1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 llvm_unreachable("Declaration should not be in declstmts!"); 103 case Decl::Function: // void X(); 104 case Decl::Record: // struct/union/class X; 105 case Decl::Enum: // enum X; 106 case Decl::EnumConstant: // enum ? { X = ? } 107 case Decl::CXXRecord: // struct/union/class X; [C++] 108 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 109 case Decl::Label: // __label__ x; 110 case Decl::Import: 111 case Decl::MSGuid: // __declspec(uuid("...")) 112 case Decl::OMPThreadPrivate: 113 case Decl::OMPAllocate: 114 case Decl::OMPCapturedExpr: 115 case Decl::OMPRequires: 116 case Decl::Empty: 117 case Decl::Concept: 118 case Decl::LifetimeExtendedTemporary: 119 case Decl::RequiresExprBody: 120 // None of these decls require codegen support. 121 return; 122 123 case Decl::NamespaceAlias: 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 126 return; 127 case Decl::Using: // using X; [C++] 128 if (CGDebugInfo *DI = getDebugInfo()) 129 DI->EmitUsingDecl(cast<UsingDecl>(D)); 130 return; 131 case Decl::UsingPack: 132 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 133 EmitDecl(*Using); 134 return; 135 case Decl::UsingDirective: // using namespace X; [C++] 136 if (CGDebugInfo *DI = getDebugInfo()) 137 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 138 return; 139 case Decl::Var: 140 case Decl::Decomposition: { 141 const VarDecl &VD = cast<VarDecl>(D); 142 assert(VD.isLocalVarDecl() && 143 "Should not see file-scope variables inside a function!"); 144 EmitVarDecl(VD); 145 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 146 for (auto *B : DD->bindings()) 147 if (auto *HD = B->getHoldingVar()) 148 EmitVarDecl(*HD); 149 return; 150 } 151 152 case Decl::OMPDeclareReduction: 153 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 154 155 case Decl::OMPDeclareMapper: 156 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 157 158 case Decl::Typedef: // typedef int X; 159 case Decl::TypeAlias: { // using X = int; [C++0x] 160 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 161 QualType Ty = TD.getUnderlyingType(); 162 163 if (Ty->isVariablyModifiedType()) 164 EmitVariablyModifiedType(Ty); 165 166 return; 167 } 168 } 169 } 170 171 /// EmitVarDecl - This method handles emission of any variable declaration 172 /// inside a function, including static vars etc. 173 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 174 if (D.hasExternalStorage()) 175 // Don't emit it now, allow it to be emitted lazily on its first use. 176 return; 177 178 // Some function-scope variable does not have static storage but still 179 // needs to be emitted like a static variable, e.g. a function-scope 180 // variable in constant address space in OpenCL. 181 if (D.getStorageDuration() != SD_Automatic) { 182 // Static sampler variables translated to function calls. 183 if (D.getType()->isSamplerT()) 184 return; 185 186 llvm::GlobalValue::LinkageTypes Linkage = 187 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 188 189 // FIXME: We need to force the emission/use of a guard variable for 190 // some variables even if we can constant-evaluate them because 191 // we can't guarantee every translation unit will constant-evaluate them. 192 193 return EmitStaticVarDecl(D, Linkage); 194 } 195 196 if (D.getType().getAddressSpace() == LangAS::opencl_local) 197 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 198 199 assert(D.hasLocalStorage()); 200 return EmitAutoVarDecl(D); 201 } 202 203 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 204 if (CGM.getLangOpts().CPlusPlus) 205 return CGM.getMangledName(&D).str(); 206 207 // If this isn't C++, we don't need a mangled name, just a pretty one. 208 assert(!D.isExternallyVisible() && "name shouldn't matter"); 209 std::string ContextName; 210 const DeclContext *DC = D.getDeclContext(); 211 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 212 DC = cast<DeclContext>(CD->getNonClosureContext()); 213 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 214 ContextName = std::string(CGM.getMangledName(FD)); 215 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 216 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 217 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 218 ContextName = OMD->getSelector().getAsString(); 219 else 220 llvm_unreachable("Unknown context for static var decl"); 221 222 ContextName += "." + D.getNameAsString(); 223 return ContextName; 224 } 225 226 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 227 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 228 // In general, we don't always emit static var decls once before we reference 229 // them. It is possible to reference them before emitting the function that 230 // contains them, and it is possible to emit the containing function multiple 231 // times. 232 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 233 return ExistingGV; 234 235 QualType Ty = D.getType(); 236 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 237 238 // Use the label if the variable is renamed with the asm-label extension. 239 std::string Name; 240 if (D.hasAttr<AsmLabelAttr>()) 241 Name = std::string(getMangledName(&D)); 242 else 243 Name = getStaticDeclName(*this, D); 244 245 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 246 LangAS AS = GetGlobalVarAddressSpace(&D); 247 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 248 249 // OpenCL variables in local address space and CUDA shared 250 // variables cannot have an initializer. 251 llvm::Constant *Init = nullptr; 252 if (Ty.getAddressSpace() == LangAS::opencl_local || 253 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 254 Init = llvm::UndefValue::get(LTy); 255 else 256 Init = EmitNullConstant(Ty); 257 258 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 259 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 260 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 261 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 262 263 if (supportsCOMDAT() && GV->isWeakForLinker()) 264 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 265 266 if (D.getTLSKind()) 267 setTLSMode(GV, D); 268 269 setGVProperties(GV, &D); 270 271 // Make sure the result is of the correct type. 272 LangAS ExpectedAS = Ty.getAddressSpace(); 273 llvm::Constant *Addr = GV; 274 if (AS != ExpectedAS) { 275 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 276 *this, GV, AS, ExpectedAS, 277 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 278 } 279 280 setStaticLocalDeclAddress(&D, Addr); 281 282 // Ensure that the static local gets initialized by making sure the parent 283 // function gets emitted eventually. 284 const Decl *DC = cast<Decl>(D.getDeclContext()); 285 286 // We can't name blocks or captured statements directly, so try to emit their 287 // parents. 288 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 289 DC = DC->getNonClosureContext(); 290 // FIXME: Ensure that global blocks get emitted. 291 if (!DC) 292 return Addr; 293 } 294 295 GlobalDecl GD; 296 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 297 GD = GlobalDecl(CD, Ctor_Base); 298 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 299 GD = GlobalDecl(DD, Dtor_Base); 300 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 301 GD = GlobalDecl(FD); 302 else { 303 // Don't do anything for Obj-C method decls or global closures. We should 304 // never defer them. 305 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 306 } 307 if (GD.getDecl()) { 308 // Disable emission of the parent function for the OpenMP device codegen. 309 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 310 (void)GetAddrOfGlobal(GD); 311 } 312 313 return Addr; 314 } 315 316 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 317 /// global variable that has already been created for it. If the initializer 318 /// has a different type than GV does, this may free GV and return a different 319 /// one. Otherwise it just returns GV. 320 llvm::GlobalVariable * 321 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 322 llvm::GlobalVariable *GV) { 323 ConstantEmitter emitter(*this); 324 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 325 326 // If constant emission failed, then this should be a C++ static 327 // initializer. 328 if (!Init) { 329 if (!getLangOpts().CPlusPlus) 330 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 331 else if (HaveInsertPoint()) { 332 // Since we have a static initializer, this global variable can't 333 // be constant. 334 GV->setConstant(false); 335 336 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 337 } 338 return GV; 339 } 340 341 // The initializer may differ in type from the global. Rewrite 342 // the global to match the initializer. (We have to do this 343 // because some types, like unions, can't be completely represented 344 // in the LLVM type system.) 345 if (GV->getValueType() != Init->getType()) { 346 llvm::GlobalVariable *OldGV = GV; 347 348 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 349 OldGV->isConstant(), 350 OldGV->getLinkage(), Init, "", 351 /*InsertBefore*/ OldGV, 352 OldGV->getThreadLocalMode(), 353 CGM.getContext().getTargetAddressSpace(D.getType())); 354 GV->setVisibility(OldGV->getVisibility()); 355 GV->setDSOLocal(OldGV->isDSOLocal()); 356 GV->setComdat(OldGV->getComdat()); 357 358 // Steal the name of the old global 359 GV->takeName(OldGV); 360 361 // Replace all uses of the old global with the new global 362 llvm::Constant *NewPtrForOldDecl = 363 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 364 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 365 366 // Erase the old global, since it is no longer used. 367 OldGV->eraseFromParent(); 368 } 369 370 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 371 GV->setInitializer(Init); 372 373 emitter.finalize(GV); 374 375 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 376 HaveInsertPoint()) { 377 // We have a constant initializer, but a nontrivial destructor. We still 378 // need to perform a guarded "initialization" in order to register the 379 // destructor. 380 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 381 } 382 383 return GV; 384 } 385 386 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 387 llvm::GlobalValue::LinkageTypes Linkage) { 388 // Check to see if we already have a global variable for this 389 // declaration. This can happen when double-emitting function 390 // bodies, e.g. with complete and base constructors. 391 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 392 CharUnits alignment = getContext().getDeclAlign(&D); 393 394 // Store into LocalDeclMap before generating initializer to handle 395 // circular references. 396 setAddrOfLocalVar(&D, Address(addr, alignment)); 397 398 // We can't have a VLA here, but we can have a pointer to a VLA, 399 // even though that doesn't really make any sense. 400 // Make sure to evaluate VLA bounds now so that we have them for later. 401 if (D.getType()->isVariablyModifiedType()) 402 EmitVariablyModifiedType(D.getType()); 403 404 // Save the type in case adding the initializer forces a type change. 405 llvm::Type *expectedType = addr->getType(); 406 407 llvm::GlobalVariable *var = 408 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 409 410 // CUDA's local and local static __shared__ variables should not 411 // have any non-empty initializers. This is ensured by Sema. 412 // Whatever initializer such variable may have when it gets here is 413 // a no-op and should not be emitted. 414 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 415 D.hasAttr<CUDASharedAttr>(); 416 // If this value has an initializer, emit it. 417 if (D.getInit() && !isCudaSharedVar) 418 var = AddInitializerToStaticVarDecl(D, var); 419 420 var->setAlignment(alignment.getAsAlign()); 421 422 if (D.hasAttr<AnnotateAttr>()) 423 CGM.AddGlobalAnnotations(&D, var); 424 425 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 426 var->addAttribute("bss-section", SA->getName()); 427 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 428 var->addAttribute("data-section", SA->getName()); 429 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 430 var->addAttribute("rodata-section", SA->getName()); 431 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 432 var->addAttribute("relro-section", SA->getName()); 433 434 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 435 var->setSection(SA->getName()); 436 437 if (D.hasAttr<UsedAttr>()) 438 CGM.addUsedGlobal(var); 439 440 // We may have to cast the constant because of the initializer 441 // mismatch above. 442 // 443 // FIXME: It is really dangerous to store this in the map; if anyone 444 // RAUW's the GV uses of this constant will be invalid. 445 llvm::Constant *castedAddr = 446 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 447 if (var != castedAddr) 448 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 449 CGM.setStaticLocalDeclAddress(&D, castedAddr); 450 451 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 452 453 // Emit global variable debug descriptor for static vars. 454 CGDebugInfo *DI = getDebugInfo(); 455 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 456 DI->setLocation(D.getLocation()); 457 DI->EmitGlobalVariable(var, &D); 458 } 459 } 460 461 namespace { 462 struct DestroyObject final : EHScopeStack::Cleanup { 463 DestroyObject(Address addr, QualType type, 464 CodeGenFunction::Destroyer *destroyer, 465 bool useEHCleanupForArray) 466 : addr(addr), type(type), destroyer(destroyer), 467 useEHCleanupForArray(useEHCleanupForArray) {} 468 469 Address addr; 470 QualType type; 471 CodeGenFunction::Destroyer *destroyer; 472 bool useEHCleanupForArray; 473 474 void Emit(CodeGenFunction &CGF, Flags flags) override { 475 // Don't use an EH cleanup recursively from an EH cleanup. 476 bool useEHCleanupForArray = 477 flags.isForNormalCleanup() && this->useEHCleanupForArray; 478 479 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 480 } 481 }; 482 483 template <class Derived> 484 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 485 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 486 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 487 488 llvm::Value *NRVOFlag; 489 Address Loc; 490 QualType Ty; 491 492 void Emit(CodeGenFunction &CGF, Flags flags) override { 493 // Along the exceptions path we always execute the dtor. 494 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 495 496 llvm::BasicBlock *SkipDtorBB = nullptr; 497 if (NRVO) { 498 // If we exited via NRVO, we skip the destructor call. 499 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 500 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 501 llvm::Value *DidNRVO = 502 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 503 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 504 CGF.EmitBlock(RunDtorBB); 505 } 506 507 static_cast<Derived *>(this)->emitDestructorCall(CGF); 508 509 if (NRVO) CGF.EmitBlock(SkipDtorBB); 510 } 511 512 virtual ~DestroyNRVOVariable() = default; 513 }; 514 515 struct DestroyNRVOVariableCXX final 516 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 517 DestroyNRVOVariableCXX(Address addr, QualType type, 518 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 519 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 520 Dtor(Dtor) {} 521 522 const CXXDestructorDecl *Dtor; 523 524 void emitDestructorCall(CodeGenFunction &CGF) { 525 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 526 /*ForVirtualBase=*/false, 527 /*Delegating=*/false, Loc, Ty); 528 } 529 }; 530 531 struct DestroyNRVOVariableC final 532 : DestroyNRVOVariable<DestroyNRVOVariableC> { 533 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 534 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 535 536 void emitDestructorCall(CodeGenFunction &CGF) { 537 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 538 } 539 }; 540 541 struct CallStackRestore final : EHScopeStack::Cleanup { 542 Address Stack; 543 CallStackRestore(Address Stack) : Stack(Stack) {} 544 void Emit(CodeGenFunction &CGF, Flags flags) override { 545 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 546 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 547 CGF.Builder.CreateCall(F, V); 548 } 549 }; 550 551 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 552 const VarDecl &Var; 553 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 554 555 void Emit(CodeGenFunction &CGF, Flags flags) override { 556 // Compute the address of the local variable, in case it's a 557 // byref or something. 558 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 559 Var.getType(), VK_LValue, SourceLocation()); 560 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 561 SourceLocation()); 562 CGF.EmitExtendGCLifetime(value); 563 } 564 }; 565 566 struct CallCleanupFunction final : EHScopeStack::Cleanup { 567 llvm::Constant *CleanupFn; 568 const CGFunctionInfo &FnInfo; 569 const VarDecl &Var; 570 571 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 572 const VarDecl *Var) 573 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 574 575 void Emit(CodeGenFunction &CGF, Flags flags) override { 576 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 577 Var.getType(), VK_LValue, SourceLocation()); 578 // Compute the address of the local variable, in case it's a byref 579 // or something. 580 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 581 582 // In some cases, the type of the function argument will be different from 583 // the type of the pointer. An example of this is 584 // void f(void* arg); 585 // __attribute__((cleanup(f))) void *g; 586 // 587 // To fix this we insert a bitcast here. 588 QualType ArgTy = FnInfo.arg_begin()->type; 589 llvm::Value *Arg = 590 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 591 592 CallArgList Args; 593 Args.add(RValue::get(Arg), 594 CGF.getContext().getPointerType(Var.getType())); 595 auto Callee = CGCallee::forDirect(CleanupFn); 596 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 597 } 598 }; 599 } // end anonymous namespace 600 601 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 602 /// variable with lifetime. 603 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 604 Address addr, 605 Qualifiers::ObjCLifetime lifetime) { 606 switch (lifetime) { 607 case Qualifiers::OCL_None: 608 llvm_unreachable("present but none"); 609 610 case Qualifiers::OCL_ExplicitNone: 611 // nothing to do 612 break; 613 614 case Qualifiers::OCL_Strong: { 615 CodeGenFunction::Destroyer *destroyer = 616 (var.hasAttr<ObjCPreciseLifetimeAttr>() 617 ? CodeGenFunction::destroyARCStrongPrecise 618 : CodeGenFunction::destroyARCStrongImprecise); 619 620 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 621 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 622 cleanupKind & EHCleanup); 623 break; 624 } 625 case Qualifiers::OCL_Autoreleasing: 626 // nothing to do 627 break; 628 629 case Qualifiers::OCL_Weak: 630 // __weak objects always get EH cleanups; otherwise, exceptions 631 // could cause really nasty crashes instead of mere leaks. 632 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 633 CodeGenFunction::destroyARCWeak, 634 /*useEHCleanup*/ true); 635 break; 636 } 637 } 638 639 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 640 if (const Expr *e = dyn_cast<Expr>(s)) { 641 // Skip the most common kinds of expressions that make 642 // hierarchy-walking expensive. 643 s = e = e->IgnoreParenCasts(); 644 645 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 646 return (ref->getDecl() == &var); 647 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 648 const BlockDecl *block = be->getBlockDecl(); 649 for (const auto &I : block->captures()) { 650 if (I.getVariable() == &var) 651 return true; 652 } 653 } 654 } 655 656 for (const Stmt *SubStmt : s->children()) 657 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 658 if (SubStmt && isAccessedBy(var, SubStmt)) 659 return true; 660 661 return false; 662 } 663 664 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 665 if (!decl) return false; 666 if (!isa<VarDecl>(decl)) return false; 667 const VarDecl *var = cast<VarDecl>(decl); 668 return isAccessedBy(*var, e); 669 } 670 671 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 672 const LValue &destLV, const Expr *init) { 673 bool needsCast = false; 674 675 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 676 switch (castExpr->getCastKind()) { 677 // Look through casts that don't require representation changes. 678 case CK_NoOp: 679 case CK_BitCast: 680 case CK_BlockPointerToObjCPointerCast: 681 needsCast = true; 682 break; 683 684 // If we find an l-value to r-value cast from a __weak variable, 685 // emit this operation as a copy or move. 686 case CK_LValueToRValue: { 687 const Expr *srcExpr = castExpr->getSubExpr(); 688 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 689 return false; 690 691 // Emit the source l-value. 692 LValue srcLV = CGF.EmitLValue(srcExpr); 693 694 // Handle a formal type change to avoid asserting. 695 auto srcAddr = srcLV.getAddress(CGF); 696 if (needsCast) { 697 srcAddr = CGF.Builder.CreateElementBitCast( 698 srcAddr, destLV.getAddress(CGF).getElementType()); 699 } 700 701 // If it was an l-value, use objc_copyWeak. 702 if (srcExpr->getValueKind() == VK_LValue) { 703 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 704 } else { 705 assert(srcExpr->getValueKind() == VK_XValue); 706 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 707 } 708 return true; 709 } 710 711 // Stop at anything else. 712 default: 713 return false; 714 } 715 716 init = castExpr->getSubExpr(); 717 } 718 return false; 719 } 720 721 static void drillIntoBlockVariable(CodeGenFunction &CGF, 722 LValue &lvalue, 723 const VarDecl *var) { 724 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 725 } 726 727 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 728 SourceLocation Loc) { 729 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 730 return; 731 732 auto Nullability = LHS.getType()->getNullability(getContext()); 733 if (!Nullability || *Nullability != NullabilityKind::NonNull) 734 return; 735 736 // Check if the right hand side of the assignment is nonnull, if the left 737 // hand side must be nonnull. 738 SanitizerScope SanScope(this); 739 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 740 llvm::Constant *StaticData[] = { 741 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 742 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 743 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 744 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 745 SanitizerHandler::TypeMismatch, StaticData, RHS); 746 } 747 748 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 749 LValue lvalue, bool capturedByInit) { 750 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 751 if (!lifetime) { 752 llvm::Value *value = EmitScalarExpr(init); 753 if (capturedByInit) 754 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 755 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 756 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 757 return; 758 } 759 760 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 761 init = DIE->getExpr(); 762 763 // If we're emitting a value with lifetime, we have to do the 764 // initialization *before* we leave the cleanup scopes. 765 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init)) 766 init = EWC->getSubExpr(); 767 CodeGenFunction::RunCleanupsScope Scope(*this); 768 769 // We have to maintain the illusion that the variable is 770 // zero-initialized. If the variable might be accessed in its 771 // initializer, zero-initialize before running the initializer, then 772 // actually perform the initialization with an assign. 773 bool accessedByInit = false; 774 if (lifetime != Qualifiers::OCL_ExplicitNone) 775 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 776 if (accessedByInit) { 777 LValue tempLV = lvalue; 778 // Drill down to the __block object if necessary. 779 if (capturedByInit) { 780 // We can use a simple GEP for this because it can't have been 781 // moved yet. 782 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 783 cast<VarDecl>(D), 784 /*follow*/ false)); 785 } 786 787 auto ty = 788 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 789 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 790 791 // If __weak, we want to use a barrier under certain conditions. 792 if (lifetime == Qualifiers::OCL_Weak) 793 EmitARCInitWeak(tempLV.getAddress(*this), zero); 794 795 // Otherwise just do a simple store. 796 else 797 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 798 } 799 800 // Emit the initializer. 801 llvm::Value *value = nullptr; 802 803 switch (lifetime) { 804 case Qualifiers::OCL_None: 805 llvm_unreachable("present but none"); 806 807 case Qualifiers::OCL_Strong: { 808 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 809 value = EmitARCRetainScalarExpr(init); 810 break; 811 } 812 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 813 // that we omit the retain, and causes non-autoreleased return values to be 814 // immediately released. 815 LLVM_FALLTHROUGH; 816 } 817 818 case Qualifiers::OCL_ExplicitNone: 819 value = EmitARCUnsafeUnretainedScalarExpr(init); 820 break; 821 822 case Qualifiers::OCL_Weak: { 823 // If it's not accessed by the initializer, try to emit the 824 // initialization with a copy or move. 825 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 826 return; 827 } 828 829 // No way to optimize a producing initializer into this. It's not 830 // worth optimizing for, because the value will immediately 831 // disappear in the common case. 832 value = EmitScalarExpr(init); 833 834 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 835 if (accessedByInit) 836 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 837 else 838 EmitARCInitWeak(lvalue.getAddress(*this), value); 839 return; 840 } 841 842 case Qualifiers::OCL_Autoreleasing: 843 value = EmitARCRetainAutoreleaseScalarExpr(init); 844 break; 845 } 846 847 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 848 849 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 850 851 // If the variable might have been accessed by its initializer, we 852 // might have to initialize with a barrier. We have to do this for 853 // both __weak and __strong, but __weak got filtered out above. 854 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 855 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 856 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 857 EmitARCRelease(oldValue, ARCImpreciseLifetime); 858 return; 859 } 860 861 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 862 } 863 864 /// Decide whether we can emit the non-zero parts of the specified initializer 865 /// with equal or fewer than NumStores scalar stores. 866 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 867 unsigned &NumStores) { 868 // Zero and Undef never requires any extra stores. 869 if (isa<llvm::ConstantAggregateZero>(Init) || 870 isa<llvm::ConstantPointerNull>(Init) || 871 isa<llvm::UndefValue>(Init)) 872 return true; 873 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 874 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 875 isa<llvm::ConstantExpr>(Init)) 876 return Init->isNullValue() || NumStores--; 877 878 // See if we can emit each element. 879 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 880 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 881 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 882 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 883 return false; 884 } 885 return true; 886 } 887 888 if (llvm::ConstantDataSequential *CDS = 889 dyn_cast<llvm::ConstantDataSequential>(Init)) { 890 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 891 llvm::Constant *Elt = CDS->getElementAsConstant(i); 892 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 893 return false; 894 } 895 return true; 896 } 897 898 // Anything else is hard and scary. 899 return false; 900 } 901 902 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 903 /// the scalar stores that would be required. 904 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 905 llvm::Constant *Init, Address Loc, 906 bool isVolatile, CGBuilderTy &Builder) { 907 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 908 "called emitStoresForInitAfterBZero for zero or undef value."); 909 910 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 911 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 912 isa<llvm::ConstantExpr>(Init)) { 913 Builder.CreateStore(Init, Loc, isVolatile); 914 return; 915 } 916 917 if (llvm::ConstantDataSequential *CDS = 918 dyn_cast<llvm::ConstantDataSequential>(Init)) { 919 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 920 llvm::Constant *Elt = CDS->getElementAsConstant(i); 921 922 // If necessary, get a pointer to the element and emit it. 923 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 924 emitStoresForInitAfterBZero( 925 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 926 Builder); 927 } 928 return; 929 } 930 931 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 932 "Unknown value type!"); 933 934 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 935 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 936 937 // If necessary, get a pointer to the element and emit it. 938 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 939 emitStoresForInitAfterBZero(CGM, Elt, 940 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 941 isVolatile, Builder); 942 } 943 } 944 945 /// Decide whether we should use bzero plus some stores to initialize a local 946 /// variable instead of using a memcpy from a constant global. It is beneficial 947 /// to use bzero if the global is all zeros, or mostly zeros and large. 948 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 949 uint64_t GlobalSize) { 950 // If a global is all zeros, always use a bzero. 951 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 952 953 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 954 // do it if it will require 6 or fewer scalar stores. 955 // TODO: Should budget depends on the size? Avoiding a large global warrants 956 // plopping in more stores. 957 unsigned StoreBudget = 6; 958 uint64_t SizeLimit = 32; 959 960 return GlobalSize > SizeLimit && 961 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 962 } 963 964 /// Decide whether we should use memset to initialize a local variable instead 965 /// of using a memcpy from a constant global. Assumes we've already decided to 966 /// not user bzero. 967 /// FIXME We could be more clever, as we are for bzero above, and generate 968 /// memset followed by stores. It's unclear that's worth the effort. 969 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 970 uint64_t GlobalSize, 971 const llvm::DataLayout &DL) { 972 uint64_t SizeLimit = 32; 973 if (GlobalSize <= SizeLimit) 974 return nullptr; 975 return llvm::isBytewiseValue(Init, DL); 976 } 977 978 /// Decide whether we want to split a constant structure or array store into a 979 /// sequence of its fields' stores. This may cost us code size and compilation 980 /// speed, but plays better with store optimizations. 981 static bool shouldSplitConstantStore(CodeGenModule &CGM, 982 uint64_t GlobalByteSize) { 983 // Don't break things that occupy more than one cacheline. 984 uint64_t ByteSizeLimit = 64; 985 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 986 return false; 987 if (GlobalByteSize <= ByteSizeLimit) 988 return true; 989 return false; 990 } 991 992 enum class IsPattern { No, Yes }; 993 994 /// Generate a constant filled with either a pattern or zeroes. 995 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 996 llvm::Type *Ty) { 997 if (isPattern == IsPattern::Yes) 998 return initializationPatternFor(CGM, Ty); 999 else 1000 return llvm::Constant::getNullValue(Ty); 1001 } 1002 1003 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1004 llvm::Constant *constant); 1005 1006 /// Helper function for constWithPadding() to deal with padding in structures. 1007 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1008 IsPattern isPattern, 1009 llvm::StructType *STy, 1010 llvm::Constant *constant) { 1011 const llvm::DataLayout &DL = CGM.getDataLayout(); 1012 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1013 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1014 unsigned SizeSoFar = 0; 1015 SmallVector<llvm::Constant *, 8> Values; 1016 bool NestedIntact = true; 1017 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1018 unsigned CurOff = Layout->getElementOffset(i); 1019 if (SizeSoFar < CurOff) { 1020 assert(!STy->isPacked()); 1021 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1022 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1023 } 1024 llvm::Constant *CurOp; 1025 if (constant->isZeroValue()) 1026 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1027 else 1028 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1029 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1030 if (CurOp != NewOp) 1031 NestedIntact = false; 1032 Values.push_back(NewOp); 1033 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1034 } 1035 unsigned TotalSize = Layout->getSizeInBytes(); 1036 if (SizeSoFar < TotalSize) { 1037 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1038 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1039 } 1040 if (NestedIntact && Values.size() == STy->getNumElements()) 1041 return constant; 1042 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1043 } 1044 1045 /// Replace all padding bytes in a given constant with either a pattern byte or 1046 /// 0x00. 1047 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1048 llvm::Constant *constant) { 1049 llvm::Type *OrigTy = constant->getType(); 1050 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1051 return constStructWithPadding(CGM, isPattern, STy, constant); 1052 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1053 llvm::SmallVector<llvm::Constant *, 8> Values; 1054 uint64_t Size = ArrayTy->getNumElements(); 1055 if (!Size) 1056 return constant; 1057 llvm::Type *ElemTy = ArrayTy->getElementType(); 1058 bool ZeroInitializer = constant->isNullValue(); 1059 llvm::Constant *OpValue, *PaddedOp; 1060 if (ZeroInitializer) { 1061 OpValue = llvm::Constant::getNullValue(ElemTy); 1062 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1063 } 1064 for (unsigned Op = 0; Op != Size; ++Op) { 1065 if (!ZeroInitializer) { 1066 OpValue = constant->getAggregateElement(Op); 1067 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1068 } 1069 Values.push_back(PaddedOp); 1070 } 1071 auto *NewElemTy = Values[0]->getType(); 1072 if (NewElemTy == ElemTy) 1073 return constant; 1074 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1075 return llvm::ConstantArray::get(NewArrayTy, Values); 1076 } 1077 // FIXME: Add handling for tail padding in vectors. Vectors don't 1078 // have padding between or inside elements, but the total amount of 1079 // data can be less than the allocated size. 1080 return constant; 1081 } 1082 1083 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1084 llvm::Constant *Constant, 1085 CharUnits Align) { 1086 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1087 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1088 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1089 return CC->getNameAsString(); 1090 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1091 return CD->getNameAsString(); 1092 return std::string(getMangledName(FD)); 1093 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1094 return OM->getNameAsString(); 1095 } else if (isa<BlockDecl>(DC)) { 1096 return "<block>"; 1097 } else if (isa<CapturedDecl>(DC)) { 1098 return "<captured>"; 1099 } else { 1100 llvm_unreachable("expected a function or method"); 1101 } 1102 }; 1103 1104 // Form a simple per-variable cache of these values in case we find we 1105 // want to reuse them. 1106 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1107 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1108 auto *Ty = Constant->getType(); 1109 bool isConstant = true; 1110 llvm::GlobalVariable *InsertBefore = nullptr; 1111 unsigned AS = 1112 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1113 std::string Name; 1114 if (D.hasGlobalStorage()) 1115 Name = getMangledName(&D).str() + ".const"; 1116 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1117 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1118 else 1119 llvm_unreachable("local variable has no parent function or method"); 1120 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1121 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1122 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1123 GV->setAlignment(Align.getAsAlign()); 1124 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1125 CacheEntry = GV; 1126 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1127 CacheEntry->setAlignment(Align.getAsAlign()); 1128 } 1129 1130 return Address(CacheEntry, Align); 1131 } 1132 1133 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1134 const VarDecl &D, 1135 CGBuilderTy &Builder, 1136 llvm::Constant *Constant, 1137 CharUnits Align) { 1138 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1139 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1140 SrcPtr.getAddressSpace()); 1141 if (SrcPtr.getType() != BP) 1142 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1143 return SrcPtr; 1144 } 1145 1146 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1147 Address Loc, bool isVolatile, 1148 CGBuilderTy &Builder, 1149 llvm::Constant *constant) { 1150 auto *Ty = constant->getType(); 1151 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1152 if (!ConstantSize) 1153 return; 1154 1155 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1156 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1157 if (canDoSingleStore) { 1158 Builder.CreateStore(constant, Loc, isVolatile); 1159 return; 1160 } 1161 1162 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1163 1164 // If the initializer is all or mostly the same, codegen with bzero / memset 1165 // then do a few stores afterward. 1166 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1167 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1168 isVolatile); 1169 1170 bool valueAlreadyCorrect = 1171 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1172 if (!valueAlreadyCorrect) { 1173 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1174 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1175 } 1176 return; 1177 } 1178 1179 // If the initializer is a repeated byte pattern, use memset. 1180 llvm::Value *Pattern = 1181 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1182 if (Pattern) { 1183 uint64_t Value = 0x00; 1184 if (!isa<llvm::UndefValue>(Pattern)) { 1185 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1186 assert(AP.getBitWidth() <= 8); 1187 Value = AP.getLimitedValue(); 1188 } 1189 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1190 isVolatile); 1191 return; 1192 } 1193 1194 // If the initializer is small, use a handful of stores. 1195 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1196 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1197 // FIXME: handle the case when STy != Loc.getElementType(). 1198 if (STy == Loc.getElementType()) { 1199 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1200 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1201 emitStoresForConstant( 1202 CGM, D, EltPtr, isVolatile, Builder, 1203 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1204 } 1205 return; 1206 } 1207 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1208 // FIXME: handle the case when ATy != Loc.getElementType(). 1209 if (ATy == Loc.getElementType()) { 1210 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1211 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1212 emitStoresForConstant( 1213 CGM, D, EltPtr, isVolatile, Builder, 1214 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1215 } 1216 return; 1217 } 1218 } 1219 } 1220 1221 // Copy from a global. 1222 Builder.CreateMemCpy(Loc, 1223 createUnnamedGlobalForMemcpyFrom( 1224 CGM, D, Builder, constant, Loc.getAlignment()), 1225 SizeVal, isVolatile); 1226 } 1227 1228 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1229 Address Loc, bool isVolatile, 1230 CGBuilderTy &Builder) { 1231 llvm::Type *ElTy = Loc.getElementType(); 1232 llvm::Constant *constant = 1233 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1234 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1235 } 1236 1237 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1238 Address Loc, bool isVolatile, 1239 CGBuilderTy &Builder) { 1240 llvm::Type *ElTy = Loc.getElementType(); 1241 llvm::Constant *constant = constWithPadding( 1242 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1243 assert(!isa<llvm::UndefValue>(constant)); 1244 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1245 } 1246 1247 static bool containsUndef(llvm::Constant *constant) { 1248 auto *Ty = constant->getType(); 1249 if (isa<llvm::UndefValue>(constant)) 1250 return true; 1251 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1252 for (llvm::Use &Op : constant->operands()) 1253 if (containsUndef(cast<llvm::Constant>(Op))) 1254 return true; 1255 return false; 1256 } 1257 1258 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1259 llvm::Constant *constant) { 1260 auto *Ty = constant->getType(); 1261 if (isa<llvm::UndefValue>(constant)) 1262 return patternOrZeroFor(CGM, isPattern, Ty); 1263 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1264 return constant; 1265 if (!containsUndef(constant)) 1266 return constant; 1267 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1268 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1269 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1270 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1271 } 1272 if (Ty->isStructTy()) 1273 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1274 if (Ty->isArrayTy()) 1275 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1276 assert(Ty->isVectorTy()); 1277 return llvm::ConstantVector::get(Values); 1278 } 1279 1280 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1281 /// variable declaration with auto, register, or no storage class specifier. 1282 /// These turn into simple stack objects, or GlobalValues depending on target. 1283 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1284 AutoVarEmission emission = EmitAutoVarAlloca(D); 1285 EmitAutoVarInit(emission); 1286 EmitAutoVarCleanups(emission); 1287 } 1288 1289 /// Emit a lifetime.begin marker if some criteria are satisfied. 1290 /// \return a pointer to the temporary size Value if a marker was emitted, null 1291 /// otherwise 1292 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1293 llvm::Value *Addr) { 1294 if (!ShouldEmitLifetimeMarkers) 1295 return nullptr; 1296 1297 assert(Addr->getType()->getPointerAddressSpace() == 1298 CGM.getDataLayout().getAllocaAddrSpace() && 1299 "Pointer should be in alloca address space"); 1300 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1301 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1302 llvm::CallInst *C = 1303 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1304 C->setDoesNotThrow(); 1305 return SizeV; 1306 } 1307 1308 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1309 assert(Addr->getType()->getPointerAddressSpace() == 1310 CGM.getDataLayout().getAllocaAddrSpace() && 1311 "Pointer should be in alloca address space"); 1312 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1313 llvm::CallInst *C = 1314 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1315 C->setDoesNotThrow(); 1316 } 1317 1318 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1319 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1320 // For each dimension stores its QualType and corresponding 1321 // size-expression Value. 1322 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1323 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1324 1325 // Break down the array into individual dimensions. 1326 QualType Type1D = D.getType(); 1327 while (getContext().getAsVariableArrayType(Type1D)) { 1328 auto VlaSize = getVLAElements1D(Type1D); 1329 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1330 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1331 else { 1332 // Generate a locally unique name for the size expression. 1333 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1334 SmallString<12> Buffer; 1335 StringRef NameRef = Name.toStringRef(Buffer); 1336 auto &Ident = getContext().Idents.getOwn(NameRef); 1337 VLAExprNames.push_back(&Ident); 1338 auto SizeExprAddr = 1339 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1340 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1341 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1342 Type1D.getUnqualifiedType()); 1343 } 1344 Type1D = VlaSize.Type; 1345 } 1346 1347 if (!EmitDebugInfo) 1348 return; 1349 1350 // Register each dimension's size-expression with a DILocalVariable, 1351 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1352 // to describe this array. 1353 unsigned NameIdx = 0; 1354 for (auto &VlaSize : Dimensions) { 1355 llvm::Metadata *MD; 1356 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1357 MD = llvm::ConstantAsMetadata::get(C); 1358 else { 1359 // Create an artificial VarDecl to generate debug info for. 1360 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1361 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1362 auto QT = getContext().getIntTypeForBitwidth( 1363 VlaExprTy->getScalarSizeInBits(), false); 1364 auto *ArtificialDecl = VarDecl::Create( 1365 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1366 D.getLocation(), D.getLocation(), NameIdent, QT, 1367 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1368 ArtificialDecl->setImplicit(); 1369 1370 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1371 Builder); 1372 } 1373 assert(MD && "No Size expression debug node created"); 1374 DI->registerVLASizeExpression(VlaSize.Type, MD); 1375 } 1376 } 1377 1378 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1379 /// local variable. Does not emit initialization or destruction. 1380 CodeGenFunction::AutoVarEmission 1381 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1382 QualType Ty = D.getType(); 1383 assert( 1384 Ty.getAddressSpace() == LangAS::Default || 1385 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1386 1387 AutoVarEmission emission(D); 1388 1389 bool isEscapingByRef = D.isEscapingByref(); 1390 emission.IsEscapingByRef = isEscapingByRef; 1391 1392 CharUnits alignment = getContext().getDeclAlign(&D); 1393 1394 // If the type is variably-modified, emit all the VLA sizes for it. 1395 if (Ty->isVariablyModifiedType()) 1396 EmitVariablyModifiedType(Ty); 1397 1398 auto *DI = getDebugInfo(); 1399 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1400 1401 Address address = Address::invalid(); 1402 Address AllocaAddr = Address::invalid(); 1403 Address OpenMPLocalAddr = Address::invalid(); 1404 if (CGM.getLangOpts().OpenMPIRBuilder) 1405 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1406 else 1407 OpenMPLocalAddr = 1408 getLangOpts().OpenMP 1409 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1410 : Address::invalid(); 1411 1412 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1413 1414 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1415 address = OpenMPLocalAddr; 1416 } else if (Ty->isConstantSizeType()) { 1417 // If this value is an array or struct with a statically determinable 1418 // constant initializer, there are optimizations we can do. 1419 // 1420 // TODO: We should constant-evaluate the initializer of any variable, 1421 // as long as it is initialized by a constant expression. Currently, 1422 // isConstantInitializer produces wrong answers for structs with 1423 // reference or bitfield members, and a few other cases, and checking 1424 // for POD-ness protects us from some of these. 1425 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1426 (D.isConstexpr() || 1427 ((Ty.isPODType(getContext()) || 1428 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1429 D.getInit()->isConstantInitializer(getContext(), false)))) { 1430 1431 // If the variable's a const type, and it's neither an NRVO 1432 // candidate nor a __block variable and has no mutable members, 1433 // emit it as a global instead. 1434 // Exception is if a variable is located in non-constant address space 1435 // in OpenCL. 1436 if ((!getLangOpts().OpenCL || 1437 Ty.getAddressSpace() == LangAS::opencl_constant) && 1438 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1439 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1440 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1441 1442 // Signal this condition to later callbacks. 1443 emission.Addr = Address::invalid(); 1444 assert(emission.wasEmittedAsGlobal()); 1445 return emission; 1446 } 1447 1448 // Otherwise, tell the initialization code that we're in this case. 1449 emission.IsConstantAggregate = true; 1450 } 1451 1452 // A normal fixed sized variable becomes an alloca in the entry block, 1453 // unless: 1454 // - it's an NRVO variable. 1455 // - we are compiling OpenMP and it's an OpenMP local variable. 1456 if (NRVO) { 1457 // The named return value optimization: allocate this variable in the 1458 // return slot, so that we can elide the copy when returning this 1459 // variable (C++0x [class.copy]p34). 1460 address = ReturnValue; 1461 1462 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1463 const auto *RD = RecordTy->getDecl(); 1464 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1465 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1466 RD->isNonTrivialToPrimitiveDestroy()) { 1467 // Create a flag that is used to indicate when the NRVO was applied 1468 // to this variable. Set it to zero to indicate that NRVO was not 1469 // applied. 1470 llvm::Value *Zero = Builder.getFalse(); 1471 Address NRVOFlag = 1472 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1473 EnsureInsertPoint(); 1474 Builder.CreateStore(Zero, NRVOFlag); 1475 1476 // Record the NRVO flag for this variable. 1477 NRVOFlags[&D] = NRVOFlag.getPointer(); 1478 emission.NRVOFlag = NRVOFlag.getPointer(); 1479 } 1480 } 1481 } else { 1482 CharUnits allocaAlignment; 1483 llvm::Type *allocaTy; 1484 if (isEscapingByRef) { 1485 auto &byrefInfo = getBlockByrefInfo(&D); 1486 allocaTy = byrefInfo.Type; 1487 allocaAlignment = byrefInfo.ByrefAlignment; 1488 } else { 1489 allocaTy = ConvertTypeForMem(Ty); 1490 allocaAlignment = alignment; 1491 } 1492 1493 // Create the alloca. Note that we set the name separately from 1494 // building the instruction so that it's there even in no-asserts 1495 // builds. 1496 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1497 /*ArraySize=*/nullptr, &AllocaAddr); 1498 1499 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1500 // the catch parameter starts in the catchpad instruction, and we can't 1501 // insert code in those basic blocks. 1502 bool IsMSCatchParam = 1503 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1504 1505 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1506 // if we don't have a valid insertion point (?). 1507 if (HaveInsertPoint() && !IsMSCatchParam) { 1508 // If there's a jump into the lifetime of this variable, its lifetime 1509 // gets broken up into several regions in IR, which requires more work 1510 // to handle correctly. For now, just omit the intrinsics; this is a 1511 // rare case, and it's better to just be conservatively correct. 1512 // PR28267. 1513 // 1514 // We have to do this in all language modes if there's a jump past the 1515 // declaration. We also have to do it in C if there's a jump to an 1516 // earlier point in the current block because non-VLA lifetimes begin as 1517 // soon as the containing block is entered, not when its variables 1518 // actually come into scope; suppressing the lifetime annotations 1519 // completely in this case is unnecessarily pessimistic, but again, this 1520 // is rare. 1521 if (!Bypasses.IsBypassed(&D) && 1522 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1523 llvm::TypeSize size = 1524 CGM.getDataLayout().getTypeAllocSize(allocaTy); 1525 emission.SizeForLifetimeMarkers = 1526 size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer()) 1527 : EmitLifetimeStart(size.getFixedSize(), 1528 AllocaAddr.getPointer()); 1529 } 1530 } else { 1531 assert(!emission.useLifetimeMarkers()); 1532 } 1533 } 1534 } else { 1535 EnsureInsertPoint(); 1536 1537 if (!DidCallStackSave) { 1538 // Save the stack. 1539 Address Stack = 1540 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1541 1542 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1543 llvm::Value *V = Builder.CreateCall(F); 1544 Builder.CreateStore(V, Stack); 1545 1546 DidCallStackSave = true; 1547 1548 // Push a cleanup block and restore the stack there. 1549 // FIXME: in general circumstances, this should be an EH cleanup. 1550 pushStackRestore(NormalCleanup, Stack); 1551 } 1552 1553 auto VlaSize = getVLASize(Ty); 1554 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1555 1556 // Allocate memory for the array. 1557 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1558 &AllocaAddr); 1559 1560 // If we have debug info enabled, properly describe the VLA dimensions for 1561 // this type by registering the vla size expression for each of the 1562 // dimensions. 1563 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1564 } 1565 1566 setAddrOfLocalVar(&D, address); 1567 emission.Addr = address; 1568 emission.AllocaAddr = AllocaAddr; 1569 1570 // Emit debug info for local var declaration. 1571 if (EmitDebugInfo && HaveInsertPoint()) { 1572 Address DebugAddr = address; 1573 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1574 DI->setLocation(D.getLocation()); 1575 1576 // If NRVO, use a pointer to the return address. 1577 if (UsePointerValue) 1578 DebugAddr = ReturnValuePointer; 1579 1580 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1581 UsePointerValue); 1582 } 1583 1584 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1585 EmitVarAnnotations(&D, address.getPointer()); 1586 1587 // Make sure we call @llvm.lifetime.end. 1588 if (emission.useLifetimeMarkers()) 1589 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1590 emission.getOriginalAllocatedAddress(), 1591 emission.getSizeForLifetimeMarkers()); 1592 1593 return emission; 1594 } 1595 1596 static bool isCapturedBy(const VarDecl &, const Expr *); 1597 1598 /// Determines whether the given __block variable is potentially 1599 /// captured by the given statement. 1600 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1601 if (const Expr *E = dyn_cast<Expr>(S)) 1602 return isCapturedBy(Var, E); 1603 for (const Stmt *SubStmt : S->children()) 1604 if (isCapturedBy(Var, SubStmt)) 1605 return true; 1606 return false; 1607 } 1608 1609 /// Determines whether the given __block variable is potentially 1610 /// captured by the given expression. 1611 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1612 // Skip the most common kinds of expressions that make 1613 // hierarchy-walking expensive. 1614 E = E->IgnoreParenCasts(); 1615 1616 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1617 const BlockDecl *Block = BE->getBlockDecl(); 1618 for (const auto &I : Block->captures()) { 1619 if (I.getVariable() == &Var) 1620 return true; 1621 } 1622 1623 // No need to walk into the subexpressions. 1624 return false; 1625 } 1626 1627 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1628 const CompoundStmt *CS = SE->getSubStmt(); 1629 for (const auto *BI : CS->body()) 1630 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1631 if (isCapturedBy(Var, BIE)) 1632 return true; 1633 } 1634 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1635 // special case declarations 1636 for (const auto *I : DS->decls()) { 1637 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1638 const Expr *Init = VD->getInit(); 1639 if (Init && isCapturedBy(Var, Init)) 1640 return true; 1641 } 1642 } 1643 } 1644 else 1645 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1646 // Later, provide code to poke into statements for capture analysis. 1647 return true; 1648 return false; 1649 } 1650 1651 for (const Stmt *SubStmt : E->children()) 1652 if (isCapturedBy(Var, SubStmt)) 1653 return true; 1654 1655 return false; 1656 } 1657 1658 /// Determine whether the given initializer is trivial in the sense 1659 /// that it requires no code to be generated. 1660 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1661 if (!Init) 1662 return true; 1663 1664 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1665 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1666 if (Constructor->isTrivial() && 1667 Constructor->isDefaultConstructor() && 1668 !Construct->requiresZeroInitialization()) 1669 return true; 1670 1671 return false; 1672 } 1673 1674 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1675 const VarDecl &D, 1676 Address Loc) { 1677 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1678 CharUnits Size = getContext().getTypeSizeInChars(type); 1679 bool isVolatile = type.isVolatileQualified(); 1680 if (!Size.isZero()) { 1681 switch (trivialAutoVarInit) { 1682 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1683 llvm_unreachable("Uninitialized handled by caller"); 1684 case LangOptions::TrivialAutoVarInitKind::Zero: 1685 if (CGM.stopAutoInit()) 1686 return; 1687 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1688 break; 1689 case LangOptions::TrivialAutoVarInitKind::Pattern: 1690 if (CGM.stopAutoInit()) 1691 return; 1692 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1693 break; 1694 } 1695 return; 1696 } 1697 1698 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1699 // them, so emit a memcpy with the VLA size to initialize each element. 1700 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1701 // will catch that code, but there exists code which generates zero-sized 1702 // VLAs. Be nice and initialize whatever they requested. 1703 const auto *VlaType = getContext().getAsVariableArrayType(type); 1704 if (!VlaType) 1705 return; 1706 auto VlaSize = getVLASize(VlaType); 1707 auto SizeVal = VlaSize.NumElts; 1708 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1709 switch (trivialAutoVarInit) { 1710 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1711 llvm_unreachable("Uninitialized handled by caller"); 1712 1713 case LangOptions::TrivialAutoVarInitKind::Zero: 1714 if (CGM.stopAutoInit()) 1715 return; 1716 if (!EltSize.isOne()) 1717 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1718 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1719 isVolatile); 1720 break; 1721 1722 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1723 if (CGM.stopAutoInit()) 1724 return; 1725 llvm::Type *ElTy = Loc.getElementType(); 1726 llvm::Constant *Constant = constWithPadding( 1727 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1728 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1729 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1730 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1731 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1732 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1733 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1734 "vla.iszerosized"); 1735 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1736 EmitBlock(SetupBB); 1737 if (!EltSize.isOne()) 1738 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1739 llvm::Value *BaseSizeInChars = 1740 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1741 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1742 llvm::Value *End = 1743 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1744 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1745 EmitBlock(LoopBB); 1746 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1747 Cur->addIncoming(Begin.getPointer(), OriginBB); 1748 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1749 Builder.CreateMemCpy(Address(Cur, CurAlign), 1750 createUnnamedGlobalForMemcpyFrom( 1751 CGM, D, Builder, Constant, ConstantAlign), 1752 BaseSizeInChars, isVolatile); 1753 llvm::Value *Next = 1754 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1755 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1756 Builder.CreateCondBr(Done, ContBB, LoopBB); 1757 Cur->addIncoming(Next, LoopBB); 1758 EmitBlock(ContBB); 1759 } break; 1760 } 1761 } 1762 1763 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1764 assert(emission.Variable && "emission was not valid!"); 1765 1766 // If this was emitted as a global constant, we're done. 1767 if (emission.wasEmittedAsGlobal()) return; 1768 1769 const VarDecl &D = *emission.Variable; 1770 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1771 QualType type = D.getType(); 1772 1773 // If this local has an initializer, emit it now. 1774 const Expr *Init = D.getInit(); 1775 1776 // If we are at an unreachable point, we don't need to emit the initializer 1777 // unless it contains a label. 1778 if (!HaveInsertPoint()) { 1779 if (!Init || !ContainsLabel(Init)) return; 1780 EnsureInsertPoint(); 1781 } 1782 1783 // Initialize the structure of a __block variable. 1784 if (emission.IsEscapingByRef) 1785 emitByrefStructureInit(emission); 1786 1787 // Initialize the variable here if it doesn't have a initializer and it is a 1788 // C struct that is non-trivial to initialize or an array containing such a 1789 // struct. 1790 if (!Init && 1791 type.isNonTrivialToPrimitiveDefaultInitialize() == 1792 QualType::PDIK_Struct) { 1793 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1794 if (emission.IsEscapingByRef) 1795 drillIntoBlockVariable(*this, Dst, &D); 1796 defaultInitNonTrivialCStructVar(Dst); 1797 return; 1798 } 1799 1800 // Check whether this is a byref variable that's potentially 1801 // captured and moved by its own initializer. If so, we'll need to 1802 // emit the initializer first, then copy into the variable. 1803 bool capturedByInit = 1804 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1805 1806 bool locIsByrefHeader = !capturedByInit; 1807 const Address Loc = 1808 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1809 1810 // Note: constexpr already initializes everything correctly. 1811 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1812 (D.isConstexpr() 1813 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1814 : (D.getAttr<UninitializedAttr>() 1815 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1816 : getContext().getLangOpts().getTrivialAutoVarInit())); 1817 1818 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1819 if (trivialAutoVarInit == 1820 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1821 return; 1822 1823 // Only initialize a __block's storage: we always initialize the header. 1824 if (emission.IsEscapingByRef && !locIsByrefHeader) 1825 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1826 1827 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1828 }; 1829 1830 if (isTrivialInitializer(Init)) 1831 return initializeWhatIsTechnicallyUninitialized(Loc); 1832 1833 llvm::Constant *constant = nullptr; 1834 if (emission.IsConstantAggregate || 1835 D.mightBeUsableInConstantExpressions(getContext())) { 1836 assert(!capturedByInit && "constant init contains a capturing block?"); 1837 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1838 if (constant && !constant->isZeroValue() && 1839 (trivialAutoVarInit != 1840 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1841 IsPattern isPattern = 1842 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1843 ? IsPattern::Yes 1844 : IsPattern::No; 1845 // C guarantees that brace-init with fewer initializers than members in 1846 // the aggregate will initialize the rest of the aggregate as-if it were 1847 // static initialization. In turn static initialization guarantees that 1848 // padding is initialized to zero bits. We could instead pattern-init if D 1849 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1850 // behavior. 1851 constant = constWithPadding(CGM, IsPattern::No, 1852 replaceUndef(CGM, isPattern, constant)); 1853 } 1854 } 1855 1856 if (!constant) { 1857 initializeWhatIsTechnicallyUninitialized(Loc); 1858 LValue lv = MakeAddrLValue(Loc, type); 1859 lv.setNonGC(true); 1860 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1861 } 1862 1863 if (!emission.IsConstantAggregate) { 1864 // For simple scalar/complex initialization, store the value directly. 1865 LValue lv = MakeAddrLValue(Loc, type); 1866 lv.setNonGC(true); 1867 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1868 } 1869 1870 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1871 emitStoresForConstant( 1872 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1873 type.isVolatileQualified(), Builder, constant); 1874 } 1875 1876 /// Emit an expression as an initializer for an object (variable, field, etc.) 1877 /// at the given location. The expression is not necessarily the normal 1878 /// initializer for the object, and the address is not necessarily 1879 /// its normal location. 1880 /// 1881 /// \param init the initializing expression 1882 /// \param D the object to act as if we're initializing 1883 /// \param lvalue the lvalue to initialize 1884 /// \param capturedByInit true if \p D is a __block variable 1885 /// whose address is potentially changed by the initializer 1886 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1887 LValue lvalue, bool capturedByInit) { 1888 QualType type = D->getType(); 1889 1890 if (type->isReferenceType()) { 1891 RValue rvalue = EmitReferenceBindingToExpr(init); 1892 if (capturedByInit) 1893 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1894 EmitStoreThroughLValue(rvalue, lvalue, true); 1895 return; 1896 } 1897 switch (getEvaluationKind(type)) { 1898 case TEK_Scalar: 1899 EmitScalarInit(init, D, lvalue, capturedByInit); 1900 return; 1901 case TEK_Complex: { 1902 ComplexPairTy complex = EmitComplexExpr(init); 1903 if (capturedByInit) 1904 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1905 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1906 return; 1907 } 1908 case TEK_Aggregate: 1909 if (type->isAtomicType()) { 1910 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1911 } else { 1912 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1913 if (isa<VarDecl>(D)) 1914 Overlap = AggValueSlot::DoesNotOverlap; 1915 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1916 Overlap = getOverlapForFieldInit(FD); 1917 // TODO: how can we delay here if D is captured by its initializer? 1918 EmitAggExpr(init, AggValueSlot::forLValue( 1919 lvalue, *this, AggValueSlot::IsDestructed, 1920 AggValueSlot::DoesNotNeedGCBarriers, 1921 AggValueSlot::IsNotAliased, Overlap)); 1922 } 1923 return; 1924 } 1925 llvm_unreachable("bad evaluation kind"); 1926 } 1927 1928 /// Enter a destroy cleanup for the given local variable. 1929 void CodeGenFunction::emitAutoVarTypeCleanup( 1930 const CodeGenFunction::AutoVarEmission &emission, 1931 QualType::DestructionKind dtorKind) { 1932 assert(dtorKind != QualType::DK_none); 1933 1934 // Note that for __block variables, we want to destroy the 1935 // original stack object, not the possibly forwarded object. 1936 Address addr = emission.getObjectAddress(*this); 1937 1938 const VarDecl *var = emission.Variable; 1939 QualType type = var->getType(); 1940 1941 CleanupKind cleanupKind = NormalAndEHCleanup; 1942 CodeGenFunction::Destroyer *destroyer = nullptr; 1943 1944 switch (dtorKind) { 1945 case QualType::DK_none: 1946 llvm_unreachable("no cleanup for trivially-destructible variable"); 1947 1948 case QualType::DK_cxx_destructor: 1949 // If there's an NRVO flag on the emission, we need a different 1950 // cleanup. 1951 if (emission.NRVOFlag) { 1952 assert(!type->isArrayType()); 1953 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1954 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1955 emission.NRVOFlag); 1956 return; 1957 } 1958 break; 1959 1960 case QualType::DK_objc_strong_lifetime: 1961 // Suppress cleanups for pseudo-strong variables. 1962 if (var->isARCPseudoStrong()) return; 1963 1964 // Otherwise, consider whether to use an EH cleanup or not. 1965 cleanupKind = getARCCleanupKind(); 1966 1967 // Use the imprecise destroyer by default. 1968 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1969 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1970 break; 1971 1972 case QualType::DK_objc_weak_lifetime: 1973 break; 1974 1975 case QualType::DK_nontrivial_c_struct: 1976 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1977 if (emission.NRVOFlag) { 1978 assert(!type->isArrayType()); 1979 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1980 emission.NRVOFlag, type); 1981 return; 1982 } 1983 break; 1984 } 1985 1986 // If we haven't chosen a more specific destroyer, use the default. 1987 if (!destroyer) destroyer = getDestroyer(dtorKind); 1988 1989 // Use an EH cleanup in array destructors iff the destructor itself 1990 // is being pushed as an EH cleanup. 1991 bool useEHCleanup = (cleanupKind & EHCleanup); 1992 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1993 useEHCleanup); 1994 } 1995 1996 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1997 assert(emission.Variable && "emission was not valid!"); 1998 1999 // If this was emitted as a global constant, we're done. 2000 if (emission.wasEmittedAsGlobal()) return; 2001 2002 // If we don't have an insertion point, we're done. Sema prevents 2003 // us from jumping into any of these scopes anyway. 2004 if (!HaveInsertPoint()) return; 2005 2006 const VarDecl &D = *emission.Variable; 2007 2008 // Check the type for a cleanup. 2009 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2010 emitAutoVarTypeCleanup(emission, dtorKind); 2011 2012 // In GC mode, honor objc_precise_lifetime. 2013 if (getLangOpts().getGC() != LangOptions::NonGC && 2014 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2015 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2016 } 2017 2018 // Handle the cleanup attribute. 2019 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2020 const FunctionDecl *FD = CA->getFunctionDecl(); 2021 2022 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2023 assert(F && "Could not find function!"); 2024 2025 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2026 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2027 } 2028 2029 // If this is a block variable, call _Block_object_destroy 2030 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2031 // mode. 2032 if (emission.IsEscapingByRef && 2033 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2034 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2035 if (emission.Variable->getType().isObjCGCWeak()) 2036 Flags |= BLOCK_FIELD_IS_WEAK; 2037 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2038 /*LoadBlockVarAddr*/ false, 2039 cxxDestructorCanThrow(emission.Variable->getType())); 2040 } 2041 } 2042 2043 CodeGenFunction::Destroyer * 2044 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2045 switch (kind) { 2046 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2047 case QualType::DK_cxx_destructor: 2048 return destroyCXXObject; 2049 case QualType::DK_objc_strong_lifetime: 2050 return destroyARCStrongPrecise; 2051 case QualType::DK_objc_weak_lifetime: 2052 return destroyARCWeak; 2053 case QualType::DK_nontrivial_c_struct: 2054 return destroyNonTrivialCStruct; 2055 } 2056 llvm_unreachable("Unknown DestructionKind"); 2057 } 2058 2059 /// pushEHDestroy - Push the standard destructor for the given type as 2060 /// an EH-only cleanup. 2061 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2062 Address addr, QualType type) { 2063 assert(dtorKind && "cannot push destructor for trivial type"); 2064 assert(needsEHCleanup(dtorKind)); 2065 2066 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2067 } 2068 2069 /// pushDestroy - Push the standard destructor for the given type as 2070 /// at least a normal cleanup. 2071 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2072 Address addr, QualType type) { 2073 assert(dtorKind && "cannot push destructor for trivial type"); 2074 2075 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2076 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2077 cleanupKind & EHCleanup); 2078 } 2079 2080 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2081 QualType type, Destroyer *destroyer, 2082 bool useEHCleanupForArray) { 2083 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2084 destroyer, useEHCleanupForArray); 2085 } 2086 2087 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2088 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2089 } 2090 2091 void CodeGenFunction::pushLifetimeExtendedDestroy( 2092 CleanupKind cleanupKind, Address addr, QualType type, 2093 Destroyer *destroyer, bool useEHCleanupForArray) { 2094 // Push an EH-only cleanup for the object now. 2095 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2096 // around in case a temporary's destructor throws an exception. 2097 if (cleanupKind & EHCleanup) 2098 EHStack.pushCleanup<DestroyObject>( 2099 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2100 destroyer, useEHCleanupForArray); 2101 2102 // Remember that we need to push a full cleanup for the object at the 2103 // end of the full-expression. 2104 pushCleanupAfterFullExpr<DestroyObject>( 2105 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2106 } 2107 2108 /// emitDestroy - Immediately perform the destruction of the given 2109 /// object. 2110 /// 2111 /// \param addr - the address of the object; a type* 2112 /// \param type - the type of the object; if an array type, all 2113 /// objects are destroyed in reverse order 2114 /// \param destroyer - the function to call to destroy individual 2115 /// elements 2116 /// \param useEHCleanupForArray - whether an EH cleanup should be 2117 /// used when destroying array elements, in case one of the 2118 /// destructions throws an exception 2119 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2120 Destroyer *destroyer, 2121 bool useEHCleanupForArray) { 2122 const ArrayType *arrayType = getContext().getAsArrayType(type); 2123 if (!arrayType) 2124 return destroyer(*this, addr, type); 2125 2126 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2127 2128 CharUnits elementAlign = 2129 addr.getAlignment() 2130 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2131 2132 // Normally we have to check whether the array is zero-length. 2133 bool checkZeroLength = true; 2134 2135 // But if the array length is constant, we can suppress that. 2136 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2137 // ...and if it's constant zero, we can just skip the entire thing. 2138 if (constLength->isZero()) return; 2139 checkZeroLength = false; 2140 } 2141 2142 llvm::Value *begin = addr.getPointer(); 2143 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2144 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2145 checkZeroLength, useEHCleanupForArray); 2146 } 2147 2148 /// emitArrayDestroy - Destroys all the elements of the given array, 2149 /// beginning from last to first. The array cannot be zero-length. 2150 /// 2151 /// \param begin - a type* denoting the first element of the array 2152 /// \param end - a type* denoting one past the end of the array 2153 /// \param elementType - the element type of the array 2154 /// \param destroyer - the function to call to destroy elements 2155 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2156 /// the remaining elements in case the destruction of a single 2157 /// element throws 2158 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2159 llvm::Value *end, 2160 QualType elementType, 2161 CharUnits elementAlign, 2162 Destroyer *destroyer, 2163 bool checkZeroLength, 2164 bool useEHCleanup) { 2165 assert(!elementType->isArrayType()); 2166 2167 // The basic structure here is a do-while loop, because we don't 2168 // need to check for the zero-element case. 2169 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2170 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2171 2172 if (checkZeroLength) { 2173 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2174 "arraydestroy.isempty"); 2175 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2176 } 2177 2178 // Enter the loop body, making that address the current address. 2179 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2180 EmitBlock(bodyBB); 2181 llvm::PHINode *elementPast = 2182 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2183 elementPast->addIncoming(end, entryBB); 2184 2185 // Shift the address back by one element. 2186 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2187 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2188 "arraydestroy.element"); 2189 2190 if (useEHCleanup) 2191 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2192 destroyer); 2193 2194 // Perform the actual destruction there. 2195 destroyer(*this, Address(element, elementAlign), elementType); 2196 2197 if (useEHCleanup) 2198 PopCleanupBlock(); 2199 2200 // Check whether we've reached the end. 2201 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2202 Builder.CreateCondBr(done, doneBB, bodyBB); 2203 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2204 2205 // Done. 2206 EmitBlock(doneBB); 2207 } 2208 2209 /// Perform partial array destruction as if in an EH cleanup. Unlike 2210 /// emitArrayDestroy, the element type here may still be an array type. 2211 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2212 llvm::Value *begin, llvm::Value *end, 2213 QualType type, CharUnits elementAlign, 2214 CodeGenFunction::Destroyer *destroyer) { 2215 // If the element type is itself an array, drill down. 2216 unsigned arrayDepth = 0; 2217 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2218 // VLAs don't require a GEP index to walk into. 2219 if (!isa<VariableArrayType>(arrayType)) 2220 arrayDepth++; 2221 type = arrayType->getElementType(); 2222 } 2223 2224 if (arrayDepth) { 2225 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2226 2227 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2228 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2229 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2230 } 2231 2232 // Destroy the array. We don't ever need an EH cleanup because we 2233 // assume that we're in an EH cleanup ourselves, so a throwing 2234 // destructor causes an immediate terminate. 2235 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2236 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2237 } 2238 2239 namespace { 2240 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2241 /// array destroy where the end pointer is regularly determined and 2242 /// does not need to be loaded from a local. 2243 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2244 llvm::Value *ArrayBegin; 2245 llvm::Value *ArrayEnd; 2246 QualType ElementType; 2247 CodeGenFunction::Destroyer *Destroyer; 2248 CharUnits ElementAlign; 2249 public: 2250 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2251 QualType elementType, CharUnits elementAlign, 2252 CodeGenFunction::Destroyer *destroyer) 2253 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2254 ElementType(elementType), Destroyer(destroyer), 2255 ElementAlign(elementAlign) {} 2256 2257 void Emit(CodeGenFunction &CGF, Flags flags) override { 2258 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2259 ElementType, ElementAlign, Destroyer); 2260 } 2261 }; 2262 2263 /// IrregularPartialArrayDestroy - a cleanup which performs a 2264 /// partial array destroy where the end pointer is irregularly 2265 /// determined and must be loaded from a local. 2266 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2267 llvm::Value *ArrayBegin; 2268 Address ArrayEndPointer; 2269 QualType ElementType; 2270 CodeGenFunction::Destroyer *Destroyer; 2271 CharUnits ElementAlign; 2272 public: 2273 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2274 Address arrayEndPointer, 2275 QualType elementType, 2276 CharUnits elementAlign, 2277 CodeGenFunction::Destroyer *destroyer) 2278 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2279 ElementType(elementType), Destroyer(destroyer), 2280 ElementAlign(elementAlign) {} 2281 2282 void Emit(CodeGenFunction &CGF, Flags flags) override { 2283 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2284 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2285 ElementType, ElementAlign, Destroyer); 2286 } 2287 }; 2288 } // end anonymous namespace 2289 2290 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2291 /// already-constructed elements of the given array. The cleanup 2292 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2293 /// 2294 /// \param elementType - the immediate element type of the array; 2295 /// possibly still an array type 2296 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2297 Address arrayEndPointer, 2298 QualType elementType, 2299 CharUnits elementAlign, 2300 Destroyer *destroyer) { 2301 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2302 arrayBegin, arrayEndPointer, 2303 elementType, elementAlign, 2304 destroyer); 2305 } 2306 2307 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2308 /// already-constructed elements of the given array. The cleanup 2309 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2310 /// 2311 /// \param elementType - the immediate element type of the array; 2312 /// possibly still an array type 2313 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2314 llvm::Value *arrayEnd, 2315 QualType elementType, 2316 CharUnits elementAlign, 2317 Destroyer *destroyer) { 2318 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2319 arrayBegin, arrayEnd, 2320 elementType, elementAlign, 2321 destroyer); 2322 } 2323 2324 /// Lazily declare the @llvm.lifetime.start intrinsic. 2325 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2326 if (LifetimeStartFn) 2327 return LifetimeStartFn; 2328 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2329 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2330 return LifetimeStartFn; 2331 } 2332 2333 /// Lazily declare the @llvm.lifetime.end intrinsic. 2334 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2335 if (LifetimeEndFn) 2336 return LifetimeEndFn; 2337 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2338 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2339 return LifetimeEndFn; 2340 } 2341 2342 namespace { 2343 /// A cleanup to perform a release of an object at the end of a 2344 /// function. This is used to balance out the incoming +1 of a 2345 /// ns_consumed argument when we can't reasonably do that just by 2346 /// not doing the initial retain for a __block argument. 2347 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2348 ConsumeARCParameter(llvm::Value *param, 2349 ARCPreciseLifetime_t precise) 2350 : Param(param), Precise(precise) {} 2351 2352 llvm::Value *Param; 2353 ARCPreciseLifetime_t Precise; 2354 2355 void Emit(CodeGenFunction &CGF, Flags flags) override { 2356 CGF.EmitARCRelease(Param, Precise); 2357 } 2358 }; 2359 } // end anonymous namespace 2360 2361 /// Emit an alloca (or GlobalValue depending on target) 2362 /// for the specified parameter and set up LocalDeclMap. 2363 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2364 unsigned ArgNo) { 2365 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2366 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2367 "Invalid argument to EmitParmDecl"); 2368 2369 Arg.getAnyValue()->setName(D.getName()); 2370 2371 QualType Ty = D.getType(); 2372 2373 // Use better IR generation for certain implicit parameters. 2374 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2375 // The only implicit argument a block has is its literal. 2376 // This may be passed as an inalloca'ed value on Windows x86. 2377 if (BlockInfo) { 2378 llvm::Value *V = Arg.isIndirect() 2379 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2380 : Arg.getDirectValue(); 2381 setBlockContextParameter(IPD, ArgNo, V); 2382 return; 2383 } 2384 } 2385 2386 Address DeclPtr = Address::invalid(); 2387 bool DoStore = false; 2388 bool IsScalar = hasScalarEvaluationKind(Ty); 2389 // If we already have a pointer to the argument, reuse the input pointer. 2390 if (Arg.isIndirect()) { 2391 DeclPtr = Arg.getIndirectAddress(); 2392 // If we have a prettier pointer type at this point, bitcast to that. 2393 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2394 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2395 if (DeclPtr.getType() != IRTy) 2396 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2397 // Indirect argument is in alloca address space, which may be different 2398 // from the default address space. 2399 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2400 auto *V = DeclPtr.getPointer(); 2401 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2402 auto DestLangAS = 2403 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2404 if (SrcLangAS != DestLangAS) { 2405 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2406 CGM.getDataLayout().getAllocaAddrSpace()); 2407 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2408 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2409 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2410 *this, V, SrcLangAS, DestLangAS, T, true), 2411 DeclPtr.getAlignment()); 2412 } 2413 2414 // Push a destructor cleanup for this parameter if the ABI requires it. 2415 // Don't push a cleanup in a thunk for a method that will also emit a 2416 // cleanup. 2417 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2418 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2419 if (QualType::DestructionKind DtorKind = 2420 D.needsDestruction(getContext())) { 2421 assert((DtorKind == QualType::DK_cxx_destructor || 2422 DtorKind == QualType::DK_nontrivial_c_struct) && 2423 "unexpected destructor type"); 2424 pushDestroy(DtorKind, DeclPtr, Ty); 2425 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2426 EHStack.stable_begin(); 2427 } 2428 } 2429 } else { 2430 // Check if the parameter address is controlled by OpenMP runtime. 2431 Address OpenMPLocalAddr = 2432 getLangOpts().OpenMP 2433 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2434 : Address::invalid(); 2435 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2436 DeclPtr = OpenMPLocalAddr; 2437 } else { 2438 // Otherwise, create a temporary to hold the value. 2439 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2440 D.getName() + ".addr"); 2441 } 2442 DoStore = true; 2443 } 2444 2445 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2446 2447 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2448 if (IsScalar) { 2449 Qualifiers qs = Ty.getQualifiers(); 2450 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2451 // We honor __attribute__((ns_consumed)) for types with lifetime. 2452 // For __strong, it's handled by just skipping the initial retain; 2453 // otherwise we have to balance out the initial +1 with an extra 2454 // cleanup to do the release at the end of the function. 2455 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2456 2457 // If a parameter is pseudo-strong then we can omit the implicit retain. 2458 if (D.isARCPseudoStrong()) { 2459 assert(lt == Qualifiers::OCL_Strong && 2460 "pseudo-strong variable isn't strong?"); 2461 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2462 lt = Qualifiers::OCL_ExplicitNone; 2463 } 2464 2465 // Load objects passed indirectly. 2466 if (Arg.isIndirect() && !ArgVal) 2467 ArgVal = Builder.CreateLoad(DeclPtr); 2468 2469 if (lt == Qualifiers::OCL_Strong) { 2470 if (!isConsumed) { 2471 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2472 // use objc_storeStrong(&dest, value) for retaining the 2473 // object. But first, store a null into 'dest' because 2474 // objc_storeStrong attempts to release its old value. 2475 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2476 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2477 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2478 DoStore = false; 2479 } 2480 else 2481 // Don't use objc_retainBlock for block pointers, because we 2482 // don't want to Block_copy something just because we got it 2483 // as a parameter. 2484 ArgVal = EmitARCRetainNonBlock(ArgVal); 2485 } 2486 } else { 2487 // Push the cleanup for a consumed parameter. 2488 if (isConsumed) { 2489 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2490 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2491 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2492 precise); 2493 } 2494 2495 if (lt == Qualifiers::OCL_Weak) { 2496 EmitARCInitWeak(DeclPtr, ArgVal); 2497 DoStore = false; // The weak init is a store, no need to do two. 2498 } 2499 } 2500 2501 // Enter the cleanup scope. 2502 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2503 } 2504 } 2505 2506 // Store the initial value into the alloca. 2507 if (DoStore) 2508 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2509 2510 setAddrOfLocalVar(&D, DeclPtr); 2511 2512 // Emit debug info for param declarations in non-thunk functions. 2513 if (CGDebugInfo *DI = getDebugInfo()) { 2514 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2515 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2516 } 2517 } 2518 2519 if (D.hasAttr<AnnotateAttr>()) 2520 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2521 2522 // We can only check return value nullability if all arguments to the 2523 // function satisfy their nullability preconditions. This makes it necessary 2524 // to emit null checks for args in the function body itself. 2525 if (requiresReturnValueNullabilityCheck()) { 2526 auto Nullability = Ty->getNullability(getContext()); 2527 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2528 SanitizerScope SanScope(this); 2529 RetValNullabilityPrecondition = 2530 Builder.CreateAnd(RetValNullabilityPrecondition, 2531 Builder.CreateIsNotNull(Arg.getAnyValue())); 2532 } 2533 } 2534 } 2535 2536 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2537 CodeGenFunction *CGF) { 2538 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2539 return; 2540 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2541 } 2542 2543 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2544 CodeGenFunction *CGF) { 2545 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2546 (!LangOpts.EmitAllDecls && !D->isUsed())) 2547 return; 2548 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2549 } 2550 2551 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2552 getOpenMPRuntime().processRequiresDirective(D); 2553 } 2554