1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ABIInfoImpl.h" 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/CXXInheritance.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Transforms/Utils/SanitizerStats.h" 34 #include <optional> 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 /// Return the best known alignment for an unknown pointer to a 40 /// particular class. 41 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 42 if (!RD->hasDefinition()) 43 return CharUnits::One(); // Hopefully won't be used anywhere. 44 45 auto &layout = getContext().getASTRecordLayout(RD); 46 47 // If the class is final, then we know that the pointer points to an 48 // object of that type and can use the full alignment. 49 if (RD->isEffectivelyFinal()) 50 return layout.getAlignment(); 51 52 // Otherwise, we have to assume it could be a subclass. 53 return layout.getNonVirtualAlignment(); 54 } 55 56 /// Return the smallest possible amount of storage that might be allocated 57 /// starting from the beginning of an object of a particular class. 58 /// 59 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 60 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 61 if (!RD->hasDefinition()) 62 return CharUnits::One(); 63 64 auto &layout = getContext().getASTRecordLayout(RD); 65 66 // If the class is final, then we know that the pointer points to an 67 // object of that type and can use the full alignment. 68 if (RD->isEffectivelyFinal()) 69 return layout.getSize(); 70 71 // Otherwise, we have to assume it could be a subclass. 72 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 73 } 74 75 /// Return the best known alignment for a pointer to a virtual base, 76 /// given the alignment of a pointer to the derived class. 77 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 78 const CXXRecordDecl *derivedClass, 79 const CXXRecordDecl *vbaseClass) { 80 // The basic idea here is that an underaligned derived pointer might 81 // indicate an underaligned base pointer. 82 83 assert(vbaseClass->isCompleteDefinition()); 84 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 85 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 86 87 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 88 expectedVBaseAlign); 89 } 90 91 CharUnits 92 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 93 const CXXRecordDecl *baseDecl, 94 CharUnits expectedTargetAlign) { 95 // If the base is an incomplete type (which is, alas, possible with 96 // member pointers), be pessimistic. 97 if (!baseDecl->isCompleteDefinition()) 98 return std::min(actualBaseAlign, expectedTargetAlign); 99 100 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 101 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 102 103 // If the class is properly aligned, assume the target offset is, too. 104 // 105 // This actually isn't necessarily the right thing to do --- if the 106 // class is a complete object, but it's only properly aligned for a 107 // base subobject, then the alignments of things relative to it are 108 // probably off as well. (Note that this requires the alignment of 109 // the target to be greater than the NV alignment of the derived 110 // class.) 111 // 112 // However, our approach to this kind of under-alignment can only 113 // ever be best effort; after all, we're never going to propagate 114 // alignments through variables or parameters. Note, in particular, 115 // that constructing a polymorphic type in an address that's less 116 // than pointer-aligned will generally trap in the constructor, 117 // unless we someday add some sort of attribute to change the 118 // assumed alignment of 'this'. So our goal here is pretty much 119 // just to allow the user to explicitly say that a pointer is 120 // under-aligned and then safely access its fields and vtables. 121 if (actualBaseAlign >= expectedBaseAlign) { 122 return expectedTargetAlign; 123 } 124 125 // Otherwise, we might be offset by an arbitrary multiple of the 126 // actual alignment. The correct adjustment is to take the min of 127 // the two alignments. 128 return std::min(actualBaseAlign, expectedTargetAlign); 129 } 130 131 Address CodeGenFunction::LoadCXXThisAddress() { 132 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 133 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 134 135 // Lazily compute CXXThisAlignment. 136 if (CXXThisAlignment.isZero()) { 137 // Just use the best known alignment for the parent. 138 // TODO: if we're currently emitting a complete-object ctor/dtor, 139 // we can always use the complete-object alignment. 140 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 141 } 142 143 return makeNaturalAddressForPointer( 144 LoadCXXThis(), MD->getFunctionObjectParameterType(), CXXThisAlignment, 145 false, nullptr, nullptr, KnownNonNull); 146 } 147 148 /// Emit the address of a field using a member data pointer. 149 /// 150 /// \param E Only used for emergency diagnostics 151 Address 152 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 153 llvm::Value *memberPtr, 154 const MemberPointerType *memberPtrType, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 // Ask the ABI to compute the actual address. 158 llvm::Value *ptr = 159 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 160 memberPtr, memberPtrType); 161 162 QualType memberType = memberPtrType->getPointeeType(); 163 CharUnits memberAlign = 164 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 165 memberAlign = 166 CGM.getDynamicOffsetAlignment(base.getAlignment(), 167 memberPtrType->getClass()->getAsCXXRecordDecl(), 168 memberAlign); 169 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), 170 memberAlign); 171 } 172 173 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 174 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 175 CastExpr::path_const_iterator End) { 176 CharUnits Offset = CharUnits::Zero(); 177 178 const ASTContext &Context = getContext(); 179 const CXXRecordDecl *RD = DerivedClass; 180 181 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 182 const CXXBaseSpecifier *Base = *I; 183 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 184 185 // Get the layout. 186 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 187 188 const auto *BaseDecl = 189 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 190 191 // Add the offset. 192 Offset += Layout.getBaseClassOffset(BaseDecl); 193 194 RD = BaseDecl; 195 } 196 197 return Offset; 198 } 199 200 llvm::Constant * 201 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 202 CastExpr::path_const_iterator PathBegin, 203 CastExpr::path_const_iterator PathEnd) { 204 assert(PathBegin != PathEnd && "Base path should not be empty!"); 205 206 CharUnits Offset = 207 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 208 if (Offset.isZero()) 209 return nullptr; 210 211 llvm::Type *PtrDiffTy = 212 getTypes().ConvertType(getContext().getPointerDiffType()); 213 214 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 215 } 216 217 /// Gets the address of a direct base class within a complete object. 218 /// This should only be used for (1) non-virtual bases or (2) virtual bases 219 /// when the type is known to be complete (e.g. in complete destructors). 220 /// 221 /// The object pointed to by 'This' is assumed to be non-null. 222 Address 223 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 224 const CXXRecordDecl *Derived, 225 const CXXRecordDecl *Base, 226 bool BaseIsVirtual) { 227 // 'this' must be a pointer (in some address space) to Derived. 228 assert(This.getElementType() == ConvertType(Derived)); 229 230 // Compute the offset of the virtual base. 231 CharUnits Offset; 232 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 233 if (BaseIsVirtual) 234 Offset = Layout.getVBaseClassOffset(Base); 235 else 236 Offset = Layout.getBaseClassOffset(Base); 237 238 // Shift and cast down to the base type. 239 // TODO: for complete types, this should be possible with a GEP. 240 Address V = This; 241 if (!Offset.isZero()) { 242 V = V.withElementType(Int8Ty); 243 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 244 } 245 return V.withElementType(ConvertType(Base)); 246 } 247 248 static Address 249 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 250 CharUnits nonVirtualOffset, 251 llvm::Value *virtualOffset, 252 const CXXRecordDecl *derivedClass, 253 const CXXRecordDecl *nearestVBase) { 254 // Assert that we have something to do. 255 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 256 257 // Compute the offset from the static and dynamic components. 258 llvm::Value *baseOffset; 259 if (!nonVirtualOffset.isZero()) { 260 llvm::Type *OffsetType = 261 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 262 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 263 ? CGF.Int32Ty 264 : CGF.PtrDiffTy; 265 baseOffset = 266 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 267 if (virtualOffset) { 268 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 269 } 270 } else { 271 baseOffset = virtualOffset; 272 } 273 274 // Apply the base offset. 275 llvm::Value *ptr = addr.emitRawPointer(CGF); 276 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 277 278 // If we have a virtual component, the alignment of the result will 279 // be relative only to the known alignment of that vbase. 280 CharUnits alignment; 281 if (virtualOffset) { 282 assert(nearestVBase && "virtual offset without vbase?"); 283 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 284 derivedClass, nearestVBase); 285 } else { 286 alignment = addr.getAlignment(); 287 } 288 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 289 290 return Address(ptr, CGF.Int8Ty, alignment); 291 } 292 293 Address CodeGenFunction::GetAddressOfBaseClass( 294 Address Value, const CXXRecordDecl *Derived, 295 CastExpr::path_const_iterator PathBegin, 296 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 297 SourceLocation Loc) { 298 assert(PathBegin != PathEnd && "Base path should not be empty!"); 299 300 CastExpr::path_const_iterator Start = PathBegin; 301 const CXXRecordDecl *VBase = nullptr; 302 303 // Sema has done some convenient canonicalization here: if the 304 // access path involved any virtual steps, the conversion path will 305 // *start* with a step down to the correct virtual base subobject, 306 // and hence will not require any further steps. 307 if ((*Start)->isVirtual()) { 308 VBase = cast<CXXRecordDecl>( 309 (*Start)->getType()->castAs<RecordType>()->getDecl()); 310 ++Start; 311 } 312 313 // Compute the static offset of the ultimate destination within its 314 // allocating subobject (the virtual base, if there is one, or else 315 // the "complete" object that we see). 316 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 317 VBase ? VBase : Derived, Start, PathEnd); 318 319 // If there's a virtual step, we can sometimes "devirtualize" it. 320 // For now, that's limited to when the derived type is final. 321 // TODO: "devirtualize" this for accesses to known-complete objects. 322 if (VBase && Derived->hasAttr<FinalAttr>()) { 323 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 324 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 325 NonVirtualOffset += vBaseOffset; 326 VBase = nullptr; // we no longer have a virtual step 327 } 328 329 // Get the base pointer type. 330 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 331 llvm::Type *PtrTy = llvm::PointerType::get( 332 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace()); 333 334 QualType DerivedTy = getContext().getRecordType(Derived); 335 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 336 337 // If the static offset is zero and we don't have a virtual step, 338 // just do a bitcast; null checks are unnecessary. 339 if (NonVirtualOffset.isZero() && !VBase) { 340 if (sanitizePerformTypeCheck()) { 341 SanitizerSet SkippedChecks; 342 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 343 EmitTypeCheck(TCK_Upcast, Loc, Value.emitRawPointer(*this), DerivedTy, 344 DerivedAlign, SkippedChecks); 345 } 346 return Value.withElementType(BaseValueTy); 347 } 348 349 llvm::BasicBlock *origBB = nullptr; 350 llvm::BasicBlock *endBB = nullptr; 351 352 // Skip over the offset (and the vtable load) if we're supposed to 353 // null-check the pointer. 354 if (NullCheckValue) { 355 origBB = Builder.GetInsertBlock(); 356 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 357 endBB = createBasicBlock("cast.end"); 358 359 llvm::Value *isNull = Builder.CreateIsNull(Value); 360 Builder.CreateCondBr(isNull, endBB, notNullBB); 361 EmitBlock(notNullBB); 362 } 363 364 if (sanitizePerformTypeCheck()) { 365 SanitizerSet SkippedChecks; 366 SkippedChecks.set(SanitizerKind::Null, true); 367 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 368 Value.emitRawPointer(*this), DerivedTy, DerivedAlign, 369 SkippedChecks); 370 } 371 372 // Compute the virtual offset. 373 llvm::Value *VirtualOffset = nullptr; 374 if (VBase) { 375 VirtualOffset = 376 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 377 } 378 379 // Apply both offsets. 380 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 381 VirtualOffset, Derived, VBase); 382 383 // Cast to the destination type. 384 Value = Value.withElementType(BaseValueTy); 385 386 // Build a phi if we needed a null check. 387 if (NullCheckValue) { 388 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 389 Builder.CreateBr(endBB); 390 EmitBlock(endBB); 391 392 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result"); 393 PHI->addIncoming(Value.emitRawPointer(*this), notNullBB); 394 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB); 395 Value = Value.withPointer(PHI, NotKnownNonNull); 396 } 397 398 return Value; 399 } 400 401 Address 402 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 403 const CXXRecordDecl *Derived, 404 CastExpr::path_const_iterator PathBegin, 405 CastExpr::path_const_iterator PathEnd, 406 bool NullCheckValue) { 407 assert(PathBegin != PathEnd && "Base path should not be empty!"); 408 409 QualType DerivedTy = 410 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 411 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 412 413 llvm::Value *NonVirtualOffset = 414 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 415 416 if (!NonVirtualOffset) { 417 // No offset, we can just cast back. 418 return BaseAddr.withElementType(DerivedValueTy); 419 } 420 421 llvm::BasicBlock *CastNull = nullptr; 422 llvm::BasicBlock *CastNotNull = nullptr; 423 llvm::BasicBlock *CastEnd = nullptr; 424 425 if (NullCheckValue) { 426 CastNull = createBasicBlock("cast.null"); 427 CastNotNull = createBasicBlock("cast.notnull"); 428 CastEnd = createBasicBlock("cast.end"); 429 430 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr); 431 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 432 EmitBlock(CastNotNull); 433 } 434 435 // Apply the offset. 436 Address Addr = BaseAddr.withElementType(Int8Ty); 437 Addr = Builder.CreateInBoundsGEP( 438 Addr, Builder.CreateNeg(NonVirtualOffset), Int8Ty, 439 CGM.getClassPointerAlignment(Derived), "sub.ptr"); 440 441 // Just cast. 442 Addr = Addr.withElementType(DerivedValueTy); 443 444 // Produce a PHI if we had a null-check. 445 if (NullCheckValue) { 446 Builder.CreateBr(CastEnd); 447 EmitBlock(CastNull); 448 Builder.CreateBr(CastEnd); 449 EmitBlock(CastEnd); 450 451 llvm::Value *Value = Addr.emitRawPointer(*this); 452 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 453 PHI->addIncoming(Value, CastNotNull); 454 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 455 return Address(PHI, Addr.getElementType(), 456 CGM.getClassPointerAlignment(Derived)); 457 } 458 459 return Addr; 460 } 461 462 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 463 bool ForVirtualBase, 464 bool Delegating) { 465 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 466 // This constructor/destructor does not need a VTT parameter. 467 return nullptr; 468 } 469 470 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 471 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 472 473 uint64_t SubVTTIndex; 474 475 if (Delegating) { 476 // If this is a delegating constructor call, just load the VTT. 477 return LoadCXXVTT(); 478 } else if (RD == Base) { 479 // If the record matches the base, this is the complete ctor/dtor 480 // variant calling the base variant in a class with virtual bases. 481 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 482 "doing no-op VTT offset in base dtor/ctor?"); 483 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 484 SubVTTIndex = 0; 485 } else { 486 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 487 CharUnits BaseOffset = ForVirtualBase ? 488 Layout.getVBaseClassOffset(Base) : 489 Layout.getBaseClassOffset(Base); 490 491 SubVTTIndex = 492 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 493 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 494 } 495 496 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 497 // A VTT parameter was passed to the constructor, use it. 498 llvm::Value *VTT = LoadCXXVTT(); 499 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 500 } else { 501 // We're the complete constructor, so get the VTT by name. 502 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 503 return Builder.CreateConstInBoundsGEP2_64( 504 VTT->getValueType(), VTT, 0, SubVTTIndex); 505 } 506 } 507 508 namespace { 509 /// Call the destructor for a direct base class. 510 struct CallBaseDtor final : EHScopeStack::Cleanup { 511 const CXXRecordDecl *BaseClass; 512 bool BaseIsVirtual; 513 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 514 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 515 516 void Emit(CodeGenFunction &CGF, Flags flags) override { 517 const CXXRecordDecl *DerivedClass = 518 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 519 520 const CXXDestructorDecl *D = BaseClass->getDestructor(); 521 // We are already inside a destructor, so presumably the object being 522 // destroyed should have the expected type. 523 QualType ThisTy = D->getFunctionObjectParameterType(); 524 Address Addr = 525 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 526 DerivedClass, BaseClass, 527 BaseIsVirtual); 528 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 529 /*Delegating=*/false, Addr, ThisTy); 530 } 531 }; 532 533 /// A visitor which checks whether an initializer uses 'this' in a 534 /// way which requires the vtable to be properly set. 535 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 536 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 537 538 bool UsesThis; 539 540 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 541 542 // Black-list all explicit and implicit references to 'this'. 543 // 544 // Do we need to worry about external references to 'this' derived 545 // from arbitrary code? If so, then anything which runs arbitrary 546 // external code might potentially access the vtable. 547 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 548 }; 549 } // end anonymous namespace 550 551 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 552 DynamicThisUseChecker Checker(C); 553 Checker.Visit(Init); 554 return Checker.UsesThis; 555 } 556 557 static void EmitBaseInitializer(CodeGenFunction &CGF, 558 const CXXRecordDecl *ClassDecl, 559 CXXCtorInitializer *BaseInit) { 560 assert(BaseInit->isBaseInitializer() && 561 "Must have base initializer!"); 562 563 Address ThisPtr = CGF.LoadCXXThisAddress(); 564 565 const Type *BaseType = BaseInit->getBaseClass(); 566 const auto *BaseClassDecl = 567 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 568 569 bool isBaseVirtual = BaseInit->isBaseVirtual(); 570 571 // If the initializer for the base (other than the constructor 572 // itself) accesses 'this' in any way, we need to initialize the 573 // vtables. 574 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 575 CGF.InitializeVTablePointers(ClassDecl); 576 577 // We can pretend to be a complete class because it only matters for 578 // virtual bases, and we only do virtual bases for complete ctors. 579 Address V = 580 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 581 BaseClassDecl, 582 isBaseVirtual); 583 AggValueSlot AggSlot = 584 AggValueSlot::forAddr( 585 V, Qualifiers(), 586 AggValueSlot::IsDestructed, 587 AggValueSlot::DoesNotNeedGCBarriers, 588 AggValueSlot::IsNotAliased, 589 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 590 591 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 592 593 if (CGF.CGM.getLangOpts().Exceptions && 594 !BaseClassDecl->hasTrivialDestructor()) 595 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 596 isBaseVirtual); 597 } 598 599 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 600 auto *CD = dyn_cast<CXXConstructorDecl>(D); 601 if (!(CD && CD->isCopyOrMoveConstructor()) && 602 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 603 return false; 604 605 // We can emit a memcpy for a trivial copy or move constructor/assignment. 606 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 607 return true; 608 609 // We *must* emit a memcpy for a defaulted union copy or move op. 610 if (D->getParent()->isUnion() && D->isDefaulted()) 611 return true; 612 613 return false; 614 } 615 616 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 617 CXXCtorInitializer *MemberInit, 618 LValue &LHS) { 619 FieldDecl *Field = MemberInit->getAnyMember(); 620 if (MemberInit->isIndirectMemberInitializer()) { 621 // If we are initializing an anonymous union field, drill down to the field. 622 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 623 for (const auto *I : IndirectField->chain()) 624 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 625 } else { 626 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 627 } 628 } 629 630 static void EmitMemberInitializer(CodeGenFunction &CGF, 631 const CXXRecordDecl *ClassDecl, 632 CXXCtorInitializer *MemberInit, 633 const CXXConstructorDecl *Constructor, 634 FunctionArgList &Args) { 635 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 636 assert(MemberInit->isAnyMemberInitializer() && 637 "Must have member initializer!"); 638 assert(MemberInit->getInit() && "Must have initializer!"); 639 640 // non-static data member initializers. 641 FieldDecl *Field = MemberInit->getAnyMember(); 642 QualType FieldType = Field->getType(); 643 644 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 645 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 646 LValue LHS; 647 648 // If a base constructor is being emitted, create an LValue that has the 649 // non-virtual alignment. 650 if (CGF.CurGD.getCtorType() == Ctor_Base) 651 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 652 else 653 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 654 655 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 656 657 // Special case: if we are in a copy or move constructor, and we are copying 658 // an array of PODs or classes with trivial copy constructors, ignore the 659 // AST and perform the copy we know is equivalent. 660 // FIXME: This is hacky at best... if we had a bit more explicit information 661 // in the AST, we could generalize it more easily. 662 const ConstantArrayType *Array 663 = CGF.getContext().getAsConstantArrayType(FieldType); 664 if (Array && Constructor->isDefaulted() && 665 Constructor->isCopyOrMoveConstructor()) { 666 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 667 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 668 if (BaseElementTy.isPODType(CGF.getContext()) || 669 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 670 unsigned SrcArgIndex = 671 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 672 llvm::Value *SrcPtr 673 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 674 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 675 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 676 677 // Copy the aggregate. 678 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 679 LHS.isVolatileQualified()); 680 // Ensure that we destroy the objects if an exception is thrown later in 681 // the constructor. 682 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 683 if (CGF.needsEHCleanup(dtorKind)) 684 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 685 return; 686 } 687 } 688 689 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 690 } 691 692 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 693 Expr *Init) { 694 QualType FieldType = Field->getType(); 695 switch (getEvaluationKind(FieldType)) { 696 case TEK_Scalar: 697 if (LHS.isSimple()) { 698 EmitExprAsInit(Init, Field, LHS, false); 699 } else { 700 RValue RHS = RValue::get(EmitScalarExpr(Init)); 701 EmitStoreThroughLValue(RHS, LHS); 702 } 703 break; 704 case TEK_Complex: 705 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 706 break; 707 case TEK_Aggregate: { 708 AggValueSlot Slot = AggValueSlot::forLValue( 709 LHS, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, 710 AggValueSlot::IsNotAliased, getOverlapForFieldInit(Field), 711 AggValueSlot::IsNotZeroed, 712 // Checks are made by the code that calls constructor. 713 AggValueSlot::IsSanitizerChecked); 714 EmitAggExpr(Init, Slot); 715 break; 716 } 717 } 718 719 // Ensure that we destroy this object if an exception is thrown 720 // later in the constructor. 721 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 722 if (needsEHCleanup(dtorKind)) 723 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 724 } 725 726 /// Checks whether the given constructor is a valid subject for the 727 /// complete-to-base constructor delegation optimization, i.e. 728 /// emitting the complete constructor as a simple call to the base 729 /// constructor. 730 bool CodeGenFunction::IsConstructorDelegationValid( 731 const CXXConstructorDecl *Ctor) { 732 733 // Currently we disable the optimization for classes with virtual 734 // bases because (1) the addresses of parameter variables need to be 735 // consistent across all initializers but (2) the delegate function 736 // call necessarily creates a second copy of the parameter variable. 737 // 738 // The limiting example (purely theoretical AFAIK): 739 // struct A { A(int &c) { c++; } }; 740 // struct B : virtual A { 741 // B(int count) : A(count) { printf("%d\n", count); } 742 // }; 743 // ...although even this example could in principle be emitted as a 744 // delegation since the address of the parameter doesn't escape. 745 if (Ctor->getParent()->getNumVBases()) { 746 // TODO: white-list trivial vbase initializers. This case wouldn't 747 // be subject to the restrictions below. 748 749 // TODO: white-list cases where: 750 // - there are no non-reference parameters to the constructor 751 // - the initializers don't access any non-reference parameters 752 // - the initializers don't take the address of non-reference 753 // parameters 754 // - etc. 755 // If we ever add any of the above cases, remember that: 756 // - function-try-blocks will always exclude this optimization 757 // - we need to perform the constructor prologue and cleanup in 758 // EmitConstructorBody. 759 760 return false; 761 } 762 763 // We also disable the optimization for variadic functions because 764 // it's impossible to "re-pass" varargs. 765 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 766 return false; 767 768 // FIXME: Decide if we can do a delegation of a delegating constructor. 769 if (Ctor->isDelegatingConstructor()) 770 return false; 771 772 return true; 773 } 774 775 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 776 // to poison the extra field paddings inserted under 777 // -fsanitize-address-field-padding=1|2. 778 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 779 ASTContext &Context = getContext(); 780 const CXXRecordDecl *ClassDecl = 781 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 782 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 783 if (!ClassDecl->mayInsertExtraPadding()) return; 784 785 struct SizeAndOffset { 786 uint64_t Size; 787 uint64_t Offset; 788 }; 789 790 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 791 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 792 793 // Populate sizes and offsets of fields. 794 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 795 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 796 SSV[i].Offset = 797 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 798 799 size_t NumFields = 0; 800 for (const auto *Field : ClassDecl->fields()) { 801 const FieldDecl *D = Field; 802 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 803 CharUnits FieldSize = FieldInfo.Width; 804 assert(NumFields < SSV.size()); 805 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 806 NumFields++; 807 } 808 assert(NumFields == SSV.size()); 809 if (SSV.size() <= 1) return; 810 811 // We will insert calls to __asan_* run-time functions. 812 // LLVM AddressSanitizer pass may decide to inline them later. 813 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 814 llvm::FunctionType *FTy = 815 llvm::FunctionType::get(CGM.VoidTy, Args, false); 816 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 817 FTy, Prologue ? "__asan_poison_intra_object_redzone" 818 : "__asan_unpoison_intra_object_redzone"); 819 820 llvm::Value *ThisPtr = LoadCXXThis(); 821 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 822 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 823 // For each field check if it has sufficient padding, 824 // if so (un)poison it with a call. 825 for (size_t i = 0; i < SSV.size(); i++) { 826 uint64_t AsanAlignment = 8; 827 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 828 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 829 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 830 if (PoisonSize < AsanAlignment || !SSV[i].Size || 831 (NextField % AsanAlignment) != 0) 832 continue; 833 Builder.CreateCall( 834 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 835 Builder.getIntN(PtrSize, PoisonSize)}); 836 } 837 } 838 839 /// EmitConstructorBody - Emits the body of the current constructor. 840 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 841 EmitAsanPrologueOrEpilogue(true); 842 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 843 CXXCtorType CtorType = CurGD.getCtorType(); 844 845 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 846 CtorType == Ctor_Complete) && 847 "can only generate complete ctor for this ABI"); 848 849 // Before we go any further, try the complete->base constructor 850 // delegation optimization. 851 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 852 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 853 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 854 return; 855 } 856 857 const FunctionDecl *Definition = nullptr; 858 Stmt *Body = Ctor->getBody(Definition); 859 assert(Definition == Ctor && "emitting wrong constructor body"); 860 861 // Enter the function-try-block before the constructor prologue if 862 // applicable. 863 bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Body); 864 if (IsTryBody) 865 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 866 867 incrementProfileCounter(Body); 868 maybeCreateMCDCCondBitmap(); 869 870 RunCleanupsScope RunCleanups(*this); 871 872 // TODO: in restricted cases, we can emit the vbase initializers of 873 // a complete ctor and then delegate to the base ctor. 874 875 // Emit the constructor prologue, i.e. the base and member 876 // initializers. 877 EmitCtorPrologue(Ctor, CtorType, Args); 878 879 // Emit the body of the statement. 880 if (IsTryBody) 881 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 882 else if (Body) 883 EmitStmt(Body); 884 885 // Emit any cleanup blocks associated with the member or base 886 // initializers, which includes (along the exceptional path) the 887 // destructors for those members and bases that were fully 888 // constructed. 889 RunCleanups.ForceCleanup(); 890 891 if (IsTryBody) 892 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 893 } 894 895 namespace { 896 /// RAII object to indicate that codegen is copying the value representation 897 /// instead of the object representation. Useful when copying a struct or 898 /// class which has uninitialized members and we're only performing 899 /// lvalue-to-rvalue conversion on the object but not its members. 900 class CopyingValueRepresentation { 901 public: 902 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 903 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 904 CGF.SanOpts.set(SanitizerKind::Bool, false); 905 CGF.SanOpts.set(SanitizerKind::Enum, false); 906 } 907 ~CopyingValueRepresentation() { 908 CGF.SanOpts = OldSanOpts; 909 } 910 private: 911 CodeGenFunction &CGF; 912 SanitizerSet OldSanOpts; 913 }; 914 } // end anonymous namespace 915 916 namespace { 917 class FieldMemcpyizer { 918 public: 919 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 920 const VarDecl *SrcRec) 921 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 922 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 923 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 924 LastFieldOffset(0), LastAddedFieldIndex(0) {} 925 926 bool isMemcpyableField(FieldDecl *F) const { 927 // Never memcpy fields when we are adding poisoned paddings. 928 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 929 return false; 930 Qualifiers Qual = F->getType().getQualifiers(); 931 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 932 return false; 933 return true; 934 } 935 936 void addMemcpyableField(FieldDecl *F) { 937 if (isEmptyFieldForLayout(CGF.getContext(), F)) 938 return; 939 if (!FirstField) 940 addInitialField(F); 941 else 942 addNextField(F); 943 } 944 945 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 946 ASTContext &Ctx = CGF.getContext(); 947 unsigned LastFieldSize = 948 LastField->isBitField() 949 ? LastField->getBitWidthValue(Ctx) 950 : Ctx.toBits( 951 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 952 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 953 FirstByteOffset + Ctx.getCharWidth() - 1; 954 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 955 return MemcpySize; 956 } 957 958 void emitMemcpy() { 959 // Give the subclass a chance to bail out if it feels the memcpy isn't 960 // worth it (e.g. Hasn't aggregated enough data). 961 if (!FirstField) { 962 return; 963 } 964 965 uint64_t FirstByteOffset; 966 if (FirstField->isBitField()) { 967 const CGRecordLayout &RL = 968 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 969 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 970 // FirstFieldOffset is not appropriate for bitfields, 971 // we need to use the storage offset instead. 972 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 973 } else { 974 FirstByteOffset = FirstFieldOffset; 975 } 976 977 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 978 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 979 Address ThisPtr = CGF.LoadCXXThisAddress(); 980 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 981 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 982 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 983 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 984 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 985 986 emitMemcpyIR( 987 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 988 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 989 MemcpySize); 990 reset(); 991 } 992 993 void reset() { 994 FirstField = nullptr; 995 } 996 997 protected: 998 CodeGenFunction &CGF; 999 const CXXRecordDecl *ClassDecl; 1000 1001 private: 1002 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1003 DestPtr = DestPtr.withElementType(CGF.Int8Ty); 1004 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty); 1005 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1006 } 1007 1008 void addInitialField(FieldDecl *F) { 1009 FirstField = F; 1010 LastField = F; 1011 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1012 LastFieldOffset = FirstFieldOffset; 1013 LastAddedFieldIndex = F->getFieldIndex(); 1014 } 1015 1016 void addNextField(FieldDecl *F) { 1017 // For the most part, the following invariant will hold: 1018 // F->getFieldIndex() == LastAddedFieldIndex + 1 1019 // The one exception is that Sema won't add a copy-initializer for an 1020 // unnamed bitfield, which will show up here as a gap in the sequence. 1021 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1022 "Cannot aggregate fields out of order."); 1023 LastAddedFieldIndex = F->getFieldIndex(); 1024 1025 // The 'first' and 'last' fields are chosen by offset, rather than field 1026 // index. This allows the code to support bitfields, as well as regular 1027 // fields. 1028 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1029 if (FOffset < FirstFieldOffset) { 1030 FirstField = F; 1031 FirstFieldOffset = FOffset; 1032 } else if (FOffset >= LastFieldOffset) { 1033 LastField = F; 1034 LastFieldOffset = FOffset; 1035 } 1036 } 1037 1038 const VarDecl *SrcRec; 1039 const ASTRecordLayout &RecLayout; 1040 FieldDecl *FirstField; 1041 FieldDecl *LastField; 1042 uint64_t FirstFieldOffset, LastFieldOffset; 1043 unsigned LastAddedFieldIndex; 1044 }; 1045 1046 class ConstructorMemcpyizer : public FieldMemcpyizer { 1047 private: 1048 /// Get source argument for copy constructor. Returns null if not a copy 1049 /// constructor. 1050 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1051 const CXXConstructorDecl *CD, 1052 FunctionArgList &Args) { 1053 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1054 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1055 return nullptr; 1056 } 1057 1058 // Returns true if a CXXCtorInitializer represents a member initialization 1059 // that can be rolled into a memcpy. 1060 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1061 if (!MemcpyableCtor) 1062 return false; 1063 FieldDecl *Field = MemberInit->getMember(); 1064 assert(Field && "No field for member init."); 1065 QualType FieldType = Field->getType(); 1066 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1067 1068 // Bail out on non-memcpyable, not-trivially-copyable members. 1069 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1070 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1071 FieldType->isReferenceType())) 1072 return false; 1073 1074 // Bail out on volatile fields. 1075 if (!isMemcpyableField(Field)) 1076 return false; 1077 1078 // Otherwise we're good. 1079 return true; 1080 } 1081 1082 public: 1083 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1084 FunctionArgList &Args) 1085 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1086 ConstructorDecl(CD), 1087 MemcpyableCtor(CD->isDefaulted() && 1088 CD->isCopyOrMoveConstructor() && 1089 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1090 Args(Args) { } 1091 1092 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1093 if (isMemberInitMemcpyable(MemberInit)) { 1094 AggregatedInits.push_back(MemberInit); 1095 addMemcpyableField(MemberInit->getMember()); 1096 } else { 1097 emitAggregatedInits(); 1098 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1099 ConstructorDecl, Args); 1100 } 1101 } 1102 1103 void emitAggregatedInits() { 1104 if (AggregatedInits.size() <= 1) { 1105 // This memcpy is too small to be worthwhile. Fall back on default 1106 // codegen. 1107 if (!AggregatedInits.empty()) { 1108 CopyingValueRepresentation CVR(CGF); 1109 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1110 AggregatedInits[0], ConstructorDecl, Args); 1111 AggregatedInits.clear(); 1112 } 1113 reset(); 1114 return; 1115 } 1116 1117 pushEHDestructors(); 1118 emitMemcpy(); 1119 AggregatedInits.clear(); 1120 } 1121 1122 void pushEHDestructors() { 1123 Address ThisPtr = CGF.LoadCXXThisAddress(); 1124 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1125 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1126 1127 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1128 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1129 QualType FieldType = MemberInit->getAnyMember()->getType(); 1130 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1131 if (!CGF.needsEHCleanup(dtorKind)) 1132 continue; 1133 LValue FieldLHS = LHS; 1134 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1135 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1136 } 1137 } 1138 1139 void finish() { 1140 emitAggregatedInits(); 1141 } 1142 1143 private: 1144 const CXXConstructorDecl *ConstructorDecl; 1145 bool MemcpyableCtor; 1146 FunctionArgList &Args; 1147 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1148 }; 1149 1150 class AssignmentMemcpyizer : public FieldMemcpyizer { 1151 private: 1152 // Returns the memcpyable field copied by the given statement, if one 1153 // exists. Otherwise returns null. 1154 FieldDecl *getMemcpyableField(Stmt *S) { 1155 if (!AssignmentsMemcpyable) 1156 return nullptr; 1157 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1158 // Recognise trivial assignments. 1159 if (BO->getOpcode() != BO_Assign) 1160 return nullptr; 1161 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1162 if (!ME) 1163 return nullptr; 1164 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1165 if (!Field || !isMemcpyableField(Field)) 1166 return nullptr; 1167 Stmt *RHS = BO->getRHS(); 1168 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1169 RHS = EC->getSubExpr(); 1170 if (!RHS) 1171 return nullptr; 1172 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1173 if (ME2->getMemberDecl() == Field) 1174 return Field; 1175 } 1176 return nullptr; 1177 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1178 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1179 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1180 return nullptr; 1181 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1182 if (!IOA) 1183 return nullptr; 1184 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1185 if (!Field || !isMemcpyableField(Field)) 1186 return nullptr; 1187 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1188 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1189 return nullptr; 1190 return Field; 1191 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1192 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1193 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1194 return nullptr; 1195 Expr *DstPtr = CE->getArg(0); 1196 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1197 DstPtr = DC->getSubExpr(); 1198 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1199 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1200 return nullptr; 1201 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1202 if (!ME) 1203 return nullptr; 1204 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1205 if (!Field || !isMemcpyableField(Field)) 1206 return nullptr; 1207 Expr *SrcPtr = CE->getArg(1); 1208 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1209 SrcPtr = SC->getSubExpr(); 1210 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1211 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1212 return nullptr; 1213 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1214 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1215 return nullptr; 1216 return Field; 1217 } 1218 1219 return nullptr; 1220 } 1221 1222 bool AssignmentsMemcpyable; 1223 SmallVector<Stmt*, 16> AggregatedStmts; 1224 1225 public: 1226 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1227 FunctionArgList &Args) 1228 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1229 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1230 assert(Args.size() == 2); 1231 } 1232 1233 void emitAssignment(Stmt *S) { 1234 FieldDecl *F = getMemcpyableField(S); 1235 if (F) { 1236 addMemcpyableField(F); 1237 AggregatedStmts.push_back(S); 1238 } else { 1239 emitAggregatedStmts(); 1240 CGF.EmitStmt(S); 1241 } 1242 } 1243 1244 void emitAggregatedStmts() { 1245 if (AggregatedStmts.size() <= 1) { 1246 if (!AggregatedStmts.empty()) { 1247 CopyingValueRepresentation CVR(CGF); 1248 CGF.EmitStmt(AggregatedStmts[0]); 1249 } 1250 reset(); 1251 } 1252 1253 emitMemcpy(); 1254 AggregatedStmts.clear(); 1255 } 1256 1257 void finish() { 1258 emitAggregatedStmts(); 1259 } 1260 }; 1261 } // end anonymous namespace 1262 1263 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1264 const Type *BaseType = BaseInit->getBaseClass(); 1265 const auto *BaseClassDecl = 1266 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1267 return BaseClassDecl->isDynamicClass(); 1268 } 1269 1270 /// EmitCtorPrologue - This routine generates necessary code to initialize 1271 /// base classes and non-static data members belonging to this constructor. 1272 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1273 CXXCtorType CtorType, 1274 FunctionArgList &Args) { 1275 if (CD->isDelegatingConstructor()) 1276 return EmitDelegatingCXXConstructorCall(CD, Args); 1277 1278 const CXXRecordDecl *ClassDecl = CD->getParent(); 1279 1280 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1281 E = CD->init_end(); 1282 1283 // Virtual base initializers first, if any. They aren't needed if: 1284 // - This is a base ctor variant 1285 // - There are no vbases 1286 // - The class is abstract, so a complete object of it cannot be constructed 1287 // 1288 // The check for an abstract class is necessary because sema may not have 1289 // marked virtual base destructors referenced. 1290 bool ConstructVBases = CtorType != Ctor_Base && 1291 ClassDecl->getNumVBases() != 0 && 1292 !ClassDecl->isAbstract(); 1293 1294 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1295 // constructor of a class with virtual bases takes an additional parameter to 1296 // conditionally construct the virtual bases. Emit that check here. 1297 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1298 if (ConstructVBases && 1299 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1300 BaseCtorContinueBB = 1301 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1302 assert(BaseCtorContinueBB); 1303 } 1304 1305 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1306 if (!ConstructVBases) 1307 continue; 1308 SaveAndRestore ThisRAII(CXXThisValue); 1309 if (CGM.getCodeGenOpts().StrictVTablePointers && 1310 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1311 isInitializerOfDynamicClass(*B)) 1312 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1313 EmitBaseInitializer(*this, ClassDecl, *B); 1314 } 1315 1316 if (BaseCtorContinueBB) { 1317 // Complete object handler should continue to the remaining initializers. 1318 Builder.CreateBr(BaseCtorContinueBB); 1319 EmitBlock(BaseCtorContinueBB); 1320 } 1321 1322 // Then, non-virtual base initializers. 1323 for (; B != E && (*B)->isBaseInitializer(); B++) { 1324 assert(!(*B)->isBaseVirtual()); 1325 SaveAndRestore ThisRAII(CXXThisValue); 1326 if (CGM.getCodeGenOpts().StrictVTablePointers && 1327 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1328 isInitializerOfDynamicClass(*B)) 1329 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1330 EmitBaseInitializer(*this, ClassDecl, *B); 1331 } 1332 1333 InitializeVTablePointers(ClassDecl); 1334 1335 // And finally, initialize class members. 1336 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1337 ConstructorMemcpyizer CM(*this, CD, Args); 1338 for (; B != E; B++) { 1339 CXXCtorInitializer *Member = (*B); 1340 assert(!Member->isBaseInitializer()); 1341 assert(Member->isAnyMemberInitializer() && 1342 "Delegating initializer on non-delegating constructor"); 1343 CM.addMemberInitializer(Member); 1344 } 1345 CM.finish(); 1346 } 1347 1348 static bool 1349 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1350 1351 static bool 1352 HasTrivialDestructorBody(ASTContext &Context, 1353 const CXXRecordDecl *BaseClassDecl, 1354 const CXXRecordDecl *MostDerivedClassDecl) 1355 { 1356 // If the destructor is trivial we don't have to check anything else. 1357 if (BaseClassDecl->hasTrivialDestructor()) 1358 return true; 1359 1360 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1361 return false; 1362 1363 // Check fields. 1364 for (const auto *Field : BaseClassDecl->fields()) 1365 if (!FieldHasTrivialDestructorBody(Context, Field)) 1366 return false; 1367 1368 // Check non-virtual bases. 1369 for (const auto &I : BaseClassDecl->bases()) { 1370 if (I.isVirtual()) 1371 continue; 1372 1373 const CXXRecordDecl *NonVirtualBase = 1374 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1375 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1376 MostDerivedClassDecl)) 1377 return false; 1378 } 1379 1380 if (BaseClassDecl == MostDerivedClassDecl) { 1381 // Check virtual bases. 1382 for (const auto &I : BaseClassDecl->vbases()) { 1383 const CXXRecordDecl *VirtualBase = 1384 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1385 if (!HasTrivialDestructorBody(Context, VirtualBase, 1386 MostDerivedClassDecl)) 1387 return false; 1388 } 1389 } 1390 1391 return true; 1392 } 1393 1394 static bool 1395 FieldHasTrivialDestructorBody(ASTContext &Context, 1396 const FieldDecl *Field) 1397 { 1398 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1399 1400 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1401 if (!RT) 1402 return true; 1403 1404 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1405 1406 // The destructor for an implicit anonymous union member is never invoked. 1407 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1408 return true; 1409 1410 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1411 } 1412 1413 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1414 /// any vtable pointers before calling this destructor. 1415 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1416 const CXXDestructorDecl *Dtor) { 1417 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1418 if (!ClassDecl->isDynamicClass()) 1419 return true; 1420 1421 // For a final class, the vtable pointer is known to already point to the 1422 // class's vtable. 1423 if (ClassDecl->isEffectivelyFinal()) 1424 return true; 1425 1426 if (!Dtor->hasTrivialBody()) 1427 return false; 1428 1429 // Check the fields. 1430 for (const auto *Field : ClassDecl->fields()) 1431 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1432 return false; 1433 1434 return true; 1435 } 1436 1437 /// EmitDestructorBody - Emits the body of the current destructor. 1438 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1439 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1440 CXXDtorType DtorType = CurGD.getDtorType(); 1441 1442 // For an abstract class, non-base destructors are never used (and can't 1443 // be emitted in general, because vbase dtors may not have been validated 1444 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1445 // in fact emit references to them from other compilations, so emit them 1446 // as functions containing a trap instruction. 1447 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1448 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1449 TrapCall->setDoesNotReturn(); 1450 TrapCall->setDoesNotThrow(); 1451 Builder.CreateUnreachable(); 1452 Builder.ClearInsertionPoint(); 1453 return; 1454 } 1455 1456 Stmt *Body = Dtor->getBody(); 1457 if (Body) { 1458 incrementProfileCounter(Body); 1459 maybeCreateMCDCCondBitmap(); 1460 } 1461 1462 // The call to operator delete in a deleting destructor happens 1463 // outside of the function-try-block, which means it's always 1464 // possible to delegate the destructor body to the complete 1465 // destructor. Do so. 1466 if (DtorType == Dtor_Deleting) { 1467 RunCleanupsScope DtorEpilogue(*this); 1468 EnterDtorCleanups(Dtor, Dtor_Deleting); 1469 if (HaveInsertPoint()) { 1470 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 1471 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1472 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1473 } 1474 return; 1475 } 1476 1477 // If the body is a function-try-block, enter the try before 1478 // anything else. 1479 bool isTryBody = isa_and_nonnull<CXXTryStmt>(Body); 1480 if (isTryBody) 1481 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1482 EmitAsanPrologueOrEpilogue(false); 1483 1484 // Enter the epilogue cleanups. 1485 RunCleanupsScope DtorEpilogue(*this); 1486 1487 // If this is the complete variant, just invoke the base variant; 1488 // the epilogue will destruct the virtual bases. But we can't do 1489 // this optimization if the body is a function-try-block, because 1490 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1491 // always delegate because we might not have a definition in this TU. 1492 switch (DtorType) { 1493 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1494 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1495 1496 case Dtor_Complete: 1497 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1498 "can't emit a dtor without a body for non-Microsoft ABIs"); 1499 1500 // Enter the cleanup scopes for virtual bases. 1501 EnterDtorCleanups(Dtor, Dtor_Complete); 1502 1503 if (!isTryBody) { 1504 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 1505 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1506 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1507 break; 1508 } 1509 1510 // Fallthrough: act like we're in the base variant. 1511 [[fallthrough]]; 1512 1513 case Dtor_Base: 1514 assert(Body); 1515 1516 // Enter the cleanup scopes for fields and non-virtual bases. 1517 EnterDtorCleanups(Dtor, Dtor_Base); 1518 1519 // Initialize the vtable pointers before entering the body. 1520 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1521 // Insert the llvm.launder.invariant.group intrinsic before initializing 1522 // the vptrs to cancel any previous assumptions we might have made. 1523 if (CGM.getCodeGenOpts().StrictVTablePointers && 1524 CGM.getCodeGenOpts().OptimizationLevel > 0) 1525 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1526 InitializeVTablePointers(Dtor->getParent()); 1527 } 1528 1529 if (isTryBody) 1530 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1531 else if (Body) 1532 EmitStmt(Body); 1533 else { 1534 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1535 // nothing to do besides what's in the epilogue 1536 } 1537 // -fapple-kext must inline any call to this dtor into 1538 // the caller's body. 1539 if (getLangOpts().AppleKext) 1540 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1541 1542 break; 1543 } 1544 1545 // Jump out through the epilogue cleanups. 1546 DtorEpilogue.ForceCleanup(); 1547 1548 // Exit the try if applicable. 1549 if (isTryBody) 1550 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1551 } 1552 1553 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1554 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1555 const Stmt *RootS = AssignOp->getBody(); 1556 assert(isa<CompoundStmt>(RootS) && 1557 "Body of an implicit assignment operator should be compound stmt."); 1558 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1559 1560 LexicalScope Scope(*this, RootCS->getSourceRange()); 1561 1562 incrementProfileCounter(RootCS); 1563 maybeCreateMCDCCondBitmap(); 1564 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1565 for (auto *I : RootCS->body()) 1566 AM.emitAssignment(I); 1567 AM.finish(); 1568 } 1569 1570 namespace { 1571 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1572 const CXXDestructorDecl *DD) { 1573 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1574 return CGF.EmitScalarExpr(ThisArg); 1575 return CGF.LoadCXXThis(); 1576 } 1577 1578 /// Call the operator delete associated with the current destructor. 1579 struct CallDtorDelete final : EHScopeStack::Cleanup { 1580 CallDtorDelete() {} 1581 1582 void Emit(CodeGenFunction &CGF, Flags flags) override { 1583 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1584 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1585 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1586 LoadThisForDtorDelete(CGF, Dtor), 1587 CGF.getContext().getTagDeclType(ClassDecl)); 1588 } 1589 }; 1590 1591 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1592 llvm::Value *ShouldDeleteCondition, 1593 bool ReturnAfterDelete) { 1594 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1595 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1596 llvm::Value *ShouldCallDelete 1597 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1598 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1599 1600 CGF.EmitBlock(callDeleteBB); 1601 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1602 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1603 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1604 LoadThisForDtorDelete(CGF, Dtor), 1605 CGF.getContext().getTagDeclType(ClassDecl)); 1606 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1607 ReturnAfterDelete && 1608 "unexpected value for ReturnAfterDelete"); 1609 if (ReturnAfterDelete) 1610 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1611 else 1612 CGF.Builder.CreateBr(continueBB); 1613 1614 CGF.EmitBlock(continueBB); 1615 } 1616 1617 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1618 llvm::Value *ShouldDeleteCondition; 1619 1620 public: 1621 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1622 : ShouldDeleteCondition(ShouldDeleteCondition) { 1623 assert(ShouldDeleteCondition != nullptr); 1624 } 1625 1626 void Emit(CodeGenFunction &CGF, Flags flags) override { 1627 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1628 /*ReturnAfterDelete*/false); 1629 } 1630 }; 1631 1632 class DestroyField final : public EHScopeStack::Cleanup { 1633 const FieldDecl *field; 1634 CodeGenFunction::Destroyer *destroyer; 1635 bool useEHCleanupForArray; 1636 1637 public: 1638 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1639 bool useEHCleanupForArray) 1640 : field(field), destroyer(destroyer), 1641 useEHCleanupForArray(useEHCleanupForArray) {} 1642 1643 void Emit(CodeGenFunction &CGF, Flags flags) override { 1644 // Find the address of the field. 1645 Address thisValue = CGF.LoadCXXThisAddress(); 1646 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1647 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1648 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1649 assert(LV.isSimple()); 1650 1651 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1652 flags.isForNormalCleanup() && useEHCleanupForArray); 1653 } 1654 }; 1655 1656 class DeclAsInlineDebugLocation { 1657 CGDebugInfo *DI; 1658 llvm::MDNode *InlinedAt; 1659 std::optional<ApplyDebugLocation> Location; 1660 1661 public: 1662 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) 1663 : DI(CGF.getDebugInfo()) { 1664 if (!DI) 1665 return; 1666 InlinedAt = DI->getInlinedAt(); 1667 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); 1668 Location.emplace(CGF, Decl.getLocation()); 1669 } 1670 1671 ~DeclAsInlineDebugLocation() { 1672 if (!DI) 1673 return; 1674 Location.reset(); 1675 DI->setInlinedAt(InlinedAt); 1676 } 1677 }; 1678 1679 static void EmitSanitizerDtorCallback( 1680 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, 1681 std::optional<CharUnits::QuantityType> PoisonSize = {}) { 1682 CodeGenFunction::SanitizerScope SanScope(&CGF); 1683 // Pass in void pointer and size of region as arguments to runtime 1684 // function 1685 SmallVector<llvm::Value *, 2> Args = {Ptr}; 1686 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy}; 1687 1688 if (PoisonSize.has_value()) { 1689 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize)); 1690 ArgTypes.emplace_back(CGF.SizeTy); 1691 } 1692 1693 llvm::FunctionType *FnType = 1694 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1695 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name); 1696 1697 CGF.EmitNounwindRuntimeCall(Fn, Args); 1698 } 1699 1700 static void 1701 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1702 CharUnits::QuantityType PoisonSize) { 1703 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr, 1704 PoisonSize); 1705 } 1706 1707 /// Poison base class with a trivial destructor. 1708 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { 1709 const CXXRecordDecl *BaseClass; 1710 bool BaseIsVirtual; 1711 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) 1712 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 1713 1714 void Emit(CodeGenFunction &CGF, Flags flags) override { 1715 const CXXRecordDecl *DerivedClass = 1716 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 1717 1718 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( 1719 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); 1720 1721 const ASTRecordLayout &BaseLayout = 1722 CGF.getContext().getASTRecordLayout(BaseClass); 1723 CharUnits BaseSize = BaseLayout.getSize(); 1724 1725 if (!BaseSize.isPositive()) 1726 return; 1727 1728 // Use the base class declaration location as inline DebugLocation. All 1729 // fields of the class are destroyed. 1730 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); 1731 EmitSanitizerDtorFieldsCallback(CGF, Addr.emitRawPointer(CGF), 1732 BaseSize.getQuantity()); 1733 1734 // Prevent the current stack frame from disappearing from the stack trace. 1735 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1736 } 1737 }; 1738 1739 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { 1740 const CXXDestructorDecl *Dtor; 1741 unsigned StartIndex; 1742 unsigned EndIndex; 1743 1744 public: 1745 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, 1746 unsigned EndIndex) 1747 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} 1748 1749 // Generate function call for handling object poisoning. 1750 // Disables tail call elimination, to prevent the current stack frame 1751 // from disappearing from the stack trace. 1752 void Emit(CodeGenFunction &CGF, Flags flags) override { 1753 const ASTContext &Context = CGF.getContext(); 1754 const ASTRecordLayout &Layout = 1755 Context.getASTRecordLayout(Dtor->getParent()); 1756 1757 // It's a first trivial field so it should be at the begining of a char, 1758 // still round up start offset just in case. 1759 CharUnits PoisonStart = Context.toCharUnitsFromBits( 1760 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1); 1761 llvm::ConstantInt *OffsetSizePtr = 1762 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1763 1764 llvm::Value *OffsetPtr = 1765 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr); 1766 1767 CharUnits PoisonEnd; 1768 if (EndIndex >= Layout.getFieldCount()) { 1769 PoisonEnd = Layout.getNonVirtualSize(); 1770 } else { 1771 PoisonEnd = 1772 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex)); 1773 } 1774 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1775 if (!PoisonSize.isPositive()) 1776 return; 1777 1778 // Use the top field declaration location as inline DebugLocation. 1779 DeclAsInlineDebugLocation InlineHere( 1780 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex)); 1781 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1782 1783 // Prevent the current stack frame from disappearing from the stack trace. 1784 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1785 } 1786 }; 1787 1788 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1789 const CXXDestructorDecl *Dtor; 1790 1791 public: 1792 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1793 1794 // Generate function call for handling vtable pointer poisoning. 1795 void Emit(CodeGenFunction &CGF, Flags flags) override { 1796 assert(Dtor->getParent()->isDynamicClass()); 1797 (void)Dtor; 1798 // Poison vtable and vtable ptr if they exist for this class. 1799 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1800 1801 // Pass in void pointer and size of region as arguments to runtime 1802 // function 1803 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", 1804 VTablePtr); 1805 } 1806 }; 1807 1808 class SanitizeDtorCleanupBuilder { 1809 ASTContext &Context; 1810 EHScopeStack &EHStack; 1811 const CXXDestructorDecl *DD; 1812 std::optional<unsigned> StartIndex; 1813 1814 public: 1815 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, 1816 const CXXDestructorDecl *DD) 1817 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} 1818 void PushCleanupForField(const FieldDecl *Field) { 1819 if (isEmptyFieldForLayout(Context, Field)) 1820 return; 1821 unsigned FieldIndex = Field->getFieldIndex(); 1822 if (FieldHasTrivialDestructorBody(Context, Field)) { 1823 if (!StartIndex) 1824 StartIndex = FieldIndex; 1825 } else if (StartIndex) { 1826 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1827 *StartIndex, FieldIndex); 1828 StartIndex = std::nullopt; 1829 } 1830 } 1831 void End() { 1832 if (StartIndex) 1833 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1834 *StartIndex, -1); 1835 } 1836 }; 1837 } // end anonymous namespace 1838 1839 /// Emit all code that comes at the end of class's 1840 /// destructor. This is to call destructors on members and base classes 1841 /// in reverse order of their construction. 1842 /// 1843 /// For a deleting destructor, this also handles the case where a destroying 1844 /// operator delete completely overrides the definition. 1845 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1846 CXXDtorType DtorType) { 1847 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1848 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1849 1850 // The deleting-destructor phase just needs to call the appropriate 1851 // operator delete that Sema picked up. 1852 if (DtorType == Dtor_Deleting) { 1853 assert(DD->getOperatorDelete() && 1854 "operator delete missing - EnterDtorCleanups"); 1855 if (CXXStructorImplicitParamValue) { 1856 // If there is an implicit param to the deleting dtor, it's a boolean 1857 // telling whether this is a deleting destructor. 1858 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1859 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1860 /*ReturnAfterDelete*/true); 1861 else 1862 EHStack.pushCleanup<CallDtorDeleteConditional>( 1863 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1864 } else { 1865 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1866 const CXXRecordDecl *ClassDecl = DD->getParent(); 1867 EmitDeleteCall(DD->getOperatorDelete(), 1868 LoadThisForDtorDelete(*this, DD), 1869 getContext().getTagDeclType(ClassDecl)); 1870 EmitBranchThroughCleanup(ReturnBlock); 1871 } else { 1872 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1873 } 1874 } 1875 return; 1876 } 1877 1878 const CXXRecordDecl *ClassDecl = DD->getParent(); 1879 1880 // Unions have no bases and do not call field destructors. 1881 if (ClassDecl->isUnion()) 1882 return; 1883 1884 // The complete-destructor phase just destructs all the virtual bases. 1885 if (DtorType == Dtor_Complete) { 1886 // Poison the vtable pointer such that access after the base 1887 // and member destructors are invoked is invalid. 1888 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1889 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1890 ClassDecl->isPolymorphic()) 1891 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1892 1893 // We push them in the forward order so that they'll be popped in 1894 // the reverse order. 1895 for (const auto &Base : ClassDecl->vbases()) { 1896 auto *BaseClassDecl = 1897 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1898 1899 if (BaseClassDecl->hasTrivialDestructor()) { 1900 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class 1901 // memory. For non-trival base classes the same is done in the class 1902 // destructor. 1903 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1904 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1905 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1906 BaseClassDecl, 1907 /*BaseIsVirtual*/ true); 1908 } else { 1909 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1910 /*BaseIsVirtual*/ true); 1911 } 1912 } 1913 1914 return; 1915 } 1916 1917 assert(DtorType == Dtor_Base); 1918 // Poison the vtable pointer if it has no virtual bases, but inherits 1919 // virtual functions. 1920 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1921 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1922 ClassDecl->isPolymorphic()) 1923 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1924 1925 // Destroy non-virtual bases. 1926 for (const auto &Base : ClassDecl->bases()) { 1927 // Ignore virtual bases. 1928 if (Base.isVirtual()) 1929 continue; 1930 1931 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1932 1933 if (BaseClassDecl->hasTrivialDestructor()) { 1934 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1935 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1936 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1937 BaseClassDecl, 1938 /*BaseIsVirtual*/ false); 1939 } else { 1940 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1941 /*BaseIsVirtual*/ false); 1942 } 1943 } 1944 1945 // Poison fields such that access after their destructors are 1946 // invoked, and before the base class destructor runs, is invalid. 1947 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1948 SanOpts.has(SanitizerKind::Memory); 1949 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); 1950 1951 // Destroy direct fields. 1952 for (const auto *Field : ClassDecl->fields()) { 1953 if (SanitizeFields) 1954 SanitizeBuilder.PushCleanupForField(Field); 1955 1956 QualType type = Field->getType(); 1957 QualType::DestructionKind dtorKind = type.isDestructedType(); 1958 if (!dtorKind) 1959 continue; 1960 1961 // Anonymous union members do not have their destructors called. 1962 const RecordType *RT = type->getAsUnionType(); 1963 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) 1964 continue; 1965 1966 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1967 EHStack.pushCleanup<DestroyField>( 1968 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup); 1969 } 1970 1971 if (SanitizeFields) 1972 SanitizeBuilder.End(); 1973 } 1974 1975 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1976 /// constructor for each of several members of an array. 1977 /// 1978 /// \param ctor the constructor to call for each element 1979 /// \param arrayType the type of the array to initialize 1980 /// \param arrayBegin an arrayType* 1981 /// \param zeroInitialize true if each element should be 1982 /// zero-initialized before it is constructed 1983 void CodeGenFunction::EmitCXXAggrConstructorCall( 1984 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1985 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1986 bool zeroInitialize) { 1987 QualType elementType; 1988 llvm::Value *numElements = 1989 emitArrayLength(arrayType, elementType, arrayBegin); 1990 1991 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1992 NewPointerIsChecked, zeroInitialize); 1993 } 1994 1995 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1996 /// constructor for each of several members of an array. 1997 /// 1998 /// \param ctor the constructor to call for each element 1999 /// \param numElements the number of elements in the array; 2000 /// may be zero 2001 /// \param arrayBase a T*, where T is the type constructed by ctor 2002 /// \param zeroInitialize true if each element should be 2003 /// zero-initialized before it is constructed 2004 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 2005 llvm::Value *numElements, 2006 Address arrayBase, 2007 const CXXConstructExpr *E, 2008 bool NewPointerIsChecked, 2009 bool zeroInitialize) { 2010 // It's legal for numElements to be zero. This can happen both 2011 // dynamically, because x can be zero in 'new A[x]', and statically, 2012 // because of GCC extensions that permit zero-length arrays. There 2013 // are probably legitimate places where we could assume that this 2014 // doesn't happen, but it's not clear that it's worth it. 2015 llvm::BranchInst *zeroCheckBranch = nullptr; 2016 2017 // Optimize for a constant count. 2018 llvm::ConstantInt *constantCount 2019 = dyn_cast<llvm::ConstantInt>(numElements); 2020 if (constantCount) { 2021 // Just skip out if the constant count is zero. 2022 if (constantCount->isZero()) return; 2023 2024 // Otherwise, emit the check. 2025 } else { 2026 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 2027 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 2028 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 2029 EmitBlock(loopBB); 2030 } 2031 2032 // Find the end of the array. 2033 llvm::Type *elementType = arrayBase.getElementType(); 2034 llvm::Value *arrayBegin = arrayBase.emitRawPointer(*this); 2035 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 2036 elementType, arrayBegin, numElements, "arrayctor.end"); 2037 2038 // Enter the loop, setting up a phi for the current location to initialize. 2039 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2040 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 2041 EmitBlock(loopBB); 2042 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 2043 "arrayctor.cur"); 2044 cur->addIncoming(arrayBegin, entryBB); 2045 2046 // Inside the loop body, emit the constructor call on the array element. 2047 2048 // The alignment of the base, adjusted by the size of a single element, 2049 // provides a conservative estimate of the alignment of every element. 2050 // (This assumes we never start tracking offsetted alignments.) 2051 // 2052 // Note that these are complete objects and so we don't need to 2053 // use the non-virtual size or alignment. 2054 QualType type = getContext().getTypeDeclType(ctor->getParent()); 2055 CharUnits eltAlignment = 2056 arrayBase.getAlignment() 2057 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2058 Address curAddr = Address(cur, elementType, eltAlignment); 2059 2060 // Zero initialize the storage, if requested. 2061 if (zeroInitialize) 2062 EmitNullInitialization(curAddr, type); 2063 2064 // C++ [class.temporary]p4: 2065 // There are two contexts in which temporaries are destroyed at a different 2066 // point than the end of the full-expression. The first context is when a 2067 // default constructor is called to initialize an element of an array. 2068 // If the constructor has one or more default arguments, the destruction of 2069 // every temporary created in a default argument expression is sequenced 2070 // before the construction of the next array element, if any. 2071 2072 { 2073 RunCleanupsScope Scope(*this); 2074 2075 // Evaluate the constructor and its arguments in a regular 2076 // partial-destroy cleanup. 2077 if (getLangOpts().Exceptions && 2078 !ctor->getParent()->hasTrivialDestructor()) { 2079 Destroyer *destroyer = destroyCXXObject; 2080 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2081 *destroyer); 2082 } 2083 auto currAVS = AggValueSlot::forAddr( 2084 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2085 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2086 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2087 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2088 : AggValueSlot::IsNotSanitizerChecked); 2089 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2090 /*Delegating=*/false, currAVS, E); 2091 } 2092 2093 // Go to the next element. 2094 llvm::Value *next = Builder.CreateInBoundsGEP( 2095 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2096 cur->addIncoming(next, Builder.GetInsertBlock()); 2097 2098 // Check whether that's the end of the loop. 2099 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2100 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2101 Builder.CreateCondBr(done, contBB, loopBB); 2102 2103 // Patch the earlier check to skip over the loop. 2104 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2105 2106 EmitBlock(contBB); 2107 } 2108 2109 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2110 Address addr, 2111 QualType type) { 2112 const RecordType *rtype = type->castAs<RecordType>(); 2113 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2114 const CXXDestructorDecl *dtor = record->getDestructor(); 2115 assert(!dtor->isTrivial()); 2116 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2117 /*Delegating=*/false, addr, type); 2118 } 2119 2120 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2121 CXXCtorType Type, 2122 bool ForVirtualBase, 2123 bool Delegating, 2124 AggValueSlot ThisAVS, 2125 const CXXConstructExpr *E) { 2126 CallArgList Args; 2127 Address This = ThisAVS.getAddress(); 2128 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2129 LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace(); 2130 llvm::Value *ThisPtr = 2131 getAsNaturalPointerTo(This, D->getThisType()->getPointeeType()); 2132 2133 if (SlotAS != ThisAS) { 2134 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2135 llvm::Type *NewType = 2136 llvm::PointerType::get(getLLVMContext(), TargetThisAS); 2137 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, ThisPtr, ThisAS, 2138 SlotAS, NewType); 2139 } 2140 2141 // Push the this ptr. 2142 Args.add(RValue::get(ThisPtr), D->getThisType()); 2143 2144 // If this is a trivial constructor, emit a memcpy now before we lose 2145 // the alignment information on the argument. 2146 // FIXME: It would be better to preserve alignment information into CallArg. 2147 if (isMemcpyEquivalentSpecialMember(D)) { 2148 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2149 2150 const Expr *Arg = E->getArg(0); 2151 LValue Src = EmitLValue(Arg); 2152 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2153 LValue Dest = MakeAddrLValue(This, DestTy); 2154 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2155 return; 2156 } 2157 2158 // Add the rest of the user-supplied arguments. 2159 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2160 EvaluationOrder Order = E->isListInitialization() 2161 ? EvaluationOrder::ForceLeftToRight 2162 : EvaluationOrder::Default; 2163 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2164 /*ParamsToSkip*/ 0, Order); 2165 2166 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2167 ThisAVS.mayOverlap(), E->getExprLoc(), 2168 ThisAVS.isSanitizerChecked()); 2169 } 2170 2171 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2172 const CXXConstructorDecl *Ctor, 2173 CXXCtorType Type, CallArgList &Args) { 2174 // We can't forward a variadic call. 2175 if (Ctor->isVariadic()) 2176 return false; 2177 2178 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2179 // If the parameters are callee-cleanup, it's not safe to forward. 2180 for (auto *P : Ctor->parameters()) 2181 if (P->needsDestruction(CGF.getContext())) 2182 return false; 2183 2184 // Likewise if they're inalloca. 2185 const CGFunctionInfo &Info = 2186 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2187 if (Info.usesInAlloca()) 2188 return false; 2189 } 2190 2191 // Anything else should be OK. 2192 return true; 2193 } 2194 2195 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2196 CXXCtorType Type, 2197 bool ForVirtualBase, 2198 bool Delegating, 2199 Address This, 2200 CallArgList &Args, 2201 AggValueSlot::Overlap_t Overlap, 2202 SourceLocation Loc, 2203 bool NewPointerIsChecked) { 2204 const CXXRecordDecl *ClassDecl = D->getParent(); 2205 2206 if (!NewPointerIsChecked) 2207 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This, 2208 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2209 2210 if (D->isTrivial() && D->isDefaultConstructor()) { 2211 assert(Args.size() == 1 && "trivial default ctor with args"); 2212 return; 2213 } 2214 2215 // If this is a trivial constructor, just emit what's needed. If this is a 2216 // union copy constructor, we must emit a memcpy, because the AST does not 2217 // model that copy. 2218 if (isMemcpyEquivalentSpecialMember(D)) { 2219 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2220 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2221 Address Src = makeNaturalAddressForPointer( 2222 Args[1].getRValue(*this).getScalarVal(), SrcTy); 2223 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2224 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2225 LValue DestLVal = MakeAddrLValue(This, DestTy); 2226 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2227 return; 2228 } 2229 2230 bool PassPrototypeArgs = true; 2231 // Check whether we can actually emit the constructor before trying to do so. 2232 if (auto Inherited = D->getInheritedConstructor()) { 2233 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2234 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2235 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2236 Delegating, Args); 2237 return; 2238 } 2239 } 2240 2241 // Insert any ABI-specific implicit constructor arguments. 2242 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2243 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2244 Delegating, Args); 2245 2246 // Emit the call. 2247 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2248 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2249 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2250 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2251 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); 2252 2253 // Generate vtable assumptions if we're constructing a complete object 2254 // with a vtable. We don't do this for base subobjects for two reasons: 2255 // first, it's incorrect for classes with virtual bases, and second, we're 2256 // about to overwrite the vptrs anyway. 2257 // We also have to make sure if we can refer to vtable: 2258 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2259 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2260 // sure that definition of vtable is not hidden, 2261 // then we are always safe to refer to it. 2262 // FIXME: It looks like InstCombine is very inefficient on dealing with 2263 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2264 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2265 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2266 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2267 CGM.getCodeGenOpts().StrictVTablePointers) 2268 EmitVTableAssumptionLoads(ClassDecl, This); 2269 } 2270 2271 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2272 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2273 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2274 CallArgList Args; 2275 CallArg ThisArg(RValue::get(getAsNaturalPointerTo( 2276 This, D->getThisType()->getPointeeType())), 2277 D->getThisType()); 2278 2279 // Forward the parameters. 2280 if (InheritedFromVBase && 2281 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2282 // Nothing to do; this construction is not responsible for constructing 2283 // the base class containing the inherited constructor. 2284 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2285 // have constructor variants? 2286 Args.push_back(ThisArg); 2287 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2288 // The inheriting constructor was inlined; just inject its arguments. 2289 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2290 "wrong number of parameters for inherited constructor call"); 2291 Args = CXXInheritedCtorInitExprArgs; 2292 Args[0] = ThisArg; 2293 } else { 2294 // The inheriting constructor was not inlined. Emit delegating arguments. 2295 Args.push_back(ThisArg); 2296 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2297 assert(OuterCtor->getNumParams() == D->getNumParams()); 2298 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2299 2300 for (const auto *Param : OuterCtor->parameters()) { 2301 assert(getContext().hasSameUnqualifiedType( 2302 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2303 Param->getType())); 2304 EmitDelegateCallArg(Args, Param, E->getLocation()); 2305 2306 // Forward __attribute__(pass_object_size). 2307 if (Param->hasAttr<PassObjectSizeAttr>()) { 2308 auto *POSParam = SizeArguments[Param]; 2309 assert(POSParam && "missing pass_object_size value for forwarding"); 2310 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2311 } 2312 } 2313 } 2314 2315 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2316 This, Args, AggValueSlot::MayOverlap, 2317 E->getLocation(), /*NewPointerIsChecked*/true); 2318 } 2319 2320 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2321 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2322 bool Delegating, CallArgList &Args) { 2323 GlobalDecl GD(Ctor, CtorType); 2324 InlinedInheritingConstructorScope Scope(*this, GD); 2325 ApplyInlineDebugLocation DebugScope(*this, GD); 2326 RunCleanupsScope RunCleanups(*this); 2327 2328 // Save the arguments to be passed to the inherited constructor. 2329 CXXInheritedCtorInitExprArgs = Args; 2330 2331 FunctionArgList Params; 2332 QualType RetType = BuildFunctionArgList(CurGD, Params); 2333 FnRetTy = RetType; 2334 2335 // Insert any ABI-specific implicit constructor arguments. 2336 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2337 ForVirtualBase, Delegating, Args); 2338 2339 // Emit a simplified prolog. We only need to emit the implicit params. 2340 assert(Args.size() >= Params.size() && "too few arguments for call"); 2341 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2342 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2343 const RValue &RV = Args[I].getRValue(*this); 2344 assert(!RV.isComplex() && "complex indirect params not supported"); 2345 ParamValue Val = RV.isScalar() 2346 ? ParamValue::forDirect(RV.getScalarVal()) 2347 : ParamValue::forIndirect(RV.getAggregateAddress()); 2348 EmitParmDecl(*Params[I], Val, I + 1); 2349 } 2350 } 2351 2352 // Create a return value slot if the ABI implementation wants one. 2353 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2354 // value instead. 2355 if (!RetType->isVoidType()) 2356 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2357 2358 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2359 CXXThisValue = CXXABIThisValue; 2360 2361 // Directly emit the constructor initializers. 2362 EmitCtorPrologue(Ctor, CtorType, Params); 2363 } 2364 2365 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2366 llvm::Value *VTableGlobal = 2367 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2368 if (!VTableGlobal) 2369 return; 2370 2371 // We can just use the base offset in the complete class. 2372 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2373 2374 if (!NonVirtualOffset.isZero()) 2375 This = 2376 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2377 Vptr.VTableClass, Vptr.NearestVBase); 2378 2379 llvm::Value *VPtrValue = 2380 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2381 llvm::Value *Cmp = 2382 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2383 Builder.CreateAssumption(Cmp); 2384 } 2385 2386 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2387 Address This) { 2388 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2389 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2390 EmitVTableAssumptionLoad(Vptr, This); 2391 } 2392 2393 void 2394 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2395 Address This, Address Src, 2396 const CXXConstructExpr *E) { 2397 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2398 2399 CallArgList Args; 2400 2401 // Push the this ptr. 2402 Args.add(RValue::get(getAsNaturalPointerTo(This, D->getThisType())), 2403 D->getThisType()); 2404 2405 // Push the src ptr. 2406 QualType QT = *(FPT->param_type_begin()); 2407 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2408 llvm::Value *Val = getAsNaturalPointerTo(Src, D->getThisType()); 2409 llvm::Value *SrcVal = Builder.CreateBitCast(Val, t); 2410 Args.add(RValue::get(SrcVal), QT); 2411 2412 // Skip over first argument (Src). 2413 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2414 /*ParamsToSkip*/ 1); 2415 2416 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2417 /*Delegating*/false, This, Args, 2418 AggValueSlot::MayOverlap, E->getExprLoc(), 2419 /*NewPointerIsChecked*/false); 2420 } 2421 2422 void 2423 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2424 CXXCtorType CtorType, 2425 const FunctionArgList &Args, 2426 SourceLocation Loc) { 2427 CallArgList DelegateArgs; 2428 2429 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2430 assert(I != E && "no parameters to constructor"); 2431 2432 // this 2433 Address This = LoadCXXThisAddress(); 2434 DelegateArgs.add(RValue::get(getAsNaturalPointerTo( 2435 This, (*I)->getType()->getPointeeType())), 2436 (*I)->getType()); 2437 ++I; 2438 2439 // FIXME: The location of the VTT parameter in the parameter list is 2440 // specific to the Itanium ABI and shouldn't be hardcoded here. 2441 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2442 assert(I != E && "cannot skip vtt parameter, already done with args"); 2443 assert((*I)->getType()->isPointerType() && 2444 "skipping parameter not of vtt type"); 2445 ++I; 2446 } 2447 2448 // Explicit arguments. 2449 for (; I != E; ++I) { 2450 const VarDecl *param = *I; 2451 // FIXME: per-argument source location 2452 EmitDelegateCallArg(DelegateArgs, param, Loc); 2453 } 2454 2455 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2456 /*Delegating=*/true, This, DelegateArgs, 2457 AggValueSlot::MayOverlap, Loc, 2458 /*NewPointerIsChecked=*/true); 2459 } 2460 2461 namespace { 2462 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2463 const CXXDestructorDecl *Dtor; 2464 Address Addr; 2465 CXXDtorType Type; 2466 2467 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2468 CXXDtorType Type) 2469 : Dtor(D), Addr(Addr), Type(Type) {} 2470 2471 void Emit(CodeGenFunction &CGF, Flags flags) override { 2472 // We are calling the destructor from within the constructor. 2473 // Therefore, "this" should have the expected type. 2474 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 2475 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2476 /*Delegating=*/true, Addr, ThisTy); 2477 } 2478 }; 2479 } // end anonymous namespace 2480 2481 void 2482 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2483 const FunctionArgList &Args) { 2484 assert(Ctor->isDelegatingConstructor()); 2485 2486 Address ThisPtr = LoadCXXThisAddress(); 2487 2488 AggValueSlot AggSlot = 2489 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2490 AggValueSlot::IsDestructed, 2491 AggValueSlot::DoesNotNeedGCBarriers, 2492 AggValueSlot::IsNotAliased, 2493 AggValueSlot::MayOverlap, 2494 AggValueSlot::IsNotZeroed, 2495 // Checks are made by the code that calls constructor. 2496 AggValueSlot::IsSanitizerChecked); 2497 2498 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2499 2500 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2501 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2502 CXXDtorType Type = 2503 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2504 2505 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2506 ClassDecl->getDestructor(), 2507 ThisPtr, Type); 2508 } 2509 } 2510 2511 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2512 CXXDtorType Type, 2513 bool ForVirtualBase, 2514 bool Delegating, Address This, 2515 QualType ThisTy) { 2516 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2517 Delegating, This, ThisTy); 2518 } 2519 2520 namespace { 2521 struct CallLocalDtor final : EHScopeStack::Cleanup { 2522 const CXXDestructorDecl *Dtor; 2523 Address Addr; 2524 QualType Ty; 2525 2526 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2527 : Dtor(D), Addr(Addr), Ty(Ty) {} 2528 2529 void Emit(CodeGenFunction &CGF, Flags flags) override { 2530 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2531 /*ForVirtualBase=*/false, 2532 /*Delegating=*/false, Addr, Ty); 2533 } 2534 }; 2535 } // end anonymous namespace 2536 2537 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2538 QualType T, Address Addr) { 2539 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2540 } 2541 2542 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2543 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2544 if (!ClassDecl) return; 2545 if (ClassDecl->hasTrivialDestructor()) return; 2546 2547 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2548 assert(D && D->isUsed() && "destructor not marked as used!"); 2549 PushDestructorCleanup(D, T, Addr); 2550 } 2551 2552 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2553 // Compute the address point. 2554 llvm::Value *VTableAddressPoint = 2555 CGM.getCXXABI().getVTableAddressPointInStructor( 2556 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2557 2558 if (!VTableAddressPoint) 2559 return; 2560 2561 // Compute where to store the address point. 2562 llvm::Value *VirtualOffset = nullptr; 2563 CharUnits NonVirtualOffset = CharUnits::Zero(); 2564 2565 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2566 // We need to use the virtual base offset offset because the virtual base 2567 // might have a different offset in the most derived class. 2568 2569 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2570 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2571 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2572 } else { 2573 // We can just use the base offset in the complete class. 2574 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2575 } 2576 2577 // Apply the offsets. 2578 Address VTableField = LoadCXXThisAddress(); 2579 if (!NonVirtualOffset.isZero() || VirtualOffset) 2580 VTableField = ApplyNonVirtualAndVirtualOffset( 2581 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2582 Vptr.NearestVBase); 2583 2584 // Finally, store the address point. Use the same LLVM types as the field to 2585 // support optimization. 2586 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2587 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS); 2588 // vtable field is derived from `this` pointer, therefore they should be in 2589 // the same addr space. Note that this might not be LLVM address space 0. 2590 VTableField = VTableField.withElementType(PtrTy); 2591 2592 if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo( 2593 this, Vptr.Base.getBase(), VTableField.emitRawPointer(*this))) 2594 VTableAddressPoint = 2595 EmitPointerAuthSign(*AuthenticationInfo, VTableAddressPoint); 2596 2597 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2598 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy); 2599 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2600 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2601 CGM.getCodeGenOpts().StrictVTablePointers) 2602 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2603 } 2604 2605 CodeGenFunction::VPtrsVector 2606 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2607 CodeGenFunction::VPtrsVector VPtrsResult; 2608 VisitedVirtualBasesSetTy VBases; 2609 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2610 /*NearestVBase=*/nullptr, 2611 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2612 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2613 VPtrsResult); 2614 return VPtrsResult; 2615 } 2616 2617 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2618 const CXXRecordDecl *NearestVBase, 2619 CharUnits OffsetFromNearestVBase, 2620 bool BaseIsNonVirtualPrimaryBase, 2621 const CXXRecordDecl *VTableClass, 2622 VisitedVirtualBasesSetTy &VBases, 2623 VPtrsVector &Vptrs) { 2624 // If this base is a non-virtual primary base the address point has already 2625 // been set. 2626 if (!BaseIsNonVirtualPrimaryBase) { 2627 // Initialize the vtable pointer for this base. 2628 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2629 Vptrs.push_back(Vptr); 2630 } 2631 2632 const CXXRecordDecl *RD = Base.getBase(); 2633 2634 // Traverse bases. 2635 for (const auto &I : RD->bases()) { 2636 auto *BaseDecl = 2637 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2638 2639 // Ignore classes without a vtable. 2640 if (!BaseDecl->isDynamicClass()) 2641 continue; 2642 2643 CharUnits BaseOffset; 2644 CharUnits BaseOffsetFromNearestVBase; 2645 bool BaseDeclIsNonVirtualPrimaryBase; 2646 2647 if (I.isVirtual()) { 2648 // Check if we've visited this virtual base before. 2649 if (!VBases.insert(BaseDecl).second) 2650 continue; 2651 2652 const ASTRecordLayout &Layout = 2653 getContext().getASTRecordLayout(VTableClass); 2654 2655 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2656 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2657 BaseDeclIsNonVirtualPrimaryBase = false; 2658 } else { 2659 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2660 2661 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2662 BaseOffsetFromNearestVBase = 2663 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2664 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2665 } 2666 2667 getVTablePointers( 2668 BaseSubobject(BaseDecl, BaseOffset), 2669 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2670 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2671 } 2672 } 2673 2674 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2675 // Ignore classes without a vtable. 2676 if (!RD->isDynamicClass()) 2677 return; 2678 2679 // Initialize the vtable pointers for this class and all of its bases. 2680 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2681 for (const VPtr &Vptr : getVTablePointers(RD)) 2682 InitializeVTablePointer(Vptr); 2683 2684 if (RD->getNumVBases()) 2685 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2686 } 2687 2688 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2689 llvm::Type *VTableTy, 2690 const CXXRecordDecl *RD, 2691 VTableAuthMode AuthMode) { 2692 Address VTablePtrSrc = This.withElementType(VTableTy); 2693 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2694 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2695 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2696 2697 if (auto AuthenticationInfo = 2698 CGM.getVTablePointerAuthInfo(this, RD, This.emitRawPointer(*this))) { 2699 if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) { 2700 VTable = cast<llvm::Instruction>( 2701 EmitPointerAuthAuth(*AuthenticationInfo, VTable)); 2702 if (AuthMode == VTableAuthMode::MustTrap) { 2703 // This is clearly suboptimal but until we have an ability 2704 // to rely on the authentication intrinsic trapping and force 2705 // an authentication to occur we don't really have a choice. 2706 VTable = 2707 cast<llvm::Instruction>(Builder.CreateBitCast(VTable, Int8PtrTy)); 2708 Builder.CreateLoad(RawAddress(VTable, Int8Ty, CGM.getPointerAlign()), 2709 /* IsVolatile */ true); 2710 } 2711 } else { 2712 VTable = cast<llvm::Instruction>(EmitPointerAuthAuth( 2713 CGPointerAuthInfo(0, PointerAuthenticationMode::Strip, false, false, 2714 nullptr), 2715 VTable)); 2716 } 2717 } 2718 2719 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2720 CGM.getCodeGenOpts().StrictVTablePointers) 2721 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2722 2723 return VTable; 2724 } 2725 2726 // If a class has a single non-virtual base and does not introduce or override 2727 // virtual member functions or fields, it will have the same layout as its base. 2728 // This function returns the least derived such class. 2729 // 2730 // Casting an instance of a base class to such a derived class is technically 2731 // undefined behavior, but it is a relatively common hack for introducing member 2732 // functions on class instances with specific properties (e.g. llvm::Operator) 2733 // that works under most compilers and should not have security implications, so 2734 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2735 static const CXXRecordDecl * 2736 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2737 if (!RD->field_empty()) 2738 return RD; 2739 2740 if (RD->getNumVBases() != 0) 2741 return RD; 2742 2743 if (RD->getNumBases() != 1) 2744 return RD; 2745 2746 for (const CXXMethodDecl *MD : RD->methods()) { 2747 if (MD->isVirtual()) { 2748 // Virtual member functions are only ok if they are implicit destructors 2749 // because the implicit destructor will have the same semantics as the 2750 // base class's destructor if no fields are added. 2751 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2752 continue; 2753 return RD; 2754 } 2755 } 2756 2757 return LeastDerivedClassWithSameLayout( 2758 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2759 } 2760 2761 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2762 llvm::Value *VTable, 2763 SourceLocation Loc) { 2764 if (SanOpts.has(SanitizerKind::CFIVCall)) 2765 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2766 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2767 // Don't insert type test assumes if we are forcing public 2768 // visibility. 2769 !CGM.AlwaysHasLTOVisibilityPublic(RD)) { 2770 QualType Ty = QualType(RD->getTypeForDecl(), 0); 2771 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty); 2772 llvm::Value *TypeId = 2773 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2774 2775 // If we already know that the call has hidden LTO visibility, emit 2776 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD 2777 // will convert to @llvm.type.test() if we assert at link time that we have 2778 // whole program visibility. 2779 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) 2780 ? llvm::Intrinsic::type_test 2781 : llvm::Intrinsic::public_type_test; 2782 llvm::Value *TypeTest = 2783 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId}); 2784 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2785 } 2786 } 2787 2788 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2789 llvm::Value *VTable, 2790 CFITypeCheckKind TCK, 2791 SourceLocation Loc) { 2792 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2793 RD = LeastDerivedClassWithSameLayout(RD); 2794 2795 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2796 } 2797 2798 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, 2799 bool MayBeNull, 2800 CFITypeCheckKind TCK, 2801 SourceLocation Loc) { 2802 if (!getLangOpts().CPlusPlus) 2803 return; 2804 2805 auto *ClassTy = T->getAs<RecordType>(); 2806 if (!ClassTy) 2807 return; 2808 2809 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2810 2811 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2812 return; 2813 2814 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2815 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2816 2817 llvm::BasicBlock *ContBlock = nullptr; 2818 2819 if (MayBeNull) { 2820 llvm::Value *DerivedNotNull = 2821 Builder.CreateIsNotNull(Derived.emitRawPointer(*this), "cast.nonnull"); 2822 2823 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2824 ContBlock = createBasicBlock("cast.cont"); 2825 2826 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2827 2828 EmitBlock(CheckBlock); 2829 } 2830 2831 llvm::Value *VTable; 2832 std::tie(VTable, ClassDecl) = 2833 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl); 2834 2835 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2836 2837 if (MayBeNull) { 2838 Builder.CreateBr(ContBlock); 2839 EmitBlock(ContBlock); 2840 } 2841 } 2842 2843 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2844 llvm::Value *VTable, 2845 CFITypeCheckKind TCK, 2846 SourceLocation Loc) { 2847 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2848 !CGM.HasHiddenLTOVisibility(RD)) 2849 return; 2850 2851 SanitizerMask M; 2852 llvm::SanitizerStatKind SSK; 2853 switch (TCK) { 2854 case CFITCK_VCall: 2855 M = SanitizerKind::CFIVCall; 2856 SSK = llvm::SanStat_CFI_VCall; 2857 break; 2858 case CFITCK_NVCall: 2859 M = SanitizerKind::CFINVCall; 2860 SSK = llvm::SanStat_CFI_NVCall; 2861 break; 2862 case CFITCK_DerivedCast: 2863 M = SanitizerKind::CFIDerivedCast; 2864 SSK = llvm::SanStat_CFI_DerivedCast; 2865 break; 2866 case CFITCK_UnrelatedCast: 2867 M = SanitizerKind::CFIUnrelatedCast; 2868 SSK = llvm::SanStat_CFI_UnrelatedCast; 2869 break; 2870 case CFITCK_ICall: 2871 case CFITCK_NVMFCall: 2872 case CFITCK_VMFCall: 2873 llvm_unreachable("unexpected sanitizer kind"); 2874 } 2875 2876 std::string TypeName = RD->getQualifiedNameAsString(); 2877 if (getContext().getNoSanitizeList().containsType(M, TypeName)) 2878 return; 2879 2880 SanitizerScope SanScope(this); 2881 EmitSanitizerStatReport(SSK); 2882 2883 llvm::Metadata *MD = 2884 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2885 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2886 2887 llvm::Value *TypeTest = Builder.CreateCall( 2888 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId}); 2889 2890 llvm::Constant *StaticData[] = { 2891 llvm::ConstantInt::get(Int8Ty, TCK), 2892 EmitCheckSourceLocation(Loc), 2893 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2894 }; 2895 2896 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2897 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2898 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData); 2899 return; 2900 } 2901 2902 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2903 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2904 return; 2905 } 2906 2907 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2908 CGM.getLLVMContext(), 2909 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2910 llvm::Value *ValidVtable = Builder.CreateCall( 2911 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); 2912 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2913 StaticData, {VTable, ValidVtable}); 2914 } 2915 2916 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2917 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2918 !CGM.HasHiddenLTOVisibility(RD)) 2919 return false; 2920 2921 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2922 return true; 2923 2924 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2925 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2926 return false; 2927 2928 std::string TypeName = RD->getQualifiedNameAsString(); 2929 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2930 TypeName); 2931 } 2932 2933 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2934 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, 2935 uint64_t VTableByteOffset) { 2936 SanitizerScope SanScope(this); 2937 2938 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2939 2940 llvm::Metadata *MD = 2941 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2942 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2943 2944 llvm::Value *CheckedLoad = Builder.CreateCall( 2945 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2946 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId}); 2947 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2948 2949 std::string TypeName = RD->getQualifiedNameAsString(); 2950 if (SanOpts.has(SanitizerKind::CFIVCall) && 2951 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2952 TypeName)) { 2953 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2954 SanitizerHandler::CFICheckFail, {}, {}); 2955 } 2956 2957 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), 2958 VTableTy); 2959 } 2960 2961 void CodeGenFunction::EmitForwardingCallToLambda( 2962 const CXXMethodDecl *callOperator, CallArgList &callArgs, 2963 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) { 2964 // Get the address of the call operator. 2965 if (!calleeFnInfo) 2966 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2967 2968 if (!calleePtr) 2969 calleePtr = 2970 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2971 CGM.getTypes().GetFunctionType(*calleeFnInfo)); 2972 2973 // Prepare the return slot. 2974 const FunctionProtoType *FPT = 2975 callOperator->getType()->castAs<FunctionProtoType>(); 2976 QualType resultType = FPT->getReturnType(); 2977 ReturnValueSlot returnSlot; 2978 if (!resultType->isVoidType() && 2979 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 2980 !hasScalarEvaluationKind(calleeFnInfo->getReturnType())) 2981 returnSlot = 2982 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2983 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2984 2985 // We don't need to separately arrange the call arguments because 2986 // the call can't be variadic anyway --- it's impossible to forward 2987 // variadic arguments. 2988 2989 // Now emit our call. 2990 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2991 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs); 2992 2993 // If necessary, copy the returned value into the slot. 2994 if (!resultType->isVoidType() && returnSlot.isNull()) { 2995 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2996 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2997 } 2998 EmitReturnOfRValue(RV, resultType); 2999 } else 3000 EmitBranchThroughCleanup(ReturnBlock); 3001 } 3002 3003 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 3004 const BlockDecl *BD = BlockInfo->getBlockDecl(); 3005 const VarDecl *variable = BD->capture_begin()->getVariable(); 3006 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 3007 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3008 3009 if (CallOp->isVariadic()) { 3010 // FIXME: Making this work correctly is nasty because it requires either 3011 // cloning the body of the call operator or making the call operator 3012 // forward. 3013 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 3014 return; 3015 } 3016 3017 // Start building arguments for forwarding call 3018 CallArgList CallArgs; 3019 3020 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 3021 Address ThisPtr = GetAddrOfBlockDecl(variable); 3022 CallArgs.add(RValue::get(getAsNaturalPointerTo(ThisPtr, ThisType)), ThisType); 3023 3024 // Add the rest of the parameters. 3025 for (auto *param : BD->parameters()) 3026 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 3027 3028 assert(!Lambda->isGenericLambda() && 3029 "generic lambda interconversion to block not implemented"); 3030 EmitForwardingCallToLambda(CallOp, CallArgs); 3031 } 3032 3033 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 3034 if (MD->isVariadic()) { 3035 // FIXME: Making this work correctly is nasty because it requires either 3036 // cloning the body of the call operator or making the call operator 3037 // forward. 3038 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3039 return; 3040 } 3041 3042 const CXXRecordDecl *Lambda = MD->getParent(); 3043 3044 // Start building arguments for forwarding call 3045 CallArgList CallArgs; 3046 3047 QualType LambdaType = getContext().getRecordType(Lambda); 3048 QualType ThisType = getContext().getPointerType(LambdaType); 3049 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture"); 3050 CallArgs.add(RValue::get(ThisPtr.emitRawPointer(*this)), ThisType); 3051 3052 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3053 } 3054 3055 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 3056 CallArgList &CallArgs) { 3057 // Add the rest of the forwarded parameters. 3058 for (auto *Param : MD->parameters()) 3059 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 3060 3061 const CXXRecordDecl *Lambda = MD->getParent(); 3062 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3063 // For a generic lambda, find the corresponding call operator specialization 3064 // to which the call to the static-invoker shall be forwarded. 3065 if (Lambda->isGenericLambda()) { 3066 assert(MD->isFunctionTemplateSpecialization()); 3067 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 3068 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 3069 void *InsertPos = nullptr; 3070 FunctionDecl *CorrespondingCallOpSpecialization = 3071 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 3072 assert(CorrespondingCallOpSpecialization); 3073 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 3074 } 3075 3076 // Special lambda forwarding when there are inalloca parameters. 3077 if (hasInAllocaArg(MD)) { 3078 const CGFunctionInfo *ImplFnInfo = nullptr; 3079 llvm::Function *ImplFn = nullptr; 3080 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn); 3081 3082 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn); 3083 return; 3084 } 3085 3086 EmitForwardingCallToLambda(CallOp, CallArgs); 3087 } 3088 3089 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) { 3090 if (MD->isVariadic()) { 3091 // FIXME: Making this work correctly is nasty because it requires either 3092 // cloning the body of the call operator or making the call operator forward. 3093 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3094 return; 3095 } 3096 3097 // Forward %this argument. 3098 CallArgList CallArgs; 3099 QualType LambdaType = getContext().getRecordType(MD->getParent()); 3100 QualType ThisType = getContext().getPointerType(LambdaType); 3101 llvm::Value *ThisArg = CurFn->getArg(0); 3102 CallArgs.add(RValue::get(ThisArg), ThisType); 3103 3104 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3105 } 3106 3107 void CodeGenFunction::EmitLambdaInAllocaImplFn( 3108 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, 3109 llvm::Function **ImplFn) { 3110 const CGFunctionInfo &FnInfo = 3111 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp); 3112 llvm::Function *CallOpFn = 3113 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp))); 3114 3115 // Emit function containing the original call op body. __invoke will delegate 3116 // to this function. 3117 SmallVector<CanQualType, 4> ArgTypes; 3118 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I) 3119 ArgTypes.push_back(I->type); 3120 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo( 3121 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes, 3122 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs()); 3123 3124 // Create mangled name as if this was a method named __impl. If for some 3125 // reason the name doesn't look as expected then just tack __impl to the 3126 // front. 3127 // TODO: Use the name mangler to produce the right name instead of using 3128 // string replacement. 3129 StringRef CallOpName = CallOpFn->getName(); 3130 std::string ImplName; 3131 if (size_t Pos = CallOpName.find_first_of("<lambda")) 3132 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str(); 3133 else 3134 ImplName = ("__impl" + CallOpName).str(); 3135 3136 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName); 3137 if (!Fn) { 3138 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo), 3139 llvm::GlobalValue::InternalLinkage, ImplName, 3140 CGM.getModule()); 3141 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo); 3142 3143 const GlobalDecl &GD = GlobalDecl(CallOp); 3144 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3145 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo); 3146 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn); 3147 } 3148 *ImplFn = Fn; 3149 } 3150