1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 #include <optional> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 46 "Clang max alignment greater than what LLVM supports?"); 47 48 void CodeGenFunction::EmitDecl(const Decl &D) { 49 switch (D.getKind()) { 50 case Decl::BuiltinTemplate: 51 case Decl::TranslationUnit: 52 case Decl::ExternCContext: 53 case Decl::Namespace: 54 case Decl::UnresolvedUsingTypename: 55 case Decl::ClassTemplateSpecialization: 56 case Decl::ClassTemplatePartialSpecialization: 57 case Decl::VarTemplateSpecialization: 58 case Decl::VarTemplatePartialSpecialization: 59 case Decl::TemplateTypeParm: 60 case Decl::UnresolvedUsingValue: 61 case Decl::NonTypeTemplateParm: 62 case Decl::CXXDeductionGuide: 63 case Decl::CXXMethod: 64 case Decl::CXXConstructor: 65 case Decl::CXXDestructor: 66 case Decl::CXXConversion: 67 case Decl::Field: 68 case Decl::MSProperty: 69 case Decl::IndirectField: 70 case Decl::ObjCIvar: 71 case Decl::ObjCAtDefsField: 72 case Decl::ParmVar: 73 case Decl::ImplicitParam: 74 case Decl::ClassTemplate: 75 case Decl::VarTemplate: 76 case Decl::FunctionTemplate: 77 case Decl::TypeAliasTemplate: 78 case Decl::TemplateTemplateParm: 79 case Decl::ObjCMethod: 80 case Decl::ObjCCategory: 81 case Decl::ObjCProtocol: 82 case Decl::ObjCInterface: 83 case Decl::ObjCCategoryImpl: 84 case Decl::ObjCImplementation: 85 case Decl::ObjCProperty: 86 case Decl::ObjCCompatibleAlias: 87 case Decl::PragmaComment: 88 case Decl::PragmaDetectMismatch: 89 case Decl::AccessSpec: 90 case Decl::LinkageSpec: 91 case Decl::Export: 92 case Decl::ObjCPropertyImpl: 93 case Decl::FileScopeAsm: 94 case Decl::TopLevelStmt: 95 case Decl::Friend: 96 case Decl::FriendTemplate: 97 case Decl::Block: 98 case Decl::Captured: 99 case Decl::ClassScopeFunctionSpecialization: 100 case Decl::UsingShadow: 101 case Decl::ConstructorUsingShadow: 102 case Decl::ObjCTypeParam: 103 case Decl::Binding: 104 case Decl::UnresolvedUsingIfExists: 105 case Decl::HLSLBuffer: 106 llvm_unreachable("Declaration should not be in declstmts!"); 107 case Decl::Record: // struct/union/class X; 108 case Decl::CXXRecord: // struct/union/class X; [C++] 109 if (CGDebugInfo *DI = getDebugInfo()) 110 if (cast<RecordDecl>(D).getDefinition()) 111 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 112 return; 113 case Decl::Enum: // enum X; 114 if (CGDebugInfo *DI = getDebugInfo()) 115 if (cast<EnumDecl>(D).getDefinition()) 116 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 117 return; 118 case Decl::Function: // void X(); 119 case Decl::EnumConstant: // enum ? { X = ? } 120 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 121 case Decl::Label: // __label__ x; 122 case Decl::Import: 123 case Decl::MSGuid: // __declspec(uuid("...")) 124 case Decl::UnnamedGlobalConstant: 125 case Decl::TemplateParamObject: 126 case Decl::OMPThreadPrivate: 127 case Decl::OMPAllocate: 128 case Decl::OMPCapturedExpr: 129 case Decl::OMPRequires: 130 case Decl::Empty: 131 case Decl::Concept: 132 case Decl::ImplicitConceptSpecialization: 133 case Decl::LifetimeExtendedTemporary: 134 case Decl::RequiresExprBody: 135 // None of these decls require codegen support. 136 return; 137 138 case Decl::NamespaceAlias: 139 if (CGDebugInfo *DI = getDebugInfo()) 140 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 141 return; 142 case Decl::Using: // using X; [C++] 143 if (CGDebugInfo *DI = getDebugInfo()) 144 DI->EmitUsingDecl(cast<UsingDecl>(D)); 145 return; 146 case Decl::UsingEnum: // using enum X; [C++] 147 if (CGDebugInfo *DI = getDebugInfo()) 148 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D)); 149 return; 150 case Decl::UsingPack: 151 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 152 EmitDecl(*Using); 153 return; 154 case Decl::UsingDirective: // using namespace X; [C++] 155 if (CGDebugInfo *DI = getDebugInfo()) 156 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 157 return; 158 case Decl::Var: 159 case Decl::Decomposition: { 160 const VarDecl &VD = cast<VarDecl>(D); 161 assert(VD.isLocalVarDecl() && 162 "Should not see file-scope variables inside a function!"); 163 EmitVarDecl(VD); 164 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 165 for (auto *B : DD->bindings()) 166 if (auto *HD = B->getHoldingVar()) 167 EmitVarDecl(*HD); 168 return; 169 } 170 171 case Decl::OMPDeclareReduction: 172 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 173 174 case Decl::OMPDeclareMapper: 175 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 176 177 case Decl::Typedef: // typedef int X; 178 case Decl::TypeAlias: { // using X = int; [C++0x] 179 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 180 if (CGDebugInfo *DI = getDebugInfo()) 181 DI->EmitAndRetainType(Ty); 182 if (Ty->isVariablyModifiedType()) 183 EmitVariablyModifiedType(Ty); 184 return; 185 } 186 } 187 } 188 189 /// EmitVarDecl - This method handles emission of any variable declaration 190 /// inside a function, including static vars etc. 191 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 192 if (D.hasExternalStorage()) 193 // Don't emit it now, allow it to be emitted lazily on its first use. 194 return; 195 196 // Some function-scope variable does not have static storage but still 197 // needs to be emitted like a static variable, e.g. a function-scope 198 // variable in constant address space in OpenCL. 199 if (D.getStorageDuration() != SD_Automatic) { 200 // Static sampler variables translated to function calls. 201 if (D.getType()->isSamplerT()) 202 return; 203 204 llvm::GlobalValue::LinkageTypes Linkage = 205 CGM.getLLVMLinkageVarDefinition(&D); 206 207 // FIXME: We need to force the emission/use of a guard variable for 208 // some variables even if we can constant-evaluate them because 209 // we can't guarantee every translation unit will constant-evaluate them. 210 211 return EmitStaticVarDecl(D, Linkage); 212 } 213 214 if (D.getType().getAddressSpace() == LangAS::opencl_local) 215 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 216 217 assert(D.hasLocalStorage()); 218 return EmitAutoVarDecl(D); 219 } 220 221 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 222 if (CGM.getLangOpts().CPlusPlus) 223 return CGM.getMangledName(&D).str(); 224 225 // If this isn't C++, we don't need a mangled name, just a pretty one. 226 assert(!D.isExternallyVisible() && "name shouldn't matter"); 227 std::string ContextName; 228 const DeclContext *DC = D.getDeclContext(); 229 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 230 DC = cast<DeclContext>(CD->getNonClosureContext()); 231 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 232 ContextName = std::string(CGM.getMangledName(FD)); 233 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 234 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 235 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 236 ContextName = OMD->getSelector().getAsString(); 237 else 238 llvm_unreachable("Unknown context for static var decl"); 239 240 ContextName += "." + D.getNameAsString(); 241 return ContextName; 242 } 243 244 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 245 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 246 // In general, we don't always emit static var decls once before we reference 247 // them. It is possible to reference them before emitting the function that 248 // contains them, and it is possible to emit the containing function multiple 249 // times. 250 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 251 return ExistingGV; 252 253 QualType Ty = D.getType(); 254 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 255 256 // Use the label if the variable is renamed with the asm-label extension. 257 std::string Name; 258 if (D.hasAttr<AsmLabelAttr>()) 259 Name = std::string(getMangledName(&D)); 260 else 261 Name = getStaticDeclName(*this, D); 262 263 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 264 LangAS AS = GetGlobalVarAddressSpace(&D); 265 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 266 267 // OpenCL variables in local address space and CUDA shared 268 // variables cannot have an initializer. 269 llvm::Constant *Init = nullptr; 270 if (Ty.getAddressSpace() == LangAS::opencl_local || 271 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 272 Init = llvm::UndefValue::get(LTy); 273 else 274 Init = EmitNullConstant(Ty); 275 276 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 277 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 278 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 279 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 280 281 if (supportsCOMDAT() && GV->isWeakForLinker()) 282 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 283 284 if (D.getTLSKind()) 285 setTLSMode(GV, D); 286 287 setGVProperties(GV, &D); 288 289 // Make sure the result is of the correct type. 290 LangAS ExpectedAS = Ty.getAddressSpace(); 291 llvm::Constant *Addr = GV; 292 if (AS != ExpectedAS) { 293 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 294 *this, GV, AS, ExpectedAS, 295 llvm::PointerType::get(getLLVMContext(), 296 getContext().getTargetAddressSpace(ExpectedAS))); 297 } 298 299 setStaticLocalDeclAddress(&D, Addr); 300 301 // Ensure that the static local gets initialized by making sure the parent 302 // function gets emitted eventually. 303 const Decl *DC = cast<Decl>(D.getDeclContext()); 304 305 // We can't name blocks or captured statements directly, so try to emit their 306 // parents. 307 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 308 DC = DC->getNonClosureContext(); 309 // FIXME: Ensure that global blocks get emitted. 310 if (!DC) 311 return Addr; 312 } 313 314 GlobalDecl GD; 315 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 316 GD = GlobalDecl(CD, Ctor_Base); 317 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 318 GD = GlobalDecl(DD, Dtor_Base); 319 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 320 GD = GlobalDecl(FD); 321 else { 322 // Don't do anything for Obj-C method decls or global closures. We should 323 // never defer them. 324 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 325 } 326 if (GD.getDecl()) { 327 // Disable emission of the parent function for the OpenMP device codegen. 328 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 329 (void)GetAddrOfGlobal(GD); 330 } 331 332 return Addr; 333 } 334 335 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 336 /// global variable that has already been created for it. If the initializer 337 /// has a different type than GV does, this may free GV and return a different 338 /// one. Otherwise it just returns GV. 339 llvm::GlobalVariable * 340 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 341 llvm::GlobalVariable *GV) { 342 ConstantEmitter emitter(*this); 343 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 344 345 // If constant emission failed, then this should be a C++ static 346 // initializer. 347 if (!Init) { 348 if (!getLangOpts().CPlusPlus) 349 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 350 else if (D.hasFlexibleArrayInit(getContext())) 351 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer"); 352 else if (HaveInsertPoint()) { 353 // Since we have a static initializer, this global variable can't 354 // be constant. 355 GV->setConstant(false); 356 357 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 358 } 359 return GV; 360 } 361 362 #ifndef NDEBUG 363 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) + 364 D.getFlexibleArrayInitChars(getContext()); 365 CharUnits CstSize = CharUnits::fromQuantity( 366 CGM.getDataLayout().getTypeAllocSize(Init->getType())); 367 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 368 #endif 369 370 // The initializer may differ in type from the global. Rewrite 371 // the global to match the initializer. (We have to do this 372 // because some types, like unions, can't be completely represented 373 // in the LLVM type system.) 374 if (GV->getValueType() != Init->getType()) { 375 llvm::GlobalVariable *OldGV = GV; 376 377 GV = new llvm::GlobalVariable( 378 CGM.getModule(), Init->getType(), OldGV->isConstant(), 379 OldGV->getLinkage(), Init, "", 380 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), 381 OldGV->getType()->getPointerAddressSpace()); 382 GV->setVisibility(OldGV->getVisibility()); 383 GV->setDSOLocal(OldGV->isDSOLocal()); 384 GV->setComdat(OldGV->getComdat()); 385 386 // Steal the name of the old global 387 GV->takeName(OldGV); 388 389 // Replace all uses of the old global with the new global 390 llvm::Constant *NewPtrForOldDecl = 391 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 392 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 393 394 // Erase the old global, since it is no longer used. 395 OldGV->eraseFromParent(); 396 } 397 398 bool NeedsDtor = 399 D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; 400 401 GV->setConstant(CGM.isTypeConstant(D.getType(), true, !NeedsDtor)); 402 GV->setInitializer(Init); 403 404 emitter.finalize(GV); 405 406 if (NeedsDtor && HaveInsertPoint()) { 407 // We have a constant initializer, but a nontrivial destructor. We still 408 // need to perform a guarded "initialization" in order to register the 409 // destructor. 410 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 411 } 412 413 return GV; 414 } 415 416 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 417 llvm::GlobalValue::LinkageTypes Linkage) { 418 // Check to see if we already have a global variable for this 419 // declaration. This can happen when double-emitting function 420 // bodies, e.g. with complete and base constructors. 421 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 422 CharUnits alignment = getContext().getDeclAlign(&D); 423 424 // Store into LocalDeclMap before generating initializer to handle 425 // circular references. 426 llvm::Type *elemTy = ConvertTypeForMem(D.getType()); 427 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment)); 428 429 // We can't have a VLA here, but we can have a pointer to a VLA, 430 // even though that doesn't really make any sense. 431 // Make sure to evaluate VLA bounds now so that we have them for later. 432 if (D.getType()->isVariablyModifiedType()) 433 EmitVariablyModifiedType(D.getType()); 434 435 // Save the type in case adding the initializer forces a type change. 436 llvm::Type *expectedType = addr->getType(); 437 438 llvm::GlobalVariable *var = 439 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 440 441 // CUDA's local and local static __shared__ variables should not 442 // have any non-empty initializers. This is ensured by Sema. 443 // Whatever initializer such variable may have when it gets here is 444 // a no-op and should not be emitted. 445 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 446 D.hasAttr<CUDASharedAttr>(); 447 // If this value has an initializer, emit it. 448 if (D.getInit() && !isCudaSharedVar) 449 var = AddInitializerToStaticVarDecl(D, var); 450 451 var->setAlignment(alignment.getAsAlign()); 452 453 if (D.hasAttr<AnnotateAttr>()) 454 CGM.AddGlobalAnnotations(&D, var); 455 456 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 457 var->addAttribute("bss-section", SA->getName()); 458 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 459 var->addAttribute("data-section", SA->getName()); 460 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 461 var->addAttribute("rodata-section", SA->getName()); 462 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 463 var->addAttribute("relro-section", SA->getName()); 464 465 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 466 var->setSection(SA->getName()); 467 468 if (D.hasAttr<RetainAttr>()) 469 CGM.addUsedGlobal(var); 470 else if (D.hasAttr<UsedAttr>()) 471 CGM.addUsedOrCompilerUsedGlobal(var); 472 473 if (CGM.getCodeGenOpts().KeepPersistentStorageVariables) 474 CGM.addUsedOrCompilerUsedGlobal(var); 475 476 // We may have to cast the constant because of the initializer 477 // mismatch above. 478 // 479 // FIXME: It is really dangerous to store this in the map; if anyone 480 // RAUW's the GV uses of this constant will be invalid. 481 llvm::Constant *castedAddr = 482 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 483 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment); 484 CGM.setStaticLocalDeclAddress(&D, castedAddr); 485 486 CGM.getSanitizerMetadata()->reportGlobal(var, D); 487 488 // Emit global variable debug descriptor for static vars. 489 CGDebugInfo *DI = getDebugInfo(); 490 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 491 DI->setLocation(D.getLocation()); 492 DI->EmitGlobalVariable(var, &D); 493 } 494 } 495 496 namespace { 497 struct DestroyObject final : EHScopeStack::Cleanup { 498 DestroyObject(Address addr, QualType type, 499 CodeGenFunction::Destroyer *destroyer, 500 bool useEHCleanupForArray) 501 : addr(addr), type(type), destroyer(destroyer), 502 useEHCleanupForArray(useEHCleanupForArray) {} 503 504 Address addr; 505 QualType type; 506 CodeGenFunction::Destroyer *destroyer; 507 bool useEHCleanupForArray; 508 509 void Emit(CodeGenFunction &CGF, Flags flags) override { 510 // Don't use an EH cleanup recursively from an EH cleanup. 511 bool useEHCleanupForArray = 512 flags.isForNormalCleanup() && this->useEHCleanupForArray; 513 514 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 515 } 516 }; 517 518 template <class Derived> 519 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 520 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 521 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 522 523 llvm::Value *NRVOFlag; 524 Address Loc; 525 QualType Ty; 526 527 void Emit(CodeGenFunction &CGF, Flags flags) override { 528 // Along the exceptions path we always execute the dtor. 529 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 530 531 llvm::BasicBlock *SkipDtorBB = nullptr; 532 if (NRVO) { 533 // If we exited via NRVO, we skip the destructor call. 534 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 535 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 536 llvm::Value *DidNRVO = 537 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 538 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 539 CGF.EmitBlock(RunDtorBB); 540 } 541 542 static_cast<Derived *>(this)->emitDestructorCall(CGF); 543 544 if (NRVO) CGF.EmitBlock(SkipDtorBB); 545 } 546 547 virtual ~DestroyNRVOVariable() = default; 548 }; 549 550 struct DestroyNRVOVariableCXX final 551 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 552 DestroyNRVOVariableCXX(Address addr, QualType type, 553 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 554 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 555 Dtor(Dtor) {} 556 557 const CXXDestructorDecl *Dtor; 558 559 void emitDestructorCall(CodeGenFunction &CGF) { 560 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 561 /*ForVirtualBase=*/false, 562 /*Delegating=*/false, Loc, Ty); 563 } 564 }; 565 566 struct DestroyNRVOVariableC final 567 : DestroyNRVOVariable<DestroyNRVOVariableC> { 568 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 569 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 570 571 void emitDestructorCall(CodeGenFunction &CGF) { 572 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 573 } 574 }; 575 576 struct CallStackRestore final : EHScopeStack::Cleanup { 577 Address Stack; 578 CallStackRestore(Address Stack) : Stack(Stack) {} 579 bool isRedundantBeforeReturn() override { return true; } 580 void Emit(CodeGenFunction &CGF, Flags flags) override { 581 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 582 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 583 CGF.Builder.CreateCall(F, V); 584 } 585 }; 586 587 struct KmpcAllocFree final : EHScopeStack::Cleanup { 588 std::pair<llvm::Value *, llvm::Value *> AddrSizePair; 589 KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) 590 : AddrSizePair(AddrSizePair) {} 591 void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override { 592 auto &RT = CGF.CGM.getOpenMPRuntime(); 593 RT.getKmpcFreeShared(CGF, AddrSizePair); 594 } 595 }; 596 597 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 598 const VarDecl &Var; 599 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 600 601 void Emit(CodeGenFunction &CGF, Flags flags) override { 602 // Compute the address of the local variable, in case it's a 603 // byref or something. 604 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 605 Var.getType(), VK_LValue, SourceLocation()); 606 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 607 SourceLocation()); 608 CGF.EmitExtendGCLifetime(value); 609 } 610 }; 611 612 struct CallCleanupFunction final : EHScopeStack::Cleanup { 613 llvm::Constant *CleanupFn; 614 const CGFunctionInfo &FnInfo; 615 const VarDecl &Var; 616 617 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 618 const VarDecl *Var) 619 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 620 621 void Emit(CodeGenFunction &CGF, Flags flags) override { 622 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 623 Var.getType(), VK_LValue, SourceLocation()); 624 // Compute the address of the local variable, in case it's a byref 625 // or something. 626 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 627 628 // In some cases, the type of the function argument will be different from 629 // the type of the pointer. An example of this is 630 // void f(void* arg); 631 // __attribute__((cleanup(f))) void *g; 632 // 633 // To fix this we insert a bitcast here. 634 QualType ArgTy = FnInfo.arg_begin()->type; 635 llvm::Value *Arg = 636 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 637 638 CallArgList Args; 639 Args.add(RValue::get(Arg), 640 CGF.getContext().getPointerType(Var.getType())); 641 auto Callee = CGCallee::forDirect(CleanupFn); 642 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 643 } 644 }; 645 } // end anonymous namespace 646 647 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 648 /// variable with lifetime. 649 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 650 Address addr, 651 Qualifiers::ObjCLifetime lifetime) { 652 switch (lifetime) { 653 case Qualifiers::OCL_None: 654 llvm_unreachable("present but none"); 655 656 case Qualifiers::OCL_ExplicitNone: 657 // nothing to do 658 break; 659 660 case Qualifiers::OCL_Strong: { 661 CodeGenFunction::Destroyer *destroyer = 662 (var.hasAttr<ObjCPreciseLifetimeAttr>() 663 ? CodeGenFunction::destroyARCStrongPrecise 664 : CodeGenFunction::destroyARCStrongImprecise); 665 666 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 667 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 668 cleanupKind & EHCleanup); 669 break; 670 } 671 case Qualifiers::OCL_Autoreleasing: 672 // nothing to do 673 break; 674 675 case Qualifiers::OCL_Weak: 676 // __weak objects always get EH cleanups; otherwise, exceptions 677 // could cause really nasty crashes instead of mere leaks. 678 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 679 CodeGenFunction::destroyARCWeak, 680 /*useEHCleanup*/ true); 681 break; 682 } 683 } 684 685 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 686 if (const Expr *e = dyn_cast<Expr>(s)) { 687 // Skip the most common kinds of expressions that make 688 // hierarchy-walking expensive. 689 s = e = e->IgnoreParenCasts(); 690 691 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 692 return (ref->getDecl() == &var); 693 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 694 const BlockDecl *block = be->getBlockDecl(); 695 for (const auto &I : block->captures()) { 696 if (I.getVariable() == &var) 697 return true; 698 } 699 } 700 } 701 702 for (const Stmt *SubStmt : s->children()) 703 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 704 if (SubStmt && isAccessedBy(var, SubStmt)) 705 return true; 706 707 return false; 708 } 709 710 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 711 if (!decl) return false; 712 if (!isa<VarDecl>(decl)) return false; 713 const VarDecl *var = cast<VarDecl>(decl); 714 return isAccessedBy(*var, e); 715 } 716 717 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 718 const LValue &destLV, const Expr *init) { 719 bool needsCast = false; 720 721 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 722 switch (castExpr->getCastKind()) { 723 // Look through casts that don't require representation changes. 724 case CK_NoOp: 725 case CK_BitCast: 726 case CK_BlockPointerToObjCPointerCast: 727 needsCast = true; 728 break; 729 730 // If we find an l-value to r-value cast from a __weak variable, 731 // emit this operation as a copy or move. 732 case CK_LValueToRValue: { 733 const Expr *srcExpr = castExpr->getSubExpr(); 734 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 735 return false; 736 737 // Emit the source l-value. 738 LValue srcLV = CGF.EmitLValue(srcExpr); 739 740 // Handle a formal type change to avoid asserting. 741 auto srcAddr = srcLV.getAddress(CGF); 742 if (needsCast) { 743 srcAddr = 744 srcAddr.withElementType(destLV.getAddress(CGF).getElementType()); 745 } 746 747 // If it was an l-value, use objc_copyWeak. 748 if (srcExpr->isLValue()) { 749 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 750 } else { 751 assert(srcExpr->isXValue()); 752 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 753 } 754 return true; 755 } 756 757 // Stop at anything else. 758 default: 759 return false; 760 } 761 762 init = castExpr->getSubExpr(); 763 } 764 return false; 765 } 766 767 static void drillIntoBlockVariable(CodeGenFunction &CGF, 768 LValue &lvalue, 769 const VarDecl *var) { 770 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 771 } 772 773 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 774 SourceLocation Loc) { 775 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 776 return; 777 778 auto Nullability = LHS.getType()->getNullability(); 779 if (!Nullability || *Nullability != NullabilityKind::NonNull) 780 return; 781 782 // Check if the right hand side of the assignment is nonnull, if the left 783 // hand side must be nonnull. 784 SanitizerScope SanScope(this); 785 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 786 llvm::Constant *StaticData[] = { 787 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 788 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 789 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 790 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 791 SanitizerHandler::TypeMismatch, StaticData, RHS); 792 } 793 794 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 795 LValue lvalue, bool capturedByInit) { 796 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 797 if (!lifetime) { 798 llvm::Value *value = EmitScalarExpr(init); 799 if (capturedByInit) 800 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 801 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 802 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 803 return; 804 } 805 806 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 807 init = DIE->getExpr(); 808 809 // If we're emitting a value with lifetime, we have to do the 810 // initialization *before* we leave the cleanup scopes. 811 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 812 CodeGenFunction::RunCleanupsScope Scope(*this); 813 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 814 } 815 816 // We have to maintain the illusion that the variable is 817 // zero-initialized. If the variable might be accessed in its 818 // initializer, zero-initialize before running the initializer, then 819 // actually perform the initialization with an assign. 820 bool accessedByInit = false; 821 if (lifetime != Qualifiers::OCL_ExplicitNone) 822 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 823 if (accessedByInit) { 824 LValue tempLV = lvalue; 825 // Drill down to the __block object if necessary. 826 if (capturedByInit) { 827 // We can use a simple GEP for this because it can't have been 828 // moved yet. 829 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 830 cast<VarDecl>(D), 831 /*follow*/ false)); 832 } 833 834 auto ty = 835 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 836 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 837 838 // If __weak, we want to use a barrier under certain conditions. 839 if (lifetime == Qualifiers::OCL_Weak) 840 EmitARCInitWeak(tempLV.getAddress(*this), zero); 841 842 // Otherwise just do a simple store. 843 else 844 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 845 } 846 847 // Emit the initializer. 848 llvm::Value *value = nullptr; 849 850 switch (lifetime) { 851 case Qualifiers::OCL_None: 852 llvm_unreachable("present but none"); 853 854 case Qualifiers::OCL_Strong: { 855 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 856 value = EmitARCRetainScalarExpr(init); 857 break; 858 } 859 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 860 // that we omit the retain, and causes non-autoreleased return values to be 861 // immediately released. 862 [[fallthrough]]; 863 } 864 865 case Qualifiers::OCL_ExplicitNone: 866 value = EmitARCUnsafeUnretainedScalarExpr(init); 867 break; 868 869 case Qualifiers::OCL_Weak: { 870 // If it's not accessed by the initializer, try to emit the 871 // initialization with a copy or move. 872 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 873 return; 874 } 875 876 // No way to optimize a producing initializer into this. It's not 877 // worth optimizing for, because the value will immediately 878 // disappear in the common case. 879 value = EmitScalarExpr(init); 880 881 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 882 if (accessedByInit) 883 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 884 else 885 EmitARCInitWeak(lvalue.getAddress(*this), value); 886 return; 887 } 888 889 case Qualifiers::OCL_Autoreleasing: 890 value = EmitARCRetainAutoreleaseScalarExpr(init); 891 break; 892 } 893 894 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 895 896 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 897 898 // If the variable might have been accessed by its initializer, we 899 // might have to initialize with a barrier. We have to do this for 900 // both __weak and __strong, but __weak got filtered out above. 901 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 902 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 903 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 904 EmitARCRelease(oldValue, ARCImpreciseLifetime); 905 return; 906 } 907 908 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 909 } 910 911 /// Decide whether we can emit the non-zero parts of the specified initializer 912 /// with equal or fewer than NumStores scalar stores. 913 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 914 unsigned &NumStores) { 915 // Zero and Undef never requires any extra stores. 916 if (isa<llvm::ConstantAggregateZero>(Init) || 917 isa<llvm::ConstantPointerNull>(Init) || 918 isa<llvm::UndefValue>(Init)) 919 return true; 920 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 921 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 922 isa<llvm::ConstantExpr>(Init)) 923 return Init->isNullValue() || NumStores--; 924 925 // See if we can emit each element. 926 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 927 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 928 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 929 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 930 return false; 931 } 932 return true; 933 } 934 935 if (llvm::ConstantDataSequential *CDS = 936 dyn_cast<llvm::ConstantDataSequential>(Init)) { 937 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 938 llvm::Constant *Elt = CDS->getElementAsConstant(i); 939 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 940 return false; 941 } 942 return true; 943 } 944 945 // Anything else is hard and scary. 946 return false; 947 } 948 949 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 950 /// the scalar stores that would be required. 951 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 952 llvm::Constant *Init, Address Loc, 953 bool isVolatile, CGBuilderTy &Builder, 954 bool IsAutoInit) { 955 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 956 "called emitStoresForInitAfterBZero for zero or undef value."); 957 958 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 959 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 960 isa<llvm::ConstantExpr>(Init)) { 961 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 962 if (IsAutoInit) 963 I->addAnnotationMetadata("auto-init"); 964 return; 965 } 966 967 if (llvm::ConstantDataSequential *CDS = 968 dyn_cast<llvm::ConstantDataSequential>(Init)) { 969 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 970 llvm::Constant *Elt = CDS->getElementAsConstant(i); 971 972 // If necessary, get a pointer to the element and emit it. 973 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 974 emitStoresForInitAfterBZero( 975 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 976 Builder, IsAutoInit); 977 } 978 return; 979 } 980 981 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 982 "Unknown value type!"); 983 984 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 985 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 986 987 // If necessary, get a pointer to the element and emit it. 988 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 989 emitStoresForInitAfterBZero(CGM, Elt, 990 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 991 isVolatile, Builder, IsAutoInit); 992 } 993 } 994 995 /// Decide whether we should use bzero plus some stores to initialize a local 996 /// variable instead of using a memcpy from a constant global. It is beneficial 997 /// to use bzero if the global is all zeros, or mostly zeros and large. 998 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 999 uint64_t GlobalSize) { 1000 // If a global is all zeros, always use a bzero. 1001 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 1002 1003 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 1004 // do it if it will require 6 or fewer scalar stores. 1005 // TODO: Should budget depends on the size? Avoiding a large global warrants 1006 // plopping in more stores. 1007 unsigned StoreBudget = 6; 1008 uint64_t SizeLimit = 32; 1009 1010 return GlobalSize > SizeLimit && 1011 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 1012 } 1013 1014 /// Decide whether we should use memset to initialize a local variable instead 1015 /// of using a memcpy from a constant global. Assumes we've already decided to 1016 /// not user bzero. 1017 /// FIXME We could be more clever, as we are for bzero above, and generate 1018 /// memset followed by stores. It's unclear that's worth the effort. 1019 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 1020 uint64_t GlobalSize, 1021 const llvm::DataLayout &DL) { 1022 uint64_t SizeLimit = 32; 1023 if (GlobalSize <= SizeLimit) 1024 return nullptr; 1025 return llvm::isBytewiseValue(Init, DL); 1026 } 1027 1028 /// Decide whether we want to split a constant structure or array store into a 1029 /// sequence of its fields' stores. This may cost us code size and compilation 1030 /// speed, but plays better with store optimizations. 1031 static bool shouldSplitConstantStore(CodeGenModule &CGM, 1032 uint64_t GlobalByteSize) { 1033 // Don't break things that occupy more than one cacheline. 1034 uint64_t ByteSizeLimit = 64; 1035 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1036 return false; 1037 if (GlobalByteSize <= ByteSizeLimit) 1038 return true; 1039 return false; 1040 } 1041 1042 enum class IsPattern { No, Yes }; 1043 1044 /// Generate a constant filled with either a pattern or zeroes. 1045 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1046 llvm::Type *Ty) { 1047 if (isPattern == IsPattern::Yes) 1048 return initializationPatternFor(CGM, Ty); 1049 else 1050 return llvm::Constant::getNullValue(Ty); 1051 } 1052 1053 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1054 llvm::Constant *constant); 1055 1056 /// Helper function for constWithPadding() to deal with padding in structures. 1057 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1058 IsPattern isPattern, 1059 llvm::StructType *STy, 1060 llvm::Constant *constant) { 1061 const llvm::DataLayout &DL = CGM.getDataLayout(); 1062 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1063 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1064 unsigned SizeSoFar = 0; 1065 SmallVector<llvm::Constant *, 8> Values; 1066 bool NestedIntact = true; 1067 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1068 unsigned CurOff = Layout->getElementOffset(i); 1069 if (SizeSoFar < CurOff) { 1070 assert(!STy->isPacked()); 1071 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1072 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1073 } 1074 llvm::Constant *CurOp; 1075 if (constant->isZeroValue()) 1076 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1077 else 1078 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1079 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1080 if (CurOp != NewOp) 1081 NestedIntact = false; 1082 Values.push_back(NewOp); 1083 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1084 } 1085 unsigned TotalSize = Layout->getSizeInBytes(); 1086 if (SizeSoFar < TotalSize) { 1087 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1088 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1089 } 1090 if (NestedIntact && Values.size() == STy->getNumElements()) 1091 return constant; 1092 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1093 } 1094 1095 /// Replace all padding bytes in a given constant with either a pattern byte or 1096 /// 0x00. 1097 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1098 llvm::Constant *constant) { 1099 llvm::Type *OrigTy = constant->getType(); 1100 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1101 return constStructWithPadding(CGM, isPattern, STy, constant); 1102 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1103 llvm::SmallVector<llvm::Constant *, 8> Values; 1104 uint64_t Size = ArrayTy->getNumElements(); 1105 if (!Size) 1106 return constant; 1107 llvm::Type *ElemTy = ArrayTy->getElementType(); 1108 bool ZeroInitializer = constant->isNullValue(); 1109 llvm::Constant *OpValue, *PaddedOp; 1110 if (ZeroInitializer) { 1111 OpValue = llvm::Constant::getNullValue(ElemTy); 1112 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1113 } 1114 for (unsigned Op = 0; Op != Size; ++Op) { 1115 if (!ZeroInitializer) { 1116 OpValue = constant->getAggregateElement(Op); 1117 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1118 } 1119 Values.push_back(PaddedOp); 1120 } 1121 auto *NewElemTy = Values[0]->getType(); 1122 if (NewElemTy == ElemTy) 1123 return constant; 1124 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1125 return llvm::ConstantArray::get(NewArrayTy, Values); 1126 } 1127 // FIXME: Add handling for tail padding in vectors. Vectors don't 1128 // have padding between or inside elements, but the total amount of 1129 // data can be less than the allocated size. 1130 return constant; 1131 } 1132 1133 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1134 llvm::Constant *Constant, 1135 CharUnits Align) { 1136 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1137 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1138 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1139 return CC->getNameAsString(); 1140 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1141 return CD->getNameAsString(); 1142 return std::string(getMangledName(FD)); 1143 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1144 return OM->getNameAsString(); 1145 } else if (isa<BlockDecl>(DC)) { 1146 return "<block>"; 1147 } else if (isa<CapturedDecl>(DC)) { 1148 return "<captured>"; 1149 } else { 1150 llvm_unreachable("expected a function or method"); 1151 } 1152 }; 1153 1154 // Form a simple per-variable cache of these values in case we find we 1155 // want to reuse them. 1156 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1157 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1158 auto *Ty = Constant->getType(); 1159 bool isConstant = true; 1160 llvm::GlobalVariable *InsertBefore = nullptr; 1161 unsigned AS = 1162 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1163 std::string Name; 1164 if (D.hasGlobalStorage()) 1165 Name = getMangledName(&D).str() + ".const"; 1166 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1167 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1168 else 1169 llvm_unreachable("local variable has no parent function or method"); 1170 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1171 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1172 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1173 GV->setAlignment(Align.getAsAlign()); 1174 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1175 CacheEntry = GV; 1176 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) { 1177 CacheEntry->setAlignment(Align.getAsAlign()); 1178 } 1179 1180 return Address(CacheEntry, CacheEntry->getValueType(), Align); 1181 } 1182 1183 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1184 const VarDecl &D, 1185 CGBuilderTy &Builder, 1186 llvm::Constant *Constant, 1187 CharUnits Align) { 1188 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1189 return SrcPtr.withElementType(CGM.Int8Ty); 1190 } 1191 1192 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1193 Address Loc, bool isVolatile, 1194 CGBuilderTy &Builder, 1195 llvm::Constant *constant, bool IsAutoInit) { 1196 auto *Ty = constant->getType(); 1197 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1198 if (!ConstantSize) 1199 return; 1200 1201 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1202 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1203 if (canDoSingleStore) { 1204 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1205 if (IsAutoInit) 1206 I->addAnnotationMetadata("auto-init"); 1207 return; 1208 } 1209 1210 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1211 1212 // If the initializer is all or mostly the same, codegen with bzero / memset 1213 // then do a few stores afterward. 1214 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1215 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1216 SizeVal, isVolatile); 1217 if (IsAutoInit) 1218 I->addAnnotationMetadata("auto-init"); 1219 1220 bool valueAlreadyCorrect = 1221 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1222 if (!valueAlreadyCorrect) { 1223 Loc = Loc.withElementType(Ty); 1224 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1225 IsAutoInit); 1226 } 1227 return; 1228 } 1229 1230 // If the initializer is a repeated byte pattern, use memset. 1231 llvm::Value *Pattern = 1232 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1233 if (Pattern) { 1234 uint64_t Value = 0x00; 1235 if (!isa<llvm::UndefValue>(Pattern)) { 1236 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1237 assert(AP.getBitWidth() <= 8); 1238 Value = AP.getLimitedValue(); 1239 } 1240 auto *I = Builder.CreateMemSet( 1241 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1242 if (IsAutoInit) 1243 I->addAnnotationMetadata("auto-init"); 1244 return; 1245 } 1246 1247 // If the initializer is small, use a handful of stores. 1248 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1249 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1250 // FIXME: handle the case when STy != Loc.getElementType(). 1251 if (STy == Loc.getElementType()) { 1252 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1253 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1254 emitStoresForConstant( 1255 CGM, D, EltPtr, isVolatile, Builder, 1256 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1257 IsAutoInit); 1258 } 1259 return; 1260 } 1261 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1262 // FIXME: handle the case when ATy != Loc.getElementType(). 1263 if (ATy == Loc.getElementType()) { 1264 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1265 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1266 emitStoresForConstant( 1267 CGM, D, EltPtr, isVolatile, Builder, 1268 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1269 IsAutoInit); 1270 } 1271 return; 1272 } 1273 } 1274 } 1275 1276 // Copy from a global. 1277 auto *I = 1278 Builder.CreateMemCpy(Loc, 1279 createUnnamedGlobalForMemcpyFrom( 1280 CGM, D, Builder, constant, Loc.getAlignment()), 1281 SizeVal, isVolatile); 1282 if (IsAutoInit) 1283 I->addAnnotationMetadata("auto-init"); 1284 } 1285 1286 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1287 Address Loc, bool isVolatile, 1288 CGBuilderTy &Builder) { 1289 llvm::Type *ElTy = Loc.getElementType(); 1290 llvm::Constant *constant = 1291 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1292 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1293 /*IsAutoInit=*/true); 1294 } 1295 1296 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1297 Address Loc, bool isVolatile, 1298 CGBuilderTy &Builder) { 1299 llvm::Type *ElTy = Loc.getElementType(); 1300 llvm::Constant *constant = constWithPadding( 1301 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1302 assert(!isa<llvm::UndefValue>(constant)); 1303 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1304 /*IsAutoInit=*/true); 1305 } 1306 1307 static bool containsUndef(llvm::Constant *constant) { 1308 auto *Ty = constant->getType(); 1309 if (isa<llvm::UndefValue>(constant)) 1310 return true; 1311 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1312 for (llvm::Use &Op : constant->operands()) 1313 if (containsUndef(cast<llvm::Constant>(Op))) 1314 return true; 1315 return false; 1316 } 1317 1318 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1319 llvm::Constant *constant) { 1320 auto *Ty = constant->getType(); 1321 if (isa<llvm::UndefValue>(constant)) 1322 return patternOrZeroFor(CGM, isPattern, Ty); 1323 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1324 return constant; 1325 if (!containsUndef(constant)) 1326 return constant; 1327 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1328 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1329 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1330 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1331 } 1332 if (Ty->isStructTy()) 1333 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1334 if (Ty->isArrayTy()) 1335 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1336 assert(Ty->isVectorTy()); 1337 return llvm::ConstantVector::get(Values); 1338 } 1339 1340 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1341 /// variable declaration with auto, register, or no storage class specifier. 1342 /// These turn into simple stack objects, or GlobalValues depending on target. 1343 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1344 AutoVarEmission emission = EmitAutoVarAlloca(D); 1345 EmitAutoVarInit(emission); 1346 EmitAutoVarCleanups(emission); 1347 } 1348 1349 /// Emit a lifetime.begin marker if some criteria are satisfied. 1350 /// \return a pointer to the temporary size Value if a marker was emitted, null 1351 /// otherwise 1352 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size, 1353 llvm::Value *Addr) { 1354 if (!ShouldEmitLifetimeMarkers) 1355 return nullptr; 1356 1357 assert(Addr->getType()->getPointerAddressSpace() == 1358 CGM.getDataLayout().getAllocaAddrSpace() && 1359 "Pointer should be in alloca address space"); 1360 llvm::Value *SizeV = llvm::ConstantInt::get( 1361 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue()); 1362 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1363 llvm::CallInst *C = 1364 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1365 C->setDoesNotThrow(); 1366 return SizeV; 1367 } 1368 1369 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1370 assert(Addr->getType()->getPointerAddressSpace() == 1371 CGM.getDataLayout().getAllocaAddrSpace() && 1372 "Pointer should be in alloca address space"); 1373 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1374 llvm::CallInst *C = 1375 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1376 C->setDoesNotThrow(); 1377 } 1378 1379 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1380 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1381 // For each dimension stores its QualType and corresponding 1382 // size-expression Value. 1383 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1384 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1385 1386 // Break down the array into individual dimensions. 1387 QualType Type1D = D.getType(); 1388 while (getContext().getAsVariableArrayType(Type1D)) { 1389 auto VlaSize = getVLAElements1D(Type1D); 1390 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1391 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1392 else { 1393 // Generate a locally unique name for the size expression. 1394 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1395 SmallString<12> Buffer; 1396 StringRef NameRef = Name.toStringRef(Buffer); 1397 auto &Ident = getContext().Idents.getOwn(NameRef); 1398 VLAExprNames.push_back(&Ident); 1399 auto SizeExprAddr = 1400 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1401 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1402 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1403 Type1D.getUnqualifiedType()); 1404 } 1405 Type1D = VlaSize.Type; 1406 } 1407 1408 if (!EmitDebugInfo) 1409 return; 1410 1411 // Register each dimension's size-expression with a DILocalVariable, 1412 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1413 // to describe this array. 1414 unsigned NameIdx = 0; 1415 for (auto &VlaSize : Dimensions) { 1416 llvm::Metadata *MD; 1417 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1418 MD = llvm::ConstantAsMetadata::get(C); 1419 else { 1420 // Create an artificial VarDecl to generate debug info for. 1421 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1422 auto QT = getContext().getIntTypeForBitwidth( 1423 SizeTy->getScalarSizeInBits(), false); 1424 auto *ArtificialDecl = VarDecl::Create( 1425 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1426 D.getLocation(), D.getLocation(), NameIdent, QT, 1427 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1428 ArtificialDecl->setImplicit(); 1429 1430 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1431 Builder); 1432 } 1433 assert(MD && "No Size expression debug node created"); 1434 DI->registerVLASizeExpression(VlaSize.Type, MD); 1435 } 1436 } 1437 1438 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1439 /// local variable. Does not emit initialization or destruction. 1440 CodeGenFunction::AutoVarEmission 1441 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1442 QualType Ty = D.getType(); 1443 assert( 1444 Ty.getAddressSpace() == LangAS::Default || 1445 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1446 1447 AutoVarEmission emission(D); 1448 1449 bool isEscapingByRef = D.isEscapingByref(); 1450 emission.IsEscapingByRef = isEscapingByRef; 1451 1452 CharUnits alignment = getContext().getDeclAlign(&D); 1453 1454 // If the type is variably-modified, emit all the VLA sizes for it. 1455 if (Ty->isVariablyModifiedType()) 1456 EmitVariablyModifiedType(Ty); 1457 1458 auto *DI = getDebugInfo(); 1459 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1460 1461 Address address = Address::invalid(); 1462 Address AllocaAddr = Address::invalid(); 1463 Address OpenMPLocalAddr = Address::invalid(); 1464 if (CGM.getLangOpts().OpenMPIRBuilder) 1465 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1466 else 1467 OpenMPLocalAddr = 1468 getLangOpts().OpenMP 1469 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1470 : Address::invalid(); 1471 1472 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1473 1474 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1475 address = OpenMPLocalAddr; 1476 AllocaAddr = OpenMPLocalAddr; 1477 } else if (Ty->isConstantSizeType()) { 1478 // If this value is an array or struct with a statically determinable 1479 // constant initializer, there are optimizations we can do. 1480 // 1481 // TODO: We should constant-evaluate the initializer of any variable, 1482 // as long as it is initialized by a constant expression. Currently, 1483 // isConstantInitializer produces wrong answers for structs with 1484 // reference or bitfield members, and a few other cases, and checking 1485 // for POD-ness protects us from some of these. 1486 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1487 (D.isConstexpr() || 1488 ((Ty.isPODType(getContext()) || 1489 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1490 D.getInit()->isConstantInitializer(getContext(), false)))) { 1491 1492 // If the variable's a const type, and it's neither an NRVO 1493 // candidate nor a __block variable and has no mutable members, 1494 // emit it as a global instead. 1495 // Exception is if a variable is located in non-constant address space 1496 // in OpenCL. 1497 bool NeedsDtor = 1498 D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; 1499 if ((!getLangOpts().OpenCL || 1500 Ty.getAddressSpace() == LangAS::opencl_constant) && 1501 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1502 !isEscapingByRef && CGM.isTypeConstant(Ty, true, !NeedsDtor))) { 1503 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1504 1505 // Signal this condition to later callbacks. 1506 emission.Addr = Address::invalid(); 1507 assert(emission.wasEmittedAsGlobal()); 1508 return emission; 1509 } 1510 1511 // Otherwise, tell the initialization code that we're in this case. 1512 emission.IsConstantAggregate = true; 1513 } 1514 1515 // A normal fixed sized variable becomes an alloca in the entry block, 1516 // unless: 1517 // - it's an NRVO variable. 1518 // - we are compiling OpenMP and it's an OpenMP local variable. 1519 if (NRVO) { 1520 // The named return value optimization: allocate this variable in the 1521 // return slot, so that we can elide the copy when returning this 1522 // variable (C++0x [class.copy]p34). 1523 address = ReturnValue; 1524 AllocaAddr = ReturnValue; 1525 1526 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1527 const auto *RD = RecordTy->getDecl(); 1528 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1529 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1530 RD->isNonTrivialToPrimitiveDestroy()) { 1531 // Create a flag that is used to indicate when the NRVO was applied 1532 // to this variable. Set it to zero to indicate that NRVO was not 1533 // applied. 1534 llvm::Value *Zero = Builder.getFalse(); 1535 Address NRVOFlag = 1536 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo", 1537 /*ArraySize=*/nullptr, &AllocaAddr); 1538 EnsureInsertPoint(); 1539 Builder.CreateStore(Zero, NRVOFlag); 1540 1541 // Record the NRVO flag for this variable. 1542 NRVOFlags[&D] = NRVOFlag.getPointer(); 1543 emission.NRVOFlag = NRVOFlag.getPointer(); 1544 } 1545 } 1546 } else { 1547 CharUnits allocaAlignment; 1548 llvm::Type *allocaTy; 1549 if (isEscapingByRef) { 1550 auto &byrefInfo = getBlockByrefInfo(&D); 1551 allocaTy = byrefInfo.Type; 1552 allocaAlignment = byrefInfo.ByrefAlignment; 1553 } else { 1554 allocaTy = ConvertTypeForMem(Ty); 1555 allocaAlignment = alignment; 1556 } 1557 1558 // Create the alloca. Note that we set the name separately from 1559 // building the instruction so that it's there even in no-asserts 1560 // builds. 1561 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1562 /*ArraySize=*/nullptr, &AllocaAddr); 1563 1564 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1565 // the catch parameter starts in the catchpad instruction, and we can't 1566 // insert code in those basic blocks. 1567 bool IsMSCatchParam = 1568 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1569 1570 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1571 // if we don't have a valid insertion point (?). 1572 if (HaveInsertPoint() && !IsMSCatchParam) { 1573 // If there's a jump into the lifetime of this variable, its lifetime 1574 // gets broken up into several regions in IR, which requires more work 1575 // to handle correctly. For now, just omit the intrinsics; this is a 1576 // rare case, and it's better to just be conservatively correct. 1577 // PR28267. 1578 // 1579 // We have to do this in all language modes if there's a jump past the 1580 // declaration. We also have to do it in C if there's a jump to an 1581 // earlier point in the current block because non-VLA lifetimes begin as 1582 // soon as the containing block is entered, not when its variables 1583 // actually come into scope; suppressing the lifetime annotations 1584 // completely in this case is unnecessarily pessimistic, but again, this 1585 // is rare. 1586 if (!Bypasses.IsBypassed(&D) && 1587 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1588 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1589 emission.SizeForLifetimeMarkers = 1590 EmitLifetimeStart(Size, AllocaAddr.getPointer()); 1591 } 1592 } else { 1593 assert(!emission.useLifetimeMarkers()); 1594 } 1595 } 1596 } else { 1597 EnsureInsertPoint(); 1598 1599 // Delayed globalization for variable length declarations. This ensures that 1600 // the expression representing the length has been emitted and can be used 1601 // by the definition of the VLA. Since this is an escaped declaration, in 1602 // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching 1603 // deallocation call to __kmpc_free_shared() is emitted later. 1604 bool VarAllocated = false; 1605 if (getLangOpts().OpenMPIsTargetDevice) { 1606 auto &RT = CGM.getOpenMPRuntime(); 1607 if (RT.isDelayedVariableLengthDecl(*this, &D)) { 1608 // Emit call to __kmpc_alloc_shared() instead of the alloca. 1609 std::pair<llvm::Value *, llvm::Value *> AddrSizePair = 1610 RT.getKmpcAllocShared(*this, &D); 1611 1612 // Save the address of the allocation: 1613 LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(), 1614 CGM.getContext().getDeclAlign(&D), 1615 AlignmentSource::Decl); 1616 address = Base.getAddress(*this); 1617 1618 // Push a cleanup block to emit the call to __kmpc_free_shared in the 1619 // appropriate location at the end of the scope of the 1620 // __kmpc_alloc_shared functions: 1621 pushKmpcAllocFree(NormalCleanup, AddrSizePair); 1622 1623 // Mark variable as allocated: 1624 VarAllocated = true; 1625 } 1626 } 1627 1628 if (!VarAllocated) { 1629 if (!DidCallStackSave) { 1630 // Save the stack. 1631 Address Stack = 1632 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1633 1634 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1635 llvm::Value *V = Builder.CreateCall(F); 1636 Builder.CreateStore(V, Stack); 1637 1638 DidCallStackSave = true; 1639 1640 // Push a cleanup block and restore the stack there. 1641 // FIXME: in general circumstances, this should be an EH cleanup. 1642 pushStackRestore(NormalCleanup, Stack); 1643 } 1644 1645 auto VlaSize = getVLASize(Ty); 1646 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1647 1648 // Allocate memory for the array. 1649 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1650 &AllocaAddr); 1651 } 1652 1653 // If we have debug info enabled, properly describe the VLA dimensions for 1654 // this type by registering the vla size expression for each of the 1655 // dimensions. 1656 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1657 } 1658 1659 setAddrOfLocalVar(&D, address); 1660 emission.Addr = address; 1661 emission.AllocaAddr = AllocaAddr; 1662 1663 // Emit debug info for local var declaration. 1664 if (EmitDebugInfo && HaveInsertPoint()) { 1665 Address DebugAddr = address; 1666 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1667 DI->setLocation(D.getLocation()); 1668 1669 // If NRVO, use a pointer to the return address. 1670 if (UsePointerValue) { 1671 DebugAddr = ReturnValuePointer; 1672 AllocaAddr = ReturnValuePointer; 1673 } 1674 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder, 1675 UsePointerValue); 1676 } 1677 1678 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1679 EmitVarAnnotations(&D, address.getPointer()); 1680 1681 // Make sure we call @llvm.lifetime.end. 1682 if (emission.useLifetimeMarkers()) 1683 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1684 emission.getOriginalAllocatedAddress(), 1685 emission.getSizeForLifetimeMarkers()); 1686 1687 return emission; 1688 } 1689 1690 static bool isCapturedBy(const VarDecl &, const Expr *); 1691 1692 /// Determines whether the given __block variable is potentially 1693 /// captured by the given statement. 1694 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1695 if (const Expr *E = dyn_cast<Expr>(S)) 1696 return isCapturedBy(Var, E); 1697 for (const Stmt *SubStmt : S->children()) 1698 if (isCapturedBy(Var, SubStmt)) 1699 return true; 1700 return false; 1701 } 1702 1703 /// Determines whether the given __block variable is potentially 1704 /// captured by the given expression. 1705 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1706 // Skip the most common kinds of expressions that make 1707 // hierarchy-walking expensive. 1708 E = E->IgnoreParenCasts(); 1709 1710 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1711 const BlockDecl *Block = BE->getBlockDecl(); 1712 for (const auto &I : Block->captures()) { 1713 if (I.getVariable() == &Var) 1714 return true; 1715 } 1716 1717 // No need to walk into the subexpressions. 1718 return false; 1719 } 1720 1721 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1722 const CompoundStmt *CS = SE->getSubStmt(); 1723 for (const auto *BI : CS->body()) 1724 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1725 if (isCapturedBy(Var, BIE)) 1726 return true; 1727 } 1728 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1729 // special case declarations 1730 for (const auto *I : DS->decls()) { 1731 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1732 const Expr *Init = VD->getInit(); 1733 if (Init && isCapturedBy(Var, Init)) 1734 return true; 1735 } 1736 } 1737 } 1738 else 1739 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1740 // Later, provide code to poke into statements for capture analysis. 1741 return true; 1742 return false; 1743 } 1744 1745 for (const Stmt *SubStmt : E->children()) 1746 if (isCapturedBy(Var, SubStmt)) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 /// Determine whether the given initializer is trivial in the sense 1753 /// that it requires no code to be generated. 1754 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1755 if (!Init) 1756 return true; 1757 1758 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1759 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1760 if (Constructor->isTrivial() && 1761 Constructor->isDefaultConstructor() && 1762 !Construct->requiresZeroInitialization()) 1763 return true; 1764 1765 return false; 1766 } 1767 1768 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1769 const VarDecl &D, 1770 Address Loc) { 1771 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1772 CharUnits Size = getContext().getTypeSizeInChars(type); 1773 bool isVolatile = type.isVolatileQualified(); 1774 if (!Size.isZero()) { 1775 switch (trivialAutoVarInit) { 1776 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1777 llvm_unreachable("Uninitialized handled by caller"); 1778 case LangOptions::TrivialAutoVarInitKind::Zero: 1779 if (CGM.stopAutoInit()) 1780 return; 1781 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1782 break; 1783 case LangOptions::TrivialAutoVarInitKind::Pattern: 1784 if (CGM.stopAutoInit()) 1785 return; 1786 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1787 break; 1788 } 1789 return; 1790 } 1791 1792 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1793 // them, so emit a memcpy with the VLA size to initialize each element. 1794 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1795 // will catch that code, but there exists code which generates zero-sized 1796 // VLAs. Be nice and initialize whatever they requested. 1797 const auto *VlaType = getContext().getAsVariableArrayType(type); 1798 if (!VlaType) 1799 return; 1800 auto VlaSize = getVLASize(VlaType); 1801 auto SizeVal = VlaSize.NumElts; 1802 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1803 switch (trivialAutoVarInit) { 1804 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1805 llvm_unreachable("Uninitialized handled by caller"); 1806 1807 case LangOptions::TrivialAutoVarInitKind::Zero: { 1808 if (CGM.stopAutoInit()) 1809 return; 1810 if (!EltSize.isOne()) 1811 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1812 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1813 SizeVal, isVolatile); 1814 I->addAnnotationMetadata("auto-init"); 1815 break; 1816 } 1817 1818 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1819 if (CGM.stopAutoInit()) 1820 return; 1821 llvm::Type *ElTy = Loc.getElementType(); 1822 llvm::Constant *Constant = constWithPadding( 1823 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1824 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1825 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1826 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1827 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1828 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1829 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1830 "vla.iszerosized"); 1831 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1832 EmitBlock(SetupBB); 1833 if (!EltSize.isOne()) 1834 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1835 llvm::Value *BaseSizeInChars = 1836 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1837 Address Begin = Loc.withElementType(Int8Ty); 1838 llvm::Value *End = Builder.CreateInBoundsGEP( 1839 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end"); 1840 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1841 EmitBlock(LoopBB); 1842 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1843 Cur->addIncoming(Begin.getPointer(), OriginBB); 1844 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1845 auto *I = 1846 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign), 1847 createUnnamedGlobalForMemcpyFrom( 1848 CGM, D, Builder, Constant, ConstantAlign), 1849 BaseSizeInChars, isVolatile); 1850 I->addAnnotationMetadata("auto-init"); 1851 llvm::Value *Next = 1852 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1853 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1854 Builder.CreateCondBr(Done, ContBB, LoopBB); 1855 Cur->addIncoming(Next, LoopBB); 1856 EmitBlock(ContBB); 1857 } break; 1858 } 1859 } 1860 1861 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1862 assert(emission.Variable && "emission was not valid!"); 1863 1864 // If this was emitted as a global constant, we're done. 1865 if (emission.wasEmittedAsGlobal()) return; 1866 1867 const VarDecl &D = *emission.Variable; 1868 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1869 QualType type = D.getType(); 1870 1871 // If this local has an initializer, emit it now. 1872 const Expr *Init = D.getInit(); 1873 1874 // If we are at an unreachable point, we don't need to emit the initializer 1875 // unless it contains a label. 1876 if (!HaveInsertPoint()) { 1877 if (!Init || !ContainsLabel(Init)) return; 1878 EnsureInsertPoint(); 1879 } 1880 1881 // Initialize the structure of a __block variable. 1882 if (emission.IsEscapingByRef) 1883 emitByrefStructureInit(emission); 1884 1885 // Initialize the variable here if it doesn't have a initializer and it is a 1886 // C struct that is non-trivial to initialize or an array containing such a 1887 // struct. 1888 if (!Init && 1889 type.isNonTrivialToPrimitiveDefaultInitialize() == 1890 QualType::PDIK_Struct) { 1891 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1892 if (emission.IsEscapingByRef) 1893 drillIntoBlockVariable(*this, Dst, &D); 1894 defaultInitNonTrivialCStructVar(Dst); 1895 return; 1896 } 1897 1898 // Check whether this is a byref variable that's potentially 1899 // captured and moved by its own initializer. If so, we'll need to 1900 // emit the initializer first, then copy into the variable. 1901 bool capturedByInit = 1902 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1903 1904 bool locIsByrefHeader = !capturedByInit; 1905 const Address Loc = 1906 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1907 1908 // Note: constexpr already initializes everything correctly. 1909 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1910 (D.isConstexpr() 1911 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1912 : (D.getAttr<UninitializedAttr>() 1913 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1914 : getContext().getLangOpts().getTrivialAutoVarInit())); 1915 1916 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1917 if (trivialAutoVarInit == 1918 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1919 return; 1920 1921 // Only initialize a __block's storage: we always initialize the header. 1922 if (emission.IsEscapingByRef && !locIsByrefHeader) 1923 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1924 1925 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1926 }; 1927 1928 if (isTrivialInitializer(Init)) 1929 return initializeWhatIsTechnicallyUninitialized(Loc); 1930 1931 llvm::Constant *constant = nullptr; 1932 if (emission.IsConstantAggregate || 1933 D.mightBeUsableInConstantExpressions(getContext())) { 1934 assert(!capturedByInit && "constant init contains a capturing block?"); 1935 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1936 if (constant && !constant->isZeroValue() && 1937 (trivialAutoVarInit != 1938 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1939 IsPattern isPattern = 1940 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1941 ? IsPattern::Yes 1942 : IsPattern::No; 1943 // C guarantees that brace-init with fewer initializers than members in 1944 // the aggregate will initialize the rest of the aggregate as-if it were 1945 // static initialization. In turn static initialization guarantees that 1946 // padding is initialized to zero bits. We could instead pattern-init if D 1947 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1948 // behavior. 1949 constant = constWithPadding(CGM, IsPattern::No, 1950 replaceUndef(CGM, isPattern, constant)); 1951 } 1952 } 1953 1954 if (!constant) { 1955 initializeWhatIsTechnicallyUninitialized(Loc); 1956 LValue lv = MakeAddrLValue(Loc, type); 1957 lv.setNonGC(true); 1958 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1959 } 1960 1961 if (!emission.IsConstantAggregate) { 1962 // For simple scalar/complex initialization, store the value directly. 1963 LValue lv = MakeAddrLValue(Loc, type); 1964 lv.setNonGC(true); 1965 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1966 } 1967 1968 emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty), 1969 type.isVolatileQualified(), Builder, constant, 1970 /*IsAutoInit=*/false); 1971 } 1972 1973 /// Emit an expression as an initializer for an object (variable, field, etc.) 1974 /// at the given location. The expression is not necessarily the normal 1975 /// initializer for the object, and the address is not necessarily 1976 /// its normal location. 1977 /// 1978 /// \param init the initializing expression 1979 /// \param D the object to act as if we're initializing 1980 /// \param lvalue the lvalue to initialize 1981 /// \param capturedByInit true if \p D is a __block variable 1982 /// whose address is potentially changed by the initializer 1983 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1984 LValue lvalue, bool capturedByInit) { 1985 QualType type = D->getType(); 1986 1987 if (type->isReferenceType()) { 1988 RValue rvalue = EmitReferenceBindingToExpr(init); 1989 if (capturedByInit) 1990 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1991 EmitStoreThroughLValue(rvalue, lvalue, true); 1992 return; 1993 } 1994 switch (getEvaluationKind(type)) { 1995 case TEK_Scalar: 1996 EmitScalarInit(init, D, lvalue, capturedByInit); 1997 return; 1998 case TEK_Complex: { 1999 ComplexPairTy complex = EmitComplexExpr(init); 2000 if (capturedByInit) 2001 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 2002 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 2003 return; 2004 } 2005 case TEK_Aggregate: 2006 if (type->isAtomicType()) { 2007 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 2008 } else { 2009 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 2010 if (isa<VarDecl>(D)) 2011 Overlap = AggValueSlot::DoesNotOverlap; 2012 else if (auto *FD = dyn_cast<FieldDecl>(D)) 2013 Overlap = getOverlapForFieldInit(FD); 2014 // TODO: how can we delay here if D is captured by its initializer? 2015 EmitAggExpr(init, AggValueSlot::forLValue( 2016 lvalue, *this, AggValueSlot::IsDestructed, 2017 AggValueSlot::DoesNotNeedGCBarriers, 2018 AggValueSlot::IsNotAliased, Overlap)); 2019 } 2020 return; 2021 } 2022 llvm_unreachable("bad evaluation kind"); 2023 } 2024 2025 /// Enter a destroy cleanup for the given local variable. 2026 void CodeGenFunction::emitAutoVarTypeCleanup( 2027 const CodeGenFunction::AutoVarEmission &emission, 2028 QualType::DestructionKind dtorKind) { 2029 assert(dtorKind != QualType::DK_none); 2030 2031 // Note that for __block variables, we want to destroy the 2032 // original stack object, not the possibly forwarded object. 2033 Address addr = emission.getObjectAddress(*this); 2034 2035 const VarDecl *var = emission.Variable; 2036 QualType type = var->getType(); 2037 2038 CleanupKind cleanupKind = NormalAndEHCleanup; 2039 CodeGenFunction::Destroyer *destroyer = nullptr; 2040 2041 switch (dtorKind) { 2042 case QualType::DK_none: 2043 llvm_unreachable("no cleanup for trivially-destructible variable"); 2044 2045 case QualType::DK_cxx_destructor: 2046 // If there's an NRVO flag on the emission, we need a different 2047 // cleanup. 2048 if (emission.NRVOFlag) { 2049 assert(!type->isArrayType()); 2050 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 2051 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 2052 emission.NRVOFlag); 2053 return; 2054 } 2055 break; 2056 2057 case QualType::DK_objc_strong_lifetime: 2058 // Suppress cleanups for pseudo-strong variables. 2059 if (var->isARCPseudoStrong()) return; 2060 2061 // Otherwise, consider whether to use an EH cleanup or not. 2062 cleanupKind = getARCCleanupKind(); 2063 2064 // Use the imprecise destroyer by default. 2065 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2066 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2067 break; 2068 2069 case QualType::DK_objc_weak_lifetime: 2070 break; 2071 2072 case QualType::DK_nontrivial_c_struct: 2073 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2074 if (emission.NRVOFlag) { 2075 assert(!type->isArrayType()); 2076 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2077 emission.NRVOFlag, type); 2078 return; 2079 } 2080 break; 2081 } 2082 2083 // If we haven't chosen a more specific destroyer, use the default. 2084 if (!destroyer) destroyer = getDestroyer(dtorKind); 2085 2086 // Use an EH cleanup in array destructors iff the destructor itself 2087 // is being pushed as an EH cleanup. 2088 bool useEHCleanup = (cleanupKind & EHCleanup); 2089 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2090 useEHCleanup); 2091 } 2092 2093 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2094 assert(emission.Variable && "emission was not valid!"); 2095 2096 // If this was emitted as a global constant, we're done. 2097 if (emission.wasEmittedAsGlobal()) return; 2098 2099 // If we don't have an insertion point, we're done. Sema prevents 2100 // us from jumping into any of these scopes anyway. 2101 if (!HaveInsertPoint()) return; 2102 2103 const VarDecl &D = *emission.Variable; 2104 2105 // Check the type for a cleanup. 2106 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2107 emitAutoVarTypeCleanup(emission, dtorKind); 2108 2109 // In GC mode, honor objc_precise_lifetime. 2110 if (getLangOpts().getGC() != LangOptions::NonGC && 2111 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2112 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2113 } 2114 2115 // Handle the cleanup attribute. 2116 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2117 const FunctionDecl *FD = CA->getFunctionDecl(); 2118 2119 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2120 assert(F && "Could not find function!"); 2121 2122 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2123 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2124 } 2125 2126 // If this is a block variable, call _Block_object_destroy 2127 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2128 // mode. 2129 if (emission.IsEscapingByRef && 2130 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2131 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2132 if (emission.Variable->getType().isObjCGCWeak()) 2133 Flags |= BLOCK_FIELD_IS_WEAK; 2134 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2135 /*LoadBlockVarAddr*/ false, 2136 cxxDestructorCanThrow(emission.Variable->getType())); 2137 } 2138 } 2139 2140 CodeGenFunction::Destroyer * 2141 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2142 switch (kind) { 2143 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2144 case QualType::DK_cxx_destructor: 2145 return destroyCXXObject; 2146 case QualType::DK_objc_strong_lifetime: 2147 return destroyARCStrongPrecise; 2148 case QualType::DK_objc_weak_lifetime: 2149 return destroyARCWeak; 2150 case QualType::DK_nontrivial_c_struct: 2151 return destroyNonTrivialCStruct; 2152 } 2153 llvm_unreachable("Unknown DestructionKind"); 2154 } 2155 2156 /// pushEHDestroy - Push the standard destructor for the given type as 2157 /// an EH-only cleanup. 2158 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2159 Address addr, QualType type) { 2160 assert(dtorKind && "cannot push destructor for trivial type"); 2161 assert(needsEHCleanup(dtorKind)); 2162 2163 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2164 } 2165 2166 /// pushDestroy - Push the standard destructor for the given type as 2167 /// at least a normal cleanup. 2168 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2169 Address addr, QualType type) { 2170 assert(dtorKind && "cannot push destructor for trivial type"); 2171 2172 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2173 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2174 cleanupKind & EHCleanup); 2175 } 2176 2177 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2178 QualType type, Destroyer *destroyer, 2179 bool useEHCleanupForArray) { 2180 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2181 destroyer, useEHCleanupForArray); 2182 } 2183 2184 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2185 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2186 } 2187 2188 void CodeGenFunction::pushKmpcAllocFree( 2189 CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) { 2190 EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair); 2191 } 2192 2193 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2194 Address addr, QualType type, 2195 Destroyer *destroyer, 2196 bool useEHCleanupForArray) { 2197 // If we're not in a conditional branch, we don't need to bother generating a 2198 // conditional cleanup. 2199 if (!isInConditionalBranch()) { 2200 // Push an EH-only cleanup for the object now. 2201 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2202 // around in case a temporary's destructor throws an exception. 2203 if (cleanupKind & EHCleanup) 2204 EHStack.pushCleanup<DestroyObject>( 2205 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2206 destroyer, useEHCleanupForArray); 2207 2208 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2209 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray); 2210 } 2211 2212 // Otherwise, we should only destroy the object if it's been initialized. 2213 // Re-use the active flag and saved address across both the EH and end of 2214 // scope cleanups. 2215 2216 using SavedType = typename DominatingValue<Address>::saved_type; 2217 using ConditionalCleanupType = 2218 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2219 Destroyer *, bool>; 2220 2221 Address ActiveFlag = createCleanupActiveFlag(); 2222 SavedType SavedAddr = saveValueInCond(addr); 2223 2224 if (cleanupKind & EHCleanup) { 2225 EHStack.pushCleanup<ConditionalCleanupType>( 2226 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type, 2227 destroyer, useEHCleanupForArray); 2228 initFullExprCleanupWithFlag(ActiveFlag); 2229 } 2230 2231 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2232 cleanupKind, ActiveFlag, SavedAddr, type, destroyer, 2233 useEHCleanupForArray); 2234 } 2235 2236 /// emitDestroy - Immediately perform the destruction of the given 2237 /// object. 2238 /// 2239 /// \param addr - the address of the object; a type* 2240 /// \param type - the type of the object; if an array type, all 2241 /// objects are destroyed in reverse order 2242 /// \param destroyer - the function to call to destroy individual 2243 /// elements 2244 /// \param useEHCleanupForArray - whether an EH cleanup should be 2245 /// used when destroying array elements, in case one of the 2246 /// destructions throws an exception 2247 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2248 Destroyer *destroyer, 2249 bool useEHCleanupForArray) { 2250 const ArrayType *arrayType = getContext().getAsArrayType(type); 2251 if (!arrayType) 2252 return destroyer(*this, addr, type); 2253 2254 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2255 2256 CharUnits elementAlign = 2257 addr.getAlignment() 2258 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2259 2260 // Normally we have to check whether the array is zero-length. 2261 bool checkZeroLength = true; 2262 2263 // But if the array length is constant, we can suppress that. 2264 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2265 // ...and if it's constant zero, we can just skip the entire thing. 2266 if (constLength->isZero()) return; 2267 checkZeroLength = false; 2268 } 2269 2270 llvm::Value *begin = addr.getPointer(); 2271 llvm::Value *end = 2272 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2273 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2274 checkZeroLength, useEHCleanupForArray); 2275 } 2276 2277 /// emitArrayDestroy - Destroys all the elements of the given array, 2278 /// beginning from last to first. The array cannot be zero-length. 2279 /// 2280 /// \param begin - a type* denoting the first element of the array 2281 /// \param end - a type* denoting one past the end of the array 2282 /// \param elementType - the element type of the array 2283 /// \param destroyer - the function to call to destroy elements 2284 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2285 /// the remaining elements in case the destruction of a single 2286 /// element throws 2287 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2288 llvm::Value *end, 2289 QualType elementType, 2290 CharUnits elementAlign, 2291 Destroyer *destroyer, 2292 bool checkZeroLength, 2293 bool useEHCleanup) { 2294 assert(!elementType->isArrayType()); 2295 2296 // The basic structure here is a do-while loop, because we don't 2297 // need to check for the zero-element case. 2298 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2299 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2300 2301 if (checkZeroLength) { 2302 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2303 "arraydestroy.isempty"); 2304 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2305 } 2306 2307 // Enter the loop body, making that address the current address. 2308 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2309 EmitBlock(bodyBB); 2310 llvm::PHINode *elementPast = 2311 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2312 elementPast->addIncoming(end, entryBB); 2313 2314 // Shift the address back by one element. 2315 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2316 llvm::Type *llvmElementType = ConvertTypeForMem(elementType); 2317 llvm::Value *element = Builder.CreateInBoundsGEP( 2318 llvmElementType, elementPast, negativeOne, "arraydestroy.element"); 2319 2320 if (useEHCleanup) 2321 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2322 destroyer); 2323 2324 // Perform the actual destruction there. 2325 destroyer(*this, Address(element, llvmElementType, elementAlign), 2326 elementType); 2327 2328 if (useEHCleanup) 2329 PopCleanupBlock(); 2330 2331 // Check whether we've reached the end. 2332 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2333 Builder.CreateCondBr(done, doneBB, bodyBB); 2334 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2335 2336 // Done. 2337 EmitBlock(doneBB); 2338 } 2339 2340 /// Perform partial array destruction as if in an EH cleanup. Unlike 2341 /// emitArrayDestroy, the element type here may still be an array type. 2342 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2343 llvm::Value *begin, llvm::Value *end, 2344 QualType type, CharUnits elementAlign, 2345 CodeGenFunction::Destroyer *destroyer) { 2346 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2347 2348 // If the element type is itself an array, drill down. 2349 unsigned arrayDepth = 0; 2350 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2351 // VLAs don't require a GEP index to walk into. 2352 if (!isa<VariableArrayType>(arrayType)) 2353 arrayDepth++; 2354 type = arrayType->getElementType(); 2355 } 2356 2357 if (arrayDepth) { 2358 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2359 2360 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2361 begin = CGF.Builder.CreateInBoundsGEP( 2362 elemTy, begin, gepIndices, "pad.arraybegin"); 2363 end = CGF.Builder.CreateInBoundsGEP( 2364 elemTy, end, gepIndices, "pad.arrayend"); 2365 } 2366 2367 // Destroy the array. We don't ever need an EH cleanup because we 2368 // assume that we're in an EH cleanup ourselves, so a throwing 2369 // destructor causes an immediate terminate. 2370 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2371 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2372 } 2373 2374 namespace { 2375 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2376 /// array destroy where the end pointer is regularly determined and 2377 /// does not need to be loaded from a local. 2378 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2379 llvm::Value *ArrayBegin; 2380 llvm::Value *ArrayEnd; 2381 QualType ElementType; 2382 CodeGenFunction::Destroyer *Destroyer; 2383 CharUnits ElementAlign; 2384 public: 2385 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2386 QualType elementType, CharUnits elementAlign, 2387 CodeGenFunction::Destroyer *destroyer) 2388 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2389 ElementType(elementType), Destroyer(destroyer), 2390 ElementAlign(elementAlign) {} 2391 2392 void Emit(CodeGenFunction &CGF, Flags flags) override { 2393 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2394 ElementType, ElementAlign, Destroyer); 2395 } 2396 }; 2397 2398 /// IrregularPartialArrayDestroy - a cleanup which performs a 2399 /// partial array destroy where the end pointer is irregularly 2400 /// determined and must be loaded from a local. 2401 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2402 llvm::Value *ArrayBegin; 2403 Address ArrayEndPointer; 2404 QualType ElementType; 2405 CodeGenFunction::Destroyer *Destroyer; 2406 CharUnits ElementAlign; 2407 public: 2408 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2409 Address arrayEndPointer, 2410 QualType elementType, 2411 CharUnits elementAlign, 2412 CodeGenFunction::Destroyer *destroyer) 2413 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2414 ElementType(elementType), Destroyer(destroyer), 2415 ElementAlign(elementAlign) {} 2416 2417 void Emit(CodeGenFunction &CGF, Flags flags) override { 2418 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2419 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2420 ElementType, ElementAlign, Destroyer); 2421 } 2422 }; 2423 } // end anonymous namespace 2424 2425 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2426 /// already-constructed elements of the given array. The cleanup 2427 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2428 /// 2429 /// \param elementType - the immediate element type of the array; 2430 /// possibly still an array type 2431 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2432 Address arrayEndPointer, 2433 QualType elementType, 2434 CharUnits elementAlign, 2435 Destroyer *destroyer) { 2436 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2437 arrayBegin, arrayEndPointer, 2438 elementType, elementAlign, 2439 destroyer); 2440 } 2441 2442 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2443 /// already-constructed elements of the given array. The cleanup 2444 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2445 /// 2446 /// \param elementType - the immediate element type of the array; 2447 /// possibly still an array type 2448 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2449 llvm::Value *arrayEnd, 2450 QualType elementType, 2451 CharUnits elementAlign, 2452 Destroyer *destroyer) { 2453 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2454 arrayBegin, arrayEnd, 2455 elementType, elementAlign, 2456 destroyer); 2457 } 2458 2459 /// Lazily declare the @llvm.lifetime.start intrinsic. 2460 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2461 if (LifetimeStartFn) 2462 return LifetimeStartFn; 2463 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2464 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2465 return LifetimeStartFn; 2466 } 2467 2468 /// Lazily declare the @llvm.lifetime.end intrinsic. 2469 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2470 if (LifetimeEndFn) 2471 return LifetimeEndFn; 2472 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2473 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2474 return LifetimeEndFn; 2475 } 2476 2477 namespace { 2478 /// A cleanup to perform a release of an object at the end of a 2479 /// function. This is used to balance out the incoming +1 of a 2480 /// ns_consumed argument when we can't reasonably do that just by 2481 /// not doing the initial retain for a __block argument. 2482 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2483 ConsumeARCParameter(llvm::Value *param, 2484 ARCPreciseLifetime_t precise) 2485 : Param(param), Precise(precise) {} 2486 2487 llvm::Value *Param; 2488 ARCPreciseLifetime_t Precise; 2489 2490 void Emit(CodeGenFunction &CGF, Flags flags) override { 2491 CGF.EmitARCRelease(Param, Precise); 2492 } 2493 }; 2494 } // end anonymous namespace 2495 2496 /// Emit an alloca (or GlobalValue depending on target) 2497 /// for the specified parameter and set up LocalDeclMap. 2498 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2499 unsigned ArgNo) { 2500 bool NoDebugInfo = false; 2501 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2502 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2503 "Invalid argument to EmitParmDecl"); 2504 2505 // Set the name of the parameter's initial value to make IR easier to 2506 // read. Don't modify the names of globals. 2507 if (!isa<llvm::GlobalValue>(Arg.getAnyValue())) 2508 Arg.getAnyValue()->setName(D.getName()); 2509 2510 QualType Ty = D.getType(); 2511 2512 // Use better IR generation for certain implicit parameters. 2513 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2514 // The only implicit argument a block has is its literal. 2515 // This may be passed as an inalloca'ed value on Windows x86. 2516 if (BlockInfo) { 2517 llvm::Value *V = Arg.isIndirect() 2518 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2519 : Arg.getDirectValue(); 2520 setBlockContextParameter(IPD, ArgNo, V); 2521 return; 2522 } 2523 // Suppressing debug info for ThreadPrivateVar parameters, else it hides 2524 // debug info of TLS variables. 2525 NoDebugInfo = 2526 (IPD->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar); 2527 } 2528 2529 Address DeclPtr = Address::invalid(); 2530 Address AllocaPtr = Address::invalid(); 2531 bool DoStore = false; 2532 bool IsScalar = hasScalarEvaluationKind(Ty); 2533 bool UseIndirectDebugAddress = false; 2534 2535 // If we already have a pointer to the argument, reuse the input pointer. 2536 if (Arg.isIndirect()) { 2537 DeclPtr = Arg.getIndirectAddress(); 2538 DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty)); 2539 // Indirect argument is in alloca address space, which may be different 2540 // from the default address space. 2541 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2542 auto *V = DeclPtr.getPointer(); 2543 AllocaPtr = DeclPtr; 2544 2545 // For truly ABI indirect arguments -- those that are not `byval` -- store 2546 // the address of the argument on the stack to preserve debug information. 2547 ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info; 2548 if (ArgInfo.isIndirect()) 2549 UseIndirectDebugAddress = !ArgInfo.getIndirectByVal(); 2550 if (UseIndirectDebugAddress) { 2551 auto PtrTy = getContext().getPointerType(Ty); 2552 AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy), 2553 D.getName() + ".indirect_addr"); 2554 EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy); 2555 } 2556 2557 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2558 auto DestLangAS = 2559 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2560 if (SrcLangAS != DestLangAS) { 2561 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2562 CGM.getDataLayout().getAllocaAddrSpace()); 2563 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2564 auto *T = llvm::PointerType::get(getLLVMContext(), DestAS); 2565 DeclPtr = 2566 DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast( 2567 *this, V, SrcLangAS, DestLangAS, T, true), 2568 DeclPtr.isKnownNonNull()); 2569 } 2570 2571 // Push a destructor cleanup for this parameter if the ABI requires it. 2572 // Don't push a cleanup in a thunk for a method that will also emit a 2573 // cleanup. 2574 if (Ty->isRecordType() && !CurFuncIsThunk && 2575 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2576 if (QualType::DestructionKind DtorKind = 2577 D.needsDestruction(getContext())) { 2578 assert((DtorKind == QualType::DK_cxx_destructor || 2579 DtorKind == QualType::DK_nontrivial_c_struct) && 2580 "unexpected destructor type"); 2581 pushDestroy(DtorKind, DeclPtr, Ty); 2582 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2583 EHStack.stable_begin(); 2584 } 2585 } 2586 } else { 2587 // Check if the parameter address is controlled by OpenMP runtime. 2588 Address OpenMPLocalAddr = 2589 getLangOpts().OpenMP 2590 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2591 : Address::invalid(); 2592 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2593 DeclPtr = OpenMPLocalAddr; 2594 AllocaPtr = DeclPtr; 2595 } else { 2596 // Otherwise, create a temporary to hold the value. 2597 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2598 D.getName() + ".addr", &AllocaPtr); 2599 } 2600 DoStore = true; 2601 } 2602 2603 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2604 2605 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2606 if (IsScalar) { 2607 Qualifiers qs = Ty.getQualifiers(); 2608 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2609 // We honor __attribute__((ns_consumed)) for types with lifetime. 2610 // For __strong, it's handled by just skipping the initial retain; 2611 // otherwise we have to balance out the initial +1 with an extra 2612 // cleanup to do the release at the end of the function. 2613 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2614 2615 // If a parameter is pseudo-strong then we can omit the implicit retain. 2616 if (D.isARCPseudoStrong()) { 2617 assert(lt == Qualifiers::OCL_Strong && 2618 "pseudo-strong variable isn't strong?"); 2619 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2620 lt = Qualifiers::OCL_ExplicitNone; 2621 } 2622 2623 // Load objects passed indirectly. 2624 if (Arg.isIndirect() && !ArgVal) 2625 ArgVal = Builder.CreateLoad(DeclPtr); 2626 2627 if (lt == Qualifiers::OCL_Strong) { 2628 if (!isConsumed) { 2629 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2630 // use objc_storeStrong(&dest, value) for retaining the 2631 // object. But first, store a null into 'dest' because 2632 // objc_storeStrong attempts to release its old value. 2633 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2634 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2635 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2636 DoStore = false; 2637 } 2638 else 2639 // Don't use objc_retainBlock for block pointers, because we 2640 // don't want to Block_copy something just because we got it 2641 // as a parameter. 2642 ArgVal = EmitARCRetainNonBlock(ArgVal); 2643 } 2644 } else { 2645 // Push the cleanup for a consumed parameter. 2646 if (isConsumed) { 2647 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2648 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2649 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2650 precise); 2651 } 2652 2653 if (lt == Qualifiers::OCL_Weak) { 2654 EmitARCInitWeak(DeclPtr, ArgVal); 2655 DoStore = false; // The weak init is a store, no need to do two. 2656 } 2657 } 2658 2659 // Enter the cleanup scope. 2660 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2661 } 2662 } 2663 2664 // Store the initial value into the alloca. 2665 if (DoStore) 2666 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2667 2668 setAddrOfLocalVar(&D, DeclPtr); 2669 2670 // Emit debug info for param declarations in non-thunk functions. 2671 if (CGDebugInfo *DI = getDebugInfo()) { 2672 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk && 2673 !NoDebugInfo) { 2674 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2675 &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress); 2676 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2677 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2678 } 2679 } 2680 2681 if (D.hasAttr<AnnotateAttr>()) 2682 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2683 2684 // We can only check return value nullability if all arguments to the 2685 // function satisfy their nullability preconditions. This makes it necessary 2686 // to emit null checks for args in the function body itself. 2687 if (requiresReturnValueNullabilityCheck()) { 2688 auto Nullability = Ty->getNullability(); 2689 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2690 SanitizerScope SanScope(this); 2691 RetValNullabilityPrecondition = 2692 Builder.CreateAnd(RetValNullabilityPrecondition, 2693 Builder.CreateIsNotNull(Arg.getAnyValue())); 2694 } 2695 } 2696 } 2697 2698 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2699 CodeGenFunction *CGF) { 2700 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2701 return; 2702 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2703 } 2704 2705 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2706 CodeGenFunction *CGF) { 2707 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2708 (!LangOpts.EmitAllDecls && !D->isUsed())) 2709 return; 2710 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2711 } 2712 2713 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2714 getOpenMPRuntime().processRequiresDirective(D); 2715 } 2716 2717 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2718 for (const Expr *E : D->varlists()) { 2719 const auto *DE = cast<DeclRefExpr>(E); 2720 const auto *VD = cast<VarDecl>(DE->getDecl()); 2721 2722 // Skip all but globals. 2723 if (!VD->hasGlobalStorage()) 2724 continue; 2725 2726 // Check if the global has been materialized yet or not. If not, we are done 2727 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2728 // we already emitted the global we might have done so before the 2729 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2730 // (potentially). While not pretty, common practise is to remove the old IR 2731 // global and generate a new one, so we do that here too. Uses are replaced 2732 // properly. 2733 StringRef MangledName = getMangledName(VD); 2734 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2735 if (!Entry) 2736 continue; 2737 2738 // We can also keep the existing global if the address space is what we 2739 // expect it to be, if not, it is replaced. 2740 QualType ASTTy = VD->getType(); 2741 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2742 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2743 if (Entry->getType()->getAddressSpace() == TargetAS) 2744 continue; 2745 2746 // Make a new global with the correct type / address space. 2747 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2748 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2749 2750 // Replace all uses of the old global with a cast. Since we mutate the type 2751 // in place we neeed an intermediate that takes the spot of the old entry 2752 // until we can create the cast. 2753 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2754 getModule(), Entry->getValueType(), false, 2755 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2756 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2757 Entry->replaceAllUsesWith(DummyGV); 2758 2759 Entry->mutateType(PTy); 2760 llvm::Constant *NewPtrForOldDecl = 2761 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2762 Entry, DummyGV->getType()); 2763 2764 // Now we have a casted version of the changed global, the dummy can be 2765 // replaced and deleted. 2766 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2767 DummyGV->eraseFromParent(); 2768 } 2769 } 2770 2771 std::optional<CharUnits> 2772 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) { 2773 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) { 2774 if (Expr *Alignment = AA->getAlignment()) { 2775 unsigned UserAlign = 2776 Alignment->EvaluateKnownConstInt(getContext()).getExtValue(); 2777 CharUnits NaturalAlign = 2778 getNaturalTypeAlignment(VD->getType().getNonReferenceType()); 2779 2780 // OpenMP5.1 pg 185 lines 7-10 2781 // Each item in the align modifier list must be aligned to the maximum 2782 // of the specified alignment and the type's natural alignment. 2783 return CharUnits::fromQuantity( 2784 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity())); 2785 } 2786 } 2787 return std::nullopt; 2788 } 2789