1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 #include <optional> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 46 "Clang max alignment greater than what LLVM supports?"); 47 48 void CodeGenFunction::EmitDecl(const Decl &D) { 49 switch (D.getKind()) { 50 case Decl::BuiltinTemplate: 51 case Decl::TranslationUnit: 52 case Decl::ExternCContext: 53 case Decl::Namespace: 54 case Decl::UnresolvedUsingTypename: 55 case Decl::ClassTemplateSpecialization: 56 case Decl::ClassTemplatePartialSpecialization: 57 case Decl::VarTemplateSpecialization: 58 case Decl::VarTemplatePartialSpecialization: 59 case Decl::TemplateTypeParm: 60 case Decl::UnresolvedUsingValue: 61 case Decl::NonTypeTemplateParm: 62 case Decl::CXXDeductionGuide: 63 case Decl::CXXMethod: 64 case Decl::CXXConstructor: 65 case Decl::CXXDestructor: 66 case Decl::CXXConversion: 67 case Decl::Field: 68 case Decl::MSProperty: 69 case Decl::IndirectField: 70 case Decl::ObjCIvar: 71 case Decl::ObjCAtDefsField: 72 case Decl::ParmVar: 73 case Decl::ImplicitParam: 74 case Decl::ClassTemplate: 75 case Decl::VarTemplate: 76 case Decl::FunctionTemplate: 77 case Decl::TypeAliasTemplate: 78 case Decl::TemplateTemplateParm: 79 case Decl::ObjCMethod: 80 case Decl::ObjCCategory: 81 case Decl::ObjCProtocol: 82 case Decl::ObjCInterface: 83 case Decl::ObjCCategoryImpl: 84 case Decl::ObjCImplementation: 85 case Decl::ObjCProperty: 86 case Decl::ObjCCompatibleAlias: 87 case Decl::PragmaComment: 88 case Decl::PragmaDetectMismatch: 89 case Decl::AccessSpec: 90 case Decl::LinkageSpec: 91 case Decl::Export: 92 case Decl::ObjCPropertyImpl: 93 case Decl::FileScopeAsm: 94 case Decl::TopLevelStmt: 95 case Decl::Friend: 96 case Decl::FriendTemplate: 97 case Decl::Block: 98 case Decl::Captured: 99 case Decl::ClassScopeFunctionSpecialization: 100 case Decl::UsingShadow: 101 case Decl::ConstructorUsingShadow: 102 case Decl::ObjCTypeParam: 103 case Decl::Binding: 104 case Decl::UnresolvedUsingIfExists: 105 case Decl::HLSLBuffer: 106 llvm_unreachable("Declaration should not be in declstmts!"); 107 case Decl::Record: // struct/union/class X; 108 case Decl::CXXRecord: // struct/union/class X; [C++] 109 if (CGDebugInfo *DI = getDebugInfo()) 110 if (cast<RecordDecl>(D).getDefinition()) 111 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 112 return; 113 case Decl::Enum: // enum X; 114 if (CGDebugInfo *DI = getDebugInfo()) 115 if (cast<EnumDecl>(D).getDefinition()) 116 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 117 return; 118 case Decl::Function: // void X(); 119 case Decl::EnumConstant: // enum ? { X = ? } 120 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 121 case Decl::Label: // __label__ x; 122 case Decl::Import: 123 case Decl::MSGuid: // __declspec(uuid("...")) 124 case Decl::UnnamedGlobalConstant: 125 case Decl::TemplateParamObject: 126 case Decl::OMPThreadPrivate: 127 case Decl::OMPAllocate: 128 case Decl::OMPCapturedExpr: 129 case Decl::OMPRequires: 130 case Decl::Empty: 131 case Decl::Concept: 132 case Decl::ImplicitConceptSpecialization: 133 case Decl::LifetimeExtendedTemporary: 134 case Decl::RequiresExprBody: 135 // None of these decls require codegen support. 136 return; 137 138 case Decl::NamespaceAlias: 139 if (CGDebugInfo *DI = getDebugInfo()) 140 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 141 return; 142 case Decl::Using: // using X; [C++] 143 if (CGDebugInfo *DI = getDebugInfo()) 144 DI->EmitUsingDecl(cast<UsingDecl>(D)); 145 return; 146 case Decl::UsingEnum: // using enum X; [C++] 147 if (CGDebugInfo *DI = getDebugInfo()) 148 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D)); 149 return; 150 case Decl::UsingPack: 151 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 152 EmitDecl(*Using); 153 return; 154 case Decl::UsingDirective: // using namespace X; [C++] 155 if (CGDebugInfo *DI = getDebugInfo()) 156 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 157 return; 158 case Decl::Var: 159 case Decl::Decomposition: { 160 const VarDecl &VD = cast<VarDecl>(D); 161 assert(VD.isLocalVarDecl() && 162 "Should not see file-scope variables inside a function!"); 163 EmitVarDecl(VD); 164 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 165 for (auto *B : DD->bindings()) 166 if (auto *HD = B->getHoldingVar()) 167 EmitVarDecl(*HD); 168 return; 169 } 170 171 case Decl::OMPDeclareReduction: 172 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 173 174 case Decl::OMPDeclareMapper: 175 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 176 177 case Decl::Typedef: // typedef int X; 178 case Decl::TypeAlias: { // using X = int; [C++0x] 179 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 180 if (CGDebugInfo *DI = getDebugInfo()) 181 DI->EmitAndRetainType(Ty); 182 if (Ty->isVariablyModifiedType()) 183 EmitVariablyModifiedType(Ty); 184 return; 185 } 186 } 187 } 188 189 /// EmitVarDecl - This method handles emission of any variable declaration 190 /// inside a function, including static vars etc. 191 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 192 if (D.hasExternalStorage()) 193 // Don't emit it now, allow it to be emitted lazily on its first use. 194 return; 195 196 // Some function-scope variable does not have static storage but still 197 // needs to be emitted like a static variable, e.g. a function-scope 198 // variable in constant address space in OpenCL. 199 if (D.getStorageDuration() != SD_Automatic) { 200 // Static sampler variables translated to function calls. 201 if (D.getType()->isSamplerT()) 202 return; 203 204 llvm::GlobalValue::LinkageTypes Linkage = 205 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 206 207 // FIXME: We need to force the emission/use of a guard variable for 208 // some variables even if we can constant-evaluate them because 209 // we can't guarantee every translation unit will constant-evaluate them. 210 211 return EmitStaticVarDecl(D, Linkage); 212 } 213 214 if (D.getType().getAddressSpace() == LangAS::opencl_local) 215 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 216 217 assert(D.hasLocalStorage()); 218 return EmitAutoVarDecl(D); 219 } 220 221 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 222 if (CGM.getLangOpts().CPlusPlus) 223 return CGM.getMangledName(&D).str(); 224 225 // If this isn't C++, we don't need a mangled name, just a pretty one. 226 assert(!D.isExternallyVisible() && "name shouldn't matter"); 227 std::string ContextName; 228 const DeclContext *DC = D.getDeclContext(); 229 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 230 DC = cast<DeclContext>(CD->getNonClosureContext()); 231 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 232 ContextName = std::string(CGM.getMangledName(FD)); 233 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 234 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 235 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 236 ContextName = OMD->getSelector().getAsString(); 237 else 238 llvm_unreachable("Unknown context for static var decl"); 239 240 ContextName += "." + D.getNameAsString(); 241 return ContextName; 242 } 243 244 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 245 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 246 // In general, we don't always emit static var decls once before we reference 247 // them. It is possible to reference them before emitting the function that 248 // contains them, and it is possible to emit the containing function multiple 249 // times. 250 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 251 return ExistingGV; 252 253 QualType Ty = D.getType(); 254 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 255 256 // Use the label if the variable is renamed with the asm-label extension. 257 std::string Name; 258 if (D.hasAttr<AsmLabelAttr>()) 259 Name = std::string(getMangledName(&D)); 260 else 261 Name = getStaticDeclName(*this, D); 262 263 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 264 LangAS AS = GetGlobalVarAddressSpace(&D); 265 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 266 267 // OpenCL variables in local address space and CUDA shared 268 // variables cannot have an initializer. 269 llvm::Constant *Init = nullptr; 270 if (Ty.getAddressSpace() == LangAS::opencl_local || 271 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 272 Init = llvm::UndefValue::get(LTy); 273 else 274 Init = EmitNullConstant(Ty); 275 276 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 277 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 278 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 279 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 280 281 if (supportsCOMDAT() && GV->isWeakForLinker()) 282 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 283 284 if (D.getTLSKind()) 285 setTLSMode(GV, D); 286 287 setGVProperties(GV, &D); 288 289 // Make sure the result is of the correct type. 290 LangAS ExpectedAS = Ty.getAddressSpace(); 291 llvm::Constant *Addr = GV; 292 if (AS != ExpectedAS) { 293 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 294 *this, GV, AS, ExpectedAS, 295 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 296 } 297 298 setStaticLocalDeclAddress(&D, Addr); 299 300 // Ensure that the static local gets initialized by making sure the parent 301 // function gets emitted eventually. 302 const Decl *DC = cast<Decl>(D.getDeclContext()); 303 304 // We can't name blocks or captured statements directly, so try to emit their 305 // parents. 306 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 307 DC = DC->getNonClosureContext(); 308 // FIXME: Ensure that global blocks get emitted. 309 if (!DC) 310 return Addr; 311 } 312 313 GlobalDecl GD; 314 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 315 GD = GlobalDecl(CD, Ctor_Base); 316 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 317 GD = GlobalDecl(DD, Dtor_Base); 318 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 319 GD = GlobalDecl(FD); 320 else { 321 // Don't do anything for Obj-C method decls or global closures. We should 322 // never defer them. 323 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 324 } 325 if (GD.getDecl()) { 326 // Disable emission of the parent function for the OpenMP device codegen. 327 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 328 (void)GetAddrOfGlobal(GD); 329 } 330 331 return Addr; 332 } 333 334 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 335 /// global variable that has already been created for it. If the initializer 336 /// has a different type than GV does, this may free GV and return a different 337 /// one. Otherwise it just returns GV. 338 llvm::GlobalVariable * 339 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 340 llvm::GlobalVariable *GV) { 341 ConstantEmitter emitter(*this); 342 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 343 344 // If constant emission failed, then this should be a C++ static 345 // initializer. 346 if (!Init) { 347 if (!getLangOpts().CPlusPlus) 348 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 349 else if (D.hasFlexibleArrayInit(getContext())) 350 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer"); 351 else if (HaveInsertPoint()) { 352 // Since we have a static initializer, this global variable can't 353 // be constant. 354 GV->setConstant(false); 355 356 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 357 } 358 return GV; 359 } 360 361 #ifndef NDEBUG 362 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) + 363 D.getFlexibleArrayInitChars(getContext()); 364 CharUnits CstSize = CharUnits::fromQuantity( 365 CGM.getDataLayout().getTypeAllocSize(Init->getType())); 366 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 367 #endif 368 369 // The initializer may differ in type from the global. Rewrite 370 // the global to match the initializer. (We have to do this 371 // because some types, like unions, can't be completely represented 372 // in the LLVM type system.) 373 if (GV->getValueType() != Init->getType()) { 374 llvm::GlobalVariable *OldGV = GV; 375 376 GV = new llvm::GlobalVariable( 377 CGM.getModule(), Init->getType(), OldGV->isConstant(), 378 OldGV->getLinkage(), Init, "", 379 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), 380 OldGV->getType()->getPointerAddressSpace()); 381 GV->setVisibility(OldGV->getVisibility()); 382 GV->setDSOLocal(OldGV->isDSOLocal()); 383 GV->setComdat(OldGV->getComdat()); 384 385 // Steal the name of the old global 386 GV->takeName(OldGV); 387 388 // Replace all uses of the old global with the new global 389 llvm::Constant *NewPtrForOldDecl = 390 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 391 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 392 393 // Erase the old global, since it is no longer used. 394 OldGV->eraseFromParent(); 395 } 396 397 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 398 GV->setInitializer(Init); 399 400 emitter.finalize(GV); 401 402 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 403 HaveInsertPoint()) { 404 // We have a constant initializer, but a nontrivial destructor. We still 405 // need to perform a guarded "initialization" in order to register the 406 // destructor. 407 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 408 } 409 410 return GV; 411 } 412 413 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 414 llvm::GlobalValue::LinkageTypes Linkage) { 415 // Check to see if we already have a global variable for this 416 // declaration. This can happen when double-emitting function 417 // bodies, e.g. with complete and base constructors. 418 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 419 CharUnits alignment = getContext().getDeclAlign(&D); 420 421 // Store into LocalDeclMap before generating initializer to handle 422 // circular references. 423 llvm::Type *elemTy = ConvertTypeForMem(D.getType()); 424 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment)); 425 426 // We can't have a VLA here, but we can have a pointer to a VLA, 427 // even though that doesn't really make any sense. 428 // Make sure to evaluate VLA bounds now so that we have them for later. 429 if (D.getType()->isVariablyModifiedType()) 430 EmitVariablyModifiedType(D.getType()); 431 432 // Save the type in case adding the initializer forces a type change. 433 llvm::Type *expectedType = addr->getType(); 434 435 llvm::GlobalVariable *var = 436 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 437 438 // CUDA's local and local static __shared__ variables should not 439 // have any non-empty initializers. This is ensured by Sema. 440 // Whatever initializer such variable may have when it gets here is 441 // a no-op and should not be emitted. 442 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 443 D.hasAttr<CUDASharedAttr>(); 444 // If this value has an initializer, emit it. 445 if (D.getInit() && !isCudaSharedVar) 446 var = AddInitializerToStaticVarDecl(D, var); 447 448 var->setAlignment(alignment.getAsAlign()); 449 450 if (D.hasAttr<AnnotateAttr>()) 451 CGM.AddGlobalAnnotations(&D, var); 452 453 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 454 var->addAttribute("bss-section", SA->getName()); 455 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 456 var->addAttribute("data-section", SA->getName()); 457 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 458 var->addAttribute("rodata-section", SA->getName()); 459 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 460 var->addAttribute("relro-section", SA->getName()); 461 462 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 463 var->setSection(SA->getName()); 464 465 if (D.hasAttr<RetainAttr>()) 466 CGM.addUsedGlobal(var); 467 else if (D.hasAttr<UsedAttr>()) 468 CGM.addUsedOrCompilerUsedGlobal(var); 469 470 // We may have to cast the constant because of the initializer 471 // mismatch above. 472 // 473 // FIXME: It is really dangerous to store this in the map; if anyone 474 // RAUW's the GV uses of this constant will be invalid. 475 llvm::Constant *castedAddr = 476 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 477 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment); 478 CGM.setStaticLocalDeclAddress(&D, castedAddr); 479 480 CGM.getSanitizerMetadata()->reportGlobal(var, D); 481 482 // Emit global variable debug descriptor for static vars. 483 CGDebugInfo *DI = getDebugInfo(); 484 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 485 DI->setLocation(D.getLocation()); 486 DI->EmitGlobalVariable(var, &D); 487 } 488 } 489 490 namespace { 491 struct DestroyObject final : EHScopeStack::Cleanup { 492 DestroyObject(Address addr, QualType type, 493 CodeGenFunction::Destroyer *destroyer, 494 bool useEHCleanupForArray) 495 : addr(addr), type(type), destroyer(destroyer), 496 useEHCleanupForArray(useEHCleanupForArray) {} 497 498 Address addr; 499 QualType type; 500 CodeGenFunction::Destroyer *destroyer; 501 bool useEHCleanupForArray; 502 503 void Emit(CodeGenFunction &CGF, Flags flags) override { 504 // Don't use an EH cleanup recursively from an EH cleanup. 505 bool useEHCleanupForArray = 506 flags.isForNormalCleanup() && this->useEHCleanupForArray; 507 508 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 509 } 510 }; 511 512 template <class Derived> 513 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 514 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 515 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 516 517 llvm::Value *NRVOFlag; 518 Address Loc; 519 QualType Ty; 520 521 void Emit(CodeGenFunction &CGF, Flags flags) override { 522 // Along the exceptions path we always execute the dtor. 523 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 524 525 llvm::BasicBlock *SkipDtorBB = nullptr; 526 if (NRVO) { 527 // If we exited via NRVO, we skip the destructor call. 528 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 529 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 530 llvm::Value *DidNRVO = 531 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 532 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 533 CGF.EmitBlock(RunDtorBB); 534 } 535 536 static_cast<Derived *>(this)->emitDestructorCall(CGF); 537 538 if (NRVO) CGF.EmitBlock(SkipDtorBB); 539 } 540 541 virtual ~DestroyNRVOVariable() = default; 542 }; 543 544 struct DestroyNRVOVariableCXX final 545 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 546 DestroyNRVOVariableCXX(Address addr, QualType type, 547 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 548 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 549 Dtor(Dtor) {} 550 551 const CXXDestructorDecl *Dtor; 552 553 void emitDestructorCall(CodeGenFunction &CGF) { 554 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 555 /*ForVirtualBase=*/false, 556 /*Delegating=*/false, Loc, Ty); 557 } 558 }; 559 560 struct DestroyNRVOVariableC final 561 : DestroyNRVOVariable<DestroyNRVOVariableC> { 562 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 563 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 564 565 void emitDestructorCall(CodeGenFunction &CGF) { 566 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 567 } 568 }; 569 570 struct CallStackRestore final : EHScopeStack::Cleanup { 571 Address Stack; 572 CallStackRestore(Address Stack) : Stack(Stack) {} 573 bool isRedundantBeforeReturn() override { return true; } 574 void Emit(CodeGenFunction &CGF, Flags flags) override { 575 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 576 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 577 CGF.Builder.CreateCall(F, V); 578 } 579 }; 580 581 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 582 const VarDecl &Var; 583 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 584 585 void Emit(CodeGenFunction &CGF, Flags flags) override { 586 // Compute the address of the local variable, in case it's a 587 // byref or something. 588 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 589 Var.getType(), VK_LValue, SourceLocation()); 590 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 591 SourceLocation()); 592 CGF.EmitExtendGCLifetime(value); 593 } 594 }; 595 596 struct CallCleanupFunction final : EHScopeStack::Cleanup { 597 llvm::Constant *CleanupFn; 598 const CGFunctionInfo &FnInfo; 599 const VarDecl &Var; 600 601 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 602 const VarDecl *Var) 603 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 604 605 void Emit(CodeGenFunction &CGF, Flags flags) override { 606 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 607 Var.getType(), VK_LValue, SourceLocation()); 608 // Compute the address of the local variable, in case it's a byref 609 // or something. 610 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 611 612 // In some cases, the type of the function argument will be different from 613 // the type of the pointer. An example of this is 614 // void f(void* arg); 615 // __attribute__((cleanup(f))) void *g; 616 // 617 // To fix this we insert a bitcast here. 618 QualType ArgTy = FnInfo.arg_begin()->type; 619 llvm::Value *Arg = 620 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 621 622 CallArgList Args; 623 Args.add(RValue::get(Arg), 624 CGF.getContext().getPointerType(Var.getType())); 625 auto Callee = CGCallee::forDirect(CleanupFn); 626 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 627 } 628 }; 629 } // end anonymous namespace 630 631 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 632 /// variable with lifetime. 633 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 634 Address addr, 635 Qualifiers::ObjCLifetime lifetime) { 636 switch (lifetime) { 637 case Qualifiers::OCL_None: 638 llvm_unreachable("present but none"); 639 640 case Qualifiers::OCL_ExplicitNone: 641 // nothing to do 642 break; 643 644 case Qualifiers::OCL_Strong: { 645 CodeGenFunction::Destroyer *destroyer = 646 (var.hasAttr<ObjCPreciseLifetimeAttr>() 647 ? CodeGenFunction::destroyARCStrongPrecise 648 : CodeGenFunction::destroyARCStrongImprecise); 649 650 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 651 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 652 cleanupKind & EHCleanup); 653 break; 654 } 655 case Qualifiers::OCL_Autoreleasing: 656 // nothing to do 657 break; 658 659 case Qualifiers::OCL_Weak: 660 // __weak objects always get EH cleanups; otherwise, exceptions 661 // could cause really nasty crashes instead of mere leaks. 662 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 663 CodeGenFunction::destroyARCWeak, 664 /*useEHCleanup*/ true); 665 break; 666 } 667 } 668 669 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 670 if (const Expr *e = dyn_cast<Expr>(s)) { 671 // Skip the most common kinds of expressions that make 672 // hierarchy-walking expensive. 673 s = e = e->IgnoreParenCasts(); 674 675 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 676 return (ref->getDecl() == &var); 677 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 678 const BlockDecl *block = be->getBlockDecl(); 679 for (const auto &I : block->captures()) { 680 if (I.getVariable() == &var) 681 return true; 682 } 683 } 684 } 685 686 for (const Stmt *SubStmt : s->children()) 687 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 688 if (SubStmt && isAccessedBy(var, SubStmt)) 689 return true; 690 691 return false; 692 } 693 694 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 695 if (!decl) return false; 696 if (!isa<VarDecl>(decl)) return false; 697 const VarDecl *var = cast<VarDecl>(decl); 698 return isAccessedBy(*var, e); 699 } 700 701 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 702 const LValue &destLV, const Expr *init) { 703 bool needsCast = false; 704 705 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 706 switch (castExpr->getCastKind()) { 707 // Look through casts that don't require representation changes. 708 case CK_NoOp: 709 case CK_BitCast: 710 case CK_BlockPointerToObjCPointerCast: 711 needsCast = true; 712 break; 713 714 // If we find an l-value to r-value cast from a __weak variable, 715 // emit this operation as a copy or move. 716 case CK_LValueToRValue: { 717 const Expr *srcExpr = castExpr->getSubExpr(); 718 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 719 return false; 720 721 // Emit the source l-value. 722 LValue srcLV = CGF.EmitLValue(srcExpr); 723 724 // Handle a formal type change to avoid asserting. 725 auto srcAddr = srcLV.getAddress(CGF); 726 if (needsCast) { 727 srcAddr = CGF.Builder.CreateElementBitCast( 728 srcAddr, destLV.getAddress(CGF).getElementType()); 729 } 730 731 // If it was an l-value, use objc_copyWeak. 732 if (srcExpr->isLValue()) { 733 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 734 } else { 735 assert(srcExpr->isXValue()); 736 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 737 } 738 return true; 739 } 740 741 // Stop at anything else. 742 default: 743 return false; 744 } 745 746 init = castExpr->getSubExpr(); 747 } 748 return false; 749 } 750 751 static void drillIntoBlockVariable(CodeGenFunction &CGF, 752 LValue &lvalue, 753 const VarDecl *var) { 754 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 755 } 756 757 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 758 SourceLocation Loc) { 759 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 760 return; 761 762 auto Nullability = LHS.getType()->getNullability(); 763 if (!Nullability || *Nullability != NullabilityKind::NonNull) 764 return; 765 766 // Check if the right hand side of the assignment is nonnull, if the left 767 // hand side must be nonnull. 768 SanitizerScope SanScope(this); 769 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 770 llvm::Constant *StaticData[] = { 771 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 772 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 773 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 774 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 775 SanitizerHandler::TypeMismatch, StaticData, RHS); 776 } 777 778 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 779 LValue lvalue, bool capturedByInit) { 780 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 781 if (!lifetime) { 782 llvm::Value *value = EmitScalarExpr(init); 783 if (capturedByInit) 784 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 785 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 786 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 787 return; 788 } 789 790 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 791 init = DIE->getExpr(); 792 793 // If we're emitting a value with lifetime, we have to do the 794 // initialization *before* we leave the cleanup scopes. 795 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 796 CodeGenFunction::RunCleanupsScope Scope(*this); 797 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 798 } 799 800 // We have to maintain the illusion that the variable is 801 // zero-initialized. If the variable might be accessed in its 802 // initializer, zero-initialize before running the initializer, then 803 // actually perform the initialization with an assign. 804 bool accessedByInit = false; 805 if (lifetime != Qualifiers::OCL_ExplicitNone) 806 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 807 if (accessedByInit) { 808 LValue tempLV = lvalue; 809 // Drill down to the __block object if necessary. 810 if (capturedByInit) { 811 // We can use a simple GEP for this because it can't have been 812 // moved yet. 813 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 814 cast<VarDecl>(D), 815 /*follow*/ false)); 816 } 817 818 auto ty = 819 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 820 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 821 822 // If __weak, we want to use a barrier under certain conditions. 823 if (lifetime == Qualifiers::OCL_Weak) 824 EmitARCInitWeak(tempLV.getAddress(*this), zero); 825 826 // Otherwise just do a simple store. 827 else 828 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 829 } 830 831 // Emit the initializer. 832 llvm::Value *value = nullptr; 833 834 switch (lifetime) { 835 case Qualifiers::OCL_None: 836 llvm_unreachable("present but none"); 837 838 case Qualifiers::OCL_Strong: { 839 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 840 value = EmitARCRetainScalarExpr(init); 841 break; 842 } 843 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 844 // that we omit the retain, and causes non-autoreleased return values to be 845 // immediately released. 846 [[fallthrough]]; 847 } 848 849 case Qualifiers::OCL_ExplicitNone: 850 value = EmitARCUnsafeUnretainedScalarExpr(init); 851 break; 852 853 case Qualifiers::OCL_Weak: { 854 // If it's not accessed by the initializer, try to emit the 855 // initialization with a copy or move. 856 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 857 return; 858 } 859 860 // No way to optimize a producing initializer into this. It's not 861 // worth optimizing for, because the value will immediately 862 // disappear in the common case. 863 value = EmitScalarExpr(init); 864 865 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 866 if (accessedByInit) 867 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 868 else 869 EmitARCInitWeak(lvalue.getAddress(*this), value); 870 return; 871 } 872 873 case Qualifiers::OCL_Autoreleasing: 874 value = EmitARCRetainAutoreleaseScalarExpr(init); 875 break; 876 } 877 878 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 879 880 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 881 882 // If the variable might have been accessed by its initializer, we 883 // might have to initialize with a barrier. We have to do this for 884 // both __weak and __strong, but __weak got filtered out above. 885 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 886 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 887 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 888 EmitARCRelease(oldValue, ARCImpreciseLifetime); 889 return; 890 } 891 892 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 893 } 894 895 /// Decide whether we can emit the non-zero parts of the specified initializer 896 /// with equal or fewer than NumStores scalar stores. 897 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 898 unsigned &NumStores) { 899 // Zero and Undef never requires any extra stores. 900 if (isa<llvm::ConstantAggregateZero>(Init) || 901 isa<llvm::ConstantPointerNull>(Init) || 902 isa<llvm::UndefValue>(Init)) 903 return true; 904 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 905 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 906 isa<llvm::ConstantExpr>(Init)) 907 return Init->isNullValue() || NumStores--; 908 909 // See if we can emit each element. 910 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 911 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 912 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 913 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 914 return false; 915 } 916 return true; 917 } 918 919 if (llvm::ConstantDataSequential *CDS = 920 dyn_cast<llvm::ConstantDataSequential>(Init)) { 921 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 922 llvm::Constant *Elt = CDS->getElementAsConstant(i); 923 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 924 return false; 925 } 926 return true; 927 } 928 929 // Anything else is hard and scary. 930 return false; 931 } 932 933 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 934 /// the scalar stores that would be required. 935 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 936 llvm::Constant *Init, Address Loc, 937 bool isVolatile, CGBuilderTy &Builder, 938 bool IsAutoInit) { 939 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 940 "called emitStoresForInitAfterBZero for zero or undef value."); 941 942 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 943 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 944 isa<llvm::ConstantExpr>(Init)) { 945 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 946 if (IsAutoInit) 947 I->addAnnotationMetadata("auto-init"); 948 return; 949 } 950 951 if (llvm::ConstantDataSequential *CDS = 952 dyn_cast<llvm::ConstantDataSequential>(Init)) { 953 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 954 llvm::Constant *Elt = CDS->getElementAsConstant(i); 955 956 // If necessary, get a pointer to the element and emit it. 957 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 958 emitStoresForInitAfterBZero( 959 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 960 Builder, IsAutoInit); 961 } 962 return; 963 } 964 965 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 966 "Unknown value type!"); 967 968 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 969 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 970 971 // If necessary, get a pointer to the element and emit it. 972 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 973 emitStoresForInitAfterBZero(CGM, Elt, 974 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 975 isVolatile, Builder, IsAutoInit); 976 } 977 } 978 979 /// Decide whether we should use bzero plus some stores to initialize a local 980 /// variable instead of using a memcpy from a constant global. It is beneficial 981 /// to use bzero if the global is all zeros, or mostly zeros and large. 982 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 983 uint64_t GlobalSize) { 984 // If a global is all zeros, always use a bzero. 985 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 986 987 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 988 // do it if it will require 6 or fewer scalar stores. 989 // TODO: Should budget depends on the size? Avoiding a large global warrants 990 // plopping in more stores. 991 unsigned StoreBudget = 6; 992 uint64_t SizeLimit = 32; 993 994 return GlobalSize > SizeLimit && 995 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 996 } 997 998 /// Decide whether we should use memset to initialize a local variable instead 999 /// of using a memcpy from a constant global. Assumes we've already decided to 1000 /// not user bzero. 1001 /// FIXME We could be more clever, as we are for bzero above, and generate 1002 /// memset followed by stores. It's unclear that's worth the effort. 1003 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 1004 uint64_t GlobalSize, 1005 const llvm::DataLayout &DL) { 1006 uint64_t SizeLimit = 32; 1007 if (GlobalSize <= SizeLimit) 1008 return nullptr; 1009 return llvm::isBytewiseValue(Init, DL); 1010 } 1011 1012 /// Decide whether we want to split a constant structure or array store into a 1013 /// sequence of its fields' stores. This may cost us code size and compilation 1014 /// speed, but plays better with store optimizations. 1015 static bool shouldSplitConstantStore(CodeGenModule &CGM, 1016 uint64_t GlobalByteSize) { 1017 // Don't break things that occupy more than one cacheline. 1018 uint64_t ByteSizeLimit = 64; 1019 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1020 return false; 1021 if (GlobalByteSize <= ByteSizeLimit) 1022 return true; 1023 return false; 1024 } 1025 1026 enum class IsPattern { No, Yes }; 1027 1028 /// Generate a constant filled with either a pattern or zeroes. 1029 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1030 llvm::Type *Ty) { 1031 if (isPattern == IsPattern::Yes) 1032 return initializationPatternFor(CGM, Ty); 1033 else 1034 return llvm::Constant::getNullValue(Ty); 1035 } 1036 1037 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1038 llvm::Constant *constant); 1039 1040 /// Helper function for constWithPadding() to deal with padding in structures. 1041 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1042 IsPattern isPattern, 1043 llvm::StructType *STy, 1044 llvm::Constant *constant) { 1045 const llvm::DataLayout &DL = CGM.getDataLayout(); 1046 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1047 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1048 unsigned SizeSoFar = 0; 1049 SmallVector<llvm::Constant *, 8> Values; 1050 bool NestedIntact = true; 1051 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1052 unsigned CurOff = Layout->getElementOffset(i); 1053 if (SizeSoFar < CurOff) { 1054 assert(!STy->isPacked()); 1055 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1056 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1057 } 1058 llvm::Constant *CurOp; 1059 if (constant->isZeroValue()) 1060 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1061 else 1062 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1063 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1064 if (CurOp != NewOp) 1065 NestedIntact = false; 1066 Values.push_back(NewOp); 1067 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1068 } 1069 unsigned TotalSize = Layout->getSizeInBytes(); 1070 if (SizeSoFar < TotalSize) { 1071 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1072 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1073 } 1074 if (NestedIntact && Values.size() == STy->getNumElements()) 1075 return constant; 1076 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1077 } 1078 1079 /// Replace all padding bytes in a given constant with either a pattern byte or 1080 /// 0x00. 1081 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1082 llvm::Constant *constant) { 1083 llvm::Type *OrigTy = constant->getType(); 1084 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1085 return constStructWithPadding(CGM, isPattern, STy, constant); 1086 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1087 llvm::SmallVector<llvm::Constant *, 8> Values; 1088 uint64_t Size = ArrayTy->getNumElements(); 1089 if (!Size) 1090 return constant; 1091 llvm::Type *ElemTy = ArrayTy->getElementType(); 1092 bool ZeroInitializer = constant->isNullValue(); 1093 llvm::Constant *OpValue, *PaddedOp; 1094 if (ZeroInitializer) { 1095 OpValue = llvm::Constant::getNullValue(ElemTy); 1096 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1097 } 1098 for (unsigned Op = 0; Op != Size; ++Op) { 1099 if (!ZeroInitializer) { 1100 OpValue = constant->getAggregateElement(Op); 1101 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1102 } 1103 Values.push_back(PaddedOp); 1104 } 1105 auto *NewElemTy = Values[0]->getType(); 1106 if (NewElemTy == ElemTy) 1107 return constant; 1108 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1109 return llvm::ConstantArray::get(NewArrayTy, Values); 1110 } 1111 // FIXME: Add handling for tail padding in vectors. Vectors don't 1112 // have padding between or inside elements, but the total amount of 1113 // data can be less than the allocated size. 1114 return constant; 1115 } 1116 1117 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1118 llvm::Constant *Constant, 1119 CharUnits Align) { 1120 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1121 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1122 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1123 return CC->getNameAsString(); 1124 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1125 return CD->getNameAsString(); 1126 return std::string(getMangledName(FD)); 1127 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1128 return OM->getNameAsString(); 1129 } else if (isa<BlockDecl>(DC)) { 1130 return "<block>"; 1131 } else if (isa<CapturedDecl>(DC)) { 1132 return "<captured>"; 1133 } else { 1134 llvm_unreachable("expected a function or method"); 1135 } 1136 }; 1137 1138 // Form a simple per-variable cache of these values in case we find we 1139 // want to reuse them. 1140 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1141 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1142 auto *Ty = Constant->getType(); 1143 bool isConstant = true; 1144 llvm::GlobalVariable *InsertBefore = nullptr; 1145 unsigned AS = 1146 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1147 std::string Name; 1148 if (D.hasGlobalStorage()) 1149 Name = getMangledName(&D).str() + ".const"; 1150 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1151 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1152 else 1153 llvm_unreachable("local variable has no parent function or method"); 1154 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1155 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1156 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1157 GV->setAlignment(Align.getAsAlign()); 1158 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1159 CacheEntry = GV; 1160 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) { 1161 CacheEntry->setAlignment(Align.getAsAlign()); 1162 } 1163 1164 return Address(CacheEntry, CacheEntry->getValueType(), Align); 1165 } 1166 1167 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1168 const VarDecl &D, 1169 CGBuilderTy &Builder, 1170 llvm::Constant *Constant, 1171 CharUnits Align) { 1172 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1173 return Builder.CreateElementBitCast(SrcPtr, CGM.Int8Ty); 1174 } 1175 1176 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1177 Address Loc, bool isVolatile, 1178 CGBuilderTy &Builder, 1179 llvm::Constant *constant, bool IsAutoInit) { 1180 auto *Ty = constant->getType(); 1181 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1182 if (!ConstantSize) 1183 return; 1184 1185 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1186 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1187 if (canDoSingleStore) { 1188 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1189 if (IsAutoInit) 1190 I->addAnnotationMetadata("auto-init"); 1191 return; 1192 } 1193 1194 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1195 1196 // If the initializer is all or mostly the same, codegen with bzero / memset 1197 // then do a few stores afterward. 1198 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1199 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1200 SizeVal, isVolatile); 1201 if (IsAutoInit) 1202 I->addAnnotationMetadata("auto-init"); 1203 1204 bool valueAlreadyCorrect = 1205 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1206 if (!valueAlreadyCorrect) { 1207 Loc = Builder.CreateElementBitCast(Loc, Ty); 1208 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1209 IsAutoInit); 1210 } 1211 return; 1212 } 1213 1214 // If the initializer is a repeated byte pattern, use memset. 1215 llvm::Value *Pattern = 1216 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1217 if (Pattern) { 1218 uint64_t Value = 0x00; 1219 if (!isa<llvm::UndefValue>(Pattern)) { 1220 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1221 assert(AP.getBitWidth() <= 8); 1222 Value = AP.getLimitedValue(); 1223 } 1224 auto *I = Builder.CreateMemSet( 1225 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1226 if (IsAutoInit) 1227 I->addAnnotationMetadata("auto-init"); 1228 return; 1229 } 1230 1231 // If the initializer is small, use a handful of stores. 1232 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1233 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1234 // FIXME: handle the case when STy != Loc.getElementType(). 1235 if (STy == Loc.getElementType()) { 1236 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1237 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1238 emitStoresForConstant( 1239 CGM, D, EltPtr, isVolatile, Builder, 1240 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1241 IsAutoInit); 1242 } 1243 return; 1244 } 1245 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1246 // FIXME: handle the case when ATy != Loc.getElementType(). 1247 if (ATy == Loc.getElementType()) { 1248 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1249 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1250 emitStoresForConstant( 1251 CGM, D, EltPtr, isVolatile, Builder, 1252 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1253 IsAutoInit); 1254 } 1255 return; 1256 } 1257 } 1258 } 1259 1260 // Copy from a global. 1261 auto *I = 1262 Builder.CreateMemCpy(Loc, 1263 createUnnamedGlobalForMemcpyFrom( 1264 CGM, D, Builder, constant, Loc.getAlignment()), 1265 SizeVal, isVolatile); 1266 if (IsAutoInit) 1267 I->addAnnotationMetadata("auto-init"); 1268 } 1269 1270 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1271 Address Loc, bool isVolatile, 1272 CGBuilderTy &Builder) { 1273 llvm::Type *ElTy = Loc.getElementType(); 1274 llvm::Constant *constant = 1275 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1276 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1277 /*IsAutoInit=*/true); 1278 } 1279 1280 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1281 Address Loc, bool isVolatile, 1282 CGBuilderTy &Builder) { 1283 llvm::Type *ElTy = Loc.getElementType(); 1284 llvm::Constant *constant = constWithPadding( 1285 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1286 assert(!isa<llvm::UndefValue>(constant)); 1287 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1288 /*IsAutoInit=*/true); 1289 } 1290 1291 static bool containsUndef(llvm::Constant *constant) { 1292 auto *Ty = constant->getType(); 1293 if (isa<llvm::UndefValue>(constant)) 1294 return true; 1295 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1296 for (llvm::Use &Op : constant->operands()) 1297 if (containsUndef(cast<llvm::Constant>(Op))) 1298 return true; 1299 return false; 1300 } 1301 1302 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1303 llvm::Constant *constant) { 1304 auto *Ty = constant->getType(); 1305 if (isa<llvm::UndefValue>(constant)) 1306 return patternOrZeroFor(CGM, isPattern, Ty); 1307 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1308 return constant; 1309 if (!containsUndef(constant)) 1310 return constant; 1311 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1312 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1313 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1314 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1315 } 1316 if (Ty->isStructTy()) 1317 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1318 if (Ty->isArrayTy()) 1319 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1320 assert(Ty->isVectorTy()); 1321 return llvm::ConstantVector::get(Values); 1322 } 1323 1324 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1325 /// variable declaration with auto, register, or no storage class specifier. 1326 /// These turn into simple stack objects, or GlobalValues depending on target. 1327 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1328 AutoVarEmission emission = EmitAutoVarAlloca(D); 1329 EmitAutoVarInit(emission); 1330 EmitAutoVarCleanups(emission); 1331 } 1332 1333 /// Emit a lifetime.begin marker if some criteria are satisfied. 1334 /// \return a pointer to the temporary size Value if a marker was emitted, null 1335 /// otherwise 1336 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size, 1337 llvm::Value *Addr) { 1338 if (!ShouldEmitLifetimeMarkers) 1339 return nullptr; 1340 1341 assert(Addr->getType()->getPointerAddressSpace() == 1342 CGM.getDataLayout().getAllocaAddrSpace() && 1343 "Pointer should be in alloca address space"); 1344 llvm::Value *SizeV = llvm::ConstantInt::get( 1345 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue()); 1346 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1347 llvm::CallInst *C = 1348 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1349 C->setDoesNotThrow(); 1350 return SizeV; 1351 } 1352 1353 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1354 assert(Addr->getType()->getPointerAddressSpace() == 1355 CGM.getDataLayout().getAllocaAddrSpace() && 1356 "Pointer should be in alloca address space"); 1357 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1358 llvm::CallInst *C = 1359 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1360 C->setDoesNotThrow(); 1361 } 1362 1363 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1364 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1365 // For each dimension stores its QualType and corresponding 1366 // size-expression Value. 1367 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1368 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1369 1370 // Break down the array into individual dimensions. 1371 QualType Type1D = D.getType(); 1372 while (getContext().getAsVariableArrayType(Type1D)) { 1373 auto VlaSize = getVLAElements1D(Type1D); 1374 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1375 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1376 else { 1377 // Generate a locally unique name for the size expression. 1378 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1379 SmallString<12> Buffer; 1380 StringRef NameRef = Name.toStringRef(Buffer); 1381 auto &Ident = getContext().Idents.getOwn(NameRef); 1382 VLAExprNames.push_back(&Ident); 1383 auto SizeExprAddr = 1384 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1385 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1386 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1387 Type1D.getUnqualifiedType()); 1388 } 1389 Type1D = VlaSize.Type; 1390 } 1391 1392 if (!EmitDebugInfo) 1393 return; 1394 1395 // Register each dimension's size-expression with a DILocalVariable, 1396 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1397 // to describe this array. 1398 unsigned NameIdx = 0; 1399 for (auto &VlaSize : Dimensions) { 1400 llvm::Metadata *MD; 1401 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1402 MD = llvm::ConstantAsMetadata::get(C); 1403 else { 1404 // Create an artificial VarDecl to generate debug info for. 1405 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1406 assert(cast<llvm::PointerType>(VlaSize.NumElts->getType()) 1407 ->isOpaqueOrPointeeTypeMatches(SizeTy) && 1408 "Number of VLA elements must be SizeTy"); 1409 auto QT = getContext().getIntTypeForBitwidth( 1410 SizeTy->getScalarSizeInBits(), false); 1411 auto *ArtificialDecl = VarDecl::Create( 1412 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1413 D.getLocation(), D.getLocation(), NameIdent, QT, 1414 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1415 ArtificialDecl->setImplicit(); 1416 1417 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1418 Builder); 1419 } 1420 assert(MD && "No Size expression debug node created"); 1421 DI->registerVLASizeExpression(VlaSize.Type, MD); 1422 } 1423 } 1424 1425 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1426 /// local variable. Does not emit initialization or destruction. 1427 CodeGenFunction::AutoVarEmission 1428 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1429 QualType Ty = D.getType(); 1430 assert( 1431 Ty.getAddressSpace() == LangAS::Default || 1432 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1433 1434 AutoVarEmission emission(D); 1435 1436 bool isEscapingByRef = D.isEscapingByref(); 1437 emission.IsEscapingByRef = isEscapingByRef; 1438 1439 CharUnits alignment = getContext().getDeclAlign(&D); 1440 1441 // If the type is variably-modified, emit all the VLA sizes for it. 1442 if (Ty->isVariablyModifiedType()) 1443 EmitVariablyModifiedType(Ty); 1444 1445 auto *DI = getDebugInfo(); 1446 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1447 1448 Address address = Address::invalid(); 1449 Address AllocaAddr = Address::invalid(); 1450 Address OpenMPLocalAddr = Address::invalid(); 1451 if (CGM.getLangOpts().OpenMPIRBuilder) 1452 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1453 else 1454 OpenMPLocalAddr = 1455 getLangOpts().OpenMP 1456 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1457 : Address::invalid(); 1458 1459 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1460 1461 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1462 address = OpenMPLocalAddr; 1463 AllocaAddr = OpenMPLocalAddr; 1464 } else if (Ty->isConstantSizeType()) { 1465 // If this value is an array or struct with a statically determinable 1466 // constant initializer, there are optimizations we can do. 1467 // 1468 // TODO: We should constant-evaluate the initializer of any variable, 1469 // as long as it is initialized by a constant expression. Currently, 1470 // isConstantInitializer produces wrong answers for structs with 1471 // reference or bitfield members, and a few other cases, and checking 1472 // for POD-ness protects us from some of these. 1473 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1474 (D.isConstexpr() || 1475 ((Ty.isPODType(getContext()) || 1476 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1477 D.getInit()->isConstantInitializer(getContext(), false)))) { 1478 1479 // If the variable's a const type, and it's neither an NRVO 1480 // candidate nor a __block variable and has no mutable members, 1481 // emit it as a global instead. 1482 // Exception is if a variable is located in non-constant address space 1483 // in OpenCL. 1484 if ((!getLangOpts().OpenCL || 1485 Ty.getAddressSpace() == LangAS::opencl_constant) && 1486 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1487 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1488 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1489 1490 // Signal this condition to later callbacks. 1491 emission.Addr = Address::invalid(); 1492 assert(emission.wasEmittedAsGlobal()); 1493 return emission; 1494 } 1495 1496 // Otherwise, tell the initialization code that we're in this case. 1497 emission.IsConstantAggregate = true; 1498 } 1499 1500 // A normal fixed sized variable becomes an alloca in the entry block, 1501 // unless: 1502 // - it's an NRVO variable. 1503 // - we are compiling OpenMP and it's an OpenMP local variable. 1504 if (NRVO) { 1505 // The named return value optimization: allocate this variable in the 1506 // return slot, so that we can elide the copy when returning this 1507 // variable (C++0x [class.copy]p34). 1508 address = ReturnValue; 1509 AllocaAddr = ReturnValue; 1510 1511 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1512 const auto *RD = RecordTy->getDecl(); 1513 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1514 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1515 RD->isNonTrivialToPrimitiveDestroy()) { 1516 // Create a flag that is used to indicate when the NRVO was applied 1517 // to this variable. Set it to zero to indicate that NRVO was not 1518 // applied. 1519 llvm::Value *Zero = Builder.getFalse(); 1520 Address NRVOFlag = 1521 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo", 1522 /*ArraySize=*/nullptr, &AllocaAddr); 1523 EnsureInsertPoint(); 1524 Builder.CreateStore(Zero, NRVOFlag); 1525 1526 // Record the NRVO flag for this variable. 1527 NRVOFlags[&D] = NRVOFlag.getPointer(); 1528 emission.NRVOFlag = NRVOFlag.getPointer(); 1529 } 1530 } 1531 } else { 1532 CharUnits allocaAlignment; 1533 llvm::Type *allocaTy; 1534 if (isEscapingByRef) { 1535 auto &byrefInfo = getBlockByrefInfo(&D); 1536 allocaTy = byrefInfo.Type; 1537 allocaAlignment = byrefInfo.ByrefAlignment; 1538 } else { 1539 allocaTy = ConvertTypeForMem(Ty); 1540 allocaAlignment = alignment; 1541 } 1542 1543 // Create the alloca. Note that we set the name separately from 1544 // building the instruction so that it's there even in no-asserts 1545 // builds. 1546 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1547 /*ArraySize=*/nullptr, &AllocaAddr); 1548 1549 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1550 // the catch parameter starts in the catchpad instruction, and we can't 1551 // insert code in those basic blocks. 1552 bool IsMSCatchParam = 1553 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1554 1555 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1556 // if we don't have a valid insertion point (?). 1557 if (HaveInsertPoint() && !IsMSCatchParam) { 1558 // If there's a jump into the lifetime of this variable, its lifetime 1559 // gets broken up into several regions in IR, which requires more work 1560 // to handle correctly. For now, just omit the intrinsics; this is a 1561 // rare case, and it's better to just be conservatively correct. 1562 // PR28267. 1563 // 1564 // We have to do this in all language modes if there's a jump past the 1565 // declaration. We also have to do it in C if there's a jump to an 1566 // earlier point in the current block because non-VLA lifetimes begin as 1567 // soon as the containing block is entered, not when its variables 1568 // actually come into scope; suppressing the lifetime annotations 1569 // completely in this case is unnecessarily pessimistic, but again, this 1570 // is rare. 1571 if (!Bypasses.IsBypassed(&D) && 1572 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1573 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1574 emission.SizeForLifetimeMarkers = 1575 EmitLifetimeStart(Size, AllocaAddr.getPointer()); 1576 } 1577 } else { 1578 assert(!emission.useLifetimeMarkers()); 1579 } 1580 } 1581 } else { 1582 EnsureInsertPoint(); 1583 1584 if (!DidCallStackSave) { 1585 // Save the stack. 1586 Address Stack = 1587 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1588 1589 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1590 llvm::Value *V = Builder.CreateCall(F); 1591 Builder.CreateStore(V, Stack); 1592 1593 DidCallStackSave = true; 1594 1595 // Push a cleanup block and restore the stack there. 1596 // FIXME: in general circumstances, this should be an EH cleanup. 1597 pushStackRestore(NormalCleanup, Stack); 1598 } 1599 1600 auto VlaSize = getVLASize(Ty); 1601 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1602 1603 // Allocate memory for the array. 1604 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1605 &AllocaAddr); 1606 1607 // If we have debug info enabled, properly describe the VLA dimensions for 1608 // this type by registering the vla size expression for each of the 1609 // dimensions. 1610 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1611 } 1612 1613 setAddrOfLocalVar(&D, address); 1614 emission.Addr = address; 1615 emission.AllocaAddr = AllocaAddr; 1616 1617 // Emit debug info for local var declaration. 1618 if (EmitDebugInfo && HaveInsertPoint()) { 1619 Address DebugAddr = address; 1620 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1621 DI->setLocation(D.getLocation()); 1622 1623 // If NRVO, use a pointer to the return address. 1624 if (UsePointerValue) { 1625 DebugAddr = ReturnValuePointer; 1626 AllocaAddr = ReturnValuePointer; 1627 } 1628 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder, 1629 UsePointerValue); 1630 } 1631 1632 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1633 EmitVarAnnotations(&D, address.getPointer()); 1634 1635 // Make sure we call @llvm.lifetime.end. 1636 if (emission.useLifetimeMarkers()) 1637 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1638 emission.getOriginalAllocatedAddress(), 1639 emission.getSizeForLifetimeMarkers()); 1640 1641 return emission; 1642 } 1643 1644 static bool isCapturedBy(const VarDecl &, const Expr *); 1645 1646 /// Determines whether the given __block variable is potentially 1647 /// captured by the given statement. 1648 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1649 if (const Expr *E = dyn_cast<Expr>(S)) 1650 return isCapturedBy(Var, E); 1651 for (const Stmt *SubStmt : S->children()) 1652 if (isCapturedBy(Var, SubStmt)) 1653 return true; 1654 return false; 1655 } 1656 1657 /// Determines whether the given __block variable is potentially 1658 /// captured by the given expression. 1659 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1660 // Skip the most common kinds of expressions that make 1661 // hierarchy-walking expensive. 1662 E = E->IgnoreParenCasts(); 1663 1664 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1665 const BlockDecl *Block = BE->getBlockDecl(); 1666 for (const auto &I : Block->captures()) { 1667 if (I.getVariable() == &Var) 1668 return true; 1669 } 1670 1671 // No need to walk into the subexpressions. 1672 return false; 1673 } 1674 1675 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1676 const CompoundStmt *CS = SE->getSubStmt(); 1677 for (const auto *BI : CS->body()) 1678 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1679 if (isCapturedBy(Var, BIE)) 1680 return true; 1681 } 1682 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1683 // special case declarations 1684 for (const auto *I : DS->decls()) { 1685 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1686 const Expr *Init = VD->getInit(); 1687 if (Init && isCapturedBy(Var, Init)) 1688 return true; 1689 } 1690 } 1691 } 1692 else 1693 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1694 // Later, provide code to poke into statements for capture analysis. 1695 return true; 1696 return false; 1697 } 1698 1699 for (const Stmt *SubStmt : E->children()) 1700 if (isCapturedBy(Var, SubStmt)) 1701 return true; 1702 1703 return false; 1704 } 1705 1706 /// Determine whether the given initializer is trivial in the sense 1707 /// that it requires no code to be generated. 1708 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1709 if (!Init) 1710 return true; 1711 1712 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1713 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1714 if (Constructor->isTrivial() && 1715 Constructor->isDefaultConstructor() && 1716 !Construct->requiresZeroInitialization()) 1717 return true; 1718 1719 return false; 1720 } 1721 1722 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1723 const VarDecl &D, 1724 Address Loc) { 1725 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1726 CharUnits Size = getContext().getTypeSizeInChars(type); 1727 bool isVolatile = type.isVolatileQualified(); 1728 if (!Size.isZero()) { 1729 switch (trivialAutoVarInit) { 1730 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1731 llvm_unreachable("Uninitialized handled by caller"); 1732 case LangOptions::TrivialAutoVarInitKind::Zero: 1733 if (CGM.stopAutoInit()) 1734 return; 1735 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1736 break; 1737 case LangOptions::TrivialAutoVarInitKind::Pattern: 1738 if (CGM.stopAutoInit()) 1739 return; 1740 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1741 break; 1742 } 1743 return; 1744 } 1745 1746 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1747 // them, so emit a memcpy with the VLA size to initialize each element. 1748 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1749 // will catch that code, but there exists code which generates zero-sized 1750 // VLAs. Be nice and initialize whatever they requested. 1751 const auto *VlaType = getContext().getAsVariableArrayType(type); 1752 if (!VlaType) 1753 return; 1754 auto VlaSize = getVLASize(VlaType); 1755 auto SizeVal = VlaSize.NumElts; 1756 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1757 switch (trivialAutoVarInit) { 1758 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1759 llvm_unreachable("Uninitialized handled by caller"); 1760 1761 case LangOptions::TrivialAutoVarInitKind::Zero: { 1762 if (CGM.stopAutoInit()) 1763 return; 1764 if (!EltSize.isOne()) 1765 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1766 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1767 SizeVal, isVolatile); 1768 I->addAnnotationMetadata("auto-init"); 1769 break; 1770 } 1771 1772 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1773 if (CGM.stopAutoInit()) 1774 return; 1775 llvm::Type *ElTy = Loc.getElementType(); 1776 llvm::Constant *Constant = constWithPadding( 1777 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1778 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1779 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1780 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1781 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1782 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1783 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1784 "vla.iszerosized"); 1785 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1786 EmitBlock(SetupBB); 1787 if (!EltSize.isOne()) 1788 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1789 llvm::Value *BaseSizeInChars = 1790 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1791 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1792 llvm::Value *End = Builder.CreateInBoundsGEP( 1793 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end"); 1794 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1795 EmitBlock(LoopBB); 1796 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1797 Cur->addIncoming(Begin.getPointer(), OriginBB); 1798 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1799 auto *I = 1800 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign), 1801 createUnnamedGlobalForMemcpyFrom( 1802 CGM, D, Builder, Constant, ConstantAlign), 1803 BaseSizeInChars, isVolatile); 1804 I->addAnnotationMetadata("auto-init"); 1805 llvm::Value *Next = 1806 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1807 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1808 Builder.CreateCondBr(Done, ContBB, LoopBB); 1809 Cur->addIncoming(Next, LoopBB); 1810 EmitBlock(ContBB); 1811 } break; 1812 } 1813 } 1814 1815 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1816 assert(emission.Variable && "emission was not valid!"); 1817 1818 // If this was emitted as a global constant, we're done. 1819 if (emission.wasEmittedAsGlobal()) return; 1820 1821 const VarDecl &D = *emission.Variable; 1822 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1823 QualType type = D.getType(); 1824 1825 // If this local has an initializer, emit it now. 1826 const Expr *Init = D.getInit(); 1827 1828 // If we are at an unreachable point, we don't need to emit the initializer 1829 // unless it contains a label. 1830 if (!HaveInsertPoint()) { 1831 if (!Init || !ContainsLabel(Init)) return; 1832 EnsureInsertPoint(); 1833 } 1834 1835 // Initialize the structure of a __block variable. 1836 if (emission.IsEscapingByRef) 1837 emitByrefStructureInit(emission); 1838 1839 // Initialize the variable here if it doesn't have a initializer and it is a 1840 // C struct that is non-trivial to initialize or an array containing such a 1841 // struct. 1842 if (!Init && 1843 type.isNonTrivialToPrimitiveDefaultInitialize() == 1844 QualType::PDIK_Struct) { 1845 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1846 if (emission.IsEscapingByRef) 1847 drillIntoBlockVariable(*this, Dst, &D); 1848 defaultInitNonTrivialCStructVar(Dst); 1849 return; 1850 } 1851 1852 // Check whether this is a byref variable that's potentially 1853 // captured and moved by its own initializer. If so, we'll need to 1854 // emit the initializer first, then copy into the variable. 1855 bool capturedByInit = 1856 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1857 1858 bool locIsByrefHeader = !capturedByInit; 1859 const Address Loc = 1860 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1861 1862 // Note: constexpr already initializes everything correctly. 1863 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1864 (D.isConstexpr() 1865 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1866 : (D.getAttr<UninitializedAttr>() 1867 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1868 : getContext().getLangOpts().getTrivialAutoVarInit())); 1869 1870 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1871 if (trivialAutoVarInit == 1872 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1873 return; 1874 1875 // Only initialize a __block's storage: we always initialize the header. 1876 if (emission.IsEscapingByRef && !locIsByrefHeader) 1877 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1878 1879 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1880 }; 1881 1882 if (isTrivialInitializer(Init)) 1883 return initializeWhatIsTechnicallyUninitialized(Loc); 1884 1885 llvm::Constant *constant = nullptr; 1886 if (emission.IsConstantAggregate || 1887 D.mightBeUsableInConstantExpressions(getContext())) { 1888 assert(!capturedByInit && "constant init contains a capturing block?"); 1889 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1890 if (constant && !constant->isZeroValue() && 1891 (trivialAutoVarInit != 1892 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1893 IsPattern isPattern = 1894 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1895 ? IsPattern::Yes 1896 : IsPattern::No; 1897 // C guarantees that brace-init with fewer initializers than members in 1898 // the aggregate will initialize the rest of the aggregate as-if it were 1899 // static initialization. In turn static initialization guarantees that 1900 // padding is initialized to zero bits. We could instead pattern-init if D 1901 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1902 // behavior. 1903 constant = constWithPadding(CGM, IsPattern::No, 1904 replaceUndef(CGM, isPattern, constant)); 1905 } 1906 } 1907 1908 if (!constant) { 1909 initializeWhatIsTechnicallyUninitialized(Loc); 1910 LValue lv = MakeAddrLValue(Loc, type); 1911 lv.setNonGC(true); 1912 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1913 } 1914 1915 if (!emission.IsConstantAggregate) { 1916 // For simple scalar/complex initialization, store the value directly. 1917 LValue lv = MakeAddrLValue(Loc, type); 1918 lv.setNonGC(true); 1919 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1920 } 1921 1922 emitStoresForConstant(CGM, D, Builder.CreateElementBitCast(Loc, CGM.Int8Ty), 1923 type.isVolatileQualified(), Builder, constant, 1924 /*IsAutoInit=*/false); 1925 } 1926 1927 /// Emit an expression as an initializer for an object (variable, field, etc.) 1928 /// at the given location. The expression is not necessarily the normal 1929 /// initializer for the object, and the address is not necessarily 1930 /// its normal location. 1931 /// 1932 /// \param init the initializing expression 1933 /// \param D the object to act as if we're initializing 1934 /// \param lvalue the lvalue to initialize 1935 /// \param capturedByInit true if \p D is a __block variable 1936 /// whose address is potentially changed by the initializer 1937 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1938 LValue lvalue, bool capturedByInit) { 1939 QualType type = D->getType(); 1940 1941 if (type->isReferenceType()) { 1942 RValue rvalue = EmitReferenceBindingToExpr(init); 1943 if (capturedByInit) 1944 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1945 EmitStoreThroughLValue(rvalue, lvalue, true); 1946 return; 1947 } 1948 switch (getEvaluationKind(type)) { 1949 case TEK_Scalar: 1950 EmitScalarInit(init, D, lvalue, capturedByInit); 1951 return; 1952 case TEK_Complex: { 1953 ComplexPairTy complex = EmitComplexExpr(init); 1954 if (capturedByInit) 1955 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1956 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1957 return; 1958 } 1959 case TEK_Aggregate: 1960 if (type->isAtomicType()) { 1961 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1962 } else { 1963 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1964 if (isa<VarDecl>(D)) 1965 Overlap = AggValueSlot::DoesNotOverlap; 1966 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1967 Overlap = getOverlapForFieldInit(FD); 1968 // TODO: how can we delay here if D is captured by its initializer? 1969 EmitAggExpr(init, AggValueSlot::forLValue( 1970 lvalue, *this, AggValueSlot::IsDestructed, 1971 AggValueSlot::DoesNotNeedGCBarriers, 1972 AggValueSlot::IsNotAliased, Overlap)); 1973 } 1974 return; 1975 } 1976 llvm_unreachable("bad evaluation kind"); 1977 } 1978 1979 /// Enter a destroy cleanup for the given local variable. 1980 void CodeGenFunction::emitAutoVarTypeCleanup( 1981 const CodeGenFunction::AutoVarEmission &emission, 1982 QualType::DestructionKind dtorKind) { 1983 assert(dtorKind != QualType::DK_none); 1984 1985 // Note that for __block variables, we want to destroy the 1986 // original stack object, not the possibly forwarded object. 1987 Address addr = emission.getObjectAddress(*this); 1988 1989 const VarDecl *var = emission.Variable; 1990 QualType type = var->getType(); 1991 1992 CleanupKind cleanupKind = NormalAndEHCleanup; 1993 CodeGenFunction::Destroyer *destroyer = nullptr; 1994 1995 switch (dtorKind) { 1996 case QualType::DK_none: 1997 llvm_unreachable("no cleanup for trivially-destructible variable"); 1998 1999 case QualType::DK_cxx_destructor: 2000 // If there's an NRVO flag on the emission, we need a different 2001 // cleanup. 2002 if (emission.NRVOFlag) { 2003 assert(!type->isArrayType()); 2004 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 2005 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 2006 emission.NRVOFlag); 2007 return; 2008 } 2009 break; 2010 2011 case QualType::DK_objc_strong_lifetime: 2012 // Suppress cleanups for pseudo-strong variables. 2013 if (var->isARCPseudoStrong()) return; 2014 2015 // Otherwise, consider whether to use an EH cleanup or not. 2016 cleanupKind = getARCCleanupKind(); 2017 2018 // Use the imprecise destroyer by default. 2019 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2020 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2021 break; 2022 2023 case QualType::DK_objc_weak_lifetime: 2024 break; 2025 2026 case QualType::DK_nontrivial_c_struct: 2027 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2028 if (emission.NRVOFlag) { 2029 assert(!type->isArrayType()); 2030 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2031 emission.NRVOFlag, type); 2032 return; 2033 } 2034 break; 2035 } 2036 2037 // If we haven't chosen a more specific destroyer, use the default. 2038 if (!destroyer) destroyer = getDestroyer(dtorKind); 2039 2040 // Use an EH cleanup in array destructors iff the destructor itself 2041 // is being pushed as an EH cleanup. 2042 bool useEHCleanup = (cleanupKind & EHCleanup); 2043 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2044 useEHCleanup); 2045 } 2046 2047 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2048 assert(emission.Variable && "emission was not valid!"); 2049 2050 // If this was emitted as a global constant, we're done. 2051 if (emission.wasEmittedAsGlobal()) return; 2052 2053 // If we don't have an insertion point, we're done. Sema prevents 2054 // us from jumping into any of these scopes anyway. 2055 if (!HaveInsertPoint()) return; 2056 2057 const VarDecl &D = *emission.Variable; 2058 2059 // Check the type for a cleanup. 2060 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2061 emitAutoVarTypeCleanup(emission, dtorKind); 2062 2063 // In GC mode, honor objc_precise_lifetime. 2064 if (getLangOpts().getGC() != LangOptions::NonGC && 2065 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2066 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2067 } 2068 2069 // Handle the cleanup attribute. 2070 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2071 const FunctionDecl *FD = CA->getFunctionDecl(); 2072 2073 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2074 assert(F && "Could not find function!"); 2075 2076 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2077 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2078 } 2079 2080 // If this is a block variable, call _Block_object_destroy 2081 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2082 // mode. 2083 if (emission.IsEscapingByRef && 2084 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2085 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2086 if (emission.Variable->getType().isObjCGCWeak()) 2087 Flags |= BLOCK_FIELD_IS_WEAK; 2088 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2089 /*LoadBlockVarAddr*/ false, 2090 cxxDestructorCanThrow(emission.Variable->getType())); 2091 } 2092 } 2093 2094 CodeGenFunction::Destroyer * 2095 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2096 switch (kind) { 2097 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2098 case QualType::DK_cxx_destructor: 2099 return destroyCXXObject; 2100 case QualType::DK_objc_strong_lifetime: 2101 return destroyARCStrongPrecise; 2102 case QualType::DK_objc_weak_lifetime: 2103 return destroyARCWeak; 2104 case QualType::DK_nontrivial_c_struct: 2105 return destroyNonTrivialCStruct; 2106 } 2107 llvm_unreachable("Unknown DestructionKind"); 2108 } 2109 2110 /// pushEHDestroy - Push the standard destructor for the given type as 2111 /// an EH-only cleanup. 2112 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2113 Address addr, QualType type) { 2114 assert(dtorKind && "cannot push destructor for trivial type"); 2115 assert(needsEHCleanup(dtorKind)); 2116 2117 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2118 } 2119 2120 /// pushDestroy - Push the standard destructor for the given type as 2121 /// at least a normal cleanup. 2122 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2123 Address addr, QualType type) { 2124 assert(dtorKind && "cannot push destructor for trivial type"); 2125 2126 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2127 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2128 cleanupKind & EHCleanup); 2129 } 2130 2131 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2132 QualType type, Destroyer *destroyer, 2133 bool useEHCleanupForArray) { 2134 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2135 destroyer, useEHCleanupForArray); 2136 } 2137 2138 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2139 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2140 } 2141 2142 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2143 Address addr, QualType type, 2144 Destroyer *destroyer, 2145 bool useEHCleanupForArray) { 2146 // If we're not in a conditional branch, we don't need to bother generating a 2147 // conditional cleanup. 2148 if (!isInConditionalBranch()) { 2149 // Push an EH-only cleanup for the object now. 2150 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2151 // around in case a temporary's destructor throws an exception. 2152 if (cleanupKind & EHCleanup) 2153 EHStack.pushCleanup<DestroyObject>( 2154 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2155 destroyer, useEHCleanupForArray); 2156 2157 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2158 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray); 2159 } 2160 2161 // Otherwise, we should only destroy the object if it's been initialized. 2162 // Re-use the active flag and saved address across both the EH and end of 2163 // scope cleanups. 2164 2165 using SavedType = typename DominatingValue<Address>::saved_type; 2166 using ConditionalCleanupType = 2167 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2168 Destroyer *, bool>; 2169 2170 Address ActiveFlag = createCleanupActiveFlag(); 2171 SavedType SavedAddr = saveValueInCond(addr); 2172 2173 if (cleanupKind & EHCleanup) { 2174 EHStack.pushCleanup<ConditionalCleanupType>( 2175 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type, 2176 destroyer, useEHCleanupForArray); 2177 initFullExprCleanupWithFlag(ActiveFlag); 2178 } 2179 2180 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2181 cleanupKind, ActiveFlag, SavedAddr, type, destroyer, 2182 useEHCleanupForArray); 2183 } 2184 2185 /// emitDestroy - Immediately perform the destruction of the given 2186 /// object. 2187 /// 2188 /// \param addr - the address of the object; a type* 2189 /// \param type - the type of the object; if an array type, all 2190 /// objects are destroyed in reverse order 2191 /// \param destroyer - the function to call to destroy individual 2192 /// elements 2193 /// \param useEHCleanupForArray - whether an EH cleanup should be 2194 /// used when destroying array elements, in case one of the 2195 /// destructions throws an exception 2196 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2197 Destroyer *destroyer, 2198 bool useEHCleanupForArray) { 2199 const ArrayType *arrayType = getContext().getAsArrayType(type); 2200 if (!arrayType) 2201 return destroyer(*this, addr, type); 2202 2203 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2204 2205 CharUnits elementAlign = 2206 addr.getAlignment() 2207 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2208 2209 // Normally we have to check whether the array is zero-length. 2210 bool checkZeroLength = true; 2211 2212 // But if the array length is constant, we can suppress that. 2213 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2214 // ...and if it's constant zero, we can just skip the entire thing. 2215 if (constLength->isZero()) return; 2216 checkZeroLength = false; 2217 } 2218 2219 llvm::Value *begin = addr.getPointer(); 2220 llvm::Value *end = 2221 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2222 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2223 checkZeroLength, useEHCleanupForArray); 2224 } 2225 2226 /// emitArrayDestroy - Destroys all the elements of the given array, 2227 /// beginning from last to first. The array cannot be zero-length. 2228 /// 2229 /// \param begin - a type* denoting the first element of the array 2230 /// \param end - a type* denoting one past the end of the array 2231 /// \param elementType - the element type of the array 2232 /// \param destroyer - the function to call to destroy elements 2233 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2234 /// the remaining elements in case the destruction of a single 2235 /// element throws 2236 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2237 llvm::Value *end, 2238 QualType elementType, 2239 CharUnits elementAlign, 2240 Destroyer *destroyer, 2241 bool checkZeroLength, 2242 bool useEHCleanup) { 2243 assert(!elementType->isArrayType()); 2244 2245 // The basic structure here is a do-while loop, because we don't 2246 // need to check for the zero-element case. 2247 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2248 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2249 2250 if (checkZeroLength) { 2251 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2252 "arraydestroy.isempty"); 2253 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2254 } 2255 2256 // Enter the loop body, making that address the current address. 2257 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2258 EmitBlock(bodyBB); 2259 llvm::PHINode *elementPast = 2260 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2261 elementPast->addIncoming(end, entryBB); 2262 2263 // Shift the address back by one element. 2264 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2265 llvm::Type *llvmElementType = ConvertTypeForMem(elementType); 2266 llvm::Value *element = Builder.CreateInBoundsGEP( 2267 llvmElementType, elementPast, negativeOne, "arraydestroy.element"); 2268 2269 if (useEHCleanup) 2270 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2271 destroyer); 2272 2273 // Perform the actual destruction there. 2274 destroyer(*this, Address(element, llvmElementType, elementAlign), 2275 elementType); 2276 2277 if (useEHCleanup) 2278 PopCleanupBlock(); 2279 2280 // Check whether we've reached the end. 2281 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2282 Builder.CreateCondBr(done, doneBB, bodyBB); 2283 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2284 2285 // Done. 2286 EmitBlock(doneBB); 2287 } 2288 2289 /// Perform partial array destruction as if in an EH cleanup. Unlike 2290 /// emitArrayDestroy, the element type here may still be an array type. 2291 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2292 llvm::Value *begin, llvm::Value *end, 2293 QualType type, CharUnits elementAlign, 2294 CodeGenFunction::Destroyer *destroyer) { 2295 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2296 2297 // If the element type is itself an array, drill down. 2298 unsigned arrayDepth = 0; 2299 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2300 // VLAs don't require a GEP index to walk into. 2301 if (!isa<VariableArrayType>(arrayType)) 2302 arrayDepth++; 2303 type = arrayType->getElementType(); 2304 } 2305 2306 if (arrayDepth) { 2307 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2308 2309 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2310 begin = CGF.Builder.CreateInBoundsGEP( 2311 elemTy, begin, gepIndices, "pad.arraybegin"); 2312 end = CGF.Builder.CreateInBoundsGEP( 2313 elemTy, end, gepIndices, "pad.arrayend"); 2314 } 2315 2316 // Destroy the array. We don't ever need an EH cleanup because we 2317 // assume that we're in an EH cleanup ourselves, so a throwing 2318 // destructor causes an immediate terminate. 2319 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2320 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2321 } 2322 2323 namespace { 2324 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2325 /// array destroy where the end pointer is regularly determined and 2326 /// does not need to be loaded from a local. 2327 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2328 llvm::Value *ArrayBegin; 2329 llvm::Value *ArrayEnd; 2330 QualType ElementType; 2331 CodeGenFunction::Destroyer *Destroyer; 2332 CharUnits ElementAlign; 2333 public: 2334 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2335 QualType elementType, CharUnits elementAlign, 2336 CodeGenFunction::Destroyer *destroyer) 2337 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2338 ElementType(elementType), Destroyer(destroyer), 2339 ElementAlign(elementAlign) {} 2340 2341 void Emit(CodeGenFunction &CGF, Flags flags) override { 2342 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2343 ElementType, ElementAlign, Destroyer); 2344 } 2345 }; 2346 2347 /// IrregularPartialArrayDestroy - a cleanup which performs a 2348 /// partial array destroy where the end pointer is irregularly 2349 /// determined and must be loaded from a local. 2350 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2351 llvm::Value *ArrayBegin; 2352 Address ArrayEndPointer; 2353 QualType ElementType; 2354 CodeGenFunction::Destroyer *Destroyer; 2355 CharUnits ElementAlign; 2356 public: 2357 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2358 Address arrayEndPointer, 2359 QualType elementType, 2360 CharUnits elementAlign, 2361 CodeGenFunction::Destroyer *destroyer) 2362 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2363 ElementType(elementType), Destroyer(destroyer), 2364 ElementAlign(elementAlign) {} 2365 2366 void Emit(CodeGenFunction &CGF, Flags flags) override { 2367 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2368 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2369 ElementType, ElementAlign, Destroyer); 2370 } 2371 }; 2372 } // end anonymous namespace 2373 2374 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2375 /// already-constructed elements of the given array. The cleanup 2376 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2377 /// 2378 /// \param elementType - the immediate element type of the array; 2379 /// possibly still an array type 2380 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2381 Address arrayEndPointer, 2382 QualType elementType, 2383 CharUnits elementAlign, 2384 Destroyer *destroyer) { 2385 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2386 arrayBegin, arrayEndPointer, 2387 elementType, elementAlign, 2388 destroyer); 2389 } 2390 2391 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2392 /// already-constructed elements of the given array. The cleanup 2393 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2394 /// 2395 /// \param elementType - the immediate element type of the array; 2396 /// possibly still an array type 2397 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2398 llvm::Value *arrayEnd, 2399 QualType elementType, 2400 CharUnits elementAlign, 2401 Destroyer *destroyer) { 2402 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2403 arrayBegin, arrayEnd, 2404 elementType, elementAlign, 2405 destroyer); 2406 } 2407 2408 /// Lazily declare the @llvm.lifetime.start intrinsic. 2409 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2410 if (LifetimeStartFn) 2411 return LifetimeStartFn; 2412 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2413 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2414 return LifetimeStartFn; 2415 } 2416 2417 /// Lazily declare the @llvm.lifetime.end intrinsic. 2418 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2419 if (LifetimeEndFn) 2420 return LifetimeEndFn; 2421 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2422 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2423 return LifetimeEndFn; 2424 } 2425 2426 namespace { 2427 /// A cleanup to perform a release of an object at the end of a 2428 /// function. This is used to balance out the incoming +1 of a 2429 /// ns_consumed argument when we can't reasonably do that just by 2430 /// not doing the initial retain for a __block argument. 2431 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2432 ConsumeARCParameter(llvm::Value *param, 2433 ARCPreciseLifetime_t precise) 2434 : Param(param), Precise(precise) {} 2435 2436 llvm::Value *Param; 2437 ARCPreciseLifetime_t Precise; 2438 2439 void Emit(CodeGenFunction &CGF, Flags flags) override { 2440 CGF.EmitARCRelease(Param, Precise); 2441 } 2442 }; 2443 } // end anonymous namespace 2444 2445 /// Emit an alloca (or GlobalValue depending on target) 2446 /// for the specified parameter and set up LocalDeclMap. 2447 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2448 unsigned ArgNo) { 2449 bool NoDebugInfo = false; 2450 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2451 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2452 "Invalid argument to EmitParmDecl"); 2453 2454 Arg.getAnyValue()->setName(D.getName()); 2455 2456 QualType Ty = D.getType(); 2457 2458 // Use better IR generation for certain implicit parameters. 2459 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2460 // The only implicit argument a block has is its literal. 2461 // This may be passed as an inalloca'ed value on Windows x86. 2462 if (BlockInfo) { 2463 llvm::Value *V = Arg.isIndirect() 2464 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2465 : Arg.getDirectValue(); 2466 setBlockContextParameter(IPD, ArgNo, V); 2467 return; 2468 } 2469 // Suppressing debug info for ThreadPrivateVar parameters, else it hides 2470 // debug info of TLS variables. 2471 NoDebugInfo = 2472 (IPD->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar); 2473 } 2474 2475 Address DeclPtr = Address::invalid(); 2476 Address AllocaPtr = Address::invalid(); 2477 bool DoStore = false; 2478 bool IsScalar = hasScalarEvaluationKind(Ty); 2479 // If we already have a pointer to the argument, reuse the input pointer. 2480 if (Arg.isIndirect()) { 2481 // If we have a prettier pointer type at this point, bitcast to that. 2482 DeclPtr = Arg.getIndirectAddress(); 2483 DeclPtr = Builder.CreateElementBitCast(DeclPtr, ConvertTypeForMem(Ty), 2484 D.getName()); 2485 // Indirect argument is in alloca address space, which may be different 2486 // from the default address space. 2487 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2488 auto *V = DeclPtr.getPointer(); 2489 AllocaPtr = DeclPtr; 2490 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2491 auto DestLangAS = 2492 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2493 if (SrcLangAS != DestLangAS) { 2494 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2495 CGM.getDataLayout().getAllocaAddrSpace()); 2496 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2497 auto *T = DeclPtr.getElementType()->getPointerTo(DestAS); 2498 DeclPtr = DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast( 2499 *this, V, SrcLangAS, DestLangAS, T, true)); 2500 } 2501 2502 // Push a destructor cleanup for this parameter if the ABI requires it. 2503 // Don't push a cleanup in a thunk for a method that will also emit a 2504 // cleanup. 2505 if (Ty->isRecordType() && !CurFuncIsThunk && 2506 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2507 if (QualType::DestructionKind DtorKind = 2508 D.needsDestruction(getContext())) { 2509 assert((DtorKind == QualType::DK_cxx_destructor || 2510 DtorKind == QualType::DK_nontrivial_c_struct) && 2511 "unexpected destructor type"); 2512 pushDestroy(DtorKind, DeclPtr, Ty); 2513 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2514 EHStack.stable_begin(); 2515 } 2516 } 2517 } else { 2518 // Check if the parameter address is controlled by OpenMP runtime. 2519 Address OpenMPLocalAddr = 2520 getLangOpts().OpenMP 2521 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2522 : Address::invalid(); 2523 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2524 DeclPtr = OpenMPLocalAddr; 2525 AllocaPtr = DeclPtr; 2526 } else { 2527 // Otherwise, create a temporary to hold the value. 2528 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2529 D.getName() + ".addr", &AllocaPtr); 2530 } 2531 DoStore = true; 2532 } 2533 2534 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2535 2536 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2537 if (IsScalar) { 2538 Qualifiers qs = Ty.getQualifiers(); 2539 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2540 // We honor __attribute__((ns_consumed)) for types with lifetime. 2541 // For __strong, it's handled by just skipping the initial retain; 2542 // otherwise we have to balance out the initial +1 with an extra 2543 // cleanup to do the release at the end of the function. 2544 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2545 2546 // If a parameter is pseudo-strong then we can omit the implicit retain. 2547 if (D.isARCPseudoStrong()) { 2548 assert(lt == Qualifiers::OCL_Strong && 2549 "pseudo-strong variable isn't strong?"); 2550 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2551 lt = Qualifiers::OCL_ExplicitNone; 2552 } 2553 2554 // Load objects passed indirectly. 2555 if (Arg.isIndirect() && !ArgVal) 2556 ArgVal = Builder.CreateLoad(DeclPtr); 2557 2558 if (lt == Qualifiers::OCL_Strong) { 2559 if (!isConsumed) { 2560 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2561 // use objc_storeStrong(&dest, value) for retaining the 2562 // object. But first, store a null into 'dest' because 2563 // objc_storeStrong attempts to release its old value. 2564 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2565 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2566 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2567 DoStore = false; 2568 } 2569 else 2570 // Don't use objc_retainBlock for block pointers, because we 2571 // don't want to Block_copy something just because we got it 2572 // as a parameter. 2573 ArgVal = EmitARCRetainNonBlock(ArgVal); 2574 } 2575 } else { 2576 // Push the cleanup for a consumed parameter. 2577 if (isConsumed) { 2578 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2579 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2580 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2581 precise); 2582 } 2583 2584 if (lt == Qualifiers::OCL_Weak) { 2585 EmitARCInitWeak(DeclPtr, ArgVal); 2586 DoStore = false; // The weak init is a store, no need to do two. 2587 } 2588 } 2589 2590 // Enter the cleanup scope. 2591 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2592 } 2593 } 2594 2595 // Store the initial value into the alloca. 2596 if (DoStore) 2597 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2598 2599 setAddrOfLocalVar(&D, DeclPtr); 2600 2601 // Emit debug info for param declarations in non-thunk functions. 2602 if (CGDebugInfo *DI = getDebugInfo()) { 2603 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk && 2604 !NoDebugInfo) { 2605 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2606 &D, AllocaPtr.getPointer(), ArgNo, Builder); 2607 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2608 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2609 } 2610 } 2611 2612 if (D.hasAttr<AnnotateAttr>()) 2613 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2614 2615 // We can only check return value nullability if all arguments to the 2616 // function satisfy their nullability preconditions. This makes it necessary 2617 // to emit null checks for args in the function body itself. 2618 if (requiresReturnValueNullabilityCheck()) { 2619 auto Nullability = Ty->getNullability(); 2620 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2621 SanitizerScope SanScope(this); 2622 RetValNullabilityPrecondition = 2623 Builder.CreateAnd(RetValNullabilityPrecondition, 2624 Builder.CreateIsNotNull(Arg.getAnyValue())); 2625 } 2626 } 2627 } 2628 2629 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2630 CodeGenFunction *CGF) { 2631 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2632 return; 2633 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2634 } 2635 2636 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2637 CodeGenFunction *CGF) { 2638 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2639 (!LangOpts.EmitAllDecls && !D->isUsed())) 2640 return; 2641 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2642 } 2643 2644 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2645 getOpenMPRuntime().processRequiresDirective(D); 2646 } 2647 2648 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2649 for (const Expr *E : D->varlists()) { 2650 const auto *DE = cast<DeclRefExpr>(E); 2651 const auto *VD = cast<VarDecl>(DE->getDecl()); 2652 2653 // Skip all but globals. 2654 if (!VD->hasGlobalStorage()) 2655 continue; 2656 2657 // Check if the global has been materialized yet or not. If not, we are done 2658 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2659 // we already emitted the global we might have done so before the 2660 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2661 // (potentially). While not pretty, common practise is to remove the old IR 2662 // global and generate a new one, so we do that here too. Uses are replaced 2663 // properly. 2664 StringRef MangledName = getMangledName(VD); 2665 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2666 if (!Entry) 2667 continue; 2668 2669 // We can also keep the existing global if the address space is what we 2670 // expect it to be, if not, it is replaced. 2671 QualType ASTTy = VD->getType(); 2672 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2673 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2674 if (Entry->getType()->getAddressSpace() == TargetAS) 2675 continue; 2676 2677 // Make a new global with the correct type / address space. 2678 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2679 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2680 2681 // Replace all uses of the old global with a cast. Since we mutate the type 2682 // in place we neeed an intermediate that takes the spot of the old entry 2683 // until we can create the cast. 2684 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2685 getModule(), Entry->getValueType(), false, 2686 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2687 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2688 Entry->replaceAllUsesWith(DummyGV); 2689 2690 Entry->mutateType(PTy); 2691 llvm::Constant *NewPtrForOldDecl = 2692 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2693 Entry, DummyGV->getType()); 2694 2695 // Now we have a casted version of the changed global, the dummy can be 2696 // replaced and deleted. 2697 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2698 DummyGV->eraseFromParent(); 2699 } 2700 } 2701 2702 std::optional<CharUnits> 2703 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) { 2704 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) { 2705 if (Expr *Alignment = AA->getAlignment()) { 2706 unsigned UserAlign = 2707 Alignment->EvaluateKnownConstInt(getContext()).getExtValue(); 2708 CharUnits NaturalAlign = 2709 getNaturalTypeAlignment(VD->getType().getNonReferenceType()); 2710 2711 // OpenMP5.1 pg 185 lines 7-10 2712 // Each item in the align modifier list must be aligned to the maximum 2713 // of the specified alignment and the type's natural alignment. 2714 return CharUnits::fromQuantity( 2715 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity())); 2716 } 2717 } 2718 return std::nullopt; 2719 } 2720