1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/Type.h" 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 void CodeGenFunction::EmitDecl(const Decl &D) { 44 switch (D.getKind()) { 45 case Decl::BuiltinTemplate: 46 case Decl::TranslationUnit: 47 case Decl::ExternCContext: 48 case Decl::Namespace: 49 case Decl::UnresolvedUsingTypename: 50 case Decl::ClassTemplateSpecialization: 51 case Decl::ClassTemplatePartialSpecialization: 52 case Decl::VarTemplateSpecialization: 53 case Decl::VarTemplatePartialSpecialization: 54 case Decl::TemplateTypeParm: 55 case Decl::UnresolvedUsingValue: 56 case Decl::NonTypeTemplateParm: 57 case Decl::CXXDeductionGuide: 58 case Decl::CXXMethod: 59 case Decl::CXXConstructor: 60 case Decl::CXXDestructor: 61 case Decl::CXXConversion: 62 case Decl::Field: 63 case Decl::MSProperty: 64 case Decl::IndirectField: 65 case Decl::ObjCIvar: 66 case Decl::ObjCAtDefsField: 67 case Decl::ParmVar: 68 case Decl::ImplicitParam: 69 case Decl::ClassTemplate: 70 case Decl::VarTemplate: 71 case Decl::FunctionTemplate: 72 case Decl::TypeAliasTemplate: 73 case Decl::TemplateTemplateParm: 74 case Decl::ObjCMethod: 75 case Decl::ObjCCategory: 76 case Decl::ObjCProtocol: 77 case Decl::ObjCInterface: 78 case Decl::ObjCCategoryImpl: 79 case Decl::ObjCImplementation: 80 case Decl::ObjCProperty: 81 case Decl::ObjCCompatibleAlias: 82 case Decl::PragmaComment: 83 case Decl::PragmaDetectMismatch: 84 case Decl::AccessSpec: 85 case Decl::LinkageSpec: 86 case Decl::Export: 87 case Decl::ObjCPropertyImpl: 88 case Decl::FileScopeAsm: 89 case Decl::Friend: 90 case Decl::FriendTemplate: 91 case Decl::Block: 92 case Decl::Captured: 93 case Decl::ClassScopeFunctionSpecialization: 94 case Decl::UsingShadow: 95 case Decl::ConstructorUsingShadow: 96 case Decl::ObjCTypeParam: 97 case Decl::Binding: 98 llvm_unreachable("Declaration should not be in declstmts!"); 99 case Decl::Function: // void X(); 100 case Decl::Record: // struct/union/class X; 101 case Decl::Enum: // enum X; 102 case Decl::EnumConstant: // enum ? { X = ? } 103 case Decl::CXXRecord: // struct/union/class X; [C++] 104 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 105 case Decl::Label: // __label__ x; 106 case Decl::Import: 107 case Decl::OMPThreadPrivate: 108 case Decl::OMPAllocate: 109 case Decl::OMPCapturedExpr: 110 case Decl::OMPRequires: 111 case Decl::Empty: 112 case Decl::Concept: 113 case Decl::LifetimeExtendedTemporary: 114 case Decl::RequiresExprBody: 115 // None of these decls require codegen support. 116 return; 117 118 case Decl::NamespaceAlias: 119 if (CGDebugInfo *DI = getDebugInfo()) 120 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 121 return; 122 case Decl::Using: // using X; [C++] 123 if (CGDebugInfo *DI = getDebugInfo()) 124 DI->EmitUsingDecl(cast<UsingDecl>(D)); 125 return; 126 case Decl::UsingPack: 127 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 128 EmitDecl(*Using); 129 return; 130 case Decl::UsingDirective: // using namespace X; [C++] 131 if (CGDebugInfo *DI = getDebugInfo()) 132 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 133 return; 134 case Decl::Var: 135 case Decl::Decomposition: { 136 const VarDecl &VD = cast<VarDecl>(D); 137 assert(VD.isLocalVarDecl() && 138 "Should not see file-scope variables inside a function!"); 139 EmitVarDecl(VD); 140 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 141 for (auto *B : DD->bindings()) 142 if (auto *HD = B->getHoldingVar()) 143 EmitVarDecl(*HD); 144 return; 145 } 146 147 case Decl::OMPDeclareReduction: 148 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 149 150 case Decl::OMPDeclareMapper: 151 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 152 153 case Decl::Typedef: // typedef int X; 154 case Decl::TypeAlias: { // using X = int; [C++0x] 155 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 156 QualType Ty = TD.getUnderlyingType(); 157 158 if (Ty->isVariablyModifiedType()) 159 EmitVariablyModifiedType(Ty); 160 161 return; 162 } 163 } 164 } 165 166 /// EmitVarDecl - This method handles emission of any variable declaration 167 /// inside a function, including static vars etc. 168 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 169 if (D.hasExternalStorage()) 170 // Don't emit it now, allow it to be emitted lazily on its first use. 171 return; 172 173 // Some function-scope variable does not have static storage but still 174 // needs to be emitted like a static variable, e.g. a function-scope 175 // variable in constant address space in OpenCL. 176 if (D.getStorageDuration() != SD_Automatic) { 177 // Static sampler variables translated to function calls. 178 if (D.getType()->isSamplerT()) 179 return; 180 181 llvm::GlobalValue::LinkageTypes Linkage = 182 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 183 184 // FIXME: We need to force the emission/use of a guard variable for 185 // some variables even if we can constant-evaluate them because 186 // we can't guarantee every translation unit will constant-evaluate them. 187 188 return EmitStaticVarDecl(D, Linkage); 189 } 190 191 if (D.getType().getAddressSpace() == LangAS::opencl_local) 192 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 193 194 assert(D.hasLocalStorage()); 195 return EmitAutoVarDecl(D); 196 } 197 198 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 199 if (CGM.getLangOpts().CPlusPlus) 200 return CGM.getMangledName(&D).str(); 201 202 // If this isn't C++, we don't need a mangled name, just a pretty one. 203 assert(!D.isExternallyVisible() && "name shouldn't matter"); 204 std::string ContextName; 205 const DeclContext *DC = D.getDeclContext(); 206 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 207 DC = cast<DeclContext>(CD->getNonClosureContext()); 208 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 209 ContextName = CGM.getMangledName(FD); 210 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 211 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 212 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 213 ContextName = OMD->getSelector().getAsString(); 214 else 215 llvm_unreachable("Unknown context for static var decl"); 216 217 ContextName += "." + D.getNameAsString(); 218 return ContextName; 219 } 220 221 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 222 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 223 // In general, we don't always emit static var decls once before we reference 224 // them. It is possible to reference them before emitting the function that 225 // contains them, and it is possible to emit the containing function multiple 226 // times. 227 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 228 return ExistingGV; 229 230 QualType Ty = D.getType(); 231 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 232 233 // Use the label if the variable is renamed with the asm-label extension. 234 std::string Name; 235 if (D.hasAttr<AsmLabelAttr>()) 236 Name = getMangledName(&D); 237 else 238 Name = getStaticDeclName(*this, D); 239 240 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 241 LangAS AS = GetGlobalVarAddressSpace(&D); 242 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 243 244 // OpenCL variables in local address space and CUDA shared 245 // variables cannot have an initializer. 246 llvm::Constant *Init = nullptr; 247 if (Ty.getAddressSpace() == LangAS::opencl_local || 248 D.hasAttr<CUDASharedAttr>()) 249 Init = llvm::UndefValue::get(LTy); 250 else 251 Init = EmitNullConstant(Ty); 252 253 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 254 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 255 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 256 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 257 258 if (supportsCOMDAT() && GV->isWeakForLinker()) 259 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 260 261 if (D.getTLSKind()) 262 setTLSMode(GV, D); 263 264 setGVProperties(GV, &D); 265 266 // Make sure the result is of the correct type. 267 LangAS ExpectedAS = Ty.getAddressSpace(); 268 llvm::Constant *Addr = GV; 269 if (AS != ExpectedAS) { 270 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 271 *this, GV, AS, ExpectedAS, 272 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 273 } 274 275 setStaticLocalDeclAddress(&D, Addr); 276 277 // Ensure that the static local gets initialized by making sure the parent 278 // function gets emitted eventually. 279 const Decl *DC = cast<Decl>(D.getDeclContext()); 280 281 // We can't name blocks or captured statements directly, so try to emit their 282 // parents. 283 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 284 DC = DC->getNonClosureContext(); 285 // FIXME: Ensure that global blocks get emitted. 286 if (!DC) 287 return Addr; 288 } 289 290 GlobalDecl GD; 291 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 292 GD = GlobalDecl(CD, Ctor_Base); 293 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 294 GD = GlobalDecl(DD, Dtor_Base); 295 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 296 GD = GlobalDecl(FD); 297 else { 298 // Don't do anything for Obj-C method decls or global closures. We should 299 // never defer them. 300 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 301 } 302 if (GD.getDecl()) { 303 // Disable emission of the parent function for the OpenMP device codegen. 304 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 305 (void)GetAddrOfGlobal(GD); 306 } 307 308 return Addr; 309 } 310 311 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 312 /// global variable that has already been created for it. If the initializer 313 /// has a different type than GV does, this may free GV and return a different 314 /// one. Otherwise it just returns GV. 315 llvm::GlobalVariable * 316 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 317 llvm::GlobalVariable *GV) { 318 ConstantEmitter emitter(*this); 319 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 320 321 // If constant emission failed, then this should be a C++ static 322 // initializer. 323 if (!Init) { 324 if (!getLangOpts().CPlusPlus) 325 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 326 else if (HaveInsertPoint()) { 327 // Since we have a static initializer, this global variable can't 328 // be constant. 329 GV->setConstant(false); 330 331 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 332 } 333 return GV; 334 } 335 336 // The initializer may differ in type from the global. Rewrite 337 // the global to match the initializer. (We have to do this 338 // because some types, like unions, can't be completely represented 339 // in the LLVM type system.) 340 if (GV->getType()->getElementType() != Init->getType()) { 341 llvm::GlobalVariable *OldGV = GV; 342 343 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 344 OldGV->isConstant(), 345 OldGV->getLinkage(), Init, "", 346 /*InsertBefore*/ OldGV, 347 OldGV->getThreadLocalMode(), 348 CGM.getContext().getTargetAddressSpace(D.getType())); 349 GV->setVisibility(OldGV->getVisibility()); 350 GV->setDSOLocal(OldGV->isDSOLocal()); 351 GV->setComdat(OldGV->getComdat()); 352 353 // Steal the name of the old global 354 GV->takeName(OldGV); 355 356 // Replace all uses of the old global with the new global 357 llvm::Constant *NewPtrForOldDecl = 358 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 359 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 360 361 // Erase the old global, since it is no longer used. 362 OldGV->eraseFromParent(); 363 } 364 365 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 366 GV->setInitializer(Init); 367 368 emitter.finalize(GV); 369 370 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 371 HaveInsertPoint()) { 372 // We have a constant initializer, but a nontrivial destructor. We still 373 // need to perform a guarded "initialization" in order to register the 374 // destructor. 375 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 376 } 377 378 return GV; 379 } 380 381 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 382 llvm::GlobalValue::LinkageTypes Linkage) { 383 // Check to see if we already have a global variable for this 384 // declaration. This can happen when double-emitting function 385 // bodies, e.g. with complete and base constructors. 386 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 387 CharUnits alignment = getContext().getDeclAlign(&D); 388 389 // Store into LocalDeclMap before generating initializer to handle 390 // circular references. 391 setAddrOfLocalVar(&D, Address(addr, alignment)); 392 393 // We can't have a VLA here, but we can have a pointer to a VLA, 394 // even though that doesn't really make any sense. 395 // Make sure to evaluate VLA bounds now so that we have them for later. 396 if (D.getType()->isVariablyModifiedType()) 397 EmitVariablyModifiedType(D.getType()); 398 399 // Save the type in case adding the initializer forces a type change. 400 llvm::Type *expectedType = addr->getType(); 401 402 llvm::GlobalVariable *var = 403 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 404 405 // CUDA's local and local static __shared__ variables should not 406 // have any non-empty initializers. This is ensured by Sema. 407 // Whatever initializer such variable may have when it gets here is 408 // a no-op and should not be emitted. 409 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 410 D.hasAttr<CUDASharedAttr>(); 411 // If this value has an initializer, emit it. 412 if (D.getInit() && !isCudaSharedVar) 413 var = AddInitializerToStaticVarDecl(D, var); 414 415 var->setAlignment(alignment.getAsAlign()); 416 417 if (D.hasAttr<AnnotateAttr>()) 418 CGM.AddGlobalAnnotations(&D, var); 419 420 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 421 var->addAttribute("bss-section", SA->getName()); 422 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 423 var->addAttribute("data-section", SA->getName()); 424 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 425 var->addAttribute("rodata-section", SA->getName()); 426 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 427 var->addAttribute("relro-section", SA->getName()); 428 429 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 430 var->setSection(SA->getName()); 431 432 if (D.hasAttr<UsedAttr>()) 433 CGM.addUsedGlobal(var); 434 435 // We may have to cast the constant because of the initializer 436 // mismatch above. 437 // 438 // FIXME: It is really dangerous to store this in the map; if anyone 439 // RAUW's the GV uses of this constant will be invalid. 440 llvm::Constant *castedAddr = 441 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 442 if (var != castedAddr) 443 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 444 CGM.setStaticLocalDeclAddress(&D, castedAddr); 445 446 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 447 448 // Emit global variable debug descriptor for static vars. 449 CGDebugInfo *DI = getDebugInfo(); 450 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 451 DI->setLocation(D.getLocation()); 452 DI->EmitGlobalVariable(var, &D); 453 } 454 } 455 456 namespace { 457 struct DestroyObject final : EHScopeStack::Cleanup { 458 DestroyObject(Address addr, QualType type, 459 CodeGenFunction::Destroyer *destroyer, 460 bool useEHCleanupForArray) 461 : addr(addr), type(type), destroyer(destroyer), 462 useEHCleanupForArray(useEHCleanupForArray) {} 463 464 Address addr; 465 QualType type; 466 CodeGenFunction::Destroyer *destroyer; 467 bool useEHCleanupForArray; 468 469 void Emit(CodeGenFunction &CGF, Flags flags) override { 470 // Don't use an EH cleanup recursively from an EH cleanup. 471 bool useEHCleanupForArray = 472 flags.isForNormalCleanup() && this->useEHCleanupForArray; 473 474 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 475 } 476 }; 477 478 template <class Derived> 479 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 480 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 481 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 482 483 llvm::Value *NRVOFlag; 484 Address Loc; 485 QualType Ty; 486 487 void Emit(CodeGenFunction &CGF, Flags flags) override { 488 // Along the exceptions path we always execute the dtor. 489 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 490 491 llvm::BasicBlock *SkipDtorBB = nullptr; 492 if (NRVO) { 493 // If we exited via NRVO, we skip the destructor call. 494 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 495 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 496 llvm::Value *DidNRVO = 497 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 498 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 499 CGF.EmitBlock(RunDtorBB); 500 } 501 502 static_cast<Derived *>(this)->emitDestructorCall(CGF); 503 504 if (NRVO) CGF.EmitBlock(SkipDtorBB); 505 } 506 507 virtual ~DestroyNRVOVariable() = default; 508 }; 509 510 struct DestroyNRVOVariableCXX final 511 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 512 DestroyNRVOVariableCXX(Address addr, QualType type, 513 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 514 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 515 Dtor(Dtor) {} 516 517 const CXXDestructorDecl *Dtor; 518 519 void emitDestructorCall(CodeGenFunction &CGF) { 520 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 521 /*ForVirtualBase=*/false, 522 /*Delegating=*/false, Loc, Ty); 523 } 524 }; 525 526 struct DestroyNRVOVariableC final 527 : DestroyNRVOVariable<DestroyNRVOVariableC> { 528 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 529 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 530 531 void emitDestructorCall(CodeGenFunction &CGF) { 532 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 533 } 534 }; 535 536 struct CallStackRestore final : EHScopeStack::Cleanup { 537 Address Stack; 538 CallStackRestore(Address Stack) : Stack(Stack) {} 539 void Emit(CodeGenFunction &CGF, Flags flags) override { 540 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 541 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 542 CGF.Builder.CreateCall(F, V); 543 } 544 }; 545 546 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 547 const VarDecl &Var; 548 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 549 550 void Emit(CodeGenFunction &CGF, Flags flags) override { 551 // Compute the address of the local variable, in case it's a 552 // byref or something. 553 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 554 Var.getType(), VK_LValue, SourceLocation()); 555 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 556 SourceLocation()); 557 CGF.EmitExtendGCLifetime(value); 558 } 559 }; 560 561 struct CallCleanupFunction final : EHScopeStack::Cleanup { 562 llvm::Constant *CleanupFn; 563 const CGFunctionInfo &FnInfo; 564 const VarDecl &Var; 565 566 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 567 const VarDecl *Var) 568 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 569 570 void Emit(CodeGenFunction &CGF, Flags flags) override { 571 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 572 Var.getType(), VK_LValue, SourceLocation()); 573 // Compute the address of the local variable, in case it's a byref 574 // or something. 575 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 576 577 // In some cases, the type of the function argument will be different from 578 // the type of the pointer. An example of this is 579 // void f(void* arg); 580 // __attribute__((cleanup(f))) void *g; 581 // 582 // To fix this we insert a bitcast here. 583 QualType ArgTy = FnInfo.arg_begin()->type; 584 llvm::Value *Arg = 585 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 586 587 CallArgList Args; 588 Args.add(RValue::get(Arg), 589 CGF.getContext().getPointerType(Var.getType())); 590 auto Callee = CGCallee::forDirect(CleanupFn); 591 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 592 } 593 }; 594 } // end anonymous namespace 595 596 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 597 /// variable with lifetime. 598 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 599 Address addr, 600 Qualifiers::ObjCLifetime lifetime) { 601 switch (lifetime) { 602 case Qualifiers::OCL_None: 603 llvm_unreachable("present but none"); 604 605 case Qualifiers::OCL_ExplicitNone: 606 // nothing to do 607 break; 608 609 case Qualifiers::OCL_Strong: { 610 CodeGenFunction::Destroyer *destroyer = 611 (var.hasAttr<ObjCPreciseLifetimeAttr>() 612 ? CodeGenFunction::destroyARCStrongPrecise 613 : CodeGenFunction::destroyARCStrongImprecise); 614 615 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 616 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 617 cleanupKind & EHCleanup); 618 break; 619 } 620 case Qualifiers::OCL_Autoreleasing: 621 // nothing to do 622 break; 623 624 case Qualifiers::OCL_Weak: 625 // __weak objects always get EH cleanups; otherwise, exceptions 626 // could cause really nasty crashes instead of mere leaks. 627 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 628 CodeGenFunction::destroyARCWeak, 629 /*useEHCleanup*/ true); 630 break; 631 } 632 } 633 634 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 635 if (const Expr *e = dyn_cast<Expr>(s)) { 636 // Skip the most common kinds of expressions that make 637 // hierarchy-walking expensive. 638 s = e = e->IgnoreParenCasts(); 639 640 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 641 return (ref->getDecl() == &var); 642 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 643 const BlockDecl *block = be->getBlockDecl(); 644 for (const auto &I : block->captures()) { 645 if (I.getVariable() == &var) 646 return true; 647 } 648 } 649 } 650 651 for (const Stmt *SubStmt : s->children()) 652 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 653 if (SubStmt && isAccessedBy(var, SubStmt)) 654 return true; 655 656 return false; 657 } 658 659 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 660 if (!decl) return false; 661 if (!isa<VarDecl>(decl)) return false; 662 const VarDecl *var = cast<VarDecl>(decl); 663 return isAccessedBy(*var, e); 664 } 665 666 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 667 const LValue &destLV, const Expr *init) { 668 bool needsCast = false; 669 670 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 671 switch (castExpr->getCastKind()) { 672 // Look through casts that don't require representation changes. 673 case CK_NoOp: 674 case CK_BitCast: 675 case CK_BlockPointerToObjCPointerCast: 676 needsCast = true; 677 break; 678 679 // If we find an l-value to r-value cast from a __weak variable, 680 // emit this operation as a copy or move. 681 case CK_LValueToRValue: { 682 const Expr *srcExpr = castExpr->getSubExpr(); 683 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 684 return false; 685 686 // Emit the source l-value. 687 LValue srcLV = CGF.EmitLValue(srcExpr); 688 689 // Handle a formal type change to avoid asserting. 690 auto srcAddr = srcLV.getAddress(CGF); 691 if (needsCast) { 692 srcAddr = CGF.Builder.CreateElementBitCast( 693 srcAddr, destLV.getAddress(CGF).getElementType()); 694 } 695 696 // If it was an l-value, use objc_copyWeak. 697 if (srcExpr->getValueKind() == VK_LValue) { 698 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 699 } else { 700 assert(srcExpr->getValueKind() == VK_XValue); 701 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 702 } 703 return true; 704 } 705 706 // Stop at anything else. 707 default: 708 return false; 709 } 710 711 init = castExpr->getSubExpr(); 712 } 713 return false; 714 } 715 716 static void drillIntoBlockVariable(CodeGenFunction &CGF, 717 LValue &lvalue, 718 const VarDecl *var) { 719 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 720 } 721 722 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 723 SourceLocation Loc) { 724 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 725 return; 726 727 auto Nullability = LHS.getType()->getNullability(getContext()); 728 if (!Nullability || *Nullability != NullabilityKind::NonNull) 729 return; 730 731 // Check if the right hand side of the assignment is nonnull, if the left 732 // hand side must be nonnull. 733 SanitizerScope SanScope(this); 734 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 735 llvm::Constant *StaticData[] = { 736 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 737 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 738 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 739 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 740 SanitizerHandler::TypeMismatch, StaticData, RHS); 741 } 742 743 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 744 LValue lvalue, bool capturedByInit) { 745 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 746 if (!lifetime) { 747 llvm::Value *value = EmitScalarExpr(init); 748 if (capturedByInit) 749 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 750 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 751 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 752 return; 753 } 754 755 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 756 init = DIE->getExpr(); 757 758 // If we're emitting a value with lifetime, we have to do the 759 // initialization *before* we leave the cleanup scopes. 760 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 761 enterFullExpression(fe); 762 init = fe->getSubExpr(); 763 } 764 CodeGenFunction::RunCleanupsScope Scope(*this); 765 766 // We have to maintain the illusion that the variable is 767 // zero-initialized. If the variable might be accessed in its 768 // initializer, zero-initialize before running the initializer, then 769 // actually perform the initialization with an assign. 770 bool accessedByInit = false; 771 if (lifetime != Qualifiers::OCL_ExplicitNone) 772 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 773 if (accessedByInit) { 774 LValue tempLV = lvalue; 775 // Drill down to the __block object if necessary. 776 if (capturedByInit) { 777 // We can use a simple GEP for this because it can't have been 778 // moved yet. 779 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 780 cast<VarDecl>(D), 781 /*follow*/ false)); 782 } 783 784 auto ty = 785 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 786 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 787 788 // If __weak, we want to use a barrier under certain conditions. 789 if (lifetime == Qualifiers::OCL_Weak) 790 EmitARCInitWeak(tempLV.getAddress(*this), zero); 791 792 // Otherwise just do a simple store. 793 else 794 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 795 } 796 797 // Emit the initializer. 798 llvm::Value *value = nullptr; 799 800 switch (lifetime) { 801 case Qualifiers::OCL_None: 802 llvm_unreachable("present but none"); 803 804 case Qualifiers::OCL_Strong: { 805 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 806 value = EmitARCRetainScalarExpr(init); 807 break; 808 } 809 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 810 // that we omit the retain, and causes non-autoreleased return values to be 811 // immediately released. 812 LLVM_FALLTHROUGH; 813 } 814 815 case Qualifiers::OCL_ExplicitNone: 816 value = EmitARCUnsafeUnretainedScalarExpr(init); 817 break; 818 819 case Qualifiers::OCL_Weak: { 820 // If it's not accessed by the initializer, try to emit the 821 // initialization with a copy or move. 822 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 823 return; 824 } 825 826 // No way to optimize a producing initializer into this. It's not 827 // worth optimizing for, because the value will immediately 828 // disappear in the common case. 829 value = EmitScalarExpr(init); 830 831 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 832 if (accessedByInit) 833 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 834 else 835 EmitARCInitWeak(lvalue.getAddress(*this), value); 836 return; 837 } 838 839 case Qualifiers::OCL_Autoreleasing: 840 value = EmitARCRetainAutoreleaseScalarExpr(init); 841 break; 842 } 843 844 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 845 846 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 847 848 // If the variable might have been accessed by its initializer, we 849 // might have to initialize with a barrier. We have to do this for 850 // both __weak and __strong, but __weak got filtered out above. 851 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 852 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 853 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 854 EmitARCRelease(oldValue, ARCImpreciseLifetime); 855 return; 856 } 857 858 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 859 } 860 861 /// Decide whether we can emit the non-zero parts of the specified initializer 862 /// with equal or fewer than NumStores scalar stores. 863 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 864 unsigned &NumStores) { 865 // Zero and Undef never requires any extra stores. 866 if (isa<llvm::ConstantAggregateZero>(Init) || 867 isa<llvm::ConstantPointerNull>(Init) || 868 isa<llvm::UndefValue>(Init)) 869 return true; 870 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 871 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 872 isa<llvm::ConstantExpr>(Init)) 873 return Init->isNullValue() || NumStores--; 874 875 // See if we can emit each element. 876 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 877 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 878 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 879 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 880 return false; 881 } 882 return true; 883 } 884 885 if (llvm::ConstantDataSequential *CDS = 886 dyn_cast<llvm::ConstantDataSequential>(Init)) { 887 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 888 llvm::Constant *Elt = CDS->getElementAsConstant(i); 889 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 890 return false; 891 } 892 return true; 893 } 894 895 // Anything else is hard and scary. 896 return false; 897 } 898 899 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 900 /// the scalar stores that would be required. 901 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 902 llvm::Constant *Init, Address Loc, 903 bool isVolatile, CGBuilderTy &Builder) { 904 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 905 "called emitStoresForInitAfterBZero for zero or undef value."); 906 907 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 908 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 909 isa<llvm::ConstantExpr>(Init)) { 910 Builder.CreateStore(Init, Loc, isVolatile); 911 return; 912 } 913 914 if (llvm::ConstantDataSequential *CDS = 915 dyn_cast<llvm::ConstantDataSequential>(Init)) { 916 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 917 llvm::Constant *Elt = CDS->getElementAsConstant(i); 918 919 // If necessary, get a pointer to the element and emit it. 920 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 921 emitStoresForInitAfterBZero( 922 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 923 Builder); 924 } 925 return; 926 } 927 928 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 929 "Unknown value type!"); 930 931 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 932 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 933 934 // If necessary, get a pointer to the element and emit it. 935 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 936 emitStoresForInitAfterBZero(CGM, Elt, 937 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 938 isVolatile, Builder); 939 } 940 } 941 942 /// Decide whether we should use bzero plus some stores to initialize a local 943 /// variable instead of using a memcpy from a constant global. It is beneficial 944 /// to use bzero if the global is all zeros, or mostly zeros and large. 945 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 946 uint64_t GlobalSize) { 947 // If a global is all zeros, always use a bzero. 948 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 949 950 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 951 // do it if it will require 6 or fewer scalar stores. 952 // TODO: Should budget depends on the size? Avoiding a large global warrants 953 // plopping in more stores. 954 unsigned StoreBudget = 6; 955 uint64_t SizeLimit = 32; 956 957 return GlobalSize > SizeLimit && 958 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 959 } 960 961 /// Decide whether we should use memset to initialize a local variable instead 962 /// of using a memcpy from a constant global. Assumes we've already decided to 963 /// not user bzero. 964 /// FIXME We could be more clever, as we are for bzero above, and generate 965 /// memset followed by stores. It's unclear that's worth the effort. 966 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 967 uint64_t GlobalSize, 968 const llvm::DataLayout &DL) { 969 uint64_t SizeLimit = 32; 970 if (GlobalSize <= SizeLimit) 971 return nullptr; 972 return llvm::isBytewiseValue(Init, DL); 973 } 974 975 /// Decide whether we want to split a constant structure or array store into a 976 /// sequence of its fields' stores. This may cost us code size and compilation 977 /// speed, but plays better with store optimizations. 978 static bool shouldSplitConstantStore(CodeGenModule &CGM, 979 uint64_t GlobalByteSize) { 980 // Don't break things that occupy more than one cacheline. 981 uint64_t ByteSizeLimit = 64; 982 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 983 return false; 984 if (GlobalByteSize <= ByteSizeLimit) 985 return true; 986 return false; 987 } 988 989 enum class IsPattern { No, Yes }; 990 991 /// Generate a constant filled with either a pattern or zeroes. 992 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 993 llvm::Type *Ty) { 994 if (isPattern == IsPattern::Yes) 995 return initializationPatternFor(CGM, Ty); 996 else 997 return llvm::Constant::getNullValue(Ty); 998 } 999 1000 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1001 llvm::Constant *constant); 1002 1003 /// Helper function for constWithPadding() to deal with padding in structures. 1004 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1005 IsPattern isPattern, 1006 llvm::StructType *STy, 1007 llvm::Constant *constant) { 1008 const llvm::DataLayout &DL = CGM.getDataLayout(); 1009 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1010 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1011 unsigned SizeSoFar = 0; 1012 SmallVector<llvm::Constant *, 8> Values; 1013 bool NestedIntact = true; 1014 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1015 unsigned CurOff = Layout->getElementOffset(i); 1016 if (SizeSoFar < CurOff) { 1017 assert(!STy->isPacked()); 1018 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1019 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1020 } 1021 llvm::Constant *CurOp; 1022 if (constant->isZeroValue()) 1023 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1024 else 1025 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1026 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1027 if (CurOp != NewOp) 1028 NestedIntact = false; 1029 Values.push_back(NewOp); 1030 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1031 } 1032 unsigned TotalSize = Layout->getSizeInBytes(); 1033 if (SizeSoFar < TotalSize) { 1034 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1035 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1036 } 1037 if (NestedIntact && Values.size() == STy->getNumElements()) 1038 return constant; 1039 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1040 } 1041 1042 /// Replace all padding bytes in a given constant with either a pattern byte or 1043 /// 0x00. 1044 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1045 llvm::Constant *constant) { 1046 llvm::Type *OrigTy = constant->getType(); 1047 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1048 return constStructWithPadding(CGM, isPattern, STy, constant); 1049 if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) { 1050 llvm::SmallVector<llvm::Constant *, 8> Values; 1051 unsigned Size = STy->getNumElements(); 1052 if (!Size) 1053 return constant; 1054 llvm::Type *ElemTy = STy->getElementType(); 1055 bool ZeroInitializer = constant->isZeroValue(); 1056 llvm::Constant *OpValue, *PaddedOp; 1057 if (ZeroInitializer) { 1058 OpValue = llvm::Constant::getNullValue(ElemTy); 1059 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1060 } 1061 for (unsigned Op = 0; Op != Size; ++Op) { 1062 if (!ZeroInitializer) { 1063 OpValue = constant->getAggregateElement(Op); 1064 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1065 } 1066 Values.push_back(PaddedOp); 1067 } 1068 auto *NewElemTy = Values[0]->getType(); 1069 if (NewElemTy == ElemTy) 1070 return constant; 1071 if (OrigTy->isArrayTy()) { 1072 auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1073 return llvm::ConstantArray::get(ArrayTy, Values); 1074 } else { 1075 return llvm::ConstantVector::get(Values); 1076 } 1077 } 1078 return constant; 1079 } 1080 1081 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1082 llvm::Constant *Constant, 1083 CharUnits Align) { 1084 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1085 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1086 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1087 return CC->getNameAsString(); 1088 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1089 return CD->getNameAsString(); 1090 return getMangledName(FD); 1091 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1092 return OM->getNameAsString(); 1093 } else if (isa<BlockDecl>(DC)) { 1094 return "<block>"; 1095 } else if (isa<CapturedDecl>(DC)) { 1096 return "<captured>"; 1097 } else { 1098 llvm_unreachable("expected a function or method"); 1099 } 1100 }; 1101 1102 // Form a simple per-variable cache of these values in case we find we 1103 // want to reuse them. 1104 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1105 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1106 auto *Ty = Constant->getType(); 1107 bool isConstant = true; 1108 llvm::GlobalVariable *InsertBefore = nullptr; 1109 unsigned AS = 1110 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1111 std::string Name; 1112 if (D.hasGlobalStorage()) 1113 Name = getMangledName(&D).str() + ".const"; 1114 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1115 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1116 else 1117 llvm_unreachable("local variable has no parent function or method"); 1118 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1119 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1120 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1121 GV->setAlignment(Align.getAsAlign()); 1122 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1123 CacheEntry = GV; 1124 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1125 CacheEntry->setAlignment(Align.getAsAlign()); 1126 } 1127 1128 return Address(CacheEntry, Align); 1129 } 1130 1131 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1132 const VarDecl &D, 1133 CGBuilderTy &Builder, 1134 llvm::Constant *Constant, 1135 CharUnits Align) { 1136 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1137 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1138 SrcPtr.getAddressSpace()); 1139 if (SrcPtr.getType() != BP) 1140 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1141 return SrcPtr; 1142 } 1143 1144 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1145 Address Loc, bool isVolatile, 1146 CGBuilderTy &Builder, 1147 llvm::Constant *constant) { 1148 auto *Ty = constant->getType(); 1149 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1150 if (!ConstantSize) 1151 return; 1152 1153 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1154 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1155 if (canDoSingleStore) { 1156 Builder.CreateStore(constant, Loc, isVolatile); 1157 return; 1158 } 1159 1160 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1161 1162 // If the initializer is all or mostly the same, codegen with bzero / memset 1163 // then do a few stores afterward. 1164 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1165 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1166 isVolatile); 1167 1168 bool valueAlreadyCorrect = 1169 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1170 if (!valueAlreadyCorrect) { 1171 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1172 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1173 } 1174 return; 1175 } 1176 1177 // If the initializer is a repeated byte pattern, use memset. 1178 llvm::Value *Pattern = 1179 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1180 if (Pattern) { 1181 uint64_t Value = 0x00; 1182 if (!isa<llvm::UndefValue>(Pattern)) { 1183 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1184 assert(AP.getBitWidth() <= 8); 1185 Value = AP.getLimitedValue(); 1186 } 1187 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1188 isVolatile); 1189 return; 1190 } 1191 1192 // If the initializer is small, use a handful of stores. 1193 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1194 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1195 // FIXME: handle the case when STy != Loc.getElementType(). 1196 if (STy == Loc.getElementType()) { 1197 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1198 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1199 emitStoresForConstant( 1200 CGM, D, EltPtr, isVolatile, Builder, 1201 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1202 } 1203 return; 1204 } 1205 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1206 // FIXME: handle the case when ATy != Loc.getElementType(). 1207 if (ATy == Loc.getElementType()) { 1208 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1209 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1210 emitStoresForConstant( 1211 CGM, D, EltPtr, isVolatile, Builder, 1212 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1213 } 1214 return; 1215 } 1216 } 1217 } 1218 1219 // Copy from a global. 1220 Builder.CreateMemCpy(Loc, 1221 createUnnamedGlobalForMemcpyFrom( 1222 CGM, D, Builder, constant, Loc.getAlignment()), 1223 SizeVal, isVolatile); 1224 } 1225 1226 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1227 Address Loc, bool isVolatile, 1228 CGBuilderTy &Builder) { 1229 llvm::Type *ElTy = Loc.getElementType(); 1230 llvm::Constant *constant = 1231 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1232 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1233 } 1234 1235 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1236 Address Loc, bool isVolatile, 1237 CGBuilderTy &Builder) { 1238 llvm::Type *ElTy = Loc.getElementType(); 1239 llvm::Constant *constant = constWithPadding( 1240 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1241 assert(!isa<llvm::UndefValue>(constant)); 1242 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1243 } 1244 1245 static bool containsUndef(llvm::Constant *constant) { 1246 auto *Ty = constant->getType(); 1247 if (isa<llvm::UndefValue>(constant)) 1248 return true; 1249 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1250 for (llvm::Use &Op : constant->operands()) 1251 if (containsUndef(cast<llvm::Constant>(Op))) 1252 return true; 1253 return false; 1254 } 1255 1256 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1257 llvm::Constant *constant) { 1258 auto *Ty = constant->getType(); 1259 if (isa<llvm::UndefValue>(constant)) 1260 return patternOrZeroFor(CGM, isPattern, Ty); 1261 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1262 return constant; 1263 if (!containsUndef(constant)) 1264 return constant; 1265 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1266 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1267 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1268 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1269 } 1270 if (Ty->isStructTy()) 1271 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1272 if (Ty->isArrayTy()) 1273 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1274 assert(Ty->isVectorTy()); 1275 return llvm::ConstantVector::get(Values); 1276 } 1277 1278 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1279 /// variable declaration with auto, register, or no storage class specifier. 1280 /// These turn into simple stack objects, or GlobalValues depending on target. 1281 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1282 AutoVarEmission emission = EmitAutoVarAlloca(D); 1283 EmitAutoVarInit(emission); 1284 EmitAutoVarCleanups(emission); 1285 } 1286 1287 /// Emit a lifetime.begin marker if some criteria are satisfied. 1288 /// \return a pointer to the temporary size Value if a marker was emitted, null 1289 /// otherwise 1290 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1291 llvm::Value *Addr) { 1292 if (!ShouldEmitLifetimeMarkers) 1293 return nullptr; 1294 1295 assert(Addr->getType()->getPointerAddressSpace() == 1296 CGM.getDataLayout().getAllocaAddrSpace() && 1297 "Pointer should be in alloca address space"); 1298 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1299 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1300 llvm::CallInst *C = 1301 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1302 C->setDoesNotThrow(); 1303 return SizeV; 1304 } 1305 1306 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1307 assert(Addr->getType()->getPointerAddressSpace() == 1308 CGM.getDataLayout().getAllocaAddrSpace() && 1309 "Pointer should be in alloca address space"); 1310 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1311 llvm::CallInst *C = 1312 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1313 C->setDoesNotThrow(); 1314 } 1315 1316 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1317 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1318 // For each dimension stores its QualType and corresponding 1319 // size-expression Value. 1320 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1321 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1322 1323 // Break down the array into individual dimensions. 1324 QualType Type1D = D.getType(); 1325 while (getContext().getAsVariableArrayType(Type1D)) { 1326 auto VlaSize = getVLAElements1D(Type1D); 1327 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1328 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1329 else { 1330 // Generate a locally unique name for the size expression. 1331 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1332 SmallString<12> Buffer; 1333 StringRef NameRef = Name.toStringRef(Buffer); 1334 auto &Ident = getContext().Idents.getOwn(NameRef); 1335 VLAExprNames.push_back(&Ident); 1336 auto SizeExprAddr = 1337 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1338 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1339 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1340 Type1D.getUnqualifiedType()); 1341 } 1342 Type1D = VlaSize.Type; 1343 } 1344 1345 if (!EmitDebugInfo) 1346 return; 1347 1348 // Register each dimension's size-expression with a DILocalVariable, 1349 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1350 // to describe this array. 1351 unsigned NameIdx = 0; 1352 for (auto &VlaSize : Dimensions) { 1353 llvm::Metadata *MD; 1354 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1355 MD = llvm::ConstantAsMetadata::get(C); 1356 else { 1357 // Create an artificial VarDecl to generate debug info for. 1358 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1359 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1360 auto QT = getContext().getIntTypeForBitwidth( 1361 VlaExprTy->getScalarSizeInBits(), false); 1362 auto *ArtificialDecl = VarDecl::Create( 1363 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1364 D.getLocation(), D.getLocation(), NameIdent, QT, 1365 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1366 ArtificialDecl->setImplicit(); 1367 1368 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1369 Builder); 1370 } 1371 assert(MD && "No Size expression debug node created"); 1372 DI->registerVLASizeExpression(VlaSize.Type, MD); 1373 } 1374 } 1375 1376 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1377 /// local variable. Does not emit initialization or destruction. 1378 CodeGenFunction::AutoVarEmission 1379 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1380 QualType Ty = D.getType(); 1381 assert( 1382 Ty.getAddressSpace() == LangAS::Default || 1383 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1384 1385 AutoVarEmission emission(D); 1386 1387 bool isEscapingByRef = D.isEscapingByref(); 1388 emission.IsEscapingByRef = isEscapingByRef; 1389 1390 CharUnits alignment = getContext().getDeclAlign(&D); 1391 1392 // If the type is variably-modified, emit all the VLA sizes for it. 1393 if (Ty->isVariablyModifiedType()) 1394 EmitVariablyModifiedType(Ty); 1395 1396 auto *DI = getDebugInfo(); 1397 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1398 1399 Address address = Address::invalid(); 1400 Address AllocaAddr = Address::invalid(); 1401 Address OpenMPLocalAddr = 1402 getLangOpts().OpenMP 1403 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1404 : Address::invalid(); 1405 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1406 1407 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1408 address = OpenMPLocalAddr; 1409 } else if (Ty->isConstantSizeType()) { 1410 // If this value is an array or struct with a statically determinable 1411 // constant initializer, there are optimizations we can do. 1412 // 1413 // TODO: We should constant-evaluate the initializer of any variable, 1414 // as long as it is initialized by a constant expression. Currently, 1415 // isConstantInitializer produces wrong answers for structs with 1416 // reference or bitfield members, and a few other cases, and checking 1417 // for POD-ness protects us from some of these. 1418 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1419 (D.isConstexpr() || 1420 ((Ty.isPODType(getContext()) || 1421 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1422 D.getInit()->isConstantInitializer(getContext(), false)))) { 1423 1424 // If the variable's a const type, and it's neither an NRVO 1425 // candidate nor a __block variable and has no mutable members, 1426 // emit it as a global instead. 1427 // Exception is if a variable is located in non-constant address space 1428 // in OpenCL. 1429 if ((!getLangOpts().OpenCL || 1430 Ty.getAddressSpace() == LangAS::opencl_constant) && 1431 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1432 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1433 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1434 1435 // Signal this condition to later callbacks. 1436 emission.Addr = Address::invalid(); 1437 assert(emission.wasEmittedAsGlobal()); 1438 return emission; 1439 } 1440 1441 // Otherwise, tell the initialization code that we're in this case. 1442 emission.IsConstantAggregate = true; 1443 } 1444 1445 // A normal fixed sized variable becomes an alloca in the entry block, 1446 // unless: 1447 // - it's an NRVO variable. 1448 // - we are compiling OpenMP and it's an OpenMP local variable. 1449 if (NRVO) { 1450 // The named return value optimization: allocate this variable in the 1451 // return slot, so that we can elide the copy when returning this 1452 // variable (C++0x [class.copy]p34). 1453 address = ReturnValue; 1454 1455 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1456 const auto *RD = RecordTy->getDecl(); 1457 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1458 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1459 RD->isNonTrivialToPrimitiveDestroy()) { 1460 // Create a flag that is used to indicate when the NRVO was applied 1461 // to this variable. Set it to zero to indicate that NRVO was not 1462 // applied. 1463 llvm::Value *Zero = Builder.getFalse(); 1464 Address NRVOFlag = 1465 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1466 EnsureInsertPoint(); 1467 Builder.CreateStore(Zero, NRVOFlag); 1468 1469 // Record the NRVO flag for this variable. 1470 NRVOFlags[&D] = NRVOFlag.getPointer(); 1471 emission.NRVOFlag = NRVOFlag.getPointer(); 1472 } 1473 } 1474 } else { 1475 CharUnits allocaAlignment; 1476 llvm::Type *allocaTy; 1477 if (isEscapingByRef) { 1478 auto &byrefInfo = getBlockByrefInfo(&D); 1479 allocaTy = byrefInfo.Type; 1480 allocaAlignment = byrefInfo.ByrefAlignment; 1481 } else { 1482 allocaTy = ConvertTypeForMem(Ty); 1483 allocaAlignment = alignment; 1484 } 1485 1486 // Create the alloca. Note that we set the name separately from 1487 // building the instruction so that it's there even in no-asserts 1488 // builds. 1489 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1490 /*ArraySize=*/nullptr, &AllocaAddr); 1491 1492 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1493 // the catch parameter starts in the catchpad instruction, and we can't 1494 // insert code in those basic blocks. 1495 bool IsMSCatchParam = 1496 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1497 1498 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1499 // if we don't have a valid insertion point (?). 1500 if (HaveInsertPoint() && !IsMSCatchParam) { 1501 // If there's a jump into the lifetime of this variable, its lifetime 1502 // gets broken up into several regions in IR, which requires more work 1503 // to handle correctly. For now, just omit the intrinsics; this is a 1504 // rare case, and it's better to just be conservatively correct. 1505 // PR28267. 1506 // 1507 // We have to do this in all language modes if there's a jump past the 1508 // declaration. We also have to do it in C if there's a jump to an 1509 // earlier point in the current block because non-VLA lifetimes begin as 1510 // soon as the containing block is entered, not when its variables 1511 // actually come into scope; suppressing the lifetime annotations 1512 // completely in this case is unnecessarily pessimistic, but again, this 1513 // is rare. 1514 if (!Bypasses.IsBypassed(&D) && 1515 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1516 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1517 emission.SizeForLifetimeMarkers = 1518 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1519 } 1520 } else { 1521 assert(!emission.useLifetimeMarkers()); 1522 } 1523 } 1524 } else { 1525 EnsureInsertPoint(); 1526 1527 if (!DidCallStackSave) { 1528 // Save the stack. 1529 Address Stack = 1530 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1531 1532 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1533 llvm::Value *V = Builder.CreateCall(F); 1534 Builder.CreateStore(V, Stack); 1535 1536 DidCallStackSave = true; 1537 1538 // Push a cleanup block and restore the stack there. 1539 // FIXME: in general circumstances, this should be an EH cleanup. 1540 pushStackRestore(NormalCleanup, Stack); 1541 } 1542 1543 auto VlaSize = getVLASize(Ty); 1544 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1545 1546 // Allocate memory for the array. 1547 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1548 &AllocaAddr); 1549 1550 // If we have debug info enabled, properly describe the VLA dimensions for 1551 // this type by registering the vla size expression for each of the 1552 // dimensions. 1553 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1554 } 1555 1556 setAddrOfLocalVar(&D, address); 1557 emission.Addr = address; 1558 emission.AllocaAddr = AllocaAddr; 1559 1560 // Emit debug info for local var declaration. 1561 if (EmitDebugInfo && HaveInsertPoint()) { 1562 Address DebugAddr = address; 1563 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1564 DI->setLocation(D.getLocation()); 1565 1566 // If NRVO, use a pointer to the return address. 1567 if (UsePointerValue) 1568 DebugAddr = ReturnValuePointer; 1569 1570 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1571 UsePointerValue); 1572 } 1573 1574 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1575 EmitVarAnnotations(&D, address.getPointer()); 1576 1577 // Make sure we call @llvm.lifetime.end. 1578 if (emission.useLifetimeMarkers()) 1579 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1580 emission.getOriginalAllocatedAddress(), 1581 emission.getSizeForLifetimeMarkers()); 1582 1583 return emission; 1584 } 1585 1586 static bool isCapturedBy(const VarDecl &, const Expr *); 1587 1588 /// Determines whether the given __block variable is potentially 1589 /// captured by the given statement. 1590 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1591 if (const Expr *E = dyn_cast<Expr>(S)) 1592 return isCapturedBy(Var, E); 1593 for (const Stmt *SubStmt : S->children()) 1594 if (isCapturedBy(Var, SubStmt)) 1595 return true; 1596 return false; 1597 } 1598 1599 /// Determines whether the given __block variable is potentially 1600 /// captured by the given expression. 1601 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1602 // Skip the most common kinds of expressions that make 1603 // hierarchy-walking expensive. 1604 E = E->IgnoreParenCasts(); 1605 1606 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1607 const BlockDecl *Block = BE->getBlockDecl(); 1608 for (const auto &I : Block->captures()) { 1609 if (I.getVariable() == &Var) 1610 return true; 1611 } 1612 1613 // No need to walk into the subexpressions. 1614 return false; 1615 } 1616 1617 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1618 const CompoundStmt *CS = SE->getSubStmt(); 1619 for (const auto *BI : CS->body()) 1620 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1621 if (isCapturedBy(Var, BIE)) 1622 return true; 1623 } 1624 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1625 // special case declarations 1626 for (const auto *I : DS->decls()) { 1627 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1628 const Expr *Init = VD->getInit(); 1629 if (Init && isCapturedBy(Var, Init)) 1630 return true; 1631 } 1632 } 1633 } 1634 else 1635 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1636 // Later, provide code to poke into statements for capture analysis. 1637 return true; 1638 return false; 1639 } 1640 1641 for (const Stmt *SubStmt : E->children()) 1642 if (isCapturedBy(Var, SubStmt)) 1643 return true; 1644 1645 return false; 1646 } 1647 1648 /// Determine whether the given initializer is trivial in the sense 1649 /// that it requires no code to be generated. 1650 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1651 if (!Init) 1652 return true; 1653 1654 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1655 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1656 if (Constructor->isTrivial() && 1657 Constructor->isDefaultConstructor() && 1658 !Construct->requiresZeroInitialization()) 1659 return true; 1660 1661 return false; 1662 } 1663 1664 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1665 const VarDecl &D, 1666 Address Loc) { 1667 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1668 CharUnits Size = getContext().getTypeSizeInChars(type); 1669 bool isVolatile = type.isVolatileQualified(); 1670 if (!Size.isZero()) { 1671 switch (trivialAutoVarInit) { 1672 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1673 llvm_unreachable("Uninitialized handled by caller"); 1674 case LangOptions::TrivialAutoVarInitKind::Zero: 1675 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1676 break; 1677 case LangOptions::TrivialAutoVarInitKind::Pattern: 1678 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1679 break; 1680 } 1681 return; 1682 } 1683 1684 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1685 // them, so emit a memcpy with the VLA size to initialize each element. 1686 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1687 // will catch that code, but there exists code which generates zero-sized 1688 // VLAs. Be nice and initialize whatever they requested. 1689 const auto *VlaType = getContext().getAsVariableArrayType(type); 1690 if (!VlaType) 1691 return; 1692 auto VlaSize = getVLASize(VlaType); 1693 auto SizeVal = VlaSize.NumElts; 1694 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1695 switch (trivialAutoVarInit) { 1696 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1697 llvm_unreachable("Uninitialized handled by caller"); 1698 1699 case LangOptions::TrivialAutoVarInitKind::Zero: 1700 if (!EltSize.isOne()) 1701 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1702 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1703 isVolatile); 1704 break; 1705 1706 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1707 llvm::Type *ElTy = Loc.getElementType(); 1708 llvm::Constant *Constant = constWithPadding( 1709 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1710 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1711 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1712 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1713 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1714 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1715 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1716 "vla.iszerosized"); 1717 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1718 EmitBlock(SetupBB); 1719 if (!EltSize.isOne()) 1720 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1721 llvm::Value *BaseSizeInChars = 1722 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1723 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1724 llvm::Value *End = 1725 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1726 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1727 EmitBlock(LoopBB); 1728 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1729 Cur->addIncoming(Begin.getPointer(), OriginBB); 1730 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1731 Builder.CreateMemCpy(Address(Cur, CurAlign), 1732 createUnnamedGlobalForMemcpyFrom( 1733 CGM, D, Builder, Constant, ConstantAlign), 1734 BaseSizeInChars, isVolatile); 1735 llvm::Value *Next = 1736 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1737 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1738 Builder.CreateCondBr(Done, ContBB, LoopBB); 1739 Cur->addIncoming(Next, LoopBB); 1740 EmitBlock(ContBB); 1741 } break; 1742 } 1743 } 1744 1745 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1746 assert(emission.Variable && "emission was not valid!"); 1747 1748 // If this was emitted as a global constant, we're done. 1749 if (emission.wasEmittedAsGlobal()) return; 1750 1751 const VarDecl &D = *emission.Variable; 1752 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1753 QualType type = D.getType(); 1754 1755 // If this local has an initializer, emit it now. 1756 const Expr *Init = D.getInit(); 1757 1758 // If we are at an unreachable point, we don't need to emit the initializer 1759 // unless it contains a label. 1760 if (!HaveInsertPoint()) { 1761 if (!Init || !ContainsLabel(Init)) return; 1762 EnsureInsertPoint(); 1763 } 1764 1765 // Initialize the structure of a __block variable. 1766 if (emission.IsEscapingByRef) 1767 emitByrefStructureInit(emission); 1768 1769 // Initialize the variable here if it doesn't have a initializer and it is a 1770 // C struct that is non-trivial to initialize or an array containing such a 1771 // struct. 1772 if (!Init && 1773 type.isNonTrivialToPrimitiveDefaultInitialize() == 1774 QualType::PDIK_Struct) { 1775 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1776 if (emission.IsEscapingByRef) 1777 drillIntoBlockVariable(*this, Dst, &D); 1778 defaultInitNonTrivialCStructVar(Dst); 1779 return; 1780 } 1781 1782 // Check whether this is a byref variable that's potentially 1783 // captured and moved by its own initializer. If so, we'll need to 1784 // emit the initializer first, then copy into the variable. 1785 bool capturedByInit = 1786 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1787 1788 bool locIsByrefHeader = !capturedByInit; 1789 const Address Loc = 1790 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1791 1792 // Note: constexpr already initializes everything correctly. 1793 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1794 (D.isConstexpr() 1795 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1796 : (D.getAttr<UninitializedAttr>() 1797 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1798 : getContext().getLangOpts().getTrivialAutoVarInit())); 1799 1800 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1801 if (trivialAutoVarInit == 1802 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1803 return; 1804 1805 // Only initialize a __block's storage: we always initialize the header. 1806 if (emission.IsEscapingByRef && !locIsByrefHeader) 1807 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1808 1809 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1810 }; 1811 1812 if (isTrivialInitializer(Init)) 1813 return initializeWhatIsTechnicallyUninitialized(Loc); 1814 1815 llvm::Constant *constant = nullptr; 1816 if (emission.IsConstantAggregate || 1817 D.mightBeUsableInConstantExpressions(getContext())) { 1818 assert(!capturedByInit && "constant init contains a capturing block?"); 1819 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1820 if (constant && !constant->isZeroValue() && 1821 (trivialAutoVarInit != 1822 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1823 IsPattern isPattern = 1824 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1825 ? IsPattern::Yes 1826 : IsPattern::No; 1827 // C guarantees that brace-init with fewer initializers than members in 1828 // the aggregate will initialize the rest of the aggregate as-if it were 1829 // static initialization. In turn static initialization guarantees that 1830 // padding is initialized to zero bits. We could instead pattern-init if D 1831 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1832 // behavior. 1833 constant = constWithPadding(CGM, IsPattern::No, 1834 replaceUndef(CGM, isPattern, constant)); 1835 } 1836 } 1837 1838 if (!constant) { 1839 initializeWhatIsTechnicallyUninitialized(Loc); 1840 LValue lv = MakeAddrLValue(Loc, type); 1841 lv.setNonGC(true); 1842 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1843 } 1844 1845 if (!emission.IsConstantAggregate) { 1846 // For simple scalar/complex initialization, store the value directly. 1847 LValue lv = MakeAddrLValue(Loc, type); 1848 lv.setNonGC(true); 1849 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1850 } 1851 1852 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1853 emitStoresForConstant( 1854 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1855 type.isVolatileQualified(), Builder, constant); 1856 } 1857 1858 /// Emit an expression as an initializer for an object (variable, field, etc.) 1859 /// at the given location. The expression is not necessarily the normal 1860 /// initializer for the object, and the address is not necessarily 1861 /// its normal location. 1862 /// 1863 /// \param init the initializing expression 1864 /// \param D the object to act as if we're initializing 1865 /// \param loc the address to initialize; its type is a pointer 1866 /// to the LLVM mapping of the object's type 1867 /// \param alignment the alignment of the address 1868 /// \param capturedByInit true if \p D is a __block variable 1869 /// whose address is potentially changed by the initializer 1870 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1871 LValue lvalue, bool capturedByInit) { 1872 QualType type = D->getType(); 1873 1874 if (type->isReferenceType()) { 1875 RValue rvalue = EmitReferenceBindingToExpr(init); 1876 if (capturedByInit) 1877 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1878 EmitStoreThroughLValue(rvalue, lvalue, true); 1879 return; 1880 } 1881 switch (getEvaluationKind(type)) { 1882 case TEK_Scalar: 1883 EmitScalarInit(init, D, lvalue, capturedByInit); 1884 return; 1885 case TEK_Complex: { 1886 ComplexPairTy complex = EmitComplexExpr(init); 1887 if (capturedByInit) 1888 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1889 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1890 return; 1891 } 1892 case TEK_Aggregate: 1893 if (type->isAtomicType()) { 1894 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1895 } else { 1896 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1897 if (isa<VarDecl>(D)) 1898 Overlap = AggValueSlot::DoesNotOverlap; 1899 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1900 Overlap = getOverlapForFieldInit(FD); 1901 // TODO: how can we delay here if D is captured by its initializer? 1902 EmitAggExpr(init, AggValueSlot::forLValue( 1903 lvalue, *this, AggValueSlot::IsDestructed, 1904 AggValueSlot::DoesNotNeedGCBarriers, 1905 AggValueSlot::IsNotAliased, Overlap)); 1906 } 1907 return; 1908 } 1909 llvm_unreachable("bad evaluation kind"); 1910 } 1911 1912 /// Enter a destroy cleanup for the given local variable. 1913 void CodeGenFunction::emitAutoVarTypeCleanup( 1914 const CodeGenFunction::AutoVarEmission &emission, 1915 QualType::DestructionKind dtorKind) { 1916 assert(dtorKind != QualType::DK_none); 1917 1918 // Note that for __block variables, we want to destroy the 1919 // original stack object, not the possibly forwarded object. 1920 Address addr = emission.getObjectAddress(*this); 1921 1922 const VarDecl *var = emission.Variable; 1923 QualType type = var->getType(); 1924 1925 CleanupKind cleanupKind = NormalAndEHCleanup; 1926 CodeGenFunction::Destroyer *destroyer = nullptr; 1927 1928 switch (dtorKind) { 1929 case QualType::DK_none: 1930 llvm_unreachable("no cleanup for trivially-destructible variable"); 1931 1932 case QualType::DK_cxx_destructor: 1933 // If there's an NRVO flag on the emission, we need a different 1934 // cleanup. 1935 if (emission.NRVOFlag) { 1936 assert(!type->isArrayType()); 1937 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1938 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1939 emission.NRVOFlag); 1940 return; 1941 } 1942 break; 1943 1944 case QualType::DK_objc_strong_lifetime: 1945 // Suppress cleanups for pseudo-strong variables. 1946 if (var->isARCPseudoStrong()) return; 1947 1948 // Otherwise, consider whether to use an EH cleanup or not. 1949 cleanupKind = getARCCleanupKind(); 1950 1951 // Use the imprecise destroyer by default. 1952 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1953 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1954 break; 1955 1956 case QualType::DK_objc_weak_lifetime: 1957 break; 1958 1959 case QualType::DK_nontrivial_c_struct: 1960 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1961 if (emission.NRVOFlag) { 1962 assert(!type->isArrayType()); 1963 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1964 emission.NRVOFlag, type); 1965 return; 1966 } 1967 break; 1968 } 1969 1970 // If we haven't chosen a more specific destroyer, use the default. 1971 if (!destroyer) destroyer = getDestroyer(dtorKind); 1972 1973 // Use an EH cleanup in array destructors iff the destructor itself 1974 // is being pushed as an EH cleanup. 1975 bool useEHCleanup = (cleanupKind & EHCleanup); 1976 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1977 useEHCleanup); 1978 } 1979 1980 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1981 assert(emission.Variable && "emission was not valid!"); 1982 1983 // If this was emitted as a global constant, we're done. 1984 if (emission.wasEmittedAsGlobal()) return; 1985 1986 // If we don't have an insertion point, we're done. Sema prevents 1987 // us from jumping into any of these scopes anyway. 1988 if (!HaveInsertPoint()) return; 1989 1990 const VarDecl &D = *emission.Variable; 1991 1992 // Check the type for a cleanup. 1993 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 1994 emitAutoVarTypeCleanup(emission, dtorKind); 1995 1996 // In GC mode, honor objc_precise_lifetime. 1997 if (getLangOpts().getGC() != LangOptions::NonGC && 1998 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1999 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2000 } 2001 2002 // Handle the cleanup attribute. 2003 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2004 const FunctionDecl *FD = CA->getFunctionDecl(); 2005 2006 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2007 assert(F && "Could not find function!"); 2008 2009 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2010 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2011 } 2012 2013 // If this is a block variable, call _Block_object_destroy 2014 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2015 // mode. 2016 if (emission.IsEscapingByRef && 2017 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2018 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2019 if (emission.Variable->getType().isObjCGCWeak()) 2020 Flags |= BLOCK_FIELD_IS_WEAK; 2021 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2022 /*LoadBlockVarAddr*/ false, 2023 cxxDestructorCanThrow(emission.Variable->getType())); 2024 } 2025 } 2026 2027 CodeGenFunction::Destroyer * 2028 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2029 switch (kind) { 2030 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2031 case QualType::DK_cxx_destructor: 2032 return destroyCXXObject; 2033 case QualType::DK_objc_strong_lifetime: 2034 return destroyARCStrongPrecise; 2035 case QualType::DK_objc_weak_lifetime: 2036 return destroyARCWeak; 2037 case QualType::DK_nontrivial_c_struct: 2038 return destroyNonTrivialCStruct; 2039 } 2040 llvm_unreachable("Unknown DestructionKind"); 2041 } 2042 2043 /// pushEHDestroy - Push the standard destructor for the given type as 2044 /// an EH-only cleanup. 2045 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2046 Address addr, QualType type) { 2047 assert(dtorKind && "cannot push destructor for trivial type"); 2048 assert(needsEHCleanup(dtorKind)); 2049 2050 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2051 } 2052 2053 /// pushDestroy - Push the standard destructor for the given type as 2054 /// at least a normal cleanup. 2055 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2056 Address addr, QualType type) { 2057 assert(dtorKind && "cannot push destructor for trivial type"); 2058 2059 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2060 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2061 cleanupKind & EHCleanup); 2062 } 2063 2064 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2065 QualType type, Destroyer *destroyer, 2066 bool useEHCleanupForArray) { 2067 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2068 destroyer, useEHCleanupForArray); 2069 } 2070 2071 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2072 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2073 } 2074 2075 void CodeGenFunction::pushLifetimeExtendedDestroy( 2076 CleanupKind cleanupKind, Address addr, QualType type, 2077 Destroyer *destroyer, bool useEHCleanupForArray) { 2078 // Push an EH-only cleanup for the object now. 2079 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2080 // around in case a temporary's destructor throws an exception. 2081 if (cleanupKind & EHCleanup) 2082 EHStack.pushCleanup<DestroyObject>( 2083 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2084 destroyer, useEHCleanupForArray); 2085 2086 // Remember that we need to push a full cleanup for the object at the 2087 // end of the full-expression. 2088 pushCleanupAfterFullExpr<DestroyObject>( 2089 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2090 } 2091 2092 /// emitDestroy - Immediately perform the destruction of the given 2093 /// object. 2094 /// 2095 /// \param addr - the address of the object; a type* 2096 /// \param type - the type of the object; if an array type, all 2097 /// objects are destroyed in reverse order 2098 /// \param destroyer - the function to call to destroy individual 2099 /// elements 2100 /// \param useEHCleanupForArray - whether an EH cleanup should be 2101 /// used when destroying array elements, in case one of the 2102 /// destructions throws an exception 2103 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2104 Destroyer *destroyer, 2105 bool useEHCleanupForArray) { 2106 const ArrayType *arrayType = getContext().getAsArrayType(type); 2107 if (!arrayType) 2108 return destroyer(*this, addr, type); 2109 2110 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2111 2112 CharUnits elementAlign = 2113 addr.getAlignment() 2114 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2115 2116 // Normally we have to check whether the array is zero-length. 2117 bool checkZeroLength = true; 2118 2119 // But if the array length is constant, we can suppress that. 2120 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2121 // ...and if it's constant zero, we can just skip the entire thing. 2122 if (constLength->isZero()) return; 2123 checkZeroLength = false; 2124 } 2125 2126 llvm::Value *begin = addr.getPointer(); 2127 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2128 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2129 checkZeroLength, useEHCleanupForArray); 2130 } 2131 2132 /// emitArrayDestroy - Destroys all the elements of the given array, 2133 /// beginning from last to first. The array cannot be zero-length. 2134 /// 2135 /// \param begin - a type* denoting the first element of the array 2136 /// \param end - a type* denoting one past the end of the array 2137 /// \param elementType - the element type of the array 2138 /// \param destroyer - the function to call to destroy elements 2139 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2140 /// the remaining elements in case the destruction of a single 2141 /// element throws 2142 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2143 llvm::Value *end, 2144 QualType elementType, 2145 CharUnits elementAlign, 2146 Destroyer *destroyer, 2147 bool checkZeroLength, 2148 bool useEHCleanup) { 2149 assert(!elementType->isArrayType()); 2150 2151 // The basic structure here is a do-while loop, because we don't 2152 // need to check for the zero-element case. 2153 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2154 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2155 2156 if (checkZeroLength) { 2157 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2158 "arraydestroy.isempty"); 2159 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2160 } 2161 2162 // Enter the loop body, making that address the current address. 2163 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2164 EmitBlock(bodyBB); 2165 llvm::PHINode *elementPast = 2166 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2167 elementPast->addIncoming(end, entryBB); 2168 2169 // Shift the address back by one element. 2170 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2171 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2172 "arraydestroy.element"); 2173 2174 if (useEHCleanup) 2175 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2176 destroyer); 2177 2178 // Perform the actual destruction there. 2179 destroyer(*this, Address(element, elementAlign), elementType); 2180 2181 if (useEHCleanup) 2182 PopCleanupBlock(); 2183 2184 // Check whether we've reached the end. 2185 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2186 Builder.CreateCondBr(done, doneBB, bodyBB); 2187 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2188 2189 // Done. 2190 EmitBlock(doneBB); 2191 } 2192 2193 /// Perform partial array destruction as if in an EH cleanup. Unlike 2194 /// emitArrayDestroy, the element type here may still be an array type. 2195 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2196 llvm::Value *begin, llvm::Value *end, 2197 QualType type, CharUnits elementAlign, 2198 CodeGenFunction::Destroyer *destroyer) { 2199 // If the element type is itself an array, drill down. 2200 unsigned arrayDepth = 0; 2201 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2202 // VLAs don't require a GEP index to walk into. 2203 if (!isa<VariableArrayType>(arrayType)) 2204 arrayDepth++; 2205 type = arrayType->getElementType(); 2206 } 2207 2208 if (arrayDepth) { 2209 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2210 2211 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2212 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2213 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2214 } 2215 2216 // Destroy the array. We don't ever need an EH cleanup because we 2217 // assume that we're in an EH cleanup ourselves, so a throwing 2218 // destructor causes an immediate terminate. 2219 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2220 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2221 } 2222 2223 namespace { 2224 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2225 /// array destroy where the end pointer is regularly determined and 2226 /// does not need to be loaded from a local. 2227 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2228 llvm::Value *ArrayBegin; 2229 llvm::Value *ArrayEnd; 2230 QualType ElementType; 2231 CodeGenFunction::Destroyer *Destroyer; 2232 CharUnits ElementAlign; 2233 public: 2234 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2235 QualType elementType, CharUnits elementAlign, 2236 CodeGenFunction::Destroyer *destroyer) 2237 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2238 ElementType(elementType), Destroyer(destroyer), 2239 ElementAlign(elementAlign) {} 2240 2241 void Emit(CodeGenFunction &CGF, Flags flags) override { 2242 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2243 ElementType, ElementAlign, Destroyer); 2244 } 2245 }; 2246 2247 /// IrregularPartialArrayDestroy - a cleanup which performs a 2248 /// partial array destroy where the end pointer is irregularly 2249 /// determined and must be loaded from a local. 2250 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2251 llvm::Value *ArrayBegin; 2252 Address ArrayEndPointer; 2253 QualType ElementType; 2254 CodeGenFunction::Destroyer *Destroyer; 2255 CharUnits ElementAlign; 2256 public: 2257 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2258 Address arrayEndPointer, 2259 QualType elementType, 2260 CharUnits elementAlign, 2261 CodeGenFunction::Destroyer *destroyer) 2262 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2263 ElementType(elementType), Destroyer(destroyer), 2264 ElementAlign(elementAlign) {} 2265 2266 void Emit(CodeGenFunction &CGF, Flags flags) override { 2267 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2268 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2269 ElementType, ElementAlign, Destroyer); 2270 } 2271 }; 2272 } // end anonymous namespace 2273 2274 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2275 /// already-constructed elements of the given array. The cleanup 2276 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2277 /// 2278 /// \param elementType - the immediate element type of the array; 2279 /// possibly still an array type 2280 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2281 Address arrayEndPointer, 2282 QualType elementType, 2283 CharUnits elementAlign, 2284 Destroyer *destroyer) { 2285 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2286 arrayBegin, arrayEndPointer, 2287 elementType, elementAlign, 2288 destroyer); 2289 } 2290 2291 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2292 /// already-constructed elements of the given array. The cleanup 2293 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2294 /// 2295 /// \param elementType - the immediate element type of the array; 2296 /// possibly still an array type 2297 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2298 llvm::Value *arrayEnd, 2299 QualType elementType, 2300 CharUnits elementAlign, 2301 Destroyer *destroyer) { 2302 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2303 arrayBegin, arrayEnd, 2304 elementType, elementAlign, 2305 destroyer); 2306 } 2307 2308 /// Lazily declare the @llvm.lifetime.start intrinsic. 2309 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2310 if (LifetimeStartFn) 2311 return LifetimeStartFn; 2312 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2313 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2314 return LifetimeStartFn; 2315 } 2316 2317 /// Lazily declare the @llvm.lifetime.end intrinsic. 2318 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2319 if (LifetimeEndFn) 2320 return LifetimeEndFn; 2321 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2322 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2323 return LifetimeEndFn; 2324 } 2325 2326 namespace { 2327 /// A cleanup to perform a release of an object at the end of a 2328 /// function. This is used to balance out the incoming +1 of a 2329 /// ns_consumed argument when we can't reasonably do that just by 2330 /// not doing the initial retain for a __block argument. 2331 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2332 ConsumeARCParameter(llvm::Value *param, 2333 ARCPreciseLifetime_t precise) 2334 : Param(param), Precise(precise) {} 2335 2336 llvm::Value *Param; 2337 ARCPreciseLifetime_t Precise; 2338 2339 void Emit(CodeGenFunction &CGF, Flags flags) override { 2340 CGF.EmitARCRelease(Param, Precise); 2341 } 2342 }; 2343 } // end anonymous namespace 2344 2345 /// Emit an alloca (or GlobalValue depending on target) 2346 /// for the specified parameter and set up LocalDeclMap. 2347 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2348 unsigned ArgNo) { 2349 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2350 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2351 "Invalid argument to EmitParmDecl"); 2352 2353 Arg.getAnyValue()->setName(D.getName()); 2354 2355 QualType Ty = D.getType(); 2356 2357 // Use better IR generation for certain implicit parameters. 2358 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2359 // The only implicit argument a block has is its literal. 2360 // This may be passed as an inalloca'ed value on Windows x86. 2361 if (BlockInfo) { 2362 llvm::Value *V = Arg.isIndirect() 2363 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2364 : Arg.getDirectValue(); 2365 setBlockContextParameter(IPD, ArgNo, V); 2366 return; 2367 } 2368 } 2369 2370 Address DeclPtr = Address::invalid(); 2371 bool DoStore = false; 2372 bool IsScalar = hasScalarEvaluationKind(Ty); 2373 // If we already have a pointer to the argument, reuse the input pointer. 2374 if (Arg.isIndirect()) { 2375 DeclPtr = Arg.getIndirectAddress(); 2376 // If we have a prettier pointer type at this point, bitcast to that. 2377 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2378 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2379 if (DeclPtr.getType() != IRTy) 2380 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2381 // Indirect argument is in alloca address space, which may be different 2382 // from the default address space. 2383 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2384 auto *V = DeclPtr.getPointer(); 2385 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2386 auto DestLangAS = 2387 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2388 if (SrcLangAS != DestLangAS) { 2389 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2390 CGM.getDataLayout().getAllocaAddrSpace()); 2391 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2392 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2393 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2394 *this, V, SrcLangAS, DestLangAS, T, true), 2395 DeclPtr.getAlignment()); 2396 } 2397 2398 // Push a destructor cleanup for this parameter if the ABI requires it. 2399 // Don't push a cleanup in a thunk for a method that will also emit a 2400 // cleanup. 2401 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2402 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2403 if (QualType::DestructionKind DtorKind = 2404 D.needsDestruction(getContext())) { 2405 assert((DtorKind == QualType::DK_cxx_destructor || 2406 DtorKind == QualType::DK_nontrivial_c_struct) && 2407 "unexpected destructor type"); 2408 pushDestroy(DtorKind, DeclPtr, Ty); 2409 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2410 EHStack.stable_begin(); 2411 } 2412 } 2413 } else { 2414 // Check if the parameter address is controlled by OpenMP runtime. 2415 Address OpenMPLocalAddr = 2416 getLangOpts().OpenMP 2417 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2418 : Address::invalid(); 2419 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2420 DeclPtr = OpenMPLocalAddr; 2421 } else { 2422 // Otherwise, create a temporary to hold the value. 2423 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2424 D.getName() + ".addr"); 2425 } 2426 DoStore = true; 2427 } 2428 2429 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2430 2431 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2432 if (IsScalar) { 2433 Qualifiers qs = Ty.getQualifiers(); 2434 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2435 // We honor __attribute__((ns_consumed)) for types with lifetime. 2436 // For __strong, it's handled by just skipping the initial retain; 2437 // otherwise we have to balance out the initial +1 with an extra 2438 // cleanup to do the release at the end of the function. 2439 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2440 2441 // If a parameter is pseudo-strong then we can omit the implicit retain. 2442 if (D.isARCPseudoStrong()) { 2443 assert(lt == Qualifiers::OCL_Strong && 2444 "pseudo-strong variable isn't strong?"); 2445 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2446 lt = Qualifiers::OCL_ExplicitNone; 2447 } 2448 2449 // Load objects passed indirectly. 2450 if (Arg.isIndirect() && !ArgVal) 2451 ArgVal = Builder.CreateLoad(DeclPtr); 2452 2453 if (lt == Qualifiers::OCL_Strong) { 2454 if (!isConsumed) { 2455 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2456 // use objc_storeStrong(&dest, value) for retaining the 2457 // object. But first, store a null into 'dest' because 2458 // objc_storeStrong attempts to release its old value. 2459 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2460 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2461 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2462 DoStore = false; 2463 } 2464 else 2465 // Don't use objc_retainBlock for block pointers, because we 2466 // don't want to Block_copy something just because we got it 2467 // as a parameter. 2468 ArgVal = EmitARCRetainNonBlock(ArgVal); 2469 } 2470 } else { 2471 // Push the cleanup for a consumed parameter. 2472 if (isConsumed) { 2473 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2474 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2475 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2476 precise); 2477 } 2478 2479 if (lt == Qualifiers::OCL_Weak) { 2480 EmitARCInitWeak(DeclPtr, ArgVal); 2481 DoStore = false; // The weak init is a store, no need to do two. 2482 } 2483 } 2484 2485 // Enter the cleanup scope. 2486 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2487 } 2488 } 2489 2490 // Store the initial value into the alloca. 2491 if (DoStore) 2492 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2493 2494 setAddrOfLocalVar(&D, DeclPtr); 2495 2496 // Emit debug info for param declarations in non-thunk functions. 2497 if (CGDebugInfo *DI = getDebugInfo()) { 2498 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2499 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2500 } 2501 } 2502 2503 if (D.hasAttr<AnnotateAttr>()) 2504 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2505 2506 // We can only check return value nullability if all arguments to the 2507 // function satisfy their nullability preconditions. This makes it necessary 2508 // to emit null checks for args in the function body itself. 2509 if (requiresReturnValueNullabilityCheck()) { 2510 auto Nullability = Ty->getNullability(getContext()); 2511 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2512 SanitizerScope SanScope(this); 2513 RetValNullabilityPrecondition = 2514 Builder.CreateAnd(RetValNullabilityPrecondition, 2515 Builder.CreateIsNotNull(Arg.getAnyValue())); 2516 } 2517 } 2518 } 2519 2520 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2521 CodeGenFunction *CGF) { 2522 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2523 return; 2524 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2525 } 2526 2527 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2528 CodeGenFunction *CGF) { 2529 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2530 (!LangOpts.EmitAllDecls && !D->isUsed())) 2531 return; 2532 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2533 } 2534 2535 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2536 getOpenMPRuntime().checkArchForUnifiedAddressing(D); 2537 } 2538