1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getAsAlign()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getAsAlign()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::FunctionCallee CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 344 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getAsAlign()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->getSubExpr(); 421 422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 424 "Reference should never be pseudo-strong!"); 425 426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 427 // as that will cause the lifetime adjustment to be lost for ARC 428 auto ownership = M->getType().getObjCLifetime(); 429 if (ownership != Qualifiers::OCL_None && 430 ownership != Qualifiers::OCL_ExplicitNone) { 431 Address Object = createReferenceTemporary(*this, M, E); 432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 433 Object = Address(llvm::ConstantExpr::getBitCast(Var, 434 ConvertTypeForMem(E->getType()) 435 ->getPointerTo(Object.getAddressSpace())), 436 Object.getAlignment()); 437 438 // createReferenceTemporary will promote the temporary to a global with a 439 // constant initializer if it can. It can only do this to a value of 440 // ARC-manageable type if the value is global and therefore "immune" to 441 // ref-counting operations. Therefore we have no need to emit either a 442 // dynamic initialization or a cleanup and we can just return the address 443 // of the temporary. 444 if (Var->hasInitializer()) 445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 446 447 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 448 } 449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 450 AlignmentSource::Decl); 451 452 switch (getEvaluationKind(E->getType())) { 453 default: llvm_unreachable("expected scalar or aggregate expression"); 454 case TEK_Scalar: 455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 456 break; 457 case TEK_Aggregate: { 458 EmitAggExpr(E, AggValueSlot::forAddr(Object, 459 E->getType().getQualifiers(), 460 AggValueSlot::IsDestructed, 461 AggValueSlot::DoesNotNeedGCBarriers, 462 AggValueSlot::IsNotAliased, 463 AggValueSlot::DoesNotOverlap)); 464 break; 465 } 466 } 467 468 pushTemporaryCleanup(*this, M, E, Object); 469 return RefTempDst; 470 } 471 472 SmallVector<const Expr *, 2> CommaLHSs; 473 SmallVector<SubobjectAdjustment, 2> Adjustments; 474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 475 476 for (const auto &Ignored : CommaLHSs) 477 EmitIgnoredExpr(Ignored); 478 479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 480 if (opaque->getType()->isRecordType()) { 481 assert(Adjustments.empty()); 482 return EmitOpaqueValueLValue(opaque); 483 } 484 } 485 486 // Create and initialize the reference temporary. 487 Address Alloca = Address::invalid(); 488 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 489 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 490 Object.getPointer()->stripPointerCasts())) { 491 Object = Address(llvm::ConstantExpr::getBitCast( 492 cast<llvm::Constant>(Object.getPointer()), 493 ConvertTypeForMem(E->getType())->getPointerTo()), 494 Object.getAlignment()); 495 // If the temporary is a global and has a constant initializer or is a 496 // constant temporary that we promoted to a global, we may have already 497 // initialized it. 498 if (!Var->hasInitializer()) { 499 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 } else { 503 switch (M->getStorageDuration()) { 504 case SD_Automatic: 505 if (auto *Size = EmitLifetimeStart( 506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 507 Alloca.getPointer())) { 508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 509 Alloca, Size); 510 } 511 break; 512 513 case SD_FullExpression: { 514 if (!ShouldEmitLifetimeMarkers) 515 break; 516 517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 518 // marker. Instead, start the lifetime of a conditional temporary earlier 519 // so that it's unconditional. Don't do this with sanitizers which need 520 // more precise lifetime marks. 521 ConditionalEvaluation *OldConditional = nullptr; 522 CGBuilderTy::InsertPoint OldIP; 523 if (isInConditionalBranch() && !E->getType().isDestructedType() && 524 !SanOpts.has(SanitizerKind::HWAddress) && 525 !SanOpts.has(SanitizerKind::Memory) && 526 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 527 OldConditional = OutermostConditional; 528 OutermostConditional = nullptr; 529 530 OldIP = Builder.saveIP(); 531 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 532 Builder.restoreIP(CGBuilderTy::InsertPoint( 533 Block, llvm::BasicBlock::iterator(Block->back()))); 534 } 535 536 if (auto *Size = EmitLifetimeStart( 537 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 538 Alloca.getPointer())) { 539 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 540 Size); 541 } 542 543 if (OldConditional) { 544 OutermostConditional = OldConditional; 545 Builder.restoreIP(OldIP); 546 } 547 break; 548 } 549 550 default: 551 break; 552 } 553 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 554 } 555 pushTemporaryCleanup(*this, M, E, Object); 556 557 // Perform derived-to-base casts and/or field accesses, to get from the 558 // temporary object we created (and, potentially, for which we extended 559 // the lifetime) to the subobject we're binding the reference to. 560 for (unsigned I = Adjustments.size(); I != 0; --I) { 561 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 562 switch (Adjustment.Kind) { 563 case SubobjectAdjustment::DerivedToBaseAdjustment: 564 Object = 565 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 566 Adjustment.DerivedToBase.BasePath->path_begin(), 567 Adjustment.DerivedToBase.BasePath->path_end(), 568 /*NullCheckValue=*/ false, E->getExprLoc()); 569 break; 570 571 case SubobjectAdjustment::FieldAdjustment: { 572 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 573 LV = EmitLValueForField(LV, Adjustment.Field); 574 assert(LV.isSimple() && 575 "materialized temporary field is not a simple lvalue"); 576 Object = LV.getAddress(*this); 577 break; 578 } 579 580 case SubobjectAdjustment::MemberPointerAdjustment: { 581 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 582 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 583 Adjustment.Ptr.MPT); 584 break; 585 } 586 } 587 } 588 589 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 590 } 591 592 RValue 593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 594 // Emit the expression as an lvalue. 595 LValue LV = EmitLValue(E); 596 assert(LV.isSimple()); 597 llvm::Value *Value = LV.getPointer(*this); 598 599 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 600 // C++11 [dcl.ref]p5 (as amended by core issue 453): 601 // If a glvalue to which a reference is directly bound designates neither 602 // an existing object or function of an appropriate type nor a region of 603 // storage of suitable size and alignment to contain an object of the 604 // reference's type, the behavior is undefined. 605 QualType Ty = E->getType(); 606 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 607 } 608 609 return RValue::get(Value); 610 } 611 612 613 /// getAccessedFieldNo - Given an encoded value and a result number, return the 614 /// input field number being accessed. 615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 616 const llvm::Constant *Elts) { 617 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 618 ->getZExtValue(); 619 } 620 621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 623 llvm::Value *High) { 624 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 625 llvm::Value *K47 = Builder.getInt64(47); 626 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 627 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 628 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 629 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 630 return Builder.CreateMul(B1, KMul); 631 } 632 633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 634 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 635 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 636 } 637 638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 639 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 640 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 641 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 642 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 643 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 644 } 645 646 bool CodeGenFunction::sanitizePerformTypeCheck() const { 647 return SanOpts.has(SanitizerKind::Null) | 648 SanOpts.has(SanitizerKind::Alignment) | 649 SanOpts.has(SanitizerKind::ObjectSize) | 650 SanOpts.has(SanitizerKind::Vptr); 651 } 652 653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 654 llvm::Value *Ptr, QualType Ty, 655 CharUnits Alignment, 656 SanitizerSet SkippedChecks, 657 llvm::Value *ArraySize) { 658 if (!sanitizePerformTypeCheck()) 659 return; 660 661 // Don't check pointers outside the default address space. The null check 662 // isn't correct, the object-size check isn't supported by LLVM, and we can't 663 // communicate the addresses to the runtime handler for the vptr check. 664 if (Ptr->getType()->getPointerAddressSpace()) 665 return; 666 667 // Don't check pointers to volatile data. The behavior here is implementation- 668 // defined. 669 if (Ty.isVolatileQualified()) 670 return; 671 672 SanitizerScope SanScope(this); 673 674 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 675 llvm::BasicBlock *Done = nullptr; 676 677 // Quickly determine whether we have a pointer to an alloca. It's possible 678 // to skip null checks, and some alignment checks, for these pointers. This 679 // can reduce compile-time significantly. 680 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 681 682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 683 llvm::Value *IsNonNull = nullptr; 684 bool IsGuaranteedNonNull = 685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 686 bool AllowNullPointers = isNullPointerAllowed(TCK); 687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 688 !IsGuaranteedNonNull) { 689 // The glvalue must not be an empty glvalue. 690 IsNonNull = Builder.CreateIsNotNull(Ptr); 691 692 // The IR builder can constant-fold the null check if the pointer points to 693 // a constant. 694 IsGuaranteedNonNull = IsNonNull == True; 695 696 // Skip the null check if the pointer is known to be non-null. 697 if (!IsGuaranteedNonNull) { 698 if (AllowNullPointers) { 699 // When performing pointer casts, it's OK if the value is null. 700 // Skip the remaining checks in that case. 701 Done = createBasicBlock("null"); 702 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 703 Builder.CreateCondBr(IsNonNull, Rest, Done); 704 EmitBlock(Rest); 705 } else { 706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 707 } 708 } 709 } 710 711 if (SanOpts.has(SanitizerKind::ObjectSize) && 712 !SkippedChecks.has(SanitizerKind::ObjectSize) && 713 !Ty->isIncompleteType()) { 714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 716 if (ArraySize) 717 Size = Builder.CreateMul(Size, ArraySize); 718 719 // Degenerate case: new X[0] does not need an objectsize check. 720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 721 if (!ConstantSize || !ConstantSize->isNullValue()) { 722 // The glvalue must refer to a large enough storage region. 723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 724 // to check this. 725 // FIXME: Get object address space 726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 728 llvm::Value *Min = Builder.getFalse(); 729 llvm::Value *NullIsUnknown = Builder.getFalse(); 730 llvm::Value *Dynamic = Builder.getFalse(); 731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 732 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 735 } 736 } 737 738 uint64_t AlignVal = 0; 739 llvm::Value *PtrAsInt = nullptr; 740 741 if (SanOpts.has(SanitizerKind::Alignment) && 742 !SkippedChecks.has(SanitizerKind::Alignment)) { 743 AlignVal = Alignment.getQuantity(); 744 if (!Ty->isIncompleteType() && !AlignVal) 745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 746 747 // The glvalue must be suitably aligned. 748 if (AlignVal > 1 && 749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 751 llvm::Value *Align = Builder.CreateAnd( 752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 753 llvm::Value *Aligned = 754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 755 if (Aligned != True) 756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 757 } 758 } 759 760 if (Checks.size() > 0) { 761 // Make sure we're not losing information. Alignment needs to be a power of 762 // 2 763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 764 llvm::Constant *StaticData[] = { 765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 767 llvm::ConstantInt::get(Int8Ty, TCK)}; 768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 769 PtrAsInt ? PtrAsInt : Ptr); 770 } 771 772 // If possible, check that the vptr indicates that there is a subobject of 773 // type Ty at offset zero within this object. 774 // 775 // C++11 [basic.life]p5,6: 776 // [For storage which does not refer to an object within its lifetime] 777 // The program has undefined behavior if: 778 // -- the [pointer or glvalue] is used to access a non-static data member 779 // or call a non-static member function 780 if (SanOpts.has(SanitizerKind::Vptr) && 781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 782 // Ensure that the pointer is non-null before loading it. If there is no 783 // compile-time guarantee, reuse the run-time null check or emit a new one. 784 if (!IsGuaranteedNonNull) { 785 if (!IsNonNull) 786 IsNonNull = Builder.CreateIsNotNull(Ptr); 787 if (!Done) 788 Done = createBasicBlock("vptr.null"); 789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 791 EmitBlock(VptrNotNull); 792 } 793 794 // Compute a hash of the mangled name of the type. 795 // 796 // FIXME: This is not guaranteed to be deterministic! Move to a 797 // fingerprinting mechanism once LLVM provides one. For the time 798 // being the implementation happens to be deterministic. 799 SmallString<64> MangledName; 800 llvm::raw_svector_ostream Out(MangledName); 801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 802 Out); 803 804 // Blacklist based on the mangled type. 805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 806 SanitizerKind::Vptr, Out.str())) { 807 llvm::hash_code TypeHash = hash_value(Out.str()); 808 809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 815 816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 817 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 818 819 // Look the hash up in our cache. 820 const int CacheSize = 128; 821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 823 "__ubsan_vptr_type_cache"); 824 llvm::Value *Slot = Builder.CreateAnd(Hash, 825 llvm::ConstantInt::get(IntPtrTy, 826 CacheSize-1)); 827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 828 llvm::Value *CacheVal = 829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 830 getPointerAlign()); 831 832 // If the hash isn't in the cache, call a runtime handler to perform the 833 // hard work of checking whether the vptr is for an object of the right 834 // type. This will either fill in the cache and return, or produce a 835 // diagnostic. 836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 837 llvm::Constant *StaticData[] = { 838 EmitCheckSourceLocation(Loc), 839 EmitCheckTypeDescriptor(Ty), 840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 841 llvm::ConstantInt::get(Int8Ty, TCK) 842 }; 843 llvm::Value *DynamicData[] = { Ptr, Hash }; 844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 845 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 846 DynamicData); 847 } 848 } 849 850 if (Done) { 851 Builder.CreateBr(Done); 852 EmitBlock(Done); 853 } 854 } 855 856 /// Determine whether this expression refers to a flexible array member in a 857 /// struct. We disable array bounds checks for such members. 858 static bool isFlexibleArrayMemberExpr(const Expr *E) { 859 // For compatibility with existing code, we treat arrays of length 0 or 860 // 1 as flexible array members. 861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 863 if (CAT->getSize().ugt(1)) 864 return false; 865 } else if (!isa<IncompleteArrayType>(AT)) 866 return false; 867 868 E = E->IgnoreParens(); 869 870 // A flexible array member must be the last member in the class. 871 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 872 // FIXME: If the base type of the member expr is not FD->getParent(), 873 // this should not be treated as a flexible array member access. 874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 875 RecordDecl::field_iterator FI( 876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 877 return ++FI == FD->getParent()->field_end(); 878 } 879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 880 return IRE->getDecl()->getNextIvar() == nullptr; 881 } 882 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 887 QualType EltTy) { 888 ASTContext &C = getContext(); 889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 890 if (!EltSize) 891 return nullptr; 892 893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 894 if (!ArrayDeclRef) 895 return nullptr; 896 897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 898 if (!ParamDecl) 899 return nullptr; 900 901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 902 if (!POSAttr) 903 return nullptr; 904 905 // Don't load the size if it's a lower bound. 906 int POSType = POSAttr->getType(); 907 if (POSType != 0 && POSType != 1) 908 return nullptr; 909 910 // Find the implicit size parameter. 911 auto PassedSizeIt = SizeArguments.find(ParamDecl); 912 if (PassedSizeIt == SizeArguments.end()) 913 return nullptr; 914 915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 919 C.getSizeType(), E->getExprLoc()); 920 llvm::Value *SizeOfElement = 921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 923 } 924 925 /// If Base is known to point to the start of an array, return the length of 926 /// that array. Return 0 if the length cannot be determined. 927 static llvm::Value *getArrayIndexingBound( 928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 929 // For the vector indexing extension, the bound is the number of elements. 930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 931 IndexedType = Base->getType(); 932 return CGF.Builder.getInt32(VT->getNumElements()); 933 } 934 935 Base = Base->IgnoreParens(); 936 937 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 938 if (CE->getCastKind() == CK_ArrayToPointerDecay && 939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 940 IndexedType = CE->getSubExpr()->getType(); 941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 943 return CGF.Builder.getInt(CAT->getSize()); 944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 945 return CGF.getVLASize(VAT).NumElts; 946 // Ignore pass_object_size here. It's not applicable on decayed pointers. 947 } 948 } 949 950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 952 IndexedType = Base->getType(); 953 return POS; 954 } 955 956 return nullptr; 957 } 958 959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 960 llvm::Value *Index, QualType IndexType, 961 bool Accessed) { 962 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 963 "should not be called unless adding bounds checks"); 964 SanitizerScope SanScope(this); 965 966 QualType IndexedType; 967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 968 if (!Bound) 969 return; 970 971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 974 975 llvm::Constant *StaticData[] = { 976 EmitCheckSourceLocation(E->getExprLoc()), 977 EmitCheckTypeDescriptor(IndexedType), 978 EmitCheckTypeDescriptor(IndexType) 979 }; 980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 981 : Builder.CreateICmpULE(IndexVal, BoundVal); 982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 983 SanitizerHandler::OutOfBounds, StaticData, Index); 984 } 985 986 987 CodeGenFunction::ComplexPairTy CodeGenFunction:: 988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 989 bool isInc, bool isPre) { 990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 991 992 llvm::Value *NextVal; 993 if (isa<llvm::IntegerType>(InVal.first->getType())) { 994 uint64_t AmountVal = isInc ? 1 : -1; 995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 996 997 // Add the inc/dec to the real part. 998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 999 } else { 1000 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1002 if (!isInc) 1003 FVal.changeSign(); 1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1005 1006 // Add the inc/dec to the real part. 1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1008 } 1009 1010 ComplexPairTy IncVal(NextVal, InVal.second); 1011 1012 // Store the updated result through the lvalue. 1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1014 if (getLangOpts().OpenMP) 1015 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1016 E->getSubExpr()); 1017 1018 // If this is a postinc, return the value read from memory, otherwise use the 1019 // updated value. 1020 return isPre ? IncVal : InVal; 1021 } 1022 1023 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1024 CodeGenFunction *CGF) { 1025 // Bind VLAs in the cast type. 1026 if (CGF && E->getType()->isVariablyModifiedType()) 1027 CGF->EmitVariablyModifiedType(E->getType()); 1028 1029 if (CGDebugInfo *DI = getModuleDebugInfo()) 1030 DI->EmitExplicitCastType(E->getType()); 1031 } 1032 1033 //===----------------------------------------------------------------------===// 1034 // LValue Expression Emission 1035 //===----------------------------------------------------------------------===// 1036 1037 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1038 /// derive a more accurate bound on the alignment of the pointer. 1039 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1040 LValueBaseInfo *BaseInfo, 1041 TBAAAccessInfo *TBAAInfo) { 1042 // We allow this with ObjC object pointers because of fragile ABIs. 1043 assert(E->getType()->isPointerType() || 1044 E->getType()->isObjCObjectPointerType()); 1045 E = E->IgnoreParens(); 1046 1047 // Casts: 1048 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1049 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1050 CGM.EmitExplicitCastExprType(ECE, this); 1051 1052 switch (CE->getCastKind()) { 1053 // Non-converting casts (but not C's implicit conversion from void*). 1054 case CK_BitCast: 1055 case CK_NoOp: 1056 case CK_AddressSpaceConversion: 1057 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1058 if (PtrTy->getPointeeType()->isVoidType()) 1059 break; 1060 1061 LValueBaseInfo InnerBaseInfo; 1062 TBAAAccessInfo InnerTBAAInfo; 1063 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1064 &InnerBaseInfo, 1065 &InnerTBAAInfo); 1066 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1067 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1068 1069 if (isa<ExplicitCastExpr>(CE)) { 1070 LValueBaseInfo TargetTypeBaseInfo; 1071 TBAAAccessInfo TargetTypeTBAAInfo; 1072 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1073 &TargetTypeBaseInfo, 1074 &TargetTypeTBAAInfo); 1075 if (TBAAInfo) 1076 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1077 TargetTypeTBAAInfo); 1078 // If the source l-value is opaque, honor the alignment of the 1079 // casted-to type. 1080 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1081 if (BaseInfo) 1082 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1083 Addr = Address(Addr.getPointer(), Align); 1084 } 1085 } 1086 1087 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1088 CE->getCastKind() == CK_BitCast) { 1089 if (auto PT = E->getType()->getAs<PointerType>()) 1090 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1091 /*MayBeNull=*/true, 1092 CodeGenFunction::CFITCK_UnrelatedCast, 1093 CE->getBeginLoc()); 1094 } 1095 return CE->getCastKind() != CK_AddressSpaceConversion 1096 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1097 : Builder.CreateAddrSpaceCast(Addr, 1098 ConvertType(E->getType())); 1099 } 1100 break; 1101 1102 // Array-to-pointer decay. 1103 case CK_ArrayToPointerDecay: 1104 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1105 1106 // Derived-to-base conversions. 1107 case CK_UncheckedDerivedToBase: 1108 case CK_DerivedToBase: { 1109 // TODO: Support accesses to members of base classes in TBAA. For now, we 1110 // conservatively pretend that the complete object is of the base class 1111 // type. 1112 if (TBAAInfo) 1113 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1114 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1115 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1116 return GetAddressOfBaseClass(Addr, Derived, 1117 CE->path_begin(), CE->path_end(), 1118 ShouldNullCheckClassCastValue(CE), 1119 CE->getExprLoc()); 1120 } 1121 1122 // TODO: Is there any reason to treat base-to-derived conversions 1123 // specially? 1124 default: 1125 break; 1126 } 1127 } 1128 1129 // Unary &. 1130 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1131 if (UO->getOpcode() == UO_AddrOf) { 1132 LValue LV = EmitLValue(UO->getSubExpr()); 1133 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1134 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1135 return LV.getAddress(*this); 1136 } 1137 } 1138 1139 // TODO: conditional operators, comma. 1140 1141 // Otherwise, use the alignment of the type. 1142 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1143 TBAAInfo); 1144 return Address(EmitScalarExpr(E), Align); 1145 } 1146 1147 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1148 if (Ty->isVoidType()) 1149 return RValue::get(nullptr); 1150 1151 switch (getEvaluationKind(Ty)) { 1152 case TEK_Complex: { 1153 llvm::Type *EltTy = 1154 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1155 llvm::Value *U = llvm::UndefValue::get(EltTy); 1156 return RValue::getComplex(std::make_pair(U, U)); 1157 } 1158 1159 // If this is a use of an undefined aggregate type, the aggregate must have an 1160 // identifiable address. Just because the contents of the value are undefined 1161 // doesn't mean that the address can't be taken and compared. 1162 case TEK_Aggregate: { 1163 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1164 return RValue::getAggregate(DestPtr); 1165 } 1166 1167 case TEK_Scalar: 1168 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1169 } 1170 llvm_unreachable("bad evaluation kind"); 1171 } 1172 1173 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1174 const char *Name) { 1175 ErrorUnsupported(E, Name); 1176 return GetUndefRValue(E->getType()); 1177 } 1178 1179 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1180 const char *Name) { 1181 ErrorUnsupported(E, Name); 1182 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1183 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1184 E->getType()); 1185 } 1186 1187 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1188 const Expr *Base = Obj; 1189 while (!isa<CXXThisExpr>(Base)) { 1190 // The result of a dynamic_cast can be null. 1191 if (isa<CXXDynamicCastExpr>(Base)) 1192 return false; 1193 1194 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1195 Base = CE->getSubExpr(); 1196 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1197 Base = PE->getSubExpr(); 1198 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1199 if (UO->getOpcode() == UO_Extension) 1200 Base = UO->getSubExpr(); 1201 else 1202 return false; 1203 } else { 1204 return false; 1205 } 1206 } 1207 return true; 1208 } 1209 1210 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1211 LValue LV; 1212 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1213 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1214 else 1215 LV = EmitLValue(E); 1216 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1217 SanitizerSet SkippedChecks; 1218 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1219 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1220 if (IsBaseCXXThis) 1221 SkippedChecks.set(SanitizerKind::Alignment, true); 1222 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1223 SkippedChecks.set(SanitizerKind::Null, true); 1224 } 1225 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1226 LV.getAlignment(), SkippedChecks); 1227 } 1228 return LV; 1229 } 1230 1231 /// EmitLValue - Emit code to compute a designator that specifies the location 1232 /// of the expression. 1233 /// 1234 /// This can return one of two things: a simple address or a bitfield reference. 1235 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1236 /// an LLVM pointer type. 1237 /// 1238 /// If this returns a bitfield reference, nothing about the pointee type of the 1239 /// LLVM value is known: For example, it may not be a pointer to an integer. 1240 /// 1241 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1242 /// this method guarantees that the returned pointer type will point to an LLVM 1243 /// type of the same size of the lvalue's type. If the lvalue has a variable 1244 /// length type, this is not possible. 1245 /// 1246 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1247 ApplyDebugLocation DL(*this, E); 1248 switch (E->getStmtClass()) { 1249 default: return EmitUnsupportedLValue(E, "l-value expression"); 1250 1251 case Expr::ObjCPropertyRefExprClass: 1252 llvm_unreachable("cannot emit a property reference directly"); 1253 1254 case Expr::ObjCSelectorExprClass: 1255 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1256 case Expr::ObjCIsaExprClass: 1257 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1258 case Expr::BinaryOperatorClass: 1259 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1260 case Expr::CompoundAssignOperatorClass: { 1261 QualType Ty = E->getType(); 1262 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1263 Ty = AT->getValueType(); 1264 if (!Ty->isAnyComplexType()) 1265 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1266 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1267 } 1268 case Expr::CallExprClass: 1269 case Expr::CXXMemberCallExprClass: 1270 case Expr::CXXOperatorCallExprClass: 1271 case Expr::UserDefinedLiteralClass: 1272 return EmitCallExprLValue(cast<CallExpr>(E)); 1273 case Expr::CXXRewrittenBinaryOperatorClass: 1274 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1275 case Expr::VAArgExprClass: 1276 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1277 case Expr::DeclRefExprClass: 1278 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1279 case Expr::ConstantExprClass: 1280 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1281 case Expr::ParenExprClass: 1282 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1283 case Expr::GenericSelectionExprClass: 1284 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1285 case Expr::PredefinedExprClass: 1286 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1287 case Expr::StringLiteralClass: 1288 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1289 case Expr::ObjCEncodeExprClass: 1290 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1291 case Expr::PseudoObjectExprClass: 1292 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1293 case Expr::InitListExprClass: 1294 return EmitInitListLValue(cast<InitListExpr>(E)); 1295 case Expr::CXXTemporaryObjectExprClass: 1296 case Expr::CXXConstructExprClass: 1297 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1298 case Expr::CXXBindTemporaryExprClass: 1299 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1300 case Expr::CXXUuidofExprClass: 1301 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1302 case Expr::LambdaExprClass: 1303 return EmitAggExprToLValue(E); 1304 1305 case Expr::ExprWithCleanupsClass: { 1306 const auto *cleanups = cast<ExprWithCleanups>(E); 1307 enterFullExpression(cleanups); 1308 RunCleanupsScope Scope(*this); 1309 LValue LV = EmitLValue(cleanups->getSubExpr()); 1310 if (LV.isSimple()) { 1311 // Defend against branches out of gnu statement expressions surrounded by 1312 // cleanups. 1313 llvm::Value *V = LV.getPointer(*this); 1314 Scope.ForceCleanup({&V}); 1315 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1316 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1317 } 1318 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1319 // bitfield lvalue or some other non-simple lvalue? 1320 return LV; 1321 } 1322 1323 case Expr::CXXDefaultArgExprClass: { 1324 auto *DAE = cast<CXXDefaultArgExpr>(E); 1325 CXXDefaultArgExprScope Scope(*this, DAE); 1326 return EmitLValue(DAE->getExpr()); 1327 } 1328 case Expr::CXXDefaultInitExprClass: { 1329 auto *DIE = cast<CXXDefaultInitExpr>(E); 1330 CXXDefaultInitExprScope Scope(*this, DIE); 1331 return EmitLValue(DIE->getExpr()); 1332 } 1333 case Expr::CXXTypeidExprClass: 1334 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1335 1336 case Expr::ObjCMessageExprClass: 1337 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1338 case Expr::ObjCIvarRefExprClass: 1339 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1340 case Expr::StmtExprClass: 1341 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1342 case Expr::UnaryOperatorClass: 1343 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1344 case Expr::ArraySubscriptExprClass: 1345 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1346 case Expr::OMPArraySectionExprClass: 1347 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1348 case Expr::ExtVectorElementExprClass: 1349 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1350 case Expr::MemberExprClass: 1351 return EmitMemberExpr(cast<MemberExpr>(E)); 1352 case Expr::CompoundLiteralExprClass: 1353 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1354 case Expr::ConditionalOperatorClass: 1355 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1356 case Expr::BinaryConditionalOperatorClass: 1357 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1358 case Expr::ChooseExprClass: 1359 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1360 case Expr::OpaqueValueExprClass: 1361 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1362 case Expr::SubstNonTypeTemplateParmExprClass: 1363 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1364 case Expr::ImplicitCastExprClass: 1365 case Expr::CStyleCastExprClass: 1366 case Expr::CXXFunctionalCastExprClass: 1367 case Expr::CXXStaticCastExprClass: 1368 case Expr::CXXDynamicCastExprClass: 1369 case Expr::CXXReinterpretCastExprClass: 1370 case Expr::CXXConstCastExprClass: 1371 case Expr::ObjCBridgedCastExprClass: 1372 return EmitCastLValue(cast<CastExpr>(E)); 1373 1374 case Expr::MaterializeTemporaryExprClass: 1375 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1376 1377 case Expr::CoawaitExprClass: 1378 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1379 case Expr::CoyieldExprClass: 1380 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1381 } 1382 } 1383 1384 /// Given an object of the given canonical type, can we safely copy a 1385 /// value out of it based on its initializer? 1386 static bool isConstantEmittableObjectType(QualType type) { 1387 assert(type.isCanonical()); 1388 assert(!type->isReferenceType()); 1389 1390 // Must be const-qualified but non-volatile. 1391 Qualifiers qs = type.getLocalQualifiers(); 1392 if (!qs.hasConst() || qs.hasVolatile()) return false; 1393 1394 // Otherwise, all object types satisfy this except C++ classes with 1395 // mutable subobjects or non-trivial copy/destroy behavior. 1396 if (const auto *RT = dyn_cast<RecordType>(type)) 1397 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1398 if (RD->hasMutableFields() || !RD->isTrivial()) 1399 return false; 1400 1401 return true; 1402 } 1403 1404 /// Can we constant-emit a load of a reference to a variable of the 1405 /// given type? This is different from predicates like 1406 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1407 /// in situations that don't necessarily satisfy the language's rules 1408 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1409 /// to do this with const float variables even if those variables 1410 /// aren't marked 'constexpr'. 1411 enum ConstantEmissionKind { 1412 CEK_None, 1413 CEK_AsReferenceOnly, 1414 CEK_AsValueOrReference, 1415 CEK_AsValueOnly 1416 }; 1417 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1418 type = type.getCanonicalType(); 1419 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1420 if (isConstantEmittableObjectType(ref->getPointeeType())) 1421 return CEK_AsValueOrReference; 1422 return CEK_AsReferenceOnly; 1423 } 1424 if (isConstantEmittableObjectType(type)) 1425 return CEK_AsValueOnly; 1426 return CEK_None; 1427 } 1428 1429 /// Try to emit a reference to the given value without producing it as 1430 /// an l-value. This is just an optimization, but it avoids us needing 1431 /// to emit global copies of variables if they're named without triggering 1432 /// a formal use in a context where we can't emit a direct reference to them, 1433 /// for instance if a block or lambda or a member of a local class uses a 1434 /// const int variable or constexpr variable from an enclosing function. 1435 CodeGenFunction::ConstantEmission 1436 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1437 ValueDecl *value = refExpr->getDecl(); 1438 1439 // The value needs to be an enum constant or a constant variable. 1440 ConstantEmissionKind CEK; 1441 if (isa<ParmVarDecl>(value)) { 1442 CEK = CEK_None; 1443 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1444 CEK = checkVarTypeForConstantEmission(var->getType()); 1445 } else if (isa<EnumConstantDecl>(value)) { 1446 CEK = CEK_AsValueOnly; 1447 } else { 1448 CEK = CEK_None; 1449 } 1450 if (CEK == CEK_None) return ConstantEmission(); 1451 1452 Expr::EvalResult result; 1453 bool resultIsReference; 1454 QualType resultType; 1455 1456 // It's best to evaluate all the way as an r-value if that's permitted. 1457 if (CEK != CEK_AsReferenceOnly && 1458 refExpr->EvaluateAsRValue(result, getContext())) { 1459 resultIsReference = false; 1460 resultType = refExpr->getType(); 1461 1462 // Otherwise, try to evaluate as an l-value. 1463 } else if (CEK != CEK_AsValueOnly && 1464 refExpr->EvaluateAsLValue(result, getContext())) { 1465 resultIsReference = true; 1466 resultType = value->getType(); 1467 1468 // Failure. 1469 } else { 1470 return ConstantEmission(); 1471 } 1472 1473 // In any case, if the initializer has side-effects, abandon ship. 1474 if (result.HasSideEffects) 1475 return ConstantEmission(); 1476 1477 // Emit as a constant. 1478 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1479 result.Val, resultType); 1480 1481 // Make sure we emit a debug reference to the global variable. 1482 // This should probably fire even for 1483 if (isa<VarDecl>(value)) { 1484 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1485 EmitDeclRefExprDbgValue(refExpr, result.Val); 1486 } else { 1487 assert(isa<EnumConstantDecl>(value)); 1488 EmitDeclRefExprDbgValue(refExpr, result.Val); 1489 } 1490 1491 // If we emitted a reference constant, we need to dereference that. 1492 if (resultIsReference) 1493 return ConstantEmission::forReference(C); 1494 1495 return ConstantEmission::forValue(C); 1496 } 1497 1498 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1499 const MemberExpr *ME) { 1500 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1501 // Try to emit static variable member expressions as DREs. 1502 return DeclRefExpr::Create( 1503 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1504 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1505 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1506 } 1507 return nullptr; 1508 } 1509 1510 CodeGenFunction::ConstantEmission 1511 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1512 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1513 return tryEmitAsConstant(DRE); 1514 return ConstantEmission(); 1515 } 1516 1517 llvm::Value *CodeGenFunction::emitScalarConstant( 1518 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1519 assert(Constant && "not a constant"); 1520 if (Constant.isReference()) 1521 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1522 E->getExprLoc()) 1523 .getScalarVal(); 1524 return Constant.getValue(); 1525 } 1526 1527 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1528 SourceLocation Loc) { 1529 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1530 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1531 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1532 } 1533 1534 static bool hasBooleanRepresentation(QualType Ty) { 1535 if (Ty->isBooleanType()) 1536 return true; 1537 1538 if (const EnumType *ET = Ty->getAs<EnumType>()) 1539 return ET->getDecl()->getIntegerType()->isBooleanType(); 1540 1541 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1542 return hasBooleanRepresentation(AT->getValueType()); 1543 1544 return false; 1545 } 1546 1547 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1548 llvm::APInt &Min, llvm::APInt &End, 1549 bool StrictEnums, bool IsBool) { 1550 const EnumType *ET = Ty->getAs<EnumType>(); 1551 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1552 ET && !ET->getDecl()->isFixed(); 1553 if (!IsBool && !IsRegularCPlusPlusEnum) 1554 return false; 1555 1556 if (IsBool) { 1557 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1558 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1559 } else { 1560 const EnumDecl *ED = ET->getDecl(); 1561 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1562 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1563 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1564 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1565 1566 if (NumNegativeBits) { 1567 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1568 assert(NumBits <= Bitwidth); 1569 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1570 Min = -End; 1571 } else { 1572 assert(NumPositiveBits <= Bitwidth); 1573 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1574 Min = llvm::APInt(Bitwidth, 0); 1575 } 1576 } 1577 return true; 1578 } 1579 1580 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1581 llvm::APInt Min, End; 1582 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1583 hasBooleanRepresentation(Ty))) 1584 return nullptr; 1585 1586 llvm::MDBuilder MDHelper(getLLVMContext()); 1587 return MDHelper.createRange(Min, End); 1588 } 1589 1590 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1591 SourceLocation Loc) { 1592 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1593 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1594 if (!HasBoolCheck && !HasEnumCheck) 1595 return false; 1596 1597 bool IsBool = hasBooleanRepresentation(Ty) || 1598 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1599 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1600 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1601 if (!NeedsBoolCheck && !NeedsEnumCheck) 1602 return false; 1603 1604 // Single-bit booleans don't need to be checked. Special-case this to avoid 1605 // a bit width mismatch when handling bitfield values. This is handled by 1606 // EmitFromMemory for the non-bitfield case. 1607 if (IsBool && 1608 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1609 return false; 1610 1611 llvm::APInt Min, End; 1612 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1613 return true; 1614 1615 auto &Ctx = getLLVMContext(); 1616 SanitizerScope SanScope(this); 1617 llvm::Value *Check; 1618 --End; 1619 if (!Min) { 1620 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1621 } else { 1622 llvm::Value *Upper = 1623 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1624 llvm::Value *Lower = 1625 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1626 Check = Builder.CreateAnd(Upper, Lower); 1627 } 1628 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1629 EmitCheckTypeDescriptor(Ty)}; 1630 SanitizerMask Kind = 1631 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1632 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1633 StaticArgs, EmitCheckValue(Value)); 1634 return true; 1635 } 1636 1637 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1638 QualType Ty, 1639 SourceLocation Loc, 1640 LValueBaseInfo BaseInfo, 1641 TBAAAccessInfo TBAAInfo, 1642 bool isNontemporal) { 1643 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1644 // For better performance, handle vector loads differently. 1645 if (Ty->isVectorType()) { 1646 const llvm::Type *EltTy = Addr.getElementType(); 1647 1648 const auto *VTy = cast<llvm::VectorType>(EltTy); 1649 1650 // Handle vectors of size 3 like size 4 for better performance. 1651 if (VTy->getNumElements() == 3) { 1652 1653 // Bitcast to vec4 type. 1654 llvm::VectorType *vec4Ty = 1655 llvm::VectorType::get(VTy->getElementType(), 4); 1656 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1657 // Now load value. 1658 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1659 1660 // Shuffle vector to get vec3. 1661 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1662 {0, 1, 2}, "extractVec"); 1663 return EmitFromMemory(V, Ty); 1664 } 1665 } 1666 } 1667 1668 // Atomic operations have to be done on integral types. 1669 LValue AtomicLValue = 1670 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1671 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1672 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1673 } 1674 1675 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1676 if (isNontemporal) { 1677 llvm::MDNode *Node = llvm::MDNode::get( 1678 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1679 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1680 } 1681 1682 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1683 1684 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1685 // In order to prevent the optimizer from throwing away the check, don't 1686 // attach range metadata to the load. 1687 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1688 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1689 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1690 1691 return EmitFromMemory(Load, Ty); 1692 } 1693 1694 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1695 // Bool has a different representation in memory than in registers. 1696 if (hasBooleanRepresentation(Ty)) { 1697 // This should really always be an i1, but sometimes it's already 1698 // an i8, and it's awkward to track those cases down. 1699 if (Value->getType()->isIntegerTy(1)) 1700 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1701 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1702 "wrong value rep of bool"); 1703 } 1704 1705 return Value; 1706 } 1707 1708 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1709 // Bool has a different representation in memory than in registers. 1710 if (hasBooleanRepresentation(Ty)) { 1711 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1712 "wrong value rep of bool"); 1713 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1714 } 1715 1716 return Value; 1717 } 1718 1719 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1720 bool Volatile, QualType Ty, 1721 LValueBaseInfo BaseInfo, 1722 TBAAAccessInfo TBAAInfo, 1723 bool isInit, bool isNontemporal) { 1724 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1725 // Handle vectors differently to get better performance. 1726 if (Ty->isVectorType()) { 1727 llvm::Type *SrcTy = Value->getType(); 1728 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1729 // Handle vec3 special. 1730 if (VecTy && VecTy->getNumElements() == 3) { 1731 // Our source is a vec3, do a shuffle vector to make it a vec4. 1732 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1733 Builder.getInt32(2), 1734 llvm::UndefValue::get(Builder.getInt32Ty())}; 1735 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1736 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1737 MaskV, "extractVec"); 1738 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1739 } 1740 if (Addr.getElementType() != SrcTy) { 1741 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1742 } 1743 } 1744 } 1745 1746 Value = EmitToMemory(Value, Ty); 1747 1748 LValue AtomicLValue = 1749 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1750 if (Ty->isAtomicType() || 1751 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1752 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1753 return; 1754 } 1755 1756 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1757 if (isNontemporal) { 1758 llvm::MDNode *Node = 1759 llvm::MDNode::get(Store->getContext(), 1760 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1761 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1762 } 1763 1764 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1765 } 1766 1767 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1768 bool isInit) { 1769 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1770 lvalue.getType(), lvalue.getBaseInfo(), 1771 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1772 } 1773 1774 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1775 /// method emits the address of the lvalue, then loads the result as an rvalue, 1776 /// returning the rvalue. 1777 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1778 if (LV.isObjCWeak()) { 1779 // load of a __weak object. 1780 Address AddrWeakObj = LV.getAddress(*this); 1781 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1782 AddrWeakObj)); 1783 } 1784 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1785 // In MRC mode, we do a load+autorelease. 1786 if (!getLangOpts().ObjCAutoRefCount) { 1787 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1788 } 1789 1790 // In ARC mode, we load retained and then consume the value. 1791 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1792 Object = EmitObjCConsumeObject(LV.getType(), Object); 1793 return RValue::get(Object); 1794 } 1795 1796 if (LV.isSimple()) { 1797 assert(!LV.getType()->isFunctionType()); 1798 1799 // Everything needs a load. 1800 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1801 } 1802 1803 if (LV.isVectorElt()) { 1804 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1805 LV.isVolatileQualified()); 1806 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1807 "vecext")); 1808 } 1809 1810 // If this is a reference to a subset of the elements of a vector, either 1811 // shuffle the input or extract/insert them as appropriate. 1812 if (LV.isExtVectorElt()) 1813 return EmitLoadOfExtVectorElementLValue(LV); 1814 1815 // Global Register variables always invoke intrinsics 1816 if (LV.isGlobalReg()) 1817 return EmitLoadOfGlobalRegLValue(LV); 1818 1819 assert(LV.isBitField() && "Unknown LValue type!"); 1820 return EmitLoadOfBitfieldLValue(LV, Loc); 1821 } 1822 1823 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1824 SourceLocation Loc) { 1825 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1826 1827 // Get the output type. 1828 llvm::Type *ResLTy = ConvertType(LV.getType()); 1829 1830 Address Ptr = LV.getBitFieldAddress(); 1831 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1832 1833 if (Info.IsSigned) { 1834 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1835 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1836 if (HighBits) 1837 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1838 if (Info.Offset + HighBits) 1839 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1840 } else { 1841 if (Info.Offset) 1842 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1843 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1844 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1845 Info.Size), 1846 "bf.clear"); 1847 } 1848 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1849 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1850 return RValue::get(Val); 1851 } 1852 1853 // If this is a reference to a subset of the elements of a vector, create an 1854 // appropriate shufflevector. 1855 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1856 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1857 LV.isVolatileQualified()); 1858 1859 const llvm::Constant *Elts = LV.getExtVectorElts(); 1860 1861 // If the result of the expression is a non-vector type, we must be extracting 1862 // a single element. Just codegen as an extractelement. 1863 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1864 if (!ExprVT) { 1865 unsigned InIdx = getAccessedFieldNo(0, Elts); 1866 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1867 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1868 } 1869 1870 // Always use shuffle vector to try to retain the original program structure 1871 unsigned NumResultElts = ExprVT->getNumElements(); 1872 1873 SmallVector<llvm::Constant*, 4> Mask; 1874 for (unsigned i = 0; i != NumResultElts; ++i) 1875 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1876 1877 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1878 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1879 MaskV); 1880 return RValue::get(Vec); 1881 } 1882 1883 /// Generates lvalue for partial ext_vector access. 1884 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1885 Address VectorAddress = LV.getExtVectorAddress(); 1886 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1887 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1888 1889 Address CastToPointerElement = 1890 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1891 "conv.ptr.element"); 1892 1893 const llvm::Constant *Elts = LV.getExtVectorElts(); 1894 unsigned ix = getAccessedFieldNo(0, Elts); 1895 1896 Address VectorBasePtrPlusIx = 1897 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1898 "vector.elt"); 1899 1900 return VectorBasePtrPlusIx; 1901 } 1902 1903 /// Load of global gamed gegisters are always calls to intrinsics. 1904 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1905 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1906 "Bad type for register variable"); 1907 llvm::MDNode *RegName = cast<llvm::MDNode>( 1908 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1909 1910 // We accept integer and pointer types only 1911 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1912 llvm::Type *Ty = OrigTy; 1913 if (OrigTy->isPointerTy()) 1914 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1915 llvm::Type *Types[] = { Ty }; 1916 1917 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1918 llvm::Value *Call = Builder.CreateCall( 1919 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1920 if (OrigTy->isPointerTy()) 1921 Call = Builder.CreateIntToPtr(Call, OrigTy); 1922 return RValue::get(Call); 1923 } 1924 1925 1926 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1927 /// lvalue, where both are guaranteed to the have the same type, and that type 1928 /// is 'Ty'. 1929 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1930 bool isInit) { 1931 if (!Dst.isSimple()) { 1932 if (Dst.isVectorElt()) { 1933 // Read/modify/write the vector, inserting the new element. 1934 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1935 Dst.isVolatileQualified()); 1936 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1937 Dst.getVectorIdx(), "vecins"); 1938 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1939 Dst.isVolatileQualified()); 1940 return; 1941 } 1942 1943 // If this is an update of extended vector elements, insert them as 1944 // appropriate. 1945 if (Dst.isExtVectorElt()) 1946 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1947 1948 if (Dst.isGlobalReg()) 1949 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1950 1951 assert(Dst.isBitField() && "Unknown LValue type"); 1952 return EmitStoreThroughBitfieldLValue(Src, Dst); 1953 } 1954 1955 // There's special magic for assigning into an ARC-qualified l-value. 1956 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1957 switch (Lifetime) { 1958 case Qualifiers::OCL_None: 1959 llvm_unreachable("present but none"); 1960 1961 case Qualifiers::OCL_ExplicitNone: 1962 // nothing special 1963 break; 1964 1965 case Qualifiers::OCL_Strong: 1966 if (isInit) { 1967 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1968 break; 1969 } 1970 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1971 return; 1972 1973 case Qualifiers::OCL_Weak: 1974 if (isInit) 1975 // Initialize and then skip the primitive store. 1976 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1977 else 1978 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1979 /*ignore*/ true); 1980 return; 1981 1982 case Qualifiers::OCL_Autoreleasing: 1983 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1984 Src.getScalarVal())); 1985 // fall into the normal path 1986 break; 1987 } 1988 } 1989 1990 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1991 // load of a __weak object. 1992 Address LvalueDst = Dst.getAddress(*this); 1993 llvm::Value *src = Src.getScalarVal(); 1994 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1995 return; 1996 } 1997 1998 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1999 // load of a __strong object. 2000 Address LvalueDst = Dst.getAddress(*this); 2001 llvm::Value *src = Src.getScalarVal(); 2002 if (Dst.isObjCIvar()) { 2003 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2004 llvm::Type *ResultType = IntPtrTy; 2005 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2006 llvm::Value *RHS = dst.getPointer(); 2007 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2008 llvm::Value *LHS = 2009 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2010 "sub.ptr.lhs.cast"); 2011 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2012 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2013 BytesBetween); 2014 } else if (Dst.isGlobalObjCRef()) { 2015 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2016 Dst.isThreadLocalRef()); 2017 } 2018 else 2019 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2020 return; 2021 } 2022 2023 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2024 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2025 } 2026 2027 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2028 llvm::Value **Result) { 2029 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2030 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2031 Address Ptr = Dst.getBitFieldAddress(); 2032 2033 // Get the source value, truncated to the width of the bit-field. 2034 llvm::Value *SrcVal = Src.getScalarVal(); 2035 2036 // Cast the source to the storage type and shift it into place. 2037 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2038 /*isSigned=*/false); 2039 llvm::Value *MaskedVal = SrcVal; 2040 2041 // See if there are other bits in the bitfield's storage we'll need to load 2042 // and mask together with source before storing. 2043 if (Info.StorageSize != Info.Size) { 2044 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2045 llvm::Value *Val = 2046 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2047 2048 // Mask the source value as needed. 2049 if (!hasBooleanRepresentation(Dst.getType())) 2050 SrcVal = Builder.CreateAnd(SrcVal, 2051 llvm::APInt::getLowBitsSet(Info.StorageSize, 2052 Info.Size), 2053 "bf.value"); 2054 MaskedVal = SrcVal; 2055 if (Info.Offset) 2056 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2057 2058 // Mask out the original value. 2059 Val = Builder.CreateAnd(Val, 2060 ~llvm::APInt::getBitsSet(Info.StorageSize, 2061 Info.Offset, 2062 Info.Offset + Info.Size), 2063 "bf.clear"); 2064 2065 // Or together the unchanged values and the source value. 2066 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2067 } else { 2068 assert(Info.Offset == 0); 2069 } 2070 2071 // Write the new value back out. 2072 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2073 2074 // Return the new value of the bit-field, if requested. 2075 if (Result) { 2076 llvm::Value *ResultVal = MaskedVal; 2077 2078 // Sign extend the value if needed. 2079 if (Info.IsSigned) { 2080 assert(Info.Size <= Info.StorageSize); 2081 unsigned HighBits = Info.StorageSize - Info.Size; 2082 if (HighBits) { 2083 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2084 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2085 } 2086 } 2087 2088 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2089 "bf.result.cast"); 2090 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2091 } 2092 } 2093 2094 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2095 LValue Dst) { 2096 // This access turns into a read/modify/write of the vector. Load the input 2097 // value now. 2098 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2099 Dst.isVolatileQualified()); 2100 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2101 2102 llvm::Value *SrcVal = Src.getScalarVal(); 2103 2104 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2105 unsigned NumSrcElts = VTy->getNumElements(); 2106 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2107 if (NumDstElts == NumSrcElts) { 2108 // Use shuffle vector is the src and destination are the same number of 2109 // elements and restore the vector mask since it is on the side it will be 2110 // stored. 2111 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2112 for (unsigned i = 0; i != NumSrcElts; ++i) 2113 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2114 2115 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2116 Vec = Builder.CreateShuffleVector(SrcVal, 2117 llvm::UndefValue::get(Vec->getType()), 2118 MaskV); 2119 } else if (NumDstElts > NumSrcElts) { 2120 // Extended the source vector to the same length and then shuffle it 2121 // into the destination. 2122 // FIXME: since we're shuffling with undef, can we just use the indices 2123 // into that? This could be simpler. 2124 SmallVector<llvm::Constant*, 4> ExtMask; 2125 for (unsigned i = 0; i != NumSrcElts; ++i) 2126 ExtMask.push_back(Builder.getInt32(i)); 2127 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2128 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2129 llvm::Value *ExtSrcVal = 2130 Builder.CreateShuffleVector(SrcVal, 2131 llvm::UndefValue::get(SrcVal->getType()), 2132 ExtMaskV); 2133 // build identity 2134 SmallVector<llvm::Constant*, 4> Mask; 2135 for (unsigned i = 0; i != NumDstElts; ++i) 2136 Mask.push_back(Builder.getInt32(i)); 2137 2138 // When the vector size is odd and .odd or .hi is used, the last element 2139 // of the Elts constant array will be one past the size of the vector. 2140 // Ignore the last element here, if it is greater than the mask size. 2141 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2142 NumSrcElts--; 2143 2144 // modify when what gets shuffled in 2145 for (unsigned i = 0; i != NumSrcElts; ++i) 2146 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2147 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2148 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2149 } else { 2150 // We should never shorten the vector 2151 llvm_unreachable("unexpected shorten vector length"); 2152 } 2153 } else { 2154 // If the Src is a scalar (not a vector) it must be updating one element. 2155 unsigned InIdx = getAccessedFieldNo(0, Elts); 2156 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2157 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2158 } 2159 2160 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2161 Dst.isVolatileQualified()); 2162 } 2163 2164 /// Store of global named registers are always calls to intrinsics. 2165 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2166 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2167 "Bad type for register variable"); 2168 llvm::MDNode *RegName = cast<llvm::MDNode>( 2169 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2170 assert(RegName && "Register LValue is not metadata"); 2171 2172 // We accept integer and pointer types only 2173 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2174 llvm::Type *Ty = OrigTy; 2175 if (OrigTy->isPointerTy()) 2176 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2177 llvm::Type *Types[] = { Ty }; 2178 2179 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2180 llvm::Value *Value = Src.getScalarVal(); 2181 if (OrigTy->isPointerTy()) 2182 Value = Builder.CreatePtrToInt(Value, Ty); 2183 Builder.CreateCall( 2184 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2185 } 2186 2187 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2188 // generating write-barries API. It is currently a global, ivar, 2189 // or neither. 2190 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2191 LValue &LV, 2192 bool IsMemberAccess=false) { 2193 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2194 return; 2195 2196 if (isa<ObjCIvarRefExpr>(E)) { 2197 QualType ExpTy = E->getType(); 2198 if (IsMemberAccess && ExpTy->isPointerType()) { 2199 // If ivar is a structure pointer, assigning to field of 2200 // this struct follows gcc's behavior and makes it a non-ivar 2201 // writer-barrier conservatively. 2202 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2203 if (ExpTy->isRecordType()) { 2204 LV.setObjCIvar(false); 2205 return; 2206 } 2207 } 2208 LV.setObjCIvar(true); 2209 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2210 LV.setBaseIvarExp(Exp->getBase()); 2211 LV.setObjCArray(E->getType()->isArrayType()); 2212 return; 2213 } 2214 2215 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2216 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2217 if (VD->hasGlobalStorage()) { 2218 LV.setGlobalObjCRef(true); 2219 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2220 } 2221 } 2222 LV.setObjCArray(E->getType()->isArrayType()); 2223 return; 2224 } 2225 2226 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2227 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2228 return; 2229 } 2230 2231 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2232 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2233 if (LV.isObjCIvar()) { 2234 // If cast is to a structure pointer, follow gcc's behavior and make it 2235 // a non-ivar write-barrier. 2236 QualType ExpTy = E->getType(); 2237 if (ExpTy->isPointerType()) 2238 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2239 if (ExpTy->isRecordType()) 2240 LV.setObjCIvar(false); 2241 } 2242 return; 2243 } 2244 2245 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2246 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2247 return; 2248 } 2249 2250 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2252 return; 2253 } 2254 2255 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2256 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2257 return; 2258 } 2259 2260 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2261 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2262 return; 2263 } 2264 2265 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2266 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2267 if (LV.isObjCIvar() && !LV.isObjCArray()) 2268 // Using array syntax to assigning to what an ivar points to is not 2269 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2270 LV.setObjCIvar(false); 2271 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2272 // Using array syntax to assigning to what global points to is not 2273 // same as assigning to the global itself. {id *G;} G[i] = 0; 2274 LV.setGlobalObjCRef(false); 2275 return; 2276 } 2277 2278 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2279 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2280 // We don't know if member is an 'ivar', but this flag is looked at 2281 // only in the context of LV.isObjCIvar(). 2282 LV.setObjCArray(E->getType()->isArrayType()); 2283 return; 2284 } 2285 } 2286 2287 static llvm::Value * 2288 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2289 llvm::Value *V, llvm::Type *IRType, 2290 StringRef Name = StringRef()) { 2291 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2292 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2293 } 2294 2295 static LValue EmitThreadPrivateVarDeclLValue( 2296 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2297 llvm::Type *RealVarTy, SourceLocation Loc) { 2298 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2299 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2300 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2301 } 2302 2303 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2304 const VarDecl *VD, QualType T) { 2305 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2306 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2307 // Return an invalid address if variable is MT_To and unified 2308 // memory is not enabled. For all other cases: MT_Link and 2309 // MT_To with unified memory, return a valid address. 2310 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2311 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2312 return Address::invalid(); 2313 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2314 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2315 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2316 "Expected link clause OR to clause with unified memory enabled."); 2317 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2318 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2319 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2320 } 2321 2322 Address 2323 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2324 LValueBaseInfo *PointeeBaseInfo, 2325 TBAAAccessInfo *PointeeTBAAInfo) { 2326 llvm::LoadInst *Load = 2327 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2328 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2329 2330 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2331 PointeeBaseInfo, PointeeTBAAInfo, 2332 /* forPointeeType= */ true); 2333 return Address(Load, Align); 2334 } 2335 2336 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2337 LValueBaseInfo PointeeBaseInfo; 2338 TBAAAccessInfo PointeeTBAAInfo; 2339 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2340 &PointeeTBAAInfo); 2341 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2342 PointeeBaseInfo, PointeeTBAAInfo); 2343 } 2344 2345 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2346 const PointerType *PtrTy, 2347 LValueBaseInfo *BaseInfo, 2348 TBAAAccessInfo *TBAAInfo) { 2349 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2350 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2351 BaseInfo, TBAAInfo, 2352 /*forPointeeType=*/true)); 2353 } 2354 2355 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2356 const PointerType *PtrTy) { 2357 LValueBaseInfo BaseInfo; 2358 TBAAAccessInfo TBAAInfo; 2359 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2360 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2361 } 2362 2363 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2364 const Expr *E, const VarDecl *VD) { 2365 QualType T = E->getType(); 2366 2367 // If it's thread_local, emit a call to its wrapper function instead. 2368 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2369 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2370 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2371 // Check if the variable is marked as declare target with link clause in 2372 // device codegen. 2373 if (CGF.getLangOpts().OpenMPIsDevice) { 2374 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2375 if (Addr.isValid()) 2376 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2377 } 2378 2379 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2380 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2381 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2382 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2383 Address Addr(V, Alignment); 2384 // Emit reference to the private copy of the variable if it is an OpenMP 2385 // threadprivate variable. 2386 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2387 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2388 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2389 E->getExprLoc()); 2390 } 2391 LValue LV = VD->getType()->isReferenceType() ? 2392 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2393 AlignmentSource::Decl) : 2394 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2395 setObjCGCLValueClass(CGF.getContext(), E, LV); 2396 return LV; 2397 } 2398 2399 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2400 const FunctionDecl *FD) { 2401 if (FD->hasAttr<WeakRefAttr>()) { 2402 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2403 return aliasee.getPointer(); 2404 } 2405 2406 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2407 if (!FD->hasPrototype()) { 2408 if (const FunctionProtoType *Proto = 2409 FD->getType()->getAs<FunctionProtoType>()) { 2410 // Ugly case: for a K&R-style definition, the type of the definition 2411 // isn't the same as the type of a use. Correct for this with a 2412 // bitcast. 2413 QualType NoProtoType = 2414 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2415 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2416 V = llvm::ConstantExpr::getBitCast(V, 2417 CGM.getTypes().ConvertType(NoProtoType)); 2418 } 2419 } 2420 return V; 2421 } 2422 2423 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2424 const Expr *E, const FunctionDecl *FD) { 2425 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2426 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2427 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2428 AlignmentSource::Decl); 2429 } 2430 2431 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2432 llvm::Value *ThisValue) { 2433 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2434 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2435 return CGF.EmitLValueForField(LV, FD); 2436 } 2437 2438 /// Named Registers are named metadata pointing to the register name 2439 /// which will be read from/written to as an argument to the intrinsic 2440 /// @llvm.read/write_register. 2441 /// So far, only the name is being passed down, but other options such as 2442 /// register type, allocation type or even optimization options could be 2443 /// passed down via the metadata node. 2444 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2445 SmallString<64> Name("llvm.named.register."); 2446 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2447 assert(Asm->getLabel().size() < 64-Name.size() && 2448 "Register name too big"); 2449 Name.append(Asm->getLabel()); 2450 llvm::NamedMDNode *M = 2451 CGM.getModule().getOrInsertNamedMetadata(Name); 2452 if (M->getNumOperands() == 0) { 2453 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2454 Asm->getLabel()); 2455 llvm::Metadata *Ops[] = {Str}; 2456 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2457 } 2458 2459 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2460 2461 llvm::Value *Ptr = 2462 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2463 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2464 } 2465 2466 /// Determine whether we can emit a reference to \p VD from the current 2467 /// context, despite not necessarily having seen an odr-use of the variable in 2468 /// this context. 2469 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2470 const DeclRefExpr *E, 2471 const VarDecl *VD, 2472 bool IsConstant) { 2473 // For a variable declared in an enclosing scope, do not emit a spurious 2474 // reference even if we have a capture, as that will emit an unwarranted 2475 // reference to our capture state, and will likely generate worse code than 2476 // emitting a local copy. 2477 if (E->refersToEnclosingVariableOrCapture()) 2478 return false; 2479 2480 // For a local declaration declared in this function, we can always reference 2481 // it even if we don't have an odr-use. 2482 if (VD->hasLocalStorage()) { 2483 return VD->getDeclContext() == 2484 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2485 } 2486 2487 // For a global declaration, we can emit a reference to it if we know 2488 // for sure that we are able to emit a definition of it. 2489 VD = VD->getDefinition(CGF.getContext()); 2490 if (!VD) 2491 return false; 2492 2493 // Don't emit a spurious reference if it might be to a variable that only 2494 // exists on a different device / target. 2495 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2496 // cross-target reference. 2497 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2498 CGF.getLangOpts().OpenCL) { 2499 return false; 2500 } 2501 2502 // We can emit a spurious reference only if the linkage implies that we'll 2503 // be emitting a non-interposable symbol that will be retained until link 2504 // time. 2505 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2506 case llvm::GlobalValue::ExternalLinkage: 2507 case llvm::GlobalValue::LinkOnceODRLinkage: 2508 case llvm::GlobalValue::WeakODRLinkage: 2509 case llvm::GlobalValue::InternalLinkage: 2510 case llvm::GlobalValue::PrivateLinkage: 2511 return true; 2512 default: 2513 return false; 2514 } 2515 } 2516 2517 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2518 const NamedDecl *ND = E->getDecl(); 2519 QualType T = E->getType(); 2520 2521 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2522 "should not emit an unevaluated operand"); 2523 2524 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2525 // Global Named registers access via intrinsics only 2526 if (VD->getStorageClass() == SC_Register && 2527 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2528 return EmitGlobalNamedRegister(VD, CGM); 2529 2530 // If this DeclRefExpr does not constitute an odr-use of the variable, 2531 // we're not permitted to emit a reference to it in general, and it might 2532 // not be captured if capture would be necessary for a use. Emit the 2533 // constant value directly instead. 2534 if (E->isNonOdrUse() == NOUR_Constant && 2535 (VD->getType()->isReferenceType() || 2536 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2537 VD->getAnyInitializer(VD); 2538 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2539 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2540 assert(Val && "failed to emit constant expression"); 2541 2542 Address Addr = Address::invalid(); 2543 if (!VD->getType()->isReferenceType()) { 2544 // Spill the constant value to a global. 2545 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2546 getContext().getDeclAlign(VD)); 2547 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2548 auto *PTy = llvm::PointerType::get( 2549 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2550 if (PTy != Addr.getType()) 2551 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2552 } else { 2553 // Should we be using the alignment of the constant pointer we emitted? 2554 CharUnits Alignment = 2555 getNaturalTypeAlignment(E->getType(), 2556 /* BaseInfo= */ nullptr, 2557 /* TBAAInfo= */ nullptr, 2558 /* forPointeeType= */ true); 2559 Addr = Address(Val, Alignment); 2560 } 2561 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2562 } 2563 2564 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2565 2566 // Check for captured variables. 2567 if (E->refersToEnclosingVariableOrCapture()) { 2568 VD = VD->getCanonicalDecl(); 2569 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2570 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2571 if (CapturedStmtInfo) { 2572 auto I = LocalDeclMap.find(VD); 2573 if (I != LocalDeclMap.end()) { 2574 LValue CapLVal; 2575 if (VD->getType()->isReferenceType()) 2576 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2577 AlignmentSource::Decl); 2578 else 2579 CapLVal = MakeAddrLValue(I->second, T); 2580 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2581 // in simd context. 2582 if (getLangOpts().OpenMP && 2583 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2584 CapLVal.setNontemporal(/*Value=*/true); 2585 return CapLVal; 2586 } 2587 LValue CapLVal = 2588 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2589 CapturedStmtInfo->getContextValue()); 2590 CapLVal = MakeAddrLValue( 2591 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2592 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2593 CapLVal.getTBAAInfo()); 2594 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2595 // in simd context. 2596 if (getLangOpts().OpenMP && 2597 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2598 CapLVal.setNontemporal(/*Value=*/true); 2599 return CapLVal; 2600 } 2601 2602 assert(isa<BlockDecl>(CurCodeDecl)); 2603 Address addr = GetAddrOfBlockDecl(VD); 2604 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2605 } 2606 } 2607 2608 // FIXME: We should be able to assert this for FunctionDecls as well! 2609 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2610 // those with a valid source location. 2611 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2612 !E->getLocation().isValid()) && 2613 "Should not use decl without marking it used!"); 2614 2615 if (ND->hasAttr<WeakRefAttr>()) { 2616 const auto *VD = cast<ValueDecl>(ND); 2617 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2618 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2619 } 2620 2621 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2622 // Check if this is a global variable. 2623 if (VD->hasLinkage() || VD->isStaticDataMember()) 2624 return EmitGlobalVarDeclLValue(*this, E, VD); 2625 2626 Address addr = Address::invalid(); 2627 2628 // The variable should generally be present in the local decl map. 2629 auto iter = LocalDeclMap.find(VD); 2630 if (iter != LocalDeclMap.end()) { 2631 addr = iter->second; 2632 2633 // Otherwise, it might be static local we haven't emitted yet for 2634 // some reason; most likely, because it's in an outer function. 2635 } else if (VD->isStaticLocal()) { 2636 addr = Address(CGM.getOrCreateStaticVarDecl( 2637 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2638 getContext().getDeclAlign(VD)); 2639 2640 // No other cases for now. 2641 } else { 2642 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2643 } 2644 2645 2646 // Check for OpenMP threadprivate variables. 2647 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2648 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2649 return EmitThreadPrivateVarDeclLValue( 2650 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2651 E->getExprLoc()); 2652 } 2653 2654 // Drill into block byref variables. 2655 bool isBlockByref = VD->isEscapingByref(); 2656 if (isBlockByref) { 2657 addr = emitBlockByrefAddress(addr, VD); 2658 } 2659 2660 // Drill into reference types. 2661 LValue LV = VD->getType()->isReferenceType() ? 2662 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2663 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2664 2665 bool isLocalStorage = VD->hasLocalStorage(); 2666 2667 bool NonGCable = isLocalStorage && 2668 !VD->getType()->isReferenceType() && 2669 !isBlockByref; 2670 if (NonGCable) { 2671 LV.getQuals().removeObjCGCAttr(); 2672 LV.setNonGC(true); 2673 } 2674 2675 bool isImpreciseLifetime = 2676 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2677 if (isImpreciseLifetime) 2678 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2679 setObjCGCLValueClass(getContext(), E, LV); 2680 return LV; 2681 } 2682 2683 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2684 return EmitFunctionDeclLValue(*this, E, FD); 2685 2686 // FIXME: While we're emitting a binding from an enclosing scope, all other 2687 // DeclRefExprs we see should be implicitly treated as if they also refer to 2688 // an enclosing scope. 2689 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2690 return EmitLValue(BD->getBinding()); 2691 2692 llvm_unreachable("Unhandled DeclRefExpr"); 2693 } 2694 2695 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2696 // __extension__ doesn't affect lvalue-ness. 2697 if (E->getOpcode() == UO_Extension) 2698 return EmitLValue(E->getSubExpr()); 2699 2700 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2701 switch (E->getOpcode()) { 2702 default: llvm_unreachable("Unknown unary operator lvalue!"); 2703 case UO_Deref: { 2704 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2705 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2706 2707 LValueBaseInfo BaseInfo; 2708 TBAAAccessInfo TBAAInfo; 2709 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2710 &TBAAInfo); 2711 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2712 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2713 2714 // We should not generate __weak write barrier on indirect reference 2715 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2716 // But, we continue to generate __strong write barrier on indirect write 2717 // into a pointer to object. 2718 if (getLangOpts().ObjC && 2719 getLangOpts().getGC() != LangOptions::NonGC && 2720 LV.isObjCWeak()) 2721 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2722 return LV; 2723 } 2724 case UO_Real: 2725 case UO_Imag: { 2726 LValue LV = EmitLValue(E->getSubExpr()); 2727 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2728 2729 // __real is valid on scalars. This is a faster way of testing that. 2730 // __imag can only produce an rvalue on scalars. 2731 if (E->getOpcode() == UO_Real && 2732 !LV.getAddress(*this).getElementType()->isStructTy()) { 2733 assert(E->getSubExpr()->getType()->isArithmeticType()); 2734 return LV; 2735 } 2736 2737 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2738 2739 Address Component = 2740 (E->getOpcode() == UO_Real 2741 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2742 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2743 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2744 CGM.getTBAAInfoForSubobject(LV, T)); 2745 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2746 return ElemLV; 2747 } 2748 case UO_PreInc: 2749 case UO_PreDec: { 2750 LValue LV = EmitLValue(E->getSubExpr()); 2751 bool isInc = E->getOpcode() == UO_PreInc; 2752 2753 if (E->getType()->isAnyComplexType()) 2754 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2755 else 2756 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2757 return LV; 2758 } 2759 } 2760 } 2761 2762 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2763 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2764 E->getType(), AlignmentSource::Decl); 2765 } 2766 2767 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2768 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2769 E->getType(), AlignmentSource::Decl); 2770 } 2771 2772 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2773 auto SL = E->getFunctionName(); 2774 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2775 StringRef FnName = CurFn->getName(); 2776 if (FnName.startswith("\01")) 2777 FnName = FnName.substr(1); 2778 StringRef NameItems[] = { 2779 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2780 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2781 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2782 std::string Name = SL->getString(); 2783 if (!Name.empty()) { 2784 unsigned Discriminator = 2785 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2786 if (Discriminator) 2787 Name += "_" + Twine(Discriminator + 1).str(); 2788 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2789 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2790 } else { 2791 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2792 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2793 } 2794 } 2795 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2796 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2797 } 2798 2799 /// Emit a type description suitable for use by a runtime sanitizer library. The 2800 /// format of a type descriptor is 2801 /// 2802 /// \code 2803 /// { i16 TypeKind, i16 TypeInfo } 2804 /// \endcode 2805 /// 2806 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2807 /// integer, 1 for a floating point value, and -1 for anything else. 2808 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2809 // Only emit each type's descriptor once. 2810 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2811 return C; 2812 2813 uint16_t TypeKind = -1; 2814 uint16_t TypeInfo = 0; 2815 2816 if (T->isIntegerType()) { 2817 TypeKind = 0; 2818 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2819 (T->isSignedIntegerType() ? 1 : 0); 2820 } else if (T->isFloatingType()) { 2821 TypeKind = 1; 2822 TypeInfo = getContext().getTypeSize(T); 2823 } 2824 2825 // Format the type name as if for a diagnostic, including quotes and 2826 // optionally an 'aka'. 2827 SmallString<32> Buffer; 2828 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2829 (intptr_t)T.getAsOpaquePtr(), 2830 StringRef(), StringRef(), None, Buffer, 2831 None); 2832 2833 llvm::Constant *Components[] = { 2834 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2835 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2836 }; 2837 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2838 2839 auto *GV = new llvm::GlobalVariable( 2840 CGM.getModule(), Descriptor->getType(), 2841 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2842 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2843 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2844 2845 // Remember the descriptor for this type. 2846 CGM.setTypeDescriptorInMap(T, GV); 2847 2848 return GV; 2849 } 2850 2851 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2852 llvm::Type *TargetTy = IntPtrTy; 2853 2854 if (V->getType() == TargetTy) 2855 return V; 2856 2857 // Floating-point types which fit into intptr_t are bitcast to integers 2858 // and then passed directly (after zero-extension, if necessary). 2859 if (V->getType()->isFloatingPointTy()) { 2860 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2861 if (Bits <= TargetTy->getIntegerBitWidth()) 2862 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2863 Bits)); 2864 } 2865 2866 // Integers which fit in intptr_t are zero-extended and passed directly. 2867 if (V->getType()->isIntegerTy() && 2868 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2869 return Builder.CreateZExt(V, TargetTy); 2870 2871 // Pointers are passed directly, everything else is passed by address. 2872 if (!V->getType()->isPointerTy()) { 2873 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2874 Builder.CreateStore(V, Ptr); 2875 V = Ptr.getPointer(); 2876 } 2877 return Builder.CreatePtrToInt(V, TargetTy); 2878 } 2879 2880 /// Emit a representation of a SourceLocation for passing to a handler 2881 /// in a sanitizer runtime library. The format for this data is: 2882 /// \code 2883 /// struct SourceLocation { 2884 /// const char *Filename; 2885 /// int32_t Line, Column; 2886 /// }; 2887 /// \endcode 2888 /// For an invalid SourceLocation, the Filename pointer is null. 2889 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2890 llvm::Constant *Filename; 2891 int Line, Column; 2892 2893 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2894 if (PLoc.isValid()) { 2895 StringRef FilenameString = PLoc.getFilename(); 2896 2897 int PathComponentsToStrip = 2898 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2899 if (PathComponentsToStrip < 0) { 2900 assert(PathComponentsToStrip != INT_MIN); 2901 int PathComponentsToKeep = -PathComponentsToStrip; 2902 auto I = llvm::sys::path::rbegin(FilenameString); 2903 auto E = llvm::sys::path::rend(FilenameString); 2904 while (I != E && --PathComponentsToKeep) 2905 ++I; 2906 2907 FilenameString = FilenameString.substr(I - E); 2908 } else if (PathComponentsToStrip > 0) { 2909 auto I = llvm::sys::path::begin(FilenameString); 2910 auto E = llvm::sys::path::end(FilenameString); 2911 while (I != E && PathComponentsToStrip--) 2912 ++I; 2913 2914 if (I != E) 2915 FilenameString = 2916 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2917 else 2918 FilenameString = llvm::sys::path::filename(FilenameString); 2919 } 2920 2921 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2922 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2923 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2924 Filename = FilenameGV.getPointer(); 2925 Line = PLoc.getLine(); 2926 Column = PLoc.getColumn(); 2927 } else { 2928 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2929 Line = Column = 0; 2930 } 2931 2932 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2933 Builder.getInt32(Column)}; 2934 2935 return llvm::ConstantStruct::getAnon(Data); 2936 } 2937 2938 namespace { 2939 /// Specify under what conditions this check can be recovered 2940 enum class CheckRecoverableKind { 2941 /// Always terminate program execution if this check fails. 2942 Unrecoverable, 2943 /// Check supports recovering, runtime has both fatal (noreturn) and 2944 /// non-fatal handlers for this check. 2945 Recoverable, 2946 /// Runtime conditionally aborts, always need to support recovery. 2947 AlwaysRecoverable 2948 }; 2949 } 2950 2951 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2952 assert(Kind.countPopulation() == 1); 2953 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2954 return CheckRecoverableKind::AlwaysRecoverable; 2955 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2956 return CheckRecoverableKind::Unrecoverable; 2957 else 2958 return CheckRecoverableKind::Recoverable; 2959 } 2960 2961 namespace { 2962 struct SanitizerHandlerInfo { 2963 char const *const Name; 2964 unsigned Version; 2965 }; 2966 } 2967 2968 const SanitizerHandlerInfo SanitizerHandlers[] = { 2969 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2970 LIST_SANITIZER_CHECKS 2971 #undef SANITIZER_CHECK 2972 }; 2973 2974 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2975 llvm::FunctionType *FnType, 2976 ArrayRef<llvm::Value *> FnArgs, 2977 SanitizerHandler CheckHandler, 2978 CheckRecoverableKind RecoverKind, bool IsFatal, 2979 llvm::BasicBlock *ContBB) { 2980 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2981 Optional<ApplyDebugLocation> DL; 2982 if (!CGF.Builder.getCurrentDebugLocation()) { 2983 // Ensure that the call has at least an artificial debug location. 2984 DL.emplace(CGF, SourceLocation()); 2985 } 2986 bool NeedsAbortSuffix = 2987 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2988 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2989 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2990 const StringRef CheckName = CheckInfo.Name; 2991 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2992 if (CheckInfo.Version && !MinimalRuntime) 2993 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2994 if (MinimalRuntime) 2995 FnName += "_minimal"; 2996 if (NeedsAbortSuffix) 2997 FnName += "_abort"; 2998 bool MayReturn = 2999 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3000 3001 llvm::AttrBuilder B; 3002 if (!MayReturn) { 3003 B.addAttribute(llvm::Attribute::NoReturn) 3004 .addAttribute(llvm::Attribute::NoUnwind); 3005 } 3006 B.addAttribute(llvm::Attribute::UWTable); 3007 3008 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3009 FnType, FnName, 3010 llvm::AttributeList::get(CGF.getLLVMContext(), 3011 llvm::AttributeList::FunctionIndex, B), 3012 /*Local=*/true); 3013 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3014 if (!MayReturn) { 3015 HandlerCall->setDoesNotReturn(); 3016 CGF.Builder.CreateUnreachable(); 3017 } else { 3018 CGF.Builder.CreateBr(ContBB); 3019 } 3020 } 3021 3022 void CodeGenFunction::EmitCheck( 3023 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3024 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3025 ArrayRef<llvm::Value *> DynamicArgs) { 3026 assert(IsSanitizerScope); 3027 assert(Checked.size() > 0); 3028 assert(CheckHandler >= 0 && 3029 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3030 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3031 3032 llvm::Value *FatalCond = nullptr; 3033 llvm::Value *RecoverableCond = nullptr; 3034 llvm::Value *TrapCond = nullptr; 3035 for (int i = 0, n = Checked.size(); i < n; ++i) { 3036 llvm::Value *Check = Checked[i].first; 3037 // -fsanitize-trap= overrides -fsanitize-recover=. 3038 llvm::Value *&Cond = 3039 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3040 ? TrapCond 3041 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3042 ? RecoverableCond 3043 : FatalCond; 3044 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3045 } 3046 3047 if (TrapCond) 3048 EmitTrapCheck(TrapCond); 3049 if (!FatalCond && !RecoverableCond) 3050 return; 3051 3052 llvm::Value *JointCond; 3053 if (FatalCond && RecoverableCond) 3054 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3055 else 3056 JointCond = FatalCond ? FatalCond : RecoverableCond; 3057 assert(JointCond); 3058 3059 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3060 assert(SanOpts.has(Checked[0].second)); 3061 #ifndef NDEBUG 3062 for (int i = 1, n = Checked.size(); i < n; ++i) { 3063 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3064 "All recoverable kinds in a single check must be same!"); 3065 assert(SanOpts.has(Checked[i].second)); 3066 } 3067 #endif 3068 3069 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3070 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3071 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3072 // Give hint that we very much don't expect to execute the handler 3073 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3074 llvm::MDBuilder MDHelper(getLLVMContext()); 3075 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3076 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3077 EmitBlock(Handlers); 3078 3079 // Handler functions take an i8* pointing to the (handler-specific) static 3080 // information block, followed by a sequence of intptr_t arguments 3081 // representing operand values. 3082 SmallVector<llvm::Value *, 4> Args; 3083 SmallVector<llvm::Type *, 4> ArgTypes; 3084 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3085 Args.reserve(DynamicArgs.size() + 1); 3086 ArgTypes.reserve(DynamicArgs.size() + 1); 3087 3088 // Emit handler arguments and create handler function type. 3089 if (!StaticArgs.empty()) { 3090 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3091 auto *InfoPtr = 3092 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3093 llvm::GlobalVariable::PrivateLinkage, Info); 3094 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3095 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3096 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3097 ArgTypes.push_back(Int8PtrTy); 3098 } 3099 3100 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3101 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3102 ArgTypes.push_back(IntPtrTy); 3103 } 3104 } 3105 3106 llvm::FunctionType *FnType = 3107 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3108 3109 if (!FatalCond || !RecoverableCond) { 3110 // Simple case: we need to generate a single handler call, either 3111 // fatal, or non-fatal. 3112 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3113 (FatalCond != nullptr), Cont); 3114 } else { 3115 // Emit two handler calls: first one for set of unrecoverable checks, 3116 // another one for recoverable. 3117 llvm::BasicBlock *NonFatalHandlerBB = 3118 createBasicBlock("non_fatal." + CheckName); 3119 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3120 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3121 EmitBlock(FatalHandlerBB); 3122 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3123 NonFatalHandlerBB); 3124 EmitBlock(NonFatalHandlerBB); 3125 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3126 Cont); 3127 } 3128 3129 EmitBlock(Cont); 3130 } 3131 3132 void CodeGenFunction::EmitCfiSlowPathCheck( 3133 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3134 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3135 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3136 3137 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3138 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3139 3140 llvm::MDBuilder MDHelper(getLLVMContext()); 3141 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3142 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3143 3144 EmitBlock(CheckBB); 3145 3146 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3147 3148 llvm::CallInst *CheckCall; 3149 llvm::FunctionCallee SlowPathFn; 3150 if (WithDiag) { 3151 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3152 auto *InfoPtr = 3153 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3154 llvm::GlobalVariable::PrivateLinkage, Info); 3155 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3156 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3157 3158 SlowPathFn = CGM.getModule().getOrInsertFunction( 3159 "__cfi_slowpath_diag", 3160 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3161 false)); 3162 CheckCall = Builder.CreateCall( 3163 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3164 } else { 3165 SlowPathFn = CGM.getModule().getOrInsertFunction( 3166 "__cfi_slowpath", 3167 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3168 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3169 } 3170 3171 CGM.setDSOLocal( 3172 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3173 CheckCall->setDoesNotThrow(); 3174 3175 EmitBlock(Cont); 3176 } 3177 3178 // Emit a stub for __cfi_check function so that the linker knows about this 3179 // symbol in LTO mode. 3180 void CodeGenFunction::EmitCfiCheckStub() { 3181 llvm::Module *M = &CGM.getModule(); 3182 auto &Ctx = M->getContext(); 3183 llvm::Function *F = llvm::Function::Create( 3184 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3185 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3186 CGM.setDSOLocal(F); 3187 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3188 // FIXME: consider emitting an intrinsic call like 3189 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3190 // which can be lowered in CrossDSOCFI pass to the actual contents of 3191 // __cfi_check. This would allow inlining of __cfi_check calls. 3192 llvm::CallInst::Create( 3193 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3194 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3195 } 3196 3197 // This function is basically a switch over the CFI failure kind, which is 3198 // extracted from CFICheckFailData (1st function argument). Each case is either 3199 // llvm.trap or a call to one of the two runtime handlers, based on 3200 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3201 // failure kind) traps, but this should really never happen. CFICheckFailData 3202 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3203 // check kind; in this case __cfi_check_fail traps as well. 3204 void CodeGenFunction::EmitCfiCheckFail() { 3205 SanitizerScope SanScope(this); 3206 FunctionArgList Args; 3207 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3208 ImplicitParamDecl::Other); 3209 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3210 ImplicitParamDecl::Other); 3211 Args.push_back(&ArgData); 3212 Args.push_back(&ArgAddr); 3213 3214 const CGFunctionInfo &FI = 3215 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3216 3217 llvm::Function *F = llvm::Function::Create( 3218 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3219 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3220 3221 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3222 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3223 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3224 3225 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3226 SourceLocation()); 3227 3228 // This function should not be affected by blacklist. This function does 3229 // not have a source location, but "src:*" would still apply. Revert any 3230 // changes to SanOpts made in StartFunction. 3231 SanOpts = CGM.getLangOpts().Sanitize; 3232 3233 llvm::Value *Data = 3234 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3235 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3236 llvm::Value *Addr = 3237 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3238 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3239 3240 // Data == nullptr means the calling module has trap behaviour for this check. 3241 llvm::Value *DataIsNotNullPtr = 3242 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3243 EmitTrapCheck(DataIsNotNullPtr); 3244 3245 llvm::StructType *SourceLocationTy = 3246 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3247 llvm::StructType *CfiCheckFailDataTy = 3248 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3249 3250 llvm::Value *V = Builder.CreateConstGEP2_32( 3251 CfiCheckFailDataTy, 3252 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3253 0); 3254 Address CheckKindAddr(V, getIntAlign()); 3255 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3256 3257 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3258 CGM.getLLVMContext(), 3259 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3260 llvm::Value *ValidVtable = Builder.CreateZExt( 3261 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3262 {Addr, AllVtables}), 3263 IntPtrTy); 3264 3265 const std::pair<int, SanitizerMask> CheckKinds[] = { 3266 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3267 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3268 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3269 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3270 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3271 3272 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3273 for (auto CheckKindMaskPair : CheckKinds) { 3274 int Kind = CheckKindMaskPair.first; 3275 SanitizerMask Mask = CheckKindMaskPair.second; 3276 llvm::Value *Cond = 3277 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3278 if (CGM.getLangOpts().Sanitize.has(Mask)) 3279 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3280 {Data, Addr, ValidVtable}); 3281 else 3282 EmitTrapCheck(Cond); 3283 } 3284 3285 FinishFunction(); 3286 // The only reference to this function will be created during LTO link. 3287 // Make sure it survives until then. 3288 CGM.addUsedGlobal(F); 3289 } 3290 3291 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3292 if (SanOpts.has(SanitizerKind::Unreachable)) { 3293 SanitizerScope SanScope(this); 3294 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3295 SanitizerKind::Unreachable), 3296 SanitizerHandler::BuiltinUnreachable, 3297 EmitCheckSourceLocation(Loc), None); 3298 } 3299 Builder.CreateUnreachable(); 3300 } 3301 3302 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3303 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3304 3305 // If we're optimizing, collapse all calls to trap down to just one per 3306 // function to save on code size. 3307 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3308 TrapBB = createBasicBlock("trap"); 3309 Builder.CreateCondBr(Checked, Cont, TrapBB); 3310 EmitBlock(TrapBB); 3311 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3312 TrapCall->setDoesNotReturn(); 3313 TrapCall->setDoesNotThrow(); 3314 Builder.CreateUnreachable(); 3315 } else { 3316 Builder.CreateCondBr(Checked, Cont, TrapBB); 3317 } 3318 3319 EmitBlock(Cont); 3320 } 3321 3322 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3323 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3324 3325 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3326 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3327 CGM.getCodeGenOpts().TrapFuncName); 3328 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3329 } 3330 3331 return TrapCall; 3332 } 3333 3334 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3335 LValueBaseInfo *BaseInfo, 3336 TBAAAccessInfo *TBAAInfo) { 3337 assert(E->getType()->isArrayType() && 3338 "Array to pointer decay must have array source type!"); 3339 3340 // Expressions of array type can't be bitfields or vector elements. 3341 LValue LV = EmitLValue(E); 3342 Address Addr = LV.getAddress(*this); 3343 3344 // If the array type was an incomplete type, we need to make sure 3345 // the decay ends up being the right type. 3346 llvm::Type *NewTy = ConvertType(E->getType()); 3347 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3348 3349 // Note that VLA pointers are always decayed, so we don't need to do 3350 // anything here. 3351 if (!E->getType()->isVariableArrayType()) { 3352 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3353 "Expected pointer to array"); 3354 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3355 } 3356 3357 // The result of this decay conversion points to an array element within the 3358 // base lvalue. However, since TBAA currently does not support representing 3359 // accesses to elements of member arrays, we conservatively represent accesses 3360 // to the pointee object as if it had no any base lvalue specified. 3361 // TODO: Support TBAA for member arrays. 3362 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3363 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3364 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3365 3366 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3367 } 3368 3369 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3370 /// array to pointer, return the array subexpression. 3371 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3372 // If this isn't just an array->pointer decay, bail out. 3373 const auto *CE = dyn_cast<CastExpr>(E); 3374 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3375 return nullptr; 3376 3377 // If this is a decay from variable width array, bail out. 3378 const Expr *SubExpr = CE->getSubExpr(); 3379 if (SubExpr->getType()->isVariableArrayType()) 3380 return nullptr; 3381 3382 return SubExpr; 3383 } 3384 3385 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3386 llvm::Value *ptr, 3387 ArrayRef<llvm::Value*> indices, 3388 bool inbounds, 3389 bool signedIndices, 3390 SourceLocation loc, 3391 const llvm::Twine &name = "arrayidx") { 3392 if (inbounds) { 3393 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3394 CodeGenFunction::NotSubtraction, loc, 3395 name); 3396 } else { 3397 return CGF.Builder.CreateGEP(ptr, indices, name); 3398 } 3399 } 3400 3401 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3402 llvm::Value *idx, 3403 CharUnits eltSize) { 3404 // If we have a constant index, we can use the exact offset of the 3405 // element we're accessing. 3406 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3407 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3408 return arrayAlign.alignmentAtOffset(offset); 3409 3410 // Otherwise, use the worst-case alignment for any element. 3411 } else { 3412 return arrayAlign.alignmentOfArrayElement(eltSize); 3413 } 3414 } 3415 3416 static QualType getFixedSizeElementType(const ASTContext &ctx, 3417 const VariableArrayType *vla) { 3418 QualType eltType; 3419 do { 3420 eltType = vla->getElementType(); 3421 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3422 return eltType; 3423 } 3424 3425 /// Given an array base, check whether its member access belongs to a record 3426 /// with preserve_access_index attribute or not. 3427 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3428 if (!ArrayBase || !CGF.getDebugInfo()) 3429 return false; 3430 3431 // Only support base as either a MemberExpr or DeclRefExpr. 3432 // DeclRefExpr to cover cases like: 3433 // struct s { int a; int b[10]; }; 3434 // struct s *p; 3435 // p[1].a 3436 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3437 // p->b[5] is a MemberExpr example. 3438 const Expr *E = ArrayBase->IgnoreImpCasts(); 3439 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3440 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3441 3442 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3443 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3444 if (!VarDef) 3445 return false; 3446 3447 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3448 if (!PtrT) 3449 return false; 3450 3451 const auto *PointeeT = PtrT->getPointeeType() 3452 ->getUnqualifiedDesugaredType(); 3453 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3454 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3455 return false; 3456 } 3457 3458 return false; 3459 } 3460 3461 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3462 ArrayRef<llvm::Value *> indices, 3463 QualType eltType, bool inbounds, 3464 bool signedIndices, SourceLocation loc, 3465 QualType *arrayType = nullptr, 3466 const Expr *Base = nullptr, 3467 const llvm::Twine &name = "arrayidx") { 3468 // All the indices except that last must be zero. 3469 #ifndef NDEBUG 3470 for (auto idx : indices.drop_back()) 3471 assert(isa<llvm::ConstantInt>(idx) && 3472 cast<llvm::ConstantInt>(idx)->isZero()); 3473 #endif 3474 3475 // Determine the element size of the statically-sized base. This is 3476 // the thing that the indices are expressed in terms of. 3477 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3478 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3479 } 3480 3481 // We can use that to compute the best alignment of the element. 3482 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3483 CharUnits eltAlign = 3484 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3485 3486 llvm::Value *eltPtr; 3487 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3488 if (!LastIndex || 3489 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3490 eltPtr = emitArraySubscriptGEP( 3491 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3492 loc, name); 3493 } else { 3494 // Remember the original array subscript for bpf target 3495 unsigned idx = LastIndex->getZExtValue(); 3496 llvm::DIType *DbgInfo = nullptr; 3497 if (arrayType) 3498 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3499 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3500 addr.getPointer(), 3501 indices.size() - 1, 3502 idx, DbgInfo); 3503 } 3504 3505 return Address(eltPtr, eltAlign); 3506 } 3507 3508 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3509 bool Accessed) { 3510 // The index must always be an integer, which is not an aggregate. Emit it 3511 // in lexical order (this complexity is, sadly, required by C++17). 3512 llvm::Value *IdxPre = 3513 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3514 bool SignedIndices = false; 3515 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3516 auto *Idx = IdxPre; 3517 if (E->getLHS() != E->getIdx()) { 3518 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3519 Idx = EmitScalarExpr(E->getIdx()); 3520 } 3521 3522 QualType IdxTy = E->getIdx()->getType(); 3523 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3524 SignedIndices |= IdxSigned; 3525 3526 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3527 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3528 3529 // Extend or truncate the index type to 32 or 64-bits. 3530 if (Promote && Idx->getType() != IntPtrTy) 3531 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3532 3533 return Idx; 3534 }; 3535 IdxPre = nullptr; 3536 3537 // If the base is a vector type, then we are forming a vector element lvalue 3538 // with this subscript. 3539 if (E->getBase()->getType()->isVectorType() && 3540 !isa<ExtVectorElementExpr>(E->getBase())) { 3541 // Emit the vector as an lvalue to get its address. 3542 LValue LHS = EmitLValue(E->getBase()); 3543 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3544 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3545 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3546 E->getBase()->getType(), LHS.getBaseInfo(), 3547 TBAAAccessInfo()); 3548 } 3549 3550 // All the other cases basically behave like simple offsetting. 3551 3552 // Handle the extvector case we ignored above. 3553 if (isa<ExtVectorElementExpr>(E->getBase())) { 3554 LValue LV = EmitLValue(E->getBase()); 3555 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3556 Address Addr = EmitExtVectorElementLValue(LV); 3557 3558 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3559 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3560 SignedIndices, E->getExprLoc()); 3561 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3562 CGM.getTBAAInfoForSubobject(LV, EltType)); 3563 } 3564 3565 LValueBaseInfo EltBaseInfo; 3566 TBAAAccessInfo EltTBAAInfo; 3567 Address Addr = Address::invalid(); 3568 if (const VariableArrayType *vla = 3569 getContext().getAsVariableArrayType(E->getType())) { 3570 // The base must be a pointer, which is not an aggregate. Emit 3571 // it. It needs to be emitted first in case it's what captures 3572 // the VLA bounds. 3573 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3574 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3575 3576 // The element count here is the total number of non-VLA elements. 3577 llvm::Value *numElements = getVLASize(vla).NumElts; 3578 3579 // Effectively, the multiply by the VLA size is part of the GEP. 3580 // GEP indexes are signed, and scaling an index isn't permitted to 3581 // signed-overflow, so we use the same semantics for our explicit 3582 // multiply. We suppress this if overflow is not undefined behavior. 3583 if (getLangOpts().isSignedOverflowDefined()) { 3584 Idx = Builder.CreateMul(Idx, numElements); 3585 } else { 3586 Idx = Builder.CreateNSWMul(Idx, numElements); 3587 } 3588 3589 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3590 !getLangOpts().isSignedOverflowDefined(), 3591 SignedIndices, E->getExprLoc()); 3592 3593 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3594 // Indexing over an interface, as in "NSString *P; P[4];" 3595 3596 // Emit the base pointer. 3597 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3598 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3599 3600 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3601 llvm::Value *InterfaceSizeVal = 3602 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3603 3604 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3605 3606 // We don't necessarily build correct LLVM struct types for ObjC 3607 // interfaces, so we can't rely on GEP to do this scaling 3608 // correctly, so we need to cast to i8*. FIXME: is this actually 3609 // true? A lot of other things in the fragile ABI would break... 3610 llvm::Type *OrigBaseTy = Addr.getType(); 3611 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3612 3613 // Do the GEP. 3614 CharUnits EltAlign = 3615 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3616 llvm::Value *EltPtr = 3617 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3618 SignedIndices, E->getExprLoc()); 3619 Addr = Address(EltPtr, EltAlign); 3620 3621 // Cast back. 3622 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3623 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3624 // If this is A[i] where A is an array, the frontend will have decayed the 3625 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3626 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3627 // "gep x, i" here. Emit one "gep A, 0, i". 3628 assert(Array->getType()->isArrayType() && 3629 "Array to pointer decay must have array source type!"); 3630 LValue ArrayLV; 3631 // For simple multidimensional array indexing, set the 'accessed' flag for 3632 // better bounds-checking of the base expression. 3633 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3634 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3635 else 3636 ArrayLV = EmitLValue(Array); 3637 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3638 3639 // Propagate the alignment from the array itself to the result. 3640 QualType arrayType = Array->getType(); 3641 Addr = emitArraySubscriptGEP( 3642 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3643 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3644 E->getExprLoc(), &arrayType, E->getBase()); 3645 EltBaseInfo = ArrayLV.getBaseInfo(); 3646 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3647 } else { 3648 // The base must be a pointer; emit it with an estimate of its alignment. 3649 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3650 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3651 QualType ptrType = E->getBase()->getType(); 3652 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3653 !getLangOpts().isSignedOverflowDefined(), 3654 SignedIndices, E->getExprLoc(), &ptrType, 3655 E->getBase()); 3656 } 3657 3658 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3659 3660 if (getLangOpts().ObjC && 3661 getLangOpts().getGC() != LangOptions::NonGC) { 3662 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3663 setObjCGCLValueClass(getContext(), E, LV); 3664 } 3665 return LV; 3666 } 3667 3668 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3669 LValueBaseInfo &BaseInfo, 3670 TBAAAccessInfo &TBAAInfo, 3671 QualType BaseTy, QualType ElTy, 3672 bool IsLowerBound) { 3673 LValue BaseLVal; 3674 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3675 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3676 if (BaseTy->isArrayType()) { 3677 Address Addr = BaseLVal.getAddress(CGF); 3678 BaseInfo = BaseLVal.getBaseInfo(); 3679 3680 // If the array type was an incomplete type, we need to make sure 3681 // the decay ends up being the right type. 3682 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3683 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3684 3685 // Note that VLA pointers are always decayed, so we don't need to do 3686 // anything here. 3687 if (!BaseTy->isVariableArrayType()) { 3688 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3689 "Expected pointer to array"); 3690 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3691 } 3692 3693 return CGF.Builder.CreateElementBitCast(Addr, 3694 CGF.ConvertTypeForMem(ElTy)); 3695 } 3696 LValueBaseInfo TypeBaseInfo; 3697 TBAAAccessInfo TypeTBAAInfo; 3698 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3699 &TypeTBAAInfo); 3700 BaseInfo.mergeForCast(TypeBaseInfo); 3701 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3702 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3703 } 3704 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3705 } 3706 3707 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3708 bool IsLowerBound) { 3709 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3710 QualType ResultExprTy; 3711 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3712 ResultExprTy = AT->getElementType(); 3713 else 3714 ResultExprTy = BaseTy->getPointeeType(); 3715 llvm::Value *Idx = nullptr; 3716 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3717 // Requesting lower bound or upper bound, but without provided length and 3718 // without ':' symbol for the default length -> length = 1. 3719 // Idx = LowerBound ?: 0; 3720 if (auto *LowerBound = E->getLowerBound()) { 3721 Idx = Builder.CreateIntCast( 3722 EmitScalarExpr(LowerBound), IntPtrTy, 3723 LowerBound->getType()->hasSignedIntegerRepresentation()); 3724 } else 3725 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3726 } else { 3727 // Try to emit length or lower bound as constant. If this is possible, 1 3728 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3729 // IR (LB + Len) - 1. 3730 auto &C = CGM.getContext(); 3731 auto *Length = E->getLength(); 3732 llvm::APSInt ConstLength; 3733 if (Length) { 3734 // Idx = LowerBound + Length - 1; 3735 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3736 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3737 Length = nullptr; 3738 } 3739 auto *LowerBound = E->getLowerBound(); 3740 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3741 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3742 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3743 LowerBound = nullptr; 3744 } 3745 if (!Length) 3746 --ConstLength; 3747 else if (!LowerBound) 3748 --ConstLowerBound; 3749 3750 if (Length || LowerBound) { 3751 auto *LowerBoundVal = 3752 LowerBound 3753 ? Builder.CreateIntCast( 3754 EmitScalarExpr(LowerBound), IntPtrTy, 3755 LowerBound->getType()->hasSignedIntegerRepresentation()) 3756 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3757 auto *LengthVal = 3758 Length 3759 ? Builder.CreateIntCast( 3760 EmitScalarExpr(Length), IntPtrTy, 3761 Length->getType()->hasSignedIntegerRepresentation()) 3762 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3763 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3764 /*HasNUW=*/false, 3765 !getLangOpts().isSignedOverflowDefined()); 3766 if (Length && LowerBound) { 3767 Idx = Builder.CreateSub( 3768 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3769 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3770 } 3771 } else 3772 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3773 } else { 3774 // Idx = ArraySize - 1; 3775 QualType ArrayTy = BaseTy->isPointerType() 3776 ? E->getBase()->IgnoreParenImpCasts()->getType() 3777 : BaseTy; 3778 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3779 Length = VAT->getSizeExpr(); 3780 if (Length->isIntegerConstantExpr(ConstLength, C)) 3781 Length = nullptr; 3782 } else { 3783 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3784 ConstLength = CAT->getSize(); 3785 } 3786 if (Length) { 3787 auto *LengthVal = Builder.CreateIntCast( 3788 EmitScalarExpr(Length), IntPtrTy, 3789 Length->getType()->hasSignedIntegerRepresentation()); 3790 Idx = Builder.CreateSub( 3791 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3792 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3793 } else { 3794 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3795 --ConstLength; 3796 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3797 } 3798 } 3799 } 3800 assert(Idx); 3801 3802 Address EltPtr = Address::invalid(); 3803 LValueBaseInfo BaseInfo; 3804 TBAAAccessInfo TBAAInfo; 3805 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3806 // The base must be a pointer, which is not an aggregate. Emit 3807 // it. It needs to be emitted first in case it's what captures 3808 // the VLA bounds. 3809 Address Base = 3810 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3811 BaseTy, VLA->getElementType(), IsLowerBound); 3812 // The element count here is the total number of non-VLA elements. 3813 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3814 3815 // Effectively, the multiply by the VLA size is part of the GEP. 3816 // GEP indexes are signed, and scaling an index isn't permitted to 3817 // signed-overflow, so we use the same semantics for our explicit 3818 // multiply. We suppress this if overflow is not undefined behavior. 3819 if (getLangOpts().isSignedOverflowDefined()) 3820 Idx = Builder.CreateMul(Idx, NumElements); 3821 else 3822 Idx = Builder.CreateNSWMul(Idx, NumElements); 3823 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3824 !getLangOpts().isSignedOverflowDefined(), 3825 /*signedIndices=*/false, E->getExprLoc()); 3826 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3827 // If this is A[i] where A is an array, the frontend will have decayed the 3828 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3829 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3830 // "gep x, i" here. Emit one "gep A, 0, i". 3831 assert(Array->getType()->isArrayType() && 3832 "Array to pointer decay must have array source type!"); 3833 LValue ArrayLV; 3834 // For simple multidimensional array indexing, set the 'accessed' flag for 3835 // better bounds-checking of the base expression. 3836 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3837 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3838 else 3839 ArrayLV = EmitLValue(Array); 3840 3841 // Propagate the alignment from the array itself to the result. 3842 EltPtr = emitArraySubscriptGEP( 3843 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3844 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3845 /*signedIndices=*/false, E->getExprLoc()); 3846 BaseInfo = ArrayLV.getBaseInfo(); 3847 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3848 } else { 3849 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3850 TBAAInfo, BaseTy, ResultExprTy, 3851 IsLowerBound); 3852 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3853 !getLangOpts().isSignedOverflowDefined(), 3854 /*signedIndices=*/false, E->getExprLoc()); 3855 } 3856 3857 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3858 } 3859 3860 LValue CodeGenFunction:: 3861 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3862 // Emit the base vector as an l-value. 3863 LValue Base; 3864 3865 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3866 if (E->isArrow()) { 3867 // If it is a pointer to a vector, emit the address and form an lvalue with 3868 // it. 3869 LValueBaseInfo BaseInfo; 3870 TBAAAccessInfo TBAAInfo; 3871 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3872 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3873 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3874 Base.getQuals().removeObjCGCAttr(); 3875 } else if (E->getBase()->isGLValue()) { 3876 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3877 // emit the base as an lvalue. 3878 assert(E->getBase()->getType()->isVectorType()); 3879 Base = EmitLValue(E->getBase()); 3880 } else { 3881 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3882 assert(E->getBase()->getType()->isVectorType() && 3883 "Result must be a vector"); 3884 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3885 3886 // Store the vector to memory (because LValue wants an address). 3887 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3888 Builder.CreateStore(Vec, VecMem); 3889 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3890 AlignmentSource::Decl); 3891 } 3892 3893 QualType type = 3894 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3895 3896 // Encode the element access list into a vector of unsigned indices. 3897 SmallVector<uint32_t, 4> Indices; 3898 E->getEncodedElementAccess(Indices); 3899 3900 if (Base.isSimple()) { 3901 llvm::Constant *CV = 3902 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3903 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3904 Base.getBaseInfo(), TBAAAccessInfo()); 3905 } 3906 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3907 3908 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3909 SmallVector<llvm::Constant *, 4> CElts; 3910 3911 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3912 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3913 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3914 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3915 Base.getBaseInfo(), TBAAAccessInfo()); 3916 } 3917 3918 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3919 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3920 EmitIgnoredExpr(E->getBase()); 3921 return EmitDeclRefLValue(DRE); 3922 } 3923 3924 Expr *BaseExpr = E->getBase(); 3925 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3926 LValue BaseLV; 3927 if (E->isArrow()) { 3928 LValueBaseInfo BaseInfo; 3929 TBAAAccessInfo TBAAInfo; 3930 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3931 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3932 SanitizerSet SkippedChecks; 3933 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3934 if (IsBaseCXXThis) 3935 SkippedChecks.set(SanitizerKind::Alignment, true); 3936 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3937 SkippedChecks.set(SanitizerKind::Null, true); 3938 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3939 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3940 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3941 } else 3942 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3943 3944 NamedDecl *ND = E->getMemberDecl(); 3945 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3946 LValue LV = EmitLValueForField(BaseLV, Field); 3947 setObjCGCLValueClass(getContext(), E, LV); 3948 if (getLangOpts().OpenMP) { 3949 // If the member was explicitly marked as nontemporal, mark it as 3950 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3951 // to children as nontemporal too. 3952 if ((IsWrappedCXXThis(BaseExpr) && 3953 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3954 BaseLV.isNontemporal()) 3955 LV.setNontemporal(/*Value=*/true); 3956 } 3957 return LV; 3958 } 3959 3960 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3961 return EmitFunctionDeclLValue(*this, E, FD); 3962 3963 llvm_unreachable("Unhandled member declaration!"); 3964 } 3965 3966 /// Given that we are currently emitting a lambda, emit an l-value for 3967 /// one of its members. 3968 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3969 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3970 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3971 QualType LambdaTagType = 3972 getContext().getTagDeclType(Field->getParent()); 3973 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3974 return EmitLValueForField(LambdaLV, Field); 3975 } 3976 3977 /// Get the field index in the debug info. The debug info structure/union 3978 /// will ignore the unnamed bitfields. 3979 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3980 unsigned FieldIndex) { 3981 unsigned I = 0, Skipped = 0; 3982 3983 for (auto F : Rec->getDefinition()->fields()) { 3984 if (I == FieldIndex) 3985 break; 3986 if (F->isUnnamedBitfield()) 3987 Skipped++; 3988 I++; 3989 } 3990 3991 return FieldIndex - Skipped; 3992 } 3993 3994 /// Get the address of a zero-sized field within a record. The resulting 3995 /// address doesn't necessarily have the right type. 3996 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 3997 const FieldDecl *Field) { 3998 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 3999 CGF.getContext().getFieldOffset(Field)); 4000 if (Offset.isZero()) 4001 return Base; 4002 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4003 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4004 } 4005 4006 /// Drill down to the storage of a field without walking into 4007 /// reference types. 4008 /// 4009 /// The resulting address doesn't necessarily have the right type. 4010 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4011 const FieldDecl *field) { 4012 if (field->isZeroSize(CGF.getContext())) 4013 return emitAddrOfZeroSizeField(CGF, base, field); 4014 4015 const RecordDecl *rec = field->getParent(); 4016 4017 unsigned idx = 4018 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4019 4020 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4021 } 4022 4023 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base, 4024 const FieldDecl *field) { 4025 const RecordDecl *rec = field->getParent(); 4026 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType( 4027 CGF.getContext().getRecordType(rec), rec->getLocation()); 4028 4029 unsigned idx = 4030 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4031 4032 return CGF.Builder.CreatePreserveStructAccessIndex( 4033 base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4034 } 4035 4036 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4037 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4038 if (!RD) 4039 return false; 4040 4041 if (RD->isDynamicClass()) 4042 return true; 4043 4044 for (const auto &Base : RD->bases()) 4045 if (hasAnyVptr(Base.getType(), Context)) 4046 return true; 4047 4048 for (const FieldDecl *Field : RD->fields()) 4049 if (hasAnyVptr(Field->getType(), Context)) 4050 return true; 4051 4052 return false; 4053 } 4054 4055 LValue CodeGenFunction::EmitLValueForField(LValue base, 4056 const FieldDecl *field) { 4057 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4058 4059 if (field->isBitField()) { 4060 const CGRecordLayout &RL = 4061 CGM.getTypes().getCGRecordLayout(field->getParent()); 4062 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4063 Address Addr = base.getAddress(*this); 4064 unsigned Idx = RL.getLLVMFieldNo(field); 4065 const RecordDecl *rec = field->getParent(); 4066 if (!IsInPreservedAIRegion && 4067 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4068 if (Idx != 0) 4069 // For structs, we GEP to the field that the record layout suggests. 4070 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4071 } else { 4072 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4073 getContext().getRecordType(rec), rec->getLocation()); 4074 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4075 getDebugInfoFIndex(rec, field->getFieldIndex()), 4076 DbgInfo); 4077 } 4078 4079 // Get the access type. 4080 llvm::Type *FieldIntTy = 4081 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4082 if (Addr.getElementType() != FieldIntTy) 4083 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4084 4085 QualType fieldType = 4086 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4087 // TODO: Support TBAA for bit fields. 4088 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4089 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4090 TBAAAccessInfo()); 4091 } 4092 4093 // Fields of may-alias structures are may-alias themselves. 4094 // FIXME: this should get propagated down through anonymous structs 4095 // and unions. 4096 QualType FieldType = field->getType(); 4097 const RecordDecl *rec = field->getParent(); 4098 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4099 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4100 TBAAAccessInfo FieldTBAAInfo; 4101 if (base.getTBAAInfo().isMayAlias() || 4102 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4103 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4104 } else if (rec->isUnion()) { 4105 // TODO: Support TBAA for unions. 4106 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4107 } else { 4108 // If no base type been assigned for the base access, then try to generate 4109 // one for this base lvalue. 4110 FieldTBAAInfo = base.getTBAAInfo(); 4111 if (!FieldTBAAInfo.BaseType) { 4112 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4113 assert(!FieldTBAAInfo.Offset && 4114 "Nonzero offset for an access with no base type!"); 4115 } 4116 4117 // Adjust offset to be relative to the base type. 4118 const ASTRecordLayout &Layout = 4119 getContext().getASTRecordLayout(field->getParent()); 4120 unsigned CharWidth = getContext().getCharWidth(); 4121 if (FieldTBAAInfo.BaseType) 4122 FieldTBAAInfo.Offset += 4123 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4124 4125 // Update the final access type and size. 4126 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4127 FieldTBAAInfo.Size = 4128 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4129 } 4130 4131 Address addr = base.getAddress(*this); 4132 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4133 if (CGM.getCodeGenOpts().StrictVTablePointers && 4134 ClassDef->isDynamicClass()) { 4135 // Getting to any field of dynamic object requires stripping dynamic 4136 // information provided by invariant.group. This is because accessing 4137 // fields may leak the real address of dynamic object, which could result 4138 // in miscompilation when leaked pointer would be compared. 4139 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4140 addr = Address(stripped, addr.getAlignment()); 4141 } 4142 } 4143 4144 unsigned RecordCVR = base.getVRQualifiers(); 4145 if (rec->isUnion()) { 4146 // For unions, there is no pointer adjustment. 4147 if (CGM.getCodeGenOpts().StrictVTablePointers && 4148 hasAnyVptr(FieldType, getContext())) 4149 // Because unions can easily skip invariant.barriers, we need to add 4150 // a barrier every time CXXRecord field with vptr is referenced. 4151 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4152 addr.getAlignment()); 4153 4154 if (IsInPreservedAIRegion || 4155 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4156 // Remember the original union field index 4157 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4158 getContext().getRecordType(rec), rec->getLocation()); 4159 addr = Address( 4160 Builder.CreatePreserveUnionAccessIndex( 4161 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4162 addr.getAlignment()); 4163 } 4164 4165 if (FieldType->isReferenceType()) 4166 addr = Builder.CreateElementBitCast( 4167 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4168 } else { 4169 if (!IsInPreservedAIRegion && 4170 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4171 // For structs, we GEP to the field that the record layout suggests. 4172 addr = emitAddrOfFieldStorage(*this, addr, field); 4173 else 4174 // Remember the original struct field index 4175 addr = emitPreserveStructAccess(*this, addr, field); 4176 } 4177 4178 // If this is a reference field, load the reference right now. 4179 if (FieldType->isReferenceType()) { 4180 LValue RefLVal = 4181 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4182 if (RecordCVR & Qualifiers::Volatile) 4183 RefLVal.getQuals().addVolatile(); 4184 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4185 4186 // Qualifiers on the struct don't apply to the referencee. 4187 RecordCVR = 0; 4188 FieldType = FieldType->getPointeeType(); 4189 } 4190 4191 // Make sure that the address is pointing to the right type. This is critical 4192 // for both unions and structs. A union needs a bitcast, a struct element 4193 // will need a bitcast if the LLVM type laid out doesn't match the desired 4194 // type. 4195 addr = Builder.CreateElementBitCast( 4196 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4197 4198 if (field->hasAttr<AnnotateAttr>()) 4199 addr = EmitFieldAnnotations(field, addr); 4200 4201 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4202 LV.getQuals().addCVRQualifiers(RecordCVR); 4203 4204 // __weak attribute on a field is ignored. 4205 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4206 LV.getQuals().removeObjCGCAttr(); 4207 4208 return LV; 4209 } 4210 4211 LValue 4212 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4213 const FieldDecl *Field) { 4214 QualType FieldType = Field->getType(); 4215 4216 if (!FieldType->isReferenceType()) 4217 return EmitLValueForField(Base, Field); 4218 4219 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4220 4221 // Make sure that the address is pointing to the right type. 4222 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4223 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4224 4225 // TODO: Generate TBAA information that describes this access as a structure 4226 // member access and not just an access to an object of the field's type. This 4227 // should be similar to what we do in EmitLValueForField(). 4228 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4229 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4230 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4231 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4232 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4233 } 4234 4235 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4236 if (E->isFileScope()) { 4237 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4238 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4239 } 4240 if (E->getType()->isVariablyModifiedType()) 4241 // make sure to emit the VLA size. 4242 EmitVariablyModifiedType(E->getType()); 4243 4244 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4245 const Expr *InitExpr = E->getInitializer(); 4246 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4247 4248 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4249 /*Init*/ true); 4250 4251 return Result; 4252 } 4253 4254 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4255 if (!E->isGLValue()) 4256 // Initializing an aggregate temporary in C++11: T{...}. 4257 return EmitAggExprToLValue(E); 4258 4259 // An lvalue initializer list must be initializing a reference. 4260 assert(E->isTransparent() && "non-transparent glvalue init list"); 4261 return EmitLValue(E->getInit(0)); 4262 } 4263 4264 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4265 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4266 /// LValue is returned and the current block has been terminated. 4267 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4268 const Expr *Operand) { 4269 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4270 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4271 return None; 4272 } 4273 4274 return CGF.EmitLValue(Operand); 4275 } 4276 4277 LValue CodeGenFunction:: 4278 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4279 if (!expr->isGLValue()) { 4280 // ?: here should be an aggregate. 4281 assert(hasAggregateEvaluationKind(expr->getType()) && 4282 "Unexpected conditional operator!"); 4283 return EmitAggExprToLValue(expr); 4284 } 4285 4286 OpaqueValueMapping binding(*this, expr); 4287 4288 const Expr *condExpr = expr->getCond(); 4289 bool CondExprBool; 4290 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4291 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4292 if (!CondExprBool) std::swap(live, dead); 4293 4294 if (!ContainsLabel(dead)) { 4295 // If the true case is live, we need to track its region. 4296 if (CondExprBool) 4297 incrementProfileCounter(expr); 4298 return EmitLValue(live); 4299 } 4300 } 4301 4302 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4303 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4304 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4305 4306 ConditionalEvaluation eval(*this); 4307 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4308 4309 // Any temporaries created here are conditional. 4310 EmitBlock(lhsBlock); 4311 incrementProfileCounter(expr); 4312 eval.begin(*this); 4313 Optional<LValue> lhs = 4314 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4315 eval.end(*this); 4316 4317 if (lhs && !lhs->isSimple()) 4318 return EmitUnsupportedLValue(expr, "conditional operator"); 4319 4320 lhsBlock = Builder.GetInsertBlock(); 4321 if (lhs) 4322 Builder.CreateBr(contBlock); 4323 4324 // Any temporaries created here are conditional. 4325 EmitBlock(rhsBlock); 4326 eval.begin(*this); 4327 Optional<LValue> rhs = 4328 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4329 eval.end(*this); 4330 if (rhs && !rhs->isSimple()) 4331 return EmitUnsupportedLValue(expr, "conditional operator"); 4332 rhsBlock = Builder.GetInsertBlock(); 4333 4334 EmitBlock(contBlock); 4335 4336 if (lhs && rhs) { 4337 llvm::PHINode *phi = 4338 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4339 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4340 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4341 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4342 AlignmentSource alignSource = 4343 std::max(lhs->getBaseInfo().getAlignmentSource(), 4344 rhs->getBaseInfo().getAlignmentSource()); 4345 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4346 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4347 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4348 TBAAInfo); 4349 } else { 4350 assert((lhs || rhs) && 4351 "both operands of glvalue conditional are throw-expressions?"); 4352 return lhs ? *lhs : *rhs; 4353 } 4354 } 4355 4356 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4357 /// type. If the cast is to a reference, we can have the usual lvalue result, 4358 /// otherwise if a cast is needed by the code generator in an lvalue context, 4359 /// then it must mean that we need the address of an aggregate in order to 4360 /// access one of its members. This can happen for all the reasons that casts 4361 /// are permitted with aggregate result, including noop aggregate casts, and 4362 /// cast from scalar to union. 4363 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4364 switch (E->getCastKind()) { 4365 case CK_ToVoid: 4366 case CK_BitCast: 4367 case CK_LValueToRValueBitCast: 4368 case CK_ArrayToPointerDecay: 4369 case CK_FunctionToPointerDecay: 4370 case CK_NullToMemberPointer: 4371 case CK_NullToPointer: 4372 case CK_IntegralToPointer: 4373 case CK_PointerToIntegral: 4374 case CK_PointerToBoolean: 4375 case CK_VectorSplat: 4376 case CK_IntegralCast: 4377 case CK_BooleanToSignedIntegral: 4378 case CK_IntegralToBoolean: 4379 case CK_IntegralToFloating: 4380 case CK_FloatingToIntegral: 4381 case CK_FloatingToBoolean: 4382 case CK_FloatingCast: 4383 case CK_FloatingRealToComplex: 4384 case CK_FloatingComplexToReal: 4385 case CK_FloatingComplexToBoolean: 4386 case CK_FloatingComplexCast: 4387 case CK_FloatingComplexToIntegralComplex: 4388 case CK_IntegralRealToComplex: 4389 case CK_IntegralComplexToReal: 4390 case CK_IntegralComplexToBoolean: 4391 case CK_IntegralComplexCast: 4392 case CK_IntegralComplexToFloatingComplex: 4393 case CK_DerivedToBaseMemberPointer: 4394 case CK_BaseToDerivedMemberPointer: 4395 case CK_MemberPointerToBoolean: 4396 case CK_ReinterpretMemberPointer: 4397 case CK_AnyPointerToBlockPointerCast: 4398 case CK_ARCProduceObject: 4399 case CK_ARCConsumeObject: 4400 case CK_ARCReclaimReturnedObject: 4401 case CK_ARCExtendBlockObject: 4402 case CK_CopyAndAutoreleaseBlockObject: 4403 case CK_IntToOCLSampler: 4404 case CK_FixedPointCast: 4405 case CK_FixedPointToBoolean: 4406 case CK_FixedPointToIntegral: 4407 case CK_IntegralToFixedPoint: 4408 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4409 4410 case CK_Dependent: 4411 llvm_unreachable("dependent cast kind in IR gen!"); 4412 4413 case CK_BuiltinFnToFnPtr: 4414 llvm_unreachable("builtin functions are handled elsewhere"); 4415 4416 // These are never l-values; just use the aggregate emission code. 4417 case CK_NonAtomicToAtomic: 4418 case CK_AtomicToNonAtomic: 4419 return EmitAggExprToLValue(E); 4420 4421 case CK_Dynamic: { 4422 LValue LV = EmitLValue(E->getSubExpr()); 4423 Address V = LV.getAddress(*this); 4424 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4425 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4426 } 4427 4428 case CK_ConstructorConversion: 4429 case CK_UserDefinedConversion: 4430 case CK_CPointerToObjCPointerCast: 4431 case CK_BlockPointerToObjCPointerCast: 4432 case CK_NoOp: 4433 case CK_LValueToRValue: 4434 return EmitLValue(E->getSubExpr()); 4435 4436 case CK_UncheckedDerivedToBase: 4437 case CK_DerivedToBase: { 4438 const auto *DerivedClassTy = 4439 E->getSubExpr()->getType()->castAs<RecordType>(); 4440 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4441 4442 LValue LV = EmitLValue(E->getSubExpr()); 4443 Address This = LV.getAddress(*this); 4444 4445 // Perform the derived-to-base conversion 4446 Address Base = GetAddressOfBaseClass( 4447 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4448 /*NullCheckValue=*/false, E->getExprLoc()); 4449 4450 // TODO: Support accesses to members of base classes in TBAA. For now, we 4451 // conservatively pretend that the complete object is of the base class 4452 // type. 4453 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4454 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4455 } 4456 case CK_ToUnion: 4457 return EmitAggExprToLValue(E); 4458 case CK_BaseToDerived: { 4459 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4460 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4461 4462 LValue LV = EmitLValue(E->getSubExpr()); 4463 4464 // Perform the base-to-derived conversion 4465 Address Derived = GetAddressOfDerivedClass( 4466 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4467 /*NullCheckValue=*/false); 4468 4469 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4470 // performed and the object is not of the derived type. 4471 if (sanitizePerformTypeCheck()) 4472 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4473 Derived.getPointer(), E->getType()); 4474 4475 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4476 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4477 /*MayBeNull=*/false, CFITCK_DerivedCast, 4478 E->getBeginLoc()); 4479 4480 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4481 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4482 } 4483 case CK_LValueBitCast: { 4484 // This must be a reinterpret_cast (or c-style equivalent). 4485 const auto *CE = cast<ExplicitCastExpr>(E); 4486 4487 CGM.EmitExplicitCastExprType(CE, this); 4488 LValue LV = EmitLValue(E->getSubExpr()); 4489 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4490 ConvertType(CE->getTypeAsWritten())); 4491 4492 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4493 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4494 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4495 E->getBeginLoc()); 4496 4497 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4498 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4499 } 4500 case CK_AddressSpaceConversion: { 4501 LValue LV = EmitLValue(E->getSubExpr()); 4502 QualType DestTy = getContext().getPointerType(E->getType()); 4503 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4504 *this, LV.getPointer(*this), 4505 E->getSubExpr()->getType().getAddressSpace(), 4506 E->getType().getAddressSpace(), ConvertType(DestTy)); 4507 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4508 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4509 } 4510 case CK_ObjCObjectLValueCast: { 4511 LValue LV = EmitLValue(E->getSubExpr()); 4512 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4513 ConvertType(E->getType())); 4514 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4515 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4516 } 4517 case CK_ZeroToOCLOpaqueType: 4518 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4519 } 4520 4521 llvm_unreachable("Unhandled lvalue cast kind?"); 4522 } 4523 4524 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4525 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4526 return getOrCreateOpaqueLValueMapping(e); 4527 } 4528 4529 LValue 4530 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4531 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4532 4533 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4534 it = OpaqueLValues.find(e); 4535 4536 if (it != OpaqueLValues.end()) 4537 return it->second; 4538 4539 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4540 return EmitLValue(e->getSourceExpr()); 4541 } 4542 4543 RValue 4544 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4545 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4546 4547 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4548 it = OpaqueRValues.find(e); 4549 4550 if (it != OpaqueRValues.end()) 4551 return it->second; 4552 4553 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4554 return EmitAnyExpr(e->getSourceExpr()); 4555 } 4556 4557 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4558 const FieldDecl *FD, 4559 SourceLocation Loc) { 4560 QualType FT = FD->getType(); 4561 LValue FieldLV = EmitLValueForField(LV, FD); 4562 switch (getEvaluationKind(FT)) { 4563 case TEK_Complex: 4564 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4565 case TEK_Aggregate: 4566 return FieldLV.asAggregateRValue(*this); 4567 case TEK_Scalar: 4568 // This routine is used to load fields one-by-one to perform a copy, so 4569 // don't load reference fields. 4570 if (FD->getType()->isReferenceType()) 4571 return RValue::get(FieldLV.getPointer(*this)); 4572 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4573 // primitive load. 4574 if (FieldLV.isBitField()) 4575 return EmitLoadOfLValue(FieldLV, Loc); 4576 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4577 } 4578 llvm_unreachable("bad evaluation kind"); 4579 } 4580 4581 //===--------------------------------------------------------------------===// 4582 // Expression Emission 4583 //===--------------------------------------------------------------------===// 4584 4585 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4586 ReturnValueSlot ReturnValue) { 4587 // Builtins never have block type. 4588 if (E->getCallee()->getType()->isBlockPointerType()) 4589 return EmitBlockCallExpr(E, ReturnValue); 4590 4591 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4592 return EmitCXXMemberCallExpr(CE, ReturnValue); 4593 4594 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4595 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4596 4597 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4598 if (const CXXMethodDecl *MD = 4599 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4600 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4601 4602 CGCallee callee = EmitCallee(E->getCallee()); 4603 4604 if (callee.isBuiltin()) { 4605 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4606 E, ReturnValue); 4607 } 4608 4609 if (callee.isPseudoDestructor()) { 4610 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4611 } 4612 4613 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4614 } 4615 4616 /// Emit a CallExpr without considering whether it might be a subclass. 4617 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4618 ReturnValueSlot ReturnValue) { 4619 CGCallee Callee = EmitCallee(E->getCallee()); 4620 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4621 } 4622 4623 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4624 4625 if (auto builtinID = FD->getBuiltinID()) { 4626 // Replaceable builtin provide their own implementation of a builtin. Unless 4627 // we are in the builtin implementation itself, don't call the actual 4628 // builtin. If we are in the builtin implementation, avoid trivial infinite 4629 // recursion. 4630 if (!FD->isInlineBuiltinDeclaration() || 4631 CGF.CurFn->getName() == FD->getName()) 4632 return CGCallee::forBuiltin(builtinID, FD); 4633 } 4634 4635 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4636 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4637 } 4638 4639 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4640 E = E->IgnoreParens(); 4641 4642 // Look through function-to-pointer decay. 4643 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4644 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4645 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4646 return EmitCallee(ICE->getSubExpr()); 4647 } 4648 4649 // Resolve direct calls. 4650 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4651 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4652 return EmitDirectCallee(*this, FD); 4653 } 4654 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4655 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4656 EmitIgnoredExpr(ME->getBase()); 4657 return EmitDirectCallee(*this, FD); 4658 } 4659 4660 // Look through template substitutions. 4661 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4662 return EmitCallee(NTTP->getReplacement()); 4663 4664 // Treat pseudo-destructor calls differently. 4665 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4666 return CGCallee::forPseudoDestructor(PDE); 4667 } 4668 4669 // Otherwise, we have an indirect reference. 4670 llvm::Value *calleePtr; 4671 QualType functionType; 4672 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4673 calleePtr = EmitScalarExpr(E); 4674 functionType = ptrType->getPointeeType(); 4675 } else { 4676 functionType = E->getType(); 4677 calleePtr = EmitLValue(E).getPointer(*this); 4678 } 4679 assert(functionType->isFunctionType()); 4680 4681 GlobalDecl GD; 4682 if (const auto *VD = 4683 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4684 GD = GlobalDecl(VD); 4685 4686 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4687 CGCallee callee(calleeInfo, calleePtr); 4688 return callee; 4689 } 4690 4691 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4692 // Comma expressions just emit their LHS then their RHS as an l-value. 4693 if (E->getOpcode() == BO_Comma) { 4694 EmitIgnoredExpr(E->getLHS()); 4695 EnsureInsertPoint(); 4696 return EmitLValue(E->getRHS()); 4697 } 4698 4699 if (E->getOpcode() == BO_PtrMemD || 4700 E->getOpcode() == BO_PtrMemI) 4701 return EmitPointerToDataMemberBinaryExpr(E); 4702 4703 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4704 4705 // Note that in all of these cases, __block variables need the RHS 4706 // evaluated first just in case the variable gets moved by the RHS. 4707 4708 switch (getEvaluationKind(E->getType())) { 4709 case TEK_Scalar: { 4710 switch (E->getLHS()->getType().getObjCLifetime()) { 4711 case Qualifiers::OCL_Strong: 4712 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4713 4714 case Qualifiers::OCL_Autoreleasing: 4715 return EmitARCStoreAutoreleasing(E).first; 4716 4717 // No reason to do any of these differently. 4718 case Qualifiers::OCL_None: 4719 case Qualifiers::OCL_ExplicitNone: 4720 case Qualifiers::OCL_Weak: 4721 break; 4722 } 4723 4724 RValue RV = EmitAnyExpr(E->getRHS()); 4725 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4726 if (RV.isScalar()) 4727 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4728 EmitStoreThroughLValue(RV, LV); 4729 if (getLangOpts().OpenMP) 4730 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4731 E->getLHS()); 4732 return LV; 4733 } 4734 4735 case TEK_Complex: 4736 return EmitComplexAssignmentLValue(E); 4737 4738 case TEK_Aggregate: 4739 return EmitAggExprToLValue(E); 4740 } 4741 llvm_unreachable("bad evaluation kind"); 4742 } 4743 4744 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4745 RValue RV = EmitCallExpr(E); 4746 4747 if (!RV.isScalar()) 4748 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4749 AlignmentSource::Decl); 4750 4751 assert(E->getCallReturnType(getContext())->isReferenceType() && 4752 "Can't have a scalar return unless the return type is a " 4753 "reference type!"); 4754 4755 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4756 } 4757 4758 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4759 // FIXME: This shouldn't require another copy. 4760 return EmitAggExprToLValue(E); 4761 } 4762 4763 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4764 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4765 && "binding l-value to type which needs a temporary"); 4766 AggValueSlot Slot = CreateAggTemp(E->getType()); 4767 EmitCXXConstructExpr(E, Slot); 4768 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4769 } 4770 4771 LValue 4772 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4773 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4774 } 4775 4776 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4777 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4778 ConvertType(E->getType())); 4779 } 4780 4781 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4782 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4783 AlignmentSource::Decl); 4784 } 4785 4786 LValue 4787 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4788 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4789 Slot.setExternallyDestructed(); 4790 EmitAggExpr(E->getSubExpr(), Slot); 4791 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4792 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4793 } 4794 4795 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4796 RValue RV = EmitObjCMessageExpr(E); 4797 4798 if (!RV.isScalar()) 4799 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4800 AlignmentSource::Decl); 4801 4802 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4803 "Can't have a scalar return unless the return type is a " 4804 "reference type!"); 4805 4806 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4807 } 4808 4809 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4810 Address V = 4811 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4812 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4813 } 4814 4815 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4816 const ObjCIvarDecl *Ivar) { 4817 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4818 } 4819 4820 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4821 llvm::Value *BaseValue, 4822 const ObjCIvarDecl *Ivar, 4823 unsigned CVRQualifiers) { 4824 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4825 Ivar, CVRQualifiers); 4826 } 4827 4828 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4829 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4830 llvm::Value *BaseValue = nullptr; 4831 const Expr *BaseExpr = E->getBase(); 4832 Qualifiers BaseQuals; 4833 QualType ObjectTy; 4834 if (E->isArrow()) { 4835 BaseValue = EmitScalarExpr(BaseExpr); 4836 ObjectTy = BaseExpr->getType()->getPointeeType(); 4837 BaseQuals = ObjectTy.getQualifiers(); 4838 } else { 4839 LValue BaseLV = EmitLValue(BaseExpr); 4840 BaseValue = BaseLV.getPointer(*this); 4841 ObjectTy = BaseExpr->getType(); 4842 BaseQuals = ObjectTy.getQualifiers(); 4843 } 4844 4845 LValue LV = 4846 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4847 BaseQuals.getCVRQualifiers()); 4848 setObjCGCLValueClass(getContext(), E, LV); 4849 return LV; 4850 } 4851 4852 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4853 // Can only get l-value for message expression returning aggregate type 4854 RValue RV = EmitAnyExprToTemp(E); 4855 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4856 AlignmentSource::Decl); 4857 } 4858 4859 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4860 const CallExpr *E, ReturnValueSlot ReturnValue, 4861 llvm::Value *Chain) { 4862 // Get the actual function type. The callee type will always be a pointer to 4863 // function type or a block pointer type. 4864 assert(CalleeType->isFunctionPointerType() && 4865 "Call must have function pointer type!"); 4866 4867 const Decl *TargetDecl = 4868 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4869 4870 CalleeType = getContext().getCanonicalType(CalleeType); 4871 4872 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4873 4874 CGCallee Callee = OrigCallee; 4875 4876 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4877 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4878 if (llvm::Constant *PrefixSig = 4879 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4880 SanitizerScope SanScope(this); 4881 // Remove any (C++17) exception specifications, to allow calling e.g. a 4882 // noexcept function through a non-noexcept pointer. 4883 auto ProtoTy = 4884 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4885 llvm::Constant *FTRTTIConst = 4886 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4887 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4888 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4889 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4890 4891 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4892 4893 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4894 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4895 llvm::Value *CalleeSigPtr = 4896 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4897 llvm::Value *CalleeSig = 4898 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4899 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4900 4901 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4902 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4903 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4904 4905 EmitBlock(TypeCheck); 4906 llvm::Value *CalleeRTTIPtr = 4907 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4908 llvm::Value *CalleeRTTIEncoded = 4909 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4910 llvm::Value *CalleeRTTI = 4911 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4912 llvm::Value *CalleeRTTIMatch = 4913 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4914 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4915 EmitCheckTypeDescriptor(CalleeType)}; 4916 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4917 SanitizerHandler::FunctionTypeMismatch, StaticData, 4918 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4919 4920 Builder.CreateBr(Cont); 4921 EmitBlock(Cont); 4922 } 4923 } 4924 4925 const auto *FnType = cast<FunctionType>(PointeeType); 4926 4927 // If we are checking indirect calls and this call is indirect, check that the 4928 // function pointer is a member of the bit set for the function type. 4929 if (SanOpts.has(SanitizerKind::CFIICall) && 4930 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4931 SanitizerScope SanScope(this); 4932 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4933 4934 llvm::Metadata *MD; 4935 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4936 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4937 else 4938 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4939 4940 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4941 4942 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4943 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4944 llvm::Value *TypeTest = Builder.CreateCall( 4945 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4946 4947 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4948 llvm::Constant *StaticData[] = { 4949 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4950 EmitCheckSourceLocation(E->getBeginLoc()), 4951 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4952 }; 4953 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4954 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4955 CastedCallee, StaticData); 4956 } else { 4957 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4958 SanitizerHandler::CFICheckFail, StaticData, 4959 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4960 } 4961 } 4962 4963 CallArgList Args; 4964 if (Chain) 4965 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4966 CGM.getContext().VoidPtrTy); 4967 4968 // C++17 requires that we evaluate arguments to a call using assignment syntax 4969 // right-to-left, and that we evaluate arguments to certain other operators 4970 // left-to-right. Note that we allow this to override the order dictated by 4971 // the calling convention on the MS ABI, which means that parameter 4972 // destruction order is not necessarily reverse construction order. 4973 // FIXME: Revisit this based on C++ committee response to unimplementability. 4974 EvaluationOrder Order = EvaluationOrder::Default; 4975 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4976 if (OCE->isAssignmentOp()) 4977 Order = EvaluationOrder::ForceRightToLeft; 4978 else { 4979 switch (OCE->getOperator()) { 4980 case OO_LessLess: 4981 case OO_GreaterGreater: 4982 case OO_AmpAmp: 4983 case OO_PipePipe: 4984 case OO_Comma: 4985 case OO_ArrowStar: 4986 Order = EvaluationOrder::ForceLeftToRight; 4987 break; 4988 default: 4989 break; 4990 } 4991 } 4992 } 4993 4994 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4995 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4996 4997 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4998 Args, FnType, /*ChainCall=*/Chain); 4999 5000 // C99 6.5.2.2p6: 5001 // If the expression that denotes the called function has a type 5002 // that does not include a prototype, [the default argument 5003 // promotions are performed]. If the number of arguments does not 5004 // equal the number of parameters, the behavior is undefined. If 5005 // the function is defined with a type that includes a prototype, 5006 // and either the prototype ends with an ellipsis (, ...) or the 5007 // types of the arguments after promotion are not compatible with 5008 // the types of the parameters, the behavior is undefined. If the 5009 // function is defined with a type that does not include a 5010 // prototype, and the types of the arguments after promotion are 5011 // not compatible with those of the parameters after promotion, 5012 // the behavior is undefined [except in some trivial cases]. 5013 // That is, in the general case, we should assume that a call 5014 // through an unprototyped function type works like a *non-variadic* 5015 // call. The way we make this work is to cast to the exact type 5016 // of the promoted arguments. 5017 // 5018 // Chain calls use this same code path to add the invisible chain parameter 5019 // to the function type. 5020 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5021 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5022 CalleeTy = CalleeTy->getPointerTo(); 5023 5024 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5025 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5026 Callee.setFunctionPointer(CalleePtr); 5027 } 5028 5029 llvm::CallBase *CallOrInvoke = nullptr; 5030 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5031 E->getExprLoc()); 5032 5033 // Generate function declaration DISuprogram in order to be used 5034 // in debug info about call sites. 5035 if (CGDebugInfo *DI = getDebugInfo()) { 5036 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5037 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5038 CalleeDecl); 5039 } 5040 5041 return Call; 5042 } 5043 5044 LValue CodeGenFunction:: 5045 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5046 Address BaseAddr = Address::invalid(); 5047 if (E->getOpcode() == BO_PtrMemI) { 5048 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5049 } else { 5050 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5051 } 5052 5053 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5054 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5055 5056 LValueBaseInfo BaseInfo; 5057 TBAAAccessInfo TBAAInfo; 5058 Address MemberAddr = 5059 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5060 &TBAAInfo); 5061 5062 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5063 } 5064 5065 /// Given the address of a temporary variable, produce an r-value of 5066 /// its type. 5067 RValue CodeGenFunction::convertTempToRValue(Address addr, 5068 QualType type, 5069 SourceLocation loc) { 5070 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5071 switch (getEvaluationKind(type)) { 5072 case TEK_Complex: 5073 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5074 case TEK_Aggregate: 5075 return lvalue.asAggregateRValue(*this); 5076 case TEK_Scalar: 5077 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5078 } 5079 llvm_unreachable("bad evaluation kind"); 5080 } 5081 5082 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5083 assert(Val->getType()->isFPOrFPVectorTy()); 5084 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5085 return; 5086 5087 llvm::MDBuilder MDHelper(getLLVMContext()); 5088 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5089 5090 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5091 } 5092 5093 namespace { 5094 struct LValueOrRValue { 5095 LValue LV; 5096 RValue RV; 5097 }; 5098 } 5099 5100 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5101 const PseudoObjectExpr *E, 5102 bool forLValue, 5103 AggValueSlot slot) { 5104 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5105 5106 // Find the result expression, if any. 5107 const Expr *resultExpr = E->getResultExpr(); 5108 LValueOrRValue result; 5109 5110 for (PseudoObjectExpr::const_semantics_iterator 5111 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5112 const Expr *semantic = *i; 5113 5114 // If this semantic expression is an opaque value, bind it 5115 // to the result of its source expression. 5116 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5117 // Skip unique OVEs. 5118 if (ov->isUnique()) { 5119 assert(ov != resultExpr && 5120 "A unique OVE cannot be used as the result expression"); 5121 continue; 5122 } 5123 5124 // If this is the result expression, we may need to evaluate 5125 // directly into the slot. 5126 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5127 OVMA opaqueData; 5128 if (ov == resultExpr && ov->isRValue() && !forLValue && 5129 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5130 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5131 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5132 AlignmentSource::Decl); 5133 opaqueData = OVMA::bind(CGF, ov, LV); 5134 result.RV = slot.asRValue(); 5135 5136 // Otherwise, emit as normal. 5137 } else { 5138 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5139 5140 // If this is the result, also evaluate the result now. 5141 if (ov == resultExpr) { 5142 if (forLValue) 5143 result.LV = CGF.EmitLValue(ov); 5144 else 5145 result.RV = CGF.EmitAnyExpr(ov, slot); 5146 } 5147 } 5148 5149 opaques.push_back(opaqueData); 5150 5151 // Otherwise, if the expression is the result, evaluate it 5152 // and remember the result. 5153 } else if (semantic == resultExpr) { 5154 if (forLValue) 5155 result.LV = CGF.EmitLValue(semantic); 5156 else 5157 result.RV = CGF.EmitAnyExpr(semantic, slot); 5158 5159 // Otherwise, evaluate the expression in an ignored context. 5160 } else { 5161 CGF.EmitIgnoredExpr(semantic); 5162 } 5163 } 5164 5165 // Unbind all the opaques now. 5166 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5167 opaques[i].unbind(CGF); 5168 5169 return result; 5170 } 5171 5172 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5173 AggValueSlot slot) { 5174 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5175 } 5176 5177 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5178 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5179 } 5180