swap(Live, Dead); 4620 4621 if (!CGF.ContainsLabel(Dead)) { 4622 // If the true case is live, we need to track its region. 4623 if (CondExprBool) 4624 CGF.incrementProfileCounter(E); 4625 // If a throw expression we emit it and return an undefined lvalue 4626 // because it can't be used. 4627 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) { 4628 CGF.EmitCXXThrowExpr(ThrowExpr); 4629 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType()); 4630 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 4631 return CGF.MakeAddrLValue( 4632 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 4633 Dead->getType()); 4634 } 4635 return CGF.EmitLValue(Live); 4636 } 4637 } 4638 return llvm::None; 4639 } 4640 struct ConditionalInfo { 4641 llvm::BasicBlock *lhsBlock, *rhsBlock; 4642 Optional<LValue> LHS, RHS; 4643 }; 4644 4645 // Create and generate the 3 blocks for a conditional operator. 4646 // Leaves the 'current block' in the continuation basic block. 4647 template<typename FuncTy> 4648 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF, 4649 const AbstractConditionalOperator *E, 4650 const FuncTy &BranchGenFunc) { 4651 ConditionalInfo Info{CGF.createBasicBlock("cond.true"), 4652 CGF.createBasicBlock("cond.false"), llvm::None, 4653 llvm::None}; 4654 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end"); 4655 4656 CodeGenFunction::ConditionalEvaluation eval(CGF); 4657 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock, 4658 CGF.getProfileCount(E)); 4659 4660 // Any temporaries created here are conditional. 4661 CGF.EmitBlock(Info.lhsBlock); 4662 CGF.incrementProfileCounter(E); 4663 eval.begin(CGF); 4664 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr()); 4665 eval.end(CGF); 4666 Info.lhsBlock = CGF.Builder.GetInsertBlock(); 4667 4668 if (Info.LHS) 4669 CGF.Builder.CreateBr(endBlock); 4670 4671 // Any temporaries created here are conditional. 4672 CGF.EmitBlock(Info.rhsBlock); 4673 eval.begin(CGF); 4674 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr()); 4675 eval.end(CGF); 4676 Info.rhsBlock = CGF.Builder.GetInsertBlock(); 4677 CGF.EmitBlock(endBlock); 4678 4679 return Info; 4680 } 4681 } // namespace 4682 4683 void CodeGenFunction::EmitIgnoredConditionalOperator( 4684 const AbstractConditionalOperator *E) { 4685 if (!E->isGLValue()) { 4686 // ?: here should be an aggregate. 4687 assert(hasAggregateEvaluationKind(E->getType()) && 4688 "Unexpected conditional operator!"); 4689 return (void)EmitAggExprToLValue(E); 4690 } 4691 4692 OpaqueValueMapping binding(*this, E); 4693 if (HandleConditionalOperatorLValueSimpleCase(*this, E)) 4694 return; 4695 4696 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) { 4697 CGF.EmitIgnoredExpr(E); 4698 return LValue{}; 4699 }); 4700 } 4701 LValue CodeGenFunction::EmitConditionalOperatorLValue( 4702 const AbstractConditionalOperator *expr) { 4703 if (!expr->isGLValue()) { 4704 // ?: here should be an aggregate. 4705 assert(hasAggregateEvaluationKind(expr->getType()) && 4706 "Unexpected conditional operator!"); 4707 return EmitAggExprToLValue(expr); 4708 } 4709 4710 OpaqueValueMapping binding(*this, expr); 4711 if (llvm::Optional<LValue> Res = 4712 HandleConditionalOperatorLValueSimpleCase(*this, expr)) 4713 return *Res; 4714 4715 ConditionalInfo Info = EmitConditionalBlocks( 4716 *this, expr, [](CodeGenFunction &CGF, const Expr *E) { 4717 return EmitLValueOrThrowExpression(CGF, E); 4718 }); 4719 4720 if ((Info.LHS && !Info.LHS->isSimple()) || 4721 (Info.RHS && !Info.RHS->isSimple())) 4722 return EmitUnsupportedLValue(expr, "conditional operator"); 4723 4724 if (Info.LHS && Info.RHS) { 4725 Address lhsAddr = Info.LHS->getAddress(*this); 4726 Address rhsAddr = Info.RHS->getAddress(*this); 4727 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 4728 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock); 4729 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock); 4730 Address result(phi, lhsAddr.getElementType(), 4731 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 4732 AlignmentSource alignSource = 4733 std::max(Info.LHS->getBaseInfo().getAlignmentSource(), 4734 Info.RHS->getBaseInfo().getAlignmentSource()); 4735 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4736 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo()); 4737 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4738 TBAAInfo); 4739 } else { 4740 assert((Info.LHS || Info.RHS) && 4741 "both operands of glvalue conditional are throw-expressions?"); 4742 return Info.LHS ? *Info.LHS : *Info.RHS; 4743 } 4744 } 4745 4746 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4747 /// type. If the cast is to a reference, we can have the usual lvalue result, 4748 /// otherwise if a cast is needed by the code generator in an lvalue context, 4749 /// then it must mean that we need the address of an aggregate in order to 4750 /// access one of its members. This can happen for all the reasons that casts 4751 /// are permitted with aggregate result, including noop aggregate casts, and 4752 /// cast from scalar to union. 4753 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4754 switch (E->getCastKind()) { 4755 case CK_ToVoid: 4756 case CK_BitCast: 4757 case CK_LValueToRValueBitCast: 4758 case CK_ArrayToPointerDecay: 4759 case CK_FunctionToPointerDecay: 4760 case CK_NullToMemberPointer: 4761 case CK_NullToPointer: 4762 case CK_IntegralToPointer: 4763 case CK_PointerToIntegral: 4764 case CK_PointerToBoolean: 4765 case CK_VectorSplat: 4766 case CK_IntegralCast: 4767 case CK_BooleanToSignedIntegral: 4768 case CK_IntegralToBoolean: 4769 case CK_IntegralToFloating: 4770 case CK_FloatingToIntegral: 4771 case CK_FloatingToBoolean: 4772 case CK_FloatingCast: 4773 case CK_FloatingRealToComplex: 4774 case CK_FloatingComplexToReal: 4775 case CK_FloatingComplexToBoolean: 4776 case CK_FloatingComplexCast: 4777 case CK_FloatingComplexToIntegralComplex: 4778 case CK_IntegralRealToComplex: 4779 case CK_IntegralComplexToReal: 4780 case CK_IntegralComplexToBoolean: 4781 case CK_IntegralComplexCast: 4782 case CK_IntegralComplexToFloatingComplex: 4783 case CK_DerivedToBaseMemberPointer: 4784 case CK_BaseToDerivedMemberPointer: 4785 case CK_MemberPointerToBoolean: 4786 case CK_ReinterpretMemberPointer: 4787 case CK_AnyPointerToBlockPointerCast: 4788 case CK_ARCProduceObject: 4789 case CK_ARCConsumeObject: 4790 case CK_ARCReclaimReturnedObject: 4791 case CK_ARCExtendBlockObject: 4792 case CK_CopyAndAutoreleaseBlockObject: 4793 case CK_IntToOCLSampler: 4794 case CK_FloatingToFixedPoint: 4795 case CK_FixedPointToFloating: 4796 case CK_FixedPointCast: 4797 case CK_FixedPointToBoolean: 4798 case CK_FixedPointToIntegral: 4799 case CK_IntegralToFixedPoint: 4800 case CK_MatrixCast: 4801 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4802 4803 case CK_Dependent: 4804 llvm_unreachable("dependent cast kind in IR gen!"); 4805 4806 case CK_BuiltinFnToFnPtr: 4807 llvm_unreachable("builtin functions are handled elsewhere"); 4808 4809 // These are never l-values; just use the aggregate emission code. 4810 case CK_NonAtomicToAtomic: 4811 case CK_AtomicToNonAtomic: 4812 return EmitAggExprToLValue(E); 4813 4814 case CK_Dynamic: { 4815 LValue LV = EmitLValue(E->getSubExpr()); 4816 Address V = LV.getAddress(*this); 4817 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4818 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4819 } 4820 4821 case CK_ConstructorConversion: 4822 case CK_UserDefinedConversion: 4823 case CK_CPointerToObjCPointerCast: 4824 case CK_BlockPointerToObjCPointerCast: 4825 case CK_LValueToRValue: 4826 return EmitLValue(E->getSubExpr()); 4827 4828 case CK_NoOp: { 4829 // CK_NoOp can model a qualification conversion, which can remove an array 4830 // bound and change the IR type. 4831 // FIXME: Once pointee types are removed from IR, remove this. 4832 LValue LV = EmitLValue(E->getSubExpr()); 4833 if (LV.isSimple()) { 4834 Address V = LV.getAddress(*this); 4835 if (V.isValid()) { 4836 llvm::Type *T = ConvertTypeForMem(E->getType()); 4837 if (V.getElementType() != T) 4838 LV.setAddress(Builder.CreateElementBitCast(V, T)); 4839 } 4840 } 4841 return LV; 4842 } 4843 4844 case CK_UncheckedDerivedToBase: 4845 case CK_DerivedToBase: { 4846 const auto *DerivedClassTy = 4847 E->getSubExpr()->getType()->castAs<RecordType>(); 4848 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4849 4850 LValue LV = EmitLValue(E->getSubExpr()); 4851 Address This = LV.getAddress(*this); 4852 4853 // Perform the derived-to-base conversion 4854 Address Base = GetAddressOfBaseClass( 4855 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4856 /*NullCheckValue=*/false, E->getExprLoc()); 4857 4858 // TODO: Support accesses to members of base classes in TBAA. For now, we 4859 // conservatively pretend that the complete object is of the base class 4860 // type. 4861 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4862 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4863 } 4864 case CK_ToUnion: 4865 return EmitAggExprToLValue(E); 4866 case CK_BaseToDerived: { 4867 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4868 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4869 4870 LValue LV = EmitLValue(E->getSubExpr()); 4871 4872 // Perform the base-to-derived conversion 4873 Address Derived = GetAddressOfDerivedClass( 4874 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4875 /*NullCheckValue=*/false); 4876 4877 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4878 // performed and the object is not of the derived type. 4879 if (sanitizePerformTypeCheck()) 4880 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4881 Derived.getPointer(), E->getType()); 4882 4883 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4884 EmitVTablePtrCheckForCast(E->getType(), Derived, 4885 /*MayBeNull=*/false, CFITCK_DerivedCast, 4886 E->getBeginLoc()); 4887 4888 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4889 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4890 } 4891 case CK_LValueBitCast: { 4892 // This must be a reinterpret_cast (or c-style equivalent). 4893 const auto *CE = cast<ExplicitCastExpr>(E); 4894 4895 CGM.EmitExplicitCastExprType(CE, this); 4896 LValue LV = EmitLValue(E->getSubExpr()); 4897 Address V = Builder.CreateElementBitCast( 4898 LV.getAddress(*this), 4899 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 4900 4901 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4902 EmitVTablePtrCheckForCast(E->getType(), V, 4903 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4904 E->getBeginLoc()); 4905 4906 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4907 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4908 } 4909 case CK_AddressSpaceConversion: { 4910 LValue LV = EmitLValue(E->getSubExpr()); 4911 QualType DestTy = getContext().getPointerType(E->getType()); 4912 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4913 *this, LV.getPointer(*this), 4914 E->getSubExpr()->getType().getAddressSpace(), 4915 E->getType().getAddressSpace(), ConvertType(DestTy)); 4916 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 4917 LV.getAddress(*this).getAlignment()), 4918 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4919 } 4920 case CK_ObjCObjectLValueCast: { 4921 LValue LV = EmitLValue(E->getSubExpr()); 4922 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4923 ConvertType(E->getType())); 4924 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4925 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4926 } 4927 case CK_ZeroToOCLOpaqueType: 4928 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4929 } 4930 4931 llvm_unreachable("Unhandled lvalue cast kind?"); 4932 } 4933 4934 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4935 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4936 return getOrCreateOpaqueLValueMapping(e); 4937 } 4938 4939 LValue 4940 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4941 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4942 4943 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4944 it = OpaqueLValues.find(e); 4945 4946 if (it != OpaqueLValues.end()) 4947 return it->second; 4948 4949 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4950 return EmitLValue(e->getSourceExpr()); 4951 } 4952 4953 RValue 4954 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4955 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4956 4957 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4958 it = OpaqueRValues.find(e); 4959 4960 if (it != OpaqueRValues.end()) 4961 return it->second; 4962 4963 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4964 return EmitAnyExpr(e->getSourceExpr()); 4965 } 4966 4967 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4968 const FieldDecl *FD, 4969 SourceLocation Loc) { 4970 QualType FT = FD->getType(); 4971 LValue FieldLV = EmitLValueForField(LV, FD); 4972 switch (getEvaluationKind(FT)) { 4973 case TEK_Complex: 4974 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4975 case TEK_Aggregate: 4976 return FieldLV.asAggregateRValue(*this); 4977 case TEK_Scalar: 4978 // This routine is used to load fields one-by-one to perform a copy, so 4979 // don't load reference fields. 4980 if (FD->getType()->isReferenceType()) 4981 return RValue::get(FieldLV.getPointer(*this)); 4982 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4983 // primitive load. 4984 if (FieldLV.isBitField()) 4985 return EmitLoadOfLValue(FieldLV, Loc); 4986 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4987 } 4988 llvm_unreachable("bad evaluation kind"); 4989 } 4990 4991 //===--------------------------------------------------------------------===// 4992 // Expression Emission 4993 //===--------------------------------------------------------------------===// 4994 4995 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4996 ReturnValueSlot ReturnValue) { 4997 // Builtins never have block type. 4998 if (E->getCallee()->getType()->isBlockPointerType()) 4999 return EmitBlockCallExpr(E, ReturnValue); 5000 5001 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 5002 return EmitCXXMemberCallExpr(CE, ReturnValue); 5003 5004 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 5005 return EmitCUDAKernelCallExpr(CE, ReturnValue); 5006 5007 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 5008 if (const CXXMethodDecl *MD = 5009 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 5010 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 5011 5012 CGCallee callee = EmitCallee(E->getCallee()); 5013 5014 if (callee.isBuiltin()) { 5015 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 5016 E, ReturnValue); 5017 } 5018 5019 if (callee.isPseudoDestructor()) { 5020 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 5021 } 5022 5023 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 5024 } 5025 5026 /// Emit a CallExpr without considering whether it might be a subclass. 5027 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 5028 ReturnValueSlot ReturnValue) { 5029 CGCallee Callee = EmitCallee(E->getCallee()); 5030 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 5031 } 5032 5033 // Detect the unusual situation where an inline version is shadowed by a 5034 // non-inline version. In that case we should pick the external one 5035 // everywhere. That's GCC behavior too. 5036 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) { 5037 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl()) 5038 if (!PD->isInlineBuiltinDeclaration()) 5039 return false; 5040 return true; 5041 } 5042 5043 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 5044 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 5045 5046 if (auto builtinID = FD->getBuiltinID()) { 5047 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str(); 5048 std::string NoBuiltins = "no-builtins"; 5049 std::string FDInlineName = (FD->getName() + ".inline").str(); 5050 5051 bool IsPredefinedLibFunction = 5052 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID); 5053 bool HasAttributeNoBuiltin = 5054 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) || 5055 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins); 5056 5057 // When directing calling an inline builtin, call it through it's mangled 5058 // name to make it clear it's not the actual builtin. 5059 if (CGF.CurFn->getName() != FDInlineName && 5060 OnlyHasInlineBuiltinDeclaration(FD)) { 5061 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5062 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 5063 llvm::Module *M = Fn->getParent(); 5064 llvm::Function *Clone = M->getFunction(FDInlineName); 5065 if (!Clone) { 5066 Clone = llvm::Function::Create(Fn->getFunctionType(), 5067 llvm::GlobalValue::InternalLinkage, 5068 Fn->getAddressSpace(), FDInlineName, M); 5069 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 5070 } 5071 return CGCallee::forDirect(Clone, GD); 5072 } 5073 5074 // Replaceable builtins provide their own implementation of a builtin. If we 5075 // are in an inline builtin implementation, avoid trivial infinite 5076 // recursion. Honor __attribute__((no_builtin("foo"))) or 5077 // __attribute__((no_builtin)) on the current function unless foo is 5078 // not a predefined library function which means we must generate the 5079 // builtin no matter what. 5080 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin) 5081 return CGCallee::forBuiltin(builtinID, FD); 5082 } 5083 5084 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5085 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 5086 FD->hasAttr<CUDAGlobalAttr>()) 5087 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 5088 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 5089 5090 return CGCallee::forDirect(CalleePtr, GD); 5091 } 5092 5093 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 5094 E = E->IgnoreParens(); 5095 5096 // Look through function-to-pointer decay. 5097 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 5098 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 5099 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 5100 return EmitCallee(ICE->getSubExpr()); 5101 } 5102 5103 // Resolve direct calls. 5104 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 5105 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 5106 return EmitDirectCallee(*this, FD); 5107 } 5108 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 5109 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 5110 EmitIgnoredExpr(ME->getBase()); 5111 return EmitDirectCallee(*this, FD); 5112 } 5113 5114 // Look through template substitutions. 5115 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 5116 return EmitCallee(NTTP->getReplacement()); 5117 5118 // Treat pseudo-destructor calls differently. 5119 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 5120 return CGCallee::forPseudoDestructor(PDE); 5121 } 5122 5123 // Otherwise, we have an indirect reference. 5124 llvm::Value *calleePtr; 5125 QualType functionType; 5126 if (auto ptrType = E->getType()->getAs<PointerType>()) { 5127 calleePtr = EmitScalarExpr(E); 5128 functionType = ptrType->getPointeeType(); 5129 } else { 5130 functionType = E->getType(); 5131 calleePtr = EmitLValue(E).getPointer(*this); 5132 } 5133 assert(functionType->isFunctionType()); 5134 5135 GlobalDecl GD; 5136 if (const auto *VD = 5137 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 5138 GD = GlobalDecl(VD); 5139 5140 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 5141 CGCallee callee(calleeInfo, calleePtr); 5142 return callee; 5143 } 5144 5145 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 5146 // Comma expressions just emit their LHS then their RHS as an l-value. 5147 if (E->getOpcode() == BO_Comma) { 5148 EmitIgnoredExpr(E->getLHS()); 5149 EnsureInsertPoint(); 5150 return EmitLValue(E->getRHS()); 5151 } 5152 5153 if (E->getOpcode() == BO_PtrMemD || 5154 E->getOpcode() == BO_PtrMemI) 5155 return EmitPointerToDataMemberBinaryExpr(E); 5156 5157 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5158 5159 // Note that in all of these cases, __block variables need the RHS 5160 // evaluated first just in case the variable gets moved by the RHS. 5161 5162 switch (getEvaluationKind(E->getType())) { 5163 case TEK_Scalar: { 5164 switch (E->getLHS()->getType().getObjCLifetime()) { 5165 case Qualifiers::OCL_Strong: 5166 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5167 5168 case Qualifiers::OCL_Autoreleasing: 5169 return EmitARCStoreAutoreleasing(E).first; 5170 5171 // No reason to do any of these differently. 5172 case Qualifiers::OCL_None: 5173 case Qualifiers::OCL_ExplicitNone: 5174 case Qualifiers::OCL_Weak: 5175 break; 5176 } 5177 5178 RValue RV = EmitAnyExpr(E->getRHS()); 5179 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5180 if (RV.isScalar()) 5181 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5182 EmitStoreThroughLValue(RV, LV); 5183 if (getLangOpts().OpenMP) 5184 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5185 E->getLHS()); 5186 return LV; 5187 } 5188 5189 case TEK_Complex: 5190 return EmitComplexAssignmentLValue(E); 5191 5192 case TEK_Aggregate: 5193 return EmitAggExprToLValue(E); 5194 } 5195 llvm_unreachable("bad evaluation kind"); 5196 } 5197 5198 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5199 RValue RV = EmitCallExpr(E); 5200 5201 if (!RV.isScalar()) 5202 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5203 AlignmentSource::Decl); 5204 5205 assert(E->getCallReturnType(getContext())->isReferenceType() && 5206 "Can't have a scalar return unless the return type is a " 5207 "reference type!"); 5208 5209 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5210 } 5211 5212 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5213 // FIXME: This shouldn't require another copy. 5214 return EmitAggExprToLValue(E); 5215 } 5216 5217 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5218 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5219 && "binding l-value to type which needs a temporary"); 5220 AggValueSlot Slot = CreateAggTemp(E->getType()); 5221 EmitCXXConstructExpr(E, Slot); 5222 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5223 } 5224 5225 LValue 5226 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5227 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5228 } 5229 5230 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5231 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5232 ConvertType(E->getType())); 5233 } 5234 5235 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5236 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5237 AlignmentSource::Decl); 5238 } 5239 5240 LValue 5241 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5242 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5243 Slot.setExternallyDestructed(); 5244 EmitAggExpr(E->getSubExpr(), Slot); 5245 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5246 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5247 } 5248 5249 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5250 RValue RV = EmitObjCMessageExpr(E); 5251 5252 if (!RV.isScalar()) 5253 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5254 AlignmentSource::Decl); 5255 5256 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5257 "Can't have a scalar return unless the return type is a " 5258 "reference type!"); 5259 5260 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5261 } 5262 5263 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5264 Address V = 5265 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5266 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5267 } 5268 5269 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5270 const ObjCIvarDecl *Ivar) { 5271 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5272 } 5273 5274 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5275 llvm::Value *BaseValue, 5276 const ObjCIvarDecl *Ivar, 5277 unsigned CVRQualifiers) { 5278 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5279 Ivar, CVRQualifiers); 5280 } 5281 5282 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5283 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5284 llvm::Value *BaseValue = nullptr; 5285 const Expr *BaseExpr = E->getBase(); 5286 Qualifiers BaseQuals; 5287 QualType ObjectTy; 5288 if (E->isArrow()) { 5289 BaseValue = EmitScalarExpr(BaseExpr); 5290 ObjectTy = BaseExpr->getType()->getPointeeType(); 5291 BaseQuals = ObjectTy.getQualifiers(); 5292 } else { 5293 LValue BaseLV = EmitLValue(BaseExpr); 5294 BaseValue = BaseLV.getPointer(*this); 5295 ObjectTy = BaseExpr->getType(); 5296 BaseQuals = ObjectTy.getQualifiers(); 5297 } 5298 5299 LValue LV = 5300 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5301 BaseQuals.getCVRQualifiers()); 5302 setObjCGCLValueClass(getContext(), E, LV); 5303 return LV; 5304 } 5305 5306 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5307 // Can only get l-value for message expression returning aggregate type 5308 RValue RV = EmitAnyExprToTemp(E); 5309 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5310 AlignmentSource::Decl); 5311 } 5312 5313 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5314 const CallExpr *E, ReturnValueSlot ReturnValue, 5315 llvm::Value *Chain) { 5316 // Get the actual function type. The callee type will always be a pointer to 5317 // function type or a block pointer type. 5318 assert(CalleeType->isFunctionPointerType() && 5319 "Call must have function pointer type!"); 5320 5321 const Decl *TargetDecl = 5322 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5323 5324 CalleeType = getContext().getCanonicalType(CalleeType); 5325 5326 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5327 5328 CGCallee Callee = OrigCallee; 5329 5330 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5331 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5332 if (llvm::Constant *PrefixSig = 5333 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5334 SanitizerScope SanScope(this); 5335 // Remove any (C++17) exception specifications, to allow calling e.g. a 5336 // noexcept function through a non-noexcept pointer. 5337 auto ProtoTy = 5338 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5339 llvm::Constant *FTRTTIConst = 5340 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5341 llvm::Type *PrefixSigType = PrefixSig->getType(); 5342 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5343 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5344 5345 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5346 5347 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5348 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5349 llvm::Value *CalleeSigPtr = 5350 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5351 llvm::Value *CalleeSig = 5352 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5353 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5354 5355 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5356 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5357 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5358 5359 EmitBlock(TypeCheck); 5360 llvm::Value *CalleeRTTIPtr = 5361 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5362 llvm::Value *CalleeRTTIEncoded = 5363 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5364 llvm::Value *CalleeRTTI = 5365 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5366 llvm::Value *CalleeRTTIMatch = 5367 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5368 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5369 EmitCheckTypeDescriptor(CalleeType)}; 5370 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5371 SanitizerHandler::FunctionTypeMismatch, StaticData, 5372 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5373 5374 Builder.CreateBr(Cont); 5375 EmitBlock(Cont); 5376 } 5377 } 5378 5379 const auto *FnType = cast<FunctionType>(PointeeType); 5380 5381 // If we are checking indirect calls and this call is indirect, check that the 5382 // function pointer is a member of the bit set for the function type. 5383 if (SanOpts.has(SanitizerKind::CFIICall) && 5384 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5385 SanitizerScope SanScope(this); 5386 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5387 5388 llvm::Metadata *MD; 5389 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5390 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5391 else 5392 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5393 5394 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5395 5396 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5397 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5398 llvm::Value *TypeTest = Builder.CreateCall( 5399 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5400 5401 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5402 llvm::Constant *StaticData[] = { 5403 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5404 EmitCheckSourceLocation(E->getBeginLoc()), 5405 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5406 }; 5407 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5408 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5409 CastedCallee, StaticData); 5410 } else { 5411 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5412 SanitizerHandler::CFICheckFail, StaticData, 5413 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5414 } 5415 } 5416 5417 CallArgList Args; 5418 if (Chain) 5419 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5420 CGM.getContext().VoidPtrTy); 5421 5422 // C++17 requires that we evaluate arguments to a call using assignment syntax 5423 // right-to-left, and that we evaluate arguments to certain other operators 5424 // left-to-right. Note that we allow this to override the order dictated by 5425 // the calling convention on the MS ABI, which means that parameter 5426 // destruction order is not necessarily reverse construction order. 5427 // FIXME: Revisit this based on C++ committee response to unimplementability. 5428 EvaluationOrder Order = EvaluationOrder::Default; 5429 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5430 if (OCE->isAssignmentOp()) 5431 Order = EvaluationOrder::ForceRightToLeft; 5432 else { 5433 switch (OCE->getOperator()) { 5434 case OO_LessLess: 5435 case OO_GreaterGreater: 5436 case OO_AmpAmp: 5437 case OO_PipePipe: 5438 case OO_Comma: 5439 case OO_ArrowStar: 5440 Order = EvaluationOrder::ForceLeftToRight; 5441 break; 5442 default: 5443 break; 5444 } 5445 } 5446 } 5447 5448 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5449 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5450 5451 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5452 Args, FnType, /*ChainCall=*/Chain); 5453 5454 // C99 6.5.2.2p6: 5455 // If the expression that denotes the called function has a type 5456 // that does not include a prototype, [the default argument 5457 // promotions are performed]. If the number of arguments does not 5458 // equal the number of parameters, the behavior is undefined. If 5459 // the function is defined with a type that includes a prototype, 5460 // and either the prototype ends with an ellipsis (, ...) or the 5461 // types of the arguments after promotion are not compatible with 5462 // the types of the parameters, the behavior is undefined. If the 5463 // function is defined with a type that does not include a 5464 // prototype, and the types of the arguments after promotion are 5465 // not compatible with those of the parameters after promotion, 5466 // the behavior is undefined [except in some trivial cases]. 5467 // That is, in the general case, we should assume that a call 5468 // through an unprototyped function type works like a *non-variadic* 5469 // call. The way we make this work is to cast to the exact type 5470 // of the promoted arguments. 5471 // 5472 // Chain calls use this same code path to add the invisible chain parameter 5473 // to the function type. 5474 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5475 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5476 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5477 CalleeTy = CalleeTy->getPointerTo(AS); 5478 5479 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5480 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5481 Callee.setFunctionPointer(CalleePtr); 5482 } 5483 5484 // HIP function pointer contains kernel handle when it is used in triple 5485 // chevron. The kernel stub needs to be loaded from kernel handle and used 5486 // as callee. 5487 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5488 isa<CUDAKernelCallExpr>(E) && 5489 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5490 llvm::Value *Handle = Callee.getFunctionPointer(); 5491 auto *Cast = 5492 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5493 auto *Stub = Builder.CreateLoad( 5494 Address(Cast, Handle->getType(), CGM.getPointerAlign())); 5495 Callee.setFunctionPointer(Stub); 5496 } 5497 llvm::CallBase *CallOrInvoke = nullptr; 5498 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5499 E == MustTailCall, E->getExprLoc()); 5500 5501 // Generate function declaration DISuprogram in order to be used 5502 // in debug info about call sites. 5503 if (CGDebugInfo *DI = getDebugInfo()) { 5504 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5505 FunctionArgList Args; 5506 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5507 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5508 DI->getFunctionType(CalleeDecl, ResTy, Args), 5509 CalleeDecl); 5510 } 5511 } 5512 5513 return Call; 5514 } 5515 5516 LValue CodeGenFunction:: 5517 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5518 Address BaseAddr = Address::invalid(); 5519 if (E->getOpcode() == BO_PtrMemI) { 5520 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5521 } else { 5522 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5523 } 5524 5525 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5526 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5527 5528 LValueBaseInfo BaseInfo; 5529 TBAAAccessInfo TBAAInfo; 5530 Address MemberAddr = 5531 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5532 &TBAAInfo); 5533 5534 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5535 } 5536 5537 /// Given the address of a temporary variable, produce an r-value of 5538 /// its type. 5539 RValue CodeGenFunction::convertTempToRValue(Address addr, 5540 QualType type, 5541 SourceLocation loc) { 5542 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5543 switch (getEvaluationKind(type)) { 5544 case TEK_Complex: 5545 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5546 case TEK_Aggregate: 5547 return lvalue.asAggregateRValue(*this); 5548 case TEK_Scalar: 5549 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5550 } 5551 llvm_unreachable("bad evaluation kind"); 5552 } 5553 5554 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5555 assert(Val->getType()->isFPOrFPVectorTy()); 5556 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5557 return; 5558 5559 llvm::MDBuilder MDHelper(getLLVMContext()); 5560 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5561 5562 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5563 } 5564 5565 namespace { 5566 struct LValueOrRValue { 5567 LValue LV; 5568 RValue RV; 5569 }; 5570 } 5571 5572 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5573 const PseudoObjectExpr *E, 5574 bool forLValue, 5575 AggValueSlot slot) { 5576 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5577 5578 // Find the result expression, if any. 5579 const Expr *resultExpr = E->getResultExpr(); 5580 LValueOrRValue result; 5581 5582 for (PseudoObjectExpr::const_semantics_iterator 5583 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5584 const Expr *semantic = *i; 5585 5586 // If this semantic expression is an opaque value, bind it 5587 // to the result of its source expression. 5588 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5589 // Skip unique OVEs. 5590 if (ov->isUnique()) { 5591 assert(ov != resultExpr && 5592 "A unique OVE cannot be used as the result expression"); 5593 continue; 5594 } 5595 5596 // If this is the result expression, we may need to evaluate 5597 // directly into the slot. 5598 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5599 OVMA opaqueData; 5600 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5601 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5602 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5603 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5604 AlignmentSource::Decl); 5605 opaqueData = OVMA::bind(CGF, ov, LV); 5606 result.RV = slot.asRValue(); 5607 5608 // Otherwise, emit as normal. 5609 } else { 5610 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5611 5612 // If this is the result, also evaluate the result now. 5613 if (ov == resultExpr) { 5614 if (forLValue) 5615 result.LV = CGF.EmitLValue(ov); 5616 else 5617 result.RV = CGF.EmitAnyExpr(ov, slot); 5618 } 5619 } 5620 5621 opaques.push_back(opaqueData); 5622 5623 // Otherwise, if the expression is the result, evaluate it 5624 // and remember the result. 5625 } else if (semantic == resultExpr) { 5626 if (forLValue) 5627 result.LV = CGF.EmitLValue(semantic); 5628 else 5629 result.RV = CGF.EmitAnyExpr(semantic, slot); 5630 5631 // Otherwise, evaluate the expression in an ignored context. 5632 } else { 5633 CGF.EmitIgnoredExpr(semantic); 5634 } 5635 } 5636 5637 // Unbind all the opaques now. 5638 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5639 opaques[i].unbind(CGF); 5640 5641 return result; 5642 } 5643 5644 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5645 AggValueSlot slot) { 5646 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5647 } 5648 5649 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5650 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5651 } 5652