1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 case Decl::UnresolvedUsingIfExists: 103 llvm_unreachable("Declaration should not be in declstmts!"); 104 case Decl::Record: // struct/union/class X; 105 case Decl::CXXRecord: // struct/union/class X; [C++] 106 if (CGDebugInfo *DI = getDebugInfo()) 107 if (cast<RecordDecl>(D).getDefinition()) 108 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 109 return; 110 case Decl::Enum: // enum X; 111 if (CGDebugInfo *DI = getDebugInfo()) 112 if (cast<EnumDecl>(D).getDefinition()) 113 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 114 return; 115 case Decl::Function: // void X(); 116 case Decl::EnumConstant: // enum ? { X = ? } 117 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 118 case Decl::Label: // __label__ x; 119 case Decl::Import: 120 case Decl::MSGuid: // __declspec(uuid("...")) 121 case Decl::TemplateParamObject: 122 case Decl::OMPThreadPrivate: 123 case Decl::OMPAllocate: 124 case Decl::OMPCapturedExpr: 125 case Decl::OMPRequires: 126 case Decl::Empty: 127 case Decl::Concept: 128 case Decl::LifetimeExtendedTemporary: 129 case Decl::RequiresExprBody: 130 // None of these decls require codegen support. 131 return; 132 133 case Decl::NamespaceAlias: 134 if (CGDebugInfo *DI = getDebugInfo()) 135 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 136 return; 137 case Decl::Using: // using X; [C++] 138 if (CGDebugInfo *DI = getDebugInfo()) 139 DI->EmitUsingDecl(cast<UsingDecl>(D)); 140 return; 141 case Decl::UsingEnum: // using enum X; [C++] 142 if (CGDebugInfo *DI = getDebugInfo()) 143 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D)); 144 return; 145 case Decl::UsingPack: 146 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 147 EmitDecl(*Using); 148 return; 149 case Decl::UsingDirective: // using namespace X; [C++] 150 if (CGDebugInfo *DI = getDebugInfo()) 151 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 152 return; 153 case Decl::Var: 154 case Decl::Decomposition: { 155 const VarDecl &VD = cast<VarDecl>(D); 156 assert(VD.isLocalVarDecl() && 157 "Should not see file-scope variables inside a function!"); 158 EmitVarDecl(VD); 159 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 160 for (auto *B : DD->bindings()) 161 if (auto *HD = B->getHoldingVar()) 162 EmitVarDecl(*HD); 163 return; 164 } 165 166 case Decl::OMPDeclareReduction: 167 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 168 169 case Decl::OMPDeclareMapper: 170 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 171 172 case Decl::Typedef: // typedef int X; 173 case Decl::TypeAlias: { // using X = int; [C++0x] 174 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 175 if (CGDebugInfo *DI = getDebugInfo()) 176 DI->EmitAndRetainType(Ty); 177 if (Ty->isVariablyModifiedType()) 178 EmitVariablyModifiedType(Ty); 179 return; 180 } 181 } 182 } 183 184 /// EmitVarDecl - This method handles emission of any variable declaration 185 /// inside a function, including static vars etc. 186 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 187 if (D.hasExternalStorage()) 188 // Don't emit it now, allow it to be emitted lazily on its first use. 189 return; 190 191 // Some function-scope variable does not have static storage but still 192 // needs to be emitted like a static variable, e.g. a function-scope 193 // variable in constant address space in OpenCL. 194 if (D.getStorageDuration() != SD_Automatic) { 195 // Static sampler variables translated to function calls. 196 if (D.getType()->isSamplerT()) 197 return; 198 199 llvm::GlobalValue::LinkageTypes Linkage = 200 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 201 202 // FIXME: We need to force the emission/use of a guard variable for 203 // some variables even if we can constant-evaluate them because 204 // we can't guarantee every translation unit will constant-evaluate them. 205 206 return EmitStaticVarDecl(D, Linkage); 207 } 208 209 if (D.getType().getAddressSpace() == LangAS::opencl_local) 210 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 211 212 assert(D.hasLocalStorage()); 213 return EmitAutoVarDecl(D); 214 } 215 216 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 217 if (CGM.getLangOpts().CPlusPlus) 218 return CGM.getMangledName(&D).str(); 219 220 // If this isn't C++, we don't need a mangled name, just a pretty one. 221 assert(!D.isExternallyVisible() && "name shouldn't matter"); 222 std::string ContextName; 223 const DeclContext *DC = D.getDeclContext(); 224 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 225 DC = cast<DeclContext>(CD->getNonClosureContext()); 226 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 227 ContextName = std::string(CGM.getMangledName(FD)); 228 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 229 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 230 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 231 ContextName = OMD->getSelector().getAsString(); 232 else 233 llvm_unreachable("Unknown context for static var decl"); 234 235 ContextName += "." + D.getNameAsString(); 236 return ContextName; 237 } 238 239 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 240 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 241 // In general, we don't always emit static var decls once before we reference 242 // them. It is possible to reference them before emitting the function that 243 // contains them, and it is possible to emit the containing function multiple 244 // times. 245 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 246 return ExistingGV; 247 248 QualType Ty = D.getType(); 249 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 250 251 // Use the label if the variable is renamed with the asm-label extension. 252 std::string Name; 253 if (D.hasAttr<AsmLabelAttr>()) 254 Name = std::string(getMangledName(&D)); 255 else 256 Name = getStaticDeclName(*this, D); 257 258 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 259 LangAS AS = GetGlobalVarAddressSpace(&D); 260 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 261 262 // OpenCL variables in local address space and CUDA shared 263 // variables cannot have an initializer. 264 llvm::Constant *Init = nullptr; 265 if (Ty.getAddressSpace() == LangAS::opencl_local || 266 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 267 Init = llvm::UndefValue::get(LTy); 268 else 269 Init = EmitNullConstant(Ty); 270 271 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 272 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 273 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 274 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 275 276 if (supportsCOMDAT() && GV->isWeakForLinker()) 277 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 278 279 if (D.getTLSKind()) 280 setTLSMode(GV, D); 281 282 setGVProperties(GV, &D); 283 284 // Make sure the result is of the correct type. 285 LangAS ExpectedAS = Ty.getAddressSpace(); 286 llvm::Constant *Addr = GV; 287 if (AS != ExpectedAS) { 288 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 289 *this, GV, AS, ExpectedAS, 290 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 291 } 292 293 setStaticLocalDeclAddress(&D, Addr); 294 295 // Ensure that the static local gets initialized by making sure the parent 296 // function gets emitted eventually. 297 const Decl *DC = cast<Decl>(D.getDeclContext()); 298 299 // We can't name blocks or captured statements directly, so try to emit their 300 // parents. 301 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 302 DC = DC->getNonClosureContext(); 303 // FIXME: Ensure that global blocks get emitted. 304 if (!DC) 305 return Addr; 306 } 307 308 GlobalDecl GD; 309 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 310 GD = GlobalDecl(CD, Ctor_Base); 311 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 312 GD = GlobalDecl(DD, Dtor_Base); 313 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 314 GD = GlobalDecl(FD); 315 else { 316 // Don't do anything for Obj-C method decls or global closures. We should 317 // never defer them. 318 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 319 } 320 if (GD.getDecl()) { 321 // Disable emission of the parent function for the OpenMP device codegen. 322 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 323 (void)GetAddrOfGlobal(GD); 324 } 325 326 return Addr; 327 } 328 329 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 330 /// global variable that has already been created for it. If the initializer 331 /// has a different type than GV does, this may free GV and return a different 332 /// one. Otherwise it just returns GV. 333 llvm::GlobalVariable * 334 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 335 llvm::GlobalVariable *GV) { 336 ConstantEmitter emitter(*this); 337 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 338 339 // If constant emission failed, then this should be a C++ static 340 // initializer. 341 if (!Init) { 342 if (!getLangOpts().CPlusPlus) 343 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 344 else if (HaveInsertPoint()) { 345 // Since we have a static initializer, this global variable can't 346 // be constant. 347 GV->setConstant(false); 348 349 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 350 } 351 return GV; 352 } 353 354 // The initializer may differ in type from the global. Rewrite 355 // the global to match the initializer. (We have to do this 356 // because some types, like unions, can't be completely represented 357 // in the LLVM type system.) 358 if (GV->getValueType() != Init->getType()) { 359 llvm::GlobalVariable *OldGV = GV; 360 361 GV = new llvm::GlobalVariable( 362 CGM.getModule(), Init->getType(), OldGV->isConstant(), 363 OldGV->getLinkage(), Init, "", 364 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), 365 OldGV->getType()->getPointerAddressSpace()); 366 GV->setVisibility(OldGV->getVisibility()); 367 GV->setDSOLocal(OldGV->isDSOLocal()); 368 GV->setComdat(OldGV->getComdat()); 369 370 // Steal the name of the old global 371 GV->takeName(OldGV); 372 373 // Replace all uses of the old global with the new global 374 llvm::Constant *NewPtrForOldDecl = 375 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 376 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 377 378 // Erase the old global, since it is no longer used. 379 OldGV->eraseFromParent(); 380 } 381 382 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 383 GV->setInitializer(Init); 384 385 emitter.finalize(GV); 386 387 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 388 HaveInsertPoint()) { 389 // We have a constant initializer, but a nontrivial destructor. We still 390 // need to perform a guarded "initialization" in order to register the 391 // destructor. 392 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 393 } 394 395 return GV; 396 } 397 398 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 399 llvm::GlobalValue::LinkageTypes Linkage) { 400 // Check to see if we already have a global variable for this 401 // declaration. This can happen when double-emitting function 402 // bodies, e.g. with complete and base constructors. 403 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 404 CharUnits alignment = getContext().getDeclAlign(&D); 405 406 // Store into LocalDeclMap before generating initializer to handle 407 // circular references. 408 setAddrOfLocalVar(&D, Address(addr, alignment)); 409 410 // We can't have a VLA here, but we can have a pointer to a VLA, 411 // even though that doesn't really make any sense. 412 // Make sure to evaluate VLA bounds now so that we have them for later. 413 if (D.getType()->isVariablyModifiedType()) 414 EmitVariablyModifiedType(D.getType()); 415 416 // Save the type in case adding the initializer forces a type change. 417 llvm::Type *expectedType = addr->getType(); 418 419 llvm::GlobalVariable *var = 420 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 421 422 // CUDA's local and local static __shared__ variables should not 423 // have any non-empty initializers. This is ensured by Sema. 424 // Whatever initializer such variable may have when it gets here is 425 // a no-op and should not be emitted. 426 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 427 D.hasAttr<CUDASharedAttr>(); 428 // If this value has an initializer, emit it. 429 if (D.getInit() && !isCudaSharedVar) 430 var = AddInitializerToStaticVarDecl(D, var); 431 432 var->setAlignment(alignment.getAsAlign()); 433 434 if (D.hasAttr<AnnotateAttr>()) 435 CGM.AddGlobalAnnotations(&D, var); 436 437 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 438 var->addAttribute("bss-section", SA->getName()); 439 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 440 var->addAttribute("data-section", SA->getName()); 441 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 442 var->addAttribute("rodata-section", SA->getName()); 443 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 444 var->addAttribute("relro-section", SA->getName()); 445 446 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 447 var->setSection(SA->getName()); 448 449 if (D.hasAttr<RetainAttr>()) 450 CGM.addUsedGlobal(var); 451 else if (D.hasAttr<UsedAttr>()) 452 CGM.addUsedOrCompilerUsedGlobal(var); 453 454 // We may have to cast the constant because of the initializer 455 // mismatch above. 456 // 457 // FIXME: It is really dangerous to store this in the map; if anyone 458 // RAUW's the GV uses of this constant will be invalid. 459 llvm::Constant *castedAddr = 460 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 461 if (var != castedAddr) 462 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 463 CGM.setStaticLocalDeclAddress(&D, castedAddr); 464 465 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 466 467 // Emit global variable debug descriptor for static vars. 468 CGDebugInfo *DI = getDebugInfo(); 469 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 470 DI->setLocation(D.getLocation()); 471 DI->EmitGlobalVariable(var, &D); 472 } 473 } 474 475 namespace { 476 struct DestroyObject final : EHScopeStack::Cleanup { 477 DestroyObject(Address addr, QualType type, 478 CodeGenFunction::Destroyer *destroyer, 479 bool useEHCleanupForArray) 480 : addr(addr), type(type), destroyer(destroyer), 481 useEHCleanupForArray(useEHCleanupForArray) {} 482 483 Address addr; 484 QualType type; 485 CodeGenFunction::Destroyer *destroyer; 486 bool useEHCleanupForArray; 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 // Don't use an EH cleanup recursively from an EH cleanup. 490 bool useEHCleanupForArray = 491 flags.isForNormalCleanup() && this->useEHCleanupForArray; 492 493 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 494 } 495 }; 496 497 template <class Derived> 498 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 499 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 500 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 501 502 llvm::Value *NRVOFlag; 503 Address Loc; 504 QualType Ty; 505 506 void Emit(CodeGenFunction &CGF, Flags flags) override { 507 // Along the exceptions path we always execute the dtor. 508 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 509 510 llvm::BasicBlock *SkipDtorBB = nullptr; 511 if (NRVO) { 512 // If we exited via NRVO, we skip the destructor call. 513 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 514 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 515 llvm::Value *DidNRVO = 516 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 517 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 518 CGF.EmitBlock(RunDtorBB); 519 } 520 521 static_cast<Derived *>(this)->emitDestructorCall(CGF); 522 523 if (NRVO) CGF.EmitBlock(SkipDtorBB); 524 } 525 526 virtual ~DestroyNRVOVariable() = default; 527 }; 528 529 struct DestroyNRVOVariableCXX final 530 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 531 DestroyNRVOVariableCXX(Address addr, QualType type, 532 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 533 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 534 Dtor(Dtor) {} 535 536 const CXXDestructorDecl *Dtor; 537 538 void emitDestructorCall(CodeGenFunction &CGF) { 539 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 540 /*ForVirtualBase=*/false, 541 /*Delegating=*/false, Loc, Ty); 542 } 543 }; 544 545 struct DestroyNRVOVariableC final 546 : DestroyNRVOVariable<DestroyNRVOVariableC> { 547 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 548 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 549 550 void emitDestructorCall(CodeGenFunction &CGF) { 551 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 552 } 553 }; 554 555 struct CallStackRestore final : EHScopeStack::Cleanup { 556 Address Stack; 557 CallStackRestore(Address Stack) : Stack(Stack) {} 558 bool isRedundantBeforeReturn() override { return true; } 559 void Emit(CodeGenFunction &CGF, Flags flags) override { 560 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 561 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 562 CGF.Builder.CreateCall(F, V); 563 } 564 }; 565 566 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 567 const VarDecl &Var; 568 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 569 570 void Emit(CodeGenFunction &CGF, Flags flags) override { 571 // Compute the address of the local variable, in case it's a 572 // byref or something. 573 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 574 Var.getType(), VK_LValue, SourceLocation()); 575 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 576 SourceLocation()); 577 CGF.EmitExtendGCLifetime(value); 578 } 579 }; 580 581 struct CallCleanupFunction final : EHScopeStack::Cleanup { 582 llvm::Constant *CleanupFn; 583 const CGFunctionInfo &FnInfo; 584 const VarDecl &Var; 585 586 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 587 const VarDecl *Var) 588 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 589 590 void Emit(CodeGenFunction &CGF, Flags flags) override { 591 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 592 Var.getType(), VK_LValue, SourceLocation()); 593 // Compute the address of the local variable, in case it's a byref 594 // or something. 595 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 596 597 // In some cases, the type of the function argument will be different from 598 // the type of the pointer. An example of this is 599 // void f(void* arg); 600 // __attribute__((cleanup(f))) void *g; 601 // 602 // To fix this we insert a bitcast here. 603 QualType ArgTy = FnInfo.arg_begin()->type; 604 llvm::Value *Arg = 605 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 606 607 CallArgList Args; 608 Args.add(RValue::get(Arg), 609 CGF.getContext().getPointerType(Var.getType())); 610 auto Callee = CGCallee::forDirect(CleanupFn); 611 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 612 } 613 }; 614 } // end anonymous namespace 615 616 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 617 /// variable with lifetime. 618 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 619 Address addr, 620 Qualifiers::ObjCLifetime lifetime) { 621 switch (lifetime) { 622 case Qualifiers::OCL_None: 623 llvm_unreachable("present but none"); 624 625 case Qualifiers::OCL_ExplicitNone: 626 // nothing to do 627 break; 628 629 case Qualifiers::OCL_Strong: { 630 CodeGenFunction::Destroyer *destroyer = 631 (var.hasAttr<ObjCPreciseLifetimeAttr>() 632 ? CodeGenFunction::destroyARCStrongPrecise 633 : CodeGenFunction::destroyARCStrongImprecise); 634 635 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 636 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 637 cleanupKind & EHCleanup); 638 break; 639 } 640 case Qualifiers::OCL_Autoreleasing: 641 // nothing to do 642 break; 643 644 case Qualifiers::OCL_Weak: 645 // __weak objects always get EH cleanups; otherwise, exceptions 646 // could cause really nasty crashes instead of mere leaks. 647 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 648 CodeGenFunction::destroyARCWeak, 649 /*useEHCleanup*/ true); 650 break; 651 } 652 } 653 654 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 655 if (const Expr *e = dyn_cast<Expr>(s)) { 656 // Skip the most common kinds of expressions that make 657 // hierarchy-walking expensive. 658 s = e = e->IgnoreParenCasts(); 659 660 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 661 return (ref->getDecl() == &var); 662 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 663 const BlockDecl *block = be->getBlockDecl(); 664 for (const auto &I : block->captures()) { 665 if (I.getVariable() == &var) 666 return true; 667 } 668 } 669 } 670 671 for (const Stmt *SubStmt : s->children()) 672 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 673 if (SubStmt && isAccessedBy(var, SubStmt)) 674 return true; 675 676 return false; 677 } 678 679 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 680 if (!decl) return false; 681 if (!isa<VarDecl>(decl)) return false; 682 const VarDecl *var = cast<VarDecl>(decl); 683 return isAccessedBy(*var, e); 684 } 685 686 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 687 const LValue &destLV, const Expr *init) { 688 bool needsCast = false; 689 690 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 691 switch (castExpr->getCastKind()) { 692 // Look through casts that don't require representation changes. 693 case CK_NoOp: 694 case CK_BitCast: 695 case CK_BlockPointerToObjCPointerCast: 696 needsCast = true; 697 break; 698 699 // If we find an l-value to r-value cast from a __weak variable, 700 // emit this operation as a copy or move. 701 case CK_LValueToRValue: { 702 const Expr *srcExpr = castExpr->getSubExpr(); 703 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 704 return false; 705 706 // Emit the source l-value. 707 LValue srcLV = CGF.EmitLValue(srcExpr); 708 709 // Handle a formal type change to avoid asserting. 710 auto srcAddr = srcLV.getAddress(CGF); 711 if (needsCast) { 712 srcAddr = CGF.Builder.CreateElementBitCast( 713 srcAddr, destLV.getAddress(CGF).getElementType()); 714 } 715 716 // If it was an l-value, use objc_copyWeak. 717 if (srcExpr->isLValue()) { 718 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 719 } else { 720 assert(srcExpr->isXValue()); 721 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 722 } 723 return true; 724 } 725 726 // Stop at anything else. 727 default: 728 return false; 729 } 730 731 init = castExpr->getSubExpr(); 732 } 733 return false; 734 } 735 736 static void drillIntoBlockVariable(CodeGenFunction &CGF, 737 LValue &lvalue, 738 const VarDecl *var) { 739 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 740 } 741 742 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 743 SourceLocation Loc) { 744 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 745 return; 746 747 auto Nullability = LHS.getType()->getNullability(getContext()); 748 if (!Nullability || *Nullability != NullabilityKind::NonNull) 749 return; 750 751 // Check if the right hand side of the assignment is nonnull, if the left 752 // hand side must be nonnull. 753 SanitizerScope SanScope(this); 754 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 755 llvm::Constant *StaticData[] = { 756 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 757 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 758 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 759 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 760 SanitizerHandler::TypeMismatch, StaticData, RHS); 761 } 762 763 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 764 LValue lvalue, bool capturedByInit) { 765 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 766 if (!lifetime) { 767 llvm::Value *value = EmitScalarExpr(init); 768 if (capturedByInit) 769 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 770 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 771 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 772 return; 773 } 774 775 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 776 init = DIE->getExpr(); 777 778 // If we're emitting a value with lifetime, we have to do the 779 // initialization *before* we leave the cleanup scopes. 780 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 781 CodeGenFunction::RunCleanupsScope Scope(*this); 782 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 783 } 784 785 // We have to maintain the illusion that the variable is 786 // zero-initialized. If the variable might be accessed in its 787 // initializer, zero-initialize before running the initializer, then 788 // actually perform the initialization with an assign. 789 bool accessedByInit = false; 790 if (lifetime != Qualifiers::OCL_ExplicitNone) 791 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 792 if (accessedByInit) { 793 LValue tempLV = lvalue; 794 // Drill down to the __block object if necessary. 795 if (capturedByInit) { 796 // We can use a simple GEP for this because it can't have been 797 // moved yet. 798 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 799 cast<VarDecl>(D), 800 /*follow*/ false)); 801 } 802 803 auto ty = 804 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 805 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 806 807 // If __weak, we want to use a barrier under certain conditions. 808 if (lifetime == Qualifiers::OCL_Weak) 809 EmitARCInitWeak(tempLV.getAddress(*this), zero); 810 811 // Otherwise just do a simple store. 812 else 813 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 814 } 815 816 // Emit the initializer. 817 llvm::Value *value = nullptr; 818 819 switch (lifetime) { 820 case Qualifiers::OCL_None: 821 llvm_unreachable("present but none"); 822 823 case Qualifiers::OCL_Strong: { 824 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 825 value = EmitARCRetainScalarExpr(init); 826 break; 827 } 828 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 829 // that we omit the retain, and causes non-autoreleased return values to be 830 // immediately released. 831 LLVM_FALLTHROUGH; 832 } 833 834 case Qualifiers::OCL_ExplicitNone: 835 value = EmitARCUnsafeUnretainedScalarExpr(init); 836 break; 837 838 case Qualifiers::OCL_Weak: { 839 // If it's not accessed by the initializer, try to emit the 840 // initialization with a copy or move. 841 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 842 return; 843 } 844 845 // No way to optimize a producing initializer into this. It's not 846 // worth optimizing for, because the value will immediately 847 // disappear in the common case. 848 value = EmitScalarExpr(init); 849 850 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 851 if (accessedByInit) 852 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 853 else 854 EmitARCInitWeak(lvalue.getAddress(*this), value); 855 return; 856 } 857 858 case Qualifiers::OCL_Autoreleasing: 859 value = EmitARCRetainAutoreleaseScalarExpr(init); 860 break; 861 } 862 863 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 864 865 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 866 867 // If the variable might have been accessed by its initializer, we 868 // might have to initialize with a barrier. We have to do this for 869 // both __weak and __strong, but __weak got filtered out above. 870 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 871 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 872 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 873 EmitARCRelease(oldValue, ARCImpreciseLifetime); 874 return; 875 } 876 877 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 878 } 879 880 /// Decide whether we can emit the non-zero parts of the specified initializer 881 /// with equal or fewer than NumStores scalar stores. 882 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 883 unsigned &NumStores) { 884 // Zero and Undef never requires any extra stores. 885 if (isa<llvm::ConstantAggregateZero>(Init) || 886 isa<llvm::ConstantPointerNull>(Init) || 887 isa<llvm::UndefValue>(Init)) 888 return true; 889 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 890 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 891 isa<llvm::ConstantExpr>(Init)) 892 return Init->isNullValue() || NumStores--; 893 894 // See if we can emit each element. 895 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 896 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 897 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 898 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 899 return false; 900 } 901 return true; 902 } 903 904 if (llvm::ConstantDataSequential *CDS = 905 dyn_cast<llvm::ConstantDataSequential>(Init)) { 906 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 907 llvm::Constant *Elt = CDS->getElementAsConstant(i); 908 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 909 return false; 910 } 911 return true; 912 } 913 914 // Anything else is hard and scary. 915 return false; 916 } 917 918 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 919 /// the scalar stores that would be required. 920 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 921 llvm::Constant *Init, Address Loc, 922 bool isVolatile, CGBuilderTy &Builder, 923 bool IsAutoInit) { 924 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 925 "called emitStoresForInitAfterBZero for zero or undef value."); 926 927 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 928 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 929 isa<llvm::ConstantExpr>(Init)) { 930 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 931 if (IsAutoInit) 932 I->addAnnotationMetadata("auto-init"); 933 return; 934 } 935 936 if (llvm::ConstantDataSequential *CDS = 937 dyn_cast<llvm::ConstantDataSequential>(Init)) { 938 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 939 llvm::Constant *Elt = CDS->getElementAsConstant(i); 940 941 // If necessary, get a pointer to the element and emit it. 942 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 943 emitStoresForInitAfterBZero( 944 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 945 Builder, IsAutoInit); 946 } 947 return; 948 } 949 950 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 951 "Unknown value type!"); 952 953 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 954 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 955 956 // If necessary, get a pointer to the element and emit it. 957 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 958 emitStoresForInitAfterBZero(CGM, Elt, 959 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 960 isVolatile, Builder, IsAutoInit); 961 } 962 } 963 964 /// Decide whether we should use bzero plus some stores to initialize a local 965 /// variable instead of using a memcpy from a constant global. It is beneficial 966 /// to use bzero if the global is all zeros, or mostly zeros and large. 967 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 968 uint64_t GlobalSize) { 969 // If a global is all zeros, always use a bzero. 970 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 971 972 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 973 // do it if it will require 6 or fewer scalar stores. 974 // TODO: Should budget depends on the size? Avoiding a large global warrants 975 // plopping in more stores. 976 unsigned StoreBudget = 6; 977 uint64_t SizeLimit = 32; 978 979 return GlobalSize > SizeLimit && 980 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 981 } 982 983 /// Decide whether we should use memset to initialize a local variable instead 984 /// of using a memcpy from a constant global. Assumes we've already decided to 985 /// not user bzero. 986 /// FIXME We could be more clever, as we are for bzero above, and generate 987 /// memset followed by stores. It's unclear that's worth the effort. 988 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 989 uint64_t GlobalSize, 990 const llvm::DataLayout &DL) { 991 uint64_t SizeLimit = 32; 992 if (GlobalSize <= SizeLimit) 993 return nullptr; 994 return llvm::isBytewiseValue(Init, DL); 995 } 996 997 /// Decide whether we want to split a constant structure or array store into a 998 /// sequence of its fields' stores. This may cost us code size and compilation 999 /// speed, but plays better with store optimizations. 1000 static bool shouldSplitConstantStore(CodeGenModule &CGM, 1001 uint64_t GlobalByteSize) { 1002 // Don't break things that occupy more than one cacheline. 1003 uint64_t ByteSizeLimit = 64; 1004 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1005 return false; 1006 if (GlobalByteSize <= ByteSizeLimit) 1007 return true; 1008 return false; 1009 } 1010 1011 enum class IsPattern { No, Yes }; 1012 1013 /// Generate a constant filled with either a pattern or zeroes. 1014 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1015 llvm::Type *Ty) { 1016 if (isPattern == IsPattern::Yes) 1017 return initializationPatternFor(CGM, Ty); 1018 else 1019 return llvm::Constant::getNullValue(Ty); 1020 } 1021 1022 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1023 llvm::Constant *constant); 1024 1025 /// Helper function for constWithPadding() to deal with padding in structures. 1026 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1027 IsPattern isPattern, 1028 llvm::StructType *STy, 1029 llvm::Constant *constant) { 1030 const llvm::DataLayout &DL = CGM.getDataLayout(); 1031 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1032 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1033 unsigned SizeSoFar = 0; 1034 SmallVector<llvm::Constant *, 8> Values; 1035 bool NestedIntact = true; 1036 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1037 unsigned CurOff = Layout->getElementOffset(i); 1038 if (SizeSoFar < CurOff) { 1039 assert(!STy->isPacked()); 1040 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1041 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1042 } 1043 llvm::Constant *CurOp; 1044 if (constant->isZeroValue()) 1045 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1046 else 1047 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1048 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1049 if (CurOp != NewOp) 1050 NestedIntact = false; 1051 Values.push_back(NewOp); 1052 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1053 } 1054 unsigned TotalSize = Layout->getSizeInBytes(); 1055 if (SizeSoFar < TotalSize) { 1056 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1057 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1058 } 1059 if (NestedIntact && Values.size() == STy->getNumElements()) 1060 return constant; 1061 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1062 } 1063 1064 /// Replace all padding bytes in a given constant with either a pattern byte or 1065 /// 0x00. 1066 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1067 llvm::Constant *constant) { 1068 llvm::Type *OrigTy = constant->getType(); 1069 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1070 return constStructWithPadding(CGM, isPattern, STy, constant); 1071 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1072 llvm::SmallVector<llvm::Constant *, 8> Values; 1073 uint64_t Size = ArrayTy->getNumElements(); 1074 if (!Size) 1075 return constant; 1076 llvm::Type *ElemTy = ArrayTy->getElementType(); 1077 bool ZeroInitializer = constant->isNullValue(); 1078 llvm::Constant *OpValue, *PaddedOp; 1079 if (ZeroInitializer) { 1080 OpValue = llvm::Constant::getNullValue(ElemTy); 1081 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1082 } 1083 for (unsigned Op = 0; Op != Size; ++Op) { 1084 if (!ZeroInitializer) { 1085 OpValue = constant->getAggregateElement(Op); 1086 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1087 } 1088 Values.push_back(PaddedOp); 1089 } 1090 auto *NewElemTy = Values[0]->getType(); 1091 if (NewElemTy == ElemTy) 1092 return constant; 1093 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1094 return llvm::ConstantArray::get(NewArrayTy, Values); 1095 } 1096 // FIXME: Add handling for tail padding in vectors. Vectors don't 1097 // have padding between or inside elements, but the total amount of 1098 // data can be less than the allocated size. 1099 return constant; 1100 } 1101 1102 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1103 llvm::Constant *Constant, 1104 CharUnits Align) { 1105 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1106 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1107 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1108 return CC->getNameAsString(); 1109 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1110 return CD->getNameAsString(); 1111 return std::string(getMangledName(FD)); 1112 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1113 return OM->getNameAsString(); 1114 } else if (isa<BlockDecl>(DC)) { 1115 return "<block>"; 1116 } else if (isa<CapturedDecl>(DC)) { 1117 return "<captured>"; 1118 } else { 1119 llvm_unreachable("expected a function or method"); 1120 } 1121 }; 1122 1123 // Form a simple per-variable cache of these values in case we find we 1124 // want to reuse them. 1125 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1126 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1127 auto *Ty = Constant->getType(); 1128 bool isConstant = true; 1129 llvm::GlobalVariable *InsertBefore = nullptr; 1130 unsigned AS = 1131 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1132 std::string Name; 1133 if (D.hasGlobalStorage()) 1134 Name = getMangledName(&D).str() + ".const"; 1135 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1136 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1137 else 1138 llvm_unreachable("local variable has no parent function or method"); 1139 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1140 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1141 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1142 GV->setAlignment(Align.getAsAlign()); 1143 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1144 CacheEntry = GV; 1145 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1146 CacheEntry->setAlignment(Align.getAsAlign()); 1147 } 1148 1149 return Address(CacheEntry, Align); 1150 } 1151 1152 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1153 const VarDecl &D, 1154 CGBuilderTy &Builder, 1155 llvm::Constant *Constant, 1156 CharUnits Align) { 1157 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1158 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1159 SrcPtr.getAddressSpace()); 1160 if (SrcPtr.getType() != BP) 1161 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1162 return SrcPtr; 1163 } 1164 1165 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1166 Address Loc, bool isVolatile, 1167 CGBuilderTy &Builder, 1168 llvm::Constant *constant, bool IsAutoInit) { 1169 auto *Ty = constant->getType(); 1170 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1171 if (!ConstantSize) 1172 return; 1173 1174 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1175 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1176 if (canDoSingleStore) { 1177 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1178 if (IsAutoInit) 1179 I->addAnnotationMetadata("auto-init"); 1180 return; 1181 } 1182 1183 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1184 1185 // If the initializer is all or mostly the same, codegen with bzero / memset 1186 // then do a few stores afterward. 1187 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1188 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1189 SizeVal, isVolatile); 1190 if (IsAutoInit) 1191 I->addAnnotationMetadata("auto-init"); 1192 1193 bool valueAlreadyCorrect = 1194 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1195 if (!valueAlreadyCorrect) { 1196 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1197 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1198 IsAutoInit); 1199 } 1200 return; 1201 } 1202 1203 // If the initializer is a repeated byte pattern, use memset. 1204 llvm::Value *Pattern = 1205 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1206 if (Pattern) { 1207 uint64_t Value = 0x00; 1208 if (!isa<llvm::UndefValue>(Pattern)) { 1209 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1210 assert(AP.getBitWidth() <= 8); 1211 Value = AP.getLimitedValue(); 1212 } 1213 auto *I = Builder.CreateMemSet( 1214 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1215 if (IsAutoInit) 1216 I->addAnnotationMetadata("auto-init"); 1217 return; 1218 } 1219 1220 // If the initializer is small, use a handful of stores. 1221 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1222 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1223 // FIXME: handle the case when STy != Loc.getElementType(). 1224 if (STy == Loc.getElementType()) { 1225 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1226 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1227 emitStoresForConstant( 1228 CGM, D, EltPtr, isVolatile, Builder, 1229 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1230 IsAutoInit); 1231 } 1232 return; 1233 } 1234 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1235 // FIXME: handle the case when ATy != Loc.getElementType(). 1236 if (ATy == Loc.getElementType()) { 1237 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1238 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1239 emitStoresForConstant( 1240 CGM, D, EltPtr, isVolatile, Builder, 1241 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1242 IsAutoInit); 1243 } 1244 return; 1245 } 1246 } 1247 } 1248 1249 // Copy from a global. 1250 auto *I = 1251 Builder.CreateMemCpy(Loc, 1252 createUnnamedGlobalForMemcpyFrom( 1253 CGM, D, Builder, constant, Loc.getAlignment()), 1254 SizeVal, isVolatile); 1255 if (IsAutoInit) 1256 I->addAnnotationMetadata("auto-init"); 1257 } 1258 1259 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1260 Address Loc, bool isVolatile, 1261 CGBuilderTy &Builder) { 1262 llvm::Type *ElTy = Loc.getElementType(); 1263 llvm::Constant *constant = 1264 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1265 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1266 /*IsAutoInit=*/true); 1267 } 1268 1269 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1270 Address Loc, bool isVolatile, 1271 CGBuilderTy &Builder) { 1272 llvm::Type *ElTy = Loc.getElementType(); 1273 llvm::Constant *constant = constWithPadding( 1274 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1275 assert(!isa<llvm::UndefValue>(constant)); 1276 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1277 /*IsAutoInit=*/true); 1278 } 1279 1280 static bool containsUndef(llvm::Constant *constant) { 1281 auto *Ty = constant->getType(); 1282 if (isa<llvm::UndefValue>(constant)) 1283 return true; 1284 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1285 for (llvm::Use &Op : constant->operands()) 1286 if (containsUndef(cast<llvm::Constant>(Op))) 1287 return true; 1288 return false; 1289 } 1290 1291 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1292 llvm::Constant *constant) { 1293 auto *Ty = constant->getType(); 1294 if (isa<llvm::UndefValue>(constant)) 1295 return patternOrZeroFor(CGM, isPattern, Ty); 1296 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1297 return constant; 1298 if (!containsUndef(constant)) 1299 return constant; 1300 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1301 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1302 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1303 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1304 } 1305 if (Ty->isStructTy()) 1306 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1307 if (Ty->isArrayTy()) 1308 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1309 assert(Ty->isVectorTy()); 1310 return llvm::ConstantVector::get(Values); 1311 } 1312 1313 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1314 /// variable declaration with auto, register, or no storage class specifier. 1315 /// These turn into simple stack objects, or GlobalValues depending on target. 1316 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1317 AutoVarEmission emission = EmitAutoVarAlloca(D); 1318 EmitAutoVarInit(emission); 1319 EmitAutoVarCleanups(emission); 1320 } 1321 1322 /// Emit a lifetime.begin marker if some criteria are satisfied. 1323 /// \return a pointer to the temporary size Value if a marker was emitted, null 1324 /// otherwise 1325 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size, 1326 llvm::Value *Addr) { 1327 if (!ShouldEmitLifetimeMarkers) 1328 return nullptr; 1329 1330 assert(Addr->getType()->getPointerAddressSpace() == 1331 CGM.getDataLayout().getAllocaAddrSpace() && 1332 "Pointer should be in alloca address space"); 1333 llvm::Value *SizeV = llvm::ConstantInt::get( 1334 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue()); 1335 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1336 llvm::CallInst *C = 1337 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1338 C->setDoesNotThrow(); 1339 return SizeV; 1340 } 1341 1342 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1343 assert(Addr->getType()->getPointerAddressSpace() == 1344 CGM.getDataLayout().getAllocaAddrSpace() && 1345 "Pointer should be in alloca address space"); 1346 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1347 llvm::CallInst *C = 1348 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1349 C->setDoesNotThrow(); 1350 } 1351 1352 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1353 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1354 // For each dimension stores its QualType and corresponding 1355 // size-expression Value. 1356 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1357 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1358 1359 // Break down the array into individual dimensions. 1360 QualType Type1D = D.getType(); 1361 while (getContext().getAsVariableArrayType(Type1D)) { 1362 auto VlaSize = getVLAElements1D(Type1D); 1363 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1364 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1365 else { 1366 // Generate a locally unique name for the size expression. 1367 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1368 SmallString<12> Buffer; 1369 StringRef NameRef = Name.toStringRef(Buffer); 1370 auto &Ident = getContext().Idents.getOwn(NameRef); 1371 VLAExprNames.push_back(&Ident); 1372 auto SizeExprAddr = 1373 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1374 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1375 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1376 Type1D.getUnqualifiedType()); 1377 } 1378 Type1D = VlaSize.Type; 1379 } 1380 1381 if (!EmitDebugInfo) 1382 return; 1383 1384 // Register each dimension's size-expression with a DILocalVariable, 1385 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1386 // to describe this array. 1387 unsigned NameIdx = 0; 1388 for (auto &VlaSize : Dimensions) { 1389 llvm::Metadata *MD; 1390 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1391 MD = llvm::ConstantAsMetadata::get(C); 1392 else { 1393 // Create an artificial VarDecl to generate debug info for. 1394 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1395 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1396 auto QT = getContext().getIntTypeForBitwidth( 1397 VlaExprTy->getScalarSizeInBits(), false); 1398 auto *ArtificialDecl = VarDecl::Create( 1399 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1400 D.getLocation(), D.getLocation(), NameIdent, QT, 1401 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1402 ArtificialDecl->setImplicit(); 1403 1404 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1405 Builder); 1406 } 1407 assert(MD && "No Size expression debug node created"); 1408 DI->registerVLASizeExpression(VlaSize.Type, MD); 1409 } 1410 } 1411 1412 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1413 /// local variable. Does not emit initialization or destruction. 1414 CodeGenFunction::AutoVarEmission 1415 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1416 QualType Ty = D.getType(); 1417 assert( 1418 Ty.getAddressSpace() == LangAS::Default || 1419 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1420 1421 AutoVarEmission emission(D); 1422 1423 bool isEscapingByRef = D.isEscapingByref(); 1424 emission.IsEscapingByRef = isEscapingByRef; 1425 1426 CharUnits alignment = getContext().getDeclAlign(&D); 1427 1428 // If the type is variably-modified, emit all the VLA sizes for it. 1429 if (Ty->isVariablyModifiedType()) 1430 EmitVariablyModifiedType(Ty); 1431 1432 auto *DI = getDebugInfo(); 1433 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1434 1435 Address address = Address::invalid(); 1436 Address AllocaAddr = Address::invalid(); 1437 Address OpenMPLocalAddr = Address::invalid(); 1438 if (CGM.getLangOpts().OpenMPIRBuilder) 1439 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1440 else 1441 OpenMPLocalAddr = 1442 getLangOpts().OpenMP 1443 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1444 : Address::invalid(); 1445 1446 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1447 1448 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1449 address = OpenMPLocalAddr; 1450 } else if (Ty->isConstantSizeType()) { 1451 // If this value is an array or struct with a statically determinable 1452 // constant initializer, there are optimizations we can do. 1453 // 1454 // TODO: We should constant-evaluate the initializer of any variable, 1455 // as long as it is initialized by a constant expression. Currently, 1456 // isConstantInitializer produces wrong answers for structs with 1457 // reference or bitfield members, and a few other cases, and checking 1458 // for POD-ness protects us from some of these. 1459 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1460 (D.isConstexpr() || 1461 ((Ty.isPODType(getContext()) || 1462 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1463 D.getInit()->isConstantInitializer(getContext(), false)))) { 1464 1465 // If the variable's a const type, and it's neither an NRVO 1466 // candidate nor a __block variable and has no mutable members, 1467 // emit it as a global instead. 1468 // Exception is if a variable is located in non-constant address space 1469 // in OpenCL. 1470 if ((!getLangOpts().OpenCL || 1471 Ty.getAddressSpace() == LangAS::opencl_constant) && 1472 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1473 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1474 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1475 1476 // Signal this condition to later callbacks. 1477 emission.Addr = Address::invalid(); 1478 assert(emission.wasEmittedAsGlobal()); 1479 return emission; 1480 } 1481 1482 // Otherwise, tell the initialization code that we're in this case. 1483 emission.IsConstantAggregate = true; 1484 } 1485 1486 // A normal fixed sized variable becomes an alloca in the entry block, 1487 // unless: 1488 // - it's an NRVO variable. 1489 // - we are compiling OpenMP and it's an OpenMP local variable. 1490 if (NRVO) { 1491 // The named return value optimization: allocate this variable in the 1492 // return slot, so that we can elide the copy when returning this 1493 // variable (C++0x [class.copy]p34). 1494 address = ReturnValue; 1495 1496 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1497 const auto *RD = RecordTy->getDecl(); 1498 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1499 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1500 RD->isNonTrivialToPrimitiveDestroy()) { 1501 // Create a flag that is used to indicate when the NRVO was applied 1502 // to this variable. Set it to zero to indicate that NRVO was not 1503 // applied. 1504 llvm::Value *Zero = Builder.getFalse(); 1505 Address NRVOFlag = 1506 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1507 EnsureInsertPoint(); 1508 Builder.CreateStore(Zero, NRVOFlag); 1509 1510 // Record the NRVO flag for this variable. 1511 NRVOFlags[&D] = NRVOFlag.getPointer(); 1512 emission.NRVOFlag = NRVOFlag.getPointer(); 1513 } 1514 } 1515 } else { 1516 CharUnits allocaAlignment; 1517 llvm::Type *allocaTy; 1518 if (isEscapingByRef) { 1519 auto &byrefInfo = getBlockByrefInfo(&D); 1520 allocaTy = byrefInfo.Type; 1521 allocaAlignment = byrefInfo.ByrefAlignment; 1522 } else { 1523 allocaTy = ConvertTypeForMem(Ty); 1524 allocaAlignment = alignment; 1525 } 1526 1527 // Create the alloca. Note that we set the name separately from 1528 // building the instruction so that it's there even in no-asserts 1529 // builds. 1530 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1531 /*ArraySize=*/nullptr, &AllocaAddr); 1532 1533 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1534 // the catch parameter starts in the catchpad instruction, and we can't 1535 // insert code in those basic blocks. 1536 bool IsMSCatchParam = 1537 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1538 1539 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1540 // if we don't have a valid insertion point (?). 1541 if (HaveInsertPoint() && !IsMSCatchParam) { 1542 // If there's a jump into the lifetime of this variable, its lifetime 1543 // gets broken up into several regions in IR, which requires more work 1544 // to handle correctly. For now, just omit the intrinsics; this is a 1545 // rare case, and it's better to just be conservatively correct. 1546 // PR28267. 1547 // 1548 // We have to do this in all language modes if there's a jump past the 1549 // declaration. We also have to do it in C if there's a jump to an 1550 // earlier point in the current block because non-VLA lifetimes begin as 1551 // soon as the containing block is entered, not when its variables 1552 // actually come into scope; suppressing the lifetime annotations 1553 // completely in this case is unnecessarily pessimistic, but again, this 1554 // is rare. 1555 if (!Bypasses.IsBypassed(&D) && 1556 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1557 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1558 emission.SizeForLifetimeMarkers = 1559 EmitLifetimeStart(Size, AllocaAddr.getPointer()); 1560 } 1561 } else { 1562 assert(!emission.useLifetimeMarkers()); 1563 } 1564 } 1565 } else { 1566 EnsureInsertPoint(); 1567 1568 if (!DidCallStackSave) { 1569 // Save the stack. 1570 Address Stack = 1571 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1572 1573 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1574 llvm::Value *V = Builder.CreateCall(F); 1575 Builder.CreateStore(V, Stack); 1576 1577 DidCallStackSave = true; 1578 1579 // Push a cleanup block and restore the stack there. 1580 // FIXME: in general circumstances, this should be an EH cleanup. 1581 pushStackRestore(NormalCleanup, Stack); 1582 } 1583 1584 auto VlaSize = getVLASize(Ty); 1585 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1586 1587 // Allocate memory for the array. 1588 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1589 &AllocaAddr); 1590 1591 // If we have debug info enabled, properly describe the VLA dimensions for 1592 // this type by registering the vla size expression for each of the 1593 // dimensions. 1594 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1595 } 1596 1597 setAddrOfLocalVar(&D, address); 1598 emission.Addr = address; 1599 emission.AllocaAddr = AllocaAddr; 1600 1601 // Emit debug info for local var declaration. 1602 if (EmitDebugInfo && HaveInsertPoint()) { 1603 Address DebugAddr = address; 1604 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1605 DI->setLocation(D.getLocation()); 1606 1607 // If NRVO, use a pointer to the return address. 1608 if (UsePointerValue) 1609 DebugAddr = ReturnValuePointer; 1610 1611 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1612 UsePointerValue); 1613 } 1614 1615 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1616 EmitVarAnnotations(&D, address.getPointer()); 1617 1618 // Make sure we call @llvm.lifetime.end. 1619 if (emission.useLifetimeMarkers()) 1620 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1621 emission.getOriginalAllocatedAddress(), 1622 emission.getSizeForLifetimeMarkers()); 1623 1624 return emission; 1625 } 1626 1627 static bool isCapturedBy(const VarDecl &, const Expr *); 1628 1629 /// Determines whether the given __block variable is potentially 1630 /// captured by the given statement. 1631 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1632 if (const Expr *E = dyn_cast<Expr>(S)) 1633 return isCapturedBy(Var, E); 1634 for (const Stmt *SubStmt : S->children()) 1635 if (isCapturedBy(Var, SubStmt)) 1636 return true; 1637 return false; 1638 } 1639 1640 /// Determines whether the given __block variable is potentially 1641 /// captured by the given expression. 1642 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1643 // Skip the most common kinds of expressions that make 1644 // hierarchy-walking expensive. 1645 E = E->IgnoreParenCasts(); 1646 1647 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1648 const BlockDecl *Block = BE->getBlockDecl(); 1649 for (const auto &I : Block->captures()) { 1650 if (I.getVariable() == &Var) 1651 return true; 1652 } 1653 1654 // No need to walk into the subexpressions. 1655 return false; 1656 } 1657 1658 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1659 const CompoundStmt *CS = SE->getSubStmt(); 1660 for (const auto *BI : CS->body()) 1661 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1662 if (isCapturedBy(Var, BIE)) 1663 return true; 1664 } 1665 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1666 // special case declarations 1667 for (const auto *I : DS->decls()) { 1668 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1669 const Expr *Init = VD->getInit(); 1670 if (Init && isCapturedBy(Var, Init)) 1671 return true; 1672 } 1673 } 1674 } 1675 else 1676 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1677 // Later, provide code to poke into statements for capture analysis. 1678 return true; 1679 return false; 1680 } 1681 1682 for (const Stmt *SubStmt : E->children()) 1683 if (isCapturedBy(Var, SubStmt)) 1684 return true; 1685 1686 return false; 1687 } 1688 1689 /// Determine whether the given initializer is trivial in the sense 1690 /// that it requires no code to be generated. 1691 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1692 if (!Init) 1693 return true; 1694 1695 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1696 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1697 if (Constructor->isTrivial() && 1698 Constructor->isDefaultConstructor() && 1699 !Construct->requiresZeroInitialization()) 1700 return true; 1701 1702 return false; 1703 } 1704 1705 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1706 const VarDecl &D, 1707 Address Loc) { 1708 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1709 CharUnits Size = getContext().getTypeSizeInChars(type); 1710 bool isVolatile = type.isVolatileQualified(); 1711 if (!Size.isZero()) { 1712 switch (trivialAutoVarInit) { 1713 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1714 llvm_unreachable("Uninitialized handled by caller"); 1715 case LangOptions::TrivialAutoVarInitKind::Zero: 1716 if (CGM.stopAutoInit()) 1717 return; 1718 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1719 break; 1720 case LangOptions::TrivialAutoVarInitKind::Pattern: 1721 if (CGM.stopAutoInit()) 1722 return; 1723 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1724 break; 1725 } 1726 return; 1727 } 1728 1729 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1730 // them, so emit a memcpy with the VLA size to initialize each element. 1731 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1732 // will catch that code, but there exists code which generates zero-sized 1733 // VLAs. Be nice and initialize whatever they requested. 1734 const auto *VlaType = getContext().getAsVariableArrayType(type); 1735 if (!VlaType) 1736 return; 1737 auto VlaSize = getVLASize(VlaType); 1738 auto SizeVal = VlaSize.NumElts; 1739 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1740 switch (trivialAutoVarInit) { 1741 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1742 llvm_unreachable("Uninitialized handled by caller"); 1743 1744 case LangOptions::TrivialAutoVarInitKind::Zero: { 1745 if (CGM.stopAutoInit()) 1746 return; 1747 if (!EltSize.isOne()) 1748 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1749 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1750 SizeVal, isVolatile); 1751 I->addAnnotationMetadata("auto-init"); 1752 break; 1753 } 1754 1755 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1756 if (CGM.stopAutoInit()) 1757 return; 1758 llvm::Type *ElTy = Loc.getElementType(); 1759 llvm::Constant *Constant = constWithPadding( 1760 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1761 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1762 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1763 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1764 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1765 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1766 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1767 "vla.iszerosized"); 1768 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1769 EmitBlock(SetupBB); 1770 if (!EltSize.isOne()) 1771 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1772 llvm::Value *BaseSizeInChars = 1773 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1774 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1775 llvm::Value *End = Builder.CreateInBoundsGEP( 1776 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end"); 1777 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1778 EmitBlock(LoopBB); 1779 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1780 Cur->addIncoming(Begin.getPointer(), OriginBB); 1781 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1782 auto *I = 1783 Builder.CreateMemCpy(Address(Cur, CurAlign), 1784 createUnnamedGlobalForMemcpyFrom( 1785 CGM, D, Builder, Constant, ConstantAlign), 1786 BaseSizeInChars, isVolatile); 1787 I->addAnnotationMetadata("auto-init"); 1788 llvm::Value *Next = 1789 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1790 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1791 Builder.CreateCondBr(Done, ContBB, LoopBB); 1792 Cur->addIncoming(Next, LoopBB); 1793 EmitBlock(ContBB); 1794 } break; 1795 } 1796 } 1797 1798 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1799 assert(emission.Variable && "emission was not valid!"); 1800 1801 // If this was emitted as a global constant, we're done. 1802 if (emission.wasEmittedAsGlobal()) return; 1803 1804 const VarDecl &D = *emission.Variable; 1805 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1806 QualType type = D.getType(); 1807 1808 // If this local has an initializer, emit it now. 1809 const Expr *Init = D.getInit(); 1810 1811 // If we are at an unreachable point, we don't need to emit the initializer 1812 // unless it contains a label. 1813 if (!HaveInsertPoint()) { 1814 if (!Init || !ContainsLabel(Init)) return; 1815 EnsureInsertPoint(); 1816 } 1817 1818 // Initialize the structure of a __block variable. 1819 if (emission.IsEscapingByRef) 1820 emitByrefStructureInit(emission); 1821 1822 // Initialize the variable here if it doesn't have a initializer and it is a 1823 // C struct that is non-trivial to initialize or an array containing such a 1824 // struct. 1825 if (!Init && 1826 type.isNonTrivialToPrimitiveDefaultInitialize() == 1827 QualType::PDIK_Struct) { 1828 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1829 if (emission.IsEscapingByRef) 1830 drillIntoBlockVariable(*this, Dst, &D); 1831 defaultInitNonTrivialCStructVar(Dst); 1832 return; 1833 } 1834 1835 // Check whether this is a byref variable that's potentially 1836 // captured and moved by its own initializer. If so, we'll need to 1837 // emit the initializer first, then copy into the variable. 1838 bool capturedByInit = 1839 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1840 1841 bool locIsByrefHeader = !capturedByInit; 1842 const Address Loc = 1843 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1844 1845 // Note: constexpr already initializes everything correctly. 1846 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1847 (D.isConstexpr() 1848 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1849 : (D.getAttr<UninitializedAttr>() 1850 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1851 : getContext().getLangOpts().getTrivialAutoVarInit())); 1852 1853 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1854 if (trivialAutoVarInit == 1855 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1856 return; 1857 1858 // Only initialize a __block's storage: we always initialize the header. 1859 if (emission.IsEscapingByRef && !locIsByrefHeader) 1860 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1861 1862 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1863 }; 1864 1865 if (isTrivialInitializer(Init)) 1866 return initializeWhatIsTechnicallyUninitialized(Loc); 1867 1868 llvm::Constant *constant = nullptr; 1869 if (emission.IsConstantAggregate || 1870 D.mightBeUsableInConstantExpressions(getContext())) { 1871 assert(!capturedByInit && "constant init contains a capturing block?"); 1872 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1873 if (constant && !constant->isZeroValue() && 1874 (trivialAutoVarInit != 1875 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1876 IsPattern isPattern = 1877 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1878 ? IsPattern::Yes 1879 : IsPattern::No; 1880 // C guarantees that brace-init with fewer initializers than members in 1881 // the aggregate will initialize the rest of the aggregate as-if it were 1882 // static initialization. In turn static initialization guarantees that 1883 // padding is initialized to zero bits. We could instead pattern-init if D 1884 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1885 // behavior. 1886 constant = constWithPadding(CGM, IsPattern::No, 1887 replaceUndef(CGM, isPattern, constant)); 1888 } 1889 } 1890 1891 if (!constant) { 1892 initializeWhatIsTechnicallyUninitialized(Loc); 1893 LValue lv = MakeAddrLValue(Loc, type); 1894 lv.setNonGC(true); 1895 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1896 } 1897 1898 if (!emission.IsConstantAggregate) { 1899 // For simple scalar/complex initialization, store the value directly. 1900 LValue lv = MakeAddrLValue(Loc, type); 1901 lv.setNonGC(true); 1902 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1903 } 1904 1905 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1906 emitStoresForConstant( 1907 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1908 type.isVolatileQualified(), Builder, constant, /*IsAutoInit=*/false); 1909 } 1910 1911 /// Emit an expression as an initializer for an object (variable, field, etc.) 1912 /// at the given location. The expression is not necessarily the normal 1913 /// initializer for the object, and the address is not necessarily 1914 /// its normal location. 1915 /// 1916 /// \param init the initializing expression 1917 /// \param D the object to act as if we're initializing 1918 /// \param lvalue the lvalue to initialize 1919 /// \param capturedByInit true if \p D is a __block variable 1920 /// whose address is potentially changed by the initializer 1921 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1922 LValue lvalue, bool capturedByInit) { 1923 QualType type = D->getType(); 1924 1925 if (type->isReferenceType()) { 1926 RValue rvalue = EmitReferenceBindingToExpr(init); 1927 if (capturedByInit) 1928 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1929 EmitStoreThroughLValue(rvalue, lvalue, true); 1930 return; 1931 } 1932 switch (getEvaluationKind(type)) { 1933 case TEK_Scalar: 1934 EmitScalarInit(init, D, lvalue, capturedByInit); 1935 return; 1936 case TEK_Complex: { 1937 ComplexPairTy complex = EmitComplexExpr(init); 1938 if (capturedByInit) 1939 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1940 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1941 return; 1942 } 1943 case TEK_Aggregate: 1944 if (type->isAtomicType()) { 1945 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1946 } else { 1947 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1948 if (isa<VarDecl>(D)) 1949 Overlap = AggValueSlot::DoesNotOverlap; 1950 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1951 Overlap = getOverlapForFieldInit(FD); 1952 // TODO: how can we delay here if D is captured by its initializer? 1953 EmitAggExpr(init, AggValueSlot::forLValue( 1954 lvalue, *this, AggValueSlot::IsDestructed, 1955 AggValueSlot::DoesNotNeedGCBarriers, 1956 AggValueSlot::IsNotAliased, Overlap)); 1957 } 1958 return; 1959 } 1960 llvm_unreachable("bad evaluation kind"); 1961 } 1962 1963 /// Enter a destroy cleanup for the given local variable. 1964 void CodeGenFunction::emitAutoVarTypeCleanup( 1965 const CodeGenFunction::AutoVarEmission &emission, 1966 QualType::DestructionKind dtorKind) { 1967 assert(dtorKind != QualType::DK_none); 1968 1969 // Note that for __block variables, we want to destroy the 1970 // original stack object, not the possibly forwarded object. 1971 Address addr = emission.getObjectAddress(*this); 1972 1973 const VarDecl *var = emission.Variable; 1974 QualType type = var->getType(); 1975 1976 CleanupKind cleanupKind = NormalAndEHCleanup; 1977 CodeGenFunction::Destroyer *destroyer = nullptr; 1978 1979 switch (dtorKind) { 1980 case QualType::DK_none: 1981 llvm_unreachable("no cleanup for trivially-destructible variable"); 1982 1983 case QualType::DK_cxx_destructor: 1984 // If there's an NRVO flag on the emission, we need a different 1985 // cleanup. 1986 if (emission.NRVOFlag) { 1987 assert(!type->isArrayType()); 1988 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1989 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1990 emission.NRVOFlag); 1991 return; 1992 } 1993 break; 1994 1995 case QualType::DK_objc_strong_lifetime: 1996 // Suppress cleanups for pseudo-strong variables. 1997 if (var->isARCPseudoStrong()) return; 1998 1999 // Otherwise, consider whether to use an EH cleanup or not. 2000 cleanupKind = getARCCleanupKind(); 2001 2002 // Use the imprecise destroyer by default. 2003 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2004 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2005 break; 2006 2007 case QualType::DK_objc_weak_lifetime: 2008 break; 2009 2010 case QualType::DK_nontrivial_c_struct: 2011 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2012 if (emission.NRVOFlag) { 2013 assert(!type->isArrayType()); 2014 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2015 emission.NRVOFlag, type); 2016 return; 2017 } 2018 break; 2019 } 2020 2021 // If we haven't chosen a more specific destroyer, use the default. 2022 if (!destroyer) destroyer = getDestroyer(dtorKind); 2023 2024 // Use an EH cleanup in array destructors iff the destructor itself 2025 // is being pushed as an EH cleanup. 2026 bool useEHCleanup = (cleanupKind & EHCleanup); 2027 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2028 useEHCleanup); 2029 } 2030 2031 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2032 assert(emission.Variable && "emission was not valid!"); 2033 2034 // If this was emitted as a global constant, we're done. 2035 if (emission.wasEmittedAsGlobal()) return; 2036 2037 // If we don't have an insertion point, we're done. Sema prevents 2038 // us from jumping into any of these scopes anyway. 2039 if (!HaveInsertPoint()) return; 2040 2041 const VarDecl &D = *emission.Variable; 2042 2043 // Check the type for a cleanup. 2044 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2045 emitAutoVarTypeCleanup(emission, dtorKind); 2046 2047 // In GC mode, honor objc_precise_lifetime. 2048 if (getLangOpts().getGC() != LangOptions::NonGC && 2049 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2050 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2051 } 2052 2053 // Handle the cleanup attribute. 2054 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2055 const FunctionDecl *FD = CA->getFunctionDecl(); 2056 2057 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2058 assert(F && "Could not find function!"); 2059 2060 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2061 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2062 } 2063 2064 // If this is a block variable, call _Block_object_destroy 2065 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2066 // mode. 2067 if (emission.IsEscapingByRef && 2068 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2069 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2070 if (emission.Variable->getType().isObjCGCWeak()) 2071 Flags |= BLOCK_FIELD_IS_WEAK; 2072 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2073 /*LoadBlockVarAddr*/ false, 2074 cxxDestructorCanThrow(emission.Variable->getType())); 2075 } 2076 } 2077 2078 CodeGenFunction::Destroyer * 2079 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2080 switch (kind) { 2081 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2082 case QualType::DK_cxx_destructor: 2083 return destroyCXXObject; 2084 case QualType::DK_objc_strong_lifetime: 2085 return destroyARCStrongPrecise; 2086 case QualType::DK_objc_weak_lifetime: 2087 return destroyARCWeak; 2088 case QualType::DK_nontrivial_c_struct: 2089 return destroyNonTrivialCStruct; 2090 } 2091 llvm_unreachable("Unknown DestructionKind"); 2092 } 2093 2094 /// pushEHDestroy - Push the standard destructor for the given type as 2095 /// an EH-only cleanup. 2096 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2097 Address addr, QualType type) { 2098 assert(dtorKind && "cannot push destructor for trivial type"); 2099 assert(needsEHCleanup(dtorKind)); 2100 2101 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2102 } 2103 2104 /// pushDestroy - Push the standard destructor for the given type as 2105 /// at least a normal cleanup. 2106 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2107 Address addr, QualType type) { 2108 assert(dtorKind && "cannot push destructor for trivial type"); 2109 2110 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2111 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2112 cleanupKind & EHCleanup); 2113 } 2114 2115 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2116 QualType type, Destroyer *destroyer, 2117 bool useEHCleanupForArray) { 2118 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2119 destroyer, useEHCleanupForArray); 2120 } 2121 2122 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2123 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2124 } 2125 2126 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2127 Address addr, QualType type, 2128 Destroyer *destroyer, 2129 bool useEHCleanupForArray) { 2130 // If we're not in a conditional branch, we don't need to bother generating a 2131 // conditional cleanup. 2132 if (!isInConditionalBranch()) { 2133 // Push an EH-only cleanup for the object now. 2134 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2135 // around in case a temporary's destructor throws an exception. 2136 if (cleanupKind & EHCleanup) 2137 EHStack.pushCleanup<DestroyObject>( 2138 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2139 destroyer, useEHCleanupForArray); 2140 2141 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2142 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray); 2143 } 2144 2145 // Otherwise, we should only destroy the object if it's been initialized. 2146 // Re-use the active flag and saved address across both the EH and end of 2147 // scope cleanups. 2148 2149 using SavedType = typename DominatingValue<Address>::saved_type; 2150 using ConditionalCleanupType = 2151 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2152 Destroyer *, bool>; 2153 2154 Address ActiveFlag = createCleanupActiveFlag(); 2155 SavedType SavedAddr = saveValueInCond(addr); 2156 2157 if (cleanupKind & EHCleanup) { 2158 EHStack.pushCleanup<ConditionalCleanupType>( 2159 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type, 2160 destroyer, useEHCleanupForArray); 2161 initFullExprCleanupWithFlag(ActiveFlag); 2162 } 2163 2164 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2165 cleanupKind, ActiveFlag, SavedAddr, type, destroyer, 2166 useEHCleanupForArray); 2167 } 2168 2169 /// emitDestroy - Immediately perform the destruction of the given 2170 /// object. 2171 /// 2172 /// \param addr - the address of the object; a type* 2173 /// \param type - the type of the object; if an array type, all 2174 /// objects are destroyed in reverse order 2175 /// \param destroyer - the function to call to destroy individual 2176 /// elements 2177 /// \param useEHCleanupForArray - whether an EH cleanup should be 2178 /// used when destroying array elements, in case one of the 2179 /// destructions throws an exception 2180 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2181 Destroyer *destroyer, 2182 bool useEHCleanupForArray) { 2183 const ArrayType *arrayType = getContext().getAsArrayType(type); 2184 if (!arrayType) 2185 return destroyer(*this, addr, type); 2186 2187 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2188 2189 CharUnits elementAlign = 2190 addr.getAlignment() 2191 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2192 2193 // Normally we have to check whether the array is zero-length. 2194 bool checkZeroLength = true; 2195 2196 // But if the array length is constant, we can suppress that. 2197 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2198 // ...and if it's constant zero, we can just skip the entire thing. 2199 if (constLength->isZero()) return; 2200 checkZeroLength = false; 2201 } 2202 2203 llvm::Value *begin = addr.getPointer(); 2204 llvm::Value *end = 2205 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2206 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2207 checkZeroLength, useEHCleanupForArray); 2208 } 2209 2210 /// emitArrayDestroy - Destroys all the elements of the given array, 2211 /// beginning from last to first. The array cannot be zero-length. 2212 /// 2213 /// \param begin - a type* denoting the first element of the array 2214 /// \param end - a type* denoting one past the end of the array 2215 /// \param elementType - the element type of the array 2216 /// \param destroyer - the function to call to destroy elements 2217 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2218 /// the remaining elements in case the destruction of a single 2219 /// element throws 2220 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2221 llvm::Value *end, 2222 QualType elementType, 2223 CharUnits elementAlign, 2224 Destroyer *destroyer, 2225 bool checkZeroLength, 2226 bool useEHCleanup) { 2227 assert(!elementType->isArrayType()); 2228 2229 // The basic structure here is a do-while loop, because we don't 2230 // need to check for the zero-element case. 2231 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2232 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2233 2234 if (checkZeroLength) { 2235 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2236 "arraydestroy.isempty"); 2237 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2238 } 2239 2240 // Enter the loop body, making that address the current address. 2241 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2242 EmitBlock(bodyBB); 2243 llvm::PHINode *elementPast = 2244 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2245 elementPast->addIncoming(end, entryBB); 2246 2247 // Shift the address back by one element. 2248 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2249 llvm::Value *element = Builder.CreateInBoundsGEP( 2250 elementPast->getType()->getPointerElementType(), elementPast, negativeOne, 2251 "arraydestroy.element"); 2252 2253 if (useEHCleanup) 2254 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2255 destroyer); 2256 2257 // Perform the actual destruction there. 2258 destroyer(*this, Address(element, elementAlign), elementType); 2259 2260 if (useEHCleanup) 2261 PopCleanupBlock(); 2262 2263 // Check whether we've reached the end. 2264 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2265 Builder.CreateCondBr(done, doneBB, bodyBB); 2266 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2267 2268 // Done. 2269 EmitBlock(doneBB); 2270 } 2271 2272 /// Perform partial array destruction as if in an EH cleanup. Unlike 2273 /// emitArrayDestroy, the element type here may still be an array type. 2274 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2275 llvm::Value *begin, llvm::Value *end, 2276 QualType type, CharUnits elementAlign, 2277 CodeGenFunction::Destroyer *destroyer) { 2278 // If the element type is itself an array, drill down. 2279 unsigned arrayDepth = 0; 2280 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2281 // VLAs don't require a GEP index to walk into. 2282 if (!isa<VariableArrayType>(arrayType)) 2283 arrayDepth++; 2284 type = arrayType->getElementType(); 2285 } 2286 2287 if (arrayDepth) { 2288 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2289 2290 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2291 llvm::Type *elemTy = begin->getType()->getPointerElementType(); 2292 begin = CGF.Builder.CreateInBoundsGEP( 2293 elemTy, begin, gepIndices, "pad.arraybegin"); 2294 end = CGF.Builder.CreateInBoundsGEP( 2295 elemTy, end, gepIndices, "pad.arrayend"); 2296 } 2297 2298 // Destroy the array. We don't ever need an EH cleanup because we 2299 // assume that we're in an EH cleanup ourselves, so a throwing 2300 // destructor causes an immediate terminate. 2301 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2302 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2303 } 2304 2305 namespace { 2306 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2307 /// array destroy where the end pointer is regularly determined and 2308 /// does not need to be loaded from a local. 2309 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2310 llvm::Value *ArrayBegin; 2311 llvm::Value *ArrayEnd; 2312 QualType ElementType; 2313 CodeGenFunction::Destroyer *Destroyer; 2314 CharUnits ElementAlign; 2315 public: 2316 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2317 QualType elementType, CharUnits elementAlign, 2318 CodeGenFunction::Destroyer *destroyer) 2319 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2320 ElementType(elementType), Destroyer(destroyer), 2321 ElementAlign(elementAlign) {} 2322 2323 void Emit(CodeGenFunction &CGF, Flags flags) override { 2324 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2325 ElementType, ElementAlign, Destroyer); 2326 } 2327 }; 2328 2329 /// IrregularPartialArrayDestroy - a cleanup which performs a 2330 /// partial array destroy where the end pointer is irregularly 2331 /// determined and must be loaded from a local. 2332 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2333 llvm::Value *ArrayBegin; 2334 Address ArrayEndPointer; 2335 QualType ElementType; 2336 CodeGenFunction::Destroyer *Destroyer; 2337 CharUnits ElementAlign; 2338 public: 2339 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2340 Address arrayEndPointer, 2341 QualType elementType, 2342 CharUnits elementAlign, 2343 CodeGenFunction::Destroyer *destroyer) 2344 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2345 ElementType(elementType), Destroyer(destroyer), 2346 ElementAlign(elementAlign) {} 2347 2348 void Emit(CodeGenFunction &CGF, Flags flags) override { 2349 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2350 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2351 ElementType, ElementAlign, Destroyer); 2352 } 2353 }; 2354 } // end anonymous namespace 2355 2356 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2357 /// already-constructed elements of the given array. The cleanup 2358 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2359 /// 2360 /// \param elementType - the immediate element type of the array; 2361 /// possibly still an array type 2362 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2363 Address arrayEndPointer, 2364 QualType elementType, 2365 CharUnits elementAlign, 2366 Destroyer *destroyer) { 2367 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2368 arrayBegin, arrayEndPointer, 2369 elementType, elementAlign, 2370 destroyer); 2371 } 2372 2373 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2374 /// already-constructed elements of the given array. The cleanup 2375 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2376 /// 2377 /// \param elementType - the immediate element type of the array; 2378 /// possibly still an array type 2379 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2380 llvm::Value *arrayEnd, 2381 QualType elementType, 2382 CharUnits elementAlign, 2383 Destroyer *destroyer) { 2384 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2385 arrayBegin, arrayEnd, 2386 elementType, elementAlign, 2387 destroyer); 2388 } 2389 2390 /// Lazily declare the @llvm.lifetime.start intrinsic. 2391 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2392 if (LifetimeStartFn) 2393 return LifetimeStartFn; 2394 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2395 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2396 return LifetimeStartFn; 2397 } 2398 2399 /// Lazily declare the @llvm.lifetime.end intrinsic. 2400 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2401 if (LifetimeEndFn) 2402 return LifetimeEndFn; 2403 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2404 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2405 return LifetimeEndFn; 2406 } 2407 2408 namespace { 2409 /// A cleanup to perform a release of an object at the end of a 2410 /// function. This is used to balance out the incoming +1 of a 2411 /// ns_consumed argument when we can't reasonably do that just by 2412 /// not doing the initial retain for a __block argument. 2413 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2414 ConsumeARCParameter(llvm::Value *param, 2415 ARCPreciseLifetime_t precise) 2416 : Param(param), Precise(precise) {} 2417 2418 llvm::Value *Param; 2419 ARCPreciseLifetime_t Precise; 2420 2421 void Emit(CodeGenFunction &CGF, Flags flags) override { 2422 CGF.EmitARCRelease(Param, Precise); 2423 } 2424 }; 2425 } // end anonymous namespace 2426 2427 /// Emit an alloca (or GlobalValue depending on target) 2428 /// for the specified parameter and set up LocalDeclMap. 2429 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2430 unsigned ArgNo) { 2431 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2432 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2433 "Invalid argument to EmitParmDecl"); 2434 2435 Arg.getAnyValue()->setName(D.getName()); 2436 2437 QualType Ty = D.getType(); 2438 2439 // Use better IR generation for certain implicit parameters. 2440 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2441 // The only implicit argument a block has is its literal. 2442 // This may be passed as an inalloca'ed value on Windows x86. 2443 if (BlockInfo) { 2444 llvm::Value *V = Arg.isIndirect() 2445 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2446 : Arg.getDirectValue(); 2447 setBlockContextParameter(IPD, ArgNo, V); 2448 return; 2449 } 2450 } 2451 2452 Address DeclPtr = Address::invalid(); 2453 bool DoStore = false; 2454 bool IsScalar = hasScalarEvaluationKind(Ty); 2455 // If we already have a pointer to the argument, reuse the input pointer. 2456 if (Arg.isIndirect()) { 2457 DeclPtr = Arg.getIndirectAddress(); 2458 // If we have a prettier pointer type at this point, bitcast to that. 2459 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2460 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2461 if (DeclPtr.getType() != IRTy) 2462 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2463 // Indirect argument is in alloca address space, which may be different 2464 // from the default address space. 2465 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2466 auto *V = DeclPtr.getPointer(); 2467 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2468 auto DestLangAS = 2469 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2470 if (SrcLangAS != DestLangAS) { 2471 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2472 CGM.getDataLayout().getAllocaAddrSpace()); 2473 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2474 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2475 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2476 *this, V, SrcLangAS, DestLangAS, T, true), 2477 DeclPtr.getAlignment()); 2478 } 2479 2480 // Push a destructor cleanup for this parameter if the ABI requires it. 2481 // Don't push a cleanup in a thunk for a method that will also emit a 2482 // cleanup. 2483 if (Ty->isRecordType() && !CurFuncIsThunk && 2484 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2485 if (QualType::DestructionKind DtorKind = 2486 D.needsDestruction(getContext())) { 2487 assert((DtorKind == QualType::DK_cxx_destructor || 2488 DtorKind == QualType::DK_nontrivial_c_struct) && 2489 "unexpected destructor type"); 2490 pushDestroy(DtorKind, DeclPtr, Ty); 2491 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2492 EHStack.stable_begin(); 2493 } 2494 } 2495 } else { 2496 // Check if the parameter address is controlled by OpenMP runtime. 2497 Address OpenMPLocalAddr = 2498 getLangOpts().OpenMP 2499 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2500 : Address::invalid(); 2501 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2502 DeclPtr = OpenMPLocalAddr; 2503 } else { 2504 // Otherwise, create a temporary to hold the value. 2505 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2506 D.getName() + ".addr"); 2507 } 2508 DoStore = true; 2509 } 2510 2511 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2512 2513 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2514 if (IsScalar) { 2515 Qualifiers qs = Ty.getQualifiers(); 2516 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2517 // We honor __attribute__((ns_consumed)) for types with lifetime. 2518 // For __strong, it's handled by just skipping the initial retain; 2519 // otherwise we have to balance out the initial +1 with an extra 2520 // cleanup to do the release at the end of the function. 2521 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2522 2523 // If a parameter is pseudo-strong then we can omit the implicit retain. 2524 if (D.isARCPseudoStrong()) { 2525 assert(lt == Qualifiers::OCL_Strong && 2526 "pseudo-strong variable isn't strong?"); 2527 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2528 lt = Qualifiers::OCL_ExplicitNone; 2529 } 2530 2531 // Load objects passed indirectly. 2532 if (Arg.isIndirect() && !ArgVal) 2533 ArgVal = Builder.CreateLoad(DeclPtr); 2534 2535 if (lt == Qualifiers::OCL_Strong) { 2536 if (!isConsumed) { 2537 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2538 // use objc_storeStrong(&dest, value) for retaining the 2539 // object. But first, store a null into 'dest' because 2540 // objc_storeStrong attempts to release its old value. 2541 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2542 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2543 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2544 DoStore = false; 2545 } 2546 else 2547 // Don't use objc_retainBlock for block pointers, because we 2548 // don't want to Block_copy something just because we got it 2549 // as a parameter. 2550 ArgVal = EmitARCRetainNonBlock(ArgVal); 2551 } 2552 } else { 2553 // Push the cleanup for a consumed parameter. 2554 if (isConsumed) { 2555 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2556 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2557 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2558 precise); 2559 } 2560 2561 if (lt == Qualifiers::OCL_Weak) { 2562 EmitARCInitWeak(DeclPtr, ArgVal); 2563 DoStore = false; // The weak init is a store, no need to do two. 2564 } 2565 } 2566 2567 // Enter the cleanup scope. 2568 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2569 } 2570 } 2571 2572 // Store the initial value into the alloca. 2573 if (DoStore) 2574 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2575 2576 setAddrOfLocalVar(&D, DeclPtr); 2577 2578 // Emit debug info for param declarations in non-thunk functions. 2579 if (CGDebugInfo *DI = getDebugInfo()) { 2580 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2581 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2582 &D, DeclPtr.getPointer(), ArgNo, Builder); 2583 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2584 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2585 } 2586 } 2587 2588 if (D.hasAttr<AnnotateAttr>()) 2589 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2590 2591 // We can only check return value nullability if all arguments to the 2592 // function satisfy their nullability preconditions. This makes it necessary 2593 // to emit null checks for args in the function body itself. 2594 if (requiresReturnValueNullabilityCheck()) { 2595 auto Nullability = Ty->getNullability(getContext()); 2596 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2597 SanitizerScope SanScope(this); 2598 RetValNullabilityPrecondition = 2599 Builder.CreateAnd(RetValNullabilityPrecondition, 2600 Builder.CreateIsNotNull(Arg.getAnyValue())); 2601 } 2602 } 2603 } 2604 2605 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2606 CodeGenFunction *CGF) { 2607 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2608 return; 2609 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2610 } 2611 2612 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2613 CodeGenFunction *CGF) { 2614 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2615 (!LangOpts.EmitAllDecls && !D->isUsed())) 2616 return; 2617 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2618 } 2619 2620 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2621 getOpenMPRuntime().processRequiresDirective(D); 2622 } 2623 2624 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2625 for (const Expr *E : D->varlists()) { 2626 const auto *DE = cast<DeclRefExpr>(E); 2627 const auto *VD = cast<VarDecl>(DE->getDecl()); 2628 2629 // Skip all but globals. 2630 if (!VD->hasGlobalStorage()) 2631 continue; 2632 2633 // Check if the global has been materialized yet or not. If not, we are done 2634 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2635 // we already emitted the global we might have done so before the 2636 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2637 // (potentially). While not pretty, common practise is to remove the old IR 2638 // global and generate a new one, so we do that here too. Uses are replaced 2639 // properly. 2640 StringRef MangledName = getMangledName(VD); 2641 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2642 if (!Entry) 2643 continue; 2644 2645 // We can also keep the existing global if the address space is what we 2646 // expect it to be, if not, it is replaced. 2647 QualType ASTTy = VD->getType(); 2648 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2649 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2650 if (Entry->getType()->getAddressSpace() == TargetAS) 2651 continue; 2652 2653 // Make a new global with the correct type / address space. 2654 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2655 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2656 2657 // Replace all uses of the old global with a cast. Since we mutate the type 2658 // in place we neeed an intermediate that takes the spot of the old entry 2659 // until we can create the cast. 2660 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2661 getModule(), Entry->getValueType(), false, 2662 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2663 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2664 Entry->replaceAllUsesWith(DummyGV); 2665 2666 Entry->mutateType(PTy); 2667 llvm::Constant *NewPtrForOldDecl = 2668 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2669 Entry, DummyGV->getType()); 2670 2671 // Now we have a casted version of the changed global, the dummy can be 2672 // replaced and deleted. 2673 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2674 DummyGV->eraseFromParent(); 2675 } 2676 } 2677