xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGClass.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfoImpl.h"
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/CXXInheritance.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/Support/SaveAndRestore.h"
33 #include "llvm/Transforms/Utils/SanitizerStats.h"
34 #include <optional>
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 /// Return the best known alignment for an unknown pointer to a
40 /// particular class.
41 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
42   if (!RD->hasDefinition())
43     return CharUnits::One(); // Hopefully won't be used anywhere.
44 
45   auto &layout = getContext().getASTRecordLayout(RD);
46 
47   // If the class is final, then we know that the pointer points to an
48   // object of that type and can use the full alignment.
49   if (RD->isEffectivelyFinal())
50     return layout.getAlignment();
51 
52   // Otherwise, we have to assume it could be a subclass.
53   return layout.getNonVirtualAlignment();
54 }
55 
56 /// Return the smallest possible amount of storage that might be allocated
57 /// starting from the beginning of an object of a particular class.
58 ///
59 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
60 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
61   if (!RD->hasDefinition())
62     return CharUnits::One();
63 
64   auto &layout = getContext().getASTRecordLayout(RD);
65 
66   // If the class is final, then we know that the pointer points to an
67   // object of that type and can use the full alignment.
68   if (RD->isEffectivelyFinal())
69     return layout.getSize();
70 
71   // Otherwise, we have to assume it could be a subclass.
72   return std::max(layout.getNonVirtualSize(), CharUnits::One());
73 }
74 
75 /// Return the best known alignment for a pointer to a virtual base,
76 /// given the alignment of a pointer to the derived class.
77 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
78                                            const CXXRecordDecl *derivedClass,
79                                            const CXXRecordDecl *vbaseClass) {
80   // The basic idea here is that an underaligned derived pointer might
81   // indicate an underaligned base pointer.
82 
83   assert(vbaseClass->isCompleteDefinition());
84   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
85   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
86 
87   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
88                                    expectedVBaseAlign);
89 }
90 
91 CharUnits
92 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
93                                          const CXXRecordDecl *baseDecl,
94                                          CharUnits expectedTargetAlign) {
95   // If the base is an incomplete type (which is, alas, possible with
96   // member pointers), be pessimistic.
97   if (!baseDecl->isCompleteDefinition())
98     return std::min(actualBaseAlign, expectedTargetAlign);
99 
100   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
101   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
102 
103   // If the class is properly aligned, assume the target offset is, too.
104   //
105   // This actually isn't necessarily the right thing to do --- if the
106   // class is a complete object, but it's only properly aligned for a
107   // base subobject, then the alignments of things relative to it are
108   // probably off as well.  (Note that this requires the alignment of
109   // the target to be greater than the NV alignment of the derived
110   // class.)
111   //
112   // However, our approach to this kind of under-alignment can only
113   // ever be best effort; after all, we're never going to propagate
114   // alignments through variables or parameters.  Note, in particular,
115   // that constructing a polymorphic type in an address that's less
116   // than pointer-aligned will generally trap in the constructor,
117   // unless we someday add some sort of attribute to change the
118   // assumed alignment of 'this'.  So our goal here is pretty much
119   // just to allow the user to explicitly say that a pointer is
120   // under-aligned and then safely access its fields and vtables.
121   if (actualBaseAlign >= expectedBaseAlign) {
122     return expectedTargetAlign;
123   }
124 
125   // Otherwise, we might be offset by an arbitrary multiple of the
126   // actual alignment.  The correct adjustment is to take the min of
127   // the two alignments.
128   return std::min(actualBaseAlign, expectedTargetAlign);
129 }
130 
131 Address CodeGenFunction::LoadCXXThisAddress() {
132   assert(CurFuncDecl && "loading 'this' without a func declaration?");
133   auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
134 
135   // Lazily compute CXXThisAlignment.
136   if (CXXThisAlignment.isZero()) {
137     // Just use the best known alignment for the parent.
138     // TODO: if we're currently emitting a complete-object ctor/dtor,
139     // we can always use the complete-object alignment.
140     CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
141   }
142 
143   return makeNaturalAddressForPointer(
144       LoadCXXThis(), MD->getFunctionObjectParameterType(), CXXThisAlignment,
145       false, nullptr, nullptr, KnownNonNull);
146 }
147 
148 /// Emit the address of a field using a member data pointer.
149 ///
150 /// \param E Only used for emergency diagnostics
151 Address
152 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
153                                                  llvm::Value *memberPtr,
154                                       const MemberPointerType *memberPtrType,
155                                                  LValueBaseInfo *BaseInfo,
156                                                  TBAAAccessInfo *TBAAInfo) {
157   // Ask the ABI to compute the actual address.
158   llvm::Value *ptr =
159     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
160                                                  memberPtr, memberPtrType);
161 
162   QualType memberType = memberPtrType->getPointeeType();
163   CharUnits memberAlign =
164       CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
165   memberAlign =
166     CGM.getDynamicOffsetAlignment(base.getAlignment(),
167                             memberPtrType->getClass()->getAsCXXRecordDecl(),
168                                   memberAlign);
169   return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
170                  memberAlign);
171 }
172 
173 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
174     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
175     CastExpr::path_const_iterator End) {
176   CharUnits Offset = CharUnits::Zero();
177 
178   const ASTContext &Context = getContext();
179   const CXXRecordDecl *RD = DerivedClass;
180 
181   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
182     const CXXBaseSpecifier *Base = *I;
183     assert(!Base->isVirtual() && "Should not see virtual bases here!");
184 
185     // Get the layout.
186     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
187 
188     const auto *BaseDecl =
189         cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
190 
191     // Add the offset.
192     Offset += Layout.getBaseClassOffset(BaseDecl);
193 
194     RD = BaseDecl;
195   }
196 
197   return Offset;
198 }
199 
200 llvm::Constant *
201 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
202                                    CastExpr::path_const_iterator PathBegin,
203                                    CastExpr::path_const_iterator PathEnd) {
204   assert(PathBegin != PathEnd && "Base path should not be empty!");
205 
206   CharUnits Offset =
207       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
208   if (Offset.isZero())
209     return nullptr;
210 
211   llvm::Type *PtrDiffTy =
212       getTypes().ConvertType(getContext().getPointerDiffType());
213 
214   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
215 }
216 
217 /// Gets the address of a direct base class within a complete object.
218 /// This should only be used for (1) non-virtual bases or (2) virtual bases
219 /// when the type is known to be complete (e.g. in complete destructors).
220 ///
221 /// The object pointed to by 'This' is assumed to be non-null.
222 Address
223 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
224                                                    const CXXRecordDecl *Derived,
225                                                    const CXXRecordDecl *Base,
226                                                    bool BaseIsVirtual) {
227   // 'this' must be a pointer (in some address space) to Derived.
228   assert(This.getElementType() == ConvertType(Derived));
229 
230   // Compute the offset of the virtual base.
231   CharUnits Offset;
232   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
233   if (BaseIsVirtual)
234     Offset = Layout.getVBaseClassOffset(Base);
235   else
236     Offset = Layout.getBaseClassOffset(Base);
237 
238   // Shift and cast down to the base type.
239   // TODO: for complete types, this should be possible with a GEP.
240   Address V = This;
241   if (!Offset.isZero()) {
242     V = V.withElementType(Int8Ty);
243     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
244   }
245   return V.withElementType(ConvertType(Base));
246 }
247 
248 static Address
249 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
250                                 CharUnits nonVirtualOffset,
251                                 llvm::Value *virtualOffset,
252                                 const CXXRecordDecl *derivedClass,
253                                 const CXXRecordDecl *nearestVBase) {
254   // Assert that we have something to do.
255   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
256 
257   // Compute the offset from the static and dynamic components.
258   llvm::Value *baseOffset;
259   if (!nonVirtualOffset.isZero()) {
260     llvm::Type *OffsetType =
261         (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
262          CGF.CGM.getItaniumVTableContext().isRelativeLayout())
263             ? CGF.Int32Ty
264             : CGF.PtrDiffTy;
265     baseOffset =
266         llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
267     if (virtualOffset) {
268       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
269     }
270   } else {
271     baseOffset = virtualOffset;
272   }
273 
274   // Apply the base offset.
275   llvm::Value *ptr = addr.emitRawPointer(CGF);
276   ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
277 
278   // If we have a virtual component, the alignment of the result will
279   // be relative only to the known alignment of that vbase.
280   CharUnits alignment;
281   if (virtualOffset) {
282     assert(nearestVBase && "virtual offset without vbase?");
283     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
284                                           derivedClass, nearestVBase);
285   } else {
286     alignment = addr.getAlignment();
287   }
288   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
289 
290   return Address(ptr, CGF.Int8Ty, alignment);
291 }
292 
293 Address CodeGenFunction::GetAddressOfBaseClass(
294     Address Value, const CXXRecordDecl *Derived,
295     CastExpr::path_const_iterator PathBegin,
296     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
297     SourceLocation Loc) {
298   assert(PathBegin != PathEnd && "Base path should not be empty!");
299 
300   CastExpr::path_const_iterator Start = PathBegin;
301   const CXXRecordDecl *VBase = nullptr;
302 
303   // Sema has done some convenient canonicalization here: if the
304   // access path involved any virtual steps, the conversion path will
305   // *start* with a step down to the correct virtual base subobject,
306   // and hence will not require any further steps.
307   if ((*Start)->isVirtual()) {
308     VBase = cast<CXXRecordDecl>(
309         (*Start)->getType()->castAs<RecordType>()->getDecl());
310     ++Start;
311   }
312 
313   // Compute the static offset of the ultimate destination within its
314   // allocating subobject (the virtual base, if there is one, or else
315   // the "complete" object that we see).
316   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
317       VBase ? VBase : Derived, Start, PathEnd);
318 
319   // If there's a virtual step, we can sometimes "devirtualize" it.
320   // For now, that's limited to when the derived type is final.
321   // TODO: "devirtualize" this for accesses to known-complete objects.
322   if (VBase && Derived->hasAttr<FinalAttr>()) {
323     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
324     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
325     NonVirtualOffset += vBaseOffset;
326     VBase = nullptr; // we no longer have a virtual step
327   }
328 
329   // Get the base pointer type.
330   llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
331   llvm::Type *PtrTy = llvm::PointerType::get(
332       CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
333 
334   QualType DerivedTy = getContext().getRecordType(Derived);
335   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
336 
337   // If the static offset is zero and we don't have a virtual step,
338   // just do a bitcast; null checks are unnecessary.
339   if (NonVirtualOffset.isZero() && !VBase) {
340     if (sanitizePerformTypeCheck()) {
341       SanitizerSet SkippedChecks;
342       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
343       EmitTypeCheck(TCK_Upcast, Loc, Value.emitRawPointer(*this), DerivedTy,
344                     DerivedAlign, SkippedChecks);
345     }
346     return Value.withElementType(BaseValueTy);
347   }
348 
349   llvm::BasicBlock *origBB = nullptr;
350   llvm::BasicBlock *endBB = nullptr;
351 
352   // Skip over the offset (and the vtable load) if we're supposed to
353   // null-check the pointer.
354   if (NullCheckValue) {
355     origBB = Builder.GetInsertBlock();
356     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
357     endBB = createBasicBlock("cast.end");
358 
359     llvm::Value *isNull = Builder.CreateIsNull(Value);
360     Builder.CreateCondBr(isNull, endBB, notNullBB);
361     EmitBlock(notNullBB);
362   }
363 
364   if (sanitizePerformTypeCheck()) {
365     SanitizerSet SkippedChecks;
366     SkippedChecks.set(SanitizerKind::Null, true);
367     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
368                   Value.emitRawPointer(*this), DerivedTy, DerivedAlign,
369                   SkippedChecks);
370   }
371 
372   // Compute the virtual offset.
373   llvm::Value *VirtualOffset = nullptr;
374   if (VBase) {
375     VirtualOffset =
376         CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
377   }
378 
379   // Apply both offsets.
380   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
381                                           VirtualOffset, Derived, VBase);
382 
383   // Cast to the destination type.
384   Value = Value.withElementType(BaseValueTy);
385 
386   // Build a phi if we needed a null check.
387   if (NullCheckValue) {
388     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
389     Builder.CreateBr(endBB);
390     EmitBlock(endBB);
391 
392     llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
393     PHI->addIncoming(Value.emitRawPointer(*this), notNullBB);
394     PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
395     Value = Value.withPointer(PHI, NotKnownNonNull);
396   }
397 
398   return Value;
399 }
400 
401 Address
402 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
403                                           const CXXRecordDecl *Derived,
404                                         CastExpr::path_const_iterator PathBegin,
405                                           CastExpr::path_const_iterator PathEnd,
406                                           bool NullCheckValue) {
407   assert(PathBegin != PathEnd && "Base path should not be empty!");
408 
409   QualType DerivedTy =
410       getContext().getCanonicalType(getContext().getTagDeclType(Derived));
411   llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
412 
413   llvm::Value *NonVirtualOffset =
414     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
415 
416   if (!NonVirtualOffset) {
417     // No offset, we can just cast back.
418     return BaseAddr.withElementType(DerivedValueTy);
419   }
420 
421   llvm::BasicBlock *CastNull = nullptr;
422   llvm::BasicBlock *CastNotNull = nullptr;
423   llvm::BasicBlock *CastEnd = nullptr;
424 
425   if (NullCheckValue) {
426     CastNull = createBasicBlock("cast.null");
427     CastNotNull = createBasicBlock("cast.notnull");
428     CastEnd = createBasicBlock("cast.end");
429 
430     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr);
431     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
432     EmitBlock(CastNotNull);
433   }
434 
435   // Apply the offset.
436   Address Addr = BaseAddr.withElementType(Int8Ty);
437   Addr = Builder.CreateInBoundsGEP(
438       Addr, Builder.CreateNeg(NonVirtualOffset), Int8Ty,
439       CGM.getClassPointerAlignment(Derived), "sub.ptr");
440 
441   // Just cast.
442   Addr = Addr.withElementType(DerivedValueTy);
443 
444   // Produce a PHI if we had a null-check.
445   if (NullCheckValue) {
446     Builder.CreateBr(CastEnd);
447     EmitBlock(CastNull);
448     Builder.CreateBr(CastEnd);
449     EmitBlock(CastEnd);
450 
451     llvm::Value *Value = Addr.emitRawPointer(*this);
452     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
453     PHI->addIncoming(Value, CastNotNull);
454     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
455     return Address(PHI, Addr.getElementType(),
456                    CGM.getClassPointerAlignment(Derived));
457   }
458 
459   return Addr;
460 }
461 
462 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
463                                               bool ForVirtualBase,
464                                               bool Delegating) {
465   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
466     // This constructor/destructor does not need a VTT parameter.
467     return nullptr;
468   }
469 
470   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
471   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
472 
473   uint64_t SubVTTIndex;
474 
475   if (Delegating) {
476     // If this is a delegating constructor call, just load the VTT.
477     return LoadCXXVTT();
478   } else if (RD == Base) {
479     // If the record matches the base, this is the complete ctor/dtor
480     // variant calling the base variant in a class with virtual bases.
481     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
482            "doing no-op VTT offset in base dtor/ctor?");
483     assert(!ForVirtualBase && "Can't have same class as virtual base!");
484     SubVTTIndex = 0;
485   } else {
486     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
487     CharUnits BaseOffset = ForVirtualBase ?
488       Layout.getVBaseClassOffset(Base) :
489       Layout.getBaseClassOffset(Base);
490 
491     SubVTTIndex =
492       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
493     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
494   }
495 
496   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
497     // A VTT parameter was passed to the constructor, use it.
498     llvm::Value *VTT = LoadCXXVTT();
499     return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
500   } else {
501     // We're the complete constructor, so get the VTT by name.
502     llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
503     return Builder.CreateConstInBoundsGEP2_64(
504         VTT->getValueType(), VTT, 0, SubVTTIndex);
505   }
506 }
507 
508 namespace {
509   /// Call the destructor for a direct base class.
510   struct CallBaseDtor final : EHScopeStack::Cleanup {
511     const CXXRecordDecl *BaseClass;
512     bool BaseIsVirtual;
513     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
514       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
515 
516     void Emit(CodeGenFunction &CGF, Flags flags) override {
517       const CXXRecordDecl *DerivedClass =
518         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
519 
520       const CXXDestructorDecl *D = BaseClass->getDestructor();
521       // We are already inside a destructor, so presumably the object being
522       // destroyed should have the expected type.
523       QualType ThisTy = D->getFunctionObjectParameterType();
524       Address Addr =
525         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
526                                                   DerivedClass, BaseClass,
527                                                   BaseIsVirtual);
528       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
529                                 /*Delegating=*/false, Addr, ThisTy);
530     }
531   };
532 
533   /// A visitor which checks whether an initializer uses 'this' in a
534   /// way which requires the vtable to be properly set.
535   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
536     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
537 
538     bool UsesThis;
539 
540     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
541 
542     // Black-list all explicit and implicit references to 'this'.
543     //
544     // Do we need to worry about external references to 'this' derived
545     // from arbitrary code?  If so, then anything which runs arbitrary
546     // external code might potentially access the vtable.
547     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
548   };
549 } // end anonymous namespace
550 
551 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
552   DynamicThisUseChecker Checker(C);
553   Checker.Visit(Init);
554   return Checker.UsesThis;
555 }
556 
557 static void EmitBaseInitializer(CodeGenFunction &CGF,
558                                 const CXXRecordDecl *ClassDecl,
559                                 CXXCtorInitializer *BaseInit) {
560   assert(BaseInit->isBaseInitializer() &&
561          "Must have base initializer!");
562 
563   Address ThisPtr = CGF.LoadCXXThisAddress();
564 
565   const Type *BaseType = BaseInit->getBaseClass();
566   const auto *BaseClassDecl =
567       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
568 
569   bool isBaseVirtual = BaseInit->isBaseVirtual();
570 
571   // If the initializer for the base (other than the constructor
572   // itself) accesses 'this' in any way, we need to initialize the
573   // vtables.
574   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
575     CGF.InitializeVTablePointers(ClassDecl);
576 
577   // We can pretend to be a complete class because it only matters for
578   // virtual bases, and we only do virtual bases for complete ctors.
579   Address V =
580     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
581                                               BaseClassDecl,
582                                               isBaseVirtual);
583   AggValueSlot AggSlot =
584       AggValueSlot::forAddr(
585           V, Qualifiers(),
586           AggValueSlot::IsDestructed,
587           AggValueSlot::DoesNotNeedGCBarriers,
588           AggValueSlot::IsNotAliased,
589           CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
590 
591   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
592 
593   if (CGF.CGM.getLangOpts().Exceptions &&
594       !BaseClassDecl->hasTrivialDestructor())
595     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
596                                           isBaseVirtual);
597 }
598 
599 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
600   auto *CD = dyn_cast<CXXConstructorDecl>(D);
601   if (!(CD && CD->isCopyOrMoveConstructor()) &&
602       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
603     return false;
604 
605   // We can emit a memcpy for a trivial copy or move constructor/assignment.
606   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
607     return true;
608 
609   // We *must* emit a memcpy for a defaulted union copy or move op.
610   if (D->getParent()->isUnion() && D->isDefaulted())
611     return true;
612 
613   return false;
614 }
615 
616 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
617                                                 CXXCtorInitializer *MemberInit,
618                                                 LValue &LHS) {
619   FieldDecl *Field = MemberInit->getAnyMember();
620   if (MemberInit->isIndirectMemberInitializer()) {
621     // If we are initializing an anonymous union field, drill down to the field.
622     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
623     for (const auto *I : IndirectField->chain())
624       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
625   } else {
626     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
627   }
628 }
629 
630 static void EmitMemberInitializer(CodeGenFunction &CGF,
631                                   const CXXRecordDecl *ClassDecl,
632                                   CXXCtorInitializer *MemberInit,
633                                   const CXXConstructorDecl *Constructor,
634                                   FunctionArgList &Args) {
635   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
636   assert(MemberInit->isAnyMemberInitializer() &&
637          "Must have member initializer!");
638   assert(MemberInit->getInit() && "Must have initializer!");
639 
640   // non-static data member initializers.
641   FieldDecl *Field = MemberInit->getAnyMember();
642   QualType FieldType = Field->getType();
643 
644   llvm::Value *ThisPtr = CGF.LoadCXXThis();
645   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
646   LValue LHS;
647 
648   // If a base constructor is being emitted, create an LValue that has the
649   // non-virtual alignment.
650   if (CGF.CurGD.getCtorType() == Ctor_Base)
651     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
652   else
653     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
654 
655   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
656 
657   // Special case: if we are in a copy or move constructor, and we are copying
658   // an array of PODs or classes with trivial copy constructors, ignore the
659   // AST and perform the copy we know is equivalent.
660   // FIXME: This is hacky at best... if we had a bit more explicit information
661   // in the AST, we could generalize it more easily.
662   const ConstantArrayType *Array
663     = CGF.getContext().getAsConstantArrayType(FieldType);
664   if (Array && Constructor->isDefaulted() &&
665       Constructor->isCopyOrMoveConstructor()) {
666     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
667     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
668     if (BaseElementTy.isPODType(CGF.getContext()) ||
669         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
670       unsigned SrcArgIndex =
671           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
672       llvm::Value *SrcPtr
673         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
674       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
675       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
676 
677       // Copy the aggregate.
678       CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
679                             LHS.isVolatileQualified());
680       // Ensure that we destroy the objects if an exception is thrown later in
681       // the constructor.
682       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
683       if (CGF.needsEHCleanup(dtorKind))
684         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
685       return;
686     }
687   }
688 
689   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
690 }
691 
692 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
693                                               Expr *Init) {
694   QualType FieldType = Field->getType();
695   switch (getEvaluationKind(FieldType)) {
696   case TEK_Scalar:
697     if (LHS.isSimple()) {
698       EmitExprAsInit(Init, Field, LHS, false);
699     } else {
700       RValue RHS = RValue::get(EmitScalarExpr(Init));
701       EmitStoreThroughLValue(RHS, LHS);
702     }
703     break;
704   case TEK_Complex:
705     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
706     break;
707   case TEK_Aggregate: {
708     AggValueSlot Slot = AggValueSlot::forLValue(
709         LHS, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers,
710         AggValueSlot::IsNotAliased, getOverlapForFieldInit(Field),
711         AggValueSlot::IsNotZeroed,
712         // Checks are made by the code that calls constructor.
713         AggValueSlot::IsSanitizerChecked);
714     EmitAggExpr(Init, Slot);
715     break;
716   }
717   }
718 
719   // Ensure that we destroy this object if an exception is thrown
720   // later in the constructor.
721   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
722   if (needsEHCleanup(dtorKind))
723     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
724 }
725 
726 /// Checks whether the given constructor is a valid subject for the
727 /// complete-to-base constructor delegation optimization, i.e.
728 /// emitting the complete constructor as a simple call to the base
729 /// constructor.
730 bool CodeGenFunction::IsConstructorDelegationValid(
731     const CXXConstructorDecl *Ctor) {
732 
733   // Currently we disable the optimization for classes with virtual
734   // bases because (1) the addresses of parameter variables need to be
735   // consistent across all initializers but (2) the delegate function
736   // call necessarily creates a second copy of the parameter variable.
737   //
738   // The limiting example (purely theoretical AFAIK):
739   //   struct A { A(int &c) { c++; } };
740   //   struct B : virtual A {
741   //     B(int count) : A(count) { printf("%d\n", count); }
742   //   };
743   // ...although even this example could in principle be emitted as a
744   // delegation since the address of the parameter doesn't escape.
745   if (Ctor->getParent()->getNumVBases()) {
746     // TODO: white-list trivial vbase initializers.  This case wouldn't
747     // be subject to the restrictions below.
748 
749     // TODO: white-list cases where:
750     //  - there are no non-reference parameters to the constructor
751     //  - the initializers don't access any non-reference parameters
752     //  - the initializers don't take the address of non-reference
753     //    parameters
754     //  - etc.
755     // If we ever add any of the above cases, remember that:
756     //  - function-try-blocks will always exclude this optimization
757     //  - we need to perform the constructor prologue and cleanup in
758     //    EmitConstructorBody.
759 
760     return false;
761   }
762 
763   // We also disable the optimization for variadic functions because
764   // it's impossible to "re-pass" varargs.
765   if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
766     return false;
767 
768   // FIXME: Decide if we can do a delegation of a delegating constructor.
769   if (Ctor->isDelegatingConstructor())
770     return false;
771 
772   return true;
773 }
774 
775 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
776 // to poison the extra field paddings inserted under
777 // -fsanitize-address-field-padding=1|2.
778 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
779   ASTContext &Context = getContext();
780   const CXXRecordDecl *ClassDecl =
781       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
782                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
783   if (!ClassDecl->mayInsertExtraPadding()) return;
784 
785   struct SizeAndOffset {
786     uint64_t Size;
787     uint64_t Offset;
788   };
789 
790   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
791   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
792 
793   // Populate sizes and offsets of fields.
794   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
795   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
796     SSV[i].Offset =
797         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
798 
799   size_t NumFields = 0;
800   for (const auto *Field : ClassDecl->fields()) {
801     const FieldDecl *D = Field;
802     auto FieldInfo = Context.getTypeInfoInChars(D->getType());
803     CharUnits FieldSize = FieldInfo.Width;
804     assert(NumFields < SSV.size());
805     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
806     NumFields++;
807   }
808   assert(NumFields == SSV.size());
809   if (SSV.size() <= 1) return;
810 
811   // We will insert calls to __asan_* run-time functions.
812   // LLVM AddressSanitizer pass may decide to inline them later.
813   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
814   llvm::FunctionType *FTy =
815       llvm::FunctionType::get(CGM.VoidTy, Args, false);
816   llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
817       FTy, Prologue ? "__asan_poison_intra_object_redzone"
818                     : "__asan_unpoison_intra_object_redzone");
819 
820   llvm::Value *ThisPtr = LoadCXXThis();
821   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
822   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
823   // For each field check if it has sufficient padding,
824   // if so (un)poison it with a call.
825   for (size_t i = 0; i < SSV.size(); i++) {
826     uint64_t AsanAlignment = 8;
827     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
828     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
829     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
830     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
831         (NextField % AsanAlignment) != 0)
832       continue;
833     Builder.CreateCall(
834         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
835             Builder.getIntN(PtrSize, PoisonSize)});
836   }
837 }
838 
839 /// EmitConstructorBody - Emits the body of the current constructor.
840 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
841   EmitAsanPrologueOrEpilogue(true);
842   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
843   CXXCtorType CtorType = CurGD.getCtorType();
844 
845   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
846           CtorType == Ctor_Complete) &&
847          "can only generate complete ctor for this ABI");
848 
849   // Before we go any further, try the complete->base constructor
850   // delegation optimization.
851   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
852       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
853     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
854     return;
855   }
856 
857   const FunctionDecl *Definition = nullptr;
858   Stmt *Body = Ctor->getBody(Definition);
859   assert(Definition == Ctor && "emitting wrong constructor body");
860 
861   // Enter the function-try-block before the constructor prologue if
862   // applicable.
863   bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Body);
864   if (IsTryBody)
865     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
866 
867   incrementProfileCounter(Body);
868   maybeCreateMCDCCondBitmap();
869 
870   RunCleanupsScope RunCleanups(*this);
871 
872   // TODO: in restricted cases, we can emit the vbase initializers of
873   // a complete ctor and then delegate to the base ctor.
874 
875   // Emit the constructor prologue, i.e. the base and member
876   // initializers.
877   EmitCtorPrologue(Ctor, CtorType, Args);
878 
879   // Emit the body of the statement.
880   if (IsTryBody)
881     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
882   else if (Body)
883     EmitStmt(Body);
884 
885   // Emit any cleanup blocks associated with the member or base
886   // initializers, which includes (along the exceptional path) the
887   // destructors for those members and bases that were fully
888   // constructed.
889   RunCleanups.ForceCleanup();
890 
891   if (IsTryBody)
892     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
893 }
894 
895 namespace {
896   /// RAII object to indicate that codegen is copying the value representation
897   /// instead of the object representation. Useful when copying a struct or
898   /// class which has uninitialized members and we're only performing
899   /// lvalue-to-rvalue conversion on the object but not its members.
900   class CopyingValueRepresentation {
901   public:
902     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
903         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
904       CGF.SanOpts.set(SanitizerKind::Bool, false);
905       CGF.SanOpts.set(SanitizerKind::Enum, false);
906     }
907     ~CopyingValueRepresentation() {
908       CGF.SanOpts = OldSanOpts;
909     }
910   private:
911     CodeGenFunction &CGF;
912     SanitizerSet OldSanOpts;
913   };
914 } // end anonymous namespace
915 
916 namespace {
917   class FieldMemcpyizer {
918   public:
919     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
920                     const VarDecl *SrcRec)
921       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
922         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
923         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
924         LastFieldOffset(0), LastAddedFieldIndex(0) {}
925 
926     bool isMemcpyableField(FieldDecl *F) const {
927       // Never memcpy fields when we are adding poisoned paddings.
928       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
929         return false;
930       Qualifiers Qual = F->getType().getQualifiers();
931       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
932         return false;
933       return true;
934     }
935 
936     void addMemcpyableField(FieldDecl *F) {
937       if (isEmptyFieldForLayout(CGF.getContext(), F))
938         return;
939       if (!FirstField)
940         addInitialField(F);
941       else
942         addNextField(F);
943     }
944 
945     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
946       ASTContext &Ctx = CGF.getContext();
947       unsigned LastFieldSize =
948           LastField->isBitField()
949               ? LastField->getBitWidthValue(Ctx)
950               : Ctx.toBits(
951                     Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
952       uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
953                                 FirstByteOffset + Ctx.getCharWidth() - 1;
954       CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
955       return MemcpySize;
956     }
957 
958     void emitMemcpy() {
959       // Give the subclass a chance to bail out if it feels the memcpy isn't
960       // worth it (e.g. Hasn't aggregated enough data).
961       if (!FirstField) {
962         return;
963       }
964 
965       uint64_t FirstByteOffset;
966       if (FirstField->isBitField()) {
967         const CGRecordLayout &RL =
968           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
969         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
970         // FirstFieldOffset is not appropriate for bitfields,
971         // we need to use the storage offset instead.
972         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
973       } else {
974         FirstByteOffset = FirstFieldOffset;
975       }
976 
977       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
978       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
979       Address ThisPtr = CGF.LoadCXXThisAddress();
980       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
981       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
982       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
983       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
984       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
985 
986       emitMemcpyIR(
987           Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
988           Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
989           MemcpySize);
990       reset();
991     }
992 
993     void reset() {
994       FirstField = nullptr;
995     }
996 
997   protected:
998     CodeGenFunction &CGF;
999     const CXXRecordDecl *ClassDecl;
1000 
1001   private:
1002     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1003       DestPtr = DestPtr.withElementType(CGF.Int8Ty);
1004       SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
1005       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1006     }
1007 
1008     void addInitialField(FieldDecl *F) {
1009       FirstField = F;
1010       LastField = F;
1011       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1012       LastFieldOffset = FirstFieldOffset;
1013       LastAddedFieldIndex = F->getFieldIndex();
1014     }
1015 
1016     void addNextField(FieldDecl *F) {
1017       // For the most part, the following invariant will hold:
1018       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1019       // The one exception is that Sema won't add a copy-initializer for an
1020       // unnamed bitfield, which will show up here as a gap in the sequence.
1021       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1022              "Cannot aggregate fields out of order.");
1023       LastAddedFieldIndex = F->getFieldIndex();
1024 
1025       // The 'first' and 'last' fields are chosen by offset, rather than field
1026       // index. This allows the code to support bitfields, as well as regular
1027       // fields.
1028       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1029       if (FOffset < FirstFieldOffset) {
1030         FirstField = F;
1031         FirstFieldOffset = FOffset;
1032       } else if (FOffset >= LastFieldOffset) {
1033         LastField = F;
1034         LastFieldOffset = FOffset;
1035       }
1036     }
1037 
1038     const VarDecl *SrcRec;
1039     const ASTRecordLayout &RecLayout;
1040     FieldDecl *FirstField;
1041     FieldDecl *LastField;
1042     uint64_t FirstFieldOffset, LastFieldOffset;
1043     unsigned LastAddedFieldIndex;
1044   };
1045 
1046   class ConstructorMemcpyizer : public FieldMemcpyizer {
1047   private:
1048     /// Get source argument for copy constructor. Returns null if not a copy
1049     /// constructor.
1050     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1051                                                const CXXConstructorDecl *CD,
1052                                                FunctionArgList &Args) {
1053       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1054         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1055       return nullptr;
1056     }
1057 
1058     // Returns true if a CXXCtorInitializer represents a member initialization
1059     // that can be rolled into a memcpy.
1060     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1061       if (!MemcpyableCtor)
1062         return false;
1063       FieldDecl *Field = MemberInit->getMember();
1064       assert(Field && "No field for member init.");
1065       QualType FieldType = Field->getType();
1066       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1067 
1068       // Bail out on non-memcpyable, not-trivially-copyable members.
1069       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1070           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1071             FieldType->isReferenceType()))
1072         return false;
1073 
1074       // Bail out on volatile fields.
1075       if (!isMemcpyableField(Field))
1076         return false;
1077 
1078       // Otherwise we're good.
1079       return true;
1080     }
1081 
1082   public:
1083     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1084                           FunctionArgList &Args)
1085       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1086         ConstructorDecl(CD),
1087         MemcpyableCtor(CD->isDefaulted() &&
1088                        CD->isCopyOrMoveConstructor() &&
1089                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1090         Args(Args) { }
1091 
1092     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1093       if (isMemberInitMemcpyable(MemberInit)) {
1094         AggregatedInits.push_back(MemberInit);
1095         addMemcpyableField(MemberInit->getMember());
1096       } else {
1097         emitAggregatedInits();
1098         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1099                               ConstructorDecl, Args);
1100       }
1101     }
1102 
1103     void emitAggregatedInits() {
1104       if (AggregatedInits.size() <= 1) {
1105         // This memcpy is too small to be worthwhile. Fall back on default
1106         // codegen.
1107         if (!AggregatedInits.empty()) {
1108           CopyingValueRepresentation CVR(CGF);
1109           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1110                                 AggregatedInits[0], ConstructorDecl, Args);
1111           AggregatedInits.clear();
1112         }
1113         reset();
1114         return;
1115       }
1116 
1117       pushEHDestructors();
1118       emitMemcpy();
1119       AggregatedInits.clear();
1120     }
1121 
1122     void pushEHDestructors() {
1123       Address ThisPtr = CGF.LoadCXXThisAddress();
1124       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1125       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1126 
1127       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1128         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1129         QualType FieldType = MemberInit->getAnyMember()->getType();
1130         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1131         if (!CGF.needsEHCleanup(dtorKind))
1132           continue;
1133         LValue FieldLHS = LHS;
1134         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1135         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1136       }
1137     }
1138 
1139     void finish() {
1140       emitAggregatedInits();
1141     }
1142 
1143   private:
1144     const CXXConstructorDecl *ConstructorDecl;
1145     bool MemcpyableCtor;
1146     FunctionArgList &Args;
1147     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1148   };
1149 
1150   class AssignmentMemcpyizer : public FieldMemcpyizer {
1151   private:
1152     // Returns the memcpyable field copied by the given statement, if one
1153     // exists. Otherwise returns null.
1154     FieldDecl *getMemcpyableField(Stmt *S) {
1155       if (!AssignmentsMemcpyable)
1156         return nullptr;
1157       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1158         // Recognise trivial assignments.
1159         if (BO->getOpcode() != BO_Assign)
1160           return nullptr;
1161         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1162         if (!ME)
1163           return nullptr;
1164         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1165         if (!Field || !isMemcpyableField(Field))
1166           return nullptr;
1167         Stmt *RHS = BO->getRHS();
1168         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1169           RHS = EC->getSubExpr();
1170         if (!RHS)
1171           return nullptr;
1172         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1173           if (ME2->getMemberDecl() == Field)
1174             return Field;
1175         }
1176         return nullptr;
1177       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1178         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1179         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1180           return nullptr;
1181         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1182         if (!IOA)
1183           return nullptr;
1184         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1185         if (!Field || !isMemcpyableField(Field))
1186           return nullptr;
1187         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1188         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1189           return nullptr;
1190         return Field;
1191       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1192         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1193         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1194           return nullptr;
1195         Expr *DstPtr = CE->getArg(0);
1196         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1197           DstPtr = DC->getSubExpr();
1198         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1199         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1200           return nullptr;
1201         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1202         if (!ME)
1203           return nullptr;
1204         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1205         if (!Field || !isMemcpyableField(Field))
1206           return nullptr;
1207         Expr *SrcPtr = CE->getArg(1);
1208         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1209           SrcPtr = SC->getSubExpr();
1210         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1211         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1212           return nullptr;
1213         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1214         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1215           return nullptr;
1216         return Field;
1217       }
1218 
1219       return nullptr;
1220     }
1221 
1222     bool AssignmentsMemcpyable;
1223     SmallVector<Stmt*, 16> AggregatedStmts;
1224 
1225   public:
1226     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1227                          FunctionArgList &Args)
1228       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1229         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1230       assert(Args.size() == 2);
1231     }
1232 
1233     void emitAssignment(Stmt *S) {
1234       FieldDecl *F = getMemcpyableField(S);
1235       if (F) {
1236         addMemcpyableField(F);
1237         AggregatedStmts.push_back(S);
1238       } else {
1239         emitAggregatedStmts();
1240         CGF.EmitStmt(S);
1241       }
1242     }
1243 
1244     void emitAggregatedStmts() {
1245       if (AggregatedStmts.size() <= 1) {
1246         if (!AggregatedStmts.empty()) {
1247           CopyingValueRepresentation CVR(CGF);
1248           CGF.EmitStmt(AggregatedStmts[0]);
1249         }
1250         reset();
1251       }
1252 
1253       emitMemcpy();
1254       AggregatedStmts.clear();
1255     }
1256 
1257     void finish() {
1258       emitAggregatedStmts();
1259     }
1260   };
1261 } // end anonymous namespace
1262 
1263 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1264   const Type *BaseType = BaseInit->getBaseClass();
1265   const auto *BaseClassDecl =
1266       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1267   return BaseClassDecl->isDynamicClass();
1268 }
1269 
1270 /// EmitCtorPrologue - This routine generates necessary code to initialize
1271 /// base classes and non-static data members belonging to this constructor.
1272 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1273                                        CXXCtorType CtorType,
1274                                        FunctionArgList &Args) {
1275   if (CD->isDelegatingConstructor())
1276     return EmitDelegatingCXXConstructorCall(CD, Args);
1277 
1278   const CXXRecordDecl *ClassDecl = CD->getParent();
1279 
1280   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1281                                           E = CD->init_end();
1282 
1283   // Virtual base initializers first, if any. They aren't needed if:
1284   // - This is a base ctor variant
1285   // - There are no vbases
1286   // - The class is abstract, so a complete object of it cannot be constructed
1287   //
1288   // The check for an abstract class is necessary because sema may not have
1289   // marked virtual base destructors referenced.
1290   bool ConstructVBases = CtorType != Ctor_Base &&
1291                          ClassDecl->getNumVBases() != 0 &&
1292                          !ClassDecl->isAbstract();
1293 
1294   // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1295   // constructor of a class with virtual bases takes an additional parameter to
1296   // conditionally construct the virtual bases. Emit that check here.
1297   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1298   if (ConstructVBases &&
1299       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1300     BaseCtorContinueBB =
1301         CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1302     assert(BaseCtorContinueBB);
1303   }
1304 
1305   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1306     if (!ConstructVBases)
1307       continue;
1308     SaveAndRestore ThisRAII(CXXThisValue);
1309     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1310         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1311         isInitializerOfDynamicClass(*B))
1312       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1313     EmitBaseInitializer(*this, ClassDecl, *B);
1314   }
1315 
1316   if (BaseCtorContinueBB) {
1317     // Complete object handler should continue to the remaining initializers.
1318     Builder.CreateBr(BaseCtorContinueBB);
1319     EmitBlock(BaseCtorContinueBB);
1320   }
1321 
1322   // Then, non-virtual base initializers.
1323   for (; B != E && (*B)->isBaseInitializer(); B++) {
1324     assert(!(*B)->isBaseVirtual());
1325     SaveAndRestore ThisRAII(CXXThisValue);
1326     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1327         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1328         isInitializerOfDynamicClass(*B))
1329       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1330     EmitBaseInitializer(*this, ClassDecl, *B);
1331   }
1332 
1333   InitializeVTablePointers(ClassDecl);
1334 
1335   // And finally, initialize class members.
1336   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1337   ConstructorMemcpyizer CM(*this, CD, Args);
1338   for (; B != E; B++) {
1339     CXXCtorInitializer *Member = (*B);
1340     assert(!Member->isBaseInitializer());
1341     assert(Member->isAnyMemberInitializer() &&
1342            "Delegating initializer on non-delegating constructor");
1343     CM.addMemberInitializer(Member);
1344   }
1345   CM.finish();
1346 }
1347 
1348 static bool
1349 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1350 
1351 static bool
1352 HasTrivialDestructorBody(ASTContext &Context,
1353                          const CXXRecordDecl *BaseClassDecl,
1354                          const CXXRecordDecl *MostDerivedClassDecl)
1355 {
1356   // If the destructor is trivial we don't have to check anything else.
1357   if (BaseClassDecl->hasTrivialDestructor())
1358     return true;
1359 
1360   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1361     return false;
1362 
1363   // Check fields.
1364   for (const auto *Field : BaseClassDecl->fields())
1365     if (!FieldHasTrivialDestructorBody(Context, Field))
1366       return false;
1367 
1368   // Check non-virtual bases.
1369   for (const auto &I : BaseClassDecl->bases()) {
1370     if (I.isVirtual())
1371       continue;
1372 
1373     const CXXRecordDecl *NonVirtualBase =
1374       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1375     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1376                                   MostDerivedClassDecl))
1377       return false;
1378   }
1379 
1380   if (BaseClassDecl == MostDerivedClassDecl) {
1381     // Check virtual bases.
1382     for (const auto &I : BaseClassDecl->vbases()) {
1383       const CXXRecordDecl *VirtualBase =
1384         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1385       if (!HasTrivialDestructorBody(Context, VirtualBase,
1386                                     MostDerivedClassDecl))
1387         return false;
1388     }
1389   }
1390 
1391   return true;
1392 }
1393 
1394 static bool
1395 FieldHasTrivialDestructorBody(ASTContext &Context,
1396                                           const FieldDecl *Field)
1397 {
1398   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1399 
1400   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1401   if (!RT)
1402     return true;
1403 
1404   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1405 
1406   // The destructor for an implicit anonymous union member is never invoked.
1407   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1408     return true;
1409 
1410   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1411 }
1412 
1413 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1414 /// any vtable pointers before calling this destructor.
1415 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1416                                                const CXXDestructorDecl *Dtor) {
1417   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1418   if (!ClassDecl->isDynamicClass())
1419     return true;
1420 
1421   // For a final class, the vtable pointer is known to already point to the
1422   // class's vtable.
1423   if (ClassDecl->isEffectivelyFinal())
1424     return true;
1425 
1426   if (!Dtor->hasTrivialBody())
1427     return false;
1428 
1429   // Check the fields.
1430   for (const auto *Field : ClassDecl->fields())
1431     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1432       return false;
1433 
1434   return true;
1435 }
1436 
1437 /// EmitDestructorBody - Emits the body of the current destructor.
1438 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1439   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1440   CXXDtorType DtorType = CurGD.getDtorType();
1441 
1442   // For an abstract class, non-base destructors are never used (and can't
1443   // be emitted in general, because vbase dtors may not have been validated
1444   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1445   // in fact emit references to them from other compilations, so emit them
1446   // as functions containing a trap instruction.
1447   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1448     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1449     TrapCall->setDoesNotReturn();
1450     TrapCall->setDoesNotThrow();
1451     Builder.CreateUnreachable();
1452     Builder.ClearInsertionPoint();
1453     return;
1454   }
1455 
1456   Stmt *Body = Dtor->getBody();
1457   if (Body) {
1458     incrementProfileCounter(Body);
1459     maybeCreateMCDCCondBitmap();
1460   }
1461 
1462   // The call to operator delete in a deleting destructor happens
1463   // outside of the function-try-block, which means it's always
1464   // possible to delegate the destructor body to the complete
1465   // destructor.  Do so.
1466   if (DtorType == Dtor_Deleting) {
1467     RunCleanupsScope DtorEpilogue(*this);
1468     EnterDtorCleanups(Dtor, Dtor_Deleting);
1469     if (HaveInsertPoint()) {
1470       QualType ThisTy = Dtor->getFunctionObjectParameterType();
1471       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1472                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1473     }
1474     return;
1475   }
1476 
1477   // If the body is a function-try-block, enter the try before
1478   // anything else.
1479   bool isTryBody = isa_and_nonnull<CXXTryStmt>(Body);
1480   if (isTryBody)
1481     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1482   EmitAsanPrologueOrEpilogue(false);
1483 
1484   // Enter the epilogue cleanups.
1485   RunCleanupsScope DtorEpilogue(*this);
1486 
1487   // If this is the complete variant, just invoke the base variant;
1488   // the epilogue will destruct the virtual bases.  But we can't do
1489   // this optimization if the body is a function-try-block, because
1490   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1491   // always delegate because we might not have a definition in this TU.
1492   switch (DtorType) {
1493   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1494   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1495 
1496   case Dtor_Complete:
1497     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1498            "can't emit a dtor without a body for non-Microsoft ABIs");
1499 
1500     // Enter the cleanup scopes for virtual bases.
1501     EnterDtorCleanups(Dtor, Dtor_Complete);
1502 
1503     if (!isTryBody) {
1504       QualType ThisTy = Dtor->getFunctionObjectParameterType();
1505       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1506                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1507       break;
1508     }
1509 
1510     // Fallthrough: act like we're in the base variant.
1511     [[fallthrough]];
1512 
1513   case Dtor_Base:
1514     assert(Body);
1515 
1516     // Enter the cleanup scopes for fields and non-virtual bases.
1517     EnterDtorCleanups(Dtor, Dtor_Base);
1518 
1519     // Initialize the vtable pointers before entering the body.
1520     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1521       // Insert the llvm.launder.invariant.group intrinsic before initializing
1522       // the vptrs to cancel any previous assumptions we might have made.
1523       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1524           CGM.getCodeGenOpts().OptimizationLevel > 0)
1525         CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1526       InitializeVTablePointers(Dtor->getParent());
1527     }
1528 
1529     if (isTryBody)
1530       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1531     else if (Body)
1532       EmitStmt(Body);
1533     else {
1534       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1535       // nothing to do besides what's in the epilogue
1536     }
1537     // -fapple-kext must inline any call to this dtor into
1538     // the caller's body.
1539     if (getLangOpts().AppleKext)
1540       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1541 
1542     break;
1543   }
1544 
1545   // Jump out through the epilogue cleanups.
1546   DtorEpilogue.ForceCleanup();
1547 
1548   // Exit the try if applicable.
1549   if (isTryBody)
1550     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1551 }
1552 
1553 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1554   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1555   const Stmt *RootS = AssignOp->getBody();
1556   assert(isa<CompoundStmt>(RootS) &&
1557          "Body of an implicit assignment operator should be compound stmt.");
1558   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1559 
1560   LexicalScope Scope(*this, RootCS->getSourceRange());
1561 
1562   incrementProfileCounter(RootCS);
1563   maybeCreateMCDCCondBitmap();
1564   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1565   for (auto *I : RootCS->body())
1566     AM.emitAssignment(I);
1567   AM.finish();
1568 }
1569 
1570 namespace {
1571   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1572                                      const CXXDestructorDecl *DD) {
1573     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1574       return CGF.EmitScalarExpr(ThisArg);
1575     return CGF.LoadCXXThis();
1576   }
1577 
1578   /// Call the operator delete associated with the current destructor.
1579   struct CallDtorDelete final : EHScopeStack::Cleanup {
1580     CallDtorDelete() {}
1581 
1582     void Emit(CodeGenFunction &CGF, Flags flags) override {
1583       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1584       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1585       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1586                          LoadThisForDtorDelete(CGF, Dtor),
1587                          CGF.getContext().getTagDeclType(ClassDecl));
1588     }
1589   };
1590 
1591   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1592                                      llvm::Value *ShouldDeleteCondition,
1593                                      bool ReturnAfterDelete) {
1594     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1595     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1596     llvm::Value *ShouldCallDelete
1597       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1598     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1599 
1600     CGF.EmitBlock(callDeleteBB);
1601     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1602     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1603     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1604                        LoadThisForDtorDelete(CGF, Dtor),
1605                        CGF.getContext().getTagDeclType(ClassDecl));
1606     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1607                ReturnAfterDelete &&
1608            "unexpected value for ReturnAfterDelete");
1609     if (ReturnAfterDelete)
1610       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1611     else
1612       CGF.Builder.CreateBr(continueBB);
1613 
1614     CGF.EmitBlock(continueBB);
1615   }
1616 
1617   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1618     llvm::Value *ShouldDeleteCondition;
1619 
1620   public:
1621     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1622         : ShouldDeleteCondition(ShouldDeleteCondition) {
1623       assert(ShouldDeleteCondition != nullptr);
1624     }
1625 
1626     void Emit(CodeGenFunction &CGF, Flags flags) override {
1627       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1628                                     /*ReturnAfterDelete*/false);
1629     }
1630   };
1631 
1632   class DestroyField  final : public EHScopeStack::Cleanup {
1633     const FieldDecl *field;
1634     CodeGenFunction::Destroyer *destroyer;
1635     bool useEHCleanupForArray;
1636 
1637   public:
1638     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1639                  bool useEHCleanupForArray)
1640         : field(field), destroyer(destroyer),
1641           useEHCleanupForArray(useEHCleanupForArray) {}
1642 
1643     void Emit(CodeGenFunction &CGF, Flags flags) override {
1644       // Find the address of the field.
1645       Address thisValue = CGF.LoadCXXThisAddress();
1646       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1647       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1648       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1649       assert(LV.isSimple());
1650 
1651       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1652                       flags.isForNormalCleanup() && useEHCleanupForArray);
1653     }
1654   };
1655 
1656   class DeclAsInlineDebugLocation {
1657     CGDebugInfo *DI;
1658     llvm::MDNode *InlinedAt;
1659     std::optional<ApplyDebugLocation> Location;
1660 
1661   public:
1662     DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1663         : DI(CGF.getDebugInfo()) {
1664       if (!DI)
1665         return;
1666       InlinedAt = DI->getInlinedAt();
1667       DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1668       Location.emplace(CGF, Decl.getLocation());
1669     }
1670 
1671     ~DeclAsInlineDebugLocation() {
1672       if (!DI)
1673         return;
1674       Location.reset();
1675       DI->setInlinedAt(InlinedAt);
1676     }
1677   };
1678 
1679   static void EmitSanitizerDtorCallback(
1680       CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1681       std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1682     CodeGenFunction::SanitizerScope SanScope(&CGF);
1683     // Pass in void pointer and size of region as arguments to runtime
1684     // function
1685     SmallVector<llvm::Value *, 2> Args = {Ptr};
1686     SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1687 
1688     if (PoisonSize.has_value()) {
1689       Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1690       ArgTypes.emplace_back(CGF.SizeTy);
1691     }
1692 
1693     llvm::FunctionType *FnType =
1694         llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1695     llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1696 
1697     CGF.EmitNounwindRuntimeCall(Fn, Args);
1698   }
1699 
1700   static void
1701   EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1702                                   CharUnits::QuantityType PoisonSize) {
1703     EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1704                               PoisonSize);
1705   }
1706 
1707   /// Poison base class with a trivial destructor.
1708   struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1709     const CXXRecordDecl *BaseClass;
1710     bool BaseIsVirtual;
1711     SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1712         : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1713 
1714     void Emit(CodeGenFunction &CGF, Flags flags) override {
1715       const CXXRecordDecl *DerivedClass =
1716           cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1717 
1718       Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1719           CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1720 
1721       const ASTRecordLayout &BaseLayout =
1722           CGF.getContext().getASTRecordLayout(BaseClass);
1723       CharUnits BaseSize = BaseLayout.getSize();
1724 
1725       if (!BaseSize.isPositive())
1726         return;
1727 
1728       // Use the base class declaration location as inline DebugLocation. All
1729       // fields of the class are destroyed.
1730       DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1731       EmitSanitizerDtorFieldsCallback(CGF, Addr.emitRawPointer(CGF),
1732                                       BaseSize.getQuantity());
1733 
1734       // Prevent the current stack frame from disappearing from the stack trace.
1735       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1736     }
1737   };
1738 
1739   class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1740     const CXXDestructorDecl *Dtor;
1741     unsigned StartIndex;
1742     unsigned EndIndex;
1743 
1744   public:
1745     SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1746                            unsigned EndIndex)
1747         : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1748 
1749     // Generate function call for handling object poisoning.
1750     // Disables tail call elimination, to prevent the current stack frame
1751     // from disappearing from the stack trace.
1752     void Emit(CodeGenFunction &CGF, Flags flags) override {
1753       const ASTContext &Context = CGF.getContext();
1754       const ASTRecordLayout &Layout =
1755           Context.getASTRecordLayout(Dtor->getParent());
1756 
1757       // It's a first trivial field so it should be at the begining of a char,
1758       // still round up start offset just in case.
1759       CharUnits PoisonStart = Context.toCharUnitsFromBits(
1760           Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1761       llvm::ConstantInt *OffsetSizePtr =
1762           llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1763 
1764       llvm::Value *OffsetPtr =
1765           CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1766 
1767       CharUnits PoisonEnd;
1768       if (EndIndex >= Layout.getFieldCount()) {
1769         PoisonEnd = Layout.getNonVirtualSize();
1770       } else {
1771         PoisonEnd =
1772             Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1773       }
1774       CharUnits PoisonSize = PoisonEnd - PoisonStart;
1775       if (!PoisonSize.isPositive())
1776         return;
1777 
1778       // Use the top field declaration location as inline DebugLocation.
1779       DeclAsInlineDebugLocation InlineHere(
1780           CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1781       EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1782 
1783       // Prevent the current stack frame from disappearing from the stack trace.
1784       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1785     }
1786   };
1787 
1788  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1789     const CXXDestructorDecl *Dtor;
1790 
1791   public:
1792     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1793 
1794     // Generate function call for handling vtable pointer poisoning.
1795     void Emit(CodeGenFunction &CGF, Flags flags) override {
1796       assert(Dtor->getParent()->isDynamicClass());
1797       (void)Dtor;
1798       // Poison vtable and vtable ptr if they exist for this class.
1799       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1800 
1801       // Pass in void pointer and size of region as arguments to runtime
1802       // function
1803       EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1804                                 VTablePtr);
1805     }
1806  };
1807 
1808  class SanitizeDtorCleanupBuilder {
1809    ASTContext &Context;
1810    EHScopeStack &EHStack;
1811    const CXXDestructorDecl *DD;
1812    std::optional<unsigned> StartIndex;
1813 
1814  public:
1815    SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1816                               const CXXDestructorDecl *DD)
1817        : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1818    void PushCleanupForField(const FieldDecl *Field) {
1819      if (isEmptyFieldForLayout(Context, Field))
1820        return;
1821      unsigned FieldIndex = Field->getFieldIndex();
1822      if (FieldHasTrivialDestructorBody(Context, Field)) {
1823        if (!StartIndex)
1824          StartIndex = FieldIndex;
1825      } else if (StartIndex) {
1826        EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1827                                                    *StartIndex, FieldIndex);
1828        StartIndex = std::nullopt;
1829      }
1830    }
1831    void End() {
1832      if (StartIndex)
1833        EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1834                                                    *StartIndex, -1);
1835    }
1836  };
1837 } // end anonymous namespace
1838 
1839 /// Emit all code that comes at the end of class's
1840 /// destructor. This is to call destructors on members and base classes
1841 /// in reverse order of their construction.
1842 ///
1843 /// For a deleting destructor, this also handles the case where a destroying
1844 /// operator delete completely overrides the definition.
1845 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1846                                         CXXDtorType DtorType) {
1847   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1848          "Should not emit dtor epilogue for non-exported trivial dtor!");
1849 
1850   // The deleting-destructor phase just needs to call the appropriate
1851   // operator delete that Sema picked up.
1852   if (DtorType == Dtor_Deleting) {
1853     assert(DD->getOperatorDelete() &&
1854            "operator delete missing - EnterDtorCleanups");
1855     if (CXXStructorImplicitParamValue) {
1856       // If there is an implicit param to the deleting dtor, it's a boolean
1857       // telling whether this is a deleting destructor.
1858       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1859         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1860                                       /*ReturnAfterDelete*/true);
1861       else
1862         EHStack.pushCleanup<CallDtorDeleteConditional>(
1863             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1864     } else {
1865       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1866         const CXXRecordDecl *ClassDecl = DD->getParent();
1867         EmitDeleteCall(DD->getOperatorDelete(),
1868                        LoadThisForDtorDelete(*this, DD),
1869                        getContext().getTagDeclType(ClassDecl));
1870         EmitBranchThroughCleanup(ReturnBlock);
1871       } else {
1872         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1873       }
1874     }
1875     return;
1876   }
1877 
1878   const CXXRecordDecl *ClassDecl = DD->getParent();
1879 
1880   // Unions have no bases and do not call field destructors.
1881   if (ClassDecl->isUnion())
1882     return;
1883 
1884   // The complete-destructor phase just destructs all the virtual bases.
1885   if (DtorType == Dtor_Complete) {
1886     // Poison the vtable pointer such that access after the base
1887     // and member destructors are invoked is invalid.
1888     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1889         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1890         ClassDecl->isPolymorphic())
1891       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1892 
1893     // We push them in the forward order so that they'll be popped in
1894     // the reverse order.
1895     for (const auto &Base : ClassDecl->vbases()) {
1896       auto *BaseClassDecl =
1897           cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1898 
1899       if (BaseClassDecl->hasTrivialDestructor()) {
1900         // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1901         // memory. For non-trival base classes the same is done in the class
1902         // destructor.
1903         if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1904             SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1905           EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1906                                                        BaseClassDecl,
1907                                                        /*BaseIsVirtual*/ true);
1908       } else {
1909         EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1910                                           /*BaseIsVirtual*/ true);
1911       }
1912     }
1913 
1914     return;
1915   }
1916 
1917   assert(DtorType == Dtor_Base);
1918   // Poison the vtable pointer if it has no virtual bases, but inherits
1919   // virtual functions.
1920   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1921       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1922       ClassDecl->isPolymorphic())
1923     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1924 
1925   // Destroy non-virtual bases.
1926   for (const auto &Base : ClassDecl->bases()) {
1927     // Ignore virtual bases.
1928     if (Base.isVirtual())
1929       continue;
1930 
1931     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1932 
1933     if (BaseClassDecl->hasTrivialDestructor()) {
1934       if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1935           SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1936         EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1937                                                      BaseClassDecl,
1938                                                      /*BaseIsVirtual*/ false);
1939     } else {
1940       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1941                                         /*BaseIsVirtual*/ false);
1942     }
1943   }
1944 
1945   // Poison fields such that access after their destructors are
1946   // invoked, and before the base class destructor runs, is invalid.
1947   bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1948                         SanOpts.has(SanitizerKind::Memory);
1949   SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1950 
1951   // Destroy direct fields.
1952   for (const auto *Field : ClassDecl->fields()) {
1953     if (SanitizeFields)
1954       SanitizeBuilder.PushCleanupForField(Field);
1955 
1956     QualType type = Field->getType();
1957     QualType::DestructionKind dtorKind = type.isDestructedType();
1958     if (!dtorKind)
1959       continue;
1960 
1961     // Anonymous union members do not have their destructors called.
1962     const RecordType *RT = type->getAsUnionType();
1963     if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1964       continue;
1965 
1966     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1967     EHStack.pushCleanup<DestroyField>(
1968         cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1969   }
1970 
1971   if (SanitizeFields)
1972     SanitizeBuilder.End();
1973 }
1974 
1975 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1976 /// constructor for each of several members of an array.
1977 ///
1978 /// \param ctor the constructor to call for each element
1979 /// \param arrayType the type of the array to initialize
1980 /// \param arrayBegin an arrayType*
1981 /// \param zeroInitialize true if each element should be
1982 ///   zero-initialized before it is constructed
1983 void CodeGenFunction::EmitCXXAggrConstructorCall(
1984     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1985     Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1986     bool zeroInitialize) {
1987   QualType elementType;
1988   llvm::Value *numElements =
1989     emitArrayLength(arrayType, elementType, arrayBegin);
1990 
1991   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1992                              NewPointerIsChecked, zeroInitialize);
1993 }
1994 
1995 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1996 /// constructor for each of several members of an array.
1997 ///
1998 /// \param ctor the constructor to call for each element
1999 /// \param numElements the number of elements in the array;
2000 ///   may be zero
2001 /// \param arrayBase a T*, where T is the type constructed by ctor
2002 /// \param zeroInitialize true if each element should be
2003 ///   zero-initialized before it is constructed
2004 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
2005                                                  llvm::Value *numElements,
2006                                                  Address arrayBase,
2007                                                  const CXXConstructExpr *E,
2008                                                  bool NewPointerIsChecked,
2009                                                  bool zeroInitialize) {
2010   // It's legal for numElements to be zero.  This can happen both
2011   // dynamically, because x can be zero in 'new A[x]', and statically,
2012   // because of GCC extensions that permit zero-length arrays.  There
2013   // are probably legitimate places where we could assume that this
2014   // doesn't happen, but it's not clear that it's worth it.
2015   llvm::BranchInst *zeroCheckBranch = nullptr;
2016 
2017   // Optimize for a constant count.
2018   llvm::ConstantInt *constantCount
2019     = dyn_cast<llvm::ConstantInt>(numElements);
2020   if (constantCount) {
2021     // Just skip out if the constant count is zero.
2022     if (constantCount->isZero()) return;
2023 
2024   // Otherwise, emit the check.
2025   } else {
2026     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2027     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2028     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2029     EmitBlock(loopBB);
2030   }
2031 
2032   // Find the end of the array.
2033   llvm::Type *elementType = arrayBase.getElementType();
2034   llvm::Value *arrayBegin = arrayBase.emitRawPointer(*this);
2035   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2036       elementType, arrayBegin, numElements, "arrayctor.end");
2037 
2038   // Enter the loop, setting up a phi for the current location to initialize.
2039   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2040   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2041   EmitBlock(loopBB);
2042   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2043                                          "arrayctor.cur");
2044   cur->addIncoming(arrayBegin, entryBB);
2045 
2046   // Inside the loop body, emit the constructor call on the array element.
2047 
2048   // The alignment of the base, adjusted by the size of a single element,
2049   // provides a conservative estimate of the alignment of every element.
2050   // (This assumes we never start tracking offsetted alignments.)
2051   //
2052   // Note that these are complete objects and so we don't need to
2053   // use the non-virtual size or alignment.
2054   QualType type = getContext().getTypeDeclType(ctor->getParent());
2055   CharUnits eltAlignment =
2056     arrayBase.getAlignment()
2057              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2058   Address curAddr = Address(cur, elementType, eltAlignment);
2059 
2060   // Zero initialize the storage, if requested.
2061   if (zeroInitialize)
2062     EmitNullInitialization(curAddr, type);
2063 
2064   // C++ [class.temporary]p4:
2065   // There are two contexts in which temporaries are destroyed at a different
2066   // point than the end of the full-expression. The first context is when a
2067   // default constructor is called to initialize an element of an array.
2068   // If the constructor has one or more default arguments, the destruction of
2069   // every temporary created in a default argument expression is sequenced
2070   // before the construction of the next array element, if any.
2071 
2072   {
2073     RunCleanupsScope Scope(*this);
2074 
2075     // Evaluate the constructor and its arguments in a regular
2076     // partial-destroy cleanup.
2077     if (getLangOpts().Exceptions &&
2078         !ctor->getParent()->hasTrivialDestructor()) {
2079       Destroyer *destroyer = destroyCXXObject;
2080       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2081                                      *destroyer);
2082     }
2083     auto currAVS = AggValueSlot::forAddr(
2084         curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2085         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2086         AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2087         NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2088                             : AggValueSlot::IsNotSanitizerChecked);
2089     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2090                            /*Delegating=*/false, currAVS, E);
2091   }
2092 
2093   // Go to the next element.
2094   llvm::Value *next = Builder.CreateInBoundsGEP(
2095       elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2096   cur->addIncoming(next, Builder.GetInsertBlock());
2097 
2098   // Check whether that's the end of the loop.
2099   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2100   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2101   Builder.CreateCondBr(done, contBB, loopBB);
2102 
2103   // Patch the earlier check to skip over the loop.
2104   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2105 
2106   EmitBlock(contBB);
2107 }
2108 
2109 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2110                                        Address addr,
2111                                        QualType type) {
2112   const RecordType *rtype = type->castAs<RecordType>();
2113   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2114   const CXXDestructorDecl *dtor = record->getDestructor();
2115   assert(!dtor->isTrivial());
2116   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2117                             /*Delegating=*/false, addr, type);
2118 }
2119 
2120 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2121                                              CXXCtorType Type,
2122                                              bool ForVirtualBase,
2123                                              bool Delegating,
2124                                              AggValueSlot ThisAVS,
2125                                              const CXXConstructExpr *E) {
2126   CallArgList Args;
2127   Address This = ThisAVS.getAddress();
2128   LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2129   LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2130   llvm::Value *ThisPtr =
2131       getAsNaturalPointerTo(This, D->getThisType()->getPointeeType());
2132 
2133   if (SlotAS != ThisAS) {
2134     unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2135     llvm::Type *NewType =
2136         llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2137     ThisPtr = getTargetHooks().performAddrSpaceCast(*this, ThisPtr, ThisAS,
2138                                                     SlotAS, NewType);
2139   }
2140 
2141   // Push the this ptr.
2142   Args.add(RValue::get(ThisPtr), D->getThisType());
2143 
2144   // If this is a trivial constructor, emit a memcpy now before we lose
2145   // the alignment information on the argument.
2146   // FIXME: It would be better to preserve alignment information into CallArg.
2147   if (isMemcpyEquivalentSpecialMember(D)) {
2148     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2149 
2150     const Expr *Arg = E->getArg(0);
2151     LValue Src = EmitLValue(Arg);
2152     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2153     LValue Dest = MakeAddrLValue(This, DestTy);
2154     EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2155     return;
2156   }
2157 
2158   // Add the rest of the user-supplied arguments.
2159   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2160   EvaluationOrder Order = E->isListInitialization()
2161                               ? EvaluationOrder::ForceLeftToRight
2162                               : EvaluationOrder::Default;
2163   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2164                /*ParamsToSkip*/ 0, Order);
2165 
2166   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2167                          ThisAVS.mayOverlap(), E->getExprLoc(),
2168                          ThisAVS.isSanitizerChecked());
2169 }
2170 
2171 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2172                                     const CXXConstructorDecl *Ctor,
2173                                     CXXCtorType Type, CallArgList &Args) {
2174   // We can't forward a variadic call.
2175   if (Ctor->isVariadic())
2176     return false;
2177 
2178   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2179     // If the parameters are callee-cleanup, it's not safe to forward.
2180     for (auto *P : Ctor->parameters())
2181       if (P->needsDestruction(CGF.getContext()))
2182         return false;
2183 
2184     // Likewise if they're inalloca.
2185     const CGFunctionInfo &Info =
2186         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2187     if (Info.usesInAlloca())
2188       return false;
2189   }
2190 
2191   // Anything else should be OK.
2192   return true;
2193 }
2194 
2195 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2196                                              CXXCtorType Type,
2197                                              bool ForVirtualBase,
2198                                              bool Delegating,
2199                                              Address This,
2200                                              CallArgList &Args,
2201                                              AggValueSlot::Overlap_t Overlap,
2202                                              SourceLocation Loc,
2203                                              bool NewPointerIsChecked) {
2204   const CXXRecordDecl *ClassDecl = D->getParent();
2205 
2206   if (!NewPointerIsChecked)
2207     EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This,
2208                   getContext().getRecordType(ClassDecl), CharUnits::Zero());
2209 
2210   if (D->isTrivial() && D->isDefaultConstructor()) {
2211     assert(Args.size() == 1 && "trivial default ctor with args");
2212     return;
2213   }
2214 
2215   // If this is a trivial constructor, just emit what's needed. If this is a
2216   // union copy constructor, we must emit a memcpy, because the AST does not
2217   // model that copy.
2218   if (isMemcpyEquivalentSpecialMember(D)) {
2219     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2220     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2221     Address Src = makeNaturalAddressForPointer(
2222         Args[1].getRValue(*this).getScalarVal(), SrcTy);
2223     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2224     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2225     LValue DestLVal = MakeAddrLValue(This, DestTy);
2226     EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2227     return;
2228   }
2229 
2230   bool PassPrototypeArgs = true;
2231   // Check whether we can actually emit the constructor before trying to do so.
2232   if (auto Inherited = D->getInheritedConstructor()) {
2233     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2234     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2235       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2236                                               Delegating, Args);
2237       return;
2238     }
2239   }
2240 
2241   // Insert any ABI-specific implicit constructor arguments.
2242   CGCXXABI::AddedStructorArgCounts ExtraArgs =
2243       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2244                                                  Delegating, Args);
2245 
2246   // Emit the call.
2247   llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2248   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2249       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2250   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2251   EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2252 
2253   // Generate vtable assumptions if we're constructing a complete object
2254   // with a vtable.  We don't do this for base subobjects for two reasons:
2255   // first, it's incorrect for classes with virtual bases, and second, we're
2256   // about to overwrite the vptrs anyway.
2257   // We also have to make sure if we can refer to vtable:
2258   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2259   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2260   // sure that definition of vtable is not hidden,
2261   // then we are always safe to refer to it.
2262   // FIXME: It looks like InstCombine is very inefficient on dealing with
2263   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2264   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2265       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2266       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2267       CGM.getCodeGenOpts().StrictVTablePointers)
2268     EmitVTableAssumptionLoads(ClassDecl, This);
2269 }
2270 
2271 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2272     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2273     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2274   CallArgList Args;
2275   CallArg ThisArg(RValue::get(getAsNaturalPointerTo(
2276                       This, D->getThisType()->getPointeeType())),
2277                   D->getThisType());
2278 
2279   // Forward the parameters.
2280   if (InheritedFromVBase &&
2281       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2282     // Nothing to do; this construction is not responsible for constructing
2283     // the base class containing the inherited constructor.
2284     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2285     // have constructor variants?
2286     Args.push_back(ThisArg);
2287   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2288     // The inheriting constructor was inlined; just inject its arguments.
2289     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2290            "wrong number of parameters for inherited constructor call");
2291     Args = CXXInheritedCtorInitExprArgs;
2292     Args[0] = ThisArg;
2293   } else {
2294     // The inheriting constructor was not inlined. Emit delegating arguments.
2295     Args.push_back(ThisArg);
2296     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2297     assert(OuterCtor->getNumParams() == D->getNumParams());
2298     assert(!OuterCtor->isVariadic() && "should have been inlined");
2299 
2300     for (const auto *Param : OuterCtor->parameters()) {
2301       assert(getContext().hasSameUnqualifiedType(
2302           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2303           Param->getType()));
2304       EmitDelegateCallArg(Args, Param, E->getLocation());
2305 
2306       // Forward __attribute__(pass_object_size).
2307       if (Param->hasAttr<PassObjectSizeAttr>()) {
2308         auto *POSParam = SizeArguments[Param];
2309         assert(POSParam && "missing pass_object_size value for forwarding");
2310         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2311       }
2312     }
2313   }
2314 
2315   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2316                          This, Args, AggValueSlot::MayOverlap,
2317                          E->getLocation(), /*NewPointerIsChecked*/true);
2318 }
2319 
2320 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2321     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2322     bool Delegating, CallArgList &Args) {
2323   GlobalDecl GD(Ctor, CtorType);
2324   InlinedInheritingConstructorScope Scope(*this, GD);
2325   ApplyInlineDebugLocation DebugScope(*this, GD);
2326   RunCleanupsScope RunCleanups(*this);
2327 
2328   // Save the arguments to be passed to the inherited constructor.
2329   CXXInheritedCtorInitExprArgs = Args;
2330 
2331   FunctionArgList Params;
2332   QualType RetType = BuildFunctionArgList(CurGD, Params);
2333   FnRetTy = RetType;
2334 
2335   // Insert any ABI-specific implicit constructor arguments.
2336   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2337                                              ForVirtualBase, Delegating, Args);
2338 
2339   // Emit a simplified prolog. We only need to emit the implicit params.
2340   assert(Args.size() >= Params.size() && "too few arguments for call");
2341   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2342     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2343       const RValue &RV = Args[I].getRValue(*this);
2344       assert(!RV.isComplex() && "complex indirect params not supported");
2345       ParamValue Val = RV.isScalar()
2346                            ? ParamValue::forDirect(RV.getScalarVal())
2347                            : ParamValue::forIndirect(RV.getAggregateAddress());
2348       EmitParmDecl(*Params[I], Val, I + 1);
2349     }
2350   }
2351 
2352   // Create a return value slot if the ABI implementation wants one.
2353   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2354   // value instead.
2355   if (!RetType->isVoidType())
2356     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2357 
2358   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2359   CXXThisValue = CXXABIThisValue;
2360 
2361   // Directly emit the constructor initializers.
2362   EmitCtorPrologue(Ctor, CtorType, Params);
2363 }
2364 
2365 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2366   llvm::Value *VTableGlobal =
2367       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2368   if (!VTableGlobal)
2369     return;
2370 
2371   // We can just use the base offset in the complete class.
2372   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2373 
2374   if (!NonVirtualOffset.isZero())
2375     This =
2376         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2377                                         Vptr.VTableClass, Vptr.NearestVBase);
2378 
2379   llvm::Value *VPtrValue =
2380       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2381   llvm::Value *Cmp =
2382       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2383   Builder.CreateAssumption(Cmp);
2384 }
2385 
2386 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2387                                                 Address This) {
2388   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2389     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2390       EmitVTableAssumptionLoad(Vptr, This);
2391 }
2392 
2393 void
2394 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2395                                                 Address This, Address Src,
2396                                                 const CXXConstructExpr *E) {
2397   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2398 
2399   CallArgList Args;
2400 
2401   // Push the this ptr.
2402   Args.add(RValue::get(getAsNaturalPointerTo(This, D->getThisType())),
2403            D->getThisType());
2404 
2405   // Push the src ptr.
2406   QualType QT = *(FPT->param_type_begin());
2407   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2408   llvm::Value *Val = getAsNaturalPointerTo(Src, D->getThisType());
2409   llvm::Value *SrcVal = Builder.CreateBitCast(Val, t);
2410   Args.add(RValue::get(SrcVal), QT);
2411 
2412   // Skip over first argument (Src).
2413   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2414                /*ParamsToSkip*/ 1);
2415 
2416   EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2417                          /*Delegating*/false, This, Args,
2418                          AggValueSlot::MayOverlap, E->getExprLoc(),
2419                          /*NewPointerIsChecked*/false);
2420 }
2421 
2422 void
2423 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2424                                                 CXXCtorType CtorType,
2425                                                 const FunctionArgList &Args,
2426                                                 SourceLocation Loc) {
2427   CallArgList DelegateArgs;
2428 
2429   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2430   assert(I != E && "no parameters to constructor");
2431 
2432   // this
2433   Address This = LoadCXXThisAddress();
2434   DelegateArgs.add(RValue::get(getAsNaturalPointerTo(
2435                        This, (*I)->getType()->getPointeeType())),
2436                    (*I)->getType());
2437   ++I;
2438 
2439   // FIXME: The location of the VTT parameter in the parameter list is
2440   // specific to the Itanium ABI and shouldn't be hardcoded here.
2441   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2442     assert(I != E && "cannot skip vtt parameter, already done with args");
2443     assert((*I)->getType()->isPointerType() &&
2444            "skipping parameter not of vtt type");
2445     ++I;
2446   }
2447 
2448   // Explicit arguments.
2449   for (; I != E; ++I) {
2450     const VarDecl *param = *I;
2451     // FIXME: per-argument source location
2452     EmitDelegateCallArg(DelegateArgs, param, Loc);
2453   }
2454 
2455   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2456                          /*Delegating=*/true, This, DelegateArgs,
2457                          AggValueSlot::MayOverlap, Loc,
2458                          /*NewPointerIsChecked=*/true);
2459 }
2460 
2461 namespace {
2462   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2463     const CXXDestructorDecl *Dtor;
2464     Address Addr;
2465     CXXDtorType Type;
2466 
2467     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2468                            CXXDtorType Type)
2469       : Dtor(D), Addr(Addr), Type(Type) {}
2470 
2471     void Emit(CodeGenFunction &CGF, Flags flags) override {
2472       // We are calling the destructor from within the constructor.
2473       // Therefore, "this" should have the expected type.
2474       QualType ThisTy = Dtor->getFunctionObjectParameterType();
2475       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2476                                 /*Delegating=*/true, Addr, ThisTy);
2477     }
2478   };
2479 } // end anonymous namespace
2480 
2481 void
2482 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2483                                                   const FunctionArgList &Args) {
2484   assert(Ctor->isDelegatingConstructor());
2485 
2486   Address ThisPtr = LoadCXXThisAddress();
2487 
2488   AggValueSlot AggSlot =
2489     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2490                           AggValueSlot::IsDestructed,
2491                           AggValueSlot::DoesNotNeedGCBarriers,
2492                           AggValueSlot::IsNotAliased,
2493                           AggValueSlot::MayOverlap,
2494                           AggValueSlot::IsNotZeroed,
2495                           // Checks are made by the code that calls constructor.
2496                           AggValueSlot::IsSanitizerChecked);
2497 
2498   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2499 
2500   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2501   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2502     CXXDtorType Type =
2503       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2504 
2505     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2506                                                 ClassDecl->getDestructor(),
2507                                                 ThisPtr, Type);
2508   }
2509 }
2510 
2511 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2512                                             CXXDtorType Type,
2513                                             bool ForVirtualBase,
2514                                             bool Delegating, Address This,
2515                                             QualType ThisTy) {
2516   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2517                                      Delegating, This, ThisTy);
2518 }
2519 
2520 namespace {
2521   struct CallLocalDtor final : EHScopeStack::Cleanup {
2522     const CXXDestructorDecl *Dtor;
2523     Address Addr;
2524     QualType Ty;
2525 
2526     CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2527         : Dtor(D), Addr(Addr), Ty(Ty) {}
2528 
2529     void Emit(CodeGenFunction &CGF, Flags flags) override {
2530       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2531                                 /*ForVirtualBase=*/false,
2532                                 /*Delegating=*/false, Addr, Ty);
2533     }
2534   };
2535 } // end anonymous namespace
2536 
2537 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2538                                             QualType T, Address Addr) {
2539   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2540 }
2541 
2542 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2543   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2544   if (!ClassDecl) return;
2545   if (ClassDecl->hasTrivialDestructor()) return;
2546 
2547   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2548   assert(D && D->isUsed() && "destructor not marked as used!");
2549   PushDestructorCleanup(D, T, Addr);
2550 }
2551 
2552 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2553   // Compute the address point.
2554   llvm::Value *VTableAddressPoint =
2555       CGM.getCXXABI().getVTableAddressPointInStructor(
2556           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2557 
2558   if (!VTableAddressPoint)
2559     return;
2560 
2561   // Compute where to store the address point.
2562   llvm::Value *VirtualOffset = nullptr;
2563   CharUnits NonVirtualOffset = CharUnits::Zero();
2564 
2565   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2566     // We need to use the virtual base offset offset because the virtual base
2567     // might have a different offset in the most derived class.
2568 
2569     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2570         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2571     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2572   } else {
2573     // We can just use the base offset in the complete class.
2574     NonVirtualOffset = Vptr.Base.getBaseOffset();
2575   }
2576 
2577   // Apply the offsets.
2578   Address VTableField = LoadCXXThisAddress();
2579   if (!NonVirtualOffset.isZero() || VirtualOffset)
2580     VTableField = ApplyNonVirtualAndVirtualOffset(
2581         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2582         Vptr.NearestVBase);
2583 
2584   // Finally, store the address point. Use the same LLVM types as the field to
2585   // support optimization.
2586   unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2587   llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2588   // vtable field is derived from `this` pointer, therefore they should be in
2589   // the same addr space. Note that this might not be LLVM address space 0.
2590   VTableField = VTableField.withElementType(PtrTy);
2591 
2592   if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo(
2593           this, Vptr.Base.getBase(), VTableField.emitRawPointer(*this)))
2594     VTableAddressPoint =
2595         EmitPointerAuthSign(*AuthenticationInfo, VTableAddressPoint);
2596 
2597   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2598   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2599   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2600   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2601       CGM.getCodeGenOpts().StrictVTablePointers)
2602     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2603 }
2604 
2605 CodeGenFunction::VPtrsVector
2606 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2607   CodeGenFunction::VPtrsVector VPtrsResult;
2608   VisitedVirtualBasesSetTy VBases;
2609   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2610                     /*NearestVBase=*/nullptr,
2611                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2612                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2613                     VPtrsResult);
2614   return VPtrsResult;
2615 }
2616 
2617 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2618                                         const CXXRecordDecl *NearestVBase,
2619                                         CharUnits OffsetFromNearestVBase,
2620                                         bool BaseIsNonVirtualPrimaryBase,
2621                                         const CXXRecordDecl *VTableClass,
2622                                         VisitedVirtualBasesSetTy &VBases,
2623                                         VPtrsVector &Vptrs) {
2624   // If this base is a non-virtual primary base the address point has already
2625   // been set.
2626   if (!BaseIsNonVirtualPrimaryBase) {
2627     // Initialize the vtable pointer for this base.
2628     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2629     Vptrs.push_back(Vptr);
2630   }
2631 
2632   const CXXRecordDecl *RD = Base.getBase();
2633 
2634   // Traverse bases.
2635   for (const auto &I : RD->bases()) {
2636     auto *BaseDecl =
2637         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2638 
2639     // Ignore classes without a vtable.
2640     if (!BaseDecl->isDynamicClass())
2641       continue;
2642 
2643     CharUnits BaseOffset;
2644     CharUnits BaseOffsetFromNearestVBase;
2645     bool BaseDeclIsNonVirtualPrimaryBase;
2646 
2647     if (I.isVirtual()) {
2648       // Check if we've visited this virtual base before.
2649       if (!VBases.insert(BaseDecl).second)
2650         continue;
2651 
2652       const ASTRecordLayout &Layout =
2653         getContext().getASTRecordLayout(VTableClass);
2654 
2655       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2656       BaseOffsetFromNearestVBase = CharUnits::Zero();
2657       BaseDeclIsNonVirtualPrimaryBase = false;
2658     } else {
2659       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2660 
2661       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2662       BaseOffsetFromNearestVBase =
2663         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2664       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2665     }
2666 
2667     getVTablePointers(
2668         BaseSubobject(BaseDecl, BaseOffset),
2669         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2670         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2671   }
2672 }
2673 
2674 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2675   // Ignore classes without a vtable.
2676   if (!RD->isDynamicClass())
2677     return;
2678 
2679   // Initialize the vtable pointers for this class and all of its bases.
2680   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2681     for (const VPtr &Vptr : getVTablePointers(RD))
2682       InitializeVTablePointer(Vptr);
2683 
2684   if (RD->getNumVBases())
2685     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2686 }
2687 
2688 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2689                                            llvm::Type *VTableTy,
2690                                            const CXXRecordDecl *RD,
2691                                            VTableAuthMode AuthMode) {
2692   Address VTablePtrSrc = This.withElementType(VTableTy);
2693   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2694   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2695   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2696 
2697   if (auto AuthenticationInfo =
2698           CGM.getVTablePointerAuthInfo(this, RD, This.emitRawPointer(*this))) {
2699     if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) {
2700       VTable = cast<llvm::Instruction>(
2701           EmitPointerAuthAuth(*AuthenticationInfo, VTable));
2702       if (AuthMode == VTableAuthMode::MustTrap) {
2703         // This is clearly suboptimal but until we have an ability
2704         // to rely on the authentication intrinsic trapping and force
2705         // an authentication to occur we don't really have a choice.
2706         VTable =
2707             cast<llvm::Instruction>(Builder.CreateBitCast(VTable, Int8PtrTy));
2708         Builder.CreateLoad(RawAddress(VTable, Int8Ty, CGM.getPointerAlign()),
2709                            /* IsVolatile */ true);
2710       }
2711     } else {
2712       VTable = cast<llvm::Instruction>(EmitPointerAuthAuth(
2713           CGPointerAuthInfo(0, PointerAuthenticationMode::Strip, false, false,
2714                             nullptr),
2715           VTable));
2716     }
2717   }
2718 
2719   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2720       CGM.getCodeGenOpts().StrictVTablePointers)
2721     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2722 
2723   return VTable;
2724 }
2725 
2726 // If a class has a single non-virtual base and does not introduce or override
2727 // virtual member functions or fields, it will have the same layout as its base.
2728 // This function returns the least derived such class.
2729 //
2730 // Casting an instance of a base class to such a derived class is technically
2731 // undefined behavior, but it is a relatively common hack for introducing member
2732 // functions on class instances with specific properties (e.g. llvm::Operator)
2733 // that works under most compilers and should not have security implications, so
2734 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2735 static const CXXRecordDecl *
2736 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2737   if (!RD->field_empty())
2738     return RD;
2739 
2740   if (RD->getNumVBases() != 0)
2741     return RD;
2742 
2743   if (RD->getNumBases() != 1)
2744     return RD;
2745 
2746   for (const CXXMethodDecl *MD : RD->methods()) {
2747     if (MD->isVirtual()) {
2748       // Virtual member functions are only ok if they are implicit destructors
2749       // because the implicit destructor will have the same semantics as the
2750       // base class's destructor if no fields are added.
2751       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2752         continue;
2753       return RD;
2754     }
2755   }
2756 
2757   return LeastDerivedClassWithSameLayout(
2758       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2759 }
2760 
2761 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2762                                                    llvm::Value *VTable,
2763                                                    SourceLocation Loc) {
2764   if (SanOpts.has(SanitizerKind::CFIVCall))
2765     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2766   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2767            // Don't insert type test assumes if we are forcing public
2768            // visibility.
2769            !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2770     QualType Ty = QualType(RD->getTypeForDecl(), 0);
2771     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2772     llvm::Value *TypeId =
2773         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2774 
2775     // If we already know that the call has hidden LTO visibility, emit
2776     // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2777     // will convert to @llvm.type.test() if we assert at link time that we have
2778     // whole program visibility.
2779     llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2780                                   ? llvm::Intrinsic::type_test
2781                                   : llvm::Intrinsic::public_type_test;
2782     llvm::Value *TypeTest =
2783         Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2784     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2785   }
2786 }
2787 
2788 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2789                                                 llvm::Value *VTable,
2790                                                 CFITypeCheckKind TCK,
2791                                                 SourceLocation Loc) {
2792   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2793     RD = LeastDerivedClassWithSameLayout(RD);
2794 
2795   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2796 }
2797 
2798 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2799                                                 bool MayBeNull,
2800                                                 CFITypeCheckKind TCK,
2801                                                 SourceLocation Loc) {
2802   if (!getLangOpts().CPlusPlus)
2803     return;
2804 
2805   auto *ClassTy = T->getAs<RecordType>();
2806   if (!ClassTy)
2807     return;
2808 
2809   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2810 
2811   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2812     return;
2813 
2814   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2815     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2816 
2817   llvm::BasicBlock *ContBlock = nullptr;
2818 
2819   if (MayBeNull) {
2820     llvm::Value *DerivedNotNull =
2821         Builder.CreateIsNotNull(Derived.emitRawPointer(*this), "cast.nonnull");
2822 
2823     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2824     ContBlock = createBasicBlock("cast.cont");
2825 
2826     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2827 
2828     EmitBlock(CheckBlock);
2829   }
2830 
2831   llvm::Value *VTable;
2832   std::tie(VTable, ClassDecl) =
2833       CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2834 
2835   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2836 
2837   if (MayBeNull) {
2838     Builder.CreateBr(ContBlock);
2839     EmitBlock(ContBlock);
2840   }
2841 }
2842 
2843 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2844                                          llvm::Value *VTable,
2845                                          CFITypeCheckKind TCK,
2846                                          SourceLocation Loc) {
2847   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2848       !CGM.HasHiddenLTOVisibility(RD))
2849     return;
2850 
2851   SanitizerMask M;
2852   llvm::SanitizerStatKind SSK;
2853   switch (TCK) {
2854   case CFITCK_VCall:
2855     M = SanitizerKind::CFIVCall;
2856     SSK = llvm::SanStat_CFI_VCall;
2857     break;
2858   case CFITCK_NVCall:
2859     M = SanitizerKind::CFINVCall;
2860     SSK = llvm::SanStat_CFI_NVCall;
2861     break;
2862   case CFITCK_DerivedCast:
2863     M = SanitizerKind::CFIDerivedCast;
2864     SSK = llvm::SanStat_CFI_DerivedCast;
2865     break;
2866   case CFITCK_UnrelatedCast:
2867     M = SanitizerKind::CFIUnrelatedCast;
2868     SSK = llvm::SanStat_CFI_UnrelatedCast;
2869     break;
2870   case CFITCK_ICall:
2871   case CFITCK_NVMFCall:
2872   case CFITCK_VMFCall:
2873     llvm_unreachable("unexpected sanitizer kind");
2874   }
2875 
2876   std::string TypeName = RD->getQualifiedNameAsString();
2877   if (getContext().getNoSanitizeList().containsType(M, TypeName))
2878     return;
2879 
2880   SanitizerScope SanScope(this);
2881   EmitSanitizerStatReport(SSK);
2882 
2883   llvm::Metadata *MD =
2884       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2885   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2886 
2887   llvm::Value *TypeTest = Builder.CreateCall(
2888       CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2889 
2890   llvm::Constant *StaticData[] = {
2891       llvm::ConstantInt::get(Int8Ty, TCK),
2892       EmitCheckSourceLocation(Loc),
2893       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2894   };
2895 
2896   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2897   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2898     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2899     return;
2900   }
2901 
2902   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2903     EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2904     return;
2905   }
2906 
2907   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2908       CGM.getLLVMContext(),
2909       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2910   llvm::Value *ValidVtable = Builder.CreateCall(
2911       CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2912   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2913             StaticData, {VTable, ValidVtable});
2914 }
2915 
2916 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2917   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2918       !CGM.HasHiddenLTOVisibility(RD))
2919     return false;
2920 
2921   if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2922     return true;
2923 
2924   if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2925       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2926     return false;
2927 
2928   std::string TypeName = RD->getQualifiedNameAsString();
2929   return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2930                                                         TypeName);
2931 }
2932 
2933 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2934     const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2935     uint64_t VTableByteOffset) {
2936   SanitizerScope SanScope(this);
2937 
2938   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2939 
2940   llvm::Metadata *MD =
2941       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2942   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2943 
2944   llvm::Value *CheckedLoad = Builder.CreateCall(
2945       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2946       {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2947   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2948 
2949   std::string TypeName = RD->getQualifiedNameAsString();
2950   if (SanOpts.has(SanitizerKind::CFIVCall) &&
2951       !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2952                                                      TypeName)) {
2953     EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2954               SanitizerHandler::CFICheckFail, {}, {});
2955   }
2956 
2957   return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2958                                VTableTy);
2959 }
2960 
2961 void CodeGenFunction::EmitForwardingCallToLambda(
2962     const CXXMethodDecl *callOperator, CallArgList &callArgs,
2963     const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2964   // Get the address of the call operator.
2965   if (!calleeFnInfo)
2966     calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2967 
2968   if (!calleePtr)
2969     calleePtr =
2970         CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2971                               CGM.getTypes().GetFunctionType(*calleeFnInfo));
2972 
2973   // Prepare the return slot.
2974   const FunctionProtoType *FPT =
2975     callOperator->getType()->castAs<FunctionProtoType>();
2976   QualType resultType = FPT->getReturnType();
2977   ReturnValueSlot returnSlot;
2978   if (!resultType->isVoidType() &&
2979       calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2980       !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2981     returnSlot =
2982         ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2983                         /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2984 
2985   // We don't need to separately arrange the call arguments because
2986   // the call can't be variadic anyway --- it's impossible to forward
2987   // variadic arguments.
2988 
2989   // Now emit our call.
2990   auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2991   RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2992 
2993   // If necessary, copy the returned value into the slot.
2994   if (!resultType->isVoidType() && returnSlot.isNull()) {
2995     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2996       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2997     }
2998     EmitReturnOfRValue(RV, resultType);
2999   } else
3000     EmitBranchThroughCleanup(ReturnBlock);
3001 }
3002 
3003 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
3004   const BlockDecl *BD = BlockInfo->getBlockDecl();
3005   const VarDecl *variable = BD->capture_begin()->getVariable();
3006   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
3007   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3008 
3009   if (CallOp->isVariadic()) {
3010     // FIXME: Making this work correctly is nasty because it requires either
3011     // cloning the body of the call operator or making the call operator
3012     // forward.
3013     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
3014     return;
3015   }
3016 
3017   // Start building arguments for forwarding call
3018   CallArgList CallArgs;
3019 
3020   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
3021   Address ThisPtr = GetAddrOfBlockDecl(variable);
3022   CallArgs.add(RValue::get(getAsNaturalPointerTo(ThisPtr, ThisType)), ThisType);
3023 
3024   // Add the rest of the parameters.
3025   for (auto *param : BD->parameters())
3026     EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
3027 
3028   assert(!Lambda->isGenericLambda() &&
3029             "generic lambda interconversion to block not implemented");
3030   EmitForwardingCallToLambda(CallOp, CallArgs);
3031 }
3032 
3033 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
3034   if (MD->isVariadic()) {
3035     // FIXME: Making this work correctly is nasty because it requires either
3036     // cloning the body of the call operator or making the call operator
3037     // forward.
3038     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3039     return;
3040   }
3041 
3042   const CXXRecordDecl *Lambda = MD->getParent();
3043 
3044   // Start building arguments for forwarding call
3045   CallArgList CallArgs;
3046 
3047   QualType LambdaType = getContext().getRecordType(Lambda);
3048   QualType ThisType = getContext().getPointerType(LambdaType);
3049   Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3050   CallArgs.add(RValue::get(ThisPtr.emitRawPointer(*this)), ThisType);
3051 
3052   EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3053 }
3054 
3055 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3056                                                      CallArgList &CallArgs) {
3057   // Add the rest of the forwarded parameters.
3058   for (auto *Param : MD->parameters())
3059     EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3060 
3061   const CXXRecordDecl *Lambda = MD->getParent();
3062   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3063   // For a generic lambda, find the corresponding call operator specialization
3064   // to which the call to the static-invoker shall be forwarded.
3065   if (Lambda->isGenericLambda()) {
3066     assert(MD->isFunctionTemplateSpecialization());
3067     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3068     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3069     void *InsertPos = nullptr;
3070     FunctionDecl *CorrespondingCallOpSpecialization =
3071         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3072     assert(CorrespondingCallOpSpecialization);
3073     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3074   }
3075 
3076   // Special lambda forwarding when there are inalloca parameters.
3077   if (hasInAllocaArg(MD)) {
3078     const CGFunctionInfo *ImplFnInfo = nullptr;
3079     llvm::Function *ImplFn = nullptr;
3080     EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3081 
3082     EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3083     return;
3084   }
3085 
3086   EmitForwardingCallToLambda(CallOp, CallArgs);
3087 }
3088 
3089 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3090   if (MD->isVariadic()) {
3091     // FIXME: Making this work correctly is nasty because it requires either
3092     // cloning the body of the call operator or making the call operator forward.
3093     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3094     return;
3095   }
3096 
3097   // Forward %this argument.
3098   CallArgList CallArgs;
3099   QualType LambdaType = getContext().getRecordType(MD->getParent());
3100   QualType ThisType = getContext().getPointerType(LambdaType);
3101   llvm::Value *ThisArg = CurFn->getArg(0);
3102   CallArgs.add(RValue::get(ThisArg), ThisType);
3103 
3104   EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3105 }
3106 
3107 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3108     const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3109     llvm::Function **ImplFn) {
3110   const CGFunctionInfo &FnInfo =
3111       CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3112   llvm::Function *CallOpFn =
3113       cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3114 
3115   // Emit function containing the original call op body. __invoke will delegate
3116   // to this function.
3117   SmallVector<CanQualType, 4> ArgTypes;
3118   for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3119     ArgTypes.push_back(I->type);
3120   *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3121       FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3122       FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3123 
3124   // Create mangled name as if this was a method named __impl. If for some
3125   // reason the name doesn't look as expected then just tack __impl to the
3126   // front.
3127   // TODO: Use the name mangler to produce the right name instead of using
3128   // string replacement.
3129   StringRef CallOpName = CallOpFn->getName();
3130   std::string ImplName;
3131   if (size_t Pos = CallOpName.find_first_of("<lambda"))
3132     ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3133   else
3134     ImplName = ("__impl" + CallOpName).str();
3135 
3136   llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3137   if (!Fn) {
3138     Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3139                                 llvm::GlobalValue::InternalLinkage, ImplName,
3140                                 CGM.getModule());
3141     CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3142 
3143     const GlobalDecl &GD = GlobalDecl(CallOp);
3144     const auto *D = cast<FunctionDecl>(GD.getDecl());
3145     CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3146     CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3147   }
3148   *ImplFn = Fn;
3149 }
3150