1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "EHScopeStack.h" 23 #include "PatternInit.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/Decl.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclOpenMP.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "llvm/Analysis/ConstantFolding.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include <optional> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 49 "Clang max alignment greater than what LLVM supports?"); 50 51 void CodeGenFunction::EmitDecl(const Decl &D) { 52 switch (D.getKind()) { 53 case Decl::BuiltinTemplate: 54 case Decl::TranslationUnit: 55 case Decl::ExternCContext: 56 case Decl::Namespace: 57 case Decl::UnresolvedUsingTypename: 58 case Decl::ClassTemplateSpecialization: 59 case Decl::ClassTemplatePartialSpecialization: 60 case Decl::VarTemplateSpecialization: 61 case Decl::VarTemplatePartialSpecialization: 62 case Decl::TemplateTypeParm: 63 case Decl::UnresolvedUsingValue: 64 case Decl::NonTypeTemplateParm: 65 case Decl::CXXDeductionGuide: 66 case Decl::CXXMethod: 67 case Decl::CXXConstructor: 68 case Decl::CXXDestructor: 69 case Decl::CXXConversion: 70 case Decl::Field: 71 case Decl::MSProperty: 72 case Decl::IndirectField: 73 case Decl::ObjCIvar: 74 case Decl::ObjCAtDefsField: 75 case Decl::ParmVar: 76 case Decl::ImplicitParam: 77 case Decl::ClassTemplate: 78 case Decl::VarTemplate: 79 case Decl::FunctionTemplate: 80 case Decl::TypeAliasTemplate: 81 case Decl::TemplateTemplateParm: 82 case Decl::ObjCMethod: 83 case Decl::ObjCCategory: 84 case Decl::ObjCProtocol: 85 case Decl::ObjCInterface: 86 case Decl::ObjCCategoryImpl: 87 case Decl::ObjCImplementation: 88 case Decl::ObjCProperty: 89 case Decl::ObjCCompatibleAlias: 90 case Decl::PragmaComment: 91 case Decl::PragmaDetectMismatch: 92 case Decl::AccessSpec: 93 case Decl::LinkageSpec: 94 case Decl::Export: 95 case Decl::ObjCPropertyImpl: 96 case Decl::FileScopeAsm: 97 case Decl::TopLevelStmt: 98 case Decl::Friend: 99 case Decl::FriendTemplate: 100 case Decl::Block: 101 case Decl::Captured: 102 case Decl::UsingShadow: 103 case Decl::ConstructorUsingShadow: 104 case Decl::ObjCTypeParam: 105 case Decl::Binding: 106 case Decl::UnresolvedUsingIfExists: 107 case Decl::HLSLBuffer: 108 llvm_unreachable("Declaration should not be in declstmts!"); 109 case Decl::Record: // struct/union/class X; 110 case Decl::CXXRecord: // struct/union/class X; [C++] 111 if (CGDebugInfo *DI = getDebugInfo()) 112 if (cast<RecordDecl>(D).getDefinition()) 113 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 114 return; 115 case Decl::Enum: // enum X; 116 if (CGDebugInfo *DI = getDebugInfo()) 117 if (cast<EnumDecl>(D).getDefinition()) 118 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 119 return; 120 case Decl::Function: // void X(); 121 case Decl::EnumConstant: // enum ? { X = ? } 122 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 123 case Decl::Label: // __label__ x; 124 case Decl::Import: 125 case Decl::MSGuid: // __declspec(uuid("...")) 126 case Decl::UnnamedGlobalConstant: 127 case Decl::TemplateParamObject: 128 case Decl::OMPThreadPrivate: 129 case Decl::OMPAllocate: 130 case Decl::OMPCapturedExpr: 131 case Decl::OMPRequires: 132 case Decl::Empty: 133 case Decl::Concept: 134 case Decl::ImplicitConceptSpecialization: 135 case Decl::LifetimeExtendedTemporary: 136 case Decl::RequiresExprBody: 137 // None of these decls require codegen support. 138 return; 139 140 case Decl::NamespaceAlias: 141 if (CGDebugInfo *DI = getDebugInfo()) 142 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 143 return; 144 case Decl::Using: // using X; [C++] 145 if (CGDebugInfo *DI = getDebugInfo()) 146 DI->EmitUsingDecl(cast<UsingDecl>(D)); 147 return; 148 case Decl::UsingEnum: // using enum X; [C++] 149 if (CGDebugInfo *DI = getDebugInfo()) 150 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D)); 151 return; 152 case Decl::UsingPack: 153 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 154 EmitDecl(*Using); 155 return; 156 case Decl::UsingDirective: // using namespace X; [C++] 157 if (CGDebugInfo *DI = getDebugInfo()) 158 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 159 return; 160 case Decl::Var: 161 case Decl::Decomposition: { 162 const VarDecl &VD = cast<VarDecl>(D); 163 assert(VD.isLocalVarDecl() && 164 "Should not see file-scope variables inside a function!"); 165 EmitVarDecl(VD); 166 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 167 for (auto *B : DD->bindings()) 168 if (auto *HD = B->getHoldingVar()) 169 EmitVarDecl(*HD); 170 return; 171 } 172 173 case Decl::OMPDeclareReduction: 174 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 175 176 case Decl::OMPDeclareMapper: 177 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 178 179 case Decl::Typedef: // typedef int X; 180 case Decl::TypeAlias: { // using X = int; [C++0x] 181 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 182 if (CGDebugInfo *DI = getDebugInfo()) 183 DI->EmitAndRetainType(Ty); 184 if (Ty->isVariablyModifiedType()) 185 EmitVariablyModifiedType(Ty); 186 return; 187 } 188 } 189 } 190 191 /// EmitVarDecl - This method handles emission of any variable declaration 192 /// inside a function, including static vars etc. 193 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 194 if (D.hasExternalStorage()) 195 // Don't emit it now, allow it to be emitted lazily on its first use. 196 return; 197 198 // Some function-scope variable does not have static storage but still 199 // needs to be emitted like a static variable, e.g. a function-scope 200 // variable in constant address space in OpenCL. 201 if (D.getStorageDuration() != SD_Automatic) { 202 // Static sampler variables translated to function calls. 203 if (D.getType()->isSamplerT()) 204 return; 205 206 llvm::GlobalValue::LinkageTypes Linkage = 207 CGM.getLLVMLinkageVarDefinition(&D); 208 209 // FIXME: We need to force the emission/use of a guard variable for 210 // some variables even if we can constant-evaluate them because 211 // we can't guarantee every translation unit will constant-evaluate them. 212 213 return EmitStaticVarDecl(D, Linkage); 214 } 215 216 if (D.getType().getAddressSpace() == LangAS::opencl_local) 217 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 218 219 assert(D.hasLocalStorage()); 220 return EmitAutoVarDecl(D); 221 } 222 223 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 224 if (CGM.getLangOpts().CPlusPlus) 225 return CGM.getMangledName(&D).str(); 226 227 // If this isn't C++, we don't need a mangled name, just a pretty one. 228 assert(!D.isExternallyVisible() && "name shouldn't matter"); 229 std::string ContextName; 230 const DeclContext *DC = D.getDeclContext(); 231 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 232 DC = cast<DeclContext>(CD->getNonClosureContext()); 233 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 234 ContextName = std::string(CGM.getMangledName(FD)); 235 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 236 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 237 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 238 ContextName = OMD->getSelector().getAsString(); 239 else 240 llvm_unreachable("Unknown context for static var decl"); 241 242 ContextName += "." + D.getNameAsString(); 243 return ContextName; 244 } 245 246 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 247 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 248 // In general, we don't always emit static var decls once before we reference 249 // them. It is possible to reference them before emitting the function that 250 // contains them, and it is possible to emit the containing function multiple 251 // times. 252 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 253 return ExistingGV; 254 255 QualType Ty = D.getType(); 256 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 257 258 // Use the label if the variable is renamed with the asm-label extension. 259 std::string Name; 260 if (D.hasAttr<AsmLabelAttr>()) 261 Name = std::string(getMangledName(&D)); 262 else 263 Name = getStaticDeclName(*this, D); 264 265 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 266 LangAS AS = GetGlobalVarAddressSpace(&D); 267 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 268 269 // OpenCL variables in local address space and CUDA shared 270 // variables cannot have an initializer. 271 llvm::Constant *Init = nullptr; 272 if (Ty.getAddressSpace() == LangAS::opencl_local || 273 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 274 Init = llvm::UndefValue::get(LTy); 275 else 276 Init = EmitNullConstant(Ty); 277 278 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 279 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 280 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 281 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 282 283 if (supportsCOMDAT() && GV->isWeakForLinker()) 284 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 285 286 if (D.getTLSKind()) 287 setTLSMode(GV, D); 288 289 setGVProperties(GV, &D); 290 getTargetCodeGenInfo().setTargetAttributes(cast<Decl>(&D), GV, *this); 291 292 // Make sure the result is of the correct type. 293 LangAS ExpectedAS = Ty.getAddressSpace(); 294 llvm::Constant *Addr = GV; 295 if (AS != ExpectedAS) { 296 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 297 *this, GV, AS, ExpectedAS, 298 llvm::PointerType::get(getLLVMContext(), 299 getContext().getTargetAddressSpace(ExpectedAS))); 300 } 301 302 setStaticLocalDeclAddress(&D, Addr); 303 304 // Ensure that the static local gets initialized by making sure the parent 305 // function gets emitted eventually. 306 const Decl *DC = cast<Decl>(D.getDeclContext()); 307 308 // We can't name blocks or captured statements directly, so try to emit their 309 // parents. 310 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 311 DC = DC->getNonClosureContext(); 312 // FIXME: Ensure that global blocks get emitted. 313 if (!DC) 314 return Addr; 315 } 316 317 GlobalDecl GD; 318 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 319 GD = GlobalDecl(CD, Ctor_Base); 320 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 321 GD = GlobalDecl(DD, Dtor_Base); 322 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 323 GD = GlobalDecl(FD); 324 else { 325 // Don't do anything for Obj-C method decls or global closures. We should 326 // never defer them. 327 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 328 } 329 if (GD.getDecl()) { 330 // Disable emission of the parent function for the OpenMP device codegen. 331 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 332 (void)GetAddrOfGlobal(GD); 333 } 334 335 return Addr; 336 } 337 338 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 339 /// global variable that has already been created for it. If the initializer 340 /// has a different type than GV does, this may free GV and return a different 341 /// one. Otherwise it just returns GV. 342 llvm::GlobalVariable * 343 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 344 llvm::GlobalVariable *GV) { 345 ConstantEmitter emitter(*this); 346 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 347 348 // If constant emission failed, then this should be a C++ static 349 // initializer. 350 if (!Init) { 351 if (!getLangOpts().CPlusPlus) 352 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 353 else if (D.hasFlexibleArrayInit(getContext())) 354 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer"); 355 else if (HaveInsertPoint()) { 356 // Since we have a static initializer, this global variable can't 357 // be constant. 358 GV->setConstant(false); 359 360 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 361 } 362 return GV; 363 } 364 365 #ifndef NDEBUG 366 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) + 367 D.getFlexibleArrayInitChars(getContext()); 368 CharUnits CstSize = CharUnits::fromQuantity( 369 CGM.getDataLayout().getTypeAllocSize(Init->getType())); 370 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 371 #endif 372 373 // The initializer may differ in type from the global. Rewrite 374 // the global to match the initializer. (We have to do this 375 // because some types, like unions, can't be completely represented 376 // in the LLVM type system.) 377 if (GV->getValueType() != Init->getType()) { 378 llvm::GlobalVariable *OldGV = GV; 379 380 GV = new llvm::GlobalVariable( 381 CGM.getModule(), Init->getType(), OldGV->isConstant(), 382 OldGV->getLinkage(), Init, "", 383 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), 384 OldGV->getType()->getPointerAddressSpace()); 385 GV->setVisibility(OldGV->getVisibility()); 386 GV->setDSOLocal(OldGV->isDSOLocal()); 387 GV->setComdat(OldGV->getComdat()); 388 389 // Steal the name of the old global 390 GV->takeName(OldGV); 391 392 // Replace all uses of the old global with the new global 393 OldGV->replaceAllUsesWith(GV); 394 395 // Erase the old global, since it is no longer used. 396 OldGV->eraseFromParent(); 397 } 398 399 bool NeedsDtor = 400 D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; 401 402 GV->setConstant( 403 D.getType().isConstantStorage(getContext(), true, !NeedsDtor)); 404 GV->setInitializer(Init); 405 406 emitter.finalize(GV); 407 408 if (NeedsDtor && HaveInsertPoint()) { 409 // We have a constant initializer, but a nontrivial destructor. We still 410 // need to perform a guarded "initialization" in order to register the 411 // destructor. 412 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 413 } 414 415 return GV; 416 } 417 418 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 419 llvm::GlobalValue::LinkageTypes Linkage) { 420 // Check to see if we already have a global variable for this 421 // declaration. This can happen when double-emitting function 422 // bodies, e.g. with complete and base constructors. 423 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 424 CharUnits alignment = getContext().getDeclAlign(&D); 425 426 // Store into LocalDeclMap before generating initializer to handle 427 // circular references. 428 llvm::Type *elemTy = ConvertTypeForMem(D.getType()); 429 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment)); 430 431 // We can't have a VLA here, but we can have a pointer to a VLA, 432 // even though that doesn't really make any sense. 433 // Make sure to evaluate VLA bounds now so that we have them for later. 434 if (D.getType()->isVariablyModifiedType()) 435 EmitVariablyModifiedType(D.getType()); 436 437 // Save the type in case adding the initializer forces a type change. 438 llvm::Type *expectedType = addr->getType(); 439 440 llvm::GlobalVariable *var = 441 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 442 443 // CUDA's local and local static __shared__ variables should not 444 // have any non-empty initializers. This is ensured by Sema. 445 // Whatever initializer such variable may have when it gets here is 446 // a no-op and should not be emitted. 447 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 448 D.hasAttr<CUDASharedAttr>(); 449 // If this value has an initializer, emit it. 450 if (D.getInit() && !isCudaSharedVar) 451 var = AddInitializerToStaticVarDecl(D, var); 452 453 var->setAlignment(alignment.getAsAlign()); 454 455 if (D.hasAttr<AnnotateAttr>()) 456 CGM.AddGlobalAnnotations(&D, var); 457 458 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 459 var->addAttribute("bss-section", SA->getName()); 460 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 461 var->addAttribute("data-section", SA->getName()); 462 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 463 var->addAttribute("rodata-section", SA->getName()); 464 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 465 var->addAttribute("relro-section", SA->getName()); 466 467 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 468 var->setSection(SA->getName()); 469 470 if (D.hasAttr<RetainAttr>()) 471 CGM.addUsedGlobal(var); 472 else if (D.hasAttr<UsedAttr>()) 473 CGM.addUsedOrCompilerUsedGlobal(var); 474 475 if (CGM.getCodeGenOpts().KeepPersistentStorageVariables) 476 CGM.addUsedOrCompilerUsedGlobal(var); 477 478 // We may have to cast the constant because of the initializer 479 // mismatch above. 480 // 481 // FIXME: It is really dangerous to store this in the map; if anyone 482 // RAUW's the GV uses of this constant will be invalid. 483 llvm::Constant *castedAddr = 484 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 485 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment); 486 CGM.setStaticLocalDeclAddress(&D, castedAddr); 487 488 CGM.getSanitizerMetadata()->reportGlobal(var, D); 489 490 // Emit global variable debug descriptor for static vars. 491 CGDebugInfo *DI = getDebugInfo(); 492 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 493 DI->setLocation(D.getLocation()); 494 DI->EmitGlobalVariable(var, &D); 495 } 496 } 497 498 namespace { 499 struct DestroyObject final : EHScopeStack::Cleanup { 500 DestroyObject(Address addr, QualType type, 501 CodeGenFunction::Destroyer *destroyer, 502 bool useEHCleanupForArray) 503 : addr(addr), type(type), destroyer(destroyer), 504 useEHCleanupForArray(useEHCleanupForArray) {} 505 506 Address addr; 507 QualType type; 508 CodeGenFunction::Destroyer *destroyer; 509 bool useEHCleanupForArray; 510 511 void Emit(CodeGenFunction &CGF, Flags flags) override { 512 // Don't use an EH cleanup recursively from an EH cleanup. 513 bool useEHCleanupForArray = 514 flags.isForNormalCleanup() && this->useEHCleanupForArray; 515 516 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 517 } 518 }; 519 520 template <class Derived> 521 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 522 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 523 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 524 525 llvm::Value *NRVOFlag; 526 Address Loc; 527 QualType Ty; 528 529 void Emit(CodeGenFunction &CGF, Flags flags) override { 530 // Along the exceptions path we always execute the dtor. 531 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 532 533 llvm::BasicBlock *SkipDtorBB = nullptr; 534 if (NRVO) { 535 // If we exited via NRVO, we skip the destructor call. 536 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 537 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 538 llvm::Value *DidNRVO = 539 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 540 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 541 CGF.EmitBlock(RunDtorBB); 542 } 543 544 static_cast<Derived *>(this)->emitDestructorCall(CGF); 545 546 if (NRVO) CGF.EmitBlock(SkipDtorBB); 547 } 548 549 virtual ~DestroyNRVOVariable() = default; 550 }; 551 552 struct DestroyNRVOVariableCXX final 553 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 554 DestroyNRVOVariableCXX(Address addr, QualType type, 555 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 556 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 557 Dtor(Dtor) {} 558 559 const CXXDestructorDecl *Dtor; 560 561 void emitDestructorCall(CodeGenFunction &CGF) { 562 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 563 /*ForVirtualBase=*/false, 564 /*Delegating=*/false, Loc, Ty); 565 } 566 }; 567 568 struct DestroyNRVOVariableC final 569 : DestroyNRVOVariable<DestroyNRVOVariableC> { 570 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 571 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 572 573 void emitDestructorCall(CodeGenFunction &CGF) { 574 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 575 } 576 }; 577 578 struct CallStackRestore final : EHScopeStack::Cleanup { 579 Address Stack; 580 CallStackRestore(Address Stack) : Stack(Stack) {} 581 bool isRedundantBeforeReturn() override { return true; } 582 void Emit(CodeGenFunction &CGF, Flags flags) override { 583 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 584 CGF.Builder.CreateStackRestore(V); 585 } 586 }; 587 588 struct KmpcAllocFree final : EHScopeStack::Cleanup { 589 std::pair<llvm::Value *, llvm::Value *> AddrSizePair; 590 KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) 591 : AddrSizePair(AddrSizePair) {} 592 void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override { 593 auto &RT = CGF.CGM.getOpenMPRuntime(); 594 RT.getKmpcFreeShared(CGF, AddrSizePair); 595 } 596 }; 597 598 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 599 const VarDecl &Var; 600 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 601 602 void Emit(CodeGenFunction &CGF, Flags flags) override { 603 // Compute the address of the local variable, in case it's a 604 // byref or something. 605 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 606 Var.getType(), VK_LValue, SourceLocation()); 607 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 608 SourceLocation()); 609 CGF.EmitExtendGCLifetime(value); 610 } 611 }; 612 613 struct CallCleanupFunction final : EHScopeStack::Cleanup { 614 llvm::Constant *CleanupFn; 615 const CGFunctionInfo &FnInfo; 616 const VarDecl &Var; 617 618 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 619 const VarDecl *Var) 620 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 621 622 void Emit(CodeGenFunction &CGF, Flags flags) override { 623 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 624 Var.getType(), VK_LValue, SourceLocation()); 625 // Compute the address of the local variable, in case it's a byref 626 // or something. 627 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 628 629 // In some cases, the type of the function argument will be different from 630 // the type of the pointer. An example of this is 631 // void f(void* arg); 632 // __attribute__((cleanup(f))) void *g; 633 // 634 // To fix this we insert a bitcast here. 635 QualType ArgTy = FnInfo.arg_begin()->type; 636 llvm::Value *Arg = 637 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 638 639 CallArgList Args; 640 Args.add(RValue::get(Arg), 641 CGF.getContext().getPointerType(Var.getType())); 642 auto Callee = CGCallee::forDirect(CleanupFn); 643 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 644 } 645 }; 646 } // end anonymous namespace 647 648 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 649 /// variable with lifetime. 650 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 651 Address addr, 652 Qualifiers::ObjCLifetime lifetime) { 653 switch (lifetime) { 654 case Qualifiers::OCL_None: 655 llvm_unreachable("present but none"); 656 657 case Qualifiers::OCL_ExplicitNone: 658 // nothing to do 659 break; 660 661 case Qualifiers::OCL_Strong: { 662 CodeGenFunction::Destroyer *destroyer = 663 (var.hasAttr<ObjCPreciseLifetimeAttr>() 664 ? CodeGenFunction::destroyARCStrongPrecise 665 : CodeGenFunction::destroyARCStrongImprecise); 666 667 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 668 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 669 cleanupKind & EHCleanup); 670 break; 671 } 672 case Qualifiers::OCL_Autoreleasing: 673 // nothing to do 674 break; 675 676 case Qualifiers::OCL_Weak: 677 // __weak objects always get EH cleanups; otherwise, exceptions 678 // could cause really nasty crashes instead of mere leaks. 679 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 680 CodeGenFunction::destroyARCWeak, 681 /*useEHCleanup*/ true); 682 break; 683 } 684 } 685 686 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 687 if (const Expr *e = dyn_cast<Expr>(s)) { 688 // Skip the most common kinds of expressions that make 689 // hierarchy-walking expensive. 690 s = e = e->IgnoreParenCasts(); 691 692 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 693 return (ref->getDecl() == &var); 694 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 695 const BlockDecl *block = be->getBlockDecl(); 696 for (const auto &I : block->captures()) { 697 if (I.getVariable() == &var) 698 return true; 699 } 700 } 701 } 702 703 for (const Stmt *SubStmt : s->children()) 704 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 705 if (SubStmt && isAccessedBy(var, SubStmt)) 706 return true; 707 708 return false; 709 } 710 711 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 712 if (!decl) return false; 713 if (!isa<VarDecl>(decl)) return false; 714 const VarDecl *var = cast<VarDecl>(decl); 715 return isAccessedBy(*var, e); 716 } 717 718 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 719 const LValue &destLV, const Expr *init) { 720 bool needsCast = false; 721 722 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 723 switch (castExpr->getCastKind()) { 724 // Look through casts that don't require representation changes. 725 case CK_NoOp: 726 case CK_BitCast: 727 case CK_BlockPointerToObjCPointerCast: 728 needsCast = true; 729 break; 730 731 // If we find an l-value to r-value cast from a __weak variable, 732 // emit this operation as a copy or move. 733 case CK_LValueToRValue: { 734 const Expr *srcExpr = castExpr->getSubExpr(); 735 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 736 return false; 737 738 // Emit the source l-value. 739 LValue srcLV = CGF.EmitLValue(srcExpr); 740 741 // Handle a formal type change to avoid asserting. 742 auto srcAddr = srcLV.getAddress(); 743 if (needsCast) { 744 srcAddr = srcAddr.withElementType(destLV.getAddress().getElementType()); 745 } 746 747 // If it was an l-value, use objc_copyWeak. 748 if (srcExpr->isLValue()) { 749 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 750 } else { 751 assert(srcExpr->isXValue()); 752 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 753 } 754 return true; 755 } 756 757 // Stop at anything else. 758 default: 759 return false; 760 } 761 762 init = castExpr->getSubExpr(); 763 } 764 return false; 765 } 766 767 static void drillIntoBlockVariable(CodeGenFunction &CGF, 768 LValue &lvalue, 769 const VarDecl *var) { 770 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 771 } 772 773 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 774 SourceLocation Loc) { 775 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 776 return; 777 778 auto Nullability = LHS.getType()->getNullability(); 779 if (!Nullability || *Nullability != NullabilityKind::NonNull) 780 return; 781 782 // Check if the right hand side of the assignment is nonnull, if the left 783 // hand side must be nonnull. 784 SanitizerScope SanScope(this); 785 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 786 llvm::Constant *StaticData[] = { 787 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 788 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 789 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 790 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 791 SanitizerHandler::TypeMismatch, StaticData, RHS); 792 } 793 794 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 795 LValue lvalue, bool capturedByInit) { 796 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 797 if (!lifetime) { 798 llvm::Value *value = EmitScalarExpr(init); 799 if (capturedByInit) 800 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 801 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 802 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 803 return; 804 } 805 806 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 807 init = DIE->getExpr(); 808 809 // If we're emitting a value with lifetime, we have to do the 810 // initialization *before* we leave the cleanup scopes. 811 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 812 CodeGenFunction::RunCleanupsScope Scope(*this); 813 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 814 } 815 816 // We have to maintain the illusion that the variable is 817 // zero-initialized. If the variable might be accessed in its 818 // initializer, zero-initialize before running the initializer, then 819 // actually perform the initialization with an assign. 820 bool accessedByInit = false; 821 if (lifetime != Qualifiers::OCL_ExplicitNone) 822 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 823 if (accessedByInit) { 824 LValue tempLV = lvalue; 825 // Drill down to the __block object if necessary. 826 if (capturedByInit) { 827 // We can use a simple GEP for this because it can't have been 828 // moved yet. 829 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 830 cast<VarDecl>(D), 831 /*follow*/ false)); 832 } 833 834 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 835 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 836 837 // If __weak, we want to use a barrier under certain conditions. 838 if (lifetime == Qualifiers::OCL_Weak) 839 EmitARCInitWeak(tempLV.getAddress(), zero); 840 841 // Otherwise just do a simple store. 842 else 843 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 844 } 845 846 // Emit the initializer. 847 llvm::Value *value = nullptr; 848 849 switch (lifetime) { 850 case Qualifiers::OCL_None: 851 llvm_unreachable("present but none"); 852 853 case Qualifiers::OCL_Strong: { 854 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 855 value = EmitARCRetainScalarExpr(init); 856 break; 857 } 858 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 859 // that we omit the retain, and causes non-autoreleased return values to be 860 // immediately released. 861 [[fallthrough]]; 862 } 863 864 case Qualifiers::OCL_ExplicitNone: 865 value = EmitARCUnsafeUnretainedScalarExpr(init); 866 break; 867 868 case Qualifiers::OCL_Weak: { 869 // If it's not accessed by the initializer, try to emit the 870 // initialization with a copy or move. 871 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 872 return; 873 } 874 875 // No way to optimize a producing initializer into this. It's not 876 // worth optimizing for, because the value will immediately 877 // disappear in the common case. 878 value = EmitScalarExpr(init); 879 880 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 881 if (accessedByInit) 882 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 883 else 884 EmitARCInitWeak(lvalue.getAddress(), value); 885 return; 886 } 887 888 case Qualifiers::OCL_Autoreleasing: 889 value = EmitARCRetainAutoreleaseScalarExpr(init); 890 break; 891 } 892 893 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 894 895 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 896 897 // If the variable might have been accessed by its initializer, we 898 // might have to initialize with a barrier. We have to do this for 899 // both __weak and __strong, but __weak got filtered out above. 900 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 901 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 902 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 903 EmitARCRelease(oldValue, ARCImpreciseLifetime); 904 return; 905 } 906 907 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 908 } 909 910 /// Decide whether we can emit the non-zero parts of the specified initializer 911 /// with equal or fewer than NumStores scalar stores. 912 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 913 unsigned &NumStores) { 914 // Zero and Undef never requires any extra stores. 915 if (isa<llvm::ConstantAggregateZero>(Init) || 916 isa<llvm::ConstantPointerNull>(Init) || 917 isa<llvm::UndefValue>(Init)) 918 return true; 919 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 920 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 921 isa<llvm::ConstantExpr>(Init)) 922 return Init->isNullValue() || NumStores--; 923 924 // See if we can emit each element. 925 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 926 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 927 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 928 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 929 return false; 930 } 931 return true; 932 } 933 934 if (llvm::ConstantDataSequential *CDS = 935 dyn_cast<llvm::ConstantDataSequential>(Init)) { 936 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 937 llvm::Constant *Elt = CDS->getElementAsConstant(i); 938 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 939 return false; 940 } 941 return true; 942 } 943 944 // Anything else is hard and scary. 945 return false; 946 } 947 948 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 949 /// the scalar stores that would be required. 950 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 951 llvm::Constant *Init, Address Loc, 952 bool isVolatile, CGBuilderTy &Builder, 953 bool IsAutoInit) { 954 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 955 "called emitStoresForInitAfterBZero for zero or undef value."); 956 957 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 958 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 959 isa<llvm::ConstantExpr>(Init)) { 960 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 961 if (IsAutoInit) 962 I->addAnnotationMetadata("auto-init"); 963 return; 964 } 965 966 if (llvm::ConstantDataSequential *CDS = 967 dyn_cast<llvm::ConstantDataSequential>(Init)) { 968 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 969 llvm::Constant *Elt = CDS->getElementAsConstant(i); 970 971 // If necessary, get a pointer to the element and emit it. 972 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 973 emitStoresForInitAfterBZero( 974 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 975 Builder, IsAutoInit); 976 } 977 return; 978 } 979 980 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 981 "Unknown value type!"); 982 983 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 984 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 985 986 // If necessary, get a pointer to the element and emit it. 987 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 988 emitStoresForInitAfterBZero(CGM, Elt, 989 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 990 isVolatile, Builder, IsAutoInit); 991 } 992 } 993 994 /// Decide whether we should use bzero plus some stores to initialize a local 995 /// variable instead of using a memcpy from a constant global. It is beneficial 996 /// to use bzero if the global is all zeros, or mostly zeros and large. 997 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 998 uint64_t GlobalSize) { 999 // If a global is all zeros, always use a bzero. 1000 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 1001 1002 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 1003 // do it if it will require 6 or fewer scalar stores. 1004 // TODO: Should budget depends on the size? Avoiding a large global warrants 1005 // plopping in more stores. 1006 unsigned StoreBudget = 6; 1007 uint64_t SizeLimit = 32; 1008 1009 return GlobalSize > SizeLimit && 1010 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 1011 } 1012 1013 /// Decide whether we should use memset to initialize a local variable instead 1014 /// of using a memcpy from a constant global. Assumes we've already decided to 1015 /// not user bzero. 1016 /// FIXME We could be more clever, as we are for bzero above, and generate 1017 /// memset followed by stores. It's unclear that's worth the effort. 1018 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 1019 uint64_t GlobalSize, 1020 const llvm::DataLayout &DL) { 1021 uint64_t SizeLimit = 32; 1022 if (GlobalSize <= SizeLimit) 1023 return nullptr; 1024 return llvm::isBytewiseValue(Init, DL); 1025 } 1026 1027 /// Decide whether we want to split a constant structure or array store into a 1028 /// sequence of its fields' stores. This may cost us code size and compilation 1029 /// speed, but plays better with store optimizations. 1030 static bool shouldSplitConstantStore(CodeGenModule &CGM, 1031 uint64_t GlobalByteSize) { 1032 // Don't break things that occupy more than one cacheline. 1033 uint64_t ByteSizeLimit = 64; 1034 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1035 return false; 1036 if (GlobalByteSize <= ByteSizeLimit) 1037 return true; 1038 return false; 1039 } 1040 1041 enum class IsPattern { No, Yes }; 1042 1043 /// Generate a constant filled with either a pattern or zeroes. 1044 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1045 llvm::Type *Ty) { 1046 if (isPattern == IsPattern::Yes) 1047 return initializationPatternFor(CGM, Ty); 1048 else 1049 return llvm::Constant::getNullValue(Ty); 1050 } 1051 1052 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1053 llvm::Constant *constant); 1054 1055 /// Helper function for constWithPadding() to deal with padding in structures. 1056 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1057 IsPattern isPattern, 1058 llvm::StructType *STy, 1059 llvm::Constant *constant) { 1060 const llvm::DataLayout &DL = CGM.getDataLayout(); 1061 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1062 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1063 unsigned SizeSoFar = 0; 1064 SmallVector<llvm::Constant *, 8> Values; 1065 bool NestedIntact = true; 1066 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1067 unsigned CurOff = Layout->getElementOffset(i); 1068 if (SizeSoFar < CurOff) { 1069 assert(!STy->isPacked()); 1070 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1071 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1072 } 1073 llvm::Constant *CurOp; 1074 if (constant->isZeroValue()) 1075 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1076 else 1077 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1078 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1079 if (CurOp != NewOp) 1080 NestedIntact = false; 1081 Values.push_back(NewOp); 1082 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1083 } 1084 unsigned TotalSize = Layout->getSizeInBytes(); 1085 if (SizeSoFar < TotalSize) { 1086 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1087 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1088 } 1089 if (NestedIntact && Values.size() == STy->getNumElements()) 1090 return constant; 1091 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1092 } 1093 1094 /// Replace all padding bytes in a given constant with either a pattern byte or 1095 /// 0x00. 1096 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1097 llvm::Constant *constant) { 1098 llvm::Type *OrigTy = constant->getType(); 1099 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1100 return constStructWithPadding(CGM, isPattern, STy, constant); 1101 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1102 llvm::SmallVector<llvm::Constant *, 8> Values; 1103 uint64_t Size = ArrayTy->getNumElements(); 1104 if (!Size) 1105 return constant; 1106 llvm::Type *ElemTy = ArrayTy->getElementType(); 1107 bool ZeroInitializer = constant->isNullValue(); 1108 llvm::Constant *OpValue, *PaddedOp; 1109 if (ZeroInitializer) { 1110 OpValue = llvm::Constant::getNullValue(ElemTy); 1111 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1112 } 1113 for (unsigned Op = 0; Op != Size; ++Op) { 1114 if (!ZeroInitializer) { 1115 OpValue = constant->getAggregateElement(Op); 1116 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1117 } 1118 Values.push_back(PaddedOp); 1119 } 1120 auto *NewElemTy = Values[0]->getType(); 1121 if (NewElemTy == ElemTy) 1122 return constant; 1123 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1124 return llvm::ConstantArray::get(NewArrayTy, Values); 1125 } 1126 // FIXME: Add handling for tail padding in vectors. Vectors don't 1127 // have padding between or inside elements, but the total amount of 1128 // data can be less than the allocated size. 1129 return constant; 1130 } 1131 1132 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1133 llvm::Constant *Constant, 1134 CharUnits Align) { 1135 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1136 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1137 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1138 return CC->getNameAsString(); 1139 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1140 return CD->getNameAsString(); 1141 return std::string(getMangledName(FD)); 1142 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1143 return OM->getNameAsString(); 1144 } else if (isa<BlockDecl>(DC)) { 1145 return "<block>"; 1146 } else if (isa<CapturedDecl>(DC)) { 1147 return "<captured>"; 1148 } else { 1149 llvm_unreachable("expected a function or method"); 1150 } 1151 }; 1152 1153 // Form a simple per-variable cache of these values in case we find we 1154 // want to reuse them. 1155 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1156 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1157 auto *Ty = Constant->getType(); 1158 bool isConstant = true; 1159 llvm::GlobalVariable *InsertBefore = nullptr; 1160 unsigned AS = 1161 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1162 std::string Name; 1163 if (D.hasGlobalStorage()) 1164 Name = getMangledName(&D).str() + ".const"; 1165 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1166 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1167 else 1168 llvm_unreachable("local variable has no parent function or method"); 1169 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1170 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1171 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1172 GV->setAlignment(Align.getAsAlign()); 1173 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1174 CacheEntry = GV; 1175 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) { 1176 CacheEntry->setAlignment(Align.getAsAlign()); 1177 } 1178 1179 return Address(CacheEntry, CacheEntry->getValueType(), Align); 1180 } 1181 1182 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1183 const VarDecl &D, 1184 CGBuilderTy &Builder, 1185 llvm::Constant *Constant, 1186 CharUnits Align) { 1187 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1188 return SrcPtr.withElementType(CGM.Int8Ty); 1189 } 1190 1191 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1192 Address Loc, bool isVolatile, 1193 CGBuilderTy &Builder, 1194 llvm::Constant *constant, bool IsAutoInit) { 1195 auto *Ty = constant->getType(); 1196 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1197 if (!ConstantSize) 1198 return; 1199 1200 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1201 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1202 if (canDoSingleStore) { 1203 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1204 if (IsAutoInit) 1205 I->addAnnotationMetadata("auto-init"); 1206 return; 1207 } 1208 1209 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1210 1211 // If the initializer is all or mostly the same, codegen with bzero / memset 1212 // then do a few stores afterward. 1213 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1214 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1215 SizeVal, isVolatile); 1216 if (IsAutoInit) 1217 I->addAnnotationMetadata("auto-init"); 1218 1219 bool valueAlreadyCorrect = 1220 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1221 if (!valueAlreadyCorrect) { 1222 Loc = Loc.withElementType(Ty); 1223 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1224 IsAutoInit); 1225 } 1226 return; 1227 } 1228 1229 // If the initializer is a repeated byte pattern, use memset. 1230 llvm::Value *Pattern = 1231 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1232 if (Pattern) { 1233 uint64_t Value = 0x00; 1234 if (!isa<llvm::UndefValue>(Pattern)) { 1235 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1236 assert(AP.getBitWidth() <= 8); 1237 Value = AP.getLimitedValue(); 1238 } 1239 auto *I = Builder.CreateMemSet( 1240 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1241 if (IsAutoInit) 1242 I->addAnnotationMetadata("auto-init"); 1243 return; 1244 } 1245 1246 // If the initializer is small or trivialAutoVarInit is set, use a handful of 1247 // stores. 1248 bool IsTrivialAutoVarInitPattern = 1249 CGM.getContext().getLangOpts().getTrivialAutoVarInit() == 1250 LangOptions::TrivialAutoVarInitKind::Pattern; 1251 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1252 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1253 if (STy == Loc.getElementType() || 1254 (STy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) { 1255 const llvm::StructLayout *Layout = 1256 CGM.getDataLayout().getStructLayout(STy); 1257 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1258 CharUnits CurOff = 1259 CharUnits::fromQuantity(Layout->getElementOffset(i)); 1260 Address EltPtr = Builder.CreateConstInBoundsByteGEP( 1261 Loc.withElementType(CGM.Int8Ty), CurOff); 1262 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder, 1263 constant->getAggregateElement(i), IsAutoInit); 1264 } 1265 return; 1266 } 1267 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1268 if (ATy == Loc.getElementType() || 1269 (ATy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) { 1270 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1271 Address EltPtr = Builder.CreateConstGEP( 1272 Loc.withElementType(ATy->getElementType()), i); 1273 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder, 1274 constant->getAggregateElement(i), IsAutoInit); 1275 } 1276 return; 1277 } 1278 } 1279 } 1280 1281 // Copy from a global. 1282 auto *I = 1283 Builder.CreateMemCpy(Loc, 1284 createUnnamedGlobalForMemcpyFrom( 1285 CGM, D, Builder, constant, Loc.getAlignment()), 1286 SizeVal, isVolatile); 1287 if (IsAutoInit) 1288 I->addAnnotationMetadata("auto-init"); 1289 } 1290 1291 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1292 Address Loc, bool isVolatile, 1293 CGBuilderTy &Builder) { 1294 llvm::Type *ElTy = Loc.getElementType(); 1295 llvm::Constant *constant = 1296 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1297 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1298 /*IsAutoInit=*/true); 1299 } 1300 1301 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1302 Address Loc, bool isVolatile, 1303 CGBuilderTy &Builder) { 1304 llvm::Type *ElTy = Loc.getElementType(); 1305 llvm::Constant *constant = constWithPadding( 1306 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1307 assert(!isa<llvm::UndefValue>(constant)); 1308 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1309 /*IsAutoInit=*/true); 1310 } 1311 1312 static bool containsUndef(llvm::Constant *constant) { 1313 auto *Ty = constant->getType(); 1314 if (isa<llvm::UndefValue>(constant)) 1315 return true; 1316 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1317 for (llvm::Use &Op : constant->operands()) 1318 if (containsUndef(cast<llvm::Constant>(Op))) 1319 return true; 1320 return false; 1321 } 1322 1323 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1324 llvm::Constant *constant) { 1325 auto *Ty = constant->getType(); 1326 if (isa<llvm::UndefValue>(constant)) 1327 return patternOrZeroFor(CGM, isPattern, Ty); 1328 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1329 return constant; 1330 if (!containsUndef(constant)) 1331 return constant; 1332 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1333 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1334 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1335 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1336 } 1337 if (Ty->isStructTy()) 1338 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1339 if (Ty->isArrayTy()) 1340 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1341 assert(Ty->isVectorTy()); 1342 return llvm::ConstantVector::get(Values); 1343 } 1344 1345 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1346 /// variable declaration with auto, register, or no storage class specifier. 1347 /// These turn into simple stack objects, or GlobalValues depending on target. 1348 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1349 AutoVarEmission emission = EmitAutoVarAlloca(D); 1350 EmitAutoVarInit(emission); 1351 EmitAutoVarCleanups(emission); 1352 } 1353 1354 /// Emit a lifetime.begin marker if some criteria are satisfied. 1355 /// \return a pointer to the temporary size Value if a marker was emitted, null 1356 /// otherwise 1357 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size, 1358 llvm::Value *Addr) { 1359 if (!ShouldEmitLifetimeMarkers) 1360 return nullptr; 1361 1362 assert(Addr->getType()->getPointerAddressSpace() == 1363 CGM.getDataLayout().getAllocaAddrSpace() && 1364 "Pointer should be in alloca address space"); 1365 llvm::Value *SizeV = llvm::ConstantInt::get( 1366 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue()); 1367 llvm::CallInst *C = 1368 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1369 C->setDoesNotThrow(); 1370 return SizeV; 1371 } 1372 1373 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1374 assert(Addr->getType()->getPointerAddressSpace() == 1375 CGM.getDataLayout().getAllocaAddrSpace() && 1376 "Pointer should be in alloca address space"); 1377 llvm::CallInst *C = 1378 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1379 C->setDoesNotThrow(); 1380 } 1381 1382 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1383 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1384 // For each dimension stores its QualType and corresponding 1385 // size-expression Value. 1386 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1387 SmallVector<const IdentifierInfo *, 4> VLAExprNames; 1388 1389 // Break down the array into individual dimensions. 1390 QualType Type1D = D.getType(); 1391 while (getContext().getAsVariableArrayType(Type1D)) { 1392 auto VlaSize = getVLAElements1D(Type1D); 1393 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1394 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1395 else { 1396 // Generate a locally unique name for the size expression. 1397 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1398 SmallString<12> Buffer; 1399 StringRef NameRef = Name.toStringRef(Buffer); 1400 auto &Ident = getContext().Idents.getOwn(NameRef); 1401 VLAExprNames.push_back(&Ident); 1402 auto SizeExprAddr = 1403 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1404 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1405 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1406 Type1D.getUnqualifiedType()); 1407 } 1408 Type1D = VlaSize.Type; 1409 } 1410 1411 if (!EmitDebugInfo) 1412 return; 1413 1414 // Register each dimension's size-expression with a DILocalVariable, 1415 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1416 // to describe this array. 1417 unsigned NameIdx = 0; 1418 for (auto &VlaSize : Dimensions) { 1419 llvm::Metadata *MD; 1420 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1421 MD = llvm::ConstantAsMetadata::get(C); 1422 else { 1423 // Create an artificial VarDecl to generate debug info for. 1424 const IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1425 auto QT = getContext().getIntTypeForBitwidth( 1426 SizeTy->getScalarSizeInBits(), false); 1427 auto *ArtificialDecl = VarDecl::Create( 1428 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1429 D.getLocation(), D.getLocation(), NameIdent, QT, 1430 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1431 ArtificialDecl->setImplicit(); 1432 1433 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1434 Builder); 1435 } 1436 assert(MD && "No Size expression debug node created"); 1437 DI->registerVLASizeExpression(VlaSize.Type, MD); 1438 } 1439 } 1440 1441 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1442 /// local variable. Does not emit initialization or destruction. 1443 CodeGenFunction::AutoVarEmission 1444 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1445 QualType Ty = D.getType(); 1446 assert( 1447 Ty.getAddressSpace() == LangAS::Default || 1448 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1449 1450 AutoVarEmission emission(D); 1451 1452 bool isEscapingByRef = D.isEscapingByref(); 1453 emission.IsEscapingByRef = isEscapingByRef; 1454 1455 CharUnits alignment = getContext().getDeclAlign(&D); 1456 1457 // If the type is variably-modified, emit all the VLA sizes for it. 1458 if (Ty->isVariablyModifiedType()) 1459 EmitVariablyModifiedType(Ty); 1460 1461 auto *DI = getDebugInfo(); 1462 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1463 1464 Address address = Address::invalid(); 1465 RawAddress AllocaAddr = RawAddress::invalid(); 1466 Address OpenMPLocalAddr = Address::invalid(); 1467 if (CGM.getLangOpts().OpenMPIRBuilder) 1468 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1469 else 1470 OpenMPLocalAddr = 1471 getLangOpts().OpenMP 1472 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1473 : Address::invalid(); 1474 1475 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1476 1477 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1478 address = OpenMPLocalAddr; 1479 AllocaAddr = OpenMPLocalAddr; 1480 } else if (Ty->isConstantSizeType()) { 1481 // If this value is an array or struct with a statically determinable 1482 // constant initializer, there are optimizations we can do. 1483 // 1484 // TODO: We should constant-evaluate the initializer of any variable, 1485 // as long as it is initialized by a constant expression. Currently, 1486 // isConstantInitializer produces wrong answers for structs with 1487 // reference or bitfield members, and a few other cases, and checking 1488 // for POD-ness protects us from some of these. 1489 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1490 (D.isConstexpr() || 1491 ((Ty.isPODType(getContext()) || 1492 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1493 D.getInit()->isConstantInitializer(getContext(), false)))) { 1494 1495 // If the variable's a const type, and it's neither an NRVO 1496 // candidate nor a __block variable and has no mutable members, 1497 // emit it as a global instead. 1498 // Exception is if a variable is located in non-constant address space 1499 // in OpenCL. 1500 bool NeedsDtor = 1501 D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; 1502 if ((!getLangOpts().OpenCL || 1503 Ty.getAddressSpace() == LangAS::opencl_constant) && 1504 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1505 !isEscapingByRef && 1506 Ty.isConstantStorage(getContext(), true, !NeedsDtor))) { 1507 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1508 1509 // Signal this condition to later callbacks. 1510 emission.Addr = Address::invalid(); 1511 assert(emission.wasEmittedAsGlobal()); 1512 return emission; 1513 } 1514 1515 // Otherwise, tell the initialization code that we're in this case. 1516 emission.IsConstantAggregate = true; 1517 } 1518 1519 // A normal fixed sized variable becomes an alloca in the entry block, 1520 // unless: 1521 // - it's an NRVO variable. 1522 // - we are compiling OpenMP and it's an OpenMP local variable. 1523 if (NRVO) { 1524 // The named return value optimization: allocate this variable in the 1525 // return slot, so that we can elide the copy when returning this 1526 // variable (C++0x [class.copy]p34). 1527 address = ReturnValue; 1528 AllocaAddr = 1529 RawAddress(ReturnValue.emitRawPointer(*this), 1530 ReturnValue.getElementType(), ReturnValue.getAlignment()); 1531 ; 1532 1533 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1534 const auto *RD = RecordTy->getDecl(); 1535 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1536 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1537 RD->isNonTrivialToPrimitiveDestroy()) { 1538 // Create a flag that is used to indicate when the NRVO was applied 1539 // to this variable. Set it to zero to indicate that NRVO was not 1540 // applied. 1541 llvm::Value *Zero = Builder.getFalse(); 1542 RawAddress NRVOFlag = 1543 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1544 EnsureInsertPoint(); 1545 Builder.CreateStore(Zero, NRVOFlag); 1546 1547 // Record the NRVO flag for this variable. 1548 NRVOFlags[&D] = NRVOFlag.getPointer(); 1549 emission.NRVOFlag = NRVOFlag.getPointer(); 1550 } 1551 } 1552 } else { 1553 CharUnits allocaAlignment; 1554 llvm::Type *allocaTy; 1555 if (isEscapingByRef) { 1556 auto &byrefInfo = getBlockByrefInfo(&D); 1557 allocaTy = byrefInfo.Type; 1558 allocaAlignment = byrefInfo.ByrefAlignment; 1559 } else { 1560 allocaTy = ConvertTypeForMem(Ty); 1561 allocaAlignment = alignment; 1562 } 1563 1564 // Create the alloca. Note that we set the name separately from 1565 // building the instruction so that it's there even in no-asserts 1566 // builds. 1567 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1568 /*ArraySize=*/nullptr, &AllocaAddr); 1569 1570 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1571 // the catch parameter starts in the catchpad instruction, and we can't 1572 // insert code in those basic blocks. 1573 bool IsMSCatchParam = 1574 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1575 1576 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1577 // if we don't have a valid insertion point (?). 1578 if (HaveInsertPoint() && !IsMSCatchParam) { 1579 // If there's a jump into the lifetime of this variable, its lifetime 1580 // gets broken up into several regions in IR, which requires more work 1581 // to handle correctly. For now, just omit the intrinsics; this is a 1582 // rare case, and it's better to just be conservatively correct. 1583 // PR28267. 1584 // 1585 // We have to do this in all language modes if there's a jump past the 1586 // declaration. We also have to do it in C if there's a jump to an 1587 // earlier point in the current block because non-VLA lifetimes begin as 1588 // soon as the containing block is entered, not when its variables 1589 // actually come into scope; suppressing the lifetime annotations 1590 // completely in this case is unnecessarily pessimistic, but again, this 1591 // is rare. 1592 if (!Bypasses.IsBypassed(&D) && 1593 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1594 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1595 emission.SizeForLifetimeMarkers = 1596 EmitLifetimeStart(Size, AllocaAddr.getPointer()); 1597 } 1598 } else { 1599 assert(!emission.useLifetimeMarkers()); 1600 } 1601 } 1602 } else { 1603 EnsureInsertPoint(); 1604 1605 // Delayed globalization for variable length declarations. This ensures that 1606 // the expression representing the length has been emitted and can be used 1607 // by the definition of the VLA. Since this is an escaped declaration, in 1608 // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching 1609 // deallocation call to __kmpc_free_shared() is emitted later. 1610 bool VarAllocated = false; 1611 if (getLangOpts().OpenMPIsTargetDevice) { 1612 auto &RT = CGM.getOpenMPRuntime(); 1613 if (RT.isDelayedVariableLengthDecl(*this, &D)) { 1614 // Emit call to __kmpc_alloc_shared() instead of the alloca. 1615 std::pair<llvm::Value *, llvm::Value *> AddrSizePair = 1616 RT.getKmpcAllocShared(*this, &D); 1617 1618 // Save the address of the allocation: 1619 LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(), 1620 CGM.getContext().getDeclAlign(&D), 1621 AlignmentSource::Decl); 1622 address = Base.getAddress(); 1623 1624 // Push a cleanup block to emit the call to __kmpc_free_shared in the 1625 // appropriate location at the end of the scope of the 1626 // __kmpc_alloc_shared functions: 1627 pushKmpcAllocFree(NormalCleanup, AddrSizePair); 1628 1629 // Mark variable as allocated: 1630 VarAllocated = true; 1631 } 1632 } 1633 1634 if (!VarAllocated) { 1635 if (!DidCallStackSave) { 1636 // Save the stack. 1637 Address Stack = 1638 CreateDefaultAlignTempAlloca(AllocaInt8PtrTy, "saved_stack"); 1639 1640 llvm::Value *V = Builder.CreateStackSave(); 1641 assert(V->getType() == AllocaInt8PtrTy); 1642 Builder.CreateStore(V, Stack); 1643 1644 DidCallStackSave = true; 1645 1646 // Push a cleanup block and restore the stack there. 1647 // FIXME: in general circumstances, this should be an EH cleanup. 1648 pushStackRestore(NormalCleanup, Stack); 1649 } 1650 1651 auto VlaSize = getVLASize(Ty); 1652 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1653 1654 // Allocate memory for the array. 1655 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1656 &AllocaAddr); 1657 } 1658 1659 // If we have debug info enabled, properly describe the VLA dimensions for 1660 // this type by registering the vla size expression for each of the 1661 // dimensions. 1662 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1663 } 1664 1665 setAddrOfLocalVar(&D, address); 1666 emission.Addr = address; 1667 emission.AllocaAddr = AllocaAddr; 1668 1669 // Emit debug info for local var declaration. 1670 if (EmitDebugInfo && HaveInsertPoint()) { 1671 Address DebugAddr = address; 1672 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1673 DI->setLocation(D.getLocation()); 1674 1675 // If NRVO, use a pointer to the return address. 1676 if (UsePointerValue) { 1677 DebugAddr = ReturnValuePointer; 1678 AllocaAddr = ReturnValuePointer; 1679 } 1680 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder, 1681 UsePointerValue); 1682 } 1683 1684 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1685 EmitVarAnnotations(&D, address.emitRawPointer(*this)); 1686 1687 // Make sure we call @llvm.lifetime.end. 1688 if (emission.useLifetimeMarkers()) 1689 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1690 emission.getOriginalAllocatedAddress(), 1691 emission.getSizeForLifetimeMarkers()); 1692 1693 return emission; 1694 } 1695 1696 static bool isCapturedBy(const VarDecl &, const Expr *); 1697 1698 /// Determines whether the given __block variable is potentially 1699 /// captured by the given statement. 1700 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1701 if (const Expr *E = dyn_cast<Expr>(S)) 1702 return isCapturedBy(Var, E); 1703 for (const Stmt *SubStmt : S->children()) 1704 if (isCapturedBy(Var, SubStmt)) 1705 return true; 1706 return false; 1707 } 1708 1709 /// Determines whether the given __block variable is potentially 1710 /// captured by the given expression. 1711 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1712 // Skip the most common kinds of expressions that make 1713 // hierarchy-walking expensive. 1714 E = E->IgnoreParenCasts(); 1715 1716 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1717 const BlockDecl *Block = BE->getBlockDecl(); 1718 for (const auto &I : Block->captures()) { 1719 if (I.getVariable() == &Var) 1720 return true; 1721 } 1722 1723 // No need to walk into the subexpressions. 1724 return false; 1725 } 1726 1727 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1728 const CompoundStmt *CS = SE->getSubStmt(); 1729 for (const auto *BI : CS->body()) 1730 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1731 if (isCapturedBy(Var, BIE)) 1732 return true; 1733 } 1734 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1735 // special case declarations 1736 for (const auto *I : DS->decls()) { 1737 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1738 const Expr *Init = VD->getInit(); 1739 if (Init && isCapturedBy(Var, Init)) 1740 return true; 1741 } 1742 } 1743 } 1744 else 1745 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1746 // Later, provide code to poke into statements for capture analysis. 1747 return true; 1748 return false; 1749 } 1750 1751 for (const Stmt *SubStmt : E->children()) 1752 if (isCapturedBy(Var, SubStmt)) 1753 return true; 1754 1755 return false; 1756 } 1757 1758 /// Determine whether the given initializer is trivial in the sense 1759 /// that it requires no code to be generated. 1760 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1761 if (!Init) 1762 return true; 1763 1764 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1765 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1766 if (Constructor->isTrivial() && 1767 Constructor->isDefaultConstructor() && 1768 !Construct->requiresZeroInitialization()) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1775 const VarDecl &D, 1776 Address Loc) { 1777 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1778 auto trivialAutoVarInitMaxSize = 1779 getContext().getLangOpts().TrivialAutoVarInitMaxSize; 1780 CharUnits Size = getContext().getTypeSizeInChars(type); 1781 bool isVolatile = type.isVolatileQualified(); 1782 if (!Size.isZero()) { 1783 // We skip auto-init variables by their alloc size. Take this as an example: 1784 // "struct Foo {int x; char buff[1024];}" Assume the max-size flag is 1023. 1785 // All Foo type variables will be skipped. Ideally, we only skip the buff 1786 // array and still auto-init X in this example. 1787 // TODO: Improve the size filtering to by member size. 1788 auto allocSize = CGM.getDataLayout().getTypeAllocSize(Loc.getElementType()); 1789 switch (trivialAutoVarInit) { 1790 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1791 llvm_unreachable("Uninitialized handled by caller"); 1792 case LangOptions::TrivialAutoVarInitKind::Zero: 1793 if (CGM.stopAutoInit()) 1794 return; 1795 if (trivialAutoVarInitMaxSize > 0 && 1796 allocSize > trivialAutoVarInitMaxSize) 1797 return; 1798 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1799 break; 1800 case LangOptions::TrivialAutoVarInitKind::Pattern: 1801 if (CGM.stopAutoInit()) 1802 return; 1803 if (trivialAutoVarInitMaxSize > 0 && 1804 allocSize > trivialAutoVarInitMaxSize) 1805 return; 1806 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1807 break; 1808 } 1809 return; 1810 } 1811 1812 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1813 // them, so emit a memcpy with the VLA size to initialize each element. 1814 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1815 // will catch that code, but there exists code which generates zero-sized 1816 // VLAs. Be nice and initialize whatever they requested. 1817 const auto *VlaType = getContext().getAsVariableArrayType(type); 1818 if (!VlaType) 1819 return; 1820 auto VlaSize = getVLASize(VlaType); 1821 auto SizeVal = VlaSize.NumElts; 1822 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1823 switch (trivialAutoVarInit) { 1824 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1825 llvm_unreachable("Uninitialized handled by caller"); 1826 1827 case LangOptions::TrivialAutoVarInitKind::Zero: { 1828 if (CGM.stopAutoInit()) 1829 return; 1830 if (!EltSize.isOne()) 1831 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1832 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1833 SizeVal, isVolatile); 1834 I->addAnnotationMetadata("auto-init"); 1835 break; 1836 } 1837 1838 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1839 if (CGM.stopAutoInit()) 1840 return; 1841 llvm::Type *ElTy = Loc.getElementType(); 1842 llvm::Constant *Constant = constWithPadding( 1843 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1844 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1845 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1846 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1847 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1848 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1849 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1850 "vla.iszerosized"); 1851 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1852 EmitBlock(SetupBB); 1853 if (!EltSize.isOne()) 1854 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1855 llvm::Value *BaseSizeInChars = 1856 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1857 Address Begin = Loc.withElementType(Int8Ty); 1858 llvm::Value *End = Builder.CreateInBoundsGEP(Begin.getElementType(), 1859 Begin.emitRawPointer(*this), 1860 SizeVal, "vla.end"); 1861 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1862 EmitBlock(LoopBB); 1863 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1864 Cur->addIncoming(Begin.emitRawPointer(*this), OriginBB); 1865 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1866 auto *I = 1867 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign), 1868 createUnnamedGlobalForMemcpyFrom( 1869 CGM, D, Builder, Constant, ConstantAlign), 1870 BaseSizeInChars, isVolatile); 1871 I->addAnnotationMetadata("auto-init"); 1872 llvm::Value *Next = 1873 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1874 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1875 Builder.CreateCondBr(Done, ContBB, LoopBB); 1876 Cur->addIncoming(Next, LoopBB); 1877 EmitBlock(ContBB); 1878 } break; 1879 } 1880 } 1881 1882 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1883 assert(emission.Variable && "emission was not valid!"); 1884 1885 // If this was emitted as a global constant, we're done. 1886 if (emission.wasEmittedAsGlobal()) return; 1887 1888 const VarDecl &D = *emission.Variable; 1889 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1890 QualType type = D.getType(); 1891 1892 // If this local has an initializer, emit it now. 1893 const Expr *Init = D.getInit(); 1894 1895 // If we are at an unreachable point, we don't need to emit the initializer 1896 // unless it contains a label. 1897 if (!HaveInsertPoint()) { 1898 if (!Init || !ContainsLabel(Init)) return; 1899 EnsureInsertPoint(); 1900 } 1901 1902 // Initialize the structure of a __block variable. 1903 if (emission.IsEscapingByRef) 1904 emitByrefStructureInit(emission); 1905 1906 // Initialize the variable here if it doesn't have a initializer and it is a 1907 // C struct that is non-trivial to initialize or an array containing such a 1908 // struct. 1909 if (!Init && 1910 type.isNonTrivialToPrimitiveDefaultInitialize() == 1911 QualType::PDIK_Struct) { 1912 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1913 if (emission.IsEscapingByRef) 1914 drillIntoBlockVariable(*this, Dst, &D); 1915 defaultInitNonTrivialCStructVar(Dst); 1916 return; 1917 } 1918 1919 // Check whether this is a byref variable that's potentially 1920 // captured and moved by its own initializer. If so, we'll need to 1921 // emit the initializer first, then copy into the variable. 1922 bool capturedByInit = 1923 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1924 1925 bool locIsByrefHeader = !capturedByInit; 1926 const Address Loc = 1927 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1928 1929 // Note: constexpr already initializes everything correctly. 1930 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1931 (D.isConstexpr() 1932 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1933 : (D.getAttr<UninitializedAttr>() 1934 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1935 : getContext().getLangOpts().getTrivialAutoVarInit())); 1936 1937 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1938 if (trivialAutoVarInit == 1939 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1940 return; 1941 1942 // Only initialize a __block's storage: we always initialize the header. 1943 if (emission.IsEscapingByRef && !locIsByrefHeader) 1944 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1945 1946 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1947 }; 1948 1949 if (isTrivialInitializer(Init)) 1950 return initializeWhatIsTechnicallyUninitialized(Loc); 1951 1952 llvm::Constant *constant = nullptr; 1953 if (emission.IsConstantAggregate || 1954 D.mightBeUsableInConstantExpressions(getContext())) { 1955 assert(!capturedByInit && "constant init contains a capturing block?"); 1956 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1957 if (constant && !constant->isZeroValue() && 1958 (trivialAutoVarInit != 1959 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1960 IsPattern isPattern = 1961 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1962 ? IsPattern::Yes 1963 : IsPattern::No; 1964 // C guarantees that brace-init with fewer initializers than members in 1965 // the aggregate will initialize the rest of the aggregate as-if it were 1966 // static initialization. In turn static initialization guarantees that 1967 // padding is initialized to zero bits. We could instead pattern-init if D 1968 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1969 // behavior. 1970 constant = constWithPadding(CGM, IsPattern::No, 1971 replaceUndef(CGM, isPattern, constant)); 1972 } 1973 1974 if (D.getType()->isBitIntType() && 1975 CGM.getTypes().typeRequiresSplitIntoByteArray(D.getType())) { 1976 // Constants for long _BitInt types are split into individual bytes. 1977 // Try to fold these back into an integer constant so it can be stored 1978 // properly. 1979 llvm::Type *LoadType = CGM.getTypes().convertTypeForLoadStore( 1980 D.getType(), constant->getType()); 1981 constant = llvm::ConstantFoldLoadFromConst( 1982 constant, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout()); 1983 } 1984 } 1985 1986 if (!constant) { 1987 if (trivialAutoVarInit != 1988 LangOptions::TrivialAutoVarInitKind::Uninitialized) { 1989 // At this point, we know D has an Init expression, but isn't a constant. 1990 // - If D is not a scalar, auto-var-init conservatively (members may be 1991 // left uninitialized by constructor Init expressions for example). 1992 // - If D is a scalar, we only need to auto-var-init if there is a 1993 // self-reference. Otherwise, the Init expression should be sufficient. 1994 // It may be that the Init expression uses other uninitialized memory, 1995 // but auto-var-init here would not help, as auto-init would get 1996 // overwritten by Init. 1997 if (!D.getType()->isScalarType() || capturedByInit || 1998 isAccessedBy(D, Init)) { 1999 initializeWhatIsTechnicallyUninitialized(Loc); 2000 } 2001 } 2002 LValue lv = MakeAddrLValue(Loc, type); 2003 lv.setNonGC(true); 2004 return EmitExprAsInit(Init, &D, lv, capturedByInit); 2005 } 2006 2007 if (!emission.IsConstantAggregate) { 2008 // For simple scalar/complex initialization, store the value directly. 2009 LValue lv = MakeAddrLValue(Loc, type); 2010 lv.setNonGC(true); 2011 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 2012 } 2013 2014 emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty), 2015 type.isVolatileQualified(), Builder, constant, 2016 /*IsAutoInit=*/false); 2017 } 2018 2019 /// Emit an expression as an initializer for an object (variable, field, etc.) 2020 /// at the given location. The expression is not necessarily the normal 2021 /// initializer for the object, and the address is not necessarily 2022 /// its normal location. 2023 /// 2024 /// \param init the initializing expression 2025 /// \param D the object to act as if we're initializing 2026 /// \param lvalue the lvalue to initialize 2027 /// \param capturedByInit true if \p D is a __block variable 2028 /// whose address is potentially changed by the initializer 2029 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 2030 LValue lvalue, bool capturedByInit) { 2031 QualType type = D->getType(); 2032 2033 if (type->isReferenceType()) { 2034 RValue rvalue = EmitReferenceBindingToExpr(init); 2035 if (capturedByInit) 2036 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 2037 EmitStoreThroughLValue(rvalue, lvalue, true); 2038 return; 2039 } 2040 switch (getEvaluationKind(type)) { 2041 case TEK_Scalar: 2042 EmitScalarInit(init, D, lvalue, capturedByInit); 2043 return; 2044 case TEK_Complex: { 2045 ComplexPairTy complex = EmitComplexExpr(init); 2046 if (capturedByInit) 2047 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 2048 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 2049 return; 2050 } 2051 case TEK_Aggregate: 2052 if (type->isAtomicType()) { 2053 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 2054 } else { 2055 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 2056 if (isa<VarDecl>(D)) 2057 Overlap = AggValueSlot::DoesNotOverlap; 2058 else if (auto *FD = dyn_cast<FieldDecl>(D)) 2059 Overlap = getOverlapForFieldInit(FD); 2060 // TODO: how can we delay here if D is captured by its initializer? 2061 EmitAggExpr(init, 2062 AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed, 2063 AggValueSlot::DoesNotNeedGCBarriers, 2064 AggValueSlot::IsNotAliased, Overlap)); 2065 } 2066 return; 2067 } 2068 llvm_unreachable("bad evaluation kind"); 2069 } 2070 2071 /// Enter a destroy cleanup for the given local variable. 2072 void CodeGenFunction::emitAutoVarTypeCleanup( 2073 const CodeGenFunction::AutoVarEmission &emission, 2074 QualType::DestructionKind dtorKind) { 2075 assert(dtorKind != QualType::DK_none); 2076 2077 // Note that for __block variables, we want to destroy the 2078 // original stack object, not the possibly forwarded object. 2079 Address addr = emission.getObjectAddress(*this); 2080 2081 const VarDecl *var = emission.Variable; 2082 QualType type = var->getType(); 2083 2084 CleanupKind cleanupKind = NormalAndEHCleanup; 2085 CodeGenFunction::Destroyer *destroyer = nullptr; 2086 2087 switch (dtorKind) { 2088 case QualType::DK_none: 2089 llvm_unreachable("no cleanup for trivially-destructible variable"); 2090 2091 case QualType::DK_cxx_destructor: 2092 // If there's an NRVO flag on the emission, we need a different 2093 // cleanup. 2094 if (emission.NRVOFlag) { 2095 assert(!type->isArrayType()); 2096 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 2097 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 2098 emission.NRVOFlag); 2099 return; 2100 } 2101 break; 2102 2103 case QualType::DK_objc_strong_lifetime: 2104 // Suppress cleanups for pseudo-strong variables. 2105 if (var->isARCPseudoStrong()) return; 2106 2107 // Otherwise, consider whether to use an EH cleanup or not. 2108 cleanupKind = getARCCleanupKind(); 2109 2110 // Use the imprecise destroyer by default. 2111 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2112 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2113 break; 2114 2115 case QualType::DK_objc_weak_lifetime: 2116 break; 2117 2118 case QualType::DK_nontrivial_c_struct: 2119 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2120 if (emission.NRVOFlag) { 2121 assert(!type->isArrayType()); 2122 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2123 emission.NRVOFlag, type); 2124 return; 2125 } 2126 break; 2127 } 2128 2129 // If we haven't chosen a more specific destroyer, use the default. 2130 if (!destroyer) destroyer = getDestroyer(dtorKind); 2131 2132 // Use an EH cleanup in array destructors iff the destructor itself 2133 // is being pushed as an EH cleanup. 2134 bool useEHCleanup = (cleanupKind & EHCleanup); 2135 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2136 useEHCleanup); 2137 } 2138 2139 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2140 assert(emission.Variable && "emission was not valid!"); 2141 2142 // If this was emitted as a global constant, we're done. 2143 if (emission.wasEmittedAsGlobal()) return; 2144 2145 // If we don't have an insertion point, we're done. Sema prevents 2146 // us from jumping into any of these scopes anyway. 2147 if (!HaveInsertPoint()) return; 2148 2149 const VarDecl &D = *emission.Variable; 2150 2151 // Check the type for a cleanup. 2152 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2153 emitAutoVarTypeCleanup(emission, dtorKind); 2154 2155 // In GC mode, honor objc_precise_lifetime. 2156 if (getLangOpts().getGC() != LangOptions::NonGC && 2157 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2158 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2159 } 2160 2161 // Handle the cleanup attribute. 2162 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2163 const FunctionDecl *FD = CA->getFunctionDecl(); 2164 2165 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2166 assert(F && "Could not find function!"); 2167 2168 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2169 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2170 } 2171 2172 // If this is a block variable, call _Block_object_destroy 2173 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2174 // mode. 2175 if (emission.IsEscapingByRef && 2176 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2177 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2178 if (emission.Variable->getType().isObjCGCWeak()) 2179 Flags |= BLOCK_FIELD_IS_WEAK; 2180 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2181 /*LoadBlockVarAddr*/ false, 2182 cxxDestructorCanThrow(emission.Variable->getType())); 2183 } 2184 } 2185 2186 CodeGenFunction::Destroyer * 2187 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2188 switch (kind) { 2189 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2190 case QualType::DK_cxx_destructor: 2191 return destroyCXXObject; 2192 case QualType::DK_objc_strong_lifetime: 2193 return destroyARCStrongPrecise; 2194 case QualType::DK_objc_weak_lifetime: 2195 return destroyARCWeak; 2196 case QualType::DK_nontrivial_c_struct: 2197 return destroyNonTrivialCStruct; 2198 } 2199 llvm_unreachable("Unknown DestructionKind"); 2200 } 2201 2202 /// pushEHDestroy - Push the standard destructor for the given type as 2203 /// an EH-only cleanup. 2204 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2205 Address addr, QualType type) { 2206 assert(dtorKind && "cannot push destructor for trivial type"); 2207 assert(needsEHCleanup(dtorKind)); 2208 2209 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2210 } 2211 2212 /// pushDestroy - Push the standard destructor for the given type as 2213 /// at least a normal cleanup. 2214 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2215 Address addr, QualType type) { 2216 assert(dtorKind && "cannot push destructor for trivial type"); 2217 2218 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2219 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2220 cleanupKind & EHCleanup); 2221 } 2222 2223 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2224 QualType type, Destroyer *destroyer, 2225 bool useEHCleanupForArray) { 2226 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2227 destroyer, useEHCleanupForArray); 2228 } 2229 2230 // Pushes a destroy and defers its deactivation until its 2231 // CleanupDeactivationScope is exited. 2232 void CodeGenFunction::pushDestroyAndDeferDeactivation( 2233 QualType::DestructionKind dtorKind, Address addr, QualType type) { 2234 assert(dtorKind && "cannot push destructor for trivial type"); 2235 2236 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2237 pushDestroyAndDeferDeactivation( 2238 cleanupKind, addr, type, getDestroyer(dtorKind), cleanupKind & EHCleanup); 2239 } 2240 2241 void CodeGenFunction::pushDestroyAndDeferDeactivation( 2242 CleanupKind cleanupKind, Address addr, QualType type, Destroyer *destroyer, 2243 bool useEHCleanupForArray) { 2244 llvm::Instruction *DominatingIP = 2245 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 2246 pushDestroy(cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2247 DeferredDeactivationCleanupStack.push_back( 2248 {EHStack.stable_begin(), DominatingIP}); 2249 } 2250 2251 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2252 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2253 } 2254 2255 void CodeGenFunction::pushKmpcAllocFree( 2256 CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) { 2257 EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair); 2258 } 2259 2260 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2261 Address addr, QualType type, 2262 Destroyer *destroyer, 2263 bool useEHCleanupForArray) { 2264 // If we're not in a conditional branch, we don't need to bother generating a 2265 // conditional cleanup. 2266 if (!isInConditionalBranch()) { 2267 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2268 // around in case a temporary's destructor throws an exception. 2269 2270 // Add the cleanup to the EHStack. After the full-expr, this would be 2271 // deactivated before being popped from the stack. 2272 pushDestroyAndDeferDeactivation(cleanupKind, addr, type, destroyer, 2273 useEHCleanupForArray); 2274 2275 // Since this is lifetime-extended, push it once again to the EHStack after 2276 // the full expression. 2277 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2278 cleanupKind, Address::invalid(), addr, type, destroyer, 2279 useEHCleanupForArray); 2280 } 2281 2282 // Otherwise, we should only destroy the object if it's been initialized. 2283 2284 using ConditionalCleanupType = 2285 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2286 Destroyer *, bool>; 2287 DominatingValue<Address>::saved_type SavedAddr = saveValueInCond(addr); 2288 2289 // Remember to emit cleanup if we branch-out before end of full-expression 2290 // (eg: through stmt-expr or coro suspensions). 2291 AllocaTrackerRAII DeactivationAllocas(*this); 2292 Address ActiveFlagForDeactivation = createCleanupActiveFlag(); 2293 2294 pushCleanupAndDeferDeactivation<ConditionalCleanupType>( 2295 cleanupKind, SavedAddr, type, destroyer, useEHCleanupForArray); 2296 initFullExprCleanupWithFlag(ActiveFlagForDeactivation); 2297 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 2298 // Erase the active flag if the cleanup was not emitted. 2299 cleanup.AddAuxAllocas(std::move(DeactivationAllocas).Take()); 2300 2301 // Since this is lifetime-extended, push it once again to the EHStack after 2302 // the full expression. 2303 // The previous active flag would always be 'false' due to forced deferred 2304 // deactivation. Use a separate flag for lifetime-extension to correctly 2305 // remember if this branch was taken and the object was initialized. 2306 Address ActiveFlagForLifetimeExt = createCleanupActiveFlag(); 2307 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2308 cleanupKind, ActiveFlagForLifetimeExt, SavedAddr, type, destroyer, 2309 useEHCleanupForArray); 2310 } 2311 2312 /// emitDestroy - Immediately perform the destruction of the given 2313 /// object. 2314 /// 2315 /// \param addr - the address of the object; a type* 2316 /// \param type - the type of the object; if an array type, all 2317 /// objects are destroyed in reverse order 2318 /// \param destroyer - the function to call to destroy individual 2319 /// elements 2320 /// \param useEHCleanupForArray - whether an EH cleanup should be 2321 /// used when destroying array elements, in case one of the 2322 /// destructions throws an exception 2323 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2324 Destroyer *destroyer, 2325 bool useEHCleanupForArray) { 2326 const ArrayType *arrayType = getContext().getAsArrayType(type); 2327 if (!arrayType) 2328 return destroyer(*this, addr, type); 2329 2330 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2331 2332 CharUnits elementAlign = 2333 addr.getAlignment() 2334 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2335 2336 // Normally we have to check whether the array is zero-length. 2337 bool checkZeroLength = true; 2338 2339 // But if the array length is constant, we can suppress that. 2340 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2341 // ...and if it's constant zero, we can just skip the entire thing. 2342 if (constLength->isZero()) return; 2343 checkZeroLength = false; 2344 } 2345 2346 llvm::Value *begin = addr.emitRawPointer(*this); 2347 llvm::Value *end = 2348 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2349 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2350 checkZeroLength, useEHCleanupForArray); 2351 } 2352 2353 /// emitArrayDestroy - Destroys all the elements of the given array, 2354 /// beginning from last to first. The array cannot be zero-length. 2355 /// 2356 /// \param begin - a type* denoting the first element of the array 2357 /// \param end - a type* denoting one past the end of the array 2358 /// \param elementType - the element type of the array 2359 /// \param destroyer - the function to call to destroy elements 2360 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2361 /// the remaining elements in case the destruction of a single 2362 /// element throws 2363 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2364 llvm::Value *end, 2365 QualType elementType, 2366 CharUnits elementAlign, 2367 Destroyer *destroyer, 2368 bool checkZeroLength, 2369 bool useEHCleanup) { 2370 assert(!elementType->isArrayType()); 2371 2372 // The basic structure here is a do-while loop, because we don't 2373 // need to check for the zero-element case. 2374 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2375 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2376 2377 if (checkZeroLength) { 2378 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2379 "arraydestroy.isempty"); 2380 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2381 } 2382 2383 // Enter the loop body, making that address the current address. 2384 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2385 EmitBlock(bodyBB); 2386 llvm::PHINode *elementPast = 2387 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2388 elementPast->addIncoming(end, entryBB); 2389 2390 // Shift the address back by one element. 2391 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2392 llvm::Type *llvmElementType = ConvertTypeForMem(elementType); 2393 llvm::Value *element = Builder.CreateInBoundsGEP( 2394 llvmElementType, elementPast, negativeOne, "arraydestroy.element"); 2395 2396 if (useEHCleanup) 2397 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2398 destroyer); 2399 2400 // Perform the actual destruction there. 2401 destroyer(*this, Address(element, llvmElementType, elementAlign), 2402 elementType); 2403 2404 if (useEHCleanup) 2405 PopCleanupBlock(); 2406 2407 // Check whether we've reached the end. 2408 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2409 Builder.CreateCondBr(done, doneBB, bodyBB); 2410 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2411 2412 // Done. 2413 EmitBlock(doneBB); 2414 } 2415 2416 /// Perform partial array destruction as if in an EH cleanup. Unlike 2417 /// emitArrayDestroy, the element type here may still be an array type. 2418 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2419 llvm::Value *begin, llvm::Value *end, 2420 QualType type, CharUnits elementAlign, 2421 CodeGenFunction::Destroyer *destroyer) { 2422 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2423 2424 // If the element type is itself an array, drill down. 2425 unsigned arrayDepth = 0; 2426 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2427 // VLAs don't require a GEP index to walk into. 2428 if (!isa<VariableArrayType>(arrayType)) 2429 arrayDepth++; 2430 type = arrayType->getElementType(); 2431 } 2432 2433 if (arrayDepth) { 2434 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2435 2436 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2437 begin = CGF.Builder.CreateInBoundsGEP( 2438 elemTy, begin, gepIndices, "pad.arraybegin"); 2439 end = CGF.Builder.CreateInBoundsGEP( 2440 elemTy, end, gepIndices, "pad.arrayend"); 2441 } 2442 2443 // Destroy the array. We don't ever need an EH cleanup because we 2444 // assume that we're in an EH cleanup ourselves, so a throwing 2445 // destructor causes an immediate terminate. 2446 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2447 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2448 } 2449 2450 namespace { 2451 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2452 /// array destroy where the end pointer is regularly determined and 2453 /// does not need to be loaded from a local. 2454 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2455 llvm::Value *ArrayBegin; 2456 llvm::Value *ArrayEnd; 2457 QualType ElementType; 2458 CodeGenFunction::Destroyer *Destroyer; 2459 CharUnits ElementAlign; 2460 public: 2461 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2462 QualType elementType, CharUnits elementAlign, 2463 CodeGenFunction::Destroyer *destroyer) 2464 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2465 ElementType(elementType), Destroyer(destroyer), 2466 ElementAlign(elementAlign) {} 2467 2468 void Emit(CodeGenFunction &CGF, Flags flags) override { 2469 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2470 ElementType, ElementAlign, Destroyer); 2471 } 2472 }; 2473 2474 /// IrregularPartialArrayDestroy - a cleanup which performs a 2475 /// partial array destroy where the end pointer is irregularly 2476 /// determined and must be loaded from a local. 2477 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2478 llvm::Value *ArrayBegin; 2479 Address ArrayEndPointer; 2480 QualType ElementType; 2481 CodeGenFunction::Destroyer *Destroyer; 2482 CharUnits ElementAlign; 2483 public: 2484 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2485 Address arrayEndPointer, 2486 QualType elementType, 2487 CharUnits elementAlign, 2488 CodeGenFunction::Destroyer *destroyer) 2489 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2490 ElementType(elementType), Destroyer(destroyer), 2491 ElementAlign(elementAlign) {} 2492 2493 void Emit(CodeGenFunction &CGF, Flags flags) override { 2494 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2495 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2496 ElementType, ElementAlign, Destroyer); 2497 } 2498 }; 2499 } // end anonymous namespace 2500 2501 /// pushIrregularPartialArrayCleanup - Push a NormalAndEHCleanup to 2502 /// destroy already-constructed elements of the given array. The cleanup may be 2503 /// popped with DeactivateCleanupBlock or PopCleanupBlock. 2504 /// 2505 /// \param elementType - the immediate element type of the array; 2506 /// possibly still an array type 2507 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2508 Address arrayEndPointer, 2509 QualType elementType, 2510 CharUnits elementAlign, 2511 Destroyer *destroyer) { 2512 pushFullExprCleanup<IrregularPartialArrayDestroy>( 2513 NormalAndEHCleanup, arrayBegin, arrayEndPointer, elementType, 2514 elementAlign, destroyer); 2515 } 2516 2517 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2518 /// already-constructed elements of the given array. The cleanup 2519 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2520 /// 2521 /// \param elementType - the immediate element type of the array; 2522 /// possibly still an array type 2523 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2524 llvm::Value *arrayEnd, 2525 QualType elementType, 2526 CharUnits elementAlign, 2527 Destroyer *destroyer) { 2528 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2529 arrayBegin, arrayEnd, 2530 elementType, elementAlign, 2531 destroyer); 2532 } 2533 2534 /// Lazily declare the @llvm.lifetime.start intrinsic. 2535 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2536 if (LifetimeStartFn) 2537 return LifetimeStartFn; 2538 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2539 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2540 return LifetimeStartFn; 2541 } 2542 2543 /// Lazily declare the @llvm.lifetime.end intrinsic. 2544 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2545 if (LifetimeEndFn) 2546 return LifetimeEndFn; 2547 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2548 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2549 return LifetimeEndFn; 2550 } 2551 2552 namespace { 2553 /// A cleanup to perform a release of an object at the end of a 2554 /// function. This is used to balance out the incoming +1 of a 2555 /// ns_consumed argument when we can't reasonably do that just by 2556 /// not doing the initial retain for a __block argument. 2557 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2558 ConsumeARCParameter(llvm::Value *param, 2559 ARCPreciseLifetime_t precise) 2560 : Param(param), Precise(precise) {} 2561 2562 llvm::Value *Param; 2563 ARCPreciseLifetime_t Precise; 2564 2565 void Emit(CodeGenFunction &CGF, Flags flags) override { 2566 CGF.EmitARCRelease(Param, Precise); 2567 } 2568 }; 2569 } // end anonymous namespace 2570 2571 /// Emit an alloca (or GlobalValue depending on target) 2572 /// for the specified parameter and set up LocalDeclMap. 2573 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2574 unsigned ArgNo) { 2575 bool NoDebugInfo = false; 2576 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2577 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2578 "Invalid argument to EmitParmDecl"); 2579 2580 // Set the name of the parameter's initial value to make IR easier to 2581 // read. Don't modify the names of globals. 2582 if (!isa<llvm::GlobalValue>(Arg.getAnyValue())) 2583 Arg.getAnyValue()->setName(D.getName()); 2584 2585 QualType Ty = D.getType(); 2586 2587 // Use better IR generation for certain implicit parameters. 2588 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2589 // The only implicit argument a block has is its literal. 2590 // This may be passed as an inalloca'ed value on Windows x86. 2591 if (BlockInfo) { 2592 llvm::Value *V = Arg.isIndirect() 2593 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2594 : Arg.getDirectValue(); 2595 setBlockContextParameter(IPD, ArgNo, V); 2596 return; 2597 } 2598 // Suppressing debug info for ThreadPrivateVar parameters, else it hides 2599 // debug info of TLS variables. 2600 NoDebugInfo = 2601 (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar); 2602 } 2603 2604 Address DeclPtr = Address::invalid(); 2605 RawAddress AllocaPtr = Address::invalid(); 2606 bool DoStore = false; 2607 bool IsScalar = hasScalarEvaluationKind(Ty); 2608 bool UseIndirectDebugAddress = false; 2609 2610 // If we already have a pointer to the argument, reuse the input pointer. 2611 if (Arg.isIndirect()) { 2612 DeclPtr = Arg.getIndirectAddress(); 2613 DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty)); 2614 // Indirect argument is in alloca address space, which may be different 2615 // from the default address space. 2616 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2617 auto *V = DeclPtr.emitRawPointer(*this); 2618 AllocaPtr = RawAddress(V, DeclPtr.getElementType(), DeclPtr.getAlignment()); 2619 2620 // For truly ABI indirect arguments -- those that are not `byval` -- store 2621 // the address of the argument on the stack to preserve debug information. 2622 ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info; 2623 if (ArgInfo.isIndirect()) 2624 UseIndirectDebugAddress = !ArgInfo.getIndirectByVal(); 2625 if (UseIndirectDebugAddress) { 2626 auto PtrTy = getContext().getPointerType(Ty); 2627 AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy), 2628 D.getName() + ".indirect_addr"); 2629 EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy); 2630 } 2631 2632 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2633 auto DestLangAS = 2634 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2635 if (SrcLangAS != DestLangAS) { 2636 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2637 CGM.getDataLayout().getAllocaAddrSpace()); 2638 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2639 auto *T = llvm::PointerType::get(getLLVMContext(), DestAS); 2640 DeclPtr = 2641 DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast( 2642 *this, V, SrcLangAS, DestLangAS, T, true), 2643 DeclPtr.isKnownNonNull()); 2644 } 2645 2646 // Push a destructor cleanup for this parameter if the ABI requires it. 2647 // Don't push a cleanup in a thunk for a method that will also emit a 2648 // cleanup. 2649 if (Ty->isRecordType() && !CurFuncIsThunk && 2650 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2651 if (QualType::DestructionKind DtorKind = 2652 D.needsDestruction(getContext())) { 2653 assert((DtorKind == QualType::DK_cxx_destructor || 2654 DtorKind == QualType::DK_nontrivial_c_struct) && 2655 "unexpected destructor type"); 2656 pushDestroy(DtorKind, DeclPtr, Ty); 2657 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2658 EHStack.stable_begin(); 2659 } 2660 } 2661 } else { 2662 // Check if the parameter address is controlled by OpenMP runtime. 2663 Address OpenMPLocalAddr = 2664 getLangOpts().OpenMP 2665 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2666 : Address::invalid(); 2667 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2668 DeclPtr = OpenMPLocalAddr; 2669 AllocaPtr = DeclPtr; 2670 } else { 2671 // Otherwise, create a temporary to hold the value. 2672 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2673 D.getName() + ".addr", &AllocaPtr); 2674 } 2675 DoStore = true; 2676 } 2677 2678 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2679 2680 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2681 if (IsScalar) { 2682 Qualifiers qs = Ty.getQualifiers(); 2683 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2684 // We honor __attribute__((ns_consumed)) for types with lifetime. 2685 // For __strong, it's handled by just skipping the initial retain; 2686 // otherwise we have to balance out the initial +1 with an extra 2687 // cleanup to do the release at the end of the function. 2688 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2689 2690 // If a parameter is pseudo-strong then we can omit the implicit retain. 2691 if (D.isARCPseudoStrong()) { 2692 assert(lt == Qualifiers::OCL_Strong && 2693 "pseudo-strong variable isn't strong?"); 2694 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2695 lt = Qualifiers::OCL_ExplicitNone; 2696 } 2697 2698 // Load objects passed indirectly. 2699 if (Arg.isIndirect() && !ArgVal) 2700 ArgVal = Builder.CreateLoad(DeclPtr); 2701 2702 if (lt == Qualifiers::OCL_Strong) { 2703 if (!isConsumed) { 2704 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2705 // use objc_storeStrong(&dest, value) for retaining the 2706 // object. But first, store a null into 'dest' because 2707 // objc_storeStrong attempts to release its old value. 2708 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2709 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2710 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2711 DoStore = false; 2712 } 2713 else 2714 // Don't use objc_retainBlock for block pointers, because we 2715 // don't want to Block_copy something just because we got it 2716 // as a parameter. 2717 ArgVal = EmitARCRetainNonBlock(ArgVal); 2718 } 2719 } else { 2720 // Push the cleanup for a consumed parameter. 2721 if (isConsumed) { 2722 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2723 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2724 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2725 precise); 2726 } 2727 2728 if (lt == Qualifiers::OCL_Weak) { 2729 EmitARCInitWeak(DeclPtr, ArgVal); 2730 DoStore = false; // The weak init is a store, no need to do two. 2731 } 2732 } 2733 2734 // Enter the cleanup scope. 2735 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2736 } 2737 } 2738 2739 // Store the initial value into the alloca. 2740 if (DoStore) 2741 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2742 2743 setAddrOfLocalVar(&D, DeclPtr); 2744 2745 // Emit debug info for param declarations in non-thunk functions. 2746 if (CGDebugInfo *DI = getDebugInfo()) { 2747 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk && 2748 !NoDebugInfo) { 2749 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2750 &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress); 2751 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2752 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2753 } 2754 } 2755 2756 if (D.hasAttr<AnnotateAttr>()) 2757 EmitVarAnnotations(&D, DeclPtr.emitRawPointer(*this)); 2758 2759 // We can only check return value nullability if all arguments to the 2760 // function satisfy their nullability preconditions. This makes it necessary 2761 // to emit null checks for args in the function body itself. 2762 if (requiresReturnValueNullabilityCheck()) { 2763 auto Nullability = Ty->getNullability(); 2764 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2765 SanitizerScope SanScope(this); 2766 RetValNullabilityPrecondition = 2767 Builder.CreateAnd(RetValNullabilityPrecondition, 2768 Builder.CreateIsNotNull(Arg.getAnyValue())); 2769 } 2770 } 2771 } 2772 2773 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2774 CodeGenFunction *CGF) { 2775 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2776 return; 2777 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2778 } 2779 2780 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2781 CodeGenFunction *CGF) { 2782 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2783 (!LangOpts.EmitAllDecls && !D->isUsed())) 2784 return; 2785 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2786 } 2787 2788 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2789 getOpenMPRuntime().processRequiresDirective(D); 2790 } 2791 2792 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2793 for (const Expr *E : D->varlists()) { 2794 const auto *DE = cast<DeclRefExpr>(E); 2795 const auto *VD = cast<VarDecl>(DE->getDecl()); 2796 2797 // Skip all but globals. 2798 if (!VD->hasGlobalStorage()) 2799 continue; 2800 2801 // Check if the global has been materialized yet or not. If not, we are done 2802 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2803 // we already emitted the global we might have done so before the 2804 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2805 // (potentially). While not pretty, common practise is to remove the old IR 2806 // global and generate a new one, so we do that here too. Uses are replaced 2807 // properly. 2808 StringRef MangledName = getMangledName(VD); 2809 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2810 if (!Entry) 2811 continue; 2812 2813 // We can also keep the existing global if the address space is what we 2814 // expect it to be, if not, it is replaced. 2815 QualType ASTTy = VD->getType(); 2816 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2817 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2818 if (Entry->getType()->getAddressSpace() == TargetAS) 2819 continue; 2820 2821 // Make a new global with the correct type / address space. 2822 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2823 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2824 2825 // Replace all uses of the old global with a cast. Since we mutate the type 2826 // in place we neeed an intermediate that takes the spot of the old entry 2827 // until we can create the cast. 2828 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2829 getModule(), Entry->getValueType(), false, 2830 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2831 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2832 Entry->replaceAllUsesWith(DummyGV); 2833 2834 Entry->mutateType(PTy); 2835 llvm::Constant *NewPtrForOldDecl = 2836 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2837 Entry, DummyGV->getType()); 2838 2839 // Now we have a casted version of the changed global, the dummy can be 2840 // replaced and deleted. 2841 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2842 DummyGV->eraseFromParent(); 2843 } 2844 } 2845 2846 std::optional<CharUnits> 2847 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) { 2848 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) { 2849 if (Expr *Alignment = AA->getAlignment()) { 2850 unsigned UserAlign = 2851 Alignment->EvaluateKnownConstInt(getContext()).getExtValue(); 2852 CharUnits NaturalAlign = 2853 getNaturalTypeAlignment(VD->getType().getNonReferenceType()); 2854 2855 // OpenMP5.1 pg 185 lines 7-10 2856 // Each item in the align modifier list must be aligned to the maximum 2857 // of the specified alignment and the type's natural alignment. 2858 return CharUnits::fromQuantity( 2859 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity())); 2860 } 2861 } 2862 return std::nullopt; 2863 } 2864