1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/Transforms/Utils/SanitizerStats.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 /// Return the best known alignment for an unknown pointer to a 36 /// particular class. 37 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 38 if (!RD->isCompleteDefinition()) 39 return CharUnits::One(); // Hopefully won't be used anywhere. 40 41 auto &layout = getContext().getASTRecordLayout(RD); 42 43 // If the class is final, then we know that the pointer points to an 44 // object of that type and can use the full alignment. 45 if (RD->hasAttr<FinalAttr>()) { 46 return layout.getAlignment(); 47 48 // Otherwise, we have to assume it could be a subclass. 49 } else { 50 return layout.getNonVirtualAlignment(); 51 } 52 } 53 54 /// Return the best known alignment for a pointer to a virtual base, 55 /// given the alignment of a pointer to the derived class. 56 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 57 const CXXRecordDecl *derivedClass, 58 const CXXRecordDecl *vbaseClass) { 59 // The basic idea here is that an underaligned derived pointer might 60 // indicate an underaligned base pointer. 61 62 assert(vbaseClass->isCompleteDefinition()); 63 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 64 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 65 66 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 67 expectedVBaseAlign); 68 } 69 70 CharUnits 71 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 72 const CXXRecordDecl *baseDecl, 73 CharUnits expectedTargetAlign) { 74 // If the base is an incomplete type (which is, alas, possible with 75 // member pointers), be pessimistic. 76 if (!baseDecl->isCompleteDefinition()) 77 return std::min(actualBaseAlign, expectedTargetAlign); 78 79 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 80 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 81 82 // If the class is properly aligned, assume the target offset is, too. 83 // 84 // This actually isn't necessarily the right thing to do --- if the 85 // class is a complete object, but it's only properly aligned for a 86 // base subobject, then the alignments of things relative to it are 87 // probably off as well. (Note that this requires the alignment of 88 // the target to be greater than the NV alignment of the derived 89 // class.) 90 // 91 // However, our approach to this kind of under-alignment can only 92 // ever be best effort; after all, we're never going to propagate 93 // alignments through variables or parameters. Note, in particular, 94 // that constructing a polymorphic type in an address that's less 95 // than pointer-aligned will generally trap in the constructor, 96 // unless we someday add some sort of attribute to change the 97 // assumed alignment of 'this'. So our goal here is pretty much 98 // just to allow the user to explicitly say that a pointer is 99 // under-aligned and then safely access its fields and vtables. 100 if (actualBaseAlign >= expectedBaseAlign) { 101 return expectedTargetAlign; 102 } 103 104 // Otherwise, we might be offset by an arbitrary multiple of the 105 // actual alignment. The correct adjustment is to take the min of 106 // the two alignments. 107 return std::min(actualBaseAlign, expectedTargetAlign); 108 } 109 110 Address CodeGenFunction::LoadCXXThisAddress() { 111 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 112 assert(isa<CXXMethodDecl>(CurFuncDecl)); 113 114 // Lazily compute CXXThisAlignment. 115 if (CXXThisAlignment.isZero()) { 116 // Just use the best known alignment for the parent. 117 // TODO: if we're currently emitting a complete-object ctor/dtor, 118 // we can always use the complete-object alignment. 119 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 120 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 121 } 122 123 return Address(LoadCXXThis(), CXXThisAlignment); 124 } 125 126 /// Emit the address of a field using a member data pointer. 127 /// 128 /// \param E Only used for emergency diagnostics 129 Address 130 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 131 llvm::Value *memberPtr, 132 const MemberPointerType *memberPtrType, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo) { 135 // Ask the ABI to compute the actual address. 136 llvm::Value *ptr = 137 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 138 memberPtr, memberPtrType); 139 140 QualType memberType = memberPtrType->getPointeeType(); 141 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 142 TBAAInfo); 143 memberAlign = 144 CGM.getDynamicOffsetAlignment(base.getAlignment(), 145 memberPtrType->getClass()->getAsCXXRecordDecl(), 146 memberAlign); 147 return Address(ptr, memberAlign); 148 } 149 150 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 151 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 152 CastExpr::path_const_iterator End) { 153 CharUnits Offset = CharUnits::Zero(); 154 155 const ASTContext &Context = getContext(); 156 const CXXRecordDecl *RD = DerivedClass; 157 158 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 159 const CXXBaseSpecifier *Base = *I; 160 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 161 162 // Get the layout. 163 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 164 165 const auto *BaseDecl = 166 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 167 168 // Add the offset. 169 Offset += Layout.getBaseClassOffset(BaseDecl); 170 171 RD = BaseDecl; 172 } 173 174 return Offset; 175 } 176 177 llvm::Constant * 178 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 179 CastExpr::path_const_iterator PathBegin, 180 CastExpr::path_const_iterator PathEnd) { 181 assert(PathBegin != PathEnd && "Base path should not be empty!"); 182 183 CharUnits Offset = 184 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 185 if (Offset.isZero()) 186 return nullptr; 187 188 llvm::Type *PtrDiffTy = 189 Types.ConvertType(getContext().getPointerDiffType()); 190 191 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 192 } 193 194 /// Gets the address of a direct base class within a complete object. 195 /// This should only be used for (1) non-virtual bases or (2) virtual bases 196 /// when the type is known to be complete (e.g. in complete destructors). 197 /// 198 /// The object pointed to by 'This' is assumed to be non-null. 199 Address 200 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 201 const CXXRecordDecl *Derived, 202 const CXXRecordDecl *Base, 203 bool BaseIsVirtual) { 204 // 'this' must be a pointer (in some address space) to Derived. 205 assert(This.getElementType() == ConvertType(Derived)); 206 207 // Compute the offset of the virtual base. 208 CharUnits Offset; 209 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 210 if (BaseIsVirtual) 211 Offset = Layout.getVBaseClassOffset(Base); 212 else 213 Offset = Layout.getBaseClassOffset(Base); 214 215 // Shift and cast down to the base type. 216 // TODO: for complete types, this should be possible with a GEP. 217 Address V = This; 218 if (!Offset.isZero()) { 219 V = Builder.CreateElementBitCast(V, Int8Ty); 220 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 221 } 222 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 223 224 return V; 225 } 226 227 static Address 228 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 229 CharUnits nonVirtualOffset, 230 llvm::Value *virtualOffset, 231 const CXXRecordDecl *derivedClass, 232 const CXXRecordDecl *nearestVBase) { 233 // Assert that we have something to do. 234 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 235 236 // Compute the offset from the static and dynamic components. 237 llvm::Value *baseOffset; 238 if (!nonVirtualOffset.isZero()) { 239 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 240 nonVirtualOffset.getQuantity()); 241 if (virtualOffset) { 242 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 243 } 244 } else { 245 baseOffset = virtualOffset; 246 } 247 248 // Apply the base offset. 249 llvm::Value *ptr = addr.getPointer(); 250 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 251 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 252 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 253 254 // If we have a virtual component, the alignment of the result will 255 // be relative only to the known alignment of that vbase. 256 CharUnits alignment; 257 if (virtualOffset) { 258 assert(nearestVBase && "virtual offset without vbase?"); 259 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 260 derivedClass, nearestVBase); 261 } else { 262 alignment = addr.getAlignment(); 263 } 264 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 265 266 return Address(ptr, alignment); 267 } 268 269 Address CodeGenFunction::GetAddressOfBaseClass( 270 Address Value, const CXXRecordDecl *Derived, 271 CastExpr::path_const_iterator PathBegin, 272 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 273 SourceLocation Loc) { 274 assert(PathBegin != PathEnd && "Base path should not be empty!"); 275 276 CastExpr::path_const_iterator Start = PathBegin; 277 const CXXRecordDecl *VBase = nullptr; 278 279 // Sema has done some convenient canonicalization here: if the 280 // access path involved any virtual steps, the conversion path will 281 // *start* with a step down to the correct virtual base subobject, 282 // and hence will not require any further steps. 283 if ((*Start)->isVirtual()) { 284 VBase = cast<CXXRecordDecl>( 285 (*Start)->getType()->castAs<RecordType>()->getDecl()); 286 ++Start; 287 } 288 289 // Compute the static offset of the ultimate destination within its 290 // allocating subobject (the virtual base, if there is one, or else 291 // the "complete" object that we see). 292 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 293 VBase ? VBase : Derived, Start, PathEnd); 294 295 // If there's a virtual step, we can sometimes "devirtualize" it. 296 // For now, that's limited to when the derived type is final. 297 // TODO: "devirtualize" this for accesses to known-complete objects. 298 if (VBase && Derived->hasAttr<FinalAttr>()) { 299 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 300 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 301 NonVirtualOffset += vBaseOffset; 302 VBase = nullptr; // we no longer have a virtual step 303 } 304 305 // Get the base pointer type. 306 llvm::Type *BasePtrTy = 307 ConvertType((PathEnd[-1])->getType()) 308 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 309 310 QualType DerivedTy = getContext().getRecordType(Derived); 311 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 312 313 // If the static offset is zero and we don't have a virtual step, 314 // just do a bitcast; null checks are unnecessary. 315 if (NonVirtualOffset.isZero() && !VBase) { 316 if (sanitizePerformTypeCheck()) { 317 SanitizerSet SkippedChecks; 318 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 319 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 320 DerivedTy, DerivedAlign, SkippedChecks); 321 } 322 return Builder.CreateBitCast(Value, BasePtrTy); 323 } 324 325 llvm::BasicBlock *origBB = nullptr; 326 llvm::BasicBlock *endBB = nullptr; 327 328 // Skip over the offset (and the vtable load) if we're supposed to 329 // null-check the pointer. 330 if (NullCheckValue) { 331 origBB = Builder.GetInsertBlock(); 332 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 333 endBB = createBasicBlock("cast.end"); 334 335 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 336 Builder.CreateCondBr(isNull, endBB, notNullBB); 337 EmitBlock(notNullBB); 338 } 339 340 if (sanitizePerformTypeCheck()) { 341 SanitizerSet SkippedChecks; 342 SkippedChecks.set(SanitizerKind::Null, true); 343 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 344 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 345 } 346 347 // Compute the virtual offset. 348 llvm::Value *VirtualOffset = nullptr; 349 if (VBase) { 350 VirtualOffset = 351 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 352 } 353 354 // Apply both offsets. 355 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 356 VirtualOffset, Derived, VBase); 357 358 // Cast to the destination type. 359 Value = Builder.CreateBitCast(Value, BasePtrTy); 360 361 // Build a phi if we needed a null check. 362 if (NullCheckValue) { 363 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 364 Builder.CreateBr(endBB); 365 EmitBlock(endBB); 366 367 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 368 PHI->addIncoming(Value.getPointer(), notNullBB); 369 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 370 Value = Address(PHI, Value.getAlignment()); 371 } 372 373 return Value; 374 } 375 376 Address 377 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 378 const CXXRecordDecl *Derived, 379 CastExpr::path_const_iterator PathBegin, 380 CastExpr::path_const_iterator PathEnd, 381 bool NullCheckValue) { 382 assert(PathBegin != PathEnd && "Base path should not be empty!"); 383 384 QualType DerivedTy = 385 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 386 unsigned AddrSpace = 387 BaseAddr.getPointer()->getType()->getPointerAddressSpace(); 388 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace); 389 390 llvm::Value *NonVirtualOffset = 391 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 392 393 if (!NonVirtualOffset) { 394 // No offset, we can just cast back. 395 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 396 } 397 398 llvm::BasicBlock *CastNull = nullptr; 399 llvm::BasicBlock *CastNotNull = nullptr; 400 llvm::BasicBlock *CastEnd = nullptr; 401 402 if (NullCheckValue) { 403 CastNull = createBasicBlock("cast.null"); 404 CastNotNull = createBasicBlock("cast.notnull"); 405 CastEnd = createBasicBlock("cast.end"); 406 407 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 408 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 409 EmitBlock(CastNotNull); 410 } 411 412 // Apply the offset. 413 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 414 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 415 "sub.ptr"); 416 417 // Just cast. 418 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 419 420 // Produce a PHI if we had a null-check. 421 if (NullCheckValue) { 422 Builder.CreateBr(CastEnd); 423 EmitBlock(CastNull); 424 Builder.CreateBr(CastEnd); 425 EmitBlock(CastEnd); 426 427 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 428 PHI->addIncoming(Value, CastNotNull); 429 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 430 Value = PHI; 431 } 432 433 return Address(Value, CGM.getClassPointerAlignment(Derived)); 434 } 435 436 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 437 bool ForVirtualBase, 438 bool Delegating) { 439 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 440 // This constructor/destructor does not need a VTT parameter. 441 return nullptr; 442 } 443 444 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 445 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 446 447 llvm::Value *VTT; 448 449 uint64_t SubVTTIndex; 450 451 if (Delegating) { 452 // If this is a delegating constructor call, just load the VTT. 453 return LoadCXXVTT(); 454 } else if (RD == Base) { 455 // If the record matches the base, this is the complete ctor/dtor 456 // variant calling the base variant in a class with virtual bases. 457 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 458 "doing no-op VTT offset in base dtor/ctor?"); 459 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 460 SubVTTIndex = 0; 461 } else { 462 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 463 CharUnits BaseOffset = ForVirtualBase ? 464 Layout.getVBaseClassOffset(Base) : 465 Layout.getBaseClassOffset(Base); 466 467 SubVTTIndex = 468 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 469 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 470 } 471 472 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 473 // A VTT parameter was passed to the constructor, use it. 474 VTT = LoadCXXVTT(); 475 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 476 } else { 477 // We're the complete constructor, so get the VTT by name. 478 VTT = CGM.getVTables().GetAddrOfVTT(RD); 479 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 480 } 481 482 return VTT; 483 } 484 485 namespace { 486 /// Call the destructor for a direct base class. 487 struct CallBaseDtor final : EHScopeStack::Cleanup { 488 const CXXRecordDecl *BaseClass; 489 bool BaseIsVirtual; 490 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 491 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 492 493 void Emit(CodeGenFunction &CGF, Flags flags) override { 494 const CXXRecordDecl *DerivedClass = 495 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 496 497 const CXXDestructorDecl *D = BaseClass->getDestructor(); 498 // We are already inside a destructor, so presumably the object being 499 // destroyed should have the expected type. 500 QualType ThisTy = D->getThisObjectType(); 501 Address Addr = 502 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 503 DerivedClass, BaseClass, 504 BaseIsVirtual); 505 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 506 /*Delegating=*/false, Addr, ThisTy); 507 } 508 }; 509 510 /// A visitor which checks whether an initializer uses 'this' in a 511 /// way which requires the vtable to be properly set. 512 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 513 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 514 515 bool UsesThis; 516 517 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 518 519 // Black-list all explicit and implicit references to 'this'. 520 // 521 // Do we need to worry about external references to 'this' derived 522 // from arbitrary code? If so, then anything which runs arbitrary 523 // external code might potentially access the vtable. 524 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 525 }; 526 } // end anonymous namespace 527 528 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 529 DynamicThisUseChecker Checker(C); 530 Checker.Visit(Init); 531 return Checker.UsesThis; 532 } 533 534 static void EmitBaseInitializer(CodeGenFunction &CGF, 535 const CXXRecordDecl *ClassDecl, 536 CXXCtorInitializer *BaseInit) { 537 assert(BaseInit->isBaseInitializer() && 538 "Must have base initializer!"); 539 540 Address ThisPtr = CGF.LoadCXXThisAddress(); 541 542 const Type *BaseType = BaseInit->getBaseClass(); 543 const auto *BaseClassDecl = 544 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 545 546 bool isBaseVirtual = BaseInit->isBaseVirtual(); 547 548 // If the initializer for the base (other than the constructor 549 // itself) accesses 'this' in any way, we need to initialize the 550 // vtables. 551 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 552 CGF.InitializeVTablePointers(ClassDecl); 553 554 // We can pretend to be a complete class because it only matters for 555 // virtual bases, and we only do virtual bases for complete ctors. 556 Address V = 557 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 558 BaseClassDecl, 559 isBaseVirtual); 560 AggValueSlot AggSlot = 561 AggValueSlot::forAddr( 562 V, Qualifiers(), 563 AggValueSlot::IsDestructed, 564 AggValueSlot::DoesNotNeedGCBarriers, 565 AggValueSlot::IsNotAliased, 566 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 567 568 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 569 570 if (CGF.CGM.getLangOpts().Exceptions && 571 !BaseClassDecl->hasTrivialDestructor()) 572 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 573 isBaseVirtual); 574 } 575 576 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 577 auto *CD = dyn_cast<CXXConstructorDecl>(D); 578 if (!(CD && CD->isCopyOrMoveConstructor()) && 579 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 580 return false; 581 582 // We can emit a memcpy for a trivial copy or move constructor/assignment. 583 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 584 return true; 585 586 // We *must* emit a memcpy for a defaulted union copy or move op. 587 if (D->getParent()->isUnion() && D->isDefaulted()) 588 return true; 589 590 return false; 591 } 592 593 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 594 CXXCtorInitializer *MemberInit, 595 LValue &LHS) { 596 FieldDecl *Field = MemberInit->getAnyMember(); 597 if (MemberInit->isIndirectMemberInitializer()) { 598 // If we are initializing an anonymous union field, drill down to the field. 599 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 600 for (const auto *I : IndirectField->chain()) 601 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 602 } else { 603 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 604 } 605 } 606 607 static void EmitMemberInitializer(CodeGenFunction &CGF, 608 const CXXRecordDecl *ClassDecl, 609 CXXCtorInitializer *MemberInit, 610 const CXXConstructorDecl *Constructor, 611 FunctionArgList &Args) { 612 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 613 assert(MemberInit->isAnyMemberInitializer() && 614 "Must have member initializer!"); 615 assert(MemberInit->getInit() && "Must have initializer!"); 616 617 // non-static data member initializers. 618 FieldDecl *Field = MemberInit->getAnyMember(); 619 QualType FieldType = Field->getType(); 620 621 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 622 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 623 LValue LHS; 624 625 // If a base constructor is being emitted, create an LValue that has the 626 // non-virtual alignment. 627 if (CGF.CurGD.getCtorType() == Ctor_Base) 628 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 629 else 630 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 631 632 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 633 634 // Special case: if we are in a copy or move constructor, and we are copying 635 // an array of PODs or classes with trivial copy constructors, ignore the 636 // AST and perform the copy we know is equivalent. 637 // FIXME: This is hacky at best... if we had a bit more explicit information 638 // in the AST, we could generalize it more easily. 639 const ConstantArrayType *Array 640 = CGF.getContext().getAsConstantArrayType(FieldType); 641 if (Array && Constructor->isDefaulted() && 642 Constructor->isCopyOrMoveConstructor()) { 643 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 644 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 645 if (BaseElementTy.isPODType(CGF.getContext()) || 646 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 647 unsigned SrcArgIndex = 648 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 649 llvm::Value *SrcPtr 650 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 651 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 652 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 653 654 // Copy the aggregate. 655 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 656 LHS.isVolatileQualified()); 657 // Ensure that we destroy the objects if an exception is thrown later in 658 // the constructor. 659 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 660 if (CGF.needsEHCleanup(dtorKind)) 661 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 662 return; 663 } 664 } 665 666 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 667 } 668 669 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 670 Expr *Init) { 671 QualType FieldType = Field->getType(); 672 switch (getEvaluationKind(FieldType)) { 673 case TEK_Scalar: 674 if (LHS.isSimple()) { 675 EmitExprAsInit(Init, Field, LHS, false); 676 } else { 677 RValue RHS = RValue::get(EmitScalarExpr(Init)); 678 EmitStoreThroughLValue(RHS, LHS); 679 } 680 break; 681 case TEK_Complex: 682 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 683 break; 684 case TEK_Aggregate: { 685 AggValueSlot Slot = AggValueSlot::forLValue( 686 LHS, *this, AggValueSlot::IsDestructed, 687 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 688 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 689 // Checks are made by the code that calls constructor. 690 AggValueSlot::IsSanitizerChecked); 691 EmitAggExpr(Init, Slot); 692 break; 693 } 694 } 695 696 // Ensure that we destroy this object if an exception is thrown 697 // later in the constructor. 698 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 699 if (needsEHCleanup(dtorKind)) 700 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 701 } 702 703 /// Checks whether the given constructor is a valid subject for the 704 /// complete-to-base constructor delegation optimization, i.e. 705 /// emitting the complete constructor as a simple call to the base 706 /// constructor. 707 bool CodeGenFunction::IsConstructorDelegationValid( 708 const CXXConstructorDecl *Ctor) { 709 710 // Currently we disable the optimization for classes with virtual 711 // bases because (1) the addresses of parameter variables need to be 712 // consistent across all initializers but (2) the delegate function 713 // call necessarily creates a second copy of the parameter variable. 714 // 715 // The limiting example (purely theoretical AFAIK): 716 // struct A { A(int &c) { c++; } }; 717 // struct B : virtual A { 718 // B(int count) : A(count) { printf("%d\n", count); } 719 // }; 720 // ...although even this example could in principle be emitted as a 721 // delegation since the address of the parameter doesn't escape. 722 if (Ctor->getParent()->getNumVBases()) { 723 // TODO: white-list trivial vbase initializers. This case wouldn't 724 // be subject to the restrictions below. 725 726 // TODO: white-list cases where: 727 // - there are no non-reference parameters to the constructor 728 // - the initializers don't access any non-reference parameters 729 // - the initializers don't take the address of non-reference 730 // parameters 731 // - etc. 732 // If we ever add any of the above cases, remember that: 733 // - function-try-blocks will always blacklist this optimization 734 // - we need to perform the constructor prologue and cleanup in 735 // EmitConstructorBody. 736 737 return false; 738 } 739 740 // We also disable the optimization for variadic functions because 741 // it's impossible to "re-pass" varargs. 742 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 743 return false; 744 745 // FIXME: Decide if we can do a delegation of a delegating constructor. 746 if (Ctor->isDelegatingConstructor()) 747 return false; 748 749 return true; 750 } 751 752 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 753 // to poison the extra field paddings inserted under 754 // -fsanitize-address-field-padding=1|2. 755 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 756 ASTContext &Context = getContext(); 757 const CXXRecordDecl *ClassDecl = 758 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 759 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 760 if (!ClassDecl->mayInsertExtraPadding()) return; 761 762 struct SizeAndOffset { 763 uint64_t Size; 764 uint64_t Offset; 765 }; 766 767 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 768 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 769 770 // Populate sizes and offsets of fields. 771 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 772 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 773 SSV[i].Offset = 774 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 775 776 size_t NumFields = 0; 777 for (const auto *Field : ClassDecl->fields()) { 778 const FieldDecl *D = Field; 779 std::pair<CharUnits, CharUnits> FieldInfo = 780 Context.getTypeInfoInChars(D->getType()); 781 CharUnits FieldSize = FieldInfo.first; 782 assert(NumFields < SSV.size()); 783 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 784 NumFields++; 785 } 786 assert(NumFields == SSV.size()); 787 if (SSV.size() <= 1) return; 788 789 // We will insert calls to __asan_* run-time functions. 790 // LLVM AddressSanitizer pass may decide to inline them later. 791 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 792 llvm::FunctionType *FTy = 793 llvm::FunctionType::get(CGM.VoidTy, Args, false); 794 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 795 FTy, Prologue ? "__asan_poison_intra_object_redzone" 796 : "__asan_unpoison_intra_object_redzone"); 797 798 llvm::Value *ThisPtr = LoadCXXThis(); 799 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 800 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 801 // For each field check if it has sufficient padding, 802 // if so (un)poison it with a call. 803 for (size_t i = 0; i < SSV.size(); i++) { 804 uint64_t AsanAlignment = 8; 805 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 806 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 807 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 808 if (PoisonSize < AsanAlignment || !SSV[i].Size || 809 (NextField % AsanAlignment) != 0) 810 continue; 811 Builder.CreateCall( 812 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 813 Builder.getIntN(PtrSize, PoisonSize)}); 814 } 815 } 816 817 /// EmitConstructorBody - Emits the body of the current constructor. 818 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 819 EmitAsanPrologueOrEpilogue(true); 820 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 821 CXXCtorType CtorType = CurGD.getCtorType(); 822 823 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 824 CtorType == Ctor_Complete) && 825 "can only generate complete ctor for this ABI"); 826 827 // Before we go any further, try the complete->base constructor 828 // delegation optimization. 829 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 830 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 831 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 832 return; 833 } 834 835 const FunctionDecl *Definition = nullptr; 836 Stmt *Body = Ctor->getBody(Definition); 837 assert(Definition == Ctor && "emitting wrong constructor body"); 838 839 // Enter the function-try-block before the constructor prologue if 840 // applicable. 841 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 842 if (IsTryBody) 843 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 844 845 incrementProfileCounter(Body); 846 847 RunCleanupsScope RunCleanups(*this); 848 849 // TODO: in restricted cases, we can emit the vbase initializers of 850 // a complete ctor and then delegate to the base ctor. 851 852 // Emit the constructor prologue, i.e. the base and member 853 // initializers. 854 EmitCtorPrologue(Ctor, CtorType, Args); 855 856 // Emit the body of the statement. 857 if (IsTryBody) 858 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 859 else if (Body) 860 EmitStmt(Body); 861 862 // Emit any cleanup blocks associated with the member or base 863 // initializers, which includes (along the exceptional path) the 864 // destructors for those members and bases that were fully 865 // constructed. 866 RunCleanups.ForceCleanup(); 867 868 if (IsTryBody) 869 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 870 } 871 872 namespace { 873 /// RAII object to indicate that codegen is copying the value representation 874 /// instead of the object representation. Useful when copying a struct or 875 /// class which has uninitialized members and we're only performing 876 /// lvalue-to-rvalue conversion on the object but not its members. 877 class CopyingValueRepresentation { 878 public: 879 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 880 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 881 CGF.SanOpts.set(SanitizerKind::Bool, false); 882 CGF.SanOpts.set(SanitizerKind::Enum, false); 883 } 884 ~CopyingValueRepresentation() { 885 CGF.SanOpts = OldSanOpts; 886 } 887 private: 888 CodeGenFunction &CGF; 889 SanitizerSet OldSanOpts; 890 }; 891 } // end anonymous namespace 892 893 namespace { 894 class FieldMemcpyizer { 895 public: 896 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 897 const VarDecl *SrcRec) 898 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 899 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 900 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 901 LastFieldOffset(0), LastAddedFieldIndex(0) {} 902 903 bool isMemcpyableField(FieldDecl *F) const { 904 // Never memcpy fields when we are adding poisoned paddings. 905 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 906 return false; 907 Qualifiers Qual = F->getType().getQualifiers(); 908 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 909 return false; 910 return true; 911 } 912 913 void addMemcpyableField(FieldDecl *F) { 914 if (F->isZeroSize(CGF.getContext())) 915 return; 916 if (!FirstField) 917 addInitialField(F); 918 else 919 addNextField(F); 920 } 921 922 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 923 ASTContext &Ctx = CGF.getContext(); 924 unsigned LastFieldSize = 925 LastField->isBitField() 926 ? LastField->getBitWidthValue(Ctx) 927 : Ctx.toBits( 928 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 929 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 930 FirstByteOffset + Ctx.getCharWidth() - 1; 931 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 932 return MemcpySize; 933 } 934 935 void emitMemcpy() { 936 // Give the subclass a chance to bail out if it feels the memcpy isn't 937 // worth it (e.g. Hasn't aggregated enough data). 938 if (!FirstField) { 939 return; 940 } 941 942 uint64_t FirstByteOffset; 943 if (FirstField->isBitField()) { 944 const CGRecordLayout &RL = 945 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 946 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 947 // FirstFieldOffset is not appropriate for bitfields, 948 // we need to use the storage offset instead. 949 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 950 } else { 951 FirstByteOffset = FirstFieldOffset; 952 } 953 954 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 955 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 956 Address ThisPtr = CGF.LoadCXXThisAddress(); 957 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 958 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 959 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 960 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 961 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 962 963 emitMemcpyIR( 964 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 965 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 966 MemcpySize); 967 reset(); 968 } 969 970 void reset() { 971 FirstField = nullptr; 972 } 973 974 protected: 975 CodeGenFunction &CGF; 976 const CXXRecordDecl *ClassDecl; 977 978 private: 979 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 980 llvm::PointerType *DPT = DestPtr.getType(); 981 llvm::Type *DBP = 982 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 983 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 984 985 llvm::PointerType *SPT = SrcPtr.getType(); 986 llvm::Type *SBP = 987 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 988 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 989 990 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 991 } 992 993 void addInitialField(FieldDecl *F) { 994 FirstField = F; 995 LastField = F; 996 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 997 LastFieldOffset = FirstFieldOffset; 998 LastAddedFieldIndex = F->getFieldIndex(); 999 } 1000 1001 void addNextField(FieldDecl *F) { 1002 // For the most part, the following invariant will hold: 1003 // F->getFieldIndex() == LastAddedFieldIndex + 1 1004 // The one exception is that Sema won't add a copy-initializer for an 1005 // unnamed bitfield, which will show up here as a gap in the sequence. 1006 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1007 "Cannot aggregate fields out of order."); 1008 LastAddedFieldIndex = F->getFieldIndex(); 1009 1010 // The 'first' and 'last' fields are chosen by offset, rather than field 1011 // index. This allows the code to support bitfields, as well as regular 1012 // fields. 1013 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1014 if (FOffset < FirstFieldOffset) { 1015 FirstField = F; 1016 FirstFieldOffset = FOffset; 1017 } else if (FOffset >= LastFieldOffset) { 1018 LastField = F; 1019 LastFieldOffset = FOffset; 1020 } 1021 } 1022 1023 const VarDecl *SrcRec; 1024 const ASTRecordLayout &RecLayout; 1025 FieldDecl *FirstField; 1026 FieldDecl *LastField; 1027 uint64_t FirstFieldOffset, LastFieldOffset; 1028 unsigned LastAddedFieldIndex; 1029 }; 1030 1031 class ConstructorMemcpyizer : public FieldMemcpyizer { 1032 private: 1033 /// Get source argument for copy constructor. Returns null if not a copy 1034 /// constructor. 1035 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1036 const CXXConstructorDecl *CD, 1037 FunctionArgList &Args) { 1038 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1039 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1040 return nullptr; 1041 } 1042 1043 // Returns true if a CXXCtorInitializer represents a member initialization 1044 // that can be rolled into a memcpy. 1045 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1046 if (!MemcpyableCtor) 1047 return false; 1048 FieldDecl *Field = MemberInit->getMember(); 1049 assert(Field && "No field for member init."); 1050 QualType FieldType = Field->getType(); 1051 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1052 1053 // Bail out on non-memcpyable, not-trivially-copyable members. 1054 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1055 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1056 FieldType->isReferenceType())) 1057 return false; 1058 1059 // Bail out on volatile fields. 1060 if (!isMemcpyableField(Field)) 1061 return false; 1062 1063 // Otherwise we're good. 1064 return true; 1065 } 1066 1067 public: 1068 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1069 FunctionArgList &Args) 1070 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1071 ConstructorDecl(CD), 1072 MemcpyableCtor(CD->isDefaulted() && 1073 CD->isCopyOrMoveConstructor() && 1074 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1075 Args(Args) { } 1076 1077 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1078 if (isMemberInitMemcpyable(MemberInit)) { 1079 AggregatedInits.push_back(MemberInit); 1080 addMemcpyableField(MemberInit->getMember()); 1081 } else { 1082 emitAggregatedInits(); 1083 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1084 ConstructorDecl, Args); 1085 } 1086 } 1087 1088 void emitAggregatedInits() { 1089 if (AggregatedInits.size() <= 1) { 1090 // This memcpy is too small to be worthwhile. Fall back on default 1091 // codegen. 1092 if (!AggregatedInits.empty()) { 1093 CopyingValueRepresentation CVR(CGF); 1094 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1095 AggregatedInits[0], ConstructorDecl, Args); 1096 AggregatedInits.clear(); 1097 } 1098 reset(); 1099 return; 1100 } 1101 1102 pushEHDestructors(); 1103 emitMemcpy(); 1104 AggregatedInits.clear(); 1105 } 1106 1107 void pushEHDestructors() { 1108 Address ThisPtr = CGF.LoadCXXThisAddress(); 1109 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1110 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1111 1112 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1113 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1114 QualType FieldType = MemberInit->getAnyMember()->getType(); 1115 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1116 if (!CGF.needsEHCleanup(dtorKind)) 1117 continue; 1118 LValue FieldLHS = LHS; 1119 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1120 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1121 } 1122 } 1123 1124 void finish() { 1125 emitAggregatedInits(); 1126 } 1127 1128 private: 1129 const CXXConstructorDecl *ConstructorDecl; 1130 bool MemcpyableCtor; 1131 FunctionArgList &Args; 1132 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1133 }; 1134 1135 class AssignmentMemcpyizer : public FieldMemcpyizer { 1136 private: 1137 // Returns the memcpyable field copied by the given statement, if one 1138 // exists. Otherwise returns null. 1139 FieldDecl *getMemcpyableField(Stmt *S) { 1140 if (!AssignmentsMemcpyable) 1141 return nullptr; 1142 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1143 // Recognise trivial assignments. 1144 if (BO->getOpcode() != BO_Assign) 1145 return nullptr; 1146 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1147 if (!ME) 1148 return nullptr; 1149 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1150 if (!Field || !isMemcpyableField(Field)) 1151 return nullptr; 1152 Stmt *RHS = BO->getRHS(); 1153 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1154 RHS = EC->getSubExpr(); 1155 if (!RHS) 1156 return nullptr; 1157 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1158 if (ME2->getMemberDecl() == Field) 1159 return Field; 1160 } 1161 return nullptr; 1162 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1163 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1164 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1165 return nullptr; 1166 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1167 if (!IOA) 1168 return nullptr; 1169 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1170 if (!Field || !isMemcpyableField(Field)) 1171 return nullptr; 1172 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1173 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1174 return nullptr; 1175 return Field; 1176 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1177 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1178 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1179 return nullptr; 1180 Expr *DstPtr = CE->getArg(0); 1181 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1182 DstPtr = DC->getSubExpr(); 1183 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1184 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1185 return nullptr; 1186 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1187 if (!ME) 1188 return nullptr; 1189 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1190 if (!Field || !isMemcpyableField(Field)) 1191 return nullptr; 1192 Expr *SrcPtr = CE->getArg(1); 1193 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1194 SrcPtr = SC->getSubExpr(); 1195 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1196 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1197 return nullptr; 1198 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1199 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1200 return nullptr; 1201 return Field; 1202 } 1203 1204 return nullptr; 1205 } 1206 1207 bool AssignmentsMemcpyable; 1208 SmallVector<Stmt*, 16> AggregatedStmts; 1209 1210 public: 1211 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1212 FunctionArgList &Args) 1213 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1214 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1215 assert(Args.size() == 2); 1216 } 1217 1218 void emitAssignment(Stmt *S) { 1219 FieldDecl *F = getMemcpyableField(S); 1220 if (F) { 1221 addMemcpyableField(F); 1222 AggregatedStmts.push_back(S); 1223 } else { 1224 emitAggregatedStmts(); 1225 CGF.EmitStmt(S); 1226 } 1227 } 1228 1229 void emitAggregatedStmts() { 1230 if (AggregatedStmts.size() <= 1) { 1231 if (!AggregatedStmts.empty()) { 1232 CopyingValueRepresentation CVR(CGF); 1233 CGF.EmitStmt(AggregatedStmts[0]); 1234 } 1235 reset(); 1236 } 1237 1238 emitMemcpy(); 1239 AggregatedStmts.clear(); 1240 } 1241 1242 void finish() { 1243 emitAggregatedStmts(); 1244 } 1245 }; 1246 } // end anonymous namespace 1247 1248 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1249 const Type *BaseType = BaseInit->getBaseClass(); 1250 const auto *BaseClassDecl = 1251 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1252 return BaseClassDecl->isDynamicClass(); 1253 } 1254 1255 /// EmitCtorPrologue - This routine generates necessary code to initialize 1256 /// base classes and non-static data members belonging to this constructor. 1257 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1258 CXXCtorType CtorType, 1259 FunctionArgList &Args) { 1260 if (CD->isDelegatingConstructor()) 1261 return EmitDelegatingCXXConstructorCall(CD, Args); 1262 1263 const CXXRecordDecl *ClassDecl = CD->getParent(); 1264 1265 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1266 E = CD->init_end(); 1267 1268 // Virtual base initializers first, if any. They aren't needed if: 1269 // - This is a base ctor variant 1270 // - There are no vbases 1271 // - The class is abstract, so a complete object of it cannot be constructed 1272 // 1273 // The check for an abstract class is necessary because sema may not have 1274 // marked virtual base destructors referenced. 1275 bool ConstructVBases = CtorType != Ctor_Base && 1276 ClassDecl->getNumVBases() != 0 && 1277 !ClassDecl->isAbstract(); 1278 1279 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1280 // constructor of a class with virtual bases takes an additional parameter to 1281 // conditionally construct the virtual bases. Emit that check here. 1282 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1283 if (ConstructVBases && 1284 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1285 BaseCtorContinueBB = 1286 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1287 assert(BaseCtorContinueBB); 1288 } 1289 1290 llvm::Value *const OldThis = CXXThisValue; 1291 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1292 if (!ConstructVBases) 1293 continue; 1294 if (CGM.getCodeGenOpts().StrictVTablePointers && 1295 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1296 isInitializerOfDynamicClass(*B)) 1297 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1298 EmitBaseInitializer(*this, ClassDecl, *B); 1299 } 1300 1301 if (BaseCtorContinueBB) { 1302 // Complete object handler should continue to the remaining initializers. 1303 Builder.CreateBr(BaseCtorContinueBB); 1304 EmitBlock(BaseCtorContinueBB); 1305 } 1306 1307 // Then, non-virtual base initializers. 1308 for (; B != E && (*B)->isBaseInitializer(); B++) { 1309 assert(!(*B)->isBaseVirtual()); 1310 1311 if (CGM.getCodeGenOpts().StrictVTablePointers && 1312 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1313 isInitializerOfDynamicClass(*B)) 1314 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1315 EmitBaseInitializer(*this, ClassDecl, *B); 1316 } 1317 1318 CXXThisValue = OldThis; 1319 1320 InitializeVTablePointers(ClassDecl); 1321 1322 // And finally, initialize class members. 1323 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1324 ConstructorMemcpyizer CM(*this, CD, Args); 1325 for (; B != E; B++) { 1326 CXXCtorInitializer *Member = (*B); 1327 assert(!Member->isBaseInitializer()); 1328 assert(Member->isAnyMemberInitializer() && 1329 "Delegating initializer on non-delegating constructor"); 1330 CM.addMemberInitializer(Member); 1331 } 1332 CM.finish(); 1333 } 1334 1335 static bool 1336 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1337 1338 static bool 1339 HasTrivialDestructorBody(ASTContext &Context, 1340 const CXXRecordDecl *BaseClassDecl, 1341 const CXXRecordDecl *MostDerivedClassDecl) 1342 { 1343 // If the destructor is trivial we don't have to check anything else. 1344 if (BaseClassDecl->hasTrivialDestructor()) 1345 return true; 1346 1347 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1348 return false; 1349 1350 // Check fields. 1351 for (const auto *Field : BaseClassDecl->fields()) 1352 if (!FieldHasTrivialDestructorBody(Context, Field)) 1353 return false; 1354 1355 // Check non-virtual bases. 1356 for (const auto &I : BaseClassDecl->bases()) { 1357 if (I.isVirtual()) 1358 continue; 1359 1360 const CXXRecordDecl *NonVirtualBase = 1361 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1362 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1363 MostDerivedClassDecl)) 1364 return false; 1365 } 1366 1367 if (BaseClassDecl == MostDerivedClassDecl) { 1368 // Check virtual bases. 1369 for (const auto &I : BaseClassDecl->vbases()) { 1370 const CXXRecordDecl *VirtualBase = 1371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1372 if (!HasTrivialDestructorBody(Context, VirtualBase, 1373 MostDerivedClassDecl)) 1374 return false; 1375 } 1376 } 1377 1378 return true; 1379 } 1380 1381 static bool 1382 FieldHasTrivialDestructorBody(ASTContext &Context, 1383 const FieldDecl *Field) 1384 { 1385 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1386 1387 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1388 if (!RT) 1389 return true; 1390 1391 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1392 1393 // The destructor for an implicit anonymous union member is never invoked. 1394 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1395 return false; 1396 1397 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1398 } 1399 1400 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1401 /// any vtable pointers before calling this destructor. 1402 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1403 const CXXDestructorDecl *Dtor) { 1404 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1405 if (!ClassDecl->isDynamicClass()) 1406 return true; 1407 1408 if (!Dtor->hasTrivialBody()) 1409 return false; 1410 1411 // Check the fields. 1412 for (const auto *Field : ClassDecl->fields()) 1413 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1414 return false; 1415 1416 return true; 1417 } 1418 1419 /// EmitDestructorBody - Emits the body of the current destructor. 1420 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1421 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1422 CXXDtorType DtorType = CurGD.getDtorType(); 1423 1424 // For an abstract class, non-base destructors are never used (and can't 1425 // be emitted in general, because vbase dtors may not have been validated 1426 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1427 // in fact emit references to them from other compilations, so emit them 1428 // as functions containing a trap instruction. 1429 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1430 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1431 TrapCall->setDoesNotReturn(); 1432 TrapCall->setDoesNotThrow(); 1433 Builder.CreateUnreachable(); 1434 Builder.ClearInsertionPoint(); 1435 return; 1436 } 1437 1438 Stmt *Body = Dtor->getBody(); 1439 if (Body) 1440 incrementProfileCounter(Body); 1441 1442 // The call to operator delete in a deleting destructor happens 1443 // outside of the function-try-block, which means it's always 1444 // possible to delegate the destructor body to the complete 1445 // destructor. Do so. 1446 if (DtorType == Dtor_Deleting) { 1447 RunCleanupsScope DtorEpilogue(*this); 1448 EnterDtorCleanups(Dtor, Dtor_Deleting); 1449 if (HaveInsertPoint()) { 1450 QualType ThisTy = Dtor->getThisObjectType(); 1451 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1452 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1453 } 1454 return; 1455 } 1456 1457 // If the body is a function-try-block, enter the try before 1458 // anything else. 1459 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1460 if (isTryBody) 1461 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1462 EmitAsanPrologueOrEpilogue(false); 1463 1464 // Enter the epilogue cleanups. 1465 RunCleanupsScope DtorEpilogue(*this); 1466 1467 // If this is the complete variant, just invoke the base variant; 1468 // the epilogue will destruct the virtual bases. But we can't do 1469 // this optimization if the body is a function-try-block, because 1470 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1471 // always delegate because we might not have a definition in this TU. 1472 switch (DtorType) { 1473 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1474 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1475 1476 case Dtor_Complete: 1477 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1478 "can't emit a dtor without a body for non-Microsoft ABIs"); 1479 1480 // Enter the cleanup scopes for virtual bases. 1481 EnterDtorCleanups(Dtor, Dtor_Complete); 1482 1483 if (!isTryBody) { 1484 QualType ThisTy = Dtor->getThisObjectType(); 1485 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1486 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1487 break; 1488 } 1489 1490 // Fallthrough: act like we're in the base variant. 1491 LLVM_FALLTHROUGH; 1492 1493 case Dtor_Base: 1494 assert(Body); 1495 1496 // Enter the cleanup scopes for fields and non-virtual bases. 1497 EnterDtorCleanups(Dtor, Dtor_Base); 1498 1499 // Initialize the vtable pointers before entering the body. 1500 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1501 // Insert the llvm.launder.invariant.group intrinsic before initializing 1502 // the vptrs to cancel any previous assumptions we might have made. 1503 if (CGM.getCodeGenOpts().StrictVTablePointers && 1504 CGM.getCodeGenOpts().OptimizationLevel > 0) 1505 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1506 InitializeVTablePointers(Dtor->getParent()); 1507 } 1508 1509 if (isTryBody) 1510 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1511 else if (Body) 1512 EmitStmt(Body); 1513 else { 1514 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1515 // nothing to do besides what's in the epilogue 1516 } 1517 // -fapple-kext must inline any call to this dtor into 1518 // the caller's body. 1519 if (getLangOpts().AppleKext) 1520 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1521 1522 break; 1523 } 1524 1525 // Jump out through the epilogue cleanups. 1526 DtorEpilogue.ForceCleanup(); 1527 1528 // Exit the try if applicable. 1529 if (isTryBody) 1530 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1531 } 1532 1533 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1534 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1535 const Stmt *RootS = AssignOp->getBody(); 1536 assert(isa<CompoundStmt>(RootS) && 1537 "Body of an implicit assignment operator should be compound stmt."); 1538 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1539 1540 LexicalScope Scope(*this, RootCS->getSourceRange()); 1541 1542 incrementProfileCounter(RootCS); 1543 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1544 for (auto *I : RootCS->body()) 1545 AM.emitAssignment(I); 1546 AM.finish(); 1547 } 1548 1549 namespace { 1550 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1551 const CXXDestructorDecl *DD) { 1552 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1553 return CGF.EmitScalarExpr(ThisArg); 1554 return CGF.LoadCXXThis(); 1555 } 1556 1557 /// Call the operator delete associated with the current destructor. 1558 struct CallDtorDelete final : EHScopeStack::Cleanup { 1559 CallDtorDelete() {} 1560 1561 void Emit(CodeGenFunction &CGF, Flags flags) override { 1562 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1563 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1564 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1565 LoadThisForDtorDelete(CGF, Dtor), 1566 CGF.getContext().getTagDeclType(ClassDecl)); 1567 } 1568 }; 1569 1570 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1571 llvm::Value *ShouldDeleteCondition, 1572 bool ReturnAfterDelete) { 1573 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1574 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1575 llvm::Value *ShouldCallDelete 1576 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1577 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1578 1579 CGF.EmitBlock(callDeleteBB); 1580 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1581 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1582 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1583 LoadThisForDtorDelete(CGF, Dtor), 1584 CGF.getContext().getTagDeclType(ClassDecl)); 1585 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1586 ReturnAfterDelete && 1587 "unexpected value for ReturnAfterDelete"); 1588 if (ReturnAfterDelete) 1589 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1590 else 1591 CGF.Builder.CreateBr(continueBB); 1592 1593 CGF.EmitBlock(continueBB); 1594 } 1595 1596 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1597 llvm::Value *ShouldDeleteCondition; 1598 1599 public: 1600 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1601 : ShouldDeleteCondition(ShouldDeleteCondition) { 1602 assert(ShouldDeleteCondition != nullptr); 1603 } 1604 1605 void Emit(CodeGenFunction &CGF, Flags flags) override { 1606 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1607 /*ReturnAfterDelete*/false); 1608 } 1609 }; 1610 1611 class DestroyField final : public EHScopeStack::Cleanup { 1612 const FieldDecl *field; 1613 CodeGenFunction::Destroyer *destroyer; 1614 bool useEHCleanupForArray; 1615 1616 public: 1617 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1618 bool useEHCleanupForArray) 1619 : field(field), destroyer(destroyer), 1620 useEHCleanupForArray(useEHCleanupForArray) {} 1621 1622 void Emit(CodeGenFunction &CGF, Flags flags) override { 1623 // Find the address of the field. 1624 Address thisValue = CGF.LoadCXXThisAddress(); 1625 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1626 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1627 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1628 assert(LV.isSimple()); 1629 1630 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1631 flags.isForNormalCleanup() && useEHCleanupForArray); 1632 } 1633 }; 1634 1635 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1636 CharUnits::QuantityType PoisonSize) { 1637 CodeGenFunction::SanitizerScope SanScope(&CGF); 1638 // Pass in void pointer and size of region as arguments to runtime 1639 // function 1640 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1641 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1642 1643 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1644 1645 llvm::FunctionType *FnType = 1646 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1647 llvm::FunctionCallee Fn = 1648 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1649 CGF.EmitNounwindRuntimeCall(Fn, Args); 1650 } 1651 1652 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1653 const CXXDestructorDecl *Dtor; 1654 1655 public: 1656 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1657 1658 // Generate function call for handling object poisoning. 1659 // Disables tail call elimination, to prevent the current stack frame 1660 // from disappearing from the stack trace. 1661 void Emit(CodeGenFunction &CGF, Flags flags) override { 1662 const ASTRecordLayout &Layout = 1663 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1664 1665 // Nothing to poison. 1666 if (Layout.getFieldCount() == 0) 1667 return; 1668 1669 // Prevent the current stack frame from disappearing from the stack trace. 1670 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1671 1672 // Construct pointer to region to begin poisoning, and calculate poison 1673 // size, so that only members declared in this class are poisoned. 1674 ASTContext &Context = CGF.getContext(); 1675 unsigned fieldIndex = 0; 1676 int startIndex = -1; 1677 // RecordDecl::field_iterator Field; 1678 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1679 // Poison field if it is trivial 1680 if (FieldHasTrivialDestructorBody(Context, Field)) { 1681 // Start sanitizing at this field 1682 if (startIndex < 0) 1683 startIndex = fieldIndex; 1684 1685 // Currently on the last field, and it must be poisoned with the 1686 // current block. 1687 if (fieldIndex == Layout.getFieldCount() - 1) { 1688 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1689 } 1690 } else if (startIndex >= 0) { 1691 // No longer within a block of memory to poison, so poison the block 1692 PoisonMembers(CGF, startIndex, fieldIndex); 1693 // Re-set the start index 1694 startIndex = -1; 1695 } 1696 fieldIndex += 1; 1697 } 1698 } 1699 1700 private: 1701 /// \param layoutStartOffset index of the ASTRecordLayout field to 1702 /// start poisoning (inclusive) 1703 /// \param layoutEndOffset index of the ASTRecordLayout field to 1704 /// end poisoning (exclusive) 1705 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1706 unsigned layoutEndOffset) { 1707 ASTContext &Context = CGF.getContext(); 1708 const ASTRecordLayout &Layout = 1709 Context.getASTRecordLayout(Dtor->getParent()); 1710 1711 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1712 CGF.SizeTy, 1713 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1714 .getQuantity()); 1715 1716 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1717 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1718 OffsetSizePtr); 1719 1720 CharUnits::QuantityType PoisonSize; 1721 if (layoutEndOffset >= Layout.getFieldCount()) { 1722 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1723 Context.toCharUnitsFromBits( 1724 Layout.getFieldOffset(layoutStartOffset)) 1725 .getQuantity(); 1726 } else { 1727 PoisonSize = Context.toCharUnitsFromBits( 1728 Layout.getFieldOffset(layoutEndOffset) - 1729 Layout.getFieldOffset(layoutStartOffset)) 1730 .getQuantity(); 1731 } 1732 1733 if (PoisonSize == 0) 1734 return; 1735 1736 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1737 } 1738 }; 1739 1740 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1741 const CXXDestructorDecl *Dtor; 1742 1743 public: 1744 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1745 1746 // Generate function call for handling vtable pointer poisoning. 1747 void Emit(CodeGenFunction &CGF, Flags flags) override { 1748 assert(Dtor->getParent()->isDynamicClass()); 1749 (void)Dtor; 1750 ASTContext &Context = CGF.getContext(); 1751 // Poison vtable and vtable ptr if they exist for this class. 1752 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1753 1754 CharUnits::QuantityType PoisonSize = 1755 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1756 // Pass in void pointer and size of region as arguments to runtime 1757 // function 1758 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1759 } 1760 }; 1761 } // end anonymous namespace 1762 1763 /// Emit all code that comes at the end of class's 1764 /// destructor. This is to call destructors on members and base classes 1765 /// in reverse order of their construction. 1766 /// 1767 /// For a deleting destructor, this also handles the case where a destroying 1768 /// operator delete completely overrides the definition. 1769 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1770 CXXDtorType DtorType) { 1771 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1772 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1773 1774 // The deleting-destructor phase just needs to call the appropriate 1775 // operator delete that Sema picked up. 1776 if (DtorType == Dtor_Deleting) { 1777 assert(DD->getOperatorDelete() && 1778 "operator delete missing - EnterDtorCleanups"); 1779 if (CXXStructorImplicitParamValue) { 1780 // If there is an implicit param to the deleting dtor, it's a boolean 1781 // telling whether this is a deleting destructor. 1782 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1783 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1784 /*ReturnAfterDelete*/true); 1785 else 1786 EHStack.pushCleanup<CallDtorDeleteConditional>( 1787 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1788 } else { 1789 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1790 const CXXRecordDecl *ClassDecl = DD->getParent(); 1791 EmitDeleteCall(DD->getOperatorDelete(), 1792 LoadThisForDtorDelete(*this, DD), 1793 getContext().getTagDeclType(ClassDecl)); 1794 EmitBranchThroughCleanup(ReturnBlock); 1795 } else { 1796 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1797 } 1798 } 1799 return; 1800 } 1801 1802 const CXXRecordDecl *ClassDecl = DD->getParent(); 1803 1804 // Unions have no bases and do not call field destructors. 1805 if (ClassDecl->isUnion()) 1806 return; 1807 1808 // The complete-destructor phase just destructs all the virtual bases. 1809 if (DtorType == Dtor_Complete) { 1810 // Poison the vtable pointer such that access after the base 1811 // and member destructors are invoked is invalid. 1812 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1813 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1814 ClassDecl->isPolymorphic()) 1815 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1816 1817 // We push them in the forward order so that they'll be popped in 1818 // the reverse order. 1819 for (const auto &Base : ClassDecl->vbases()) { 1820 auto *BaseClassDecl = 1821 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1822 1823 // Ignore trivial destructors. 1824 if (BaseClassDecl->hasTrivialDestructor()) 1825 continue; 1826 1827 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1828 BaseClassDecl, 1829 /*BaseIsVirtual*/ true); 1830 } 1831 1832 return; 1833 } 1834 1835 assert(DtorType == Dtor_Base); 1836 // Poison the vtable pointer if it has no virtual bases, but inherits 1837 // virtual functions. 1838 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1839 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1840 ClassDecl->isPolymorphic()) 1841 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1842 1843 // Destroy non-virtual bases. 1844 for (const auto &Base : ClassDecl->bases()) { 1845 // Ignore virtual bases. 1846 if (Base.isVirtual()) 1847 continue; 1848 1849 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1850 1851 // Ignore trivial destructors. 1852 if (BaseClassDecl->hasTrivialDestructor()) 1853 continue; 1854 1855 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1856 BaseClassDecl, 1857 /*BaseIsVirtual*/ false); 1858 } 1859 1860 // Poison fields such that access after their destructors are 1861 // invoked, and before the base class destructor runs, is invalid. 1862 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1863 SanOpts.has(SanitizerKind::Memory)) 1864 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1865 1866 // Destroy direct fields. 1867 for (const auto *Field : ClassDecl->fields()) { 1868 QualType type = Field->getType(); 1869 QualType::DestructionKind dtorKind = type.isDestructedType(); 1870 if (!dtorKind) continue; 1871 1872 // Anonymous union members do not have their destructors called. 1873 const RecordType *RT = type->getAsUnionType(); 1874 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1875 1876 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1877 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1878 getDestroyer(dtorKind), 1879 cleanupKind & EHCleanup); 1880 } 1881 } 1882 1883 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1884 /// constructor for each of several members of an array. 1885 /// 1886 /// \param ctor the constructor to call for each element 1887 /// \param arrayType the type of the array to initialize 1888 /// \param arrayBegin an arrayType* 1889 /// \param zeroInitialize true if each element should be 1890 /// zero-initialized before it is constructed 1891 void CodeGenFunction::EmitCXXAggrConstructorCall( 1892 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1893 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1894 bool zeroInitialize) { 1895 QualType elementType; 1896 llvm::Value *numElements = 1897 emitArrayLength(arrayType, elementType, arrayBegin); 1898 1899 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1900 NewPointerIsChecked, zeroInitialize); 1901 } 1902 1903 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1904 /// constructor for each of several members of an array. 1905 /// 1906 /// \param ctor the constructor to call for each element 1907 /// \param numElements the number of elements in the array; 1908 /// may be zero 1909 /// \param arrayBase a T*, where T is the type constructed by ctor 1910 /// \param zeroInitialize true if each element should be 1911 /// zero-initialized before it is constructed 1912 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1913 llvm::Value *numElements, 1914 Address arrayBase, 1915 const CXXConstructExpr *E, 1916 bool NewPointerIsChecked, 1917 bool zeroInitialize) { 1918 // It's legal for numElements to be zero. This can happen both 1919 // dynamically, because x can be zero in 'new A[x]', and statically, 1920 // because of GCC extensions that permit zero-length arrays. There 1921 // are probably legitimate places where we could assume that this 1922 // doesn't happen, but it's not clear that it's worth it. 1923 llvm::BranchInst *zeroCheckBranch = nullptr; 1924 1925 // Optimize for a constant count. 1926 llvm::ConstantInt *constantCount 1927 = dyn_cast<llvm::ConstantInt>(numElements); 1928 if (constantCount) { 1929 // Just skip out if the constant count is zero. 1930 if (constantCount->isZero()) return; 1931 1932 // Otherwise, emit the check. 1933 } else { 1934 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1935 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1936 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1937 EmitBlock(loopBB); 1938 } 1939 1940 // Find the end of the array. 1941 llvm::Value *arrayBegin = arrayBase.getPointer(); 1942 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1943 "arrayctor.end"); 1944 1945 // Enter the loop, setting up a phi for the current location to initialize. 1946 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1947 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1948 EmitBlock(loopBB); 1949 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1950 "arrayctor.cur"); 1951 cur->addIncoming(arrayBegin, entryBB); 1952 1953 // Inside the loop body, emit the constructor call on the array element. 1954 1955 // The alignment of the base, adjusted by the size of a single element, 1956 // provides a conservative estimate of the alignment of every element. 1957 // (This assumes we never start tracking offsetted alignments.) 1958 // 1959 // Note that these are complete objects and so we don't need to 1960 // use the non-virtual size or alignment. 1961 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1962 CharUnits eltAlignment = 1963 arrayBase.getAlignment() 1964 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1965 Address curAddr = Address(cur, eltAlignment); 1966 1967 // Zero initialize the storage, if requested. 1968 if (zeroInitialize) 1969 EmitNullInitialization(curAddr, type); 1970 1971 // C++ [class.temporary]p4: 1972 // There are two contexts in which temporaries are destroyed at a different 1973 // point than the end of the full-expression. The first context is when a 1974 // default constructor is called to initialize an element of an array. 1975 // If the constructor has one or more default arguments, the destruction of 1976 // every temporary created in a default argument expression is sequenced 1977 // before the construction of the next array element, if any. 1978 1979 { 1980 RunCleanupsScope Scope(*this); 1981 1982 // Evaluate the constructor and its arguments in a regular 1983 // partial-destroy cleanup. 1984 if (getLangOpts().Exceptions && 1985 !ctor->getParent()->hasTrivialDestructor()) { 1986 Destroyer *destroyer = destroyCXXObject; 1987 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1988 *destroyer); 1989 } 1990 auto currAVS = AggValueSlot::forAddr( 1991 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 1992 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1993 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 1994 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 1995 : AggValueSlot::IsNotSanitizerChecked); 1996 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1997 /*Delegating=*/false, currAVS, E); 1998 } 1999 2000 // Go to the next element. 2001 llvm::Value *next = 2002 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2003 "arrayctor.next"); 2004 cur->addIncoming(next, Builder.GetInsertBlock()); 2005 2006 // Check whether that's the end of the loop. 2007 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2008 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2009 Builder.CreateCondBr(done, contBB, loopBB); 2010 2011 // Patch the earlier check to skip over the loop. 2012 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2013 2014 EmitBlock(contBB); 2015 } 2016 2017 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2018 Address addr, 2019 QualType type) { 2020 const RecordType *rtype = type->castAs<RecordType>(); 2021 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2022 const CXXDestructorDecl *dtor = record->getDestructor(); 2023 assert(!dtor->isTrivial()); 2024 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2025 /*Delegating=*/false, addr, type); 2026 } 2027 2028 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2029 CXXCtorType Type, 2030 bool ForVirtualBase, 2031 bool Delegating, 2032 AggValueSlot ThisAVS, 2033 const CXXConstructExpr *E) { 2034 CallArgList Args; 2035 Address This = ThisAVS.getAddress(); 2036 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2037 QualType ThisType = D->getThisType(); 2038 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2039 llvm::Value *ThisPtr = This.getPointer(); 2040 2041 if (SlotAS != ThisAS) { 2042 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2043 llvm::Type *NewType = 2044 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2045 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2046 ThisAS, SlotAS, NewType); 2047 } 2048 2049 // Push the this ptr. 2050 Args.add(RValue::get(ThisPtr), D->getThisType()); 2051 2052 // If this is a trivial constructor, emit a memcpy now before we lose 2053 // the alignment information on the argument. 2054 // FIXME: It would be better to preserve alignment information into CallArg. 2055 if (isMemcpyEquivalentSpecialMember(D)) { 2056 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2057 2058 const Expr *Arg = E->getArg(0); 2059 LValue Src = EmitLValue(Arg); 2060 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2061 LValue Dest = MakeAddrLValue(This, DestTy); 2062 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2063 return; 2064 } 2065 2066 // Add the rest of the user-supplied arguments. 2067 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2068 EvaluationOrder Order = E->isListInitialization() 2069 ? EvaluationOrder::ForceLeftToRight 2070 : EvaluationOrder::Default; 2071 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2072 /*ParamsToSkip*/ 0, Order); 2073 2074 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2075 ThisAVS.mayOverlap(), E->getExprLoc(), 2076 ThisAVS.isSanitizerChecked()); 2077 } 2078 2079 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2080 const CXXConstructorDecl *Ctor, 2081 CXXCtorType Type, CallArgList &Args) { 2082 // We can't forward a variadic call. 2083 if (Ctor->isVariadic()) 2084 return false; 2085 2086 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2087 // If the parameters are callee-cleanup, it's not safe to forward. 2088 for (auto *P : Ctor->parameters()) 2089 if (P->needsDestruction(CGF.getContext())) 2090 return false; 2091 2092 // Likewise if they're inalloca. 2093 const CGFunctionInfo &Info = 2094 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2095 if (Info.usesInAlloca()) 2096 return false; 2097 } 2098 2099 // Anything else should be OK. 2100 return true; 2101 } 2102 2103 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2104 CXXCtorType Type, 2105 bool ForVirtualBase, 2106 bool Delegating, 2107 Address This, 2108 CallArgList &Args, 2109 AggValueSlot::Overlap_t Overlap, 2110 SourceLocation Loc, 2111 bool NewPointerIsChecked) { 2112 const CXXRecordDecl *ClassDecl = D->getParent(); 2113 2114 if (!NewPointerIsChecked) 2115 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2116 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2117 2118 if (D->isTrivial() && D->isDefaultConstructor()) { 2119 assert(Args.size() == 1 && "trivial default ctor with args"); 2120 return; 2121 } 2122 2123 // If this is a trivial constructor, just emit what's needed. If this is a 2124 // union copy constructor, we must emit a memcpy, because the AST does not 2125 // model that copy. 2126 if (isMemcpyEquivalentSpecialMember(D)) { 2127 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2128 2129 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2130 Address Src(Args[1].getRValue(*this).getScalarVal(), 2131 getNaturalTypeAlignment(SrcTy)); 2132 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2133 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2134 LValue DestLVal = MakeAddrLValue(This, DestTy); 2135 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2136 return; 2137 } 2138 2139 bool PassPrototypeArgs = true; 2140 // Check whether we can actually emit the constructor before trying to do so. 2141 if (auto Inherited = D->getInheritedConstructor()) { 2142 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2143 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2144 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2145 Delegating, Args); 2146 return; 2147 } 2148 } 2149 2150 // Insert any ABI-specific implicit constructor arguments. 2151 CGCXXABI::AddedStructorArgs ExtraArgs = 2152 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2153 Delegating, Args); 2154 2155 // Emit the call. 2156 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2157 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2158 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2159 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2160 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, Loc); 2161 2162 // Generate vtable assumptions if we're constructing a complete object 2163 // with a vtable. We don't do this for base subobjects for two reasons: 2164 // first, it's incorrect for classes with virtual bases, and second, we're 2165 // about to overwrite the vptrs anyway. 2166 // We also have to make sure if we can refer to vtable: 2167 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2168 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2169 // sure that definition of vtable is not hidden, 2170 // then we are always safe to refer to it. 2171 // FIXME: It looks like InstCombine is very inefficient on dealing with 2172 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2173 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2174 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2175 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2176 CGM.getCodeGenOpts().StrictVTablePointers) 2177 EmitVTableAssumptionLoads(ClassDecl, This); 2178 } 2179 2180 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2181 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2182 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2183 CallArgList Args; 2184 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2185 2186 // Forward the parameters. 2187 if (InheritedFromVBase && 2188 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2189 // Nothing to do; this construction is not responsible for constructing 2190 // the base class containing the inherited constructor. 2191 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2192 // have constructor variants? 2193 Args.push_back(ThisArg); 2194 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2195 // The inheriting constructor was inlined; just inject its arguments. 2196 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2197 "wrong number of parameters for inherited constructor call"); 2198 Args = CXXInheritedCtorInitExprArgs; 2199 Args[0] = ThisArg; 2200 } else { 2201 // The inheriting constructor was not inlined. Emit delegating arguments. 2202 Args.push_back(ThisArg); 2203 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2204 assert(OuterCtor->getNumParams() == D->getNumParams()); 2205 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2206 2207 for (const auto *Param : OuterCtor->parameters()) { 2208 assert(getContext().hasSameUnqualifiedType( 2209 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2210 Param->getType())); 2211 EmitDelegateCallArg(Args, Param, E->getLocation()); 2212 2213 // Forward __attribute__(pass_object_size). 2214 if (Param->hasAttr<PassObjectSizeAttr>()) { 2215 auto *POSParam = SizeArguments[Param]; 2216 assert(POSParam && "missing pass_object_size value for forwarding"); 2217 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2218 } 2219 } 2220 } 2221 2222 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2223 This, Args, AggValueSlot::MayOverlap, 2224 E->getLocation(), /*NewPointerIsChecked*/true); 2225 } 2226 2227 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2228 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2229 bool Delegating, CallArgList &Args) { 2230 GlobalDecl GD(Ctor, CtorType); 2231 InlinedInheritingConstructorScope Scope(*this, GD); 2232 ApplyInlineDebugLocation DebugScope(*this, GD); 2233 RunCleanupsScope RunCleanups(*this); 2234 2235 // Save the arguments to be passed to the inherited constructor. 2236 CXXInheritedCtorInitExprArgs = Args; 2237 2238 FunctionArgList Params; 2239 QualType RetType = BuildFunctionArgList(CurGD, Params); 2240 FnRetTy = RetType; 2241 2242 // Insert any ABI-specific implicit constructor arguments. 2243 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2244 ForVirtualBase, Delegating, Args); 2245 2246 // Emit a simplified prolog. We only need to emit the implicit params. 2247 assert(Args.size() >= Params.size() && "too few arguments for call"); 2248 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2249 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2250 const RValue &RV = Args[I].getRValue(*this); 2251 assert(!RV.isComplex() && "complex indirect params not supported"); 2252 ParamValue Val = RV.isScalar() 2253 ? ParamValue::forDirect(RV.getScalarVal()) 2254 : ParamValue::forIndirect(RV.getAggregateAddress()); 2255 EmitParmDecl(*Params[I], Val, I + 1); 2256 } 2257 } 2258 2259 // Create a return value slot if the ABI implementation wants one. 2260 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2261 // value instead. 2262 if (!RetType->isVoidType()) 2263 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2264 2265 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2266 CXXThisValue = CXXABIThisValue; 2267 2268 // Directly emit the constructor initializers. 2269 EmitCtorPrologue(Ctor, CtorType, Params); 2270 } 2271 2272 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2273 llvm::Value *VTableGlobal = 2274 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2275 if (!VTableGlobal) 2276 return; 2277 2278 // We can just use the base offset in the complete class. 2279 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2280 2281 if (!NonVirtualOffset.isZero()) 2282 This = 2283 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2284 Vptr.VTableClass, Vptr.NearestVBase); 2285 2286 llvm::Value *VPtrValue = 2287 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2288 llvm::Value *Cmp = 2289 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2290 Builder.CreateAssumption(Cmp); 2291 } 2292 2293 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2294 Address This) { 2295 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2296 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2297 EmitVTableAssumptionLoad(Vptr, This); 2298 } 2299 2300 void 2301 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2302 Address This, Address Src, 2303 const CXXConstructExpr *E) { 2304 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2305 2306 CallArgList Args; 2307 2308 // Push the this ptr. 2309 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2310 2311 // Push the src ptr. 2312 QualType QT = *(FPT->param_type_begin()); 2313 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2314 Src = Builder.CreateBitCast(Src, t); 2315 Args.add(RValue::get(Src.getPointer()), QT); 2316 2317 // Skip over first argument (Src). 2318 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2319 /*ParamsToSkip*/ 1); 2320 2321 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2322 /*Delegating*/false, This, Args, 2323 AggValueSlot::MayOverlap, E->getExprLoc(), 2324 /*NewPointerIsChecked*/false); 2325 } 2326 2327 void 2328 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2329 CXXCtorType CtorType, 2330 const FunctionArgList &Args, 2331 SourceLocation Loc) { 2332 CallArgList DelegateArgs; 2333 2334 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2335 assert(I != E && "no parameters to constructor"); 2336 2337 // this 2338 Address This = LoadCXXThisAddress(); 2339 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2340 ++I; 2341 2342 // FIXME: The location of the VTT parameter in the parameter list is 2343 // specific to the Itanium ABI and shouldn't be hardcoded here. 2344 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2345 assert(I != E && "cannot skip vtt parameter, already done with args"); 2346 assert((*I)->getType()->isPointerType() && 2347 "skipping parameter not of vtt type"); 2348 ++I; 2349 } 2350 2351 // Explicit arguments. 2352 for (; I != E; ++I) { 2353 const VarDecl *param = *I; 2354 // FIXME: per-argument source location 2355 EmitDelegateCallArg(DelegateArgs, param, Loc); 2356 } 2357 2358 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2359 /*Delegating=*/true, This, DelegateArgs, 2360 AggValueSlot::MayOverlap, Loc, 2361 /*NewPointerIsChecked=*/true); 2362 } 2363 2364 namespace { 2365 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2366 const CXXDestructorDecl *Dtor; 2367 Address Addr; 2368 CXXDtorType Type; 2369 2370 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2371 CXXDtorType Type) 2372 : Dtor(D), Addr(Addr), Type(Type) {} 2373 2374 void Emit(CodeGenFunction &CGF, Flags flags) override { 2375 // We are calling the destructor from within the constructor. 2376 // Therefore, "this" should have the expected type. 2377 QualType ThisTy = Dtor->getThisObjectType(); 2378 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2379 /*Delegating=*/true, Addr, ThisTy); 2380 } 2381 }; 2382 } // end anonymous namespace 2383 2384 void 2385 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2386 const FunctionArgList &Args) { 2387 assert(Ctor->isDelegatingConstructor()); 2388 2389 Address ThisPtr = LoadCXXThisAddress(); 2390 2391 AggValueSlot AggSlot = 2392 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2393 AggValueSlot::IsDestructed, 2394 AggValueSlot::DoesNotNeedGCBarriers, 2395 AggValueSlot::IsNotAliased, 2396 AggValueSlot::MayOverlap, 2397 AggValueSlot::IsNotZeroed, 2398 // Checks are made by the code that calls constructor. 2399 AggValueSlot::IsSanitizerChecked); 2400 2401 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2402 2403 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2404 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2405 CXXDtorType Type = 2406 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2407 2408 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2409 ClassDecl->getDestructor(), 2410 ThisPtr, Type); 2411 } 2412 } 2413 2414 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2415 CXXDtorType Type, 2416 bool ForVirtualBase, 2417 bool Delegating, Address This, 2418 QualType ThisTy) { 2419 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2420 Delegating, This, ThisTy); 2421 } 2422 2423 namespace { 2424 struct CallLocalDtor final : EHScopeStack::Cleanup { 2425 const CXXDestructorDecl *Dtor; 2426 Address Addr; 2427 QualType Ty; 2428 2429 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2430 : Dtor(D), Addr(Addr), Ty(Ty) {} 2431 2432 void Emit(CodeGenFunction &CGF, Flags flags) override { 2433 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2434 /*ForVirtualBase=*/false, 2435 /*Delegating=*/false, Addr, Ty); 2436 } 2437 }; 2438 } // end anonymous namespace 2439 2440 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2441 QualType T, Address Addr) { 2442 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2443 } 2444 2445 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2446 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2447 if (!ClassDecl) return; 2448 if (ClassDecl->hasTrivialDestructor()) return; 2449 2450 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2451 assert(D && D->isUsed() && "destructor not marked as used!"); 2452 PushDestructorCleanup(D, T, Addr); 2453 } 2454 2455 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2456 // Compute the address point. 2457 llvm::Value *VTableAddressPoint = 2458 CGM.getCXXABI().getVTableAddressPointInStructor( 2459 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2460 2461 if (!VTableAddressPoint) 2462 return; 2463 2464 // Compute where to store the address point. 2465 llvm::Value *VirtualOffset = nullptr; 2466 CharUnits NonVirtualOffset = CharUnits::Zero(); 2467 2468 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2469 // We need to use the virtual base offset offset because the virtual base 2470 // might have a different offset in the most derived class. 2471 2472 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2473 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2474 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2475 } else { 2476 // We can just use the base offset in the complete class. 2477 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2478 } 2479 2480 // Apply the offsets. 2481 Address VTableField = LoadCXXThisAddress(); 2482 2483 if (!NonVirtualOffset.isZero() || VirtualOffset) 2484 VTableField = ApplyNonVirtualAndVirtualOffset( 2485 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2486 Vptr.NearestVBase); 2487 2488 // Finally, store the address point. Use the same LLVM types as the field to 2489 // support optimization. 2490 llvm::Type *VTablePtrTy = 2491 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2492 ->getPointerTo() 2493 ->getPointerTo(); 2494 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2495 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2496 2497 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2498 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2499 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2500 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2501 CGM.getCodeGenOpts().StrictVTablePointers) 2502 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2503 } 2504 2505 CodeGenFunction::VPtrsVector 2506 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2507 CodeGenFunction::VPtrsVector VPtrsResult; 2508 VisitedVirtualBasesSetTy VBases; 2509 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2510 /*NearestVBase=*/nullptr, 2511 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2512 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2513 VPtrsResult); 2514 return VPtrsResult; 2515 } 2516 2517 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2518 const CXXRecordDecl *NearestVBase, 2519 CharUnits OffsetFromNearestVBase, 2520 bool BaseIsNonVirtualPrimaryBase, 2521 const CXXRecordDecl *VTableClass, 2522 VisitedVirtualBasesSetTy &VBases, 2523 VPtrsVector &Vptrs) { 2524 // If this base is a non-virtual primary base the address point has already 2525 // been set. 2526 if (!BaseIsNonVirtualPrimaryBase) { 2527 // Initialize the vtable pointer for this base. 2528 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2529 Vptrs.push_back(Vptr); 2530 } 2531 2532 const CXXRecordDecl *RD = Base.getBase(); 2533 2534 // Traverse bases. 2535 for (const auto &I : RD->bases()) { 2536 auto *BaseDecl = 2537 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2538 2539 // Ignore classes without a vtable. 2540 if (!BaseDecl->isDynamicClass()) 2541 continue; 2542 2543 CharUnits BaseOffset; 2544 CharUnits BaseOffsetFromNearestVBase; 2545 bool BaseDeclIsNonVirtualPrimaryBase; 2546 2547 if (I.isVirtual()) { 2548 // Check if we've visited this virtual base before. 2549 if (!VBases.insert(BaseDecl).second) 2550 continue; 2551 2552 const ASTRecordLayout &Layout = 2553 getContext().getASTRecordLayout(VTableClass); 2554 2555 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2556 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2557 BaseDeclIsNonVirtualPrimaryBase = false; 2558 } else { 2559 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2560 2561 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2562 BaseOffsetFromNearestVBase = 2563 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2564 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2565 } 2566 2567 getVTablePointers( 2568 BaseSubobject(BaseDecl, BaseOffset), 2569 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2570 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2571 } 2572 } 2573 2574 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2575 // Ignore classes without a vtable. 2576 if (!RD->isDynamicClass()) 2577 return; 2578 2579 // Initialize the vtable pointers for this class and all of its bases. 2580 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2581 for (const VPtr &Vptr : getVTablePointers(RD)) 2582 InitializeVTablePointer(Vptr); 2583 2584 if (RD->getNumVBases()) 2585 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2586 } 2587 2588 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2589 llvm::Type *VTableTy, 2590 const CXXRecordDecl *RD) { 2591 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2592 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2593 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2594 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2595 2596 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2597 CGM.getCodeGenOpts().StrictVTablePointers) 2598 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2599 2600 return VTable; 2601 } 2602 2603 // If a class has a single non-virtual base and does not introduce or override 2604 // virtual member functions or fields, it will have the same layout as its base. 2605 // This function returns the least derived such class. 2606 // 2607 // Casting an instance of a base class to such a derived class is technically 2608 // undefined behavior, but it is a relatively common hack for introducing member 2609 // functions on class instances with specific properties (e.g. llvm::Operator) 2610 // that works under most compilers and should not have security implications, so 2611 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2612 static const CXXRecordDecl * 2613 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2614 if (!RD->field_empty()) 2615 return RD; 2616 2617 if (RD->getNumVBases() != 0) 2618 return RD; 2619 2620 if (RD->getNumBases() != 1) 2621 return RD; 2622 2623 for (const CXXMethodDecl *MD : RD->methods()) { 2624 if (MD->isVirtual()) { 2625 // Virtual member functions are only ok if they are implicit destructors 2626 // because the implicit destructor will have the same semantics as the 2627 // base class's destructor if no fields are added. 2628 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2629 continue; 2630 return RD; 2631 } 2632 } 2633 2634 return LeastDerivedClassWithSameLayout( 2635 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2636 } 2637 2638 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2639 llvm::Value *VTable, 2640 SourceLocation Loc) { 2641 if (SanOpts.has(SanitizerKind::CFIVCall)) 2642 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2643 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2644 CGM.HasHiddenLTOVisibility(RD)) { 2645 llvm::Metadata *MD = 2646 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2647 llvm::Value *TypeId = 2648 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2649 2650 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2651 llvm::Value *TypeTest = 2652 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2653 {CastedVTable, TypeId}); 2654 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2655 } 2656 } 2657 2658 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2659 llvm::Value *VTable, 2660 CFITypeCheckKind TCK, 2661 SourceLocation Loc) { 2662 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2663 RD = LeastDerivedClassWithSameLayout(RD); 2664 2665 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2666 } 2667 2668 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2669 llvm::Value *Derived, 2670 bool MayBeNull, 2671 CFITypeCheckKind TCK, 2672 SourceLocation Loc) { 2673 if (!getLangOpts().CPlusPlus) 2674 return; 2675 2676 auto *ClassTy = T->getAs<RecordType>(); 2677 if (!ClassTy) 2678 return; 2679 2680 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2681 2682 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2683 return; 2684 2685 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2686 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2687 2688 llvm::BasicBlock *ContBlock = nullptr; 2689 2690 if (MayBeNull) { 2691 llvm::Value *DerivedNotNull = 2692 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2693 2694 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2695 ContBlock = createBasicBlock("cast.cont"); 2696 2697 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2698 2699 EmitBlock(CheckBlock); 2700 } 2701 2702 llvm::Value *VTable; 2703 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2704 *this, Address(Derived, getPointerAlign()), ClassDecl); 2705 2706 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2707 2708 if (MayBeNull) { 2709 Builder.CreateBr(ContBlock); 2710 EmitBlock(ContBlock); 2711 } 2712 } 2713 2714 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2715 llvm::Value *VTable, 2716 CFITypeCheckKind TCK, 2717 SourceLocation Loc) { 2718 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2719 !CGM.HasHiddenLTOVisibility(RD)) 2720 return; 2721 2722 SanitizerMask M; 2723 llvm::SanitizerStatKind SSK; 2724 switch (TCK) { 2725 case CFITCK_VCall: 2726 M = SanitizerKind::CFIVCall; 2727 SSK = llvm::SanStat_CFI_VCall; 2728 break; 2729 case CFITCK_NVCall: 2730 M = SanitizerKind::CFINVCall; 2731 SSK = llvm::SanStat_CFI_NVCall; 2732 break; 2733 case CFITCK_DerivedCast: 2734 M = SanitizerKind::CFIDerivedCast; 2735 SSK = llvm::SanStat_CFI_DerivedCast; 2736 break; 2737 case CFITCK_UnrelatedCast: 2738 M = SanitizerKind::CFIUnrelatedCast; 2739 SSK = llvm::SanStat_CFI_UnrelatedCast; 2740 break; 2741 case CFITCK_ICall: 2742 case CFITCK_NVMFCall: 2743 case CFITCK_VMFCall: 2744 llvm_unreachable("unexpected sanitizer kind"); 2745 } 2746 2747 std::string TypeName = RD->getQualifiedNameAsString(); 2748 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2749 return; 2750 2751 SanitizerScope SanScope(this); 2752 EmitSanitizerStatReport(SSK); 2753 2754 llvm::Metadata *MD = 2755 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2756 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2757 2758 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2759 llvm::Value *TypeTest = Builder.CreateCall( 2760 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2761 2762 llvm::Constant *StaticData[] = { 2763 llvm::ConstantInt::get(Int8Ty, TCK), 2764 EmitCheckSourceLocation(Loc), 2765 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2766 }; 2767 2768 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2769 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2770 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2771 return; 2772 } 2773 2774 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2775 EmitTrapCheck(TypeTest); 2776 return; 2777 } 2778 2779 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2780 CGM.getLLVMContext(), 2781 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2782 llvm::Value *ValidVtable = Builder.CreateCall( 2783 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2784 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2785 StaticData, {CastedVTable, ValidVtable}); 2786 } 2787 2788 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2789 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2790 !CGM.HasHiddenLTOVisibility(RD)) 2791 return false; 2792 2793 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2794 return true; 2795 2796 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2797 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2798 return false; 2799 2800 std::string TypeName = RD->getQualifiedNameAsString(); 2801 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2802 SanitizerKind::CFIVCall, TypeName); 2803 } 2804 2805 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2806 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2807 SanitizerScope SanScope(this); 2808 2809 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2810 2811 llvm::Metadata *MD = 2812 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2813 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2814 2815 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2816 llvm::Value *CheckedLoad = Builder.CreateCall( 2817 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2818 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2819 TypeId}); 2820 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2821 2822 std::string TypeName = RD->getQualifiedNameAsString(); 2823 if (SanOpts.has(SanitizerKind::CFIVCall) && 2824 !getContext().getSanitizerBlacklist().isBlacklistedType( 2825 SanitizerKind::CFIVCall, TypeName)) { 2826 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2827 SanitizerHandler::CFICheckFail, {}, {}); 2828 } 2829 2830 return Builder.CreateBitCast( 2831 Builder.CreateExtractValue(CheckedLoad, 0), 2832 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2833 } 2834 2835 void CodeGenFunction::EmitForwardingCallToLambda( 2836 const CXXMethodDecl *callOperator, 2837 CallArgList &callArgs) { 2838 // Get the address of the call operator. 2839 const CGFunctionInfo &calleeFnInfo = 2840 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2841 llvm::Constant *calleePtr = 2842 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2843 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2844 2845 // Prepare the return slot. 2846 const FunctionProtoType *FPT = 2847 callOperator->getType()->castAs<FunctionProtoType>(); 2848 QualType resultType = FPT->getReturnType(); 2849 ReturnValueSlot returnSlot; 2850 if (!resultType->isVoidType() && 2851 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2852 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2853 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2854 2855 // We don't need to separately arrange the call arguments because 2856 // the call can't be variadic anyway --- it's impossible to forward 2857 // variadic arguments. 2858 2859 // Now emit our call. 2860 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2861 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2862 2863 // If necessary, copy the returned value into the slot. 2864 if (!resultType->isVoidType() && returnSlot.isNull()) { 2865 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2866 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2867 } 2868 EmitReturnOfRValue(RV, resultType); 2869 } else 2870 EmitBranchThroughCleanup(ReturnBlock); 2871 } 2872 2873 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2874 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2875 const VarDecl *variable = BD->capture_begin()->getVariable(); 2876 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2877 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2878 2879 if (CallOp->isVariadic()) { 2880 // FIXME: Making this work correctly is nasty because it requires either 2881 // cloning the body of the call operator or making the call operator 2882 // forward. 2883 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2884 return; 2885 } 2886 2887 // Start building arguments for forwarding call 2888 CallArgList CallArgs; 2889 2890 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2891 Address ThisPtr = GetAddrOfBlockDecl(variable); 2892 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2893 2894 // Add the rest of the parameters. 2895 for (auto param : BD->parameters()) 2896 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2897 2898 assert(!Lambda->isGenericLambda() && 2899 "generic lambda interconversion to block not implemented"); 2900 EmitForwardingCallToLambda(CallOp, CallArgs); 2901 } 2902 2903 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2904 const CXXRecordDecl *Lambda = MD->getParent(); 2905 2906 // Start building arguments for forwarding call 2907 CallArgList CallArgs; 2908 2909 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2910 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2911 CallArgs.add(RValue::get(ThisPtr), ThisType); 2912 2913 // Add the rest of the parameters. 2914 for (auto Param : MD->parameters()) 2915 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2916 2917 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2918 // For a generic lambda, find the corresponding call operator specialization 2919 // to which the call to the static-invoker shall be forwarded. 2920 if (Lambda->isGenericLambda()) { 2921 assert(MD->isFunctionTemplateSpecialization()); 2922 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2923 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2924 void *InsertPos = nullptr; 2925 FunctionDecl *CorrespondingCallOpSpecialization = 2926 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2927 assert(CorrespondingCallOpSpecialization); 2928 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2929 } 2930 EmitForwardingCallToLambda(CallOp, CallArgs); 2931 } 2932 2933 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2934 if (MD->isVariadic()) { 2935 // FIXME: Making this work correctly is nasty because it requires either 2936 // cloning the body of the call operator or making the call operator forward. 2937 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2938 return; 2939 } 2940 2941 EmitLambdaDelegatingInvokeBody(MD); 2942 } 2943