xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExpr.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(getPostAllocaInsertPoint());
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // Just emit it as an l-value and drop the result.
195   EmitLValue(E);
196 }
197 
198 /// EmitAnyExpr - Emit code to compute the specified expression which
199 /// can have any type.  The result is returned as an RValue struct.
200 /// If this is an aggregate expression, AggSlot indicates where the
201 /// result should be returned.
202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
203                                     AggValueSlot aggSlot,
204                                     bool ignoreResult) {
205   switch (getEvaluationKind(E->getType())) {
206   case TEK_Scalar:
207     return RValue::get(EmitScalarExpr(E, ignoreResult));
208   case TEK_Complex:
209     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
210   case TEK_Aggregate:
211     if (!ignoreResult && aggSlot.isIgnored())
212       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
213     EmitAggExpr(E, aggSlot);
214     return aggSlot.asRValue();
215   }
216   llvm_unreachable("bad evaluation kind");
217 }
218 
219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
220 /// always be accessible even if no aggregate location is provided.
221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
222   AggValueSlot AggSlot = AggValueSlot::ignored();
223 
224   if (hasAggregateEvaluationKind(E->getType()))
225     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
226   return EmitAnyExpr(E, AggSlot);
227 }
228 
229 /// EmitAnyExprToMem - Evaluate an expression into a given memory
230 /// location.
231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
232                                        Address Location,
233                                        Qualifiers Quals,
234                                        bool IsInit) {
235   // FIXME: This function should take an LValue as an argument.
236   switch (getEvaluationKind(E->getType())) {
237   case TEK_Complex:
238     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
239                               /*isInit*/ false);
240     return;
241 
242   case TEK_Aggregate: {
243     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
244                                          AggValueSlot::IsDestructed_t(IsInit),
245                                          AggValueSlot::DoesNotNeedGCBarriers,
246                                          AggValueSlot::IsAliased_t(!IsInit),
247                                          AggValueSlot::MayOverlap));
248     return;
249   }
250 
251   case TEK_Scalar: {
252     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
253     LValue LV = MakeAddrLValue(Location, E->getType());
254     EmitStoreThroughLValue(RV, LV);
255     return;
256   }
257   }
258   llvm_unreachable("bad evaluation kind");
259 }
260 
261 static void
262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
263                      const Expr *E, Address ReferenceTemporary) {
264   // Objective-C++ ARC:
265   //   If we are binding a reference to a temporary that has ownership, we
266   //   need to perform retain/release operations on the temporary.
267   //
268   // FIXME: This should be looking at E, not M.
269   if (auto Lifetime = M->getType().getObjCLifetime()) {
270     switch (Lifetime) {
271     case Qualifiers::OCL_None:
272     case Qualifiers::OCL_ExplicitNone:
273       // Carry on to normal cleanup handling.
274       break;
275 
276     case Qualifiers::OCL_Autoreleasing:
277       // Nothing to do; cleaned up by an autorelease pool.
278       return;
279 
280     case Qualifiers::OCL_Strong:
281     case Qualifiers::OCL_Weak:
282       switch (StorageDuration Duration = M->getStorageDuration()) {
283       case SD_Static:
284         // Note: we intentionally do not register a cleanup to release
285         // the object on program termination.
286         return;
287 
288       case SD_Thread:
289         // FIXME: We should probably register a cleanup in this case.
290         return;
291 
292       case SD_Automatic:
293       case SD_FullExpression:
294         CodeGenFunction::Destroyer *Destroy;
295         CleanupKind CleanupKind;
296         if (Lifetime == Qualifiers::OCL_Strong) {
297           const ValueDecl *VD = M->getExtendingDecl();
298           bool Precise =
299               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
300           CleanupKind = CGF.getARCCleanupKind();
301           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
302                             : &CodeGenFunction::destroyARCStrongImprecise;
303         } else {
304           // __weak objects always get EH cleanups; otherwise, exceptions
305           // could cause really nasty crashes instead of mere leaks.
306           CleanupKind = NormalAndEHCleanup;
307           Destroy = &CodeGenFunction::destroyARCWeak;
308         }
309         if (Duration == SD_FullExpression)
310           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
311                           M->getType(), *Destroy,
312                           CleanupKind & EHCleanup);
313         else
314           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
315                                           M->getType(),
316                                           *Destroy, CleanupKind & EHCleanup);
317         return;
318 
319       case SD_Dynamic:
320         llvm_unreachable("temporary cannot have dynamic storage duration");
321       }
322       llvm_unreachable("unknown storage duration");
323     }
324   }
325 
326   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
327   if (const RecordType *RT =
328           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
329     // Get the destructor for the reference temporary.
330     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
331     if (!ClassDecl->hasTrivialDestructor())
332       ReferenceTemporaryDtor = ClassDecl->getDestructor();
333   }
334 
335   if (!ReferenceTemporaryDtor)
336     return;
337 
338   // Call the destructor for the temporary.
339   switch (M->getStorageDuration()) {
340   case SD_Static:
341   case SD_Thread: {
342     llvm::FunctionCallee CleanupFn;
343     llvm::Constant *CleanupArg;
344     if (E->getType()->isArrayType()) {
345       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
346           ReferenceTemporary, E->getType(),
347           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
348           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
349       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
350     } else {
351       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
352           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
353       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
354     }
355     CGF.CGM.getCXXABI().registerGlobalDtor(
356         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
357     break;
358   }
359 
360   case SD_FullExpression:
361     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
362                     CodeGenFunction::destroyCXXObject,
363                     CGF.getLangOpts().Exceptions);
364     break;
365 
366   case SD_Automatic:
367     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
368                                     ReferenceTemporary, E->getType(),
369                                     CodeGenFunction::destroyCXXObject,
370                                     CGF.getLangOpts().Exceptions);
371     break;
372 
373   case SD_Dynamic:
374     llvm_unreachable("temporary cannot have dynamic storage duration");
375   }
376 }
377 
378 static Address createReferenceTemporary(CodeGenFunction &CGF,
379                                         const MaterializeTemporaryExpr *M,
380                                         const Expr *Inner,
381                                         Address *Alloca = nullptr) {
382   auto &TCG = CGF.getTargetHooks();
383   switch (M->getStorageDuration()) {
384   case SD_FullExpression:
385   case SD_Automatic: {
386     // If we have a constant temporary array or record try to promote it into a
387     // constant global under the same rules a normal constant would've been
388     // promoted. This is easier on the optimizer and generally emits fewer
389     // instructions.
390     QualType Ty = Inner->getType();
391     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
392         (Ty->isArrayType() || Ty->isRecordType()) &&
393         CGF.CGM.isTypeConstant(Ty, true))
394       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
395         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
396         auto *GV = new llvm::GlobalVariable(
397             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
398             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
399             llvm::GlobalValue::NotThreadLocal,
400             CGF.getContext().getTargetAddressSpace(AS));
401         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
402         GV->setAlignment(alignment.getAsAlign());
403         llvm::Constant *C = GV;
404         if (AS != LangAS::Default)
405           C = TCG.performAddrSpaceCast(
406               CGF.CGM, GV, AS, LangAS::Default,
407               GV->getValueType()->getPointerTo(
408                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
409         // FIXME: Should we put the new global into a COMDAT?
410         return Address(C, alignment);
411       }
412     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
413   }
414   case SD_Thread:
415   case SD_Static:
416     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
417 
418   case SD_Dynamic:
419     llvm_unreachable("temporary can't have dynamic storage duration");
420   }
421   llvm_unreachable("unknown storage duration");
422 }
423 
424 /// Helper method to check if the underlying ABI is AAPCS
425 static bool isAAPCS(const TargetInfo &TargetInfo) {
426   return TargetInfo.getABI().startswith("aapcs");
427 }
428 
429 LValue CodeGenFunction::
430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
431   const Expr *E = M->getSubExpr();
432 
433   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
434           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
435          "Reference should never be pseudo-strong!");
436 
437   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
438   // as that will cause the lifetime adjustment to be lost for ARC
439   auto ownership = M->getType().getObjCLifetime();
440   if (ownership != Qualifiers::OCL_None &&
441       ownership != Qualifiers::OCL_ExplicitNone) {
442     Address Object = createReferenceTemporary(*this, M, E);
443     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
444       Object = Address(llvm::ConstantExpr::getBitCast(Var,
445                            ConvertTypeForMem(E->getType())
446                              ->getPointerTo(Object.getAddressSpace())),
447                        Object.getAlignment());
448 
449       // createReferenceTemporary will promote the temporary to a global with a
450       // constant initializer if it can.  It can only do this to a value of
451       // ARC-manageable type if the value is global and therefore "immune" to
452       // ref-counting operations.  Therefore we have no need to emit either a
453       // dynamic initialization or a cleanup and we can just return the address
454       // of the temporary.
455       if (Var->hasInitializer())
456         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 
458       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
459     }
460     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
461                                        AlignmentSource::Decl);
462 
463     switch (getEvaluationKind(E->getType())) {
464     default: llvm_unreachable("expected scalar or aggregate expression");
465     case TEK_Scalar:
466       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
467       break;
468     case TEK_Aggregate: {
469       EmitAggExpr(E, AggValueSlot::forAddr(Object,
470                                            E->getType().getQualifiers(),
471                                            AggValueSlot::IsDestructed,
472                                            AggValueSlot::DoesNotNeedGCBarriers,
473                                            AggValueSlot::IsNotAliased,
474                                            AggValueSlot::DoesNotOverlap));
475       break;
476     }
477     }
478 
479     pushTemporaryCleanup(*this, M, E, Object);
480     return RefTempDst;
481   }
482 
483   SmallVector<const Expr *, 2> CommaLHSs;
484   SmallVector<SubobjectAdjustment, 2> Adjustments;
485   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
486 
487   for (const auto &Ignored : CommaLHSs)
488     EmitIgnoredExpr(Ignored);
489 
490   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
491     if (opaque->getType()->isRecordType()) {
492       assert(Adjustments.empty());
493       return EmitOpaqueValueLValue(opaque);
494     }
495   }
496 
497   // Create and initialize the reference temporary.
498   Address Alloca = Address::invalid();
499   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
500   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
501           Object.getPointer()->stripPointerCasts())) {
502     Object = Address(llvm::ConstantExpr::getBitCast(
503                          cast<llvm::Constant>(Object.getPointer()),
504                          ConvertTypeForMem(E->getType())->getPointerTo()),
505                      Object.getAlignment());
506     // If the temporary is a global and has a constant initializer or is a
507     // constant temporary that we promoted to a global, we may have already
508     // initialized it.
509     if (!Var->hasInitializer()) {
510       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
511       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
512     }
513   } else {
514     switch (M->getStorageDuration()) {
515     case SD_Automatic:
516       if (auto *Size = EmitLifetimeStart(
517               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
518               Alloca.getPointer())) {
519         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
520                                                   Alloca, Size);
521       }
522       break;
523 
524     case SD_FullExpression: {
525       if (!ShouldEmitLifetimeMarkers)
526         break;
527 
528       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
529       // marker. Instead, start the lifetime of a conditional temporary earlier
530       // so that it's unconditional. Don't do this with sanitizers which need
531       // more precise lifetime marks.
532       ConditionalEvaluation *OldConditional = nullptr;
533       CGBuilderTy::InsertPoint OldIP;
534       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
535           !SanOpts.has(SanitizerKind::HWAddress) &&
536           !SanOpts.has(SanitizerKind::Memory) &&
537           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
538         OldConditional = OutermostConditional;
539         OutermostConditional = nullptr;
540 
541         OldIP = Builder.saveIP();
542         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
543         Builder.restoreIP(CGBuilderTy::InsertPoint(
544             Block, llvm::BasicBlock::iterator(Block->back())));
545       }
546 
547       if (auto *Size = EmitLifetimeStart(
548               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
549               Alloca.getPointer())) {
550         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
551                                              Size);
552       }
553 
554       if (OldConditional) {
555         OutermostConditional = OldConditional;
556         Builder.restoreIP(OldIP);
557       }
558       break;
559     }
560 
561     default:
562       break;
563     }
564     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
565   }
566   pushTemporaryCleanup(*this, M, E, Object);
567 
568   // Perform derived-to-base casts and/or field accesses, to get from the
569   // temporary object we created (and, potentially, for which we extended
570   // the lifetime) to the subobject we're binding the reference to.
571   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
572     switch (Adjustment.Kind) {
573     case SubobjectAdjustment::DerivedToBaseAdjustment:
574       Object =
575           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
576                                 Adjustment.DerivedToBase.BasePath->path_begin(),
577                                 Adjustment.DerivedToBase.BasePath->path_end(),
578                                 /*NullCheckValue=*/ false, E->getExprLoc());
579       break;
580 
581     case SubobjectAdjustment::FieldAdjustment: {
582       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
583       LV = EmitLValueForField(LV, Adjustment.Field);
584       assert(LV.isSimple() &&
585              "materialized temporary field is not a simple lvalue");
586       Object = LV.getAddress(*this);
587       break;
588     }
589 
590     case SubobjectAdjustment::MemberPointerAdjustment: {
591       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
592       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
593                                                Adjustment.Ptr.MPT);
594       break;
595     }
596     }
597   }
598 
599   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
600 }
601 
602 RValue
603 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
604   // Emit the expression as an lvalue.
605   LValue LV = EmitLValue(E);
606   assert(LV.isSimple());
607   llvm::Value *Value = LV.getPointer(*this);
608 
609   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
610     // C++11 [dcl.ref]p5 (as amended by core issue 453):
611     //   If a glvalue to which a reference is directly bound designates neither
612     //   an existing object or function of an appropriate type nor a region of
613     //   storage of suitable size and alignment to contain an object of the
614     //   reference's type, the behavior is undefined.
615     QualType Ty = E->getType();
616     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
617   }
618 
619   return RValue::get(Value);
620 }
621 
622 
623 /// getAccessedFieldNo - Given an encoded value and a result number, return the
624 /// input field number being accessed.
625 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
626                                              const llvm::Constant *Elts) {
627   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
628       ->getZExtValue();
629 }
630 
631 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
632 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
633                                     llvm::Value *High) {
634   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
635   llvm::Value *K47 = Builder.getInt64(47);
636   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
637   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
638   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
639   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
640   return Builder.CreateMul(B1, KMul);
641 }
642 
643 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
644   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
645          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
646 }
647 
648 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
649   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
650   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
651          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
652           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
653           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
654 }
655 
656 bool CodeGenFunction::sanitizePerformTypeCheck() const {
657   return SanOpts.has(SanitizerKind::Null) ||
658          SanOpts.has(SanitizerKind::Alignment) ||
659          SanOpts.has(SanitizerKind::ObjectSize) ||
660          SanOpts.has(SanitizerKind::Vptr);
661 }
662 
663 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
664                                     llvm::Value *Ptr, QualType Ty,
665                                     CharUnits Alignment,
666                                     SanitizerSet SkippedChecks,
667                                     llvm::Value *ArraySize) {
668   if (!sanitizePerformTypeCheck())
669     return;
670 
671   // Don't check pointers outside the default address space. The null check
672   // isn't correct, the object-size check isn't supported by LLVM, and we can't
673   // communicate the addresses to the runtime handler for the vptr check.
674   if (Ptr->getType()->getPointerAddressSpace())
675     return;
676 
677   // Don't check pointers to volatile data. The behavior here is implementation-
678   // defined.
679   if (Ty.isVolatileQualified())
680     return;
681 
682   SanitizerScope SanScope(this);
683 
684   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
685   llvm::BasicBlock *Done = nullptr;
686 
687   // Quickly determine whether we have a pointer to an alloca. It's possible
688   // to skip null checks, and some alignment checks, for these pointers. This
689   // can reduce compile-time significantly.
690   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
691 
692   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
693   llvm::Value *IsNonNull = nullptr;
694   bool IsGuaranteedNonNull =
695       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
696   bool AllowNullPointers = isNullPointerAllowed(TCK);
697   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
698       !IsGuaranteedNonNull) {
699     // The glvalue must not be an empty glvalue.
700     IsNonNull = Builder.CreateIsNotNull(Ptr);
701 
702     // The IR builder can constant-fold the null check if the pointer points to
703     // a constant.
704     IsGuaranteedNonNull = IsNonNull == True;
705 
706     // Skip the null check if the pointer is known to be non-null.
707     if (!IsGuaranteedNonNull) {
708       if (AllowNullPointers) {
709         // When performing pointer casts, it's OK if the value is null.
710         // Skip the remaining checks in that case.
711         Done = createBasicBlock("null");
712         llvm::BasicBlock *Rest = createBasicBlock("not.null");
713         Builder.CreateCondBr(IsNonNull, Rest, Done);
714         EmitBlock(Rest);
715       } else {
716         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
717       }
718     }
719   }
720 
721   if (SanOpts.has(SanitizerKind::ObjectSize) &&
722       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
723       !Ty->isIncompleteType()) {
724     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
725     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
726     if (ArraySize)
727       Size = Builder.CreateMul(Size, ArraySize);
728 
729     // Degenerate case: new X[0] does not need an objectsize check.
730     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
731     if (!ConstantSize || !ConstantSize->isNullValue()) {
732       // The glvalue must refer to a large enough storage region.
733       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
734       //        to check this.
735       // FIXME: Get object address space
736       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
737       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
738       llvm::Value *Min = Builder.getFalse();
739       llvm::Value *NullIsUnknown = Builder.getFalse();
740       llvm::Value *Dynamic = Builder.getFalse();
741       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
742       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
743           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
744       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
745     }
746   }
747 
748   uint64_t AlignVal = 0;
749   llvm::Value *PtrAsInt = nullptr;
750 
751   if (SanOpts.has(SanitizerKind::Alignment) &&
752       !SkippedChecks.has(SanitizerKind::Alignment)) {
753     AlignVal = Alignment.getQuantity();
754     if (!Ty->isIncompleteType() && !AlignVal)
755       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
756                                              /*ForPointeeType=*/true)
757                      .getQuantity();
758 
759     // The glvalue must be suitably aligned.
760     if (AlignVal > 1 &&
761         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
762       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
763       llvm::Value *Align = Builder.CreateAnd(
764           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
765       llvm::Value *Aligned =
766           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
767       if (Aligned != True)
768         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
769     }
770   }
771 
772   if (Checks.size() > 0) {
773     // Make sure we're not losing information. Alignment needs to be a power of
774     // 2
775     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
776     llvm::Constant *StaticData[] = {
777         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
778         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
779         llvm::ConstantInt::get(Int8Ty, TCK)};
780     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
781               PtrAsInt ? PtrAsInt : Ptr);
782   }
783 
784   // If possible, check that the vptr indicates that there is a subobject of
785   // type Ty at offset zero within this object.
786   //
787   // C++11 [basic.life]p5,6:
788   //   [For storage which does not refer to an object within its lifetime]
789   //   The program has undefined behavior if:
790   //    -- the [pointer or glvalue] is used to access a non-static data member
791   //       or call a non-static member function
792   if (SanOpts.has(SanitizerKind::Vptr) &&
793       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
794     // Ensure that the pointer is non-null before loading it. If there is no
795     // compile-time guarantee, reuse the run-time null check or emit a new one.
796     if (!IsGuaranteedNonNull) {
797       if (!IsNonNull)
798         IsNonNull = Builder.CreateIsNotNull(Ptr);
799       if (!Done)
800         Done = createBasicBlock("vptr.null");
801       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
802       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
803       EmitBlock(VptrNotNull);
804     }
805 
806     // Compute a hash of the mangled name of the type.
807     //
808     // FIXME: This is not guaranteed to be deterministic! Move to a
809     //        fingerprinting mechanism once LLVM provides one. For the time
810     //        being the implementation happens to be deterministic.
811     SmallString<64> MangledName;
812     llvm::raw_svector_ostream Out(MangledName);
813     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
814                                                      Out);
815 
816     // Contained in NoSanitizeList based on the mangled type.
817     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
818                                                            Out.str())) {
819       llvm::hash_code TypeHash = hash_value(Out.str());
820 
821       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
822       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
823       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
824       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
825       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
826       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
827 
828       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
829       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
830 
831       // Look the hash up in our cache.
832       const int CacheSize = 128;
833       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
834       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
835                                                      "__ubsan_vptr_type_cache");
836       llvm::Value *Slot = Builder.CreateAnd(Hash,
837                                             llvm::ConstantInt::get(IntPtrTy,
838                                                                    CacheSize-1));
839       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
840       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
841           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
842           getPointerAlign());
843 
844       // If the hash isn't in the cache, call a runtime handler to perform the
845       // hard work of checking whether the vptr is for an object of the right
846       // type. This will either fill in the cache and return, or produce a
847       // diagnostic.
848       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
849       llvm::Constant *StaticData[] = {
850         EmitCheckSourceLocation(Loc),
851         EmitCheckTypeDescriptor(Ty),
852         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
853         llvm::ConstantInt::get(Int8Ty, TCK)
854       };
855       llvm::Value *DynamicData[] = { Ptr, Hash };
856       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
857                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
858                 DynamicData);
859     }
860   }
861 
862   if (Done) {
863     Builder.CreateBr(Done);
864     EmitBlock(Done);
865   }
866 }
867 
868 /// Determine whether this expression refers to a flexible array member in a
869 /// struct. We disable array bounds checks for such members.
870 static bool isFlexibleArrayMemberExpr(const Expr *E) {
871   // For compatibility with existing code, we treat arrays of length 0 or
872   // 1 as flexible array members.
873   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
874   // the two mechanisms.
875   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
876   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
877     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
878     // was produced by macro expansion.
879     if (CAT->getSize().ugt(1))
880       return false;
881   } else if (!isa<IncompleteArrayType>(AT))
882     return false;
883 
884   E = E->IgnoreParens();
885 
886   // A flexible array member must be the last member in the class.
887   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
888     // FIXME: If the base type of the member expr is not FD->getParent(),
889     // this should not be treated as a flexible array member access.
890     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
891       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
892       // member, only a T[0] or T[] member gets that treatment.
893       if (FD->getParent()->isUnion())
894         return true;
895       RecordDecl::field_iterator FI(
896           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
897       return ++FI == FD->getParent()->field_end();
898     }
899   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
900     return IRE->getDecl()->getNextIvar() == nullptr;
901   }
902 
903   return false;
904 }
905 
906 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
907                                                    QualType EltTy) {
908   ASTContext &C = getContext();
909   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
910   if (!EltSize)
911     return nullptr;
912 
913   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
914   if (!ArrayDeclRef)
915     return nullptr;
916 
917   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
918   if (!ParamDecl)
919     return nullptr;
920 
921   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
922   if (!POSAttr)
923     return nullptr;
924 
925   // Don't load the size if it's a lower bound.
926   int POSType = POSAttr->getType();
927   if (POSType != 0 && POSType != 1)
928     return nullptr;
929 
930   // Find the implicit size parameter.
931   auto PassedSizeIt = SizeArguments.find(ParamDecl);
932   if (PassedSizeIt == SizeArguments.end())
933     return nullptr;
934 
935   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
936   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
937   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
938   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
939                                               C.getSizeType(), E->getExprLoc());
940   llvm::Value *SizeOfElement =
941       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
942   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
943 }
944 
945 /// If Base is known to point to the start of an array, return the length of
946 /// that array. Return 0 if the length cannot be determined.
947 static llvm::Value *getArrayIndexingBound(
948     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
949   // For the vector indexing extension, the bound is the number of elements.
950   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
951     IndexedType = Base->getType();
952     return CGF.Builder.getInt32(VT->getNumElements());
953   }
954 
955   Base = Base->IgnoreParens();
956 
957   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
958     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
959         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
960       IndexedType = CE->getSubExpr()->getType();
961       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
962       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
963         return CGF.Builder.getInt(CAT->getSize());
964       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
965         return CGF.getVLASize(VAT).NumElts;
966       // Ignore pass_object_size here. It's not applicable on decayed pointers.
967     }
968   }
969 
970   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
971   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
972     IndexedType = Base->getType();
973     return POS;
974   }
975 
976   return nullptr;
977 }
978 
979 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
980                                       llvm::Value *Index, QualType IndexType,
981                                       bool Accessed) {
982   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
983          "should not be called unless adding bounds checks");
984   SanitizerScope SanScope(this);
985 
986   QualType IndexedType;
987   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
988   if (!Bound)
989     return;
990 
991   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
992   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
993   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
994 
995   llvm::Constant *StaticData[] = {
996     EmitCheckSourceLocation(E->getExprLoc()),
997     EmitCheckTypeDescriptor(IndexedType),
998     EmitCheckTypeDescriptor(IndexType)
999   };
1000   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1001                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1002   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1003             SanitizerHandler::OutOfBounds, StaticData, Index);
1004 }
1005 
1006 
1007 CodeGenFunction::ComplexPairTy CodeGenFunction::
1008 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1009                          bool isInc, bool isPre) {
1010   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1011 
1012   llvm::Value *NextVal;
1013   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1014     uint64_t AmountVal = isInc ? 1 : -1;
1015     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1016 
1017     // Add the inc/dec to the real part.
1018     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1019   } else {
1020     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1021     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1022     if (!isInc)
1023       FVal.changeSign();
1024     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1025 
1026     // Add the inc/dec to the real part.
1027     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1028   }
1029 
1030   ComplexPairTy IncVal(NextVal, InVal.second);
1031 
1032   // Store the updated result through the lvalue.
1033   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1034   if (getLangOpts().OpenMP)
1035     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1036                                                               E->getSubExpr());
1037 
1038   // If this is a postinc, return the value read from memory, otherwise use the
1039   // updated value.
1040   return isPre ? IncVal : InVal;
1041 }
1042 
1043 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1044                                              CodeGenFunction *CGF) {
1045   // Bind VLAs in the cast type.
1046   if (CGF && E->getType()->isVariablyModifiedType())
1047     CGF->EmitVariablyModifiedType(E->getType());
1048 
1049   if (CGDebugInfo *DI = getModuleDebugInfo())
1050     DI->EmitExplicitCastType(E->getType());
1051 }
1052 
1053 //===----------------------------------------------------------------------===//
1054 //                         LValue Expression Emission
1055 //===----------------------------------------------------------------------===//
1056 
1057 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1058 /// derive a more accurate bound on the alignment of the pointer.
1059 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1060                                                   LValueBaseInfo *BaseInfo,
1061                                                   TBAAAccessInfo *TBAAInfo) {
1062   // We allow this with ObjC object pointers because of fragile ABIs.
1063   assert(E->getType()->isPointerType() ||
1064          E->getType()->isObjCObjectPointerType());
1065   E = E->IgnoreParens();
1066 
1067   // Casts:
1068   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1069     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1070       CGM.EmitExplicitCastExprType(ECE, this);
1071 
1072     switch (CE->getCastKind()) {
1073     // Non-converting casts (but not C's implicit conversion from void*).
1074     case CK_BitCast:
1075     case CK_NoOp:
1076     case CK_AddressSpaceConversion:
1077       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1078         if (PtrTy->getPointeeType()->isVoidType())
1079           break;
1080 
1081         LValueBaseInfo InnerBaseInfo;
1082         TBAAAccessInfo InnerTBAAInfo;
1083         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1084                                                 &InnerBaseInfo,
1085                                                 &InnerTBAAInfo);
1086         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1087         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1088 
1089         if (isa<ExplicitCastExpr>(CE)) {
1090           LValueBaseInfo TargetTypeBaseInfo;
1091           TBAAAccessInfo TargetTypeTBAAInfo;
1092           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1093               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1094           if (TBAAInfo)
1095             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1096                                                  TargetTypeTBAAInfo);
1097           // If the source l-value is opaque, honor the alignment of the
1098           // casted-to type.
1099           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1100             if (BaseInfo)
1101               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1102             Addr = Address(Addr.getPointer(), Align);
1103           }
1104         }
1105 
1106         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1107             CE->getCastKind() == CK_BitCast) {
1108           if (auto PT = E->getType()->getAs<PointerType>())
1109             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1110                                       /*MayBeNull=*/true,
1111                                       CodeGenFunction::CFITCK_UnrelatedCast,
1112                                       CE->getBeginLoc());
1113         }
1114         return CE->getCastKind() != CK_AddressSpaceConversion
1115                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1116                    : Builder.CreateAddrSpaceCast(Addr,
1117                                                  ConvertType(E->getType()));
1118       }
1119       break;
1120 
1121     // Array-to-pointer decay.
1122     case CK_ArrayToPointerDecay:
1123       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1124 
1125     // Derived-to-base conversions.
1126     case CK_UncheckedDerivedToBase:
1127     case CK_DerivedToBase: {
1128       // TODO: Support accesses to members of base classes in TBAA. For now, we
1129       // conservatively pretend that the complete object is of the base class
1130       // type.
1131       if (TBAAInfo)
1132         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1133       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1134       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1135       return GetAddressOfBaseClass(Addr, Derived,
1136                                    CE->path_begin(), CE->path_end(),
1137                                    ShouldNullCheckClassCastValue(CE),
1138                                    CE->getExprLoc());
1139     }
1140 
1141     // TODO: Is there any reason to treat base-to-derived conversions
1142     // specially?
1143     default:
1144       break;
1145     }
1146   }
1147 
1148   // Unary &.
1149   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1150     if (UO->getOpcode() == UO_AddrOf) {
1151       LValue LV = EmitLValue(UO->getSubExpr());
1152       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1153       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1154       return LV.getAddress(*this);
1155     }
1156   }
1157 
1158   // TODO: conditional operators, comma.
1159 
1160   // Otherwise, use the alignment of the type.
1161   CharUnits Align =
1162       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1163   return Address(EmitScalarExpr(E), Align);
1164 }
1165 
1166 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1167   llvm::Value *V = RV.getScalarVal();
1168   if (auto MPT = T->getAs<MemberPointerType>())
1169     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1170   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1171 }
1172 
1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1174   if (Ty->isVoidType())
1175     return RValue::get(nullptr);
1176 
1177   switch (getEvaluationKind(Ty)) {
1178   case TEK_Complex: {
1179     llvm::Type *EltTy =
1180       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1181     llvm::Value *U = llvm::UndefValue::get(EltTy);
1182     return RValue::getComplex(std::make_pair(U, U));
1183   }
1184 
1185   // If this is a use of an undefined aggregate type, the aggregate must have an
1186   // identifiable address.  Just because the contents of the value are undefined
1187   // doesn't mean that the address can't be taken and compared.
1188   case TEK_Aggregate: {
1189     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1190     return RValue::getAggregate(DestPtr);
1191   }
1192 
1193   case TEK_Scalar:
1194     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1195   }
1196   llvm_unreachable("bad evaluation kind");
1197 }
1198 
1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1200                                               const char *Name) {
1201   ErrorUnsupported(E, Name);
1202   return GetUndefRValue(E->getType());
1203 }
1204 
1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1206                                               const char *Name) {
1207   ErrorUnsupported(E, Name);
1208   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1209   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1210                         E->getType());
1211 }
1212 
1213 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1214   const Expr *Base = Obj;
1215   while (!isa<CXXThisExpr>(Base)) {
1216     // The result of a dynamic_cast can be null.
1217     if (isa<CXXDynamicCastExpr>(Base))
1218       return false;
1219 
1220     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1221       Base = CE->getSubExpr();
1222     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1223       Base = PE->getSubExpr();
1224     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1225       if (UO->getOpcode() == UO_Extension)
1226         Base = UO->getSubExpr();
1227       else
1228         return false;
1229     } else {
1230       return false;
1231     }
1232   }
1233   return true;
1234 }
1235 
1236 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1237   LValue LV;
1238   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1239     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1240   else
1241     LV = EmitLValue(E);
1242   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1243     SanitizerSet SkippedChecks;
1244     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1245       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1246       if (IsBaseCXXThis)
1247         SkippedChecks.set(SanitizerKind::Alignment, true);
1248       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1249         SkippedChecks.set(SanitizerKind::Null, true);
1250     }
1251     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1252                   LV.getAlignment(), SkippedChecks);
1253   }
1254   return LV;
1255 }
1256 
1257 /// EmitLValue - Emit code to compute a designator that specifies the location
1258 /// of the expression.
1259 ///
1260 /// This can return one of two things: a simple address or a bitfield reference.
1261 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1262 /// an LLVM pointer type.
1263 ///
1264 /// If this returns a bitfield reference, nothing about the pointee type of the
1265 /// LLVM value is known: For example, it may not be a pointer to an integer.
1266 ///
1267 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1268 /// this method guarantees that the returned pointer type will point to an LLVM
1269 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1270 /// length type, this is not possible.
1271 ///
1272 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1273   ApplyDebugLocation DL(*this, E);
1274   switch (E->getStmtClass()) {
1275   default: return EmitUnsupportedLValue(E, "l-value expression");
1276 
1277   case Expr::ObjCPropertyRefExprClass:
1278     llvm_unreachable("cannot emit a property reference directly");
1279 
1280   case Expr::ObjCSelectorExprClass:
1281     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1282   case Expr::ObjCIsaExprClass:
1283     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1284   case Expr::BinaryOperatorClass:
1285     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1286   case Expr::CompoundAssignOperatorClass: {
1287     QualType Ty = E->getType();
1288     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1289       Ty = AT->getValueType();
1290     if (!Ty->isAnyComplexType())
1291       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1292     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293   }
1294   case Expr::CallExprClass:
1295   case Expr::CXXMemberCallExprClass:
1296   case Expr::CXXOperatorCallExprClass:
1297   case Expr::UserDefinedLiteralClass:
1298     return EmitCallExprLValue(cast<CallExpr>(E));
1299   case Expr::CXXRewrittenBinaryOperatorClass:
1300     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1301   case Expr::VAArgExprClass:
1302     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1303   case Expr::DeclRefExprClass:
1304     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1305   case Expr::ConstantExprClass: {
1306     const ConstantExpr *CE = cast<ConstantExpr>(E);
1307     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1308       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1309                              ->getCallReturnType(getContext());
1310       return MakeNaturalAlignAddrLValue(Result, RetType);
1311     }
1312     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1313   }
1314   case Expr::ParenExprClass:
1315     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1316   case Expr::GenericSelectionExprClass:
1317     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1318   case Expr::PredefinedExprClass:
1319     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1320   case Expr::StringLiteralClass:
1321     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1322   case Expr::ObjCEncodeExprClass:
1323     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1324   case Expr::PseudoObjectExprClass:
1325     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1326   case Expr::InitListExprClass:
1327     return EmitInitListLValue(cast<InitListExpr>(E));
1328   case Expr::CXXTemporaryObjectExprClass:
1329   case Expr::CXXConstructExprClass:
1330     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1331   case Expr::CXXBindTemporaryExprClass:
1332     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1333   case Expr::CXXUuidofExprClass:
1334     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1335   case Expr::LambdaExprClass:
1336     return EmitAggExprToLValue(E);
1337 
1338   case Expr::ExprWithCleanupsClass: {
1339     const auto *cleanups = cast<ExprWithCleanups>(E);
1340     RunCleanupsScope Scope(*this);
1341     LValue LV = EmitLValue(cleanups->getSubExpr());
1342     if (LV.isSimple()) {
1343       // Defend against branches out of gnu statement expressions surrounded by
1344       // cleanups.
1345       llvm::Value *V = LV.getPointer(*this);
1346       Scope.ForceCleanup({&V});
1347       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1348                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1349     }
1350     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1351     // bitfield lvalue or some other non-simple lvalue?
1352     return LV;
1353   }
1354 
1355   case Expr::CXXDefaultArgExprClass: {
1356     auto *DAE = cast<CXXDefaultArgExpr>(E);
1357     CXXDefaultArgExprScope Scope(*this, DAE);
1358     return EmitLValue(DAE->getExpr());
1359   }
1360   case Expr::CXXDefaultInitExprClass: {
1361     auto *DIE = cast<CXXDefaultInitExpr>(E);
1362     CXXDefaultInitExprScope Scope(*this, DIE);
1363     return EmitLValue(DIE->getExpr());
1364   }
1365   case Expr::CXXTypeidExprClass:
1366     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1367 
1368   case Expr::ObjCMessageExprClass:
1369     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1370   case Expr::ObjCIvarRefExprClass:
1371     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1372   case Expr::StmtExprClass:
1373     return EmitStmtExprLValue(cast<StmtExpr>(E));
1374   case Expr::UnaryOperatorClass:
1375     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1376   case Expr::ArraySubscriptExprClass:
1377     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1378   case Expr::MatrixSubscriptExprClass:
1379     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1380   case Expr::OMPArraySectionExprClass:
1381     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1382   case Expr::ExtVectorElementExprClass:
1383     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1384   case Expr::MemberExprClass:
1385     return EmitMemberExpr(cast<MemberExpr>(E));
1386   case Expr::CompoundLiteralExprClass:
1387     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1388   case Expr::ConditionalOperatorClass:
1389     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1390   case Expr::BinaryConditionalOperatorClass:
1391     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1392   case Expr::ChooseExprClass:
1393     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1394   case Expr::OpaqueValueExprClass:
1395     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1396   case Expr::SubstNonTypeTemplateParmExprClass:
1397     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1398   case Expr::ImplicitCastExprClass:
1399   case Expr::CStyleCastExprClass:
1400   case Expr::CXXFunctionalCastExprClass:
1401   case Expr::CXXStaticCastExprClass:
1402   case Expr::CXXDynamicCastExprClass:
1403   case Expr::CXXReinterpretCastExprClass:
1404   case Expr::CXXConstCastExprClass:
1405   case Expr::CXXAddrspaceCastExprClass:
1406   case Expr::ObjCBridgedCastExprClass:
1407     return EmitCastLValue(cast<CastExpr>(E));
1408 
1409   case Expr::MaterializeTemporaryExprClass:
1410     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1411 
1412   case Expr::CoawaitExprClass:
1413     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1414   case Expr::CoyieldExprClass:
1415     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1416   }
1417 }
1418 
1419 /// Given an object of the given canonical type, can we safely copy a
1420 /// value out of it based on its initializer?
1421 static bool isConstantEmittableObjectType(QualType type) {
1422   assert(type.isCanonical());
1423   assert(!type->isReferenceType());
1424 
1425   // Must be const-qualified but non-volatile.
1426   Qualifiers qs = type.getLocalQualifiers();
1427   if (!qs.hasConst() || qs.hasVolatile()) return false;
1428 
1429   // Otherwise, all object types satisfy this except C++ classes with
1430   // mutable subobjects or non-trivial copy/destroy behavior.
1431   if (const auto *RT = dyn_cast<RecordType>(type))
1432     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1433       if (RD->hasMutableFields() || !RD->isTrivial())
1434         return false;
1435 
1436   return true;
1437 }
1438 
1439 /// Can we constant-emit a load of a reference to a variable of the
1440 /// given type?  This is different from predicates like
1441 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1442 /// in situations that don't necessarily satisfy the language's rules
1443 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1444 /// to do this with const float variables even if those variables
1445 /// aren't marked 'constexpr'.
1446 enum ConstantEmissionKind {
1447   CEK_None,
1448   CEK_AsReferenceOnly,
1449   CEK_AsValueOrReference,
1450   CEK_AsValueOnly
1451 };
1452 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1453   type = type.getCanonicalType();
1454   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1455     if (isConstantEmittableObjectType(ref->getPointeeType()))
1456       return CEK_AsValueOrReference;
1457     return CEK_AsReferenceOnly;
1458   }
1459   if (isConstantEmittableObjectType(type))
1460     return CEK_AsValueOnly;
1461   return CEK_None;
1462 }
1463 
1464 /// Try to emit a reference to the given value without producing it as
1465 /// an l-value.  This is just an optimization, but it avoids us needing
1466 /// to emit global copies of variables if they're named without triggering
1467 /// a formal use in a context where we can't emit a direct reference to them,
1468 /// for instance if a block or lambda or a member of a local class uses a
1469 /// const int variable or constexpr variable from an enclosing function.
1470 CodeGenFunction::ConstantEmission
1471 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1472   ValueDecl *value = refExpr->getDecl();
1473 
1474   // The value needs to be an enum constant or a constant variable.
1475   ConstantEmissionKind CEK;
1476   if (isa<ParmVarDecl>(value)) {
1477     CEK = CEK_None;
1478   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1479     CEK = checkVarTypeForConstantEmission(var->getType());
1480   } else if (isa<EnumConstantDecl>(value)) {
1481     CEK = CEK_AsValueOnly;
1482   } else {
1483     CEK = CEK_None;
1484   }
1485   if (CEK == CEK_None) return ConstantEmission();
1486 
1487   Expr::EvalResult result;
1488   bool resultIsReference;
1489   QualType resultType;
1490 
1491   // It's best to evaluate all the way as an r-value if that's permitted.
1492   if (CEK != CEK_AsReferenceOnly &&
1493       refExpr->EvaluateAsRValue(result, getContext())) {
1494     resultIsReference = false;
1495     resultType = refExpr->getType();
1496 
1497   // Otherwise, try to evaluate as an l-value.
1498   } else if (CEK != CEK_AsValueOnly &&
1499              refExpr->EvaluateAsLValue(result, getContext())) {
1500     resultIsReference = true;
1501     resultType = value->getType();
1502 
1503   // Failure.
1504   } else {
1505     return ConstantEmission();
1506   }
1507 
1508   // In any case, if the initializer has side-effects, abandon ship.
1509   if (result.HasSideEffects)
1510     return ConstantEmission();
1511 
1512   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1513   // referencing a global host variable by copy. In this case the lambda should
1514   // make a copy of the value of the global host variable. The DRE of the
1515   // captured reference variable cannot be emitted as load from the host
1516   // global variable as compile time constant, since the host variable is not
1517   // accessible on device. The DRE of the captured reference variable has to be
1518   // loaded from captures.
1519   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1520       refExpr->refersToEnclosingVariableOrCapture()) {
1521     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1522     if (MD && MD->getParent()->isLambda() &&
1523         MD->getOverloadedOperator() == OO_Call) {
1524       const APValue::LValueBase &base = result.Val.getLValueBase();
1525       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1526         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1527           if (!VD->hasAttr<CUDADeviceAttr>()) {
1528             return ConstantEmission();
1529           }
1530         }
1531       }
1532     }
1533   }
1534 
1535   // Emit as a constant.
1536   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1537                                                result.Val, resultType);
1538 
1539   // Make sure we emit a debug reference to the global variable.
1540   // This should probably fire even for
1541   if (isa<VarDecl>(value)) {
1542     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1543       EmitDeclRefExprDbgValue(refExpr, result.Val);
1544   } else {
1545     assert(isa<EnumConstantDecl>(value));
1546     EmitDeclRefExprDbgValue(refExpr, result.Val);
1547   }
1548 
1549   // If we emitted a reference constant, we need to dereference that.
1550   if (resultIsReference)
1551     return ConstantEmission::forReference(C);
1552 
1553   return ConstantEmission::forValue(C);
1554 }
1555 
1556 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1557                                                         const MemberExpr *ME) {
1558   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1559     // Try to emit static variable member expressions as DREs.
1560     return DeclRefExpr::Create(
1561         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1562         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1563         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1564   }
1565   return nullptr;
1566 }
1567 
1568 CodeGenFunction::ConstantEmission
1569 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1570   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1571     return tryEmitAsConstant(DRE);
1572   return ConstantEmission();
1573 }
1574 
1575 llvm::Value *CodeGenFunction::emitScalarConstant(
1576     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1577   assert(Constant && "not a constant");
1578   if (Constant.isReference())
1579     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1580                             E->getExprLoc())
1581         .getScalarVal();
1582   return Constant.getValue();
1583 }
1584 
1585 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1586                                                SourceLocation Loc) {
1587   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1588                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1589                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1590 }
1591 
1592 static bool hasBooleanRepresentation(QualType Ty) {
1593   if (Ty->isBooleanType())
1594     return true;
1595 
1596   if (const EnumType *ET = Ty->getAs<EnumType>())
1597     return ET->getDecl()->getIntegerType()->isBooleanType();
1598 
1599   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1600     return hasBooleanRepresentation(AT->getValueType());
1601 
1602   return false;
1603 }
1604 
1605 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1606                             llvm::APInt &Min, llvm::APInt &End,
1607                             bool StrictEnums, bool IsBool) {
1608   const EnumType *ET = Ty->getAs<EnumType>();
1609   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1610                                 ET && !ET->getDecl()->isFixed();
1611   if (!IsBool && !IsRegularCPlusPlusEnum)
1612     return false;
1613 
1614   if (IsBool) {
1615     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1616     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1617   } else {
1618     const EnumDecl *ED = ET->getDecl();
1619     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1620     unsigned Bitwidth = LTy->getScalarSizeInBits();
1621     unsigned NumNegativeBits = ED->getNumNegativeBits();
1622     unsigned NumPositiveBits = ED->getNumPositiveBits();
1623 
1624     if (NumNegativeBits) {
1625       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1626       assert(NumBits <= Bitwidth);
1627       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1628       Min = -End;
1629     } else {
1630       assert(NumPositiveBits <= Bitwidth);
1631       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1632       Min = llvm::APInt::getZero(Bitwidth);
1633     }
1634   }
1635   return true;
1636 }
1637 
1638 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1639   llvm::APInt Min, End;
1640   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1641                        hasBooleanRepresentation(Ty)))
1642     return nullptr;
1643 
1644   llvm::MDBuilder MDHelper(getLLVMContext());
1645   return MDHelper.createRange(Min, End);
1646 }
1647 
1648 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1649                                            SourceLocation Loc) {
1650   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1651   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1652   if (!HasBoolCheck && !HasEnumCheck)
1653     return false;
1654 
1655   bool IsBool = hasBooleanRepresentation(Ty) ||
1656                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1657   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1658   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1659   if (!NeedsBoolCheck && !NeedsEnumCheck)
1660     return false;
1661 
1662   // Single-bit booleans don't need to be checked. Special-case this to avoid
1663   // a bit width mismatch when handling bitfield values. This is handled by
1664   // EmitFromMemory for the non-bitfield case.
1665   if (IsBool &&
1666       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1667     return false;
1668 
1669   llvm::APInt Min, End;
1670   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1671     return true;
1672 
1673   auto &Ctx = getLLVMContext();
1674   SanitizerScope SanScope(this);
1675   llvm::Value *Check;
1676   --End;
1677   if (!Min) {
1678     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1679   } else {
1680     llvm::Value *Upper =
1681         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1682     llvm::Value *Lower =
1683         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1684     Check = Builder.CreateAnd(Upper, Lower);
1685   }
1686   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1687                                   EmitCheckTypeDescriptor(Ty)};
1688   SanitizerMask Kind =
1689       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1690   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1691             StaticArgs, EmitCheckValue(Value));
1692   return true;
1693 }
1694 
1695 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1696                                                QualType Ty,
1697                                                SourceLocation Loc,
1698                                                LValueBaseInfo BaseInfo,
1699                                                TBAAAccessInfo TBAAInfo,
1700                                                bool isNontemporal) {
1701   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1702     // For better performance, handle vector loads differently.
1703     if (Ty->isVectorType()) {
1704       const llvm::Type *EltTy = Addr.getElementType();
1705 
1706       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1707 
1708       // Handle vectors of size 3 like size 4 for better performance.
1709       if (VTy->getNumElements() == 3) {
1710 
1711         // Bitcast to vec4 type.
1712         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1713         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1714         // Now load value.
1715         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1716 
1717         // Shuffle vector to get vec3.
1718         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1719                                         "extractVec");
1720         return EmitFromMemory(V, Ty);
1721       }
1722     }
1723   }
1724 
1725   // Atomic operations have to be done on integral types.
1726   LValue AtomicLValue =
1727       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1728   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1729     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1730   }
1731 
1732   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1733   if (isNontemporal) {
1734     llvm::MDNode *Node = llvm::MDNode::get(
1735         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1736     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1737   }
1738 
1739   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1740 
1741   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1742     // In order to prevent the optimizer from throwing away the check, don't
1743     // attach range metadata to the load.
1744   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1745     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1746       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1747 
1748   return EmitFromMemory(Load, Ty);
1749 }
1750 
1751 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1752   // Bool has a different representation in memory than in registers.
1753   if (hasBooleanRepresentation(Ty)) {
1754     // This should really always be an i1, but sometimes it's already
1755     // an i8, and it's awkward to track those cases down.
1756     if (Value->getType()->isIntegerTy(1))
1757       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1758     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1759            "wrong value rep of bool");
1760   }
1761 
1762   return Value;
1763 }
1764 
1765 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1766   // Bool has a different representation in memory than in registers.
1767   if (hasBooleanRepresentation(Ty)) {
1768     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1769            "wrong value rep of bool");
1770     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1771   }
1772 
1773   return Value;
1774 }
1775 
1776 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1777 // MatrixType), if it points to a array (the memory type of MatrixType).
1778 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1779                                          bool IsVector = true) {
1780   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1781       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1782   if (ArrayTy && IsVector) {
1783     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1784                                                 ArrayTy->getNumElements());
1785 
1786     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1787   }
1788   auto *VectorTy = dyn_cast<llvm::VectorType>(
1789       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1790   if (VectorTy && !IsVector) {
1791     auto *ArrayTy = llvm::ArrayType::get(
1792         VectorTy->getElementType(),
1793         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1794 
1795     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1796   }
1797 
1798   return Addr;
1799 }
1800 
1801 // Emit a store of a matrix LValue. This may require casting the original
1802 // pointer to memory address (ArrayType) to a pointer to the value type
1803 // (VectorType).
1804 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1805                                     bool isInit, CodeGenFunction &CGF) {
1806   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1807                                            value->getType()->isVectorTy());
1808   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1809                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1810                         lvalue.isNontemporal());
1811 }
1812 
1813 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1814                                         bool Volatile, QualType Ty,
1815                                         LValueBaseInfo BaseInfo,
1816                                         TBAAAccessInfo TBAAInfo,
1817                                         bool isInit, bool isNontemporal) {
1818   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1819     // Handle vectors differently to get better performance.
1820     if (Ty->isVectorType()) {
1821       llvm::Type *SrcTy = Value->getType();
1822       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1823       // Handle vec3 special.
1824       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1825         // Our source is a vec3, do a shuffle vector to make it a vec4.
1826         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1827                                             "extractVec");
1828         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1829       }
1830       if (Addr.getElementType() != SrcTy) {
1831         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1832       }
1833     }
1834   }
1835 
1836   Value = EmitToMemory(Value, Ty);
1837 
1838   LValue AtomicLValue =
1839       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1840   if (Ty->isAtomicType() ||
1841       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1842     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1843     return;
1844   }
1845 
1846   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1847   if (isNontemporal) {
1848     llvm::MDNode *Node =
1849         llvm::MDNode::get(Store->getContext(),
1850                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1851     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1852   }
1853 
1854   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1855 }
1856 
1857 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1858                                         bool isInit) {
1859   if (lvalue.getType()->isConstantMatrixType()) {
1860     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1861     return;
1862   }
1863 
1864   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1865                     lvalue.getType(), lvalue.getBaseInfo(),
1866                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1867 }
1868 
1869 // Emit a load of a LValue of matrix type. This may require casting the pointer
1870 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1871 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1872                                      CodeGenFunction &CGF) {
1873   assert(LV.getType()->isConstantMatrixType());
1874   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1875   LV.setAddress(Addr);
1876   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1877 }
1878 
1879 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1880 /// method emits the address of the lvalue, then loads the result as an rvalue,
1881 /// returning the rvalue.
1882 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1883   if (LV.isObjCWeak()) {
1884     // load of a __weak object.
1885     Address AddrWeakObj = LV.getAddress(*this);
1886     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1887                                                              AddrWeakObj));
1888   }
1889   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1890     // In MRC mode, we do a load+autorelease.
1891     if (!getLangOpts().ObjCAutoRefCount) {
1892       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1893     }
1894 
1895     // In ARC mode, we load retained and then consume the value.
1896     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1897     Object = EmitObjCConsumeObject(LV.getType(), Object);
1898     return RValue::get(Object);
1899   }
1900 
1901   if (LV.isSimple()) {
1902     assert(!LV.getType()->isFunctionType());
1903 
1904     if (LV.getType()->isConstantMatrixType())
1905       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1906 
1907     // Everything needs a load.
1908     return RValue::get(EmitLoadOfScalar(LV, Loc));
1909   }
1910 
1911   if (LV.isVectorElt()) {
1912     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1913                                               LV.isVolatileQualified());
1914     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1915                                                     "vecext"));
1916   }
1917 
1918   // If this is a reference to a subset of the elements of a vector, either
1919   // shuffle the input or extract/insert them as appropriate.
1920   if (LV.isExtVectorElt()) {
1921     return EmitLoadOfExtVectorElementLValue(LV);
1922   }
1923 
1924   // Global Register variables always invoke intrinsics
1925   if (LV.isGlobalReg())
1926     return EmitLoadOfGlobalRegLValue(LV);
1927 
1928   if (LV.isMatrixElt()) {
1929     llvm::Value *Idx = LV.getMatrixIdx();
1930     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1931       const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>();
1932       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1933       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1934     }
1935     llvm::LoadInst *Load =
1936         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1937     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1938   }
1939 
1940   assert(LV.isBitField() && "Unknown LValue type!");
1941   return EmitLoadOfBitfieldLValue(LV, Loc);
1942 }
1943 
1944 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1945                                                  SourceLocation Loc) {
1946   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1947 
1948   // Get the output type.
1949   llvm::Type *ResLTy = ConvertType(LV.getType());
1950 
1951   Address Ptr = LV.getBitFieldAddress();
1952   llvm::Value *Val =
1953       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1954 
1955   bool UseVolatile = LV.isVolatileQualified() &&
1956                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1957   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1958   const unsigned StorageSize =
1959       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1960   if (Info.IsSigned) {
1961     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1962     unsigned HighBits = StorageSize - Offset - Info.Size;
1963     if (HighBits)
1964       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1965     if (Offset + HighBits)
1966       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1967   } else {
1968     if (Offset)
1969       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1970     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1971       Val = Builder.CreateAnd(
1972           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1973   }
1974   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1975   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1976   return RValue::get(Val);
1977 }
1978 
1979 // If this is a reference to a subset of the elements of a vector, create an
1980 // appropriate shufflevector.
1981 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1982   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1983                                         LV.isVolatileQualified());
1984 
1985   const llvm::Constant *Elts = LV.getExtVectorElts();
1986 
1987   // If the result of the expression is a non-vector type, we must be extracting
1988   // a single element.  Just codegen as an extractelement.
1989   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1990   if (!ExprVT) {
1991     unsigned InIdx = getAccessedFieldNo(0, Elts);
1992     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1993     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1994   }
1995 
1996   // Always use shuffle vector to try to retain the original program structure
1997   unsigned NumResultElts = ExprVT->getNumElements();
1998 
1999   SmallVector<int, 4> Mask;
2000   for (unsigned i = 0; i != NumResultElts; ++i)
2001     Mask.push_back(getAccessedFieldNo(i, Elts));
2002 
2003   Vec = Builder.CreateShuffleVector(Vec, Mask);
2004   return RValue::get(Vec);
2005 }
2006 
2007 /// Generates lvalue for partial ext_vector access.
2008 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2009   Address VectorAddress = LV.getExtVectorAddress();
2010   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2011   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2012 
2013   Address CastToPointerElement =
2014     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2015                                  "conv.ptr.element");
2016 
2017   const llvm::Constant *Elts = LV.getExtVectorElts();
2018   unsigned ix = getAccessedFieldNo(0, Elts);
2019 
2020   Address VectorBasePtrPlusIx =
2021     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2022                                    "vector.elt");
2023 
2024   return VectorBasePtrPlusIx;
2025 }
2026 
2027 /// Load of global gamed gegisters are always calls to intrinsics.
2028 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2029   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2030          "Bad type for register variable");
2031   llvm::MDNode *RegName = cast<llvm::MDNode>(
2032       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2033 
2034   // We accept integer and pointer types only
2035   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2036   llvm::Type *Ty = OrigTy;
2037   if (OrigTy->isPointerTy())
2038     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2039   llvm::Type *Types[] = { Ty };
2040 
2041   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2042   llvm::Value *Call = Builder.CreateCall(
2043       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2044   if (OrigTy->isPointerTy())
2045     Call = Builder.CreateIntToPtr(Call, OrigTy);
2046   return RValue::get(Call);
2047 }
2048 
2049 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2050 /// lvalue, where both are guaranteed to the have the same type, and that type
2051 /// is 'Ty'.
2052 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2053                                              bool isInit) {
2054   if (!Dst.isSimple()) {
2055     if (Dst.isVectorElt()) {
2056       // Read/modify/write the vector, inserting the new element.
2057       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2058                                             Dst.isVolatileQualified());
2059       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2060                                         Dst.getVectorIdx(), "vecins");
2061       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2062                           Dst.isVolatileQualified());
2063       return;
2064     }
2065 
2066     // If this is an update of extended vector elements, insert them as
2067     // appropriate.
2068     if (Dst.isExtVectorElt())
2069       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2070 
2071     if (Dst.isGlobalReg())
2072       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2073 
2074     if (Dst.isMatrixElt()) {
2075       llvm::Value *Idx = Dst.getMatrixIdx();
2076       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2077         const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>();
2078         llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
2079         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2080       }
2081       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2082       llvm::Value *Vec =
2083           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2084       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2085                           Dst.isVolatileQualified());
2086       return;
2087     }
2088 
2089     assert(Dst.isBitField() && "Unknown LValue type");
2090     return EmitStoreThroughBitfieldLValue(Src, Dst);
2091   }
2092 
2093   // There's special magic for assigning into an ARC-qualified l-value.
2094   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2095     switch (Lifetime) {
2096     case Qualifiers::OCL_None:
2097       llvm_unreachable("present but none");
2098 
2099     case Qualifiers::OCL_ExplicitNone:
2100       // nothing special
2101       break;
2102 
2103     case Qualifiers::OCL_Strong:
2104       if (isInit) {
2105         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2106         break;
2107       }
2108       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2109       return;
2110 
2111     case Qualifiers::OCL_Weak:
2112       if (isInit)
2113         // Initialize and then skip the primitive store.
2114         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2115       else
2116         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2117                          /*ignore*/ true);
2118       return;
2119 
2120     case Qualifiers::OCL_Autoreleasing:
2121       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2122                                                      Src.getScalarVal()));
2123       // fall into the normal path
2124       break;
2125     }
2126   }
2127 
2128   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2129     // load of a __weak object.
2130     Address LvalueDst = Dst.getAddress(*this);
2131     llvm::Value *src = Src.getScalarVal();
2132      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2133     return;
2134   }
2135 
2136   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2137     // load of a __strong object.
2138     Address LvalueDst = Dst.getAddress(*this);
2139     llvm::Value *src = Src.getScalarVal();
2140     if (Dst.isObjCIvar()) {
2141       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2142       llvm::Type *ResultType = IntPtrTy;
2143       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2144       llvm::Value *RHS = dst.getPointer();
2145       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2146       llvm::Value *LHS =
2147         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2148                                "sub.ptr.lhs.cast");
2149       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2150       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2151                                               BytesBetween);
2152     } else if (Dst.isGlobalObjCRef()) {
2153       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2154                                                 Dst.isThreadLocalRef());
2155     }
2156     else
2157       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2158     return;
2159   }
2160 
2161   assert(Src.isScalar() && "Can't emit an agg store with this method");
2162   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2163 }
2164 
2165 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2166                                                      llvm::Value **Result) {
2167   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2168   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2169   Address Ptr = Dst.getBitFieldAddress();
2170 
2171   // Get the source value, truncated to the width of the bit-field.
2172   llvm::Value *SrcVal = Src.getScalarVal();
2173 
2174   // Cast the source to the storage type and shift it into place.
2175   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2176                                  /*isSigned=*/false);
2177   llvm::Value *MaskedVal = SrcVal;
2178 
2179   const bool UseVolatile =
2180       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2181       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2182   const unsigned StorageSize =
2183       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2184   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2185   // See if there are other bits in the bitfield's storage we'll need to load
2186   // and mask together with source before storing.
2187   if (StorageSize != Info.Size) {
2188     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2189     llvm::Value *Val =
2190         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2191 
2192     // Mask the source value as needed.
2193     if (!hasBooleanRepresentation(Dst.getType()))
2194       SrcVal = Builder.CreateAnd(
2195           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2196           "bf.value");
2197     MaskedVal = SrcVal;
2198     if (Offset)
2199       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2200 
2201     // Mask out the original value.
2202     Val = Builder.CreateAnd(
2203         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2204         "bf.clear");
2205 
2206     // Or together the unchanged values and the source value.
2207     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2208   } else {
2209     assert(Offset == 0);
2210     // According to the AACPS:
2211     // When a volatile bit-field is written, and its container does not overlap
2212     // with any non-bit-field member, its container must be read exactly once
2213     // and written exactly once using the access width appropriate to the type
2214     // of the container. The two accesses are not atomic.
2215     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2216         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2217       Builder.CreateLoad(Ptr, true, "bf.load");
2218   }
2219 
2220   // Write the new value back out.
2221   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2222 
2223   // Return the new value of the bit-field, if requested.
2224   if (Result) {
2225     llvm::Value *ResultVal = MaskedVal;
2226 
2227     // Sign extend the value if needed.
2228     if (Info.IsSigned) {
2229       assert(Info.Size <= StorageSize);
2230       unsigned HighBits = StorageSize - Info.Size;
2231       if (HighBits) {
2232         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2233         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2234       }
2235     }
2236 
2237     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2238                                       "bf.result.cast");
2239     *Result = EmitFromMemory(ResultVal, Dst.getType());
2240   }
2241 }
2242 
2243 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2244                                                                LValue Dst) {
2245   // This access turns into a read/modify/write of the vector.  Load the input
2246   // value now.
2247   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2248                                         Dst.isVolatileQualified());
2249   const llvm::Constant *Elts = Dst.getExtVectorElts();
2250 
2251   llvm::Value *SrcVal = Src.getScalarVal();
2252 
2253   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2254     unsigned NumSrcElts = VTy->getNumElements();
2255     unsigned NumDstElts =
2256         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2257     if (NumDstElts == NumSrcElts) {
2258       // Use shuffle vector is the src and destination are the same number of
2259       // elements and restore the vector mask since it is on the side it will be
2260       // stored.
2261       SmallVector<int, 4> Mask(NumDstElts);
2262       for (unsigned i = 0; i != NumSrcElts; ++i)
2263         Mask[getAccessedFieldNo(i, Elts)] = i;
2264 
2265       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2266     } else if (NumDstElts > NumSrcElts) {
2267       // Extended the source vector to the same length and then shuffle it
2268       // into the destination.
2269       // FIXME: since we're shuffling with undef, can we just use the indices
2270       //        into that?  This could be simpler.
2271       SmallVector<int, 4> ExtMask;
2272       for (unsigned i = 0; i != NumSrcElts; ++i)
2273         ExtMask.push_back(i);
2274       ExtMask.resize(NumDstElts, -1);
2275       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2276       // build identity
2277       SmallVector<int, 4> Mask;
2278       for (unsigned i = 0; i != NumDstElts; ++i)
2279         Mask.push_back(i);
2280 
2281       // When the vector size is odd and .odd or .hi is used, the last element
2282       // of the Elts constant array will be one past the size of the vector.
2283       // Ignore the last element here, if it is greater than the mask size.
2284       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2285         NumSrcElts--;
2286 
2287       // modify when what gets shuffled in
2288       for (unsigned i = 0; i != NumSrcElts; ++i)
2289         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2290       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2291     } else {
2292       // We should never shorten the vector
2293       llvm_unreachable("unexpected shorten vector length");
2294     }
2295   } else {
2296     // If the Src is a scalar (not a vector) it must be updating one element.
2297     unsigned InIdx = getAccessedFieldNo(0, Elts);
2298     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2299     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2300   }
2301 
2302   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2303                       Dst.isVolatileQualified());
2304 }
2305 
2306 /// Store of global named registers are always calls to intrinsics.
2307 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2308   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2309          "Bad type for register variable");
2310   llvm::MDNode *RegName = cast<llvm::MDNode>(
2311       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2312   assert(RegName && "Register LValue is not metadata");
2313 
2314   // We accept integer and pointer types only
2315   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2316   llvm::Type *Ty = OrigTy;
2317   if (OrigTy->isPointerTy())
2318     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2319   llvm::Type *Types[] = { Ty };
2320 
2321   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2322   llvm::Value *Value = Src.getScalarVal();
2323   if (OrigTy->isPointerTy())
2324     Value = Builder.CreatePtrToInt(Value, Ty);
2325   Builder.CreateCall(
2326       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2327 }
2328 
2329 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2330 // generating write-barries API. It is currently a global, ivar,
2331 // or neither.
2332 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2333                                  LValue &LV,
2334                                  bool IsMemberAccess=false) {
2335   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2336     return;
2337 
2338   if (isa<ObjCIvarRefExpr>(E)) {
2339     QualType ExpTy = E->getType();
2340     if (IsMemberAccess && ExpTy->isPointerType()) {
2341       // If ivar is a structure pointer, assigning to field of
2342       // this struct follows gcc's behavior and makes it a non-ivar
2343       // writer-barrier conservatively.
2344       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2345       if (ExpTy->isRecordType()) {
2346         LV.setObjCIvar(false);
2347         return;
2348       }
2349     }
2350     LV.setObjCIvar(true);
2351     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2352     LV.setBaseIvarExp(Exp->getBase());
2353     LV.setObjCArray(E->getType()->isArrayType());
2354     return;
2355   }
2356 
2357   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2358     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2359       if (VD->hasGlobalStorage()) {
2360         LV.setGlobalObjCRef(true);
2361         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2362       }
2363     }
2364     LV.setObjCArray(E->getType()->isArrayType());
2365     return;
2366   }
2367 
2368   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2369     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2370     return;
2371   }
2372 
2373   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2374     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2375     if (LV.isObjCIvar()) {
2376       // If cast is to a structure pointer, follow gcc's behavior and make it
2377       // a non-ivar write-barrier.
2378       QualType ExpTy = E->getType();
2379       if (ExpTy->isPointerType())
2380         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2381       if (ExpTy->isRecordType())
2382         LV.setObjCIvar(false);
2383     }
2384     return;
2385   }
2386 
2387   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2388     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2389     return;
2390   }
2391 
2392   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2393     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2394     return;
2395   }
2396 
2397   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2398     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2399     return;
2400   }
2401 
2402   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2403     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2404     return;
2405   }
2406 
2407   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2408     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2409     if (LV.isObjCIvar() && !LV.isObjCArray())
2410       // Using array syntax to assigning to what an ivar points to is not
2411       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2412       LV.setObjCIvar(false);
2413     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2414       // Using array syntax to assigning to what global points to is not
2415       // same as assigning to the global itself. {id *G;} G[i] = 0;
2416       LV.setGlobalObjCRef(false);
2417     return;
2418   }
2419 
2420   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2421     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2422     // We don't know if member is an 'ivar', but this flag is looked at
2423     // only in the context of LV.isObjCIvar().
2424     LV.setObjCArray(E->getType()->isArrayType());
2425     return;
2426   }
2427 }
2428 
2429 static llvm::Value *
2430 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2431                                 llvm::Value *V, llvm::Type *IRType,
2432                                 StringRef Name = StringRef()) {
2433   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2434   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2435 }
2436 
2437 static LValue EmitThreadPrivateVarDeclLValue(
2438     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2439     llvm::Type *RealVarTy, SourceLocation Loc) {
2440   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2441     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2442         CGF, VD, Addr, Loc);
2443   else
2444     Addr =
2445         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2446 
2447   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2448   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2449 }
2450 
2451 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2452                                            const VarDecl *VD, QualType T) {
2453   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2454       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2455   // Return an invalid address if variable is MT_To and unified
2456   // memory is not enabled. For all other cases: MT_Link and
2457   // MT_To with unified memory, return a valid address.
2458   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2459                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2460     return Address::invalid();
2461   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2462           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2463            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2464          "Expected link clause OR to clause with unified memory enabled.");
2465   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2466   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2467   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2468 }
2469 
2470 Address
2471 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2472                                      LValueBaseInfo *PointeeBaseInfo,
2473                                      TBAAAccessInfo *PointeeTBAAInfo) {
2474   llvm::LoadInst *Load =
2475       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2476   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2477 
2478   CharUnits Align = CGM.getNaturalTypeAlignment(
2479       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2480       /* forPointeeType= */ true);
2481   return Address(Load, Align);
2482 }
2483 
2484 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2485   LValueBaseInfo PointeeBaseInfo;
2486   TBAAAccessInfo PointeeTBAAInfo;
2487   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2488                                             &PointeeTBAAInfo);
2489   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2490                         PointeeBaseInfo, PointeeTBAAInfo);
2491 }
2492 
2493 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2494                                            const PointerType *PtrTy,
2495                                            LValueBaseInfo *BaseInfo,
2496                                            TBAAAccessInfo *TBAAInfo) {
2497   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2498   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2499                                                    BaseInfo, TBAAInfo,
2500                                                    /*forPointeeType=*/true));
2501 }
2502 
2503 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2504                                                 const PointerType *PtrTy) {
2505   LValueBaseInfo BaseInfo;
2506   TBAAAccessInfo TBAAInfo;
2507   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2508   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2509 }
2510 
2511 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2512                                       const Expr *E, const VarDecl *VD) {
2513   QualType T = E->getType();
2514 
2515   // If it's thread_local, emit a call to its wrapper function instead.
2516   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2517       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2518     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2519   // Check if the variable is marked as declare target with link clause in
2520   // device codegen.
2521   if (CGF.getLangOpts().OpenMPIsDevice) {
2522     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2523     if (Addr.isValid())
2524       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2525   }
2526 
2527   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2528   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2529   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2530   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2531   Address Addr(V, Alignment);
2532   // Emit reference to the private copy of the variable if it is an OpenMP
2533   // threadprivate variable.
2534   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2535       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2536     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2537                                           E->getExprLoc());
2538   }
2539   LValue LV = VD->getType()->isReferenceType() ?
2540       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2541                                     AlignmentSource::Decl) :
2542       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2543   setObjCGCLValueClass(CGF.getContext(), E, LV);
2544   return LV;
2545 }
2546 
2547 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2548                                                GlobalDecl GD) {
2549   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2550   if (FD->hasAttr<WeakRefAttr>()) {
2551     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2552     return aliasee.getPointer();
2553   }
2554 
2555   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2556   if (!FD->hasPrototype()) {
2557     if (const FunctionProtoType *Proto =
2558             FD->getType()->getAs<FunctionProtoType>()) {
2559       // Ugly case: for a K&R-style definition, the type of the definition
2560       // isn't the same as the type of a use.  Correct for this with a
2561       // bitcast.
2562       QualType NoProtoType =
2563           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2564       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2565       V = llvm::ConstantExpr::getBitCast(V,
2566                                       CGM.getTypes().ConvertType(NoProtoType));
2567     }
2568   }
2569   return V;
2570 }
2571 
2572 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2573                                      GlobalDecl GD) {
2574   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2575   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2576   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2577   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2578                             AlignmentSource::Decl);
2579 }
2580 
2581 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2582                                       llvm::Value *ThisValue) {
2583   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2584   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2585   return CGF.EmitLValueForField(LV, FD);
2586 }
2587 
2588 /// Named Registers are named metadata pointing to the register name
2589 /// which will be read from/written to as an argument to the intrinsic
2590 /// @llvm.read/write_register.
2591 /// So far, only the name is being passed down, but other options such as
2592 /// register type, allocation type or even optimization options could be
2593 /// passed down via the metadata node.
2594 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2595   SmallString<64> Name("llvm.named.register.");
2596   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2597   assert(Asm->getLabel().size() < 64-Name.size() &&
2598       "Register name too big");
2599   Name.append(Asm->getLabel());
2600   llvm::NamedMDNode *M =
2601     CGM.getModule().getOrInsertNamedMetadata(Name);
2602   if (M->getNumOperands() == 0) {
2603     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2604                                               Asm->getLabel());
2605     llvm::Metadata *Ops[] = {Str};
2606     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2607   }
2608 
2609   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2610 
2611   llvm::Value *Ptr =
2612     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2613   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2614 }
2615 
2616 /// Determine whether we can emit a reference to \p VD from the current
2617 /// context, despite not necessarily having seen an odr-use of the variable in
2618 /// this context.
2619 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2620                                                const DeclRefExpr *E,
2621                                                const VarDecl *VD,
2622                                                bool IsConstant) {
2623   // For a variable declared in an enclosing scope, do not emit a spurious
2624   // reference even if we have a capture, as that will emit an unwarranted
2625   // reference to our capture state, and will likely generate worse code than
2626   // emitting a local copy.
2627   if (E->refersToEnclosingVariableOrCapture())
2628     return false;
2629 
2630   // For a local declaration declared in this function, we can always reference
2631   // it even if we don't have an odr-use.
2632   if (VD->hasLocalStorage()) {
2633     return VD->getDeclContext() ==
2634            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2635   }
2636 
2637   // For a global declaration, we can emit a reference to it if we know
2638   // for sure that we are able to emit a definition of it.
2639   VD = VD->getDefinition(CGF.getContext());
2640   if (!VD)
2641     return false;
2642 
2643   // Don't emit a spurious reference if it might be to a variable that only
2644   // exists on a different device / target.
2645   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2646   // cross-target reference.
2647   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2648       CGF.getLangOpts().OpenCL) {
2649     return false;
2650   }
2651 
2652   // We can emit a spurious reference only if the linkage implies that we'll
2653   // be emitting a non-interposable symbol that will be retained until link
2654   // time.
2655   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2656   case llvm::GlobalValue::ExternalLinkage:
2657   case llvm::GlobalValue::LinkOnceODRLinkage:
2658   case llvm::GlobalValue::WeakODRLinkage:
2659   case llvm::GlobalValue::InternalLinkage:
2660   case llvm::GlobalValue::PrivateLinkage:
2661     return true;
2662   default:
2663     return false;
2664   }
2665 }
2666 
2667 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2668   const NamedDecl *ND = E->getDecl();
2669   QualType T = E->getType();
2670 
2671   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2672          "should not emit an unevaluated operand");
2673 
2674   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2675     // Global Named registers access via intrinsics only
2676     if (VD->getStorageClass() == SC_Register &&
2677         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2678       return EmitGlobalNamedRegister(VD, CGM);
2679 
2680     // If this DeclRefExpr does not constitute an odr-use of the variable,
2681     // we're not permitted to emit a reference to it in general, and it might
2682     // not be captured if capture would be necessary for a use. Emit the
2683     // constant value directly instead.
2684     if (E->isNonOdrUse() == NOUR_Constant &&
2685         (VD->getType()->isReferenceType() ||
2686          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2687       VD->getAnyInitializer(VD);
2688       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2689           E->getLocation(), *VD->evaluateValue(), VD->getType());
2690       assert(Val && "failed to emit constant expression");
2691 
2692       Address Addr = Address::invalid();
2693       if (!VD->getType()->isReferenceType()) {
2694         // Spill the constant value to a global.
2695         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2696                                            getContext().getDeclAlign(VD));
2697         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2698         auto *PTy = llvm::PointerType::get(
2699             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2700         if (PTy != Addr.getType())
2701           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2702       } else {
2703         // Should we be using the alignment of the constant pointer we emitted?
2704         CharUnits Alignment =
2705             CGM.getNaturalTypeAlignment(E->getType(),
2706                                         /* BaseInfo= */ nullptr,
2707                                         /* TBAAInfo= */ nullptr,
2708                                         /* forPointeeType= */ true);
2709         Addr = Address(Val, Alignment);
2710       }
2711       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2712     }
2713 
2714     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2715 
2716     // Check for captured variables.
2717     if (E->refersToEnclosingVariableOrCapture()) {
2718       VD = VD->getCanonicalDecl();
2719       if (auto *FD = LambdaCaptureFields.lookup(VD))
2720         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2721       if (CapturedStmtInfo) {
2722         auto I = LocalDeclMap.find(VD);
2723         if (I != LocalDeclMap.end()) {
2724           LValue CapLVal;
2725           if (VD->getType()->isReferenceType())
2726             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2727                                                 AlignmentSource::Decl);
2728           else
2729             CapLVal = MakeAddrLValue(I->second, T);
2730           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2731           // in simd context.
2732           if (getLangOpts().OpenMP &&
2733               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2734             CapLVal.setNontemporal(/*Value=*/true);
2735           return CapLVal;
2736         }
2737         LValue CapLVal =
2738             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2739                                     CapturedStmtInfo->getContextValue());
2740         CapLVal = MakeAddrLValue(
2741             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2742             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2743             CapLVal.getTBAAInfo());
2744         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2745         // in simd context.
2746         if (getLangOpts().OpenMP &&
2747             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2748           CapLVal.setNontemporal(/*Value=*/true);
2749         return CapLVal;
2750       }
2751 
2752       assert(isa<BlockDecl>(CurCodeDecl));
2753       Address addr = GetAddrOfBlockDecl(VD);
2754       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2755     }
2756   }
2757 
2758   // FIXME: We should be able to assert this for FunctionDecls as well!
2759   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2760   // those with a valid source location.
2761   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2762           !E->getLocation().isValid()) &&
2763          "Should not use decl without marking it used!");
2764 
2765   if (ND->hasAttr<WeakRefAttr>()) {
2766     const auto *VD = cast<ValueDecl>(ND);
2767     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2768     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2769   }
2770 
2771   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2772     // Check if this is a global variable.
2773     if (VD->hasLinkage() || VD->isStaticDataMember())
2774       return EmitGlobalVarDeclLValue(*this, E, VD);
2775 
2776     Address addr = Address::invalid();
2777 
2778     // The variable should generally be present in the local decl map.
2779     auto iter = LocalDeclMap.find(VD);
2780     if (iter != LocalDeclMap.end()) {
2781       addr = iter->second;
2782 
2783     // Otherwise, it might be static local we haven't emitted yet for
2784     // some reason; most likely, because it's in an outer function.
2785     } else if (VD->isStaticLocal()) {
2786       addr = Address(CGM.getOrCreateStaticVarDecl(
2787           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2788                      getContext().getDeclAlign(VD));
2789 
2790     // No other cases for now.
2791     } else {
2792       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2793     }
2794 
2795 
2796     // Check for OpenMP threadprivate variables.
2797     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2798         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2799       return EmitThreadPrivateVarDeclLValue(
2800           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2801           E->getExprLoc());
2802     }
2803 
2804     // Drill into block byref variables.
2805     bool isBlockByref = VD->isEscapingByref();
2806     if (isBlockByref) {
2807       addr = emitBlockByrefAddress(addr, VD);
2808     }
2809 
2810     // Drill into reference types.
2811     LValue LV = VD->getType()->isReferenceType() ?
2812         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2813         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2814 
2815     bool isLocalStorage = VD->hasLocalStorage();
2816 
2817     bool NonGCable = isLocalStorage &&
2818                      !VD->getType()->isReferenceType() &&
2819                      !isBlockByref;
2820     if (NonGCable) {
2821       LV.getQuals().removeObjCGCAttr();
2822       LV.setNonGC(true);
2823     }
2824 
2825     bool isImpreciseLifetime =
2826       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2827     if (isImpreciseLifetime)
2828       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2829     setObjCGCLValueClass(getContext(), E, LV);
2830     return LV;
2831   }
2832 
2833   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2834     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2835 
2836     // Emit debuginfo for the function declaration if the target wants to.
2837     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2838       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2839         auto *Fn =
2840             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2841         if (!Fn->getSubprogram())
2842           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2843       }
2844     }
2845 
2846     return LV;
2847   }
2848 
2849   // FIXME: While we're emitting a binding from an enclosing scope, all other
2850   // DeclRefExprs we see should be implicitly treated as if they also refer to
2851   // an enclosing scope.
2852   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2853     return EmitLValue(BD->getBinding());
2854 
2855   // We can form DeclRefExprs naming GUID declarations when reconstituting
2856   // non-type template parameters into expressions.
2857   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2858     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2859                           AlignmentSource::Decl);
2860 
2861   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2862     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2863                           AlignmentSource::Decl);
2864 
2865   llvm_unreachable("Unhandled DeclRefExpr");
2866 }
2867 
2868 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2869   // __extension__ doesn't affect lvalue-ness.
2870   if (E->getOpcode() == UO_Extension)
2871     return EmitLValue(E->getSubExpr());
2872 
2873   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2874   switch (E->getOpcode()) {
2875   default: llvm_unreachable("Unknown unary operator lvalue!");
2876   case UO_Deref: {
2877     QualType T = E->getSubExpr()->getType()->getPointeeType();
2878     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2879 
2880     LValueBaseInfo BaseInfo;
2881     TBAAAccessInfo TBAAInfo;
2882     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2883                                             &TBAAInfo);
2884     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2885     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2886 
2887     // We should not generate __weak write barrier on indirect reference
2888     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2889     // But, we continue to generate __strong write barrier on indirect write
2890     // into a pointer to object.
2891     if (getLangOpts().ObjC &&
2892         getLangOpts().getGC() != LangOptions::NonGC &&
2893         LV.isObjCWeak())
2894       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2895     return LV;
2896   }
2897   case UO_Real:
2898   case UO_Imag: {
2899     LValue LV = EmitLValue(E->getSubExpr());
2900     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2901 
2902     // __real is valid on scalars.  This is a faster way of testing that.
2903     // __imag can only produce an rvalue on scalars.
2904     if (E->getOpcode() == UO_Real &&
2905         !LV.getAddress(*this).getElementType()->isStructTy()) {
2906       assert(E->getSubExpr()->getType()->isArithmeticType());
2907       return LV;
2908     }
2909 
2910     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2911 
2912     Address Component =
2913         (E->getOpcode() == UO_Real
2914              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2915              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2916     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2917                                    CGM.getTBAAInfoForSubobject(LV, T));
2918     ElemLV.getQuals().addQualifiers(LV.getQuals());
2919     return ElemLV;
2920   }
2921   case UO_PreInc:
2922   case UO_PreDec: {
2923     LValue LV = EmitLValue(E->getSubExpr());
2924     bool isInc = E->getOpcode() == UO_PreInc;
2925 
2926     if (E->getType()->isAnyComplexType())
2927       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2928     else
2929       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2930     return LV;
2931   }
2932   }
2933 }
2934 
2935 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2936   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2937                         E->getType(), AlignmentSource::Decl);
2938 }
2939 
2940 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2941   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2942                         E->getType(), AlignmentSource::Decl);
2943 }
2944 
2945 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2946   auto SL = E->getFunctionName();
2947   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2948   StringRef FnName = CurFn->getName();
2949   if (FnName.startswith("\01"))
2950     FnName = FnName.substr(1);
2951   StringRef NameItems[] = {
2952       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2953   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2954   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2955     std::string Name = std::string(SL->getString());
2956     if (!Name.empty()) {
2957       unsigned Discriminator =
2958           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2959       if (Discriminator)
2960         Name += "_" + Twine(Discriminator + 1).str();
2961       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2962       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2963     } else {
2964       auto C =
2965           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2966       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2967     }
2968   }
2969   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2970   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2971 }
2972 
2973 /// Emit a type description suitable for use by a runtime sanitizer library. The
2974 /// format of a type descriptor is
2975 ///
2976 /// \code
2977 ///   { i16 TypeKind, i16 TypeInfo }
2978 /// \endcode
2979 ///
2980 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2981 /// integer, 1 for a floating point value, and -1 for anything else.
2982 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2983   // Only emit each type's descriptor once.
2984   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2985     return C;
2986 
2987   uint16_t TypeKind = -1;
2988   uint16_t TypeInfo = 0;
2989 
2990   if (T->isIntegerType()) {
2991     TypeKind = 0;
2992     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2993                (T->isSignedIntegerType() ? 1 : 0);
2994   } else if (T->isFloatingType()) {
2995     TypeKind = 1;
2996     TypeInfo = getContext().getTypeSize(T);
2997   }
2998 
2999   // Format the type name as if for a diagnostic, including quotes and
3000   // optionally an 'aka'.
3001   SmallString<32> Buffer;
3002   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3003                                     (intptr_t)T.getAsOpaquePtr(),
3004                                     StringRef(), StringRef(), None, Buffer,
3005                                     None);
3006 
3007   llvm::Constant *Components[] = {
3008     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3009     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3010   };
3011   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3012 
3013   auto *GV = new llvm::GlobalVariable(
3014       CGM.getModule(), Descriptor->getType(),
3015       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3016   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3017   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3018 
3019   // Remember the descriptor for this type.
3020   CGM.setTypeDescriptorInMap(T, GV);
3021 
3022   return GV;
3023 }
3024 
3025 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3026   llvm::Type *TargetTy = IntPtrTy;
3027 
3028   if (V->getType() == TargetTy)
3029     return V;
3030 
3031   // Floating-point types which fit into intptr_t are bitcast to integers
3032   // and then passed directly (after zero-extension, if necessary).
3033   if (V->getType()->isFloatingPointTy()) {
3034     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3035     if (Bits <= TargetTy->getIntegerBitWidth())
3036       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3037                                                          Bits));
3038   }
3039 
3040   // Integers which fit in intptr_t are zero-extended and passed directly.
3041   if (V->getType()->isIntegerTy() &&
3042       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3043     return Builder.CreateZExt(V, TargetTy);
3044 
3045   // Pointers are passed directly, everything else is passed by address.
3046   if (!V->getType()->isPointerTy()) {
3047     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3048     Builder.CreateStore(V, Ptr);
3049     V = Ptr.getPointer();
3050   }
3051   return Builder.CreatePtrToInt(V, TargetTy);
3052 }
3053 
3054 /// Emit a representation of a SourceLocation for passing to a handler
3055 /// in a sanitizer runtime library. The format for this data is:
3056 /// \code
3057 ///   struct SourceLocation {
3058 ///     const char *Filename;
3059 ///     int32_t Line, Column;
3060 ///   };
3061 /// \endcode
3062 /// For an invalid SourceLocation, the Filename pointer is null.
3063 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3064   llvm::Constant *Filename;
3065   int Line, Column;
3066 
3067   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3068   if (PLoc.isValid()) {
3069     StringRef FilenameString = PLoc.getFilename();
3070 
3071     int PathComponentsToStrip =
3072         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3073     if (PathComponentsToStrip < 0) {
3074       assert(PathComponentsToStrip != INT_MIN);
3075       int PathComponentsToKeep = -PathComponentsToStrip;
3076       auto I = llvm::sys::path::rbegin(FilenameString);
3077       auto E = llvm::sys::path::rend(FilenameString);
3078       while (I != E && --PathComponentsToKeep)
3079         ++I;
3080 
3081       FilenameString = FilenameString.substr(I - E);
3082     } else if (PathComponentsToStrip > 0) {
3083       auto I = llvm::sys::path::begin(FilenameString);
3084       auto E = llvm::sys::path::end(FilenameString);
3085       while (I != E && PathComponentsToStrip--)
3086         ++I;
3087 
3088       if (I != E)
3089         FilenameString =
3090             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3091       else
3092         FilenameString = llvm::sys::path::filename(FilenameString);
3093     }
3094 
3095     auto FilenameGV =
3096         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3097     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3098                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3099     Filename = FilenameGV.getPointer();
3100     Line = PLoc.getLine();
3101     Column = PLoc.getColumn();
3102   } else {
3103     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3104     Line = Column = 0;
3105   }
3106 
3107   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3108                             Builder.getInt32(Column)};
3109 
3110   return llvm::ConstantStruct::getAnon(Data);
3111 }
3112 
3113 namespace {
3114 /// Specify under what conditions this check can be recovered
3115 enum class CheckRecoverableKind {
3116   /// Always terminate program execution if this check fails.
3117   Unrecoverable,
3118   /// Check supports recovering, runtime has both fatal (noreturn) and
3119   /// non-fatal handlers for this check.
3120   Recoverable,
3121   /// Runtime conditionally aborts, always need to support recovery.
3122   AlwaysRecoverable
3123 };
3124 }
3125 
3126 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3127   assert(Kind.countPopulation() == 1);
3128   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3129     return CheckRecoverableKind::AlwaysRecoverable;
3130   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3131     return CheckRecoverableKind::Unrecoverable;
3132   else
3133     return CheckRecoverableKind::Recoverable;
3134 }
3135 
3136 namespace {
3137 struct SanitizerHandlerInfo {
3138   char const *const Name;
3139   unsigned Version;
3140 };
3141 }
3142 
3143 const SanitizerHandlerInfo SanitizerHandlers[] = {
3144 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3145     LIST_SANITIZER_CHECKS
3146 #undef SANITIZER_CHECK
3147 };
3148 
3149 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3150                                  llvm::FunctionType *FnType,
3151                                  ArrayRef<llvm::Value *> FnArgs,
3152                                  SanitizerHandler CheckHandler,
3153                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3154                                  llvm::BasicBlock *ContBB) {
3155   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3156   Optional<ApplyDebugLocation> DL;
3157   if (!CGF.Builder.getCurrentDebugLocation()) {
3158     // Ensure that the call has at least an artificial debug location.
3159     DL.emplace(CGF, SourceLocation());
3160   }
3161   bool NeedsAbortSuffix =
3162       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3163   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3164   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3165   const StringRef CheckName = CheckInfo.Name;
3166   std::string FnName = "__ubsan_handle_" + CheckName.str();
3167   if (CheckInfo.Version && !MinimalRuntime)
3168     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3169   if (MinimalRuntime)
3170     FnName += "_minimal";
3171   if (NeedsAbortSuffix)
3172     FnName += "_abort";
3173   bool MayReturn =
3174       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3175 
3176   llvm::AttrBuilder B;
3177   if (!MayReturn) {
3178     B.addAttribute(llvm::Attribute::NoReturn)
3179         .addAttribute(llvm::Attribute::NoUnwind);
3180   }
3181   B.addAttribute(llvm::Attribute::UWTable);
3182 
3183   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3184       FnType, FnName,
3185       llvm::AttributeList::get(CGF.getLLVMContext(),
3186                                llvm::AttributeList::FunctionIndex, B),
3187       /*Local=*/true);
3188   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3189   if (!MayReturn) {
3190     HandlerCall->setDoesNotReturn();
3191     CGF.Builder.CreateUnreachable();
3192   } else {
3193     CGF.Builder.CreateBr(ContBB);
3194   }
3195 }
3196 
3197 void CodeGenFunction::EmitCheck(
3198     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3199     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3200     ArrayRef<llvm::Value *> DynamicArgs) {
3201   assert(IsSanitizerScope);
3202   assert(Checked.size() > 0);
3203   assert(CheckHandler >= 0 &&
3204          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3205   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3206 
3207   llvm::Value *FatalCond = nullptr;
3208   llvm::Value *RecoverableCond = nullptr;
3209   llvm::Value *TrapCond = nullptr;
3210   for (int i = 0, n = Checked.size(); i < n; ++i) {
3211     llvm::Value *Check = Checked[i].first;
3212     // -fsanitize-trap= overrides -fsanitize-recover=.
3213     llvm::Value *&Cond =
3214         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3215             ? TrapCond
3216             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3217                   ? RecoverableCond
3218                   : FatalCond;
3219     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3220   }
3221 
3222   if (TrapCond)
3223     EmitTrapCheck(TrapCond, CheckHandler);
3224   if (!FatalCond && !RecoverableCond)
3225     return;
3226 
3227   llvm::Value *JointCond;
3228   if (FatalCond && RecoverableCond)
3229     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3230   else
3231     JointCond = FatalCond ? FatalCond : RecoverableCond;
3232   assert(JointCond);
3233 
3234   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3235   assert(SanOpts.has(Checked[0].second));
3236 #ifndef NDEBUG
3237   for (int i = 1, n = Checked.size(); i < n; ++i) {
3238     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3239            "All recoverable kinds in a single check must be same!");
3240     assert(SanOpts.has(Checked[i].second));
3241   }
3242 #endif
3243 
3244   llvm::BasicBlock *Cont = createBasicBlock("cont");
3245   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3246   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3247   // Give hint that we very much don't expect to execute the handler
3248   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3249   llvm::MDBuilder MDHelper(getLLVMContext());
3250   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3251   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3252   EmitBlock(Handlers);
3253 
3254   // Handler functions take an i8* pointing to the (handler-specific) static
3255   // information block, followed by a sequence of intptr_t arguments
3256   // representing operand values.
3257   SmallVector<llvm::Value *, 4> Args;
3258   SmallVector<llvm::Type *, 4> ArgTypes;
3259   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3260     Args.reserve(DynamicArgs.size() + 1);
3261     ArgTypes.reserve(DynamicArgs.size() + 1);
3262 
3263     // Emit handler arguments and create handler function type.
3264     if (!StaticArgs.empty()) {
3265       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3266       auto *InfoPtr =
3267           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3268                                    llvm::GlobalVariable::PrivateLinkage, Info);
3269       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3270       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3271       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3272       ArgTypes.push_back(Int8PtrTy);
3273     }
3274 
3275     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3276       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3277       ArgTypes.push_back(IntPtrTy);
3278     }
3279   }
3280 
3281   llvm::FunctionType *FnType =
3282     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3283 
3284   if (!FatalCond || !RecoverableCond) {
3285     // Simple case: we need to generate a single handler call, either
3286     // fatal, or non-fatal.
3287     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3288                          (FatalCond != nullptr), Cont);
3289   } else {
3290     // Emit two handler calls: first one for set of unrecoverable checks,
3291     // another one for recoverable.
3292     llvm::BasicBlock *NonFatalHandlerBB =
3293         createBasicBlock("non_fatal." + CheckName);
3294     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3295     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3296     EmitBlock(FatalHandlerBB);
3297     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3298                          NonFatalHandlerBB);
3299     EmitBlock(NonFatalHandlerBB);
3300     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3301                          Cont);
3302   }
3303 
3304   EmitBlock(Cont);
3305 }
3306 
3307 void CodeGenFunction::EmitCfiSlowPathCheck(
3308     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3309     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3310   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3311 
3312   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3313   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3314 
3315   llvm::MDBuilder MDHelper(getLLVMContext());
3316   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3317   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3318 
3319   EmitBlock(CheckBB);
3320 
3321   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3322 
3323   llvm::CallInst *CheckCall;
3324   llvm::FunctionCallee SlowPathFn;
3325   if (WithDiag) {
3326     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3327     auto *InfoPtr =
3328         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3329                                  llvm::GlobalVariable::PrivateLinkage, Info);
3330     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3331     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3332 
3333     SlowPathFn = CGM.getModule().getOrInsertFunction(
3334         "__cfi_slowpath_diag",
3335         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3336                                 false));
3337     CheckCall = Builder.CreateCall(
3338         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3339   } else {
3340     SlowPathFn = CGM.getModule().getOrInsertFunction(
3341         "__cfi_slowpath",
3342         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3343     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3344   }
3345 
3346   CGM.setDSOLocal(
3347       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3348   CheckCall->setDoesNotThrow();
3349 
3350   EmitBlock(Cont);
3351 }
3352 
3353 // Emit a stub for __cfi_check function so that the linker knows about this
3354 // symbol in LTO mode.
3355 void CodeGenFunction::EmitCfiCheckStub() {
3356   llvm::Module *M = &CGM.getModule();
3357   auto &Ctx = M->getContext();
3358   llvm::Function *F = llvm::Function::Create(
3359       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3360       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3361   CGM.setDSOLocal(F);
3362   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3363   // FIXME: consider emitting an intrinsic call like
3364   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3365   // which can be lowered in CrossDSOCFI pass to the actual contents of
3366   // __cfi_check. This would allow inlining of __cfi_check calls.
3367   llvm::CallInst::Create(
3368       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3369   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3370 }
3371 
3372 // This function is basically a switch over the CFI failure kind, which is
3373 // extracted from CFICheckFailData (1st function argument). Each case is either
3374 // llvm.trap or a call to one of the two runtime handlers, based on
3375 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3376 // failure kind) traps, but this should really never happen.  CFICheckFailData
3377 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3378 // check kind; in this case __cfi_check_fail traps as well.
3379 void CodeGenFunction::EmitCfiCheckFail() {
3380   SanitizerScope SanScope(this);
3381   FunctionArgList Args;
3382   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3383                             ImplicitParamDecl::Other);
3384   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3385                             ImplicitParamDecl::Other);
3386   Args.push_back(&ArgData);
3387   Args.push_back(&ArgAddr);
3388 
3389   const CGFunctionInfo &FI =
3390     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3391 
3392   llvm::Function *F = llvm::Function::Create(
3393       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3394       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3395 
3396   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3397   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3398   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3399 
3400   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3401                 SourceLocation());
3402 
3403   // This function is not affected by NoSanitizeList. This function does
3404   // not have a source location, but "src:*" would still apply. Revert any
3405   // changes to SanOpts made in StartFunction.
3406   SanOpts = CGM.getLangOpts().Sanitize;
3407 
3408   llvm::Value *Data =
3409       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3410                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3411   llvm::Value *Addr =
3412       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3413                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3414 
3415   // Data == nullptr means the calling module has trap behaviour for this check.
3416   llvm::Value *DataIsNotNullPtr =
3417       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3418   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3419 
3420   llvm::StructType *SourceLocationTy =
3421       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3422   llvm::StructType *CfiCheckFailDataTy =
3423       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3424 
3425   llvm::Value *V = Builder.CreateConstGEP2_32(
3426       CfiCheckFailDataTy,
3427       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3428       0);
3429   Address CheckKindAddr(V, getIntAlign());
3430   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3431 
3432   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3433       CGM.getLLVMContext(),
3434       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3435   llvm::Value *ValidVtable = Builder.CreateZExt(
3436       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3437                          {Addr, AllVtables}),
3438       IntPtrTy);
3439 
3440   const std::pair<int, SanitizerMask> CheckKinds[] = {
3441       {CFITCK_VCall, SanitizerKind::CFIVCall},
3442       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3443       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3444       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3445       {CFITCK_ICall, SanitizerKind::CFIICall}};
3446 
3447   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3448   for (auto CheckKindMaskPair : CheckKinds) {
3449     int Kind = CheckKindMaskPair.first;
3450     SanitizerMask Mask = CheckKindMaskPair.second;
3451     llvm::Value *Cond =
3452         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3453     if (CGM.getLangOpts().Sanitize.has(Mask))
3454       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3455                 {Data, Addr, ValidVtable});
3456     else
3457       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3458   }
3459 
3460   FinishFunction();
3461   // The only reference to this function will be created during LTO link.
3462   // Make sure it survives until then.
3463   CGM.addUsedGlobal(F);
3464 }
3465 
3466 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3467   if (SanOpts.has(SanitizerKind::Unreachable)) {
3468     SanitizerScope SanScope(this);
3469     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3470                              SanitizerKind::Unreachable),
3471               SanitizerHandler::BuiltinUnreachable,
3472               EmitCheckSourceLocation(Loc), None);
3473   }
3474   Builder.CreateUnreachable();
3475 }
3476 
3477 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3478                                     SanitizerHandler CheckHandlerID) {
3479   llvm::BasicBlock *Cont = createBasicBlock("cont");
3480 
3481   // If we're optimizing, collapse all calls to trap down to just one per
3482   // check-type per function to save on code size.
3483   if (TrapBBs.size() <= CheckHandlerID)
3484     TrapBBs.resize(CheckHandlerID + 1);
3485   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3486 
3487   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3488     TrapBB = createBasicBlock("trap");
3489     Builder.CreateCondBr(Checked, Cont, TrapBB);
3490     EmitBlock(TrapBB);
3491 
3492     llvm::CallInst *TrapCall =
3493         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3494                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3495 
3496     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3497       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3498                                     CGM.getCodeGenOpts().TrapFuncName);
3499       TrapCall->addFnAttr(A);
3500     }
3501     TrapCall->setDoesNotReturn();
3502     TrapCall->setDoesNotThrow();
3503     Builder.CreateUnreachable();
3504   } else {
3505     auto Call = TrapBB->begin();
3506     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3507 
3508     Call->applyMergedLocation(Call->getDebugLoc(),
3509                               Builder.getCurrentDebugLocation());
3510     Builder.CreateCondBr(Checked, Cont, TrapBB);
3511   }
3512 
3513   EmitBlock(Cont);
3514 }
3515 
3516 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3517   llvm::CallInst *TrapCall =
3518       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3519 
3520   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3521     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3522                                   CGM.getCodeGenOpts().TrapFuncName);
3523     TrapCall->addFnAttr(A);
3524   }
3525 
3526   return TrapCall;
3527 }
3528 
3529 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3530                                                  LValueBaseInfo *BaseInfo,
3531                                                  TBAAAccessInfo *TBAAInfo) {
3532   assert(E->getType()->isArrayType() &&
3533          "Array to pointer decay must have array source type!");
3534 
3535   // Expressions of array type can't be bitfields or vector elements.
3536   LValue LV = EmitLValue(E);
3537   Address Addr = LV.getAddress(*this);
3538 
3539   // If the array type was an incomplete type, we need to make sure
3540   // the decay ends up being the right type.
3541   llvm::Type *NewTy = ConvertType(E->getType());
3542   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3543 
3544   // Note that VLA pointers are always decayed, so we don't need to do
3545   // anything here.
3546   if (!E->getType()->isVariableArrayType()) {
3547     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3548            "Expected pointer to array");
3549     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3550   }
3551 
3552   // The result of this decay conversion points to an array element within the
3553   // base lvalue. However, since TBAA currently does not support representing
3554   // accesses to elements of member arrays, we conservatively represent accesses
3555   // to the pointee object as if it had no any base lvalue specified.
3556   // TODO: Support TBAA for member arrays.
3557   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3558   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3559   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3560 
3561   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3562 }
3563 
3564 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3565 /// array to pointer, return the array subexpression.
3566 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3567   // If this isn't just an array->pointer decay, bail out.
3568   const auto *CE = dyn_cast<CastExpr>(E);
3569   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3570     return nullptr;
3571 
3572   // If this is a decay from variable width array, bail out.
3573   const Expr *SubExpr = CE->getSubExpr();
3574   if (SubExpr->getType()->isVariableArrayType())
3575     return nullptr;
3576 
3577   return SubExpr;
3578 }
3579 
3580 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3581                                           llvm::Type *elemType,
3582                                           llvm::Value *ptr,
3583                                           ArrayRef<llvm::Value*> indices,
3584                                           bool inbounds,
3585                                           bool signedIndices,
3586                                           SourceLocation loc,
3587                                     const llvm::Twine &name = "arrayidx") {
3588   if (inbounds) {
3589     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3590                                       CodeGenFunction::NotSubtraction, loc,
3591                                       name);
3592   } else {
3593     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3594   }
3595 }
3596 
3597 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3598                                       llvm::Value *idx,
3599                                       CharUnits eltSize) {
3600   // If we have a constant index, we can use the exact offset of the
3601   // element we're accessing.
3602   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3603     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3604     return arrayAlign.alignmentAtOffset(offset);
3605 
3606   // Otherwise, use the worst-case alignment for any element.
3607   } else {
3608     return arrayAlign.alignmentOfArrayElement(eltSize);
3609   }
3610 }
3611 
3612 static QualType getFixedSizeElementType(const ASTContext &ctx,
3613                                         const VariableArrayType *vla) {
3614   QualType eltType;
3615   do {
3616     eltType = vla->getElementType();
3617   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3618   return eltType;
3619 }
3620 
3621 /// Given an array base, check whether its member access belongs to a record
3622 /// with preserve_access_index attribute or not.
3623 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3624   if (!ArrayBase || !CGF.getDebugInfo())
3625     return false;
3626 
3627   // Only support base as either a MemberExpr or DeclRefExpr.
3628   // DeclRefExpr to cover cases like:
3629   //    struct s { int a; int b[10]; };
3630   //    struct s *p;
3631   //    p[1].a
3632   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3633   // p->b[5] is a MemberExpr example.
3634   const Expr *E = ArrayBase->IgnoreImpCasts();
3635   if (const auto *ME = dyn_cast<MemberExpr>(E))
3636     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3637 
3638   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3639     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3640     if (!VarDef)
3641       return false;
3642 
3643     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3644     if (!PtrT)
3645       return false;
3646 
3647     const auto *PointeeT = PtrT->getPointeeType()
3648                              ->getUnqualifiedDesugaredType();
3649     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3650       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3651     return false;
3652   }
3653 
3654   return false;
3655 }
3656 
3657 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3658                                      ArrayRef<llvm::Value *> indices,
3659                                      QualType eltType, bool inbounds,
3660                                      bool signedIndices, SourceLocation loc,
3661                                      QualType *arrayType = nullptr,
3662                                      const Expr *Base = nullptr,
3663                                      const llvm::Twine &name = "arrayidx") {
3664   // All the indices except that last must be zero.
3665 #ifndef NDEBUG
3666   for (auto idx : indices.drop_back())
3667     assert(isa<llvm::ConstantInt>(idx) &&
3668            cast<llvm::ConstantInt>(idx)->isZero());
3669 #endif
3670 
3671   // Determine the element size of the statically-sized base.  This is
3672   // the thing that the indices are expressed in terms of.
3673   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3674     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3675   }
3676 
3677   // We can use that to compute the best alignment of the element.
3678   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3679   CharUnits eltAlign =
3680     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3681 
3682   llvm::Value *eltPtr;
3683   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3684   if (!LastIndex ||
3685       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3686     eltPtr = emitArraySubscriptGEP(
3687         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3688         signedIndices, loc, name);
3689   } else {
3690     // Remember the original array subscript for bpf target
3691     unsigned idx = LastIndex->getZExtValue();
3692     llvm::DIType *DbgInfo = nullptr;
3693     if (arrayType)
3694       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3695     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3696                                                         addr.getPointer(),
3697                                                         indices.size() - 1,
3698                                                         idx, DbgInfo);
3699   }
3700 
3701   return Address(eltPtr, eltAlign);
3702 }
3703 
3704 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3705                                                bool Accessed) {
3706   // The index must always be an integer, which is not an aggregate.  Emit it
3707   // in lexical order (this complexity is, sadly, required by C++17).
3708   llvm::Value *IdxPre =
3709       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3710   bool SignedIndices = false;
3711   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3712     auto *Idx = IdxPre;
3713     if (E->getLHS() != E->getIdx()) {
3714       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3715       Idx = EmitScalarExpr(E->getIdx());
3716     }
3717 
3718     QualType IdxTy = E->getIdx()->getType();
3719     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3720     SignedIndices |= IdxSigned;
3721 
3722     if (SanOpts.has(SanitizerKind::ArrayBounds))
3723       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3724 
3725     // Extend or truncate the index type to 32 or 64-bits.
3726     if (Promote && Idx->getType() != IntPtrTy)
3727       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3728 
3729     return Idx;
3730   };
3731   IdxPre = nullptr;
3732 
3733   // If the base is a vector type, then we are forming a vector element lvalue
3734   // with this subscript.
3735   if (E->getBase()->getType()->isVectorType() &&
3736       !isa<ExtVectorElementExpr>(E->getBase())) {
3737     // Emit the vector as an lvalue to get its address.
3738     LValue LHS = EmitLValue(E->getBase());
3739     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3740     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3741     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3742                                  E->getBase()->getType(), LHS.getBaseInfo(),
3743                                  TBAAAccessInfo());
3744   }
3745 
3746   // All the other cases basically behave like simple offsetting.
3747 
3748   // Handle the extvector case we ignored above.
3749   if (isa<ExtVectorElementExpr>(E->getBase())) {
3750     LValue LV = EmitLValue(E->getBase());
3751     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3752     Address Addr = EmitExtVectorElementLValue(LV);
3753 
3754     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3755     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3756                                  SignedIndices, E->getExprLoc());
3757     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3758                           CGM.getTBAAInfoForSubobject(LV, EltType));
3759   }
3760 
3761   LValueBaseInfo EltBaseInfo;
3762   TBAAAccessInfo EltTBAAInfo;
3763   Address Addr = Address::invalid();
3764   if (const VariableArrayType *vla =
3765            getContext().getAsVariableArrayType(E->getType())) {
3766     // The base must be a pointer, which is not an aggregate.  Emit
3767     // it.  It needs to be emitted first in case it's what captures
3768     // the VLA bounds.
3769     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3770     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3771 
3772     // The element count here is the total number of non-VLA elements.
3773     llvm::Value *numElements = getVLASize(vla).NumElts;
3774 
3775     // Effectively, the multiply by the VLA size is part of the GEP.
3776     // GEP indexes are signed, and scaling an index isn't permitted to
3777     // signed-overflow, so we use the same semantics for our explicit
3778     // multiply.  We suppress this if overflow is not undefined behavior.
3779     if (getLangOpts().isSignedOverflowDefined()) {
3780       Idx = Builder.CreateMul(Idx, numElements);
3781     } else {
3782       Idx = Builder.CreateNSWMul(Idx, numElements);
3783     }
3784 
3785     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3786                                  !getLangOpts().isSignedOverflowDefined(),
3787                                  SignedIndices, E->getExprLoc());
3788 
3789   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3790     // Indexing over an interface, as in "NSString *P; P[4];"
3791 
3792     // Emit the base pointer.
3793     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3794     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3795 
3796     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3797     llvm::Value *InterfaceSizeVal =
3798         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3799 
3800     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3801 
3802     // We don't necessarily build correct LLVM struct types for ObjC
3803     // interfaces, so we can't rely on GEP to do this scaling
3804     // correctly, so we need to cast to i8*.  FIXME: is this actually
3805     // true?  A lot of other things in the fragile ABI would break...
3806     llvm::Type *OrigBaseTy = Addr.getType();
3807     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3808 
3809     // Do the GEP.
3810     CharUnits EltAlign =
3811       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3812     llvm::Value *EltPtr =
3813         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3814                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3815     Addr = Address(EltPtr, EltAlign);
3816 
3817     // Cast back.
3818     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3819   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3820     // If this is A[i] where A is an array, the frontend will have decayed the
3821     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3822     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3823     // "gep x, i" here.  Emit one "gep A, 0, i".
3824     assert(Array->getType()->isArrayType() &&
3825            "Array to pointer decay must have array source type!");
3826     LValue ArrayLV;
3827     // For simple multidimensional array indexing, set the 'accessed' flag for
3828     // better bounds-checking of the base expression.
3829     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3830       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3831     else
3832       ArrayLV = EmitLValue(Array);
3833     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3834 
3835     // Propagate the alignment from the array itself to the result.
3836     QualType arrayType = Array->getType();
3837     Addr = emitArraySubscriptGEP(
3838         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3839         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3840         E->getExprLoc(), &arrayType, E->getBase());
3841     EltBaseInfo = ArrayLV.getBaseInfo();
3842     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3843   } else {
3844     // The base must be a pointer; emit it with an estimate of its alignment.
3845     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3846     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3847     QualType ptrType = E->getBase()->getType();
3848     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3849                                  !getLangOpts().isSignedOverflowDefined(),
3850                                  SignedIndices, E->getExprLoc(), &ptrType,
3851                                  E->getBase());
3852   }
3853 
3854   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3855 
3856   if (getLangOpts().ObjC &&
3857       getLangOpts().getGC() != LangOptions::NonGC) {
3858     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3859     setObjCGCLValueClass(getContext(), E, LV);
3860   }
3861   return LV;
3862 }
3863 
3864 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3865   assert(
3866       !E->isIncomplete() &&
3867       "incomplete matrix subscript expressions should be rejected during Sema");
3868   LValue Base = EmitLValue(E->getBase());
3869   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3870   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3871   llvm::Value *NumRows = Builder.getIntN(
3872       RowIdx->getType()->getScalarSizeInBits(),
3873       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3874   llvm::Value *FinalIdx =
3875       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3876   return LValue::MakeMatrixElt(
3877       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3878       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3879 }
3880 
3881 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3882                                        LValueBaseInfo &BaseInfo,
3883                                        TBAAAccessInfo &TBAAInfo,
3884                                        QualType BaseTy, QualType ElTy,
3885                                        bool IsLowerBound) {
3886   LValue BaseLVal;
3887   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3888     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3889     if (BaseTy->isArrayType()) {
3890       Address Addr = BaseLVal.getAddress(CGF);
3891       BaseInfo = BaseLVal.getBaseInfo();
3892 
3893       // If the array type was an incomplete type, we need to make sure
3894       // the decay ends up being the right type.
3895       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3896       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3897 
3898       // Note that VLA pointers are always decayed, so we don't need to do
3899       // anything here.
3900       if (!BaseTy->isVariableArrayType()) {
3901         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3902                "Expected pointer to array");
3903         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3904       }
3905 
3906       return CGF.Builder.CreateElementBitCast(Addr,
3907                                               CGF.ConvertTypeForMem(ElTy));
3908     }
3909     LValueBaseInfo TypeBaseInfo;
3910     TBAAAccessInfo TypeTBAAInfo;
3911     CharUnits Align =
3912         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3913     BaseInfo.mergeForCast(TypeBaseInfo);
3914     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3915     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3916   }
3917   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3918 }
3919 
3920 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3921                                                 bool IsLowerBound) {
3922   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3923   QualType ResultExprTy;
3924   if (auto *AT = getContext().getAsArrayType(BaseTy))
3925     ResultExprTy = AT->getElementType();
3926   else
3927     ResultExprTy = BaseTy->getPointeeType();
3928   llvm::Value *Idx = nullptr;
3929   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3930     // Requesting lower bound or upper bound, but without provided length and
3931     // without ':' symbol for the default length -> length = 1.
3932     // Idx = LowerBound ?: 0;
3933     if (auto *LowerBound = E->getLowerBound()) {
3934       Idx = Builder.CreateIntCast(
3935           EmitScalarExpr(LowerBound), IntPtrTy,
3936           LowerBound->getType()->hasSignedIntegerRepresentation());
3937     } else
3938       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3939   } else {
3940     // Try to emit length or lower bound as constant. If this is possible, 1
3941     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3942     // IR (LB + Len) - 1.
3943     auto &C = CGM.getContext();
3944     auto *Length = E->getLength();
3945     llvm::APSInt ConstLength;
3946     if (Length) {
3947       // Idx = LowerBound + Length - 1;
3948       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3949         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3950         Length = nullptr;
3951       }
3952       auto *LowerBound = E->getLowerBound();
3953       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3954       if (LowerBound) {
3955         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3956           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3957           LowerBound = nullptr;
3958         }
3959       }
3960       if (!Length)
3961         --ConstLength;
3962       else if (!LowerBound)
3963         --ConstLowerBound;
3964 
3965       if (Length || LowerBound) {
3966         auto *LowerBoundVal =
3967             LowerBound
3968                 ? Builder.CreateIntCast(
3969                       EmitScalarExpr(LowerBound), IntPtrTy,
3970                       LowerBound->getType()->hasSignedIntegerRepresentation())
3971                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3972         auto *LengthVal =
3973             Length
3974                 ? Builder.CreateIntCast(
3975                       EmitScalarExpr(Length), IntPtrTy,
3976                       Length->getType()->hasSignedIntegerRepresentation())
3977                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3978         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3979                                 /*HasNUW=*/false,
3980                                 !getLangOpts().isSignedOverflowDefined());
3981         if (Length && LowerBound) {
3982           Idx = Builder.CreateSub(
3983               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3984               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3985         }
3986       } else
3987         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3988     } else {
3989       // Idx = ArraySize - 1;
3990       QualType ArrayTy = BaseTy->isPointerType()
3991                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3992                              : BaseTy;
3993       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3994         Length = VAT->getSizeExpr();
3995         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3996           ConstLength = *L;
3997           Length = nullptr;
3998         }
3999       } else {
4000         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4001         ConstLength = CAT->getSize();
4002       }
4003       if (Length) {
4004         auto *LengthVal = Builder.CreateIntCast(
4005             EmitScalarExpr(Length), IntPtrTy,
4006             Length->getType()->hasSignedIntegerRepresentation());
4007         Idx = Builder.CreateSub(
4008             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4009             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4010       } else {
4011         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4012         --ConstLength;
4013         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4014       }
4015     }
4016   }
4017   assert(Idx);
4018 
4019   Address EltPtr = Address::invalid();
4020   LValueBaseInfo BaseInfo;
4021   TBAAAccessInfo TBAAInfo;
4022   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4023     // The base must be a pointer, which is not an aggregate.  Emit
4024     // it.  It needs to be emitted first in case it's what captures
4025     // the VLA bounds.
4026     Address Base =
4027         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4028                                 BaseTy, VLA->getElementType(), IsLowerBound);
4029     // The element count here is the total number of non-VLA elements.
4030     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4031 
4032     // Effectively, the multiply by the VLA size is part of the GEP.
4033     // GEP indexes are signed, and scaling an index isn't permitted to
4034     // signed-overflow, so we use the same semantics for our explicit
4035     // multiply.  We suppress this if overflow is not undefined behavior.
4036     if (getLangOpts().isSignedOverflowDefined())
4037       Idx = Builder.CreateMul(Idx, NumElements);
4038     else
4039       Idx = Builder.CreateNSWMul(Idx, NumElements);
4040     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4041                                    !getLangOpts().isSignedOverflowDefined(),
4042                                    /*signedIndices=*/false, E->getExprLoc());
4043   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4044     // If this is A[i] where A is an array, the frontend will have decayed the
4045     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4046     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4047     // "gep x, i" here.  Emit one "gep A, 0, i".
4048     assert(Array->getType()->isArrayType() &&
4049            "Array to pointer decay must have array source type!");
4050     LValue ArrayLV;
4051     // For simple multidimensional array indexing, set the 'accessed' flag for
4052     // better bounds-checking of the base expression.
4053     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4054       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4055     else
4056       ArrayLV = EmitLValue(Array);
4057 
4058     // Propagate the alignment from the array itself to the result.
4059     EltPtr = emitArraySubscriptGEP(
4060         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4061         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4062         /*signedIndices=*/false, E->getExprLoc());
4063     BaseInfo = ArrayLV.getBaseInfo();
4064     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4065   } else {
4066     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4067                                            TBAAInfo, BaseTy, ResultExprTy,
4068                                            IsLowerBound);
4069     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4070                                    !getLangOpts().isSignedOverflowDefined(),
4071                                    /*signedIndices=*/false, E->getExprLoc());
4072   }
4073 
4074   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4075 }
4076 
4077 LValue CodeGenFunction::
4078 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4079   // Emit the base vector as an l-value.
4080   LValue Base;
4081 
4082   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4083   if (E->isArrow()) {
4084     // If it is a pointer to a vector, emit the address and form an lvalue with
4085     // it.
4086     LValueBaseInfo BaseInfo;
4087     TBAAAccessInfo TBAAInfo;
4088     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4089     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4090     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4091     Base.getQuals().removeObjCGCAttr();
4092   } else if (E->getBase()->isGLValue()) {
4093     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4094     // emit the base as an lvalue.
4095     assert(E->getBase()->getType()->isVectorType());
4096     Base = EmitLValue(E->getBase());
4097   } else {
4098     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4099     assert(E->getBase()->getType()->isVectorType() &&
4100            "Result must be a vector");
4101     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4102 
4103     // Store the vector to memory (because LValue wants an address).
4104     Address VecMem = CreateMemTemp(E->getBase()->getType());
4105     Builder.CreateStore(Vec, VecMem);
4106     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4107                           AlignmentSource::Decl);
4108   }
4109 
4110   QualType type =
4111     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4112 
4113   // Encode the element access list into a vector of unsigned indices.
4114   SmallVector<uint32_t, 4> Indices;
4115   E->getEncodedElementAccess(Indices);
4116 
4117   if (Base.isSimple()) {
4118     llvm::Constant *CV =
4119         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4120     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4121                                     Base.getBaseInfo(), TBAAAccessInfo());
4122   }
4123   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4124 
4125   llvm::Constant *BaseElts = Base.getExtVectorElts();
4126   SmallVector<llvm::Constant *, 4> CElts;
4127 
4128   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4129     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4130   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4131   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4132                                   Base.getBaseInfo(), TBAAAccessInfo());
4133 }
4134 
4135 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4136   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4137     EmitIgnoredExpr(E->getBase());
4138     return EmitDeclRefLValue(DRE);
4139   }
4140 
4141   Expr *BaseExpr = E->getBase();
4142   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4143   LValue BaseLV;
4144   if (E->isArrow()) {
4145     LValueBaseInfo BaseInfo;
4146     TBAAAccessInfo TBAAInfo;
4147     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4148     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4149     SanitizerSet SkippedChecks;
4150     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4151     if (IsBaseCXXThis)
4152       SkippedChecks.set(SanitizerKind::Alignment, true);
4153     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4154       SkippedChecks.set(SanitizerKind::Null, true);
4155     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4156                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4157     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4158   } else
4159     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4160 
4161   NamedDecl *ND = E->getMemberDecl();
4162   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4163     LValue LV = EmitLValueForField(BaseLV, Field);
4164     setObjCGCLValueClass(getContext(), E, LV);
4165     if (getLangOpts().OpenMP) {
4166       // If the member was explicitly marked as nontemporal, mark it as
4167       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4168       // to children as nontemporal too.
4169       if ((IsWrappedCXXThis(BaseExpr) &&
4170            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4171           BaseLV.isNontemporal())
4172         LV.setNontemporal(/*Value=*/true);
4173     }
4174     return LV;
4175   }
4176 
4177   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4178     return EmitFunctionDeclLValue(*this, E, FD);
4179 
4180   llvm_unreachable("Unhandled member declaration!");
4181 }
4182 
4183 /// Given that we are currently emitting a lambda, emit an l-value for
4184 /// one of its members.
4185 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4186   if (CurCodeDecl) {
4187     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4188     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4189   }
4190   QualType LambdaTagType =
4191     getContext().getTagDeclType(Field->getParent());
4192   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4193   return EmitLValueForField(LambdaLV, Field);
4194 }
4195 
4196 /// Get the field index in the debug info. The debug info structure/union
4197 /// will ignore the unnamed bitfields.
4198 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4199                                              unsigned FieldIndex) {
4200   unsigned I = 0, Skipped = 0;
4201 
4202   for (auto F : Rec->getDefinition()->fields()) {
4203     if (I == FieldIndex)
4204       break;
4205     if (F->isUnnamedBitfield())
4206       Skipped++;
4207     I++;
4208   }
4209 
4210   return FieldIndex - Skipped;
4211 }
4212 
4213 /// Get the address of a zero-sized field within a record. The resulting
4214 /// address doesn't necessarily have the right type.
4215 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4216                                        const FieldDecl *Field) {
4217   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4218       CGF.getContext().getFieldOffset(Field));
4219   if (Offset.isZero())
4220     return Base;
4221   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4222   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4223 }
4224 
4225 /// Drill down to the storage of a field without walking into
4226 /// reference types.
4227 ///
4228 /// The resulting address doesn't necessarily have the right type.
4229 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4230                                       const FieldDecl *field) {
4231   if (field->isZeroSize(CGF.getContext()))
4232     return emitAddrOfZeroSizeField(CGF, base, field);
4233 
4234   const RecordDecl *rec = field->getParent();
4235 
4236   unsigned idx =
4237     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4238 
4239   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4240 }
4241 
4242 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4243                                         Address addr, const FieldDecl *field) {
4244   const RecordDecl *rec = field->getParent();
4245   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4246       base.getType(), rec->getLocation());
4247 
4248   unsigned idx =
4249       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4250 
4251   return CGF.Builder.CreatePreserveStructAccessIndex(
4252       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4253 }
4254 
4255 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4256   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4257   if (!RD)
4258     return false;
4259 
4260   if (RD->isDynamicClass())
4261     return true;
4262 
4263   for (const auto &Base : RD->bases())
4264     if (hasAnyVptr(Base.getType(), Context))
4265       return true;
4266 
4267   for (const FieldDecl *Field : RD->fields())
4268     if (hasAnyVptr(Field->getType(), Context))
4269       return true;
4270 
4271   return false;
4272 }
4273 
4274 LValue CodeGenFunction::EmitLValueForField(LValue base,
4275                                            const FieldDecl *field) {
4276   LValueBaseInfo BaseInfo = base.getBaseInfo();
4277 
4278   if (field->isBitField()) {
4279     const CGRecordLayout &RL =
4280         CGM.getTypes().getCGRecordLayout(field->getParent());
4281     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4282     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4283                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4284                              Info.VolatileStorageSize != 0 &&
4285                              field->getType()
4286                                  .withCVRQualifiers(base.getVRQualifiers())
4287                                  .isVolatileQualified();
4288     Address Addr = base.getAddress(*this);
4289     unsigned Idx = RL.getLLVMFieldNo(field);
4290     const RecordDecl *rec = field->getParent();
4291     if (!UseVolatile) {
4292       if (!IsInPreservedAIRegion &&
4293           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4294         if (Idx != 0)
4295           // For structs, we GEP to the field that the record layout suggests.
4296           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4297       } else {
4298         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4299             getContext().getRecordType(rec), rec->getLocation());
4300         Addr = Builder.CreatePreserveStructAccessIndex(
4301             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4302             DbgInfo);
4303       }
4304     }
4305     const unsigned SS =
4306         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4307     // Get the access type.
4308     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4309     if (Addr.getElementType() != FieldIntTy)
4310       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4311     if (UseVolatile) {
4312       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4313       if (VolatileOffset)
4314         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4315     }
4316 
4317     QualType fieldType =
4318         field->getType().withCVRQualifiers(base.getVRQualifiers());
4319     // TODO: Support TBAA for bit fields.
4320     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4321     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4322                                 TBAAAccessInfo());
4323   }
4324 
4325   // Fields of may-alias structures are may-alias themselves.
4326   // FIXME: this should get propagated down through anonymous structs
4327   // and unions.
4328   QualType FieldType = field->getType();
4329   const RecordDecl *rec = field->getParent();
4330   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4331   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4332   TBAAAccessInfo FieldTBAAInfo;
4333   if (base.getTBAAInfo().isMayAlias() ||
4334           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4335     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4336   } else if (rec->isUnion()) {
4337     // TODO: Support TBAA for unions.
4338     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4339   } else {
4340     // If no base type been assigned for the base access, then try to generate
4341     // one for this base lvalue.
4342     FieldTBAAInfo = base.getTBAAInfo();
4343     if (!FieldTBAAInfo.BaseType) {
4344         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4345         assert(!FieldTBAAInfo.Offset &&
4346                "Nonzero offset for an access with no base type!");
4347     }
4348 
4349     // Adjust offset to be relative to the base type.
4350     const ASTRecordLayout &Layout =
4351         getContext().getASTRecordLayout(field->getParent());
4352     unsigned CharWidth = getContext().getCharWidth();
4353     if (FieldTBAAInfo.BaseType)
4354       FieldTBAAInfo.Offset +=
4355           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4356 
4357     // Update the final access type and size.
4358     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4359     FieldTBAAInfo.Size =
4360         getContext().getTypeSizeInChars(FieldType).getQuantity();
4361   }
4362 
4363   Address addr = base.getAddress(*this);
4364   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4365     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4366         ClassDef->isDynamicClass()) {
4367       // Getting to any field of dynamic object requires stripping dynamic
4368       // information provided by invariant.group.  This is because accessing
4369       // fields may leak the real address of dynamic object, which could result
4370       // in miscompilation when leaked pointer would be compared.
4371       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4372       addr = Address(stripped, addr.getAlignment());
4373     }
4374   }
4375 
4376   unsigned RecordCVR = base.getVRQualifiers();
4377   if (rec->isUnion()) {
4378     // For unions, there is no pointer adjustment.
4379     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4380         hasAnyVptr(FieldType, getContext()))
4381       // Because unions can easily skip invariant.barriers, we need to add
4382       // a barrier every time CXXRecord field with vptr is referenced.
4383       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4384                      addr.getAlignment());
4385 
4386     if (IsInPreservedAIRegion ||
4387         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4388       // Remember the original union field index
4389       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4390           rec->getLocation());
4391       addr = Address(
4392           Builder.CreatePreserveUnionAccessIndex(
4393               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4394           addr.getAlignment());
4395     }
4396 
4397     if (FieldType->isReferenceType())
4398       addr = Builder.CreateElementBitCast(
4399           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4400   } else {
4401     if (!IsInPreservedAIRegion &&
4402         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4403       // For structs, we GEP to the field that the record layout suggests.
4404       addr = emitAddrOfFieldStorage(*this, addr, field);
4405     else
4406       // Remember the original struct field index
4407       addr = emitPreserveStructAccess(*this, base, addr, field);
4408   }
4409 
4410   // If this is a reference field, load the reference right now.
4411   if (FieldType->isReferenceType()) {
4412     LValue RefLVal =
4413         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4414     if (RecordCVR & Qualifiers::Volatile)
4415       RefLVal.getQuals().addVolatile();
4416     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4417 
4418     // Qualifiers on the struct don't apply to the referencee.
4419     RecordCVR = 0;
4420     FieldType = FieldType->getPointeeType();
4421   }
4422 
4423   // Make sure that the address is pointing to the right type.  This is critical
4424   // for both unions and structs.  A union needs a bitcast, a struct element
4425   // will need a bitcast if the LLVM type laid out doesn't match the desired
4426   // type.
4427   addr = Builder.CreateElementBitCast(
4428       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4429 
4430   if (field->hasAttr<AnnotateAttr>())
4431     addr = EmitFieldAnnotations(field, addr);
4432 
4433   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4434   LV.getQuals().addCVRQualifiers(RecordCVR);
4435 
4436   // __weak attribute on a field is ignored.
4437   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4438     LV.getQuals().removeObjCGCAttr();
4439 
4440   return LV;
4441 }
4442 
4443 LValue
4444 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4445                                                   const FieldDecl *Field) {
4446   QualType FieldType = Field->getType();
4447 
4448   if (!FieldType->isReferenceType())
4449     return EmitLValueForField(Base, Field);
4450 
4451   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4452 
4453   // Make sure that the address is pointing to the right type.
4454   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4455   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4456 
4457   // TODO: Generate TBAA information that describes this access as a structure
4458   // member access and not just an access to an object of the field's type. This
4459   // should be similar to what we do in EmitLValueForField().
4460   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4461   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4462   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4463   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4464                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4465 }
4466 
4467 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4468   if (E->isFileScope()) {
4469     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4470     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4471   }
4472   if (E->getType()->isVariablyModifiedType())
4473     // make sure to emit the VLA size.
4474     EmitVariablyModifiedType(E->getType());
4475 
4476   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4477   const Expr *InitExpr = E->getInitializer();
4478   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4479 
4480   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4481                    /*Init*/ true);
4482 
4483   // Block-scope compound literals are destroyed at the end of the enclosing
4484   // scope in C.
4485   if (!getLangOpts().CPlusPlus)
4486     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4487       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4488                                   E->getType(), getDestroyer(DtorKind),
4489                                   DtorKind & EHCleanup);
4490 
4491   return Result;
4492 }
4493 
4494 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4495   if (!E->isGLValue())
4496     // Initializing an aggregate temporary in C++11: T{...}.
4497     return EmitAggExprToLValue(E);
4498 
4499   // An lvalue initializer list must be initializing a reference.
4500   assert(E->isTransparent() && "non-transparent glvalue init list");
4501   return EmitLValue(E->getInit(0));
4502 }
4503 
4504 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4505 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4506 /// LValue is returned and the current block has been terminated.
4507 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4508                                                     const Expr *Operand) {
4509   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4510     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4511     return None;
4512   }
4513 
4514   return CGF.EmitLValue(Operand);
4515 }
4516 
4517 LValue CodeGenFunction::
4518 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4519   if (!expr->isGLValue()) {
4520     // ?: here should be an aggregate.
4521     assert(hasAggregateEvaluationKind(expr->getType()) &&
4522            "Unexpected conditional operator!");
4523     return EmitAggExprToLValue(expr);
4524   }
4525 
4526   OpaqueValueMapping binding(*this, expr);
4527 
4528   const Expr *condExpr = expr->getCond();
4529   bool CondExprBool;
4530   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4531     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4532     if (!CondExprBool) std::swap(live, dead);
4533 
4534     if (!ContainsLabel(dead)) {
4535       // If the true case is live, we need to track its region.
4536       if (CondExprBool)
4537         incrementProfileCounter(expr);
4538       // If a throw expression we emit it and return an undefined lvalue
4539       // because it can't be used.
4540       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4541         EmitCXXThrowExpr(ThrowExpr);
4542         llvm::Type *Ty =
4543             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4544         return MakeAddrLValue(
4545             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4546             dead->getType());
4547       }
4548       return EmitLValue(live);
4549     }
4550   }
4551 
4552   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4553   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4554   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4555 
4556   ConditionalEvaluation eval(*this);
4557   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4558 
4559   // Any temporaries created here are conditional.
4560   EmitBlock(lhsBlock);
4561   incrementProfileCounter(expr);
4562   eval.begin(*this);
4563   Optional<LValue> lhs =
4564       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4565   eval.end(*this);
4566 
4567   if (lhs && !lhs->isSimple())
4568     return EmitUnsupportedLValue(expr, "conditional operator");
4569 
4570   lhsBlock = Builder.GetInsertBlock();
4571   if (lhs)
4572     Builder.CreateBr(contBlock);
4573 
4574   // Any temporaries created here are conditional.
4575   EmitBlock(rhsBlock);
4576   eval.begin(*this);
4577   Optional<LValue> rhs =
4578       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4579   eval.end(*this);
4580   if (rhs && !rhs->isSimple())
4581     return EmitUnsupportedLValue(expr, "conditional operator");
4582   rhsBlock = Builder.GetInsertBlock();
4583 
4584   EmitBlock(contBlock);
4585 
4586   if (lhs && rhs) {
4587     llvm::PHINode *phi =
4588         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4589     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4590     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4591     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4592     AlignmentSource alignSource =
4593       std::max(lhs->getBaseInfo().getAlignmentSource(),
4594                rhs->getBaseInfo().getAlignmentSource());
4595     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4596         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4597     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4598                           TBAAInfo);
4599   } else {
4600     assert((lhs || rhs) &&
4601            "both operands of glvalue conditional are throw-expressions?");
4602     return lhs ? *lhs : *rhs;
4603   }
4604 }
4605 
4606 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4607 /// type. If the cast is to a reference, we can have the usual lvalue result,
4608 /// otherwise if a cast is needed by the code generator in an lvalue context,
4609 /// then it must mean that we need the address of an aggregate in order to
4610 /// access one of its members.  This can happen for all the reasons that casts
4611 /// are permitted with aggregate result, including noop aggregate casts, and
4612 /// cast from scalar to union.
4613 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4614   switch (E->getCastKind()) {
4615   case CK_ToVoid:
4616   case CK_BitCast:
4617   case CK_LValueToRValueBitCast:
4618   case CK_ArrayToPointerDecay:
4619   case CK_FunctionToPointerDecay:
4620   case CK_NullToMemberPointer:
4621   case CK_NullToPointer:
4622   case CK_IntegralToPointer:
4623   case CK_PointerToIntegral:
4624   case CK_PointerToBoolean:
4625   case CK_VectorSplat:
4626   case CK_IntegralCast:
4627   case CK_BooleanToSignedIntegral:
4628   case CK_IntegralToBoolean:
4629   case CK_IntegralToFloating:
4630   case CK_FloatingToIntegral:
4631   case CK_FloatingToBoolean:
4632   case CK_FloatingCast:
4633   case CK_FloatingRealToComplex:
4634   case CK_FloatingComplexToReal:
4635   case CK_FloatingComplexToBoolean:
4636   case CK_FloatingComplexCast:
4637   case CK_FloatingComplexToIntegralComplex:
4638   case CK_IntegralRealToComplex:
4639   case CK_IntegralComplexToReal:
4640   case CK_IntegralComplexToBoolean:
4641   case CK_IntegralComplexCast:
4642   case CK_IntegralComplexToFloatingComplex:
4643   case CK_DerivedToBaseMemberPointer:
4644   case CK_BaseToDerivedMemberPointer:
4645   case CK_MemberPointerToBoolean:
4646   case CK_ReinterpretMemberPointer:
4647   case CK_AnyPointerToBlockPointerCast:
4648   case CK_ARCProduceObject:
4649   case CK_ARCConsumeObject:
4650   case CK_ARCReclaimReturnedObject:
4651   case CK_ARCExtendBlockObject:
4652   case CK_CopyAndAutoreleaseBlockObject:
4653   case CK_IntToOCLSampler:
4654   case CK_FloatingToFixedPoint:
4655   case CK_FixedPointToFloating:
4656   case CK_FixedPointCast:
4657   case CK_FixedPointToBoolean:
4658   case CK_FixedPointToIntegral:
4659   case CK_IntegralToFixedPoint:
4660   case CK_MatrixCast:
4661     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4662 
4663   case CK_Dependent:
4664     llvm_unreachable("dependent cast kind in IR gen!");
4665 
4666   case CK_BuiltinFnToFnPtr:
4667     llvm_unreachable("builtin functions are handled elsewhere");
4668 
4669   // These are never l-values; just use the aggregate emission code.
4670   case CK_NonAtomicToAtomic:
4671   case CK_AtomicToNonAtomic:
4672     return EmitAggExprToLValue(E);
4673 
4674   case CK_Dynamic: {
4675     LValue LV = EmitLValue(E->getSubExpr());
4676     Address V = LV.getAddress(*this);
4677     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4678     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4679   }
4680 
4681   case CK_ConstructorConversion:
4682   case CK_UserDefinedConversion:
4683   case CK_CPointerToObjCPointerCast:
4684   case CK_BlockPointerToObjCPointerCast:
4685   case CK_LValueToRValue:
4686     return EmitLValue(E->getSubExpr());
4687 
4688   case CK_NoOp: {
4689     // CK_NoOp can model a qualification conversion, which can remove an array
4690     // bound and change the IR type.
4691     // FIXME: Once pointee types are removed from IR, remove this.
4692     LValue LV = EmitLValue(E->getSubExpr());
4693     if (LV.isSimple()) {
4694       Address V = LV.getAddress(*this);
4695       if (V.isValid()) {
4696         llvm::Type *T =
4697             ConvertTypeForMem(E->getType())
4698                 ->getPointerTo(
4699                     cast<llvm::PointerType>(V.getType())->getAddressSpace());
4700         if (V.getType() != T)
4701           LV.setAddress(Builder.CreateBitCast(V, T));
4702       }
4703     }
4704     return LV;
4705   }
4706 
4707   case CK_UncheckedDerivedToBase:
4708   case CK_DerivedToBase: {
4709     const auto *DerivedClassTy =
4710         E->getSubExpr()->getType()->castAs<RecordType>();
4711     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4712 
4713     LValue LV = EmitLValue(E->getSubExpr());
4714     Address This = LV.getAddress(*this);
4715 
4716     // Perform the derived-to-base conversion
4717     Address Base = GetAddressOfBaseClass(
4718         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4719         /*NullCheckValue=*/false, E->getExprLoc());
4720 
4721     // TODO: Support accesses to members of base classes in TBAA. For now, we
4722     // conservatively pretend that the complete object is of the base class
4723     // type.
4724     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4725                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4726   }
4727   case CK_ToUnion:
4728     return EmitAggExprToLValue(E);
4729   case CK_BaseToDerived: {
4730     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4731     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4732 
4733     LValue LV = EmitLValue(E->getSubExpr());
4734 
4735     // Perform the base-to-derived conversion
4736     Address Derived = GetAddressOfDerivedClass(
4737         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4738         /*NullCheckValue=*/false);
4739 
4740     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4741     // performed and the object is not of the derived type.
4742     if (sanitizePerformTypeCheck())
4743       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4744                     Derived.getPointer(), E->getType());
4745 
4746     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4747       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4748                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4749                                 E->getBeginLoc());
4750 
4751     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4752                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4753   }
4754   case CK_LValueBitCast: {
4755     // This must be a reinterpret_cast (or c-style equivalent).
4756     const auto *CE = cast<ExplicitCastExpr>(E);
4757 
4758     CGM.EmitExplicitCastExprType(CE, this);
4759     LValue LV = EmitLValue(E->getSubExpr());
4760     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4761                                       ConvertType(CE->getTypeAsWritten()));
4762 
4763     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4764       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4765                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4766                                 E->getBeginLoc());
4767 
4768     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4769                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4770   }
4771   case CK_AddressSpaceConversion: {
4772     LValue LV = EmitLValue(E->getSubExpr());
4773     QualType DestTy = getContext().getPointerType(E->getType());
4774     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4775         *this, LV.getPointer(*this),
4776         E->getSubExpr()->getType().getAddressSpace(),
4777         E->getType().getAddressSpace(), ConvertType(DestTy));
4778     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4779                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4780   }
4781   case CK_ObjCObjectLValueCast: {
4782     LValue LV = EmitLValue(E->getSubExpr());
4783     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4784                                              ConvertType(E->getType()));
4785     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4786                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4787   }
4788   case CK_ZeroToOCLOpaqueType:
4789     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4790   }
4791 
4792   llvm_unreachable("Unhandled lvalue cast kind?");
4793 }
4794 
4795 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4796   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4797   return getOrCreateOpaqueLValueMapping(e);
4798 }
4799 
4800 LValue
4801 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4802   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4803 
4804   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4805       it = OpaqueLValues.find(e);
4806 
4807   if (it != OpaqueLValues.end())
4808     return it->second;
4809 
4810   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4811   return EmitLValue(e->getSourceExpr());
4812 }
4813 
4814 RValue
4815 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4816   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4817 
4818   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4819       it = OpaqueRValues.find(e);
4820 
4821   if (it != OpaqueRValues.end())
4822     return it->second;
4823 
4824   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4825   return EmitAnyExpr(e->getSourceExpr());
4826 }
4827 
4828 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4829                                            const FieldDecl *FD,
4830                                            SourceLocation Loc) {
4831   QualType FT = FD->getType();
4832   LValue FieldLV = EmitLValueForField(LV, FD);
4833   switch (getEvaluationKind(FT)) {
4834   case TEK_Complex:
4835     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4836   case TEK_Aggregate:
4837     return FieldLV.asAggregateRValue(*this);
4838   case TEK_Scalar:
4839     // This routine is used to load fields one-by-one to perform a copy, so
4840     // don't load reference fields.
4841     if (FD->getType()->isReferenceType())
4842       return RValue::get(FieldLV.getPointer(*this));
4843     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4844     // primitive load.
4845     if (FieldLV.isBitField())
4846       return EmitLoadOfLValue(FieldLV, Loc);
4847     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4848   }
4849   llvm_unreachable("bad evaluation kind");
4850 }
4851 
4852 //===--------------------------------------------------------------------===//
4853 //                             Expression Emission
4854 //===--------------------------------------------------------------------===//
4855 
4856 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4857                                      ReturnValueSlot ReturnValue) {
4858   // Builtins never have block type.
4859   if (E->getCallee()->getType()->isBlockPointerType())
4860     return EmitBlockCallExpr(E, ReturnValue);
4861 
4862   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4863     return EmitCXXMemberCallExpr(CE, ReturnValue);
4864 
4865   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4866     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4867 
4868   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4869     if (const CXXMethodDecl *MD =
4870           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4871       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4872 
4873   CGCallee callee = EmitCallee(E->getCallee());
4874 
4875   if (callee.isBuiltin()) {
4876     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4877                            E, ReturnValue);
4878   }
4879 
4880   if (callee.isPseudoDestructor()) {
4881     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4882   }
4883 
4884   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4885 }
4886 
4887 /// Emit a CallExpr without considering whether it might be a subclass.
4888 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4889                                            ReturnValueSlot ReturnValue) {
4890   CGCallee Callee = EmitCallee(E->getCallee());
4891   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4892 }
4893 
4894 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4895   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4896 
4897   if (auto builtinID = FD->getBuiltinID()) {
4898     std::string FDInlineName = (FD->getName() + ".inline").str();
4899     // When directing calling an inline builtin, call it through it's mangled
4900     // name to make it clear it's not the actual builtin.
4901     if (FD->isInlineBuiltinDeclaration() &&
4902         CGF.CurFn->getName() != FDInlineName) {
4903       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4904       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
4905       llvm::Module *M = Fn->getParent();
4906       llvm::Function *Clone = M->getFunction(FDInlineName);
4907       if (!Clone) {
4908         Clone = llvm::Function::Create(Fn->getFunctionType(),
4909                                        llvm::GlobalValue::InternalLinkage,
4910                                        Fn->getAddressSpace(), FDInlineName, M);
4911         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
4912       }
4913       return CGCallee::forDirect(Clone, GD);
4914     }
4915 
4916     // Replaceable builtins provide their own implementation of a builtin. If we
4917     // are in an inline builtin implementation, avoid trivial infinite
4918     // recursion.
4919     else
4920       return CGCallee::forBuiltin(builtinID, FD);
4921   }
4922 
4923   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4924   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4925       FD->hasAttr<CUDAGlobalAttr>())
4926     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4927         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4928 
4929   return CGCallee::forDirect(CalleePtr, GD);
4930 }
4931 
4932 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4933   E = E->IgnoreParens();
4934 
4935   // Look through function-to-pointer decay.
4936   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4937     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4938         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4939       return EmitCallee(ICE->getSubExpr());
4940     }
4941 
4942   // Resolve direct calls.
4943   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4944     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4945       return EmitDirectCallee(*this, FD);
4946     }
4947   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4948     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4949       EmitIgnoredExpr(ME->getBase());
4950       return EmitDirectCallee(*this, FD);
4951     }
4952 
4953   // Look through template substitutions.
4954   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4955     return EmitCallee(NTTP->getReplacement());
4956 
4957   // Treat pseudo-destructor calls differently.
4958   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4959     return CGCallee::forPseudoDestructor(PDE);
4960   }
4961 
4962   // Otherwise, we have an indirect reference.
4963   llvm::Value *calleePtr;
4964   QualType functionType;
4965   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4966     calleePtr = EmitScalarExpr(E);
4967     functionType = ptrType->getPointeeType();
4968   } else {
4969     functionType = E->getType();
4970     calleePtr = EmitLValue(E).getPointer(*this);
4971   }
4972   assert(functionType->isFunctionType());
4973 
4974   GlobalDecl GD;
4975   if (const auto *VD =
4976           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4977     GD = GlobalDecl(VD);
4978 
4979   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4980   CGCallee callee(calleeInfo, calleePtr);
4981   return callee;
4982 }
4983 
4984 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4985   // Comma expressions just emit their LHS then their RHS as an l-value.
4986   if (E->getOpcode() == BO_Comma) {
4987     EmitIgnoredExpr(E->getLHS());
4988     EnsureInsertPoint();
4989     return EmitLValue(E->getRHS());
4990   }
4991 
4992   if (E->getOpcode() == BO_PtrMemD ||
4993       E->getOpcode() == BO_PtrMemI)
4994     return EmitPointerToDataMemberBinaryExpr(E);
4995 
4996   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4997 
4998   // Note that in all of these cases, __block variables need the RHS
4999   // evaluated first just in case the variable gets moved by the RHS.
5000 
5001   switch (getEvaluationKind(E->getType())) {
5002   case TEK_Scalar: {
5003     switch (E->getLHS()->getType().getObjCLifetime()) {
5004     case Qualifiers::OCL_Strong:
5005       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5006 
5007     case Qualifiers::OCL_Autoreleasing:
5008       return EmitARCStoreAutoreleasing(E).first;
5009 
5010     // No reason to do any of these differently.
5011     case Qualifiers::OCL_None:
5012     case Qualifiers::OCL_ExplicitNone:
5013     case Qualifiers::OCL_Weak:
5014       break;
5015     }
5016 
5017     RValue RV = EmitAnyExpr(E->getRHS());
5018     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5019     if (RV.isScalar())
5020       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5021     EmitStoreThroughLValue(RV, LV);
5022     if (getLangOpts().OpenMP)
5023       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5024                                                                 E->getLHS());
5025     return LV;
5026   }
5027 
5028   case TEK_Complex:
5029     return EmitComplexAssignmentLValue(E);
5030 
5031   case TEK_Aggregate:
5032     return EmitAggExprToLValue(E);
5033   }
5034   llvm_unreachable("bad evaluation kind");
5035 }
5036 
5037 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5038   RValue RV = EmitCallExpr(E);
5039 
5040   if (!RV.isScalar())
5041     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5042                           AlignmentSource::Decl);
5043 
5044   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5045          "Can't have a scalar return unless the return type is a "
5046          "reference type!");
5047 
5048   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5049 }
5050 
5051 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5052   // FIXME: This shouldn't require another copy.
5053   return EmitAggExprToLValue(E);
5054 }
5055 
5056 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5057   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5058          && "binding l-value to type which needs a temporary");
5059   AggValueSlot Slot = CreateAggTemp(E->getType());
5060   EmitCXXConstructExpr(E, Slot);
5061   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5062 }
5063 
5064 LValue
5065 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5066   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5067 }
5068 
5069 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5070   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5071                                       ConvertType(E->getType()));
5072 }
5073 
5074 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5075   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5076                         AlignmentSource::Decl);
5077 }
5078 
5079 LValue
5080 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5081   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5082   Slot.setExternallyDestructed();
5083   EmitAggExpr(E->getSubExpr(), Slot);
5084   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5085   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5086 }
5087 
5088 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5089   RValue RV = EmitObjCMessageExpr(E);
5090 
5091   if (!RV.isScalar())
5092     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5093                           AlignmentSource::Decl);
5094 
5095   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5096          "Can't have a scalar return unless the return type is a "
5097          "reference type!");
5098 
5099   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5100 }
5101 
5102 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5103   Address V =
5104     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5105   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5106 }
5107 
5108 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5109                                              const ObjCIvarDecl *Ivar) {
5110   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5111 }
5112 
5113 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5114                                           llvm::Value *BaseValue,
5115                                           const ObjCIvarDecl *Ivar,
5116                                           unsigned CVRQualifiers) {
5117   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5118                                                    Ivar, CVRQualifiers);
5119 }
5120 
5121 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5122   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5123   llvm::Value *BaseValue = nullptr;
5124   const Expr *BaseExpr = E->getBase();
5125   Qualifiers BaseQuals;
5126   QualType ObjectTy;
5127   if (E->isArrow()) {
5128     BaseValue = EmitScalarExpr(BaseExpr);
5129     ObjectTy = BaseExpr->getType()->getPointeeType();
5130     BaseQuals = ObjectTy.getQualifiers();
5131   } else {
5132     LValue BaseLV = EmitLValue(BaseExpr);
5133     BaseValue = BaseLV.getPointer(*this);
5134     ObjectTy = BaseExpr->getType();
5135     BaseQuals = ObjectTy.getQualifiers();
5136   }
5137 
5138   LValue LV =
5139     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5140                       BaseQuals.getCVRQualifiers());
5141   setObjCGCLValueClass(getContext(), E, LV);
5142   return LV;
5143 }
5144 
5145 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5146   // Can only get l-value for message expression returning aggregate type
5147   RValue RV = EmitAnyExprToTemp(E);
5148   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5149                         AlignmentSource::Decl);
5150 }
5151 
5152 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5153                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5154                                  llvm::Value *Chain) {
5155   // Get the actual function type. The callee type will always be a pointer to
5156   // function type or a block pointer type.
5157   assert(CalleeType->isFunctionPointerType() &&
5158          "Call must have function pointer type!");
5159 
5160   const Decl *TargetDecl =
5161       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5162 
5163   CalleeType = getContext().getCanonicalType(CalleeType);
5164 
5165   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5166 
5167   CGCallee Callee = OrigCallee;
5168 
5169   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5170       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5171     if (llvm::Constant *PrefixSig =
5172             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5173       SanitizerScope SanScope(this);
5174       // Remove any (C++17) exception specifications, to allow calling e.g. a
5175       // noexcept function through a non-noexcept pointer.
5176       auto ProtoTy =
5177         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5178       llvm::Constant *FTRTTIConst =
5179           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5180       llvm::Type *PrefixSigType = PrefixSig->getType();
5181       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5182           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5183 
5184       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5185 
5186       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5187           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5188       llvm::Value *CalleeSigPtr =
5189           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5190       llvm::Value *CalleeSig =
5191           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5192       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5193 
5194       llvm::BasicBlock *Cont = createBasicBlock("cont");
5195       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5196       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5197 
5198       EmitBlock(TypeCheck);
5199       llvm::Value *CalleeRTTIPtr =
5200           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5201       llvm::Value *CalleeRTTIEncoded =
5202           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5203       llvm::Value *CalleeRTTI =
5204           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5205       llvm::Value *CalleeRTTIMatch =
5206           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5207       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5208                                       EmitCheckTypeDescriptor(CalleeType)};
5209       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5210                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5211                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5212 
5213       Builder.CreateBr(Cont);
5214       EmitBlock(Cont);
5215     }
5216   }
5217 
5218   const auto *FnType = cast<FunctionType>(PointeeType);
5219 
5220   // If we are checking indirect calls and this call is indirect, check that the
5221   // function pointer is a member of the bit set for the function type.
5222   if (SanOpts.has(SanitizerKind::CFIICall) &&
5223       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5224     SanitizerScope SanScope(this);
5225     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5226 
5227     llvm::Metadata *MD;
5228     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5229       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5230     else
5231       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5232 
5233     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5234 
5235     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5236     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5237     llvm::Value *TypeTest = Builder.CreateCall(
5238         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5239 
5240     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5241     llvm::Constant *StaticData[] = {
5242         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5243         EmitCheckSourceLocation(E->getBeginLoc()),
5244         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5245     };
5246     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5247       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5248                            CastedCallee, StaticData);
5249     } else {
5250       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5251                 SanitizerHandler::CFICheckFail, StaticData,
5252                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5253     }
5254   }
5255 
5256   CallArgList Args;
5257   if (Chain)
5258     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5259              CGM.getContext().VoidPtrTy);
5260 
5261   // C++17 requires that we evaluate arguments to a call using assignment syntax
5262   // right-to-left, and that we evaluate arguments to certain other operators
5263   // left-to-right. Note that we allow this to override the order dictated by
5264   // the calling convention on the MS ABI, which means that parameter
5265   // destruction order is not necessarily reverse construction order.
5266   // FIXME: Revisit this based on C++ committee response to unimplementability.
5267   EvaluationOrder Order = EvaluationOrder::Default;
5268   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5269     if (OCE->isAssignmentOp())
5270       Order = EvaluationOrder::ForceRightToLeft;
5271     else {
5272       switch (OCE->getOperator()) {
5273       case OO_LessLess:
5274       case OO_GreaterGreater:
5275       case OO_AmpAmp:
5276       case OO_PipePipe:
5277       case OO_Comma:
5278       case OO_ArrowStar:
5279         Order = EvaluationOrder::ForceLeftToRight;
5280         break;
5281       default:
5282         break;
5283       }
5284     }
5285   }
5286 
5287   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5288                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5289 
5290   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5291       Args, FnType, /*ChainCall=*/Chain);
5292 
5293   // C99 6.5.2.2p6:
5294   //   If the expression that denotes the called function has a type
5295   //   that does not include a prototype, [the default argument
5296   //   promotions are performed]. If the number of arguments does not
5297   //   equal the number of parameters, the behavior is undefined. If
5298   //   the function is defined with a type that includes a prototype,
5299   //   and either the prototype ends with an ellipsis (, ...) or the
5300   //   types of the arguments after promotion are not compatible with
5301   //   the types of the parameters, the behavior is undefined. If the
5302   //   function is defined with a type that does not include a
5303   //   prototype, and the types of the arguments after promotion are
5304   //   not compatible with those of the parameters after promotion,
5305   //   the behavior is undefined [except in some trivial cases].
5306   // That is, in the general case, we should assume that a call
5307   // through an unprototyped function type works like a *non-variadic*
5308   // call.  The way we make this work is to cast to the exact type
5309   // of the promoted arguments.
5310   //
5311   // Chain calls use this same code path to add the invisible chain parameter
5312   // to the function type.
5313   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5314     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5315     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5316     CalleeTy = CalleeTy->getPointerTo(AS);
5317 
5318     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5319     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5320     Callee.setFunctionPointer(CalleePtr);
5321   }
5322 
5323   // HIP function pointer contains kernel handle when it is used in triple
5324   // chevron. The kernel stub needs to be loaded from kernel handle and used
5325   // as callee.
5326   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5327       isa<CUDAKernelCallExpr>(E) &&
5328       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5329     llvm::Value *Handle = Callee.getFunctionPointer();
5330     auto *Cast =
5331         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5332     auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5333     Callee.setFunctionPointer(Stub);
5334   }
5335   llvm::CallBase *CallOrInvoke = nullptr;
5336   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5337                          E == MustTailCall, E->getExprLoc());
5338 
5339   // Generate function declaration DISuprogram in order to be used
5340   // in debug info about call sites.
5341   if (CGDebugInfo *DI = getDebugInfo()) {
5342     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5343       FunctionArgList Args;
5344       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5345       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5346                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5347                                   CalleeDecl);
5348     }
5349   }
5350 
5351   return Call;
5352 }
5353 
5354 LValue CodeGenFunction::
5355 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5356   Address BaseAddr = Address::invalid();
5357   if (E->getOpcode() == BO_PtrMemI) {
5358     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5359   } else {
5360     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5361   }
5362 
5363   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5364   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5365 
5366   LValueBaseInfo BaseInfo;
5367   TBAAAccessInfo TBAAInfo;
5368   Address MemberAddr =
5369     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5370                                     &TBAAInfo);
5371 
5372   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5373 }
5374 
5375 /// Given the address of a temporary variable, produce an r-value of
5376 /// its type.
5377 RValue CodeGenFunction::convertTempToRValue(Address addr,
5378                                             QualType type,
5379                                             SourceLocation loc) {
5380   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5381   switch (getEvaluationKind(type)) {
5382   case TEK_Complex:
5383     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5384   case TEK_Aggregate:
5385     return lvalue.asAggregateRValue(*this);
5386   case TEK_Scalar:
5387     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5388   }
5389   llvm_unreachable("bad evaluation kind");
5390 }
5391 
5392 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5393   assert(Val->getType()->isFPOrFPVectorTy());
5394   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5395     return;
5396 
5397   llvm::MDBuilder MDHelper(getLLVMContext());
5398   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5399 
5400   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5401 }
5402 
5403 namespace {
5404   struct LValueOrRValue {
5405     LValue LV;
5406     RValue RV;
5407   };
5408 }
5409 
5410 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5411                                            const PseudoObjectExpr *E,
5412                                            bool forLValue,
5413                                            AggValueSlot slot) {
5414   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5415 
5416   // Find the result expression, if any.
5417   const Expr *resultExpr = E->getResultExpr();
5418   LValueOrRValue result;
5419 
5420   for (PseudoObjectExpr::const_semantics_iterator
5421          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5422     const Expr *semantic = *i;
5423 
5424     // If this semantic expression is an opaque value, bind it
5425     // to the result of its source expression.
5426     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5427       // Skip unique OVEs.
5428       if (ov->isUnique()) {
5429         assert(ov != resultExpr &&
5430                "A unique OVE cannot be used as the result expression");
5431         continue;
5432       }
5433 
5434       // If this is the result expression, we may need to evaluate
5435       // directly into the slot.
5436       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5437       OVMA opaqueData;
5438       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5439           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5440         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5441         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5442                                        AlignmentSource::Decl);
5443         opaqueData = OVMA::bind(CGF, ov, LV);
5444         result.RV = slot.asRValue();
5445 
5446       // Otherwise, emit as normal.
5447       } else {
5448         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5449 
5450         // If this is the result, also evaluate the result now.
5451         if (ov == resultExpr) {
5452           if (forLValue)
5453             result.LV = CGF.EmitLValue(ov);
5454           else
5455             result.RV = CGF.EmitAnyExpr(ov, slot);
5456         }
5457       }
5458 
5459       opaques.push_back(opaqueData);
5460 
5461     // Otherwise, if the expression is the result, evaluate it
5462     // and remember the result.
5463     } else if (semantic == resultExpr) {
5464       if (forLValue)
5465         result.LV = CGF.EmitLValue(semantic);
5466       else
5467         result.RV = CGF.EmitAnyExpr(semantic, slot);
5468 
5469     // Otherwise, evaluate the expression in an ignored context.
5470     } else {
5471       CGF.EmitIgnoredExpr(semantic);
5472     }
5473   }
5474 
5475   // Unbind all the opaques now.
5476   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5477     opaques[i].unbind(CGF);
5478 
5479   return result;
5480 }
5481 
5482 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5483                                                AggValueSlot slot) {
5484   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5485 }
5486 
5487 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5488   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5489 }
5490