1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // Just emit it as an l-value and drop the result. 195 EmitLValue(E); 196 } 197 198 /// EmitAnyExpr - Emit code to compute the specified expression which 199 /// can have any type. The result is returned as an RValue struct. 200 /// If this is an aggregate expression, AggSlot indicates where the 201 /// result should be returned. 202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 203 AggValueSlot aggSlot, 204 bool ignoreResult) { 205 switch (getEvaluationKind(E->getType())) { 206 case TEK_Scalar: 207 return RValue::get(EmitScalarExpr(E, ignoreResult)); 208 case TEK_Complex: 209 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 210 case TEK_Aggregate: 211 if (!ignoreResult && aggSlot.isIgnored()) 212 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 213 EmitAggExpr(E, aggSlot); 214 return aggSlot.asRValue(); 215 } 216 llvm_unreachable("bad evaluation kind"); 217 } 218 219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 220 /// always be accessible even if no aggregate location is provided. 221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 222 AggValueSlot AggSlot = AggValueSlot::ignored(); 223 224 if (hasAggregateEvaluationKind(E->getType())) 225 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 226 return EmitAnyExpr(E, AggSlot); 227 } 228 229 /// EmitAnyExprToMem - Evaluate an expression into a given memory 230 /// location. 231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 232 Address Location, 233 Qualifiers Quals, 234 bool IsInit) { 235 // FIXME: This function should take an LValue as an argument. 236 switch (getEvaluationKind(E->getType())) { 237 case TEK_Complex: 238 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 239 /*isInit*/ false); 240 return; 241 242 case TEK_Aggregate: { 243 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 244 AggValueSlot::IsDestructed_t(IsInit), 245 AggValueSlot::DoesNotNeedGCBarriers, 246 AggValueSlot::IsAliased_t(!IsInit), 247 AggValueSlot::MayOverlap)); 248 return; 249 } 250 251 case TEK_Scalar: { 252 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 253 LValue LV = MakeAddrLValue(Location, E->getType()); 254 EmitStoreThroughLValue(RV, LV); 255 return; 256 } 257 } 258 llvm_unreachable("bad evaluation kind"); 259 } 260 261 static void 262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 263 const Expr *E, Address ReferenceTemporary) { 264 // Objective-C++ ARC: 265 // If we are binding a reference to a temporary that has ownership, we 266 // need to perform retain/release operations on the temporary. 267 // 268 // FIXME: This should be looking at E, not M. 269 if (auto Lifetime = M->getType().getObjCLifetime()) { 270 switch (Lifetime) { 271 case Qualifiers::OCL_None: 272 case Qualifiers::OCL_ExplicitNone: 273 // Carry on to normal cleanup handling. 274 break; 275 276 case Qualifiers::OCL_Autoreleasing: 277 // Nothing to do; cleaned up by an autorelease pool. 278 return; 279 280 case Qualifiers::OCL_Strong: 281 case Qualifiers::OCL_Weak: 282 switch (StorageDuration Duration = M->getStorageDuration()) { 283 case SD_Static: 284 // Note: we intentionally do not register a cleanup to release 285 // the object on program termination. 286 return; 287 288 case SD_Thread: 289 // FIXME: We should probably register a cleanup in this case. 290 return; 291 292 case SD_Automatic: 293 case SD_FullExpression: 294 CodeGenFunction::Destroyer *Destroy; 295 CleanupKind CleanupKind; 296 if (Lifetime == Qualifiers::OCL_Strong) { 297 const ValueDecl *VD = M->getExtendingDecl(); 298 bool Precise = 299 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 300 CleanupKind = CGF.getARCCleanupKind(); 301 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 302 : &CodeGenFunction::destroyARCStrongImprecise; 303 } else { 304 // __weak objects always get EH cleanups; otherwise, exceptions 305 // could cause really nasty crashes instead of mere leaks. 306 CleanupKind = NormalAndEHCleanup; 307 Destroy = &CodeGenFunction::destroyARCWeak; 308 } 309 if (Duration == SD_FullExpression) 310 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 311 M->getType(), *Destroy, 312 CleanupKind & EHCleanup); 313 else 314 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 315 M->getType(), 316 *Destroy, CleanupKind & EHCleanup); 317 return; 318 319 case SD_Dynamic: 320 llvm_unreachable("temporary cannot have dynamic storage duration"); 321 } 322 llvm_unreachable("unknown storage duration"); 323 } 324 } 325 326 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 327 if (const RecordType *RT = 328 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 329 // Get the destructor for the reference temporary. 330 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 331 if (!ClassDecl->hasTrivialDestructor()) 332 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 333 } 334 335 if (!ReferenceTemporaryDtor) 336 return; 337 338 // Call the destructor for the temporary. 339 switch (M->getStorageDuration()) { 340 case SD_Static: 341 case SD_Thread: { 342 llvm::FunctionCallee CleanupFn; 343 llvm::Constant *CleanupArg; 344 if (E->getType()->isArrayType()) { 345 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 346 ReferenceTemporary, E->getType(), 347 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 348 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 349 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 350 } else { 351 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 352 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 353 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 354 } 355 CGF.CGM.getCXXABI().registerGlobalDtor( 356 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 357 break; 358 } 359 360 case SD_FullExpression: 361 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Automatic: 367 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 368 ReferenceTemporary, E->getType(), 369 CodeGenFunction::destroyCXXObject, 370 CGF.getLangOpts().Exceptions); 371 break; 372 373 case SD_Dynamic: 374 llvm_unreachable("temporary cannot have dynamic storage duration"); 375 } 376 } 377 378 static Address createReferenceTemporary(CodeGenFunction &CGF, 379 const MaterializeTemporaryExpr *M, 380 const Expr *Inner, 381 Address *Alloca = nullptr) { 382 auto &TCG = CGF.getTargetHooks(); 383 switch (M->getStorageDuration()) { 384 case SD_FullExpression: 385 case SD_Automatic: { 386 // If we have a constant temporary array or record try to promote it into a 387 // constant global under the same rules a normal constant would've been 388 // promoted. This is easier on the optimizer and generally emits fewer 389 // instructions. 390 QualType Ty = Inner->getType(); 391 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 392 (Ty->isArrayType() || Ty->isRecordType()) && 393 CGF.CGM.isTypeConstant(Ty, true)) 394 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 395 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 396 auto *GV = new llvm::GlobalVariable( 397 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 398 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 399 llvm::GlobalValue::NotThreadLocal, 400 CGF.getContext().getTargetAddressSpace(AS)); 401 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 402 GV->setAlignment(alignment.getAsAlign()); 403 llvm::Constant *C = GV; 404 if (AS != LangAS::Default) 405 C = TCG.performAddrSpaceCast( 406 CGF.CGM, GV, AS, LangAS::Default, 407 GV->getValueType()->getPointerTo( 408 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 409 // FIXME: Should we put the new global into a COMDAT? 410 return Address(C, alignment); 411 } 412 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 413 } 414 case SD_Thread: 415 case SD_Static: 416 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 417 418 case SD_Dynamic: 419 llvm_unreachable("temporary can't have dynamic storage duration"); 420 } 421 llvm_unreachable("unknown storage duration"); 422 } 423 424 /// Helper method to check if the underlying ABI is AAPCS 425 static bool isAAPCS(const TargetInfo &TargetInfo) { 426 return TargetInfo.getABI().startswith("aapcs"); 427 } 428 429 LValue CodeGenFunction:: 430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 431 const Expr *E = M->getSubExpr(); 432 433 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 434 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 435 "Reference should never be pseudo-strong!"); 436 437 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 438 // as that will cause the lifetime adjustment to be lost for ARC 439 auto ownership = M->getType().getObjCLifetime(); 440 if (ownership != Qualifiers::OCL_None && 441 ownership != Qualifiers::OCL_ExplicitNone) { 442 Address Object = createReferenceTemporary(*this, M, E); 443 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 444 Object = Address(llvm::ConstantExpr::getBitCast(Var, 445 ConvertTypeForMem(E->getType()) 446 ->getPointerTo(Object.getAddressSpace())), 447 Object.getAlignment()); 448 449 // createReferenceTemporary will promote the temporary to a global with a 450 // constant initializer if it can. It can only do this to a value of 451 // ARC-manageable type if the value is global and therefore "immune" to 452 // ref-counting operations. Therefore we have no need to emit either a 453 // dynamic initialization or a cleanup and we can just return the address 454 // of the temporary. 455 if (Var->hasInitializer()) 456 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 457 458 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 459 } 460 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 461 AlignmentSource::Decl); 462 463 switch (getEvaluationKind(E->getType())) { 464 default: llvm_unreachable("expected scalar or aggregate expression"); 465 case TEK_Scalar: 466 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 467 break; 468 case TEK_Aggregate: { 469 EmitAggExpr(E, AggValueSlot::forAddr(Object, 470 E->getType().getQualifiers(), 471 AggValueSlot::IsDestructed, 472 AggValueSlot::DoesNotNeedGCBarriers, 473 AggValueSlot::IsNotAliased, 474 AggValueSlot::DoesNotOverlap)); 475 break; 476 } 477 } 478 479 pushTemporaryCleanup(*this, M, E, Object); 480 return RefTempDst; 481 } 482 483 SmallVector<const Expr *, 2> CommaLHSs; 484 SmallVector<SubobjectAdjustment, 2> Adjustments; 485 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 486 487 for (const auto &Ignored : CommaLHSs) 488 EmitIgnoredExpr(Ignored); 489 490 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 491 if (opaque->getType()->isRecordType()) { 492 assert(Adjustments.empty()); 493 return EmitOpaqueValueLValue(opaque); 494 } 495 } 496 497 // Create and initialize the reference temporary. 498 Address Alloca = Address::invalid(); 499 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 500 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 501 Object.getPointer()->stripPointerCasts())) { 502 Object = Address(llvm::ConstantExpr::getBitCast( 503 cast<llvm::Constant>(Object.getPointer()), 504 ConvertTypeForMem(E->getType())->getPointerTo()), 505 Object.getAlignment()); 506 // If the temporary is a global and has a constant initializer or is a 507 // constant temporary that we promoted to a global, we may have already 508 // initialized it. 509 if (!Var->hasInitializer()) { 510 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 511 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 512 } 513 } else { 514 switch (M->getStorageDuration()) { 515 case SD_Automatic: 516 if (auto *Size = EmitLifetimeStart( 517 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 518 Alloca.getPointer())) { 519 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 520 Alloca, Size); 521 } 522 break; 523 524 case SD_FullExpression: { 525 if (!ShouldEmitLifetimeMarkers) 526 break; 527 528 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 529 // marker. Instead, start the lifetime of a conditional temporary earlier 530 // so that it's unconditional. Don't do this with sanitizers which need 531 // more precise lifetime marks. 532 ConditionalEvaluation *OldConditional = nullptr; 533 CGBuilderTy::InsertPoint OldIP; 534 if (isInConditionalBranch() && !E->getType().isDestructedType() && 535 !SanOpts.has(SanitizerKind::HWAddress) && 536 !SanOpts.has(SanitizerKind::Memory) && 537 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 538 OldConditional = OutermostConditional; 539 OutermostConditional = nullptr; 540 541 OldIP = Builder.saveIP(); 542 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 543 Builder.restoreIP(CGBuilderTy::InsertPoint( 544 Block, llvm::BasicBlock::iterator(Block->back()))); 545 } 546 547 if (auto *Size = EmitLifetimeStart( 548 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 549 Alloca.getPointer())) { 550 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 551 Size); 552 } 553 554 if (OldConditional) { 555 OutermostConditional = OldConditional; 556 Builder.restoreIP(OldIP); 557 } 558 break; 559 } 560 561 default: 562 break; 563 } 564 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 565 } 566 pushTemporaryCleanup(*this, M, E, Object); 567 568 // Perform derived-to-base casts and/or field accesses, to get from the 569 // temporary object we created (and, potentially, for which we extended 570 // the lifetime) to the subobject we're binding the reference to. 571 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 572 switch (Adjustment.Kind) { 573 case SubobjectAdjustment::DerivedToBaseAdjustment: 574 Object = 575 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 576 Adjustment.DerivedToBase.BasePath->path_begin(), 577 Adjustment.DerivedToBase.BasePath->path_end(), 578 /*NullCheckValue=*/ false, E->getExprLoc()); 579 break; 580 581 case SubobjectAdjustment::FieldAdjustment: { 582 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 583 LV = EmitLValueForField(LV, Adjustment.Field); 584 assert(LV.isSimple() && 585 "materialized temporary field is not a simple lvalue"); 586 Object = LV.getAddress(*this); 587 break; 588 } 589 590 case SubobjectAdjustment::MemberPointerAdjustment: { 591 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 592 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 593 Adjustment.Ptr.MPT); 594 break; 595 } 596 } 597 } 598 599 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 600 } 601 602 RValue 603 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 604 // Emit the expression as an lvalue. 605 LValue LV = EmitLValue(E); 606 assert(LV.isSimple()); 607 llvm::Value *Value = LV.getPointer(*this); 608 609 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 610 // C++11 [dcl.ref]p5 (as amended by core issue 453): 611 // If a glvalue to which a reference is directly bound designates neither 612 // an existing object or function of an appropriate type nor a region of 613 // storage of suitable size and alignment to contain an object of the 614 // reference's type, the behavior is undefined. 615 QualType Ty = E->getType(); 616 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 617 } 618 619 return RValue::get(Value); 620 } 621 622 623 /// getAccessedFieldNo - Given an encoded value and a result number, return the 624 /// input field number being accessed. 625 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 626 const llvm::Constant *Elts) { 627 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 628 ->getZExtValue(); 629 } 630 631 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 632 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 633 llvm::Value *High) { 634 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 635 llvm::Value *K47 = Builder.getInt64(47); 636 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 637 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 638 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 639 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 640 return Builder.CreateMul(B1, KMul); 641 } 642 643 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 644 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 645 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 646 } 647 648 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 649 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 650 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 651 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 652 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 653 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 654 } 655 656 bool CodeGenFunction::sanitizePerformTypeCheck() const { 657 return SanOpts.has(SanitizerKind::Null) || 658 SanOpts.has(SanitizerKind::Alignment) || 659 SanOpts.has(SanitizerKind::ObjectSize) || 660 SanOpts.has(SanitizerKind::Vptr); 661 } 662 663 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 664 llvm::Value *Ptr, QualType Ty, 665 CharUnits Alignment, 666 SanitizerSet SkippedChecks, 667 llvm::Value *ArraySize) { 668 if (!sanitizePerformTypeCheck()) 669 return; 670 671 // Don't check pointers outside the default address space. The null check 672 // isn't correct, the object-size check isn't supported by LLVM, and we can't 673 // communicate the addresses to the runtime handler for the vptr check. 674 if (Ptr->getType()->getPointerAddressSpace()) 675 return; 676 677 // Don't check pointers to volatile data. The behavior here is implementation- 678 // defined. 679 if (Ty.isVolatileQualified()) 680 return; 681 682 SanitizerScope SanScope(this); 683 684 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 685 llvm::BasicBlock *Done = nullptr; 686 687 // Quickly determine whether we have a pointer to an alloca. It's possible 688 // to skip null checks, and some alignment checks, for these pointers. This 689 // can reduce compile-time significantly. 690 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 691 692 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 693 llvm::Value *IsNonNull = nullptr; 694 bool IsGuaranteedNonNull = 695 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 696 bool AllowNullPointers = isNullPointerAllowed(TCK); 697 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 698 !IsGuaranteedNonNull) { 699 // The glvalue must not be an empty glvalue. 700 IsNonNull = Builder.CreateIsNotNull(Ptr); 701 702 // The IR builder can constant-fold the null check if the pointer points to 703 // a constant. 704 IsGuaranteedNonNull = IsNonNull == True; 705 706 // Skip the null check if the pointer is known to be non-null. 707 if (!IsGuaranteedNonNull) { 708 if (AllowNullPointers) { 709 // When performing pointer casts, it's OK if the value is null. 710 // Skip the remaining checks in that case. 711 Done = createBasicBlock("null"); 712 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 713 Builder.CreateCondBr(IsNonNull, Rest, Done); 714 EmitBlock(Rest); 715 } else { 716 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 717 } 718 } 719 } 720 721 if (SanOpts.has(SanitizerKind::ObjectSize) && 722 !SkippedChecks.has(SanitizerKind::ObjectSize) && 723 !Ty->isIncompleteType()) { 724 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 725 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 726 if (ArraySize) 727 Size = Builder.CreateMul(Size, ArraySize); 728 729 // Degenerate case: new X[0] does not need an objectsize check. 730 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 731 if (!ConstantSize || !ConstantSize->isNullValue()) { 732 // The glvalue must refer to a large enough storage region. 733 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 734 // to check this. 735 // FIXME: Get object address space 736 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 737 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 738 llvm::Value *Min = Builder.getFalse(); 739 llvm::Value *NullIsUnknown = Builder.getFalse(); 740 llvm::Value *Dynamic = Builder.getFalse(); 741 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 742 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 743 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 744 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 745 } 746 } 747 748 uint64_t AlignVal = 0; 749 llvm::Value *PtrAsInt = nullptr; 750 751 if (SanOpts.has(SanitizerKind::Alignment) && 752 !SkippedChecks.has(SanitizerKind::Alignment)) { 753 AlignVal = Alignment.getQuantity(); 754 if (!Ty->isIncompleteType() && !AlignVal) 755 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 756 /*ForPointeeType=*/true) 757 .getQuantity(); 758 759 // The glvalue must be suitably aligned. 760 if (AlignVal > 1 && 761 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 762 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 763 llvm::Value *Align = Builder.CreateAnd( 764 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 765 llvm::Value *Aligned = 766 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 767 if (Aligned != True) 768 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 769 } 770 } 771 772 if (Checks.size() > 0) { 773 // Make sure we're not losing information. Alignment needs to be a power of 774 // 2 775 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 776 llvm::Constant *StaticData[] = { 777 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 778 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 779 llvm::ConstantInt::get(Int8Ty, TCK)}; 780 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 781 PtrAsInt ? PtrAsInt : Ptr); 782 } 783 784 // If possible, check that the vptr indicates that there is a subobject of 785 // type Ty at offset zero within this object. 786 // 787 // C++11 [basic.life]p5,6: 788 // [For storage which does not refer to an object within its lifetime] 789 // The program has undefined behavior if: 790 // -- the [pointer or glvalue] is used to access a non-static data member 791 // or call a non-static member function 792 if (SanOpts.has(SanitizerKind::Vptr) && 793 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 794 // Ensure that the pointer is non-null before loading it. If there is no 795 // compile-time guarantee, reuse the run-time null check or emit a new one. 796 if (!IsGuaranteedNonNull) { 797 if (!IsNonNull) 798 IsNonNull = Builder.CreateIsNotNull(Ptr); 799 if (!Done) 800 Done = createBasicBlock("vptr.null"); 801 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 802 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 803 EmitBlock(VptrNotNull); 804 } 805 806 // Compute a hash of the mangled name of the type. 807 // 808 // FIXME: This is not guaranteed to be deterministic! Move to a 809 // fingerprinting mechanism once LLVM provides one. For the time 810 // being the implementation happens to be deterministic. 811 SmallString<64> MangledName; 812 llvm::raw_svector_ostream Out(MangledName); 813 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 814 Out); 815 816 // Contained in NoSanitizeList based on the mangled type. 817 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 818 Out.str())) { 819 llvm::hash_code TypeHash = hash_value(Out.str()); 820 821 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 822 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 823 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 824 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 825 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 826 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 827 828 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 829 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 830 831 // Look the hash up in our cache. 832 const int CacheSize = 128; 833 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 834 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 835 "__ubsan_vptr_type_cache"); 836 llvm::Value *Slot = Builder.CreateAnd(Hash, 837 llvm::ConstantInt::get(IntPtrTy, 838 CacheSize-1)); 839 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 840 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 841 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 842 getPointerAlign()); 843 844 // If the hash isn't in the cache, call a runtime handler to perform the 845 // hard work of checking whether the vptr is for an object of the right 846 // type. This will either fill in the cache and return, or produce a 847 // diagnostic. 848 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 849 llvm::Constant *StaticData[] = { 850 EmitCheckSourceLocation(Loc), 851 EmitCheckTypeDescriptor(Ty), 852 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 853 llvm::ConstantInt::get(Int8Ty, TCK) 854 }; 855 llvm::Value *DynamicData[] = { Ptr, Hash }; 856 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 857 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 858 DynamicData); 859 } 860 } 861 862 if (Done) { 863 Builder.CreateBr(Done); 864 EmitBlock(Done); 865 } 866 } 867 868 /// Determine whether this expression refers to a flexible array member in a 869 /// struct. We disable array bounds checks for such members. 870 static bool isFlexibleArrayMemberExpr(const Expr *E) { 871 // For compatibility with existing code, we treat arrays of length 0 or 872 // 1 as flexible array members. 873 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 874 // the two mechanisms. 875 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 876 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 877 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 878 // was produced by macro expansion. 879 if (CAT->getSize().ugt(1)) 880 return false; 881 } else if (!isa<IncompleteArrayType>(AT)) 882 return false; 883 884 E = E->IgnoreParens(); 885 886 // A flexible array member must be the last member in the class. 887 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 888 // FIXME: If the base type of the member expr is not FD->getParent(), 889 // this should not be treated as a flexible array member access. 890 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 891 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 892 // member, only a T[0] or T[] member gets that treatment. 893 if (FD->getParent()->isUnion()) 894 return true; 895 RecordDecl::field_iterator FI( 896 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 897 return ++FI == FD->getParent()->field_end(); 898 } 899 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 900 return IRE->getDecl()->getNextIvar() == nullptr; 901 } 902 903 return false; 904 } 905 906 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 907 QualType EltTy) { 908 ASTContext &C = getContext(); 909 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 910 if (!EltSize) 911 return nullptr; 912 913 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 914 if (!ArrayDeclRef) 915 return nullptr; 916 917 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 918 if (!ParamDecl) 919 return nullptr; 920 921 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 922 if (!POSAttr) 923 return nullptr; 924 925 // Don't load the size if it's a lower bound. 926 int POSType = POSAttr->getType(); 927 if (POSType != 0 && POSType != 1) 928 return nullptr; 929 930 // Find the implicit size parameter. 931 auto PassedSizeIt = SizeArguments.find(ParamDecl); 932 if (PassedSizeIt == SizeArguments.end()) 933 return nullptr; 934 935 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 936 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 937 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 938 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 939 C.getSizeType(), E->getExprLoc()); 940 llvm::Value *SizeOfElement = 941 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 942 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 943 } 944 945 /// If Base is known to point to the start of an array, return the length of 946 /// that array. Return 0 if the length cannot be determined. 947 static llvm::Value *getArrayIndexingBound( 948 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 949 // For the vector indexing extension, the bound is the number of elements. 950 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 951 IndexedType = Base->getType(); 952 return CGF.Builder.getInt32(VT->getNumElements()); 953 } 954 955 Base = Base->IgnoreParens(); 956 957 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 958 if (CE->getCastKind() == CK_ArrayToPointerDecay && 959 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 960 IndexedType = CE->getSubExpr()->getType(); 961 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 962 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 963 return CGF.Builder.getInt(CAT->getSize()); 964 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 965 return CGF.getVLASize(VAT).NumElts; 966 // Ignore pass_object_size here. It's not applicable on decayed pointers. 967 } 968 } 969 970 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 971 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 972 IndexedType = Base->getType(); 973 return POS; 974 } 975 976 return nullptr; 977 } 978 979 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 980 llvm::Value *Index, QualType IndexType, 981 bool Accessed) { 982 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 983 "should not be called unless adding bounds checks"); 984 SanitizerScope SanScope(this); 985 986 QualType IndexedType; 987 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 988 if (!Bound) 989 return; 990 991 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 992 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 993 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 994 995 llvm::Constant *StaticData[] = { 996 EmitCheckSourceLocation(E->getExprLoc()), 997 EmitCheckTypeDescriptor(IndexedType), 998 EmitCheckTypeDescriptor(IndexType) 999 }; 1000 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1001 : Builder.CreateICmpULE(IndexVal, BoundVal); 1002 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1003 SanitizerHandler::OutOfBounds, StaticData, Index); 1004 } 1005 1006 1007 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1008 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1009 bool isInc, bool isPre) { 1010 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1011 1012 llvm::Value *NextVal; 1013 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1014 uint64_t AmountVal = isInc ? 1 : -1; 1015 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1016 1017 // Add the inc/dec to the real part. 1018 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1019 } else { 1020 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1021 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1022 if (!isInc) 1023 FVal.changeSign(); 1024 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1025 1026 // Add the inc/dec to the real part. 1027 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1028 } 1029 1030 ComplexPairTy IncVal(NextVal, InVal.second); 1031 1032 // Store the updated result through the lvalue. 1033 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1034 if (getLangOpts().OpenMP) 1035 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1036 E->getSubExpr()); 1037 1038 // If this is a postinc, return the value read from memory, otherwise use the 1039 // updated value. 1040 return isPre ? IncVal : InVal; 1041 } 1042 1043 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1044 CodeGenFunction *CGF) { 1045 // Bind VLAs in the cast type. 1046 if (CGF && E->getType()->isVariablyModifiedType()) 1047 CGF->EmitVariablyModifiedType(E->getType()); 1048 1049 if (CGDebugInfo *DI = getModuleDebugInfo()) 1050 DI->EmitExplicitCastType(E->getType()); 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // LValue Expression Emission 1055 //===----------------------------------------------------------------------===// 1056 1057 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1058 /// derive a more accurate bound on the alignment of the pointer. 1059 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1060 LValueBaseInfo *BaseInfo, 1061 TBAAAccessInfo *TBAAInfo) { 1062 // We allow this with ObjC object pointers because of fragile ABIs. 1063 assert(E->getType()->isPointerType() || 1064 E->getType()->isObjCObjectPointerType()); 1065 E = E->IgnoreParens(); 1066 1067 // Casts: 1068 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1069 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1070 CGM.EmitExplicitCastExprType(ECE, this); 1071 1072 switch (CE->getCastKind()) { 1073 // Non-converting casts (but not C's implicit conversion from void*). 1074 case CK_BitCast: 1075 case CK_NoOp: 1076 case CK_AddressSpaceConversion: 1077 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1078 if (PtrTy->getPointeeType()->isVoidType()) 1079 break; 1080 1081 LValueBaseInfo InnerBaseInfo; 1082 TBAAAccessInfo InnerTBAAInfo; 1083 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1084 &InnerBaseInfo, 1085 &InnerTBAAInfo); 1086 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1087 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1088 1089 if (isa<ExplicitCastExpr>(CE)) { 1090 LValueBaseInfo TargetTypeBaseInfo; 1091 TBAAAccessInfo TargetTypeTBAAInfo; 1092 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1093 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1094 if (TBAAInfo) 1095 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1096 TargetTypeTBAAInfo); 1097 // If the source l-value is opaque, honor the alignment of the 1098 // casted-to type. 1099 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1100 if (BaseInfo) 1101 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1102 Addr = Address(Addr.getPointer(), Align); 1103 } 1104 } 1105 1106 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1107 CE->getCastKind() == CK_BitCast) { 1108 if (auto PT = E->getType()->getAs<PointerType>()) 1109 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1110 /*MayBeNull=*/true, 1111 CodeGenFunction::CFITCK_UnrelatedCast, 1112 CE->getBeginLoc()); 1113 } 1114 return CE->getCastKind() != CK_AddressSpaceConversion 1115 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1116 : Builder.CreateAddrSpaceCast(Addr, 1117 ConvertType(E->getType())); 1118 } 1119 break; 1120 1121 // Array-to-pointer decay. 1122 case CK_ArrayToPointerDecay: 1123 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1124 1125 // Derived-to-base conversions. 1126 case CK_UncheckedDerivedToBase: 1127 case CK_DerivedToBase: { 1128 // TODO: Support accesses to members of base classes in TBAA. For now, we 1129 // conservatively pretend that the complete object is of the base class 1130 // type. 1131 if (TBAAInfo) 1132 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1133 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1134 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1135 return GetAddressOfBaseClass(Addr, Derived, 1136 CE->path_begin(), CE->path_end(), 1137 ShouldNullCheckClassCastValue(CE), 1138 CE->getExprLoc()); 1139 } 1140 1141 // TODO: Is there any reason to treat base-to-derived conversions 1142 // specially? 1143 default: 1144 break; 1145 } 1146 } 1147 1148 // Unary &. 1149 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1150 if (UO->getOpcode() == UO_AddrOf) { 1151 LValue LV = EmitLValue(UO->getSubExpr()); 1152 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1153 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1154 return LV.getAddress(*this); 1155 } 1156 } 1157 1158 // TODO: conditional operators, comma. 1159 1160 // Otherwise, use the alignment of the type. 1161 CharUnits Align = 1162 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1163 return Address(EmitScalarExpr(E), Align); 1164 } 1165 1166 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1167 llvm::Value *V = RV.getScalarVal(); 1168 if (auto MPT = T->getAs<MemberPointerType>()) 1169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1170 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1171 } 1172 1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1174 if (Ty->isVoidType()) 1175 return RValue::get(nullptr); 1176 1177 switch (getEvaluationKind(Ty)) { 1178 case TEK_Complex: { 1179 llvm::Type *EltTy = 1180 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1181 llvm::Value *U = llvm::UndefValue::get(EltTy); 1182 return RValue::getComplex(std::make_pair(U, U)); 1183 } 1184 1185 // If this is a use of an undefined aggregate type, the aggregate must have an 1186 // identifiable address. Just because the contents of the value are undefined 1187 // doesn't mean that the address can't be taken and compared. 1188 case TEK_Aggregate: { 1189 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1190 return RValue::getAggregate(DestPtr); 1191 } 1192 1193 case TEK_Scalar: 1194 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1195 } 1196 llvm_unreachable("bad evaluation kind"); 1197 } 1198 1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1200 const char *Name) { 1201 ErrorUnsupported(E, Name); 1202 return GetUndefRValue(E->getType()); 1203 } 1204 1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1206 const char *Name) { 1207 ErrorUnsupported(E, Name); 1208 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1209 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1210 E->getType()); 1211 } 1212 1213 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1214 const Expr *Base = Obj; 1215 while (!isa<CXXThisExpr>(Base)) { 1216 // The result of a dynamic_cast can be null. 1217 if (isa<CXXDynamicCastExpr>(Base)) 1218 return false; 1219 1220 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1221 Base = CE->getSubExpr(); 1222 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1223 Base = PE->getSubExpr(); 1224 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1225 if (UO->getOpcode() == UO_Extension) 1226 Base = UO->getSubExpr(); 1227 else 1228 return false; 1229 } else { 1230 return false; 1231 } 1232 } 1233 return true; 1234 } 1235 1236 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1237 LValue LV; 1238 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1239 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1240 else 1241 LV = EmitLValue(E); 1242 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1243 SanitizerSet SkippedChecks; 1244 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1245 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1246 if (IsBaseCXXThis) 1247 SkippedChecks.set(SanitizerKind::Alignment, true); 1248 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1249 SkippedChecks.set(SanitizerKind::Null, true); 1250 } 1251 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1252 LV.getAlignment(), SkippedChecks); 1253 } 1254 return LV; 1255 } 1256 1257 /// EmitLValue - Emit code to compute a designator that specifies the location 1258 /// of the expression. 1259 /// 1260 /// This can return one of two things: a simple address or a bitfield reference. 1261 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1262 /// an LLVM pointer type. 1263 /// 1264 /// If this returns a bitfield reference, nothing about the pointee type of the 1265 /// LLVM value is known: For example, it may not be a pointer to an integer. 1266 /// 1267 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1268 /// this method guarantees that the returned pointer type will point to an LLVM 1269 /// type of the same size of the lvalue's type. If the lvalue has a variable 1270 /// length type, this is not possible. 1271 /// 1272 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1273 ApplyDebugLocation DL(*this, E); 1274 switch (E->getStmtClass()) { 1275 default: return EmitUnsupportedLValue(E, "l-value expression"); 1276 1277 case Expr::ObjCPropertyRefExprClass: 1278 llvm_unreachable("cannot emit a property reference directly"); 1279 1280 case Expr::ObjCSelectorExprClass: 1281 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1282 case Expr::ObjCIsaExprClass: 1283 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1284 case Expr::BinaryOperatorClass: 1285 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1286 case Expr::CompoundAssignOperatorClass: { 1287 QualType Ty = E->getType(); 1288 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1289 Ty = AT->getValueType(); 1290 if (!Ty->isAnyComplexType()) 1291 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1292 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1293 } 1294 case Expr::CallExprClass: 1295 case Expr::CXXMemberCallExprClass: 1296 case Expr::CXXOperatorCallExprClass: 1297 case Expr::UserDefinedLiteralClass: 1298 return EmitCallExprLValue(cast<CallExpr>(E)); 1299 case Expr::CXXRewrittenBinaryOperatorClass: 1300 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1301 case Expr::VAArgExprClass: 1302 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1303 case Expr::DeclRefExprClass: 1304 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1305 case Expr::ConstantExprClass: { 1306 const ConstantExpr *CE = cast<ConstantExpr>(E); 1307 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1308 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1309 ->getCallReturnType(getContext()); 1310 return MakeNaturalAlignAddrLValue(Result, RetType); 1311 } 1312 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1313 } 1314 case Expr::ParenExprClass: 1315 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1316 case Expr::GenericSelectionExprClass: 1317 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1318 case Expr::PredefinedExprClass: 1319 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1320 case Expr::StringLiteralClass: 1321 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1322 case Expr::ObjCEncodeExprClass: 1323 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1324 case Expr::PseudoObjectExprClass: 1325 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1326 case Expr::InitListExprClass: 1327 return EmitInitListLValue(cast<InitListExpr>(E)); 1328 case Expr::CXXTemporaryObjectExprClass: 1329 case Expr::CXXConstructExprClass: 1330 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1331 case Expr::CXXBindTemporaryExprClass: 1332 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1333 case Expr::CXXUuidofExprClass: 1334 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1335 case Expr::LambdaExprClass: 1336 return EmitAggExprToLValue(E); 1337 1338 case Expr::ExprWithCleanupsClass: { 1339 const auto *cleanups = cast<ExprWithCleanups>(E); 1340 RunCleanupsScope Scope(*this); 1341 LValue LV = EmitLValue(cleanups->getSubExpr()); 1342 if (LV.isSimple()) { 1343 // Defend against branches out of gnu statement expressions surrounded by 1344 // cleanups. 1345 llvm::Value *V = LV.getPointer(*this); 1346 Scope.ForceCleanup({&V}); 1347 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1348 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1349 } 1350 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1351 // bitfield lvalue or some other non-simple lvalue? 1352 return LV; 1353 } 1354 1355 case Expr::CXXDefaultArgExprClass: { 1356 auto *DAE = cast<CXXDefaultArgExpr>(E); 1357 CXXDefaultArgExprScope Scope(*this, DAE); 1358 return EmitLValue(DAE->getExpr()); 1359 } 1360 case Expr::CXXDefaultInitExprClass: { 1361 auto *DIE = cast<CXXDefaultInitExpr>(E); 1362 CXXDefaultInitExprScope Scope(*this, DIE); 1363 return EmitLValue(DIE->getExpr()); 1364 } 1365 case Expr::CXXTypeidExprClass: 1366 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1367 1368 case Expr::ObjCMessageExprClass: 1369 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1370 case Expr::ObjCIvarRefExprClass: 1371 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1372 case Expr::StmtExprClass: 1373 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1374 case Expr::UnaryOperatorClass: 1375 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1376 case Expr::ArraySubscriptExprClass: 1377 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1378 case Expr::MatrixSubscriptExprClass: 1379 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1380 case Expr::OMPArraySectionExprClass: 1381 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1382 case Expr::ExtVectorElementExprClass: 1383 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1384 case Expr::MemberExprClass: 1385 return EmitMemberExpr(cast<MemberExpr>(E)); 1386 case Expr::CompoundLiteralExprClass: 1387 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1388 case Expr::ConditionalOperatorClass: 1389 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1390 case Expr::BinaryConditionalOperatorClass: 1391 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1392 case Expr::ChooseExprClass: 1393 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1394 case Expr::OpaqueValueExprClass: 1395 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1396 case Expr::SubstNonTypeTemplateParmExprClass: 1397 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1398 case Expr::ImplicitCastExprClass: 1399 case Expr::CStyleCastExprClass: 1400 case Expr::CXXFunctionalCastExprClass: 1401 case Expr::CXXStaticCastExprClass: 1402 case Expr::CXXDynamicCastExprClass: 1403 case Expr::CXXReinterpretCastExprClass: 1404 case Expr::CXXConstCastExprClass: 1405 case Expr::CXXAddrspaceCastExprClass: 1406 case Expr::ObjCBridgedCastExprClass: 1407 return EmitCastLValue(cast<CastExpr>(E)); 1408 1409 case Expr::MaterializeTemporaryExprClass: 1410 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1411 1412 case Expr::CoawaitExprClass: 1413 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1414 case Expr::CoyieldExprClass: 1415 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1416 } 1417 } 1418 1419 /// Given an object of the given canonical type, can we safely copy a 1420 /// value out of it based on its initializer? 1421 static bool isConstantEmittableObjectType(QualType type) { 1422 assert(type.isCanonical()); 1423 assert(!type->isReferenceType()); 1424 1425 // Must be const-qualified but non-volatile. 1426 Qualifiers qs = type.getLocalQualifiers(); 1427 if (!qs.hasConst() || qs.hasVolatile()) return false; 1428 1429 // Otherwise, all object types satisfy this except C++ classes with 1430 // mutable subobjects or non-trivial copy/destroy behavior. 1431 if (const auto *RT = dyn_cast<RecordType>(type)) 1432 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1433 if (RD->hasMutableFields() || !RD->isTrivial()) 1434 return false; 1435 1436 return true; 1437 } 1438 1439 /// Can we constant-emit a load of a reference to a variable of the 1440 /// given type? This is different from predicates like 1441 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1442 /// in situations that don't necessarily satisfy the language's rules 1443 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1444 /// to do this with const float variables even if those variables 1445 /// aren't marked 'constexpr'. 1446 enum ConstantEmissionKind { 1447 CEK_None, 1448 CEK_AsReferenceOnly, 1449 CEK_AsValueOrReference, 1450 CEK_AsValueOnly 1451 }; 1452 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1453 type = type.getCanonicalType(); 1454 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1455 if (isConstantEmittableObjectType(ref->getPointeeType())) 1456 return CEK_AsValueOrReference; 1457 return CEK_AsReferenceOnly; 1458 } 1459 if (isConstantEmittableObjectType(type)) 1460 return CEK_AsValueOnly; 1461 return CEK_None; 1462 } 1463 1464 /// Try to emit a reference to the given value without producing it as 1465 /// an l-value. This is just an optimization, but it avoids us needing 1466 /// to emit global copies of variables if they're named without triggering 1467 /// a formal use in a context where we can't emit a direct reference to them, 1468 /// for instance if a block or lambda or a member of a local class uses a 1469 /// const int variable or constexpr variable from an enclosing function. 1470 CodeGenFunction::ConstantEmission 1471 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1472 ValueDecl *value = refExpr->getDecl(); 1473 1474 // The value needs to be an enum constant or a constant variable. 1475 ConstantEmissionKind CEK; 1476 if (isa<ParmVarDecl>(value)) { 1477 CEK = CEK_None; 1478 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1479 CEK = checkVarTypeForConstantEmission(var->getType()); 1480 } else if (isa<EnumConstantDecl>(value)) { 1481 CEK = CEK_AsValueOnly; 1482 } else { 1483 CEK = CEK_None; 1484 } 1485 if (CEK == CEK_None) return ConstantEmission(); 1486 1487 Expr::EvalResult result; 1488 bool resultIsReference; 1489 QualType resultType; 1490 1491 // It's best to evaluate all the way as an r-value if that's permitted. 1492 if (CEK != CEK_AsReferenceOnly && 1493 refExpr->EvaluateAsRValue(result, getContext())) { 1494 resultIsReference = false; 1495 resultType = refExpr->getType(); 1496 1497 // Otherwise, try to evaluate as an l-value. 1498 } else if (CEK != CEK_AsValueOnly && 1499 refExpr->EvaluateAsLValue(result, getContext())) { 1500 resultIsReference = true; 1501 resultType = value->getType(); 1502 1503 // Failure. 1504 } else { 1505 return ConstantEmission(); 1506 } 1507 1508 // In any case, if the initializer has side-effects, abandon ship. 1509 if (result.HasSideEffects) 1510 return ConstantEmission(); 1511 1512 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1513 // referencing a global host variable by copy. In this case the lambda should 1514 // make a copy of the value of the global host variable. The DRE of the 1515 // captured reference variable cannot be emitted as load from the host 1516 // global variable as compile time constant, since the host variable is not 1517 // accessible on device. The DRE of the captured reference variable has to be 1518 // loaded from captures. 1519 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1520 refExpr->refersToEnclosingVariableOrCapture()) { 1521 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1522 if (MD && MD->getParent()->isLambda() && 1523 MD->getOverloadedOperator() == OO_Call) { 1524 const APValue::LValueBase &base = result.Val.getLValueBase(); 1525 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1526 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1527 if (!VD->hasAttr<CUDADeviceAttr>()) { 1528 return ConstantEmission(); 1529 } 1530 } 1531 } 1532 } 1533 } 1534 1535 // Emit as a constant. 1536 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1537 result.Val, resultType); 1538 1539 // Make sure we emit a debug reference to the global variable. 1540 // This should probably fire even for 1541 if (isa<VarDecl>(value)) { 1542 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1543 EmitDeclRefExprDbgValue(refExpr, result.Val); 1544 } else { 1545 assert(isa<EnumConstantDecl>(value)); 1546 EmitDeclRefExprDbgValue(refExpr, result.Val); 1547 } 1548 1549 // If we emitted a reference constant, we need to dereference that. 1550 if (resultIsReference) 1551 return ConstantEmission::forReference(C); 1552 1553 return ConstantEmission::forValue(C); 1554 } 1555 1556 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1557 const MemberExpr *ME) { 1558 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1559 // Try to emit static variable member expressions as DREs. 1560 return DeclRefExpr::Create( 1561 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1562 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1563 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1564 } 1565 return nullptr; 1566 } 1567 1568 CodeGenFunction::ConstantEmission 1569 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1570 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1571 return tryEmitAsConstant(DRE); 1572 return ConstantEmission(); 1573 } 1574 1575 llvm::Value *CodeGenFunction::emitScalarConstant( 1576 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1577 assert(Constant && "not a constant"); 1578 if (Constant.isReference()) 1579 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1580 E->getExprLoc()) 1581 .getScalarVal(); 1582 return Constant.getValue(); 1583 } 1584 1585 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1586 SourceLocation Loc) { 1587 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1588 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1589 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1590 } 1591 1592 static bool hasBooleanRepresentation(QualType Ty) { 1593 if (Ty->isBooleanType()) 1594 return true; 1595 1596 if (const EnumType *ET = Ty->getAs<EnumType>()) 1597 return ET->getDecl()->getIntegerType()->isBooleanType(); 1598 1599 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1600 return hasBooleanRepresentation(AT->getValueType()); 1601 1602 return false; 1603 } 1604 1605 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1606 llvm::APInt &Min, llvm::APInt &End, 1607 bool StrictEnums, bool IsBool) { 1608 const EnumType *ET = Ty->getAs<EnumType>(); 1609 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1610 ET && !ET->getDecl()->isFixed(); 1611 if (!IsBool && !IsRegularCPlusPlusEnum) 1612 return false; 1613 1614 if (IsBool) { 1615 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1616 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1617 } else { 1618 const EnumDecl *ED = ET->getDecl(); 1619 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1620 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1621 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1622 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1623 1624 if (NumNegativeBits) { 1625 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1626 assert(NumBits <= Bitwidth); 1627 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1628 Min = -End; 1629 } else { 1630 assert(NumPositiveBits <= Bitwidth); 1631 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1632 Min = llvm::APInt::getZero(Bitwidth); 1633 } 1634 } 1635 return true; 1636 } 1637 1638 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1639 llvm::APInt Min, End; 1640 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1641 hasBooleanRepresentation(Ty))) 1642 return nullptr; 1643 1644 llvm::MDBuilder MDHelper(getLLVMContext()); 1645 return MDHelper.createRange(Min, End); 1646 } 1647 1648 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1649 SourceLocation Loc) { 1650 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1651 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1652 if (!HasBoolCheck && !HasEnumCheck) 1653 return false; 1654 1655 bool IsBool = hasBooleanRepresentation(Ty) || 1656 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1657 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1658 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1659 if (!NeedsBoolCheck && !NeedsEnumCheck) 1660 return false; 1661 1662 // Single-bit booleans don't need to be checked. Special-case this to avoid 1663 // a bit width mismatch when handling bitfield values. This is handled by 1664 // EmitFromMemory for the non-bitfield case. 1665 if (IsBool && 1666 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1667 return false; 1668 1669 llvm::APInt Min, End; 1670 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1671 return true; 1672 1673 auto &Ctx = getLLVMContext(); 1674 SanitizerScope SanScope(this); 1675 llvm::Value *Check; 1676 --End; 1677 if (!Min) { 1678 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1679 } else { 1680 llvm::Value *Upper = 1681 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1682 llvm::Value *Lower = 1683 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1684 Check = Builder.CreateAnd(Upper, Lower); 1685 } 1686 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1687 EmitCheckTypeDescriptor(Ty)}; 1688 SanitizerMask Kind = 1689 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1690 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1691 StaticArgs, EmitCheckValue(Value)); 1692 return true; 1693 } 1694 1695 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1696 QualType Ty, 1697 SourceLocation Loc, 1698 LValueBaseInfo BaseInfo, 1699 TBAAAccessInfo TBAAInfo, 1700 bool isNontemporal) { 1701 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1702 // For better performance, handle vector loads differently. 1703 if (Ty->isVectorType()) { 1704 const llvm::Type *EltTy = Addr.getElementType(); 1705 1706 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1707 1708 // Handle vectors of size 3 like size 4 for better performance. 1709 if (VTy->getNumElements() == 3) { 1710 1711 // Bitcast to vec4 type. 1712 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1713 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1714 // Now load value. 1715 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1716 1717 // Shuffle vector to get vec3. 1718 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, 1719 "extractVec"); 1720 return EmitFromMemory(V, Ty); 1721 } 1722 } 1723 } 1724 1725 // Atomic operations have to be done on integral types. 1726 LValue AtomicLValue = 1727 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1728 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1729 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1730 } 1731 1732 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1733 if (isNontemporal) { 1734 llvm::MDNode *Node = llvm::MDNode::get( 1735 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1736 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1737 } 1738 1739 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1740 1741 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1742 // In order to prevent the optimizer from throwing away the check, don't 1743 // attach range metadata to the load. 1744 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1745 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1746 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1747 1748 return EmitFromMemory(Load, Ty); 1749 } 1750 1751 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1752 // Bool has a different representation in memory than in registers. 1753 if (hasBooleanRepresentation(Ty)) { 1754 // This should really always be an i1, but sometimes it's already 1755 // an i8, and it's awkward to track those cases down. 1756 if (Value->getType()->isIntegerTy(1)) 1757 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1758 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1759 "wrong value rep of bool"); 1760 } 1761 1762 return Value; 1763 } 1764 1765 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1766 // Bool has a different representation in memory than in registers. 1767 if (hasBooleanRepresentation(Ty)) { 1768 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1769 "wrong value rep of bool"); 1770 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1771 } 1772 1773 return Value; 1774 } 1775 1776 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1777 // MatrixType), if it points to a array (the memory type of MatrixType). 1778 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1779 bool IsVector = true) { 1780 auto *ArrayTy = dyn_cast<llvm::ArrayType>( 1781 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1782 if (ArrayTy && IsVector) { 1783 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1784 ArrayTy->getNumElements()); 1785 1786 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1787 } 1788 auto *VectorTy = dyn_cast<llvm::VectorType>( 1789 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1790 if (VectorTy && !IsVector) { 1791 auto *ArrayTy = llvm::ArrayType::get( 1792 VectorTy->getElementType(), 1793 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1794 1795 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1796 } 1797 1798 return Addr; 1799 } 1800 1801 // Emit a store of a matrix LValue. This may require casting the original 1802 // pointer to memory address (ArrayType) to a pointer to the value type 1803 // (VectorType). 1804 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1805 bool isInit, CodeGenFunction &CGF) { 1806 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1807 value->getType()->isVectorTy()); 1808 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1809 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1810 lvalue.isNontemporal()); 1811 } 1812 1813 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1814 bool Volatile, QualType Ty, 1815 LValueBaseInfo BaseInfo, 1816 TBAAAccessInfo TBAAInfo, 1817 bool isInit, bool isNontemporal) { 1818 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1819 // Handle vectors differently to get better performance. 1820 if (Ty->isVectorType()) { 1821 llvm::Type *SrcTy = Value->getType(); 1822 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1823 // Handle vec3 special. 1824 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1825 // Our source is a vec3, do a shuffle vector to make it a vec4. 1826 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1827 "extractVec"); 1828 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1829 } 1830 if (Addr.getElementType() != SrcTy) { 1831 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1832 } 1833 } 1834 } 1835 1836 Value = EmitToMemory(Value, Ty); 1837 1838 LValue AtomicLValue = 1839 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1840 if (Ty->isAtomicType() || 1841 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1842 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1843 return; 1844 } 1845 1846 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1847 if (isNontemporal) { 1848 llvm::MDNode *Node = 1849 llvm::MDNode::get(Store->getContext(), 1850 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1851 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1852 } 1853 1854 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1855 } 1856 1857 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1858 bool isInit) { 1859 if (lvalue.getType()->isConstantMatrixType()) { 1860 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1861 return; 1862 } 1863 1864 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1865 lvalue.getType(), lvalue.getBaseInfo(), 1866 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1867 } 1868 1869 // Emit a load of a LValue of matrix type. This may require casting the pointer 1870 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1871 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1872 CodeGenFunction &CGF) { 1873 assert(LV.getType()->isConstantMatrixType()); 1874 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1875 LV.setAddress(Addr); 1876 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1877 } 1878 1879 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1880 /// method emits the address of the lvalue, then loads the result as an rvalue, 1881 /// returning the rvalue. 1882 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1883 if (LV.isObjCWeak()) { 1884 // load of a __weak object. 1885 Address AddrWeakObj = LV.getAddress(*this); 1886 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1887 AddrWeakObj)); 1888 } 1889 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1890 // In MRC mode, we do a load+autorelease. 1891 if (!getLangOpts().ObjCAutoRefCount) { 1892 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1893 } 1894 1895 // In ARC mode, we load retained and then consume the value. 1896 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1897 Object = EmitObjCConsumeObject(LV.getType(), Object); 1898 return RValue::get(Object); 1899 } 1900 1901 if (LV.isSimple()) { 1902 assert(!LV.getType()->isFunctionType()); 1903 1904 if (LV.getType()->isConstantMatrixType()) 1905 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1906 1907 // Everything needs a load. 1908 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1909 } 1910 1911 if (LV.isVectorElt()) { 1912 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1913 LV.isVolatileQualified()); 1914 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1915 "vecext")); 1916 } 1917 1918 // If this is a reference to a subset of the elements of a vector, either 1919 // shuffle the input or extract/insert them as appropriate. 1920 if (LV.isExtVectorElt()) { 1921 return EmitLoadOfExtVectorElementLValue(LV); 1922 } 1923 1924 // Global Register variables always invoke intrinsics 1925 if (LV.isGlobalReg()) 1926 return EmitLoadOfGlobalRegLValue(LV); 1927 1928 if (LV.isMatrixElt()) { 1929 llvm::Value *Idx = LV.getMatrixIdx(); 1930 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1931 const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>(); 1932 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1933 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1934 } 1935 llvm::LoadInst *Load = 1936 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1937 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1938 } 1939 1940 assert(LV.isBitField() && "Unknown LValue type!"); 1941 return EmitLoadOfBitfieldLValue(LV, Loc); 1942 } 1943 1944 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1945 SourceLocation Loc) { 1946 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1947 1948 // Get the output type. 1949 llvm::Type *ResLTy = ConvertType(LV.getType()); 1950 1951 Address Ptr = LV.getBitFieldAddress(); 1952 llvm::Value *Val = 1953 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1954 1955 bool UseVolatile = LV.isVolatileQualified() && 1956 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1957 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1958 const unsigned StorageSize = 1959 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1960 if (Info.IsSigned) { 1961 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1962 unsigned HighBits = StorageSize - Offset - Info.Size; 1963 if (HighBits) 1964 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1965 if (Offset + HighBits) 1966 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1967 } else { 1968 if (Offset) 1969 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1970 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1971 Val = Builder.CreateAnd( 1972 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1973 } 1974 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1975 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1976 return RValue::get(Val); 1977 } 1978 1979 // If this is a reference to a subset of the elements of a vector, create an 1980 // appropriate shufflevector. 1981 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1982 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1983 LV.isVolatileQualified()); 1984 1985 const llvm::Constant *Elts = LV.getExtVectorElts(); 1986 1987 // If the result of the expression is a non-vector type, we must be extracting 1988 // a single element. Just codegen as an extractelement. 1989 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1990 if (!ExprVT) { 1991 unsigned InIdx = getAccessedFieldNo(0, Elts); 1992 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1993 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1994 } 1995 1996 // Always use shuffle vector to try to retain the original program structure 1997 unsigned NumResultElts = ExprVT->getNumElements(); 1998 1999 SmallVector<int, 4> Mask; 2000 for (unsigned i = 0; i != NumResultElts; ++i) 2001 Mask.push_back(getAccessedFieldNo(i, Elts)); 2002 2003 Vec = Builder.CreateShuffleVector(Vec, Mask); 2004 return RValue::get(Vec); 2005 } 2006 2007 /// Generates lvalue for partial ext_vector access. 2008 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2009 Address VectorAddress = LV.getExtVectorAddress(); 2010 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2011 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2012 2013 Address CastToPointerElement = 2014 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2015 "conv.ptr.element"); 2016 2017 const llvm::Constant *Elts = LV.getExtVectorElts(); 2018 unsigned ix = getAccessedFieldNo(0, Elts); 2019 2020 Address VectorBasePtrPlusIx = 2021 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2022 "vector.elt"); 2023 2024 return VectorBasePtrPlusIx; 2025 } 2026 2027 /// Load of global gamed gegisters are always calls to intrinsics. 2028 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2029 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2030 "Bad type for register variable"); 2031 llvm::MDNode *RegName = cast<llvm::MDNode>( 2032 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2033 2034 // We accept integer and pointer types only 2035 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2036 llvm::Type *Ty = OrigTy; 2037 if (OrigTy->isPointerTy()) 2038 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2039 llvm::Type *Types[] = { Ty }; 2040 2041 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2042 llvm::Value *Call = Builder.CreateCall( 2043 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2044 if (OrigTy->isPointerTy()) 2045 Call = Builder.CreateIntToPtr(Call, OrigTy); 2046 return RValue::get(Call); 2047 } 2048 2049 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2050 /// lvalue, where both are guaranteed to the have the same type, and that type 2051 /// is 'Ty'. 2052 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2053 bool isInit) { 2054 if (!Dst.isSimple()) { 2055 if (Dst.isVectorElt()) { 2056 // Read/modify/write the vector, inserting the new element. 2057 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2058 Dst.isVolatileQualified()); 2059 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2060 Dst.getVectorIdx(), "vecins"); 2061 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2062 Dst.isVolatileQualified()); 2063 return; 2064 } 2065 2066 // If this is an update of extended vector elements, insert them as 2067 // appropriate. 2068 if (Dst.isExtVectorElt()) 2069 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2070 2071 if (Dst.isGlobalReg()) 2072 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2073 2074 if (Dst.isMatrixElt()) { 2075 llvm::Value *Idx = Dst.getMatrixIdx(); 2076 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2077 const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>(); 2078 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 2079 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2080 } 2081 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2082 llvm::Value *Vec = 2083 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2084 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2085 Dst.isVolatileQualified()); 2086 return; 2087 } 2088 2089 assert(Dst.isBitField() && "Unknown LValue type"); 2090 return EmitStoreThroughBitfieldLValue(Src, Dst); 2091 } 2092 2093 // There's special magic for assigning into an ARC-qualified l-value. 2094 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2095 switch (Lifetime) { 2096 case Qualifiers::OCL_None: 2097 llvm_unreachable("present but none"); 2098 2099 case Qualifiers::OCL_ExplicitNone: 2100 // nothing special 2101 break; 2102 2103 case Qualifiers::OCL_Strong: 2104 if (isInit) { 2105 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2106 break; 2107 } 2108 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2109 return; 2110 2111 case Qualifiers::OCL_Weak: 2112 if (isInit) 2113 // Initialize and then skip the primitive store. 2114 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2115 else 2116 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2117 /*ignore*/ true); 2118 return; 2119 2120 case Qualifiers::OCL_Autoreleasing: 2121 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2122 Src.getScalarVal())); 2123 // fall into the normal path 2124 break; 2125 } 2126 } 2127 2128 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2129 // load of a __weak object. 2130 Address LvalueDst = Dst.getAddress(*this); 2131 llvm::Value *src = Src.getScalarVal(); 2132 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2133 return; 2134 } 2135 2136 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2137 // load of a __strong object. 2138 Address LvalueDst = Dst.getAddress(*this); 2139 llvm::Value *src = Src.getScalarVal(); 2140 if (Dst.isObjCIvar()) { 2141 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2142 llvm::Type *ResultType = IntPtrTy; 2143 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2144 llvm::Value *RHS = dst.getPointer(); 2145 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2146 llvm::Value *LHS = 2147 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2148 "sub.ptr.lhs.cast"); 2149 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2150 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2151 BytesBetween); 2152 } else if (Dst.isGlobalObjCRef()) { 2153 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2154 Dst.isThreadLocalRef()); 2155 } 2156 else 2157 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2158 return; 2159 } 2160 2161 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2162 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2163 } 2164 2165 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2166 llvm::Value **Result) { 2167 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2168 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2169 Address Ptr = Dst.getBitFieldAddress(); 2170 2171 // Get the source value, truncated to the width of the bit-field. 2172 llvm::Value *SrcVal = Src.getScalarVal(); 2173 2174 // Cast the source to the storage type and shift it into place. 2175 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2176 /*isSigned=*/false); 2177 llvm::Value *MaskedVal = SrcVal; 2178 2179 const bool UseVolatile = 2180 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2181 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2182 const unsigned StorageSize = 2183 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2184 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2185 // See if there are other bits in the bitfield's storage we'll need to load 2186 // and mask together with source before storing. 2187 if (StorageSize != Info.Size) { 2188 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2189 llvm::Value *Val = 2190 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2191 2192 // Mask the source value as needed. 2193 if (!hasBooleanRepresentation(Dst.getType())) 2194 SrcVal = Builder.CreateAnd( 2195 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2196 "bf.value"); 2197 MaskedVal = SrcVal; 2198 if (Offset) 2199 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2200 2201 // Mask out the original value. 2202 Val = Builder.CreateAnd( 2203 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2204 "bf.clear"); 2205 2206 // Or together the unchanged values and the source value. 2207 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2208 } else { 2209 assert(Offset == 0); 2210 // According to the AACPS: 2211 // When a volatile bit-field is written, and its container does not overlap 2212 // with any non-bit-field member, its container must be read exactly once 2213 // and written exactly once using the access width appropriate to the type 2214 // of the container. The two accesses are not atomic. 2215 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2216 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2217 Builder.CreateLoad(Ptr, true, "bf.load"); 2218 } 2219 2220 // Write the new value back out. 2221 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2222 2223 // Return the new value of the bit-field, if requested. 2224 if (Result) { 2225 llvm::Value *ResultVal = MaskedVal; 2226 2227 // Sign extend the value if needed. 2228 if (Info.IsSigned) { 2229 assert(Info.Size <= StorageSize); 2230 unsigned HighBits = StorageSize - Info.Size; 2231 if (HighBits) { 2232 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2233 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2234 } 2235 } 2236 2237 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2238 "bf.result.cast"); 2239 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2240 } 2241 } 2242 2243 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2244 LValue Dst) { 2245 // This access turns into a read/modify/write of the vector. Load the input 2246 // value now. 2247 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2248 Dst.isVolatileQualified()); 2249 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2250 2251 llvm::Value *SrcVal = Src.getScalarVal(); 2252 2253 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2254 unsigned NumSrcElts = VTy->getNumElements(); 2255 unsigned NumDstElts = 2256 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2257 if (NumDstElts == NumSrcElts) { 2258 // Use shuffle vector is the src and destination are the same number of 2259 // elements and restore the vector mask since it is on the side it will be 2260 // stored. 2261 SmallVector<int, 4> Mask(NumDstElts); 2262 for (unsigned i = 0; i != NumSrcElts; ++i) 2263 Mask[getAccessedFieldNo(i, Elts)] = i; 2264 2265 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2266 } else if (NumDstElts > NumSrcElts) { 2267 // Extended the source vector to the same length and then shuffle it 2268 // into the destination. 2269 // FIXME: since we're shuffling with undef, can we just use the indices 2270 // into that? This could be simpler. 2271 SmallVector<int, 4> ExtMask; 2272 for (unsigned i = 0; i != NumSrcElts; ++i) 2273 ExtMask.push_back(i); 2274 ExtMask.resize(NumDstElts, -1); 2275 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2276 // build identity 2277 SmallVector<int, 4> Mask; 2278 for (unsigned i = 0; i != NumDstElts; ++i) 2279 Mask.push_back(i); 2280 2281 // When the vector size is odd and .odd or .hi is used, the last element 2282 // of the Elts constant array will be one past the size of the vector. 2283 // Ignore the last element here, if it is greater than the mask size. 2284 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2285 NumSrcElts--; 2286 2287 // modify when what gets shuffled in 2288 for (unsigned i = 0; i != NumSrcElts; ++i) 2289 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2290 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2291 } else { 2292 // We should never shorten the vector 2293 llvm_unreachable("unexpected shorten vector length"); 2294 } 2295 } else { 2296 // If the Src is a scalar (not a vector) it must be updating one element. 2297 unsigned InIdx = getAccessedFieldNo(0, Elts); 2298 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2299 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2300 } 2301 2302 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2303 Dst.isVolatileQualified()); 2304 } 2305 2306 /// Store of global named registers are always calls to intrinsics. 2307 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2308 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2309 "Bad type for register variable"); 2310 llvm::MDNode *RegName = cast<llvm::MDNode>( 2311 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2312 assert(RegName && "Register LValue is not metadata"); 2313 2314 // We accept integer and pointer types only 2315 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2316 llvm::Type *Ty = OrigTy; 2317 if (OrigTy->isPointerTy()) 2318 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2319 llvm::Type *Types[] = { Ty }; 2320 2321 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2322 llvm::Value *Value = Src.getScalarVal(); 2323 if (OrigTy->isPointerTy()) 2324 Value = Builder.CreatePtrToInt(Value, Ty); 2325 Builder.CreateCall( 2326 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2327 } 2328 2329 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2330 // generating write-barries API. It is currently a global, ivar, 2331 // or neither. 2332 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2333 LValue &LV, 2334 bool IsMemberAccess=false) { 2335 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2336 return; 2337 2338 if (isa<ObjCIvarRefExpr>(E)) { 2339 QualType ExpTy = E->getType(); 2340 if (IsMemberAccess && ExpTy->isPointerType()) { 2341 // If ivar is a structure pointer, assigning to field of 2342 // this struct follows gcc's behavior and makes it a non-ivar 2343 // writer-barrier conservatively. 2344 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2345 if (ExpTy->isRecordType()) { 2346 LV.setObjCIvar(false); 2347 return; 2348 } 2349 } 2350 LV.setObjCIvar(true); 2351 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2352 LV.setBaseIvarExp(Exp->getBase()); 2353 LV.setObjCArray(E->getType()->isArrayType()); 2354 return; 2355 } 2356 2357 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2358 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2359 if (VD->hasGlobalStorage()) { 2360 LV.setGlobalObjCRef(true); 2361 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2362 } 2363 } 2364 LV.setObjCArray(E->getType()->isArrayType()); 2365 return; 2366 } 2367 2368 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2369 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2370 return; 2371 } 2372 2373 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2374 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2375 if (LV.isObjCIvar()) { 2376 // If cast is to a structure pointer, follow gcc's behavior and make it 2377 // a non-ivar write-barrier. 2378 QualType ExpTy = E->getType(); 2379 if (ExpTy->isPointerType()) 2380 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2381 if (ExpTy->isRecordType()) 2382 LV.setObjCIvar(false); 2383 } 2384 return; 2385 } 2386 2387 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2388 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2389 return; 2390 } 2391 2392 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2393 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2394 return; 2395 } 2396 2397 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2398 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2399 return; 2400 } 2401 2402 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2403 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2404 return; 2405 } 2406 2407 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2408 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2409 if (LV.isObjCIvar() && !LV.isObjCArray()) 2410 // Using array syntax to assigning to what an ivar points to is not 2411 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2412 LV.setObjCIvar(false); 2413 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2414 // Using array syntax to assigning to what global points to is not 2415 // same as assigning to the global itself. {id *G;} G[i] = 0; 2416 LV.setGlobalObjCRef(false); 2417 return; 2418 } 2419 2420 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2421 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2422 // We don't know if member is an 'ivar', but this flag is looked at 2423 // only in the context of LV.isObjCIvar(). 2424 LV.setObjCArray(E->getType()->isArrayType()); 2425 return; 2426 } 2427 } 2428 2429 static llvm::Value * 2430 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2431 llvm::Value *V, llvm::Type *IRType, 2432 StringRef Name = StringRef()) { 2433 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2434 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2435 } 2436 2437 static LValue EmitThreadPrivateVarDeclLValue( 2438 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2439 llvm::Type *RealVarTy, SourceLocation Loc) { 2440 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2441 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2442 CGF, VD, Addr, Loc); 2443 else 2444 Addr = 2445 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2446 2447 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2448 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2449 } 2450 2451 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2452 const VarDecl *VD, QualType T) { 2453 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2454 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2455 // Return an invalid address if variable is MT_To and unified 2456 // memory is not enabled. For all other cases: MT_Link and 2457 // MT_To with unified memory, return a valid address. 2458 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2459 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2460 return Address::invalid(); 2461 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2462 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2463 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2464 "Expected link clause OR to clause with unified memory enabled."); 2465 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2466 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2467 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2468 } 2469 2470 Address 2471 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2472 LValueBaseInfo *PointeeBaseInfo, 2473 TBAAAccessInfo *PointeeTBAAInfo) { 2474 llvm::LoadInst *Load = 2475 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2476 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2477 2478 CharUnits Align = CGM.getNaturalTypeAlignment( 2479 RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo, 2480 /* forPointeeType= */ true); 2481 return Address(Load, Align); 2482 } 2483 2484 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2485 LValueBaseInfo PointeeBaseInfo; 2486 TBAAAccessInfo PointeeTBAAInfo; 2487 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2488 &PointeeTBAAInfo); 2489 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2490 PointeeBaseInfo, PointeeTBAAInfo); 2491 } 2492 2493 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2494 const PointerType *PtrTy, 2495 LValueBaseInfo *BaseInfo, 2496 TBAAAccessInfo *TBAAInfo) { 2497 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2498 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), 2499 BaseInfo, TBAAInfo, 2500 /*forPointeeType=*/true)); 2501 } 2502 2503 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2504 const PointerType *PtrTy) { 2505 LValueBaseInfo BaseInfo; 2506 TBAAAccessInfo TBAAInfo; 2507 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2508 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2509 } 2510 2511 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2512 const Expr *E, const VarDecl *VD) { 2513 QualType T = E->getType(); 2514 2515 // If it's thread_local, emit a call to its wrapper function instead. 2516 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2517 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2518 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2519 // Check if the variable is marked as declare target with link clause in 2520 // device codegen. 2521 if (CGF.getLangOpts().OpenMPIsDevice) { 2522 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2523 if (Addr.isValid()) 2524 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2525 } 2526 2527 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2528 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2529 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2530 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2531 Address Addr(V, Alignment); 2532 // Emit reference to the private copy of the variable if it is an OpenMP 2533 // threadprivate variable. 2534 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2535 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2536 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2537 E->getExprLoc()); 2538 } 2539 LValue LV = VD->getType()->isReferenceType() ? 2540 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2541 AlignmentSource::Decl) : 2542 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2543 setObjCGCLValueClass(CGF.getContext(), E, LV); 2544 return LV; 2545 } 2546 2547 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2548 GlobalDecl GD) { 2549 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2550 if (FD->hasAttr<WeakRefAttr>()) { 2551 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2552 return aliasee.getPointer(); 2553 } 2554 2555 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2556 if (!FD->hasPrototype()) { 2557 if (const FunctionProtoType *Proto = 2558 FD->getType()->getAs<FunctionProtoType>()) { 2559 // Ugly case: for a K&R-style definition, the type of the definition 2560 // isn't the same as the type of a use. Correct for this with a 2561 // bitcast. 2562 QualType NoProtoType = 2563 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2564 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2565 V = llvm::ConstantExpr::getBitCast(V, 2566 CGM.getTypes().ConvertType(NoProtoType)); 2567 } 2568 } 2569 return V; 2570 } 2571 2572 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2573 GlobalDecl GD) { 2574 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2575 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2576 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2577 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2578 AlignmentSource::Decl); 2579 } 2580 2581 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2582 llvm::Value *ThisValue) { 2583 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2584 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2585 return CGF.EmitLValueForField(LV, FD); 2586 } 2587 2588 /// Named Registers are named metadata pointing to the register name 2589 /// which will be read from/written to as an argument to the intrinsic 2590 /// @llvm.read/write_register. 2591 /// So far, only the name is being passed down, but other options such as 2592 /// register type, allocation type or even optimization options could be 2593 /// passed down via the metadata node. 2594 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2595 SmallString<64> Name("llvm.named.register."); 2596 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2597 assert(Asm->getLabel().size() < 64-Name.size() && 2598 "Register name too big"); 2599 Name.append(Asm->getLabel()); 2600 llvm::NamedMDNode *M = 2601 CGM.getModule().getOrInsertNamedMetadata(Name); 2602 if (M->getNumOperands() == 0) { 2603 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2604 Asm->getLabel()); 2605 llvm::Metadata *Ops[] = {Str}; 2606 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2607 } 2608 2609 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2610 2611 llvm::Value *Ptr = 2612 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2613 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2614 } 2615 2616 /// Determine whether we can emit a reference to \p VD from the current 2617 /// context, despite not necessarily having seen an odr-use of the variable in 2618 /// this context. 2619 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2620 const DeclRefExpr *E, 2621 const VarDecl *VD, 2622 bool IsConstant) { 2623 // For a variable declared in an enclosing scope, do not emit a spurious 2624 // reference even if we have a capture, as that will emit an unwarranted 2625 // reference to our capture state, and will likely generate worse code than 2626 // emitting a local copy. 2627 if (E->refersToEnclosingVariableOrCapture()) 2628 return false; 2629 2630 // For a local declaration declared in this function, we can always reference 2631 // it even if we don't have an odr-use. 2632 if (VD->hasLocalStorage()) { 2633 return VD->getDeclContext() == 2634 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2635 } 2636 2637 // For a global declaration, we can emit a reference to it if we know 2638 // for sure that we are able to emit a definition of it. 2639 VD = VD->getDefinition(CGF.getContext()); 2640 if (!VD) 2641 return false; 2642 2643 // Don't emit a spurious reference if it might be to a variable that only 2644 // exists on a different device / target. 2645 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2646 // cross-target reference. 2647 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2648 CGF.getLangOpts().OpenCL) { 2649 return false; 2650 } 2651 2652 // We can emit a spurious reference only if the linkage implies that we'll 2653 // be emitting a non-interposable symbol that will be retained until link 2654 // time. 2655 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2656 case llvm::GlobalValue::ExternalLinkage: 2657 case llvm::GlobalValue::LinkOnceODRLinkage: 2658 case llvm::GlobalValue::WeakODRLinkage: 2659 case llvm::GlobalValue::InternalLinkage: 2660 case llvm::GlobalValue::PrivateLinkage: 2661 return true; 2662 default: 2663 return false; 2664 } 2665 } 2666 2667 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2668 const NamedDecl *ND = E->getDecl(); 2669 QualType T = E->getType(); 2670 2671 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2672 "should not emit an unevaluated operand"); 2673 2674 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2675 // Global Named registers access via intrinsics only 2676 if (VD->getStorageClass() == SC_Register && 2677 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2678 return EmitGlobalNamedRegister(VD, CGM); 2679 2680 // If this DeclRefExpr does not constitute an odr-use of the variable, 2681 // we're not permitted to emit a reference to it in general, and it might 2682 // not be captured if capture would be necessary for a use. Emit the 2683 // constant value directly instead. 2684 if (E->isNonOdrUse() == NOUR_Constant && 2685 (VD->getType()->isReferenceType() || 2686 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2687 VD->getAnyInitializer(VD); 2688 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2689 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2690 assert(Val && "failed to emit constant expression"); 2691 2692 Address Addr = Address::invalid(); 2693 if (!VD->getType()->isReferenceType()) { 2694 // Spill the constant value to a global. 2695 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2696 getContext().getDeclAlign(VD)); 2697 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2698 auto *PTy = llvm::PointerType::get( 2699 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2700 if (PTy != Addr.getType()) 2701 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2702 } else { 2703 // Should we be using the alignment of the constant pointer we emitted? 2704 CharUnits Alignment = 2705 CGM.getNaturalTypeAlignment(E->getType(), 2706 /* BaseInfo= */ nullptr, 2707 /* TBAAInfo= */ nullptr, 2708 /* forPointeeType= */ true); 2709 Addr = Address(Val, Alignment); 2710 } 2711 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2712 } 2713 2714 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2715 2716 // Check for captured variables. 2717 if (E->refersToEnclosingVariableOrCapture()) { 2718 VD = VD->getCanonicalDecl(); 2719 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2720 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2721 if (CapturedStmtInfo) { 2722 auto I = LocalDeclMap.find(VD); 2723 if (I != LocalDeclMap.end()) { 2724 LValue CapLVal; 2725 if (VD->getType()->isReferenceType()) 2726 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2727 AlignmentSource::Decl); 2728 else 2729 CapLVal = MakeAddrLValue(I->second, T); 2730 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2731 // in simd context. 2732 if (getLangOpts().OpenMP && 2733 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2734 CapLVal.setNontemporal(/*Value=*/true); 2735 return CapLVal; 2736 } 2737 LValue CapLVal = 2738 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2739 CapturedStmtInfo->getContextValue()); 2740 CapLVal = MakeAddrLValue( 2741 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2742 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2743 CapLVal.getTBAAInfo()); 2744 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2745 // in simd context. 2746 if (getLangOpts().OpenMP && 2747 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2748 CapLVal.setNontemporal(/*Value=*/true); 2749 return CapLVal; 2750 } 2751 2752 assert(isa<BlockDecl>(CurCodeDecl)); 2753 Address addr = GetAddrOfBlockDecl(VD); 2754 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2755 } 2756 } 2757 2758 // FIXME: We should be able to assert this for FunctionDecls as well! 2759 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2760 // those with a valid source location. 2761 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2762 !E->getLocation().isValid()) && 2763 "Should not use decl without marking it used!"); 2764 2765 if (ND->hasAttr<WeakRefAttr>()) { 2766 const auto *VD = cast<ValueDecl>(ND); 2767 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2768 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2769 } 2770 2771 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2772 // Check if this is a global variable. 2773 if (VD->hasLinkage() || VD->isStaticDataMember()) 2774 return EmitGlobalVarDeclLValue(*this, E, VD); 2775 2776 Address addr = Address::invalid(); 2777 2778 // The variable should generally be present in the local decl map. 2779 auto iter = LocalDeclMap.find(VD); 2780 if (iter != LocalDeclMap.end()) { 2781 addr = iter->second; 2782 2783 // Otherwise, it might be static local we haven't emitted yet for 2784 // some reason; most likely, because it's in an outer function. 2785 } else if (VD->isStaticLocal()) { 2786 addr = Address(CGM.getOrCreateStaticVarDecl( 2787 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2788 getContext().getDeclAlign(VD)); 2789 2790 // No other cases for now. 2791 } else { 2792 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2793 } 2794 2795 2796 // Check for OpenMP threadprivate variables. 2797 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2798 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2799 return EmitThreadPrivateVarDeclLValue( 2800 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2801 E->getExprLoc()); 2802 } 2803 2804 // Drill into block byref variables. 2805 bool isBlockByref = VD->isEscapingByref(); 2806 if (isBlockByref) { 2807 addr = emitBlockByrefAddress(addr, VD); 2808 } 2809 2810 // Drill into reference types. 2811 LValue LV = VD->getType()->isReferenceType() ? 2812 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2813 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2814 2815 bool isLocalStorage = VD->hasLocalStorage(); 2816 2817 bool NonGCable = isLocalStorage && 2818 !VD->getType()->isReferenceType() && 2819 !isBlockByref; 2820 if (NonGCable) { 2821 LV.getQuals().removeObjCGCAttr(); 2822 LV.setNonGC(true); 2823 } 2824 2825 bool isImpreciseLifetime = 2826 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2827 if (isImpreciseLifetime) 2828 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2829 setObjCGCLValueClass(getContext(), E, LV); 2830 return LV; 2831 } 2832 2833 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2834 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2835 2836 // Emit debuginfo for the function declaration if the target wants to. 2837 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2838 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2839 auto *Fn = 2840 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2841 if (!Fn->getSubprogram()) 2842 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2843 } 2844 } 2845 2846 return LV; 2847 } 2848 2849 // FIXME: While we're emitting a binding from an enclosing scope, all other 2850 // DeclRefExprs we see should be implicitly treated as if they also refer to 2851 // an enclosing scope. 2852 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2853 return EmitLValue(BD->getBinding()); 2854 2855 // We can form DeclRefExprs naming GUID declarations when reconstituting 2856 // non-type template parameters into expressions. 2857 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2858 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2859 AlignmentSource::Decl); 2860 2861 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2862 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2863 AlignmentSource::Decl); 2864 2865 llvm_unreachable("Unhandled DeclRefExpr"); 2866 } 2867 2868 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2869 // __extension__ doesn't affect lvalue-ness. 2870 if (E->getOpcode() == UO_Extension) 2871 return EmitLValue(E->getSubExpr()); 2872 2873 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2874 switch (E->getOpcode()) { 2875 default: llvm_unreachable("Unknown unary operator lvalue!"); 2876 case UO_Deref: { 2877 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2878 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2879 2880 LValueBaseInfo BaseInfo; 2881 TBAAAccessInfo TBAAInfo; 2882 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2883 &TBAAInfo); 2884 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2885 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2886 2887 // We should not generate __weak write barrier on indirect reference 2888 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2889 // But, we continue to generate __strong write barrier on indirect write 2890 // into a pointer to object. 2891 if (getLangOpts().ObjC && 2892 getLangOpts().getGC() != LangOptions::NonGC && 2893 LV.isObjCWeak()) 2894 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2895 return LV; 2896 } 2897 case UO_Real: 2898 case UO_Imag: { 2899 LValue LV = EmitLValue(E->getSubExpr()); 2900 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2901 2902 // __real is valid on scalars. This is a faster way of testing that. 2903 // __imag can only produce an rvalue on scalars. 2904 if (E->getOpcode() == UO_Real && 2905 !LV.getAddress(*this).getElementType()->isStructTy()) { 2906 assert(E->getSubExpr()->getType()->isArithmeticType()); 2907 return LV; 2908 } 2909 2910 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2911 2912 Address Component = 2913 (E->getOpcode() == UO_Real 2914 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2915 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2916 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2917 CGM.getTBAAInfoForSubobject(LV, T)); 2918 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2919 return ElemLV; 2920 } 2921 case UO_PreInc: 2922 case UO_PreDec: { 2923 LValue LV = EmitLValue(E->getSubExpr()); 2924 bool isInc = E->getOpcode() == UO_PreInc; 2925 2926 if (E->getType()->isAnyComplexType()) 2927 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2928 else 2929 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2930 return LV; 2931 } 2932 } 2933 } 2934 2935 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2936 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2937 E->getType(), AlignmentSource::Decl); 2938 } 2939 2940 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2941 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2942 E->getType(), AlignmentSource::Decl); 2943 } 2944 2945 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2946 auto SL = E->getFunctionName(); 2947 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2948 StringRef FnName = CurFn->getName(); 2949 if (FnName.startswith("\01")) 2950 FnName = FnName.substr(1); 2951 StringRef NameItems[] = { 2952 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2953 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2954 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2955 std::string Name = std::string(SL->getString()); 2956 if (!Name.empty()) { 2957 unsigned Discriminator = 2958 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2959 if (Discriminator) 2960 Name += "_" + Twine(Discriminator + 1).str(); 2961 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2962 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2963 } else { 2964 auto C = 2965 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2966 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2967 } 2968 } 2969 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2970 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2971 } 2972 2973 /// Emit a type description suitable for use by a runtime sanitizer library. The 2974 /// format of a type descriptor is 2975 /// 2976 /// \code 2977 /// { i16 TypeKind, i16 TypeInfo } 2978 /// \endcode 2979 /// 2980 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2981 /// integer, 1 for a floating point value, and -1 for anything else. 2982 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2983 // Only emit each type's descriptor once. 2984 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2985 return C; 2986 2987 uint16_t TypeKind = -1; 2988 uint16_t TypeInfo = 0; 2989 2990 if (T->isIntegerType()) { 2991 TypeKind = 0; 2992 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2993 (T->isSignedIntegerType() ? 1 : 0); 2994 } else if (T->isFloatingType()) { 2995 TypeKind = 1; 2996 TypeInfo = getContext().getTypeSize(T); 2997 } 2998 2999 // Format the type name as if for a diagnostic, including quotes and 3000 // optionally an 'aka'. 3001 SmallString<32> Buffer; 3002 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3003 (intptr_t)T.getAsOpaquePtr(), 3004 StringRef(), StringRef(), None, Buffer, 3005 None); 3006 3007 llvm::Constant *Components[] = { 3008 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3009 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3010 }; 3011 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3012 3013 auto *GV = new llvm::GlobalVariable( 3014 CGM.getModule(), Descriptor->getType(), 3015 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3016 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3017 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3018 3019 // Remember the descriptor for this type. 3020 CGM.setTypeDescriptorInMap(T, GV); 3021 3022 return GV; 3023 } 3024 3025 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3026 llvm::Type *TargetTy = IntPtrTy; 3027 3028 if (V->getType() == TargetTy) 3029 return V; 3030 3031 // Floating-point types which fit into intptr_t are bitcast to integers 3032 // and then passed directly (after zero-extension, if necessary). 3033 if (V->getType()->isFloatingPointTy()) { 3034 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3035 if (Bits <= TargetTy->getIntegerBitWidth()) 3036 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3037 Bits)); 3038 } 3039 3040 // Integers which fit in intptr_t are zero-extended and passed directly. 3041 if (V->getType()->isIntegerTy() && 3042 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3043 return Builder.CreateZExt(V, TargetTy); 3044 3045 // Pointers are passed directly, everything else is passed by address. 3046 if (!V->getType()->isPointerTy()) { 3047 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3048 Builder.CreateStore(V, Ptr); 3049 V = Ptr.getPointer(); 3050 } 3051 return Builder.CreatePtrToInt(V, TargetTy); 3052 } 3053 3054 /// Emit a representation of a SourceLocation for passing to a handler 3055 /// in a sanitizer runtime library. The format for this data is: 3056 /// \code 3057 /// struct SourceLocation { 3058 /// const char *Filename; 3059 /// int32_t Line, Column; 3060 /// }; 3061 /// \endcode 3062 /// For an invalid SourceLocation, the Filename pointer is null. 3063 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3064 llvm::Constant *Filename; 3065 int Line, Column; 3066 3067 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3068 if (PLoc.isValid()) { 3069 StringRef FilenameString = PLoc.getFilename(); 3070 3071 int PathComponentsToStrip = 3072 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3073 if (PathComponentsToStrip < 0) { 3074 assert(PathComponentsToStrip != INT_MIN); 3075 int PathComponentsToKeep = -PathComponentsToStrip; 3076 auto I = llvm::sys::path::rbegin(FilenameString); 3077 auto E = llvm::sys::path::rend(FilenameString); 3078 while (I != E && --PathComponentsToKeep) 3079 ++I; 3080 3081 FilenameString = FilenameString.substr(I - E); 3082 } else if (PathComponentsToStrip > 0) { 3083 auto I = llvm::sys::path::begin(FilenameString); 3084 auto E = llvm::sys::path::end(FilenameString); 3085 while (I != E && PathComponentsToStrip--) 3086 ++I; 3087 3088 if (I != E) 3089 FilenameString = 3090 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3091 else 3092 FilenameString = llvm::sys::path::filename(FilenameString); 3093 } 3094 3095 auto FilenameGV = 3096 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3097 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3098 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3099 Filename = FilenameGV.getPointer(); 3100 Line = PLoc.getLine(); 3101 Column = PLoc.getColumn(); 3102 } else { 3103 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3104 Line = Column = 0; 3105 } 3106 3107 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3108 Builder.getInt32(Column)}; 3109 3110 return llvm::ConstantStruct::getAnon(Data); 3111 } 3112 3113 namespace { 3114 /// Specify under what conditions this check can be recovered 3115 enum class CheckRecoverableKind { 3116 /// Always terminate program execution if this check fails. 3117 Unrecoverable, 3118 /// Check supports recovering, runtime has both fatal (noreturn) and 3119 /// non-fatal handlers for this check. 3120 Recoverable, 3121 /// Runtime conditionally aborts, always need to support recovery. 3122 AlwaysRecoverable 3123 }; 3124 } 3125 3126 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3127 assert(Kind.countPopulation() == 1); 3128 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3129 return CheckRecoverableKind::AlwaysRecoverable; 3130 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3131 return CheckRecoverableKind::Unrecoverable; 3132 else 3133 return CheckRecoverableKind::Recoverable; 3134 } 3135 3136 namespace { 3137 struct SanitizerHandlerInfo { 3138 char const *const Name; 3139 unsigned Version; 3140 }; 3141 } 3142 3143 const SanitizerHandlerInfo SanitizerHandlers[] = { 3144 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3145 LIST_SANITIZER_CHECKS 3146 #undef SANITIZER_CHECK 3147 }; 3148 3149 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3150 llvm::FunctionType *FnType, 3151 ArrayRef<llvm::Value *> FnArgs, 3152 SanitizerHandler CheckHandler, 3153 CheckRecoverableKind RecoverKind, bool IsFatal, 3154 llvm::BasicBlock *ContBB) { 3155 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3156 Optional<ApplyDebugLocation> DL; 3157 if (!CGF.Builder.getCurrentDebugLocation()) { 3158 // Ensure that the call has at least an artificial debug location. 3159 DL.emplace(CGF, SourceLocation()); 3160 } 3161 bool NeedsAbortSuffix = 3162 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3163 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3164 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3165 const StringRef CheckName = CheckInfo.Name; 3166 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3167 if (CheckInfo.Version && !MinimalRuntime) 3168 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3169 if (MinimalRuntime) 3170 FnName += "_minimal"; 3171 if (NeedsAbortSuffix) 3172 FnName += "_abort"; 3173 bool MayReturn = 3174 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3175 3176 llvm::AttrBuilder B; 3177 if (!MayReturn) { 3178 B.addAttribute(llvm::Attribute::NoReturn) 3179 .addAttribute(llvm::Attribute::NoUnwind); 3180 } 3181 B.addAttribute(llvm::Attribute::UWTable); 3182 3183 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3184 FnType, FnName, 3185 llvm::AttributeList::get(CGF.getLLVMContext(), 3186 llvm::AttributeList::FunctionIndex, B), 3187 /*Local=*/true); 3188 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3189 if (!MayReturn) { 3190 HandlerCall->setDoesNotReturn(); 3191 CGF.Builder.CreateUnreachable(); 3192 } else { 3193 CGF.Builder.CreateBr(ContBB); 3194 } 3195 } 3196 3197 void CodeGenFunction::EmitCheck( 3198 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3199 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3200 ArrayRef<llvm::Value *> DynamicArgs) { 3201 assert(IsSanitizerScope); 3202 assert(Checked.size() > 0); 3203 assert(CheckHandler >= 0 && 3204 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3205 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3206 3207 llvm::Value *FatalCond = nullptr; 3208 llvm::Value *RecoverableCond = nullptr; 3209 llvm::Value *TrapCond = nullptr; 3210 for (int i = 0, n = Checked.size(); i < n; ++i) { 3211 llvm::Value *Check = Checked[i].first; 3212 // -fsanitize-trap= overrides -fsanitize-recover=. 3213 llvm::Value *&Cond = 3214 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3215 ? TrapCond 3216 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3217 ? RecoverableCond 3218 : FatalCond; 3219 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3220 } 3221 3222 if (TrapCond) 3223 EmitTrapCheck(TrapCond, CheckHandler); 3224 if (!FatalCond && !RecoverableCond) 3225 return; 3226 3227 llvm::Value *JointCond; 3228 if (FatalCond && RecoverableCond) 3229 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3230 else 3231 JointCond = FatalCond ? FatalCond : RecoverableCond; 3232 assert(JointCond); 3233 3234 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3235 assert(SanOpts.has(Checked[0].second)); 3236 #ifndef NDEBUG 3237 for (int i = 1, n = Checked.size(); i < n; ++i) { 3238 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3239 "All recoverable kinds in a single check must be same!"); 3240 assert(SanOpts.has(Checked[i].second)); 3241 } 3242 #endif 3243 3244 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3245 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3246 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3247 // Give hint that we very much don't expect to execute the handler 3248 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3249 llvm::MDBuilder MDHelper(getLLVMContext()); 3250 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3251 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3252 EmitBlock(Handlers); 3253 3254 // Handler functions take an i8* pointing to the (handler-specific) static 3255 // information block, followed by a sequence of intptr_t arguments 3256 // representing operand values. 3257 SmallVector<llvm::Value *, 4> Args; 3258 SmallVector<llvm::Type *, 4> ArgTypes; 3259 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3260 Args.reserve(DynamicArgs.size() + 1); 3261 ArgTypes.reserve(DynamicArgs.size() + 1); 3262 3263 // Emit handler arguments and create handler function type. 3264 if (!StaticArgs.empty()) { 3265 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3266 auto *InfoPtr = 3267 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3268 llvm::GlobalVariable::PrivateLinkage, Info); 3269 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3270 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3271 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3272 ArgTypes.push_back(Int8PtrTy); 3273 } 3274 3275 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3276 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3277 ArgTypes.push_back(IntPtrTy); 3278 } 3279 } 3280 3281 llvm::FunctionType *FnType = 3282 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3283 3284 if (!FatalCond || !RecoverableCond) { 3285 // Simple case: we need to generate a single handler call, either 3286 // fatal, or non-fatal. 3287 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3288 (FatalCond != nullptr), Cont); 3289 } else { 3290 // Emit two handler calls: first one for set of unrecoverable checks, 3291 // another one for recoverable. 3292 llvm::BasicBlock *NonFatalHandlerBB = 3293 createBasicBlock("non_fatal." + CheckName); 3294 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3295 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3296 EmitBlock(FatalHandlerBB); 3297 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3298 NonFatalHandlerBB); 3299 EmitBlock(NonFatalHandlerBB); 3300 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3301 Cont); 3302 } 3303 3304 EmitBlock(Cont); 3305 } 3306 3307 void CodeGenFunction::EmitCfiSlowPathCheck( 3308 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3309 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3310 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3311 3312 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3313 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3314 3315 llvm::MDBuilder MDHelper(getLLVMContext()); 3316 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3317 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3318 3319 EmitBlock(CheckBB); 3320 3321 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3322 3323 llvm::CallInst *CheckCall; 3324 llvm::FunctionCallee SlowPathFn; 3325 if (WithDiag) { 3326 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3327 auto *InfoPtr = 3328 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3329 llvm::GlobalVariable::PrivateLinkage, Info); 3330 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3331 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3332 3333 SlowPathFn = CGM.getModule().getOrInsertFunction( 3334 "__cfi_slowpath_diag", 3335 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3336 false)); 3337 CheckCall = Builder.CreateCall( 3338 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3339 } else { 3340 SlowPathFn = CGM.getModule().getOrInsertFunction( 3341 "__cfi_slowpath", 3342 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3343 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3344 } 3345 3346 CGM.setDSOLocal( 3347 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3348 CheckCall->setDoesNotThrow(); 3349 3350 EmitBlock(Cont); 3351 } 3352 3353 // Emit a stub for __cfi_check function so that the linker knows about this 3354 // symbol in LTO mode. 3355 void CodeGenFunction::EmitCfiCheckStub() { 3356 llvm::Module *M = &CGM.getModule(); 3357 auto &Ctx = M->getContext(); 3358 llvm::Function *F = llvm::Function::Create( 3359 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3360 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3361 CGM.setDSOLocal(F); 3362 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3363 // FIXME: consider emitting an intrinsic call like 3364 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3365 // which can be lowered in CrossDSOCFI pass to the actual contents of 3366 // __cfi_check. This would allow inlining of __cfi_check calls. 3367 llvm::CallInst::Create( 3368 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3369 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3370 } 3371 3372 // This function is basically a switch over the CFI failure kind, which is 3373 // extracted from CFICheckFailData (1st function argument). Each case is either 3374 // llvm.trap or a call to one of the two runtime handlers, based on 3375 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3376 // failure kind) traps, but this should really never happen. CFICheckFailData 3377 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3378 // check kind; in this case __cfi_check_fail traps as well. 3379 void CodeGenFunction::EmitCfiCheckFail() { 3380 SanitizerScope SanScope(this); 3381 FunctionArgList Args; 3382 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3383 ImplicitParamDecl::Other); 3384 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3385 ImplicitParamDecl::Other); 3386 Args.push_back(&ArgData); 3387 Args.push_back(&ArgAddr); 3388 3389 const CGFunctionInfo &FI = 3390 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3391 3392 llvm::Function *F = llvm::Function::Create( 3393 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3394 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3395 3396 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3397 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3398 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3399 3400 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3401 SourceLocation()); 3402 3403 // This function is not affected by NoSanitizeList. This function does 3404 // not have a source location, but "src:*" would still apply. Revert any 3405 // changes to SanOpts made in StartFunction. 3406 SanOpts = CGM.getLangOpts().Sanitize; 3407 3408 llvm::Value *Data = 3409 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3410 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3411 llvm::Value *Addr = 3412 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3413 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3414 3415 // Data == nullptr means the calling module has trap behaviour for this check. 3416 llvm::Value *DataIsNotNullPtr = 3417 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3418 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3419 3420 llvm::StructType *SourceLocationTy = 3421 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3422 llvm::StructType *CfiCheckFailDataTy = 3423 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3424 3425 llvm::Value *V = Builder.CreateConstGEP2_32( 3426 CfiCheckFailDataTy, 3427 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3428 0); 3429 Address CheckKindAddr(V, getIntAlign()); 3430 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3431 3432 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3433 CGM.getLLVMContext(), 3434 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3435 llvm::Value *ValidVtable = Builder.CreateZExt( 3436 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3437 {Addr, AllVtables}), 3438 IntPtrTy); 3439 3440 const std::pair<int, SanitizerMask> CheckKinds[] = { 3441 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3442 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3443 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3444 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3445 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3446 3447 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3448 for (auto CheckKindMaskPair : CheckKinds) { 3449 int Kind = CheckKindMaskPair.first; 3450 SanitizerMask Mask = CheckKindMaskPair.second; 3451 llvm::Value *Cond = 3452 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3453 if (CGM.getLangOpts().Sanitize.has(Mask)) 3454 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3455 {Data, Addr, ValidVtable}); 3456 else 3457 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3458 } 3459 3460 FinishFunction(); 3461 // The only reference to this function will be created during LTO link. 3462 // Make sure it survives until then. 3463 CGM.addUsedGlobal(F); 3464 } 3465 3466 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3467 if (SanOpts.has(SanitizerKind::Unreachable)) { 3468 SanitizerScope SanScope(this); 3469 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3470 SanitizerKind::Unreachable), 3471 SanitizerHandler::BuiltinUnreachable, 3472 EmitCheckSourceLocation(Loc), None); 3473 } 3474 Builder.CreateUnreachable(); 3475 } 3476 3477 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3478 SanitizerHandler CheckHandlerID) { 3479 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3480 3481 // If we're optimizing, collapse all calls to trap down to just one per 3482 // check-type per function to save on code size. 3483 if (TrapBBs.size() <= CheckHandlerID) 3484 TrapBBs.resize(CheckHandlerID + 1); 3485 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3486 3487 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3488 TrapBB = createBasicBlock("trap"); 3489 Builder.CreateCondBr(Checked, Cont, TrapBB); 3490 EmitBlock(TrapBB); 3491 3492 llvm::CallInst *TrapCall = 3493 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3494 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3495 3496 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3497 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3498 CGM.getCodeGenOpts().TrapFuncName); 3499 TrapCall->addFnAttr(A); 3500 } 3501 TrapCall->setDoesNotReturn(); 3502 TrapCall->setDoesNotThrow(); 3503 Builder.CreateUnreachable(); 3504 } else { 3505 auto Call = TrapBB->begin(); 3506 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3507 3508 Call->applyMergedLocation(Call->getDebugLoc(), 3509 Builder.getCurrentDebugLocation()); 3510 Builder.CreateCondBr(Checked, Cont, TrapBB); 3511 } 3512 3513 EmitBlock(Cont); 3514 } 3515 3516 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3517 llvm::CallInst *TrapCall = 3518 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3519 3520 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3521 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3522 CGM.getCodeGenOpts().TrapFuncName); 3523 TrapCall->addFnAttr(A); 3524 } 3525 3526 return TrapCall; 3527 } 3528 3529 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3530 LValueBaseInfo *BaseInfo, 3531 TBAAAccessInfo *TBAAInfo) { 3532 assert(E->getType()->isArrayType() && 3533 "Array to pointer decay must have array source type!"); 3534 3535 // Expressions of array type can't be bitfields or vector elements. 3536 LValue LV = EmitLValue(E); 3537 Address Addr = LV.getAddress(*this); 3538 3539 // If the array type was an incomplete type, we need to make sure 3540 // the decay ends up being the right type. 3541 llvm::Type *NewTy = ConvertType(E->getType()); 3542 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3543 3544 // Note that VLA pointers are always decayed, so we don't need to do 3545 // anything here. 3546 if (!E->getType()->isVariableArrayType()) { 3547 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3548 "Expected pointer to array"); 3549 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3550 } 3551 3552 // The result of this decay conversion points to an array element within the 3553 // base lvalue. However, since TBAA currently does not support representing 3554 // accesses to elements of member arrays, we conservatively represent accesses 3555 // to the pointee object as if it had no any base lvalue specified. 3556 // TODO: Support TBAA for member arrays. 3557 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3558 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3559 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3560 3561 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3562 } 3563 3564 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3565 /// array to pointer, return the array subexpression. 3566 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3567 // If this isn't just an array->pointer decay, bail out. 3568 const auto *CE = dyn_cast<CastExpr>(E); 3569 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3570 return nullptr; 3571 3572 // If this is a decay from variable width array, bail out. 3573 const Expr *SubExpr = CE->getSubExpr(); 3574 if (SubExpr->getType()->isVariableArrayType()) 3575 return nullptr; 3576 3577 return SubExpr; 3578 } 3579 3580 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3581 llvm::Type *elemType, 3582 llvm::Value *ptr, 3583 ArrayRef<llvm::Value*> indices, 3584 bool inbounds, 3585 bool signedIndices, 3586 SourceLocation loc, 3587 const llvm::Twine &name = "arrayidx") { 3588 if (inbounds) { 3589 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3590 CodeGenFunction::NotSubtraction, loc, 3591 name); 3592 } else { 3593 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3594 } 3595 } 3596 3597 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3598 llvm::Value *idx, 3599 CharUnits eltSize) { 3600 // If we have a constant index, we can use the exact offset of the 3601 // element we're accessing. 3602 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3603 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3604 return arrayAlign.alignmentAtOffset(offset); 3605 3606 // Otherwise, use the worst-case alignment for any element. 3607 } else { 3608 return arrayAlign.alignmentOfArrayElement(eltSize); 3609 } 3610 } 3611 3612 static QualType getFixedSizeElementType(const ASTContext &ctx, 3613 const VariableArrayType *vla) { 3614 QualType eltType; 3615 do { 3616 eltType = vla->getElementType(); 3617 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3618 return eltType; 3619 } 3620 3621 /// Given an array base, check whether its member access belongs to a record 3622 /// with preserve_access_index attribute or not. 3623 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3624 if (!ArrayBase || !CGF.getDebugInfo()) 3625 return false; 3626 3627 // Only support base as either a MemberExpr or DeclRefExpr. 3628 // DeclRefExpr to cover cases like: 3629 // struct s { int a; int b[10]; }; 3630 // struct s *p; 3631 // p[1].a 3632 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3633 // p->b[5] is a MemberExpr example. 3634 const Expr *E = ArrayBase->IgnoreImpCasts(); 3635 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3636 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3637 3638 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3639 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3640 if (!VarDef) 3641 return false; 3642 3643 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3644 if (!PtrT) 3645 return false; 3646 3647 const auto *PointeeT = PtrT->getPointeeType() 3648 ->getUnqualifiedDesugaredType(); 3649 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3650 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3651 return false; 3652 } 3653 3654 return false; 3655 } 3656 3657 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3658 ArrayRef<llvm::Value *> indices, 3659 QualType eltType, bool inbounds, 3660 bool signedIndices, SourceLocation loc, 3661 QualType *arrayType = nullptr, 3662 const Expr *Base = nullptr, 3663 const llvm::Twine &name = "arrayidx") { 3664 // All the indices except that last must be zero. 3665 #ifndef NDEBUG 3666 for (auto idx : indices.drop_back()) 3667 assert(isa<llvm::ConstantInt>(idx) && 3668 cast<llvm::ConstantInt>(idx)->isZero()); 3669 #endif 3670 3671 // Determine the element size of the statically-sized base. This is 3672 // the thing that the indices are expressed in terms of. 3673 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3674 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3675 } 3676 3677 // We can use that to compute the best alignment of the element. 3678 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3679 CharUnits eltAlign = 3680 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3681 3682 llvm::Value *eltPtr; 3683 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3684 if (!LastIndex || 3685 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3686 eltPtr = emitArraySubscriptGEP( 3687 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3688 signedIndices, loc, name); 3689 } else { 3690 // Remember the original array subscript for bpf target 3691 unsigned idx = LastIndex->getZExtValue(); 3692 llvm::DIType *DbgInfo = nullptr; 3693 if (arrayType) 3694 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3695 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3696 addr.getPointer(), 3697 indices.size() - 1, 3698 idx, DbgInfo); 3699 } 3700 3701 return Address(eltPtr, eltAlign); 3702 } 3703 3704 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3705 bool Accessed) { 3706 // The index must always be an integer, which is not an aggregate. Emit it 3707 // in lexical order (this complexity is, sadly, required by C++17). 3708 llvm::Value *IdxPre = 3709 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3710 bool SignedIndices = false; 3711 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3712 auto *Idx = IdxPre; 3713 if (E->getLHS() != E->getIdx()) { 3714 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3715 Idx = EmitScalarExpr(E->getIdx()); 3716 } 3717 3718 QualType IdxTy = E->getIdx()->getType(); 3719 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3720 SignedIndices |= IdxSigned; 3721 3722 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3723 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3724 3725 // Extend or truncate the index type to 32 or 64-bits. 3726 if (Promote && Idx->getType() != IntPtrTy) 3727 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3728 3729 return Idx; 3730 }; 3731 IdxPre = nullptr; 3732 3733 // If the base is a vector type, then we are forming a vector element lvalue 3734 // with this subscript. 3735 if (E->getBase()->getType()->isVectorType() && 3736 !isa<ExtVectorElementExpr>(E->getBase())) { 3737 // Emit the vector as an lvalue to get its address. 3738 LValue LHS = EmitLValue(E->getBase()); 3739 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3740 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3741 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3742 E->getBase()->getType(), LHS.getBaseInfo(), 3743 TBAAAccessInfo()); 3744 } 3745 3746 // All the other cases basically behave like simple offsetting. 3747 3748 // Handle the extvector case we ignored above. 3749 if (isa<ExtVectorElementExpr>(E->getBase())) { 3750 LValue LV = EmitLValue(E->getBase()); 3751 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3752 Address Addr = EmitExtVectorElementLValue(LV); 3753 3754 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3755 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3756 SignedIndices, E->getExprLoc()); 3757 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3758 CGM.getTBAAInfoForSubobject(LV, EltType)); 3759 } 3760 3761 LValueBaseInfo EltBaseInfo; 3762 TBAAAccessInfo EltTBAAInfo; 3763 Address Addr = Address::invalid(); 3764 if (const VariableArrayType *vla = 3765 getContext().getAsVariableArrayType(E->getType())) { 3766 // The base must be a pointer, which is not an aggregate. Emit 3767 // it. It needs to be emitted first in case it's what captures 3768 // the VLA bounds. 3769 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3770 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3771 3772 // The element count here is the total number of non-VLA elements. 3773 llvm::Value *numElements = getVLASize(vla).NumElts; 3774 3775 // Effectively, the multiply by the VLA size is part of the GEP. 3776 // GEP indexes are signed, and scaling an index isn't permitted to 3777 // signed-overflow, so we use the same semantics for our explicit 3778 // multiply. We suppress this if overflow is not undefined behavior. 3779 if (getLangOpts().isSignedOverflowDefined()) { 3780 Idx = Builder.CreateMul(Idx, numElements); 3781 } else { 3782 Idx = Builder.CreateNSWMul(Idx, numElements); 3783 } 3784 3785 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3786 !getLangOpts().isSignedOverflowDefined(), 3787 SignedIndices, E->getExprLoc()); 3788 3789 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3790 // Indexing over an interface, as in "NSString *P; P[4];" 3791 3792 // Emit the base pointer. 3793 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3794 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3795 3796 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3797 llvm::Value *InterfaceSizeVal = 3798 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3799 3800 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3801 3802 // We don't necessarily build correct LLVM struct types for ObjC 3803 // interfaces, so we can't rely on GEP to do this scaling 3804 // correctly, so we need to cast to i8*. FIXME: is this actually 3805 // true? A lot of other things in the fragile ABI would break... 3806 llvm::Type *OrigBaseTy = Addr.getType(); 3807 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3808 3809 // Do the GEP. 3810 CharUnits EltAlign = 3811 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3812 llvm::Value *EltPtr = 3813 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3814 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3815 Addr = Address(EltPtr, EltAlign); 3816 3817 // Cast back. 3818 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3819 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3820 // If this is A[i] where A is an array, the frontend will have decayed the 3821 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3822 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3823 // "gep x, i" here. Emit one "gep A, 0, i". 3824 assert(Array->getType()->isArrayType() && 3825 "Array to pointer decay must have array source type!"); 3826 LValue ArrayLV; 3827 // For simple multidimensional array indexing, set the 'accessed' flag for 3828 // better bounds-checking of the base expression. 3829 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3830 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3831 else 3832 ArrayLV = EmitLValue(Array); 3833 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3834 3835 // Propagate the alignment from the array itself to the result. 3836 QualType arrayType = Array->getType(); 3837 Addr = emitArraySubscriptGEP( 3838 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3839 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3840 E->getExprLoc(), &arrayType, E->getBase()); 3841 EltBaseInfo = ArrayLV.getBaseInfo(); 3842 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3843 } else { 3844 // The base must be a pointer; emit it with an estimate of its alignment. 3845 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3846 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3847 QualType ptrType = E->getBase()->getType(); 3848 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3849 !getLangOpts().isSignedOverflowDefined(), 3850 SignedIndices, E->getExprLoc(), &ptrType, 3851 E->getBase()); 3852 } 3853 3854 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3855 3856 if (getLangOpts().ObjC && 3857 getLangOpts().getGC() != LangOptions::NonGC) { 3858 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3859 setObjCGCLValueClass(getContext(), E, LV); 3860 } 3861 return LV; 3862 } 3863 3864 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3865 assert( 3866 !E->isIncomplete() && 3867 "incomplete matrix subscript expressions should be rejected during Sema"); 3868 LValue Base = EmitLValue(E->getBase()); 3869 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3870 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3871 llvm::Value *NumRows = Builder.getIntN( 3872 RowIdx->getType()->getScalarSizeInBits(), 3873 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3874 llvm::Value *FinalIdx = 3875 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3876 return LValue::MakeMatrixElt( 3877 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3878 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3879 } 3880 3881 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3882 LValueBaseInfo &BaseInfo, 3883 TBAAAccessInfo &TBAAInfo, 3884 QualType BaseTy, QualType ElTy, 3885 bool IsLowerBound) { 3886 LValue BaseLVal; 3887 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3888 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3889 if (BaseTy->isArrayType()) { 3890 Address Addr = BaseLVal.getAddress(CGF); 3891 BaseInfo = BaseLVal.getBaseInfo(); 3892 3893 // If the array type was an incomplete type, we need to make sure 3894 // the decay ends up being the right type. 3895 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3896 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3897 3898 // Note that VLA pointers are always decayed, so we don't need to do 3899 // anything here. 3900 if (!BaseTy->isVariableArrayType()) { 3901 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3902 "Expected pointer to array"); 3903 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3904 } 3905 3906 return CGF.Builder.CreateElementBitCast(Addr, 3907 CGF.ConvertTypeForMem(ElTy)); 3908 } 3909 LValueBaseInfo TypeBaseInfo; 3910 TBAAAccessInfo TypeTBAAInfo; 3911 CharUnits Align = 3912 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3913 BaseInfo.mergeForCast(TypeBaseInfo); 3914 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3915 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3916 } 3917 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3918 } 3919 3920 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3921 bool IsLowerBound) { 3922 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3923 QualType ResultExprTy; 3924 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3925 ResultExprTy = AT->getElementType(); 3926 else 3927 ResultExprTy = BaseTy->getPointeeType(); 3928 llvm::Value *Idx = nullptr; 3929 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3930 // Requesting lower bound or upper bound, but without provided length and 3931 // without ':' symbol for the default length -> length = 1. 3932 // Idx = LowerBound ?: 0; 3933 if (auto *LowerBound = E->getLowerBound()) { 3934 Idx = Builder.CreateIntCast( 3935 EmitScalarExpr(LowerBound), IntPtrTy, 3936 LowerBound->getType()->hasSignedIntegerRepresentation()); 3937 } else 3938 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3939 } else { 3940 // Try to emit length or lower bound as constant. If this is possible, 1 3941 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3942 // IR (LB + Len) - 1. 3943 auto &C = CGM.getContext(); 3944 auto *Length = E->getLength(); 3945 llvm::APSInt ConstLength; 3946 if (Length) { 3947 // Idx = LowerBound + Length - 1; 3948 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3949 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3950 Length = nullptr; 3951 } 3952 auto *LowerBound = E->getLowerBound(); 3953 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3954 if (LowerBound) { 3955 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3956 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3957 LowerBound = nullptr; 3958 } 3959 } 3960 if (!Length) 3961 --ConstLength; 3962 else if (!LowerBound) 3963 --ConstLowerBound; 3964 3965 if (Length || LowerBound) { 3966 auto *LowerBoundVal = 3967 LowerBound 3968 ? Builder.CreateIntCast( 3969 EmitScalarExpr(LowerBound), IntPtrTy, 3970 LowerBound->getType()->hasSignedIntegerRepresentation()) 3971 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3972 auto *LengthVal = 3973 Length 3974 ? Builder.CreateIntCast( 3975 EmitScalarExpr(Length), IntPtrTy, 3976 Length->getType()->hasSignedIntegerRepresentation()) 3977 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3978 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3979 /*HasNUW=*/false, 3980 !getLangOpts().isSignedOverflowDefined()); 3981 if (Length && LowerBound) { 3982 Idx = Builder.CreateSub( 3983 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3984 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3985 } 3986 } else 3987 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3988 } else { 3989 // Idx = ArraySize - 1; 3990 QualType ArrayTy = BaseTy->isPointerType() 3991 ? E->getBase()->IgnoreParenImpCasts()->getType() 3992 : BaseTy; 3993 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3994 Length = VAT->getSizeExpr(); 3995 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 3996 ConstLength = *L; 3997 Length = nullptr; 3998 } 3999 } else { 4000 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4001 ConstLength = CAT->getSize(); 4002 } 4003 if (Length) { 4004 auto *LengthVal = Builder.CreateIntCast( 4005 EmitScalarExpr(Length), IntPtrTy, 4006 Length->getType()->hasSignedIntegerRepresentation()); 4007 Idx = Builder.CreateSub( 4008 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4009 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4010 } else { 4011 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4012 --ConstLength; 4013 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4014 } 4015 } 4016 } 4017 assert(Idx); 4018 4019 Address EltPtr = Address::invalid(); 4020 LValueBaseInfo BaseInfo; 4021 TBAAAccessInfo TBAAInfo; 4022 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4023 // The base must be a pointer, which is not an aggregate. Emit 4024 // it. It needs to be emitted first in case it's what captures 4025 // the VLA bounds. 4026 Address Base = 4027 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4028 BaseTy, VLA->getElementType(), IsLowerBound); 4029 // The element count here is the total number of non-VLA elements. 4030 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4031 4032 // Effectively, the multiply by the VLA size is part of the GEP. 4033 // GEP indexes are signed, and scaling an index isn't permitted to 4034 // signed-overflow, so we use the same semantics for our explicit 4035 // multiply. We suppress this if overflow is not undefined behavior. 4036 if (getLangOpts().isSignedOverflowDefined()) 4037 Idx = Builder.CreateMul(Idx, NumElements); 4038 else 4039 Idx = Builder.CreateNSWMul(Idx, NumElements); 4040 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4041 !getLangOpts().isSignedOverflowDefined(), 4042 /*signedIndices=*/false, E->getExprLoc()); 4043 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4044 // If this is A[i] where A is an array, the frontend will have decayed the 4045 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4046 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4047 // "gep x, i" here. Emit one "gep A, 0, i". 4048 assert(Array->getType()->isArrayType() && 4049 "Array to pointer decay must have array source type!"); 4050 LValue ArrayLV; 4051 // For simple multidimensional array indexing, set the 'accessed' flag for 4052 // better bounds-checking of the base expression. 4053 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4054 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4055 else 4056 ArrayLV = EmitLValue(Array); 4057 4058 // Propagate the alignment from the array itself to the result. 4059 EltPtr = emitArraySubscriptGEP( 4060 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4061 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4062 /*signedIndices=*/false, E->getExprLoc()); 4063 BaseInfo = ArrayLV.getBaseInfo(); 4064 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4065 } else { 4066 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4067 TBAAInfo, BaseTy, ResultExprTy, 4068 IsLowerBound); 4069 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4070 !getLangOpts().isSignedOverflowDefined(), 4071 /*signedIndices=*/false, E->getExprLoc()); 4072 } 4073 4074 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4075 } 4076 4077 LValue CodeGenFunction:: 4078 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4079 // Emit the base vector as an l-value. 4080 LValue Base; 4081 4082 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4083 if (E->isArrow()) { 4084 // If it is a pointer to a vector, emit the address and form an lvalue with 4085 // it. 4086 LValueBaseInfo BaseInfo; 4087 TBAAAccessInfo TBAAInfo; 4088 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4089 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4090 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4091 Base.getQuals().removeObjCGCAttr(); 4092 } else if (E->getBase()->isGLValue()) { 4093 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4094 // emit the base as an lvalue. 4095 assert(E->getBase()->getType()->isVectorType()); 4096 Base = EmitLValue(E->getBase()); 4097 } else { 4098 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4099 assert(E->getBase()->getType()->isVectorType() && 4100 "Result must be a vector"); 4101 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4102 4103 // Store the vector to memory (because LValue wants an address). 4104 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4105 Builder.CreateStore(Vec, VecMem); 4106 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4107 AlignmentSource::Decl); 4108 } 4109 4110 QualType type = 4111 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4112 4113 // Encode the element access list into a vector of unsigned indices. 4114 SmallVector<uint32_t, 4> Indices; 4115 E->getEncodedElementAccess(Indices); 4116 4117 if (Base.isSimple()) { 4118 llvm::Constant *CV = 4119 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4120 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4121 Base.getBaseInfo(), TBAAAccessInfo()); 4122 } 4123 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4124 4125 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4126 SmallVector<llvm::Constant *, 4> CElts; 4127 4128 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4129 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4130 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4131 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4132 Base.getBaseInfo(), TBAAAccessInfo()); 4133 } 4134 4135 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4136 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4137 EmitIgnoredExpr(E->getBase()); 4138 return EmitDeclRefLValue(DRE); 4139 } 4140 4141 Expr *BaseExpr = E->getBase(); 4142 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4143 LValue BaseLV; 4144 if (E->isArrow()) { 4145 LValueBaseInfo BaseInfo; 4146 TBAAAccessInfo TBAAInfo; 4147 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4148 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4149 SanitizerSet SkippedChecks; 4150 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4151 if (IsBaseCXXThis) 4152 SkippedChecks.set(SanitizerKind::Alignment, true); 4153 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4154 SkippedChecks.set(SanitizerKind::Null, true); 4155 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4156 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4157 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4158 } else 4159 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4160 4161 NamedDecl *ND = E->getMemberDecl(); 4162 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4163 LValue LV = EmitLValueForField(BaseLV, Field); 4164 setObjCGCLValueClass(getContext(), E, LV); 4165 if (getLangOpts().OpenMP) { 4166 // If the member was explicitly marked as nontemporal, mark it as 4167 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4168 // to children as nontemporal too. 4169 if ((IsWrappedCXXThis(BaseExpr) && 4170 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4171 BaseLV.isNontemporal()) 4172 LV.setNontemporal(/*Value=*/true); 4173 } 4174 return LV; 4175 } 4176 4177 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4178 return EmitFunctionDeclLValue(*this, E, FD); 4179 4180 llvm_unreachable("Unhandled member declaration!"); 4181 } 4182 4183 /// Given that we are currently emitting a lambda, emit an l-value for 4184 /// one of its members. 4185 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4186 if (CurCodeDecl) { 4187 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4188 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4189 } 4190 QualType LambdaTagType = 4191 getContext().getTagDeclType(Field->getParent()); 4192 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4193 return EmitLValueForField(LambdaLV, Field); 4194 } 4195 4196 /// Get the field index in the debug info. The debug info structure/union 4197 /// will ignore the unnamed bitfields. 4198 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4199 unsigned FieldIndex) { 4200 unsigned I = 0, Skipped = 0; 4201 4202 for (auto F : Rec->getDefinition()->fields()) { 4203 if (I == FieldIndex) 4204 break; 4205 if (F->isUnnamedBitfield()) 4206 Skipped++; 4207 I++; 4208 } 4209 4210 return FieldIndex - Skipped; 4211 } 4212 4213 /// Get the address of a zero-sized field within a record. The resulting 4214 /// address doesn't necessarily have the right type. 4215 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4216 const FieldDecl *Field) { 4217 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4218 CGF.getContext().getFieldOffset(Field)); 4219 if (Offset.isZero()) 4220 return Base; 4221 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4222 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4223 } 4224 4225 /// Drill down to the storage of a field without walking into 4226 /// reference types. 4227 /// 4228 /// The resulting address doesn't necessarily have the right type. 4229 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4230 const FieldDecl *field) { 4231 if (field->isZeroSize(CGF.getContext())) 4232 return emitAddrOfZeroSizeField(CGF, base, field); 4233 4234 const RecordDecl *rec = field->getParent(); 4235 4236 unsigned idx = 4237 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4238 4239 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4240 } 4241 4242 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4243 Address addr, const FieldDecl *field) { 4244 const RecordDecl *rec = field->getParent(); 4245 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4246 base.getType(), rec->getLocation()); 4247 4248 unsigned idx = 4249 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4250 4251 return CGF.Builder.CreatePreserveStructAccessIndex( 4252 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4253 } 4254 4255 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4256 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4257 if (!RD) 4258 return false; 4259 4260 if (RD->isDynamicClass()) 4261 return true; 4262 4263 for (const auto &Base : RD->bases()) 4264 if (hasAnyVptr(Base.getType(), Context)) 4265 return true; 4266 4267 for (const FieldDecl *Field : RD->fields()) 4268 if (hasAnyVptr(Field->getType(), Context)) 4269 return true; 4270 4271 return false; 4272 } 4273 4274 LValue CodeGenFunction::EmitLValueForField(LValue base, 4275 const FieldDecl *field) { 4276 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4277 4278 if (field->isBitField()) { 4279 const CGRecordLayout &RL = 4280 CGM.getTypes().getCGRecordLayout(field->getParent()); 4281 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4282 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4283 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4284 Info.VolatileStorageSize != 0 && 4285 field->getType() 4286 .withCVRQualifiers(base.getVRQualifiers()) 4287 .isVolatileQualified(); 4288 Address Addr = base.getAddress(*this); 4289 unsigned Idx = RL.getLLVMFieldNo(field); 4290 const RecordDecl *rec = field->getParent(); 4291 if (!UseVolatile) { 4292 if (!IsInPreservedAIRegion && 4293 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4294 if (Idx != 0) 4295 // For structs, we GEP to the field that the record layout suggests. 4296 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4297 } else { 4298 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4299 getContext().getRecordType(rec), rec->getLocation()); 4300 Addr = Builder.CreatePreserveStructAccessIndex( 4301 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4302 DbgInfo); 4303 } 4304 } 4305 const unsigned SS = 4306 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4307 // Get the access type. 4308 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4309 if (Addr.getElementType() != FieldIntTy) 4310 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4311 if (UseVolatile) { 4312 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4313 if (VolatileOffset) 4314 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4315 } 4316 4317 QualType fieldType = 4318 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4319 // TODO: Support TBAA for bit fields. 4320 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4321 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4322 TBAAAccessInfo()); 4323 } 4324 4325 // Fields of may-alias structures are may-alias themselves. 4326 // FIXME: this should get propagated down through anonymous structs 4327 // and unions. 4328 QualType FieldType = field->getType(); 4329 const RecordDecl *rec = field->getParent(); 4330 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4331 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4332 TBAAAccessInfo FieldTBAAInfo; 4333 if (base.getTBAAInfo().isMayAlias() || 4334 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4335 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4336 } else if (rec->isUnion()) { 4337 // TODO: Support TBAA for unions. 4338 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4339 } else { 4340 // If no base type been assigned for the base access, then try to generate 4341 // one for this base lvalue. 4342 FieldTBAAInfo = base.getTBAAInfo(); 4343 if (!FieldTBAAInfo.BaseType) { 4344 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4345 assert(!FieldTBAAInfo.Offset && 4346 "Nonzero offset for an access with no base type!"); 4347 } 4348 4349 // Adjust offset to be relative to the base type. 4350 const ASTRecordLayout &Layout = 4351 getContext().getASTRecordLayout(field->getParent()); 4352 unsigned CharWidth = getContext().getCharWidth(); 4353 if (FieldTBAAInfo.BaseType) 4354 FieldTBAAInfo.Offset += 4355 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4356 4357 // Update the final access type and size. 4358 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4359 FieldTBAAInfo.Size = 4360 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4361 } 4362 4363 Address addr = base.getAddress(*this); 4364 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4365 if (CGM.getCodeGenOpts().StrictVTablePointers && 4366 ClassDef->isDynamicClass()) { 4367 // Getting to any field of dynamic object requires stripping dynamic 4368 // information provided by invariant.group. This is because accessing 4369 // fields may leak the real address of dynamic object, which could result 4370 // in miscompilation when leaked pointer would be compared. 4371 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4372 addr = Address(stripped, addr.getAlignment()); 4373 } 4374 } 4375 4376 unsigned RecordCVR = base.getVRQualifiers(); 4377 if (rec->isUnion()) { 4378 // For unions, there is no pointer adjustment. 4379 if (CGM.getCodeGenOpts().StrictVTablePointers && 4380 hasAnyVptr(FieldType, getContext())) 4381 // Because unions can easily skip invariant.barriers, we need to add 4382 // a barrier every time CXXRecord field with vptr is referenced. 4383 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4384 addr.getAlignment()); 4385 4386 if (IsInPreservedAIRegion || 4387 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4388 // Remember the original union field index 4389 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4390 rec->getLocation()); 4391 addr = Address( 4392 Builder.CreatePreserveUnionAccessIndex( 4393 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4394 addr.getAlignment()); 4395 } 4396 4397 if (FieldType->isReferenceType()) 4398 addr = Builder.CreateElementBitCast( 4399 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4400 } else { 4401 if (!IsInPreservedAIRegion && 4402 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4403 // For structs, we GEP to the field that the record layout suggests. 4404 addr = emitAddrOfFieldStorage(*this, addr, field); 4405 else 4406 // Remember the original struct field index 4407 addr = emitPreserveStructAccess(*this, base, addr, field); 4408 } 4409 4410 // If this is a reference field, load the reference right now. 4411 if (FieldType->isReferenceType()) { 4412 LValue RefLVal = 4413 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4414 if (RecordCVR & Qualifiers::Volatile) 4415 RefLVal.getQuals().addVolatile(); 4416 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4417 4418 // Qualifiers on the struct don't apply to the referencee. 4419 RecordCVR = 0; 4420 FieldType = FieldType->getPointeeType(); 4421 } 4422 4423 // Make sure that the address is pointing to the right type. This is critical 4424 // for both unions and structs. A union needs a bitcast, a struct element 4425 // will need a bitcast if the LLVM type laid out doesn't match the desired 4426 // type. 4427 addr = Builder.CreateElementBitCast( 4428 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4429 4430 if (field->hasAttr<AnnotateAttr>()) 4431 addr = EmitFieldAnnotations(field, addr); 4432 4433 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4434 LV.getQuals().addCVRQualifiers(RecordCVR); 4435 4436 // __weak attribute on a field is ignored. 4437 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4438 LV.getQuals().removeObjCGCAttr(); 4439 4440 return LV; 4441 } 4442 4443 LValue 4444 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4445 const FieldDecl *Field) { 4446 QualType FieldType = Field->getType(); 4447 4448 if (!FieldType->isReferenceType()) 4449 return EmitLValueForField(Base, Field); 4450 4451 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4452 4453 // Make sure that the address is pointing to the right type. 4454 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4455 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4456 4457 // TODO: Generate TBAA information that describes this access as a structure 4458 // member access and not just an access to an object of the field's type. This 4459 // should be similar to what we do in EmitLValueForField(). 4460 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4461 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4462 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4463 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4464 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4465 } 4466 4467 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4468 if (E->isFileScope()) { 4469 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4470 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4471 } 4472 if (E->getType()->isVariablyModifiedType()) 4473 // make sure to emit the VLA size. 4474 EmitVariablyModifiedType(E->getType()); 4475 4476 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4477 const Expr *InitExpr = E->getInitializer(); 4478 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4479 4480 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4481 /*Init*/ true); 4482 4483 // Block-scope compound literals are destroyed at the end of the enclosing 4484 // scope in C. 4485 if (!getLangOpts().CPlusPlus) 4486 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4487 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4488 E->getType(), getDestroyer(DtorKind), 4489 DtorKind & EHCleanup); 4490 4491 return Result; 4492 } 4493 4494 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4495 if (!E->isGLValue()) 4496 // Initializing an aggregate temporary in C++11: T{...}. 4497 return EmitAggExprToLValue(E); 4498 4499 // An lvalue initializer list must be initializing a reference. 4500 assert(E->isTransparent() && "non-transparent glvalue init list"); 4501 return EmitLValue(E->getInit(0)); 4502 } 4503 4504 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4505 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4506 /// LValue is returned and the current block has been terminated. 4507 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4508 const Expr *Operand) { 4509 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4510 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4511 return None; 4512 } 4513 4514 return CGF.EmitLValue(Operand); 4515 } 4516 4517 LValue CodeGenFunction:: 4518 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4519 if (!expr->isGLValue()) { 4520 // ?: here should be an aggregate. 4521 assert(hasAggregateEvaluationKind(expr->getType()) && 4522 "Unexpected conditional operator!"); 4523 return EmitAggExprToLValue(expr); 4524 } 4525 4526 OpaqueValueMapping binding(*this, expr); 4527 4528 const Expr *condExpr = expr->getCond(); 4529 bool CondExprBool; 4530 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4531 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4532 if (!CondExprBool) std::swap(live, dead); 4533 4534 if (!ContainsLabel(dead)) { 4535 // If the true case is live, we need to track its region. 4536 if (CondExprBool) 4537 incrementProfileCounter(expr); 4538 // If a throw expression we emit it and return an undefined lvalue 4539 // because it can't be used. 4540 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4541 EmitCXXThrowExpr(ThrowExpr); 4542 llvm::Type *Ty = 4543 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4544 return MakeAddrLValue( 4545 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4546 dead->getType()); 4547 } 4548 return EmitLValue(live); 4549 } 4550 } 4551 4552 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4553 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4554 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4555 4556 ConditionalEvaluation eval(*this); 4557 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4558 4559 // Any temporaries created here are conditional. 4560 EmitBlock(lhsBlock); 4561 incrementProfileCounter(expr); 4562 eval.begin(*this); 4563 Optional<LValue> lhs = 4564 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4565 eval.end(*this); 4566 4567 if (lhs && !lhs->isSimple()) 4568 return EmitUnsupportedLValue(expr, "conditional operator"); 4569 4570 lhsBlock = Builder.GetInsertBlock(); 4571 if (lhs) 4572 Builder.CreateBr(contBlock); 4573 4574 // Any temporaries created here are conditional. 4575 EmitBlock(rhsBlock); 4576 eval.begin(*this); 4577 Optional<LValue> rhs = 4578 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4579 eval.end(*this); 4580 if (rhs && !rhs->isSimple()) 4581 return EmitUnsupportedLValue(expr, "conditional operator"); 4582 rhsBlock = Builder.GetInsertBlock(); 4583 4584 EmitBlock(contBlock); 4585 4586 if (lhs && rhs) { 4587 llvm::PHINode *phi = 4588 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4589 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4590 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4591 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4592 AlignmentSource alignSource = 4593 std::max(lhs->getBaseInfo().getAlignmentSource(), 4594 rhs->getBaseInfo().getAlignmentSource()); 4595 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4596 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4597 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4598 TBAAInfo); 4599 } else { 4600 assert((lhs || rhs) && 4601 "both operands of glvalue conditional are throw-expressions?"); 4602 return lhs ? *lhs : *rhs; 4603 } 4604 } 4605 4606 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4607 /// type. If the cast is to a reference, we can have the usual lvalue result, 4608 /// otherwise if a cast is needed by the code generator in an lvalue context, 4609 /// then it must mean that we need the address of an aggregate in order to 4610 /// access one of its members. This can happen for all the reasons that casts 4611 /// are permitted with aggregate result, including noop aggregate casts, and 4612 /// cast from scalar to union. 4613 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4614 switch (E->getCastKind()) { 4615 case CK_ToVoid: 4616 case CK_BitCast: 4617 case CK_LValueToRValueBitCast: 4618 case CK_ArrayToPointerDecay: 4619 case CK_FunctionToPointerDecay: 4620 case CK_NullToMemberPointer: 4621 case CK_NullToPointer: 4622 case CK_IntegralToPointer: 4623 case CK_PointerToIntegral: 4624 case CK_PointerToBoolean: 4625 case CK_VectorSplat: 4626 case CK_IntegralCast: 4627 case CK_BooleanToSignedIntegral: 4628 case CK_IntegralToBoolean: 4629 case CK_IntegralToFloating: 4630 case CK_FloatingToIntegral: 4631 case CK_FloatingToBoolean: 4632 case CK_FloatingCast: 4633 case CK_FloatingRealToComplex: 4634 case CK_FloatingComplexToReal: 4635 case CK_FloatingComplexToBoolean: 4636 case CK_FloatingComplexCast: 4637 case CK_FloatingComplexToIntegralComplex: 4638 case CK_IntegralRealToComplex: 4639 case CK_IntegralComplexToReal: 4640 case CK_IntegralComplexToBoolean: 4641 case CK_IntegralComplexCast: 4642 case CK_IntegralComplexToFloatingComplex: 4643 case CK_DerivedToBaseMemberPointer: 4644 case CK_BaseToDerivedMemberPointer: 4645 case CK_MemberPointerToBoolean: 4646 case CK_ReinterpretMemberPointer: 4647 case CK_AnyPointerToBlockPointerCast: 4648 case CK_ARCProduceObject: 4649 case CK_ARCConsumeObject: 4650 case CK_ARCReclaimReturnedObject: 4651 case CK_ARCExtendBlockObject: 4652 case CK_CopyAndAutoreleaseBlockObject: 4653 case CK_IntToOCLSampler: 4654 case CK_FloatingToFixedPoint: 4655 case CK_FixedPointToFloating: 4656 case CK_FixedPointCast: 4657 case CK_FixedPointToBoolean: 4658 case CK_FixedPointToIntegral: 4659 case CK_IntegralToFixedPoint: 4660 case CK_MatrixCast: 4661 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4662 4663 case CK_Dependent: 4664 llvm_unreachable("dependent cast kind in IR gen!"); 4665 4666 case CK_BuiltinFnToFnPtr: 4667 llvm_unreachable("builtin functions are handled elsewhere"); 4668 4669 // These are never l-values; just use the aggregate emission code. 4670 case CK_NonAtomicToAtomic: 4671 case CK_AtomicToNonAtomic: 4672 return EmitAggExprToLValue(E); 4673 4674 case CK_Dynamic: { 4675 LValue LV = EmitLValue(E->getSubExpr()); 4676 Address V = LV.getAddress(*this); 4677 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4678 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4679 } 4680 4681 case CK_ConstructorConversion: 4682 case CK_UserDefinedConversion: 4683 case CK_CPointerToObjCPointerCast: 4684 case CK_BlockPointerToObjCPointerCast: 4685 case CK_LValueToRValue: 4686 return EmitLValue(E->getSubExpr()); 4687 4688 case CK_NoOp: { 4689 // CK_NoOp can model a qualification conversion, which can remove an array 4690 // bound and change the IR type. 4691 // FIXME: Once pointee types are removed from IR, remove this. 4692 LValue LV = EmitLValue(E->getSubExpr()); 4693 if (LV.isSimple()) { 4694 Address V = LV.getAddress(*this); 4695 if (V.isValid()) { 4696 llvm::Type *T = 4697 ConvertTypeForMem(E->getType()) 4698 ->getPointerTo( 4699 cast<llvm::PointerType>(V.getType())->getAddressSpace()); 4700 if (V.getType() != T) 4701 LV.setAddress(Builder.CreateBitCast(V, T)); 4702 } 4703 } 4704 return LV; 4705 } 4706 4707 case CK_UncheckedDerivedToBase: 4708 case CK_DerivedToBase: { 4709 const auto *DerivedClassTy = 4710 E->getSubExpr()->getType()->castAs<RecordType>(); 4711 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4712 4713 LValue LV = EmitLValue(E->getSubExpr()); 4714 Address This = LV.getAddress(*this); 4715 4716 // Perform the derived-to-base conversion 4717 Address Base = GetAddressOfBaseClass( 4718 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4719 /*NullCheckValue=*/false, E->getExprLoc()); 4720 4721 // TODO: Support accesses to members of base classes in TBAA. For now, we 4722 // conservatively pretend that the complete object is of the base class 4723 // type. 4724 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4725 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4726 } 4727 case CK_ToUnion: 4728 return EmitAggExprToLValue(E); 4729 case CK_BaseToDerived: { 4730 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4731 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4732 4733 LValue LV = EmitLValue(E->getSubExpr()); 4734 4735 // Perform the base-to-derived conversion 4736 Address Derived = GetAddressOfDerivedClass( 4737 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4738 /*NullCheckValue=*/false); 4739 4740 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4741 // performed and the object is not of the derived type. 4742 if (sanitizePerformTypeCheck()) 4743 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4744 Derived.getPointer(), E->getType()); 4745 4746 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4747 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4748 /*MayBeNull=*/false, CFITCK_DerivedCast, 4749 E->getBeginLoc()); 4750 4751 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4752 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4753 } 4754 case CK_LValueBitCast: { 4755 // This must be a reinterpret_cast (or c-style equivalent). 4756 const auto *CE = cast<ExplicitCastExpr>(E); 4757 4758 CGM.EmitExplicitCastExprType(CE, this); 4759 LValue LV = EmitLValue(E->getSubExpr()); 4760 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4761 ConvertType(CE->getTypeAsWritten())); 4762 4763 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4764 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4765 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4766 E->getBeginLoc()); 4767 4768 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4769 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4770 } 4771 case CK_AddressSpaceConversion: { 4772 LValue LV = EmitLValue(E->getSubExpr()); 4773 QualType DestTy = getContext().getPointerType(E->getType()); 4774 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4775 *this, LV.getPointer(*this), 4776 E->getSubExpr()->getType().getAddressSpace(), 4777 E->getType().getAddressSpace(), ConvertType(DestTy)); 4778 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4779 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4780 } 4781 case CK_ObjCObjectLValueCast: { 4782 LValue LV = EmitLValue(E->getSubExpr()); 4783 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4784 ConvertType(E->getType())); 4785 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4786 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4787 } 4788 case CK_ZeroToOCLOpaqueType: 4789 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4790 } 4791 4792 llvm_unreachable("Unhandled lvalue cast kind?"); 4793 } 4794 4795 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4796 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4797 return getOrCreateOpaqueLValueMapping(e); 4798 } 4799 4800 LValue 4801 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4802 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4803 4804 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4805 it = OpaqueLValues.find(e); 4806 4807 if (it != OpaqueLValues.end()) 4808 return it->second; 4809 4810 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4811 return EmitLValue(e->getSourceExpr()); 4812 } 4813 4814 RValue 4815 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4816 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4817 4818 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4819 it = OpaqueRValues.find(e); 4820 4821 if (it != OpaqueRValues.end()) 4822 return it->second; 4823 4824 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4825 return EmitAnyExpr(e->getSourceExpr()); 4826 } 4827 4828 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4829 const FieldDecl *FD, 4830 SourceLocation Loc) { 4831 QualType FT = FD->getType(); 4832 LValue FieldLV = EmitLValueForField(LV, FD); 4833 switch (getEvaluationKind(FT)) { 4834 case TEK_Complex: 4835 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4836 case TEK_Aggregate: 4837 return FieldLV.asAggregateRValue(*this); 4838 case TEK_Scalar: 4839 // This routine is used to load fields one-by-one to perform a copy, so 4840 // don't load reference fields. 4841 if (FD->getType()->isReferenceType()) 4842 return RValue::get(FieldLV.getPointer(*this)); 4843 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4844 // primitive load. 4845 if (FieldLV.isBitField()) 4846 return EmitLoadOfLValue(FieldLV, Loc); 4847 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4848 } 4849 llvm_unreachable("bad evaluation kind"); 4850 } 4851 4852 //===--------------------------------------------------------------------===// 4853 // Expression Emission 4854 //===--------------------------------------------------------------------===// 4855 4856 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4857 ReturnValueSlot ReturnValue) { 4858 // Builtins never have block type. 4859 if (E->getCallee()->getType()->isBlockPointerType()) 4860 return EmitBlockCallExpr(E, ReturnValue); 4861 4862 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4863 return EmitCXXMemberCallExpr(CE, ReturnValue); 4864 4865 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4866 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4867 4868 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4869 if (const CXXMethodDecl *MD = 4870 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4871 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4872 4873 CGCallee callee = EmitCallee(E->getCallee()); 4874 4875 if (callee.isBuiltin()) { 4876 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4877 E, ReturnValue); 4878 } 4879 4880 if (callee.isPseudoDestructor()) { 4881 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4882 } 4883 4884 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4885 } 4886 4887 /// Emit a CallExpr without considering whether it might be a subclass. 4888 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4889 ReturnValueSlot ReturnValue) { 4890 CGCallee Callee = EmitCallee(E->getCallee()); 4891 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4892 } 4893 4894 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4895 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4896 4897 if (auto builtinID = FD->getBuiltinID()) { 4898 std::string FDInlineName = (FD->getName() + ".inline").str(); 4899 // When directing calling an inline builtin, call it through it's mangled 4900 // name to make it clear it's not the actual builtin. 4901 if (FD->isInlineBuiltinDeclaration() && 4902 CGF.CurFn->getName() != FDInlineName) { 4903 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4904 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 4905 llvm::Module *M = Fn->getParent(); 4906 llvm::Function *Clone = M->getFunction(FDInlineName); 4907 if (!Clone) { 4908 Clone = llvm::Function::Create(Fn->getFunctionType(), 4909 llvm::GlobalValue::InternalLinkage, 4910 Fn->getAddressSpace(), FDInlineName, M); 4911 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 4912 } 4913 return CGCallee::forDirect(Clone, GD); 4914 } 4915 4916 // Replaceable builtins provide their own implementation of a builtin. If we 4917 // are in an inline builtin implementation, avoid trivial infinite 4918 // recursion. 4919 else 4920 return CGCallee::forBuiltin(builtinID, FD); 4921 } 4922 4923 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4924 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 4925 FD->hasAttr<CUDAGlobalAttr>()) 4926 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 4927 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 4928 4929 return CGCallee::forDirect(CalleePtr, GD); 4930 } 4931 4932 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4933 E = E->IgnoreParens(); 4934 4935 // Look through function-to-pointer decay. 4936 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4937 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4938 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4939 return EmitCallee(ICE->getSubExpr()); 4940 } 4941 4942 // Resolve direct calls. 4943 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4944 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4945 return EmitDirectCallee(*this, FD); 4946 } 4947 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4948 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4949 EmitIgnoredExpr(ME->getBase()); 4950 return EmitDirectCallee(*this, FD); 4951 } 4952 4953 // Look through template substitutions. 4954 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4955 return EmitCallee(NTTP->getReplacement()); 4956 4957 // Treat pseudo-destructor calls differently. 4958 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4959 return CGCallee::forPseudoDestructor(PDE); 4960 } 4961 4962 // Otherwise, we have an indirect reference. 4963 llvm::Value *calleePtr; 4964 QualType functionType; 4965 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4966 calleePtr = EmitScalarExpr(E); 4967 functionType = ptrType->getPointeeType(); 4968 } else { 4969 functionType = E->getType(); 4970 calleePtr = EmitLValue(E).getPointer(*this); 4971 } 4972 assert(functionType->isFunctionType()); 4973 4974 GlobalDecl GD; 4975 if (const auto *VD = 4976 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4977 GD = GlobalDecl(VD); 4978 4979 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4980 CGCallee callee(calleeInfo, calleePtr); 4981 return callee; 4982 } 4983 4984 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4985 // Comma expressions just emit their LHS then their RHS as an l-value. 4986 if (E->getOpcode() == BO_Comma) { 4987 EmitIgnoredExpr(E->getLHS()); 4988 EnsureInsertPoint(); 4989 return EmitLValue(E->getRHS()); 4990 } 4991 4992 if (E->getOpcode() == BO_PtrMemD || 4993 E->getOpcode() == BO_PtrMemI) 4994 return EmitPointerToDataMemberBinaryExpr(E); 4995 4996 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4997 4998 // Note that in all of these cases, __block variables need the RHS 4999 // evaluated first just in case the variable gets moved by the RHS. 5000 5001 switch (getEvaluationKind(E->getType())) { 5002 case TEK_Scalar: { 5003 switch (E->getLHS()->getType().getObjCLifetime()) { 5004 case Qualifiers::OCL_Strong: 5005 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5006 5007 case Qualifiers::OCL_Autoreleasing: 5008 return EmitARCStoreAutoreleasing(E).first; 5009 5010 // No reason to do any of these differently. 5011 case Qualifiers::OCL_None: 5012 case Qualifiers::OCL_ExplicitNone: 5013 case Qualifiers::OCL_Weak: 5014 break; 5015 } 5016 5017 RValue RV = EmitAnyExpr(E->getRHS()); 5018 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5019 if (RV.isScalar()) 5020 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5021 EmitStoreThroughLValue(RV, LV); 5022 if (getLangOpts().OpenMP) 5023 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5024 E->getLHS()); 5025 return LV; 5026 } 5027 5028 case TEK_Complex: 5029 return EmitComplexAssignmentLValue(E); 5030 5031 case TEK_Aggregate: 5032 return EmitAggExprToLValue(E); 5033 } 5034 llvm_unreachable("bad evaluation kind"); 5035 } 5036 5037 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5038 RValue RV = EmitCallExpr(E); 5039 5040 if (!RV.isScalar()) 5041 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5042 AlignmentSource::Decl); 5043 5044 assert(E->getCallReturnType(getContext())->isReferenceType() && 5045 "Can't have a scalar return unless the return type is a " 5046 "reference type!"); 5047 5048 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5049 } 5050 5051 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5052 // FIXME: This shouldn't require another copy. 5053 return EmitAggExprToLValue(E); 5054 } 5055 5056 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5057 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5058 && "binding l-value to type which needs a temporary"); 5059 AggValueSlot Slot = CreateAggTemp(E->getType()); 5060 EmitCXXConstructExpr(E, Slot); 5061 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5062 } 5063 5064 LValue 5065 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5066 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5067 } 5068 5069 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5070 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5071 ConvertType(E->getType())); 5072 } 5073 5074 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5075 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5076 AlignmentSource::Decl); 5077 } 5078 5079 LValue 5080 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5081 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5082 Slot.setExternallyDestructed(); 5083 EmitAggExpr(E->getSubExpr(), Slot); 5084 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5085 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5086 } 5087 5088 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5089 RValue RV = EmitObjCMessageExpr(E); 5090 5091 if (!RV.isScalar()) 5092 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5093 AlignmentSource::Decl); 5094 5095 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5096 "Can't have a scalar return unless the return type is a " 5097 "reference type!"); 5098 5099 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5100 } 5101 5102 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5103 Address V = 5104 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5105 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5106 } 5107 5108 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5109 const ObjCIvarDecl *Ivar) { 5110 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5111 } 5112 5113 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5114 llvm::Value *BaseValue, 5115 const ObjCIvarDecl *Ivar, 5116 unsigned CVRQualifiers) { 5117 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5118 Ivar, CVRQualifiers); 5119 } 5120 5121 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5122 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5123 llvm::Value *BaseValue = nullptr; 5124 const Expr *BaseExpr = E->getBase(); 5125 Qualifiers BaseQuals; 5126 QualType ObjectTy; 5127 if (E->isArrow()) { 5128 BaseValue = EmitScalarExpr(BaseExpr); 5129 ObjectTy = BaseExpr->getType()->getPointeeType(); 5130 BaseQuals = ObjectTy.getQualifiers(); 5131 } else { 5132 LValue BaseLV = EmitLValue(BaseExpr); 5133 BaseValue = BaseLV.getPointer(*this); 5134 ObjectTy = BaseExpr->getType(); 5135 BaseQuals = ObjectTy.getQualifiers(); 5136 } 5137 5138 LValue LV = 5139 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5140 BaseQuals.getCVRQualifiers()); 5141 setObjCGCLValueClass(getContext(), E, LV); 5142 return LV; 5143 } 5144 5145 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5146 // Can only get l-value for message expression returning aggregate type 5147 RValue RV = EmitAnyExprToTemp(E); 5148 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5149 AlignmentSource::Decl); 5150 } 5151 5152 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5153 const CallExpr *E, ReturnValueSlot ReturnValue, 5154 llvm::Value *Chain) { 5155 // Get the actual function type. The callee type will always be a pointer to 5156 // function type or a block pointer type. 5157 assert(CalleeType->isFunctionPointerType() && 5158 "Call must have function pointer type!"); 5159 5160 const Decl *TargetDecl = 5161 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5162 5163 CalleeType = getContext().getCanonicalType(CalleeType); 5164 5165 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5166 5167 CGCallee Callee = OrigCallee; 5168 5169 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5170 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5171 if (llvm::Constant *PrefixSig = 5172 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5173 SanitizerScope SanScope(this); 5174 // Remove any (C++17) exception specifications, to allow calling e.g. a 5175 // noexcept function through a non-noexcept pointer. 5176 auto ProtoTy = 5177 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5178 llvm::Constant *FTRTTIConst = 5179 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5180 llvm::Type *PrefixSigType = PrefixSig->getType(); 5181 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5182 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5183 5184 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5185 5186 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5187 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5188 llvm::Value *CalleeSigPtr = 5189 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5190 llvm::Value *CalleeSig = 5191 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5192 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5193 5194 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5195 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5196 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5197 5198 EmitBlock(TypeCheck); 5199 llvm::Value *CalleeRTTIPtr = 5200 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5201 llvm::Value *CalleeRTTIEncoded = 5202 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5203 llvm::Value *CalleeRTTI = 5204 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5205 llvm::Value *CalleeRTTIMatch = 5206 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5207 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5208 EmitCheckTypeDescriptor(CalleeType)}; 5209 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5210 SanitizerHandler::FunctionTypeMismatch, StaticData, 5211 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5212 5213 Builder.CreateBr(Cont); 5214 EmitBlock(Cont); 5215 } 5216 } 5217 5218 const auto *FnType = cast<FunctionType>(PointeeType); 5219 5220 // If we are checking indirect calls and this call is indirect, check that the 5221 // function pointer is a member of the bit set for the function type. 5222 if (SanOpts.has(SanitizerKind::CFIICall) && 5223 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5224 SanitizerScope SanScope(this); 5225 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5226 5227 llvm::Metadata *MD; 5228 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5229 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5230 else 5231 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5232 5233 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5234 5235 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5236 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5237 llvm::Value *TypeTest = Builder.CreateCall( 5238 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5239 5240 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5241 llvm::Constant *StaticData[] = { 5242 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5243 EmitCheckSourceLocation(E->getBeginLoc()), 5244 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5245 }; 5246 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5247 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5248 CastedCallee, StaticData); 5249 } else { 5250 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5251 SanitizerHandler::CFICheckFail, StaticData, 5252 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5253 } 5254 } 5255 5256 CallArgList Args; 5257 if (Chain) 5258 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5259 CGM.getContext().VoidPtrTy); 5260 5261 // C++17 requires that we evaluate arguments to a call using assignment syntax 5262 // right-to-left, and that we evaluate arguments to certain other operators 5263 // left-to-right. Note that we allow this to override the order dictated by 5264 // the calling convention on the MS ABI, which means that parameter 5265 // destruction order is not necessarily reverse construction order. 5266 // FIXME: Revisit this based on C++ committee response to unimplementability. 5267 EvaluationOrder Order = EvaluationOrder::Default; 5268 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5269 if (OCE->isAssignmentOp()) 5270 Order = EvaluationOrder::ForceRightToLeft; 5271 else { 5272 switch (OCE->getOperator()) { 5273 case OO_LessLess: 5274 case OO_GreaterGreater: 5275 case OO_AmpAmp: 5276 case OO_PipePipe: 5277 case OO_Comma: 5278 case OO_ArrowStar: 5279 Order = EvaluationOrder::ForceLeftToRight; 5280 break; 5281 default: 5282 break; 5283 } 5284 } 5285 } 5286 5287 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5288 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5289 5290 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5291 Args, FnType, /*ChainCall=*/Chain); 5292 5293 // C99 6.5.2.2p6: 5294 // If the expression that denotes the called function has a type 5295 // that does not include a prototype, [the default argument 5296 // promotions are performed]. If the number of arguments does not 5297 // equal the number of parameters, the behavior is undefined. If 5298 // the function is defined with a type that includes a prototype, 5299 // and either the prototype ends with an ellipsis (, ...) or the 5300 // types of the arguments after promotion are not compatible with 5301 // the types of the parameters, the behavior is undefined. If the 5302 // function is defined with a type that does not include a 5303 // prototype, and the types of the arguments after promotion are 5304 // not compatible with those of the parameters after promotion, 5305 // the behavior is undefined [except in some trivial cases]. 5306 // That is, in the general case, we should assume that a call 5307 // through an unprototyped function type works like a *non-variadic* 5308 // call. The way we make this work is to cast to the exact type 5309 // of the promoted arguments. 5310 // 5311 // Chain calls use this same code path to add the invisible chain parameter 5312 // to the function type. 5313 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5314 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5315 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5316 CalleeTy = CalleeTy->getPointerTo(AS); 5317 5318 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5319 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5320 Callee.setFunctionPointer(CalleePtr); 5321 } 5322 5323 // HIP function pointer contains kernel handle when it is used in triple 5324 // chevron. The kernel stub needs to be loaded from kernel handle and used 5325 // as callee. 5326 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5327 isa<CUDAKernelCallExpr>(E) && 5328 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5329 llvm::Value *Handle = Callee.getFunctionPointer(); 5330 auto *Cast = 5331 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5332 auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign())); 5333 Callee.setFunctionPointer(Stub); 5334 } 5335 llvm::CallBase *CallOrInvoke = nullptr; 5336 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5337 E == MustTailCall, E->getExprLoc()); 5338 5339 // Generate function declaration DISuprogram in order to be used 5340 // in debug info about call sites. 5341 if (CGDebugInfo *DI = getDebugInfo()) { 5342 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5343 FunctionArgList Args; 5344 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5345 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5346 DI->getFunctionType(CalleeDecl, ResTy, Args), 5347 CalleeDecl); 5348 } 5349 } 5350 5351 return Call; 5352 } 5353 5354 LValue CodeGenFunction:: 5355 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5356 Address BaseAddr = Address::invalid(); 5357 if (E->getOpcode() == BO_PtrMemI) { 5358 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5359 } else { 5360 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5361 } 5362 5363 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5364 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5365 5366 LValueBaseInfo BaseInfo; 5367 TBAAAccessInfo TBAAInfo; 5368 Address MemberAddr = 5369 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5370 &TBAAInfo); 5371 5372 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5373 } 5374 5375 /// Given the address of a temporary variable, produce an r-value of 5376 /// its type. 5377 RValue CodeGenFunction::convertTempToRValue(Address addr, 5378 QualType type, 5379 SourceLocation loc) { 5380 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5381 switch (getEvaluationKind(type)) { 5382 case TEK_Complex: 5383 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5384 case TEK_Aggregate: 5385 return lvalue.asAggregateRValue(*this); 5386 case TEK_Scalar: 5387 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5388 } 5389 llvm_unreachable("bad evaluation kind"); 5390 } 5391 5392 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5393 assert(Val->getType()->isFPOrFPVectorTy()); 5394 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5395 return; 5396 5397 llvm::MDBuilder MDHelper(getLLVMContext()); 5398 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5399 5400 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5401 } 5402 5403 namespace { 5404 struct LValueOrRValue { 5405 LValue LV; 5406 RValue RV; 5407 }; 5408 } 5409 5410 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5411 const PseudoObjectExpr *E, 5412 bool forLValue, 5413 AggValueSlot slot) { 5414 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5415 5416 // Find the result expression, if any. 5417 const Expr *resultExpr = E->getResultExpr(); 5418 LValueOrRValue result; 5419 5420 for (PseudoObjectExpr::const_semantics_iterator 5421 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5422 const Expr *semantic = *i; 5423 5424 // If this semantic expression is an opaque value, bind it 5425 // to the result of its source expression. 5426 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5427 // Skip unique OVEs. 5428 if (ov->isUnique()) { 5429 assert(ov != resultExpr && 5430 "A unique OVE cannot be used as the result expression"); 5431 continue; 5432 } 5433 5434 // If this is the result expression, we may need to evaluate 5435 // directly into the slot. 5436 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5437 OVMA opaqueData; 5438 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5439 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5440 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5441 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5442 AlignmentSource::Decl); 5443 opaqueData = OVMA::bind(CGF, ov, LV); 5444 result.RV = slot.asRValue(); 5445 5446 // Otherwise, emit as normal. 5447 } else { 5448 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5449 5450 // If this is the result, also evaluate the result now. 5451 if (ov == resultExpr) { 5452 if (forLValue) 5453 result.LV = CGF.EmitLValue(ov); 5454 else 5455 result.RV = CGF.EmitAnyExpr(ov, slot); 5456 } 5457 } 5458 5459 opaques.push_back(opaqueData); 5460 5461 // Otherwise, if the expression is the result, evaluate it 5462 // and remember the result. 5463 } else if (semantic == resultExpr) { 5464 if (forLValue) 5465 result.LV = CGF.EmitLValue(semantic); 5466 else 5467 result.RV = CGF.EmitAnyExpr(semantic, slot); 5468 5469 // Otherwise, evaluate the expression in an ignored context. 5470 } else { 5471 CGF.EmitIgnoredExpr(semantic); 5472 } 5473 } 5474 5475 // Unbind all the opaques now. 5476 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5477 opaques[i].unbind(CGF); 5478 5479 return result; 5480 } 5481 5482 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5483 AggValueSlot slot) { 5484 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5485 } 5486 5487 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5488 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5489 } 5490