1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Transforms/Utils/SanitizerStats.h" 32 #include <optional> 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 /// Return the best known alignment for an unknown pointer to a 38 /// particular class. 39 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 40 if (!RD->hasDefinition()) 41 return CharUnits::One(); // Hopefully won't be used anywhere. 42 43 auto &layout = getContext().getASTRecordLayout(RD); 44 45 // If the class is final, then we know that the pointer points to an 46 // object of that type and can use the full alignment. 47 if (RD->isEffectivelyFinal()) 48 return layout.getAlignment(); 49 50 // Otherwise, we have to assume it could be a subclass. 51 return layout.getNonVirtualAlignment(); 52 } 53 54 /// Return the smallest possible amount of storage that might be allocated 55 /// starting from the beginning of an object of a particular class. 56 /// 57 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 58 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 59 if (!RD->hasDefinition()) 60 return CharUnits::One(); 61 62 auto &layout = getContext().getASTRecordLayout(RD); 63 64 // If the class is final, then we know that the pointer points to an 65 // object of that type and can use the full alignment. 66 if (RD->isEffectivelyFinal()) 67 return layout.getSize(); 68 69 // Otherwise, we have to assume it could be a subclass. 70 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 71 } 72 73 /// Return the best known alignment for a pointer to a virtual base, 74 /// given the alignment of a pointer to the derived class. 75 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 76 const CXXRecordDecl *derivedClass, 77 const CXXRecordDecl *vbaseClass) { 78 // The basic idea here is that an underaligned derived pointer might 79 // indicate an underaligned base pointer. 80 81 assert(vbaseClass->isCompleteDefinition()); 82 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 83 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 84 85 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 86 expectedVBaseAlign); 87 } 88 89 CharUnits 90 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 91 const CXXRecordDecl *baseDecl, 92 CharUnits expectedTargetAlign) { 93 // If the base is an incomplete type (which is, alas, possible with 94 // member pointers), be pessimistic. 95 if (!baseDecl->isCompleteDefinition()) 96 return std::min(actualBaseAlign, expectedTargetAlign); 97 98 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 99 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 100 101 // If the class is properly aligned, assume the target offset is, too. 102 // 103 // This actually isn't necessarily the right thing to do --- if the 104 // class is a complete object, but it's only properly aligned for a 105 // base subobject, then the alignments of things relative to it are 106 // probably off as well. (Note that this requires the alignment of 107 // the target to be greater than the NV alignment of the derived 108 // class.) 109 // 110 // However, our approach to this kind of under-alignment can only 111 // ever be best effort; after all, we're never going to propagate 112 // alignments through variables or parameters. Note, in particular, 113 // that constructing a polymorphic type in an address that's less 114 // than pointer-aligned will generally trap in the constructor, 115 // unless we someday add some sort of attribute to change the 116 // assumed alignment of 'this'. So our goal here is pretty much 117 // just to allow the user to explicitly say that a pointer is 118 // under-aligned and then safely access its fields and vtables. 119 if (actualBaseAlign >= expectedBaseAlign) { 120 return expectedTargetAlign; 121 } 122 123 // Otherwise, we might be offset by an arbitrary multiple of the 124 // actual alignment. The correct adjustment is to take the min of 125 // the two alignments. 126 return std::min(actualBaseAlign, expectedTargetAlign); 127 } 128 129 Address CodeGenFunction::LoadCXXThisAddress() { 130 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 131 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 132 133 // Lazily compute CXXThisAlignment. 134 if (CXXThisAlignment.isZero()) { 135 // Just use the best known alignment for the parent. 136 // TODO: if we're currently emitting a complete-object ctor/dtor, 137 // we can always use the complete-object alignment. 138 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 139 } 140 141 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType()); 142 return Address(LoadCXXThis(), Ty, CXXThisAlignment); 143 } 144 145 /// Emit the address of a field using a member data pointer. 146 /// 147 /// \param E Only used for emergency diagnostics 148 Address 149 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 150 llvm::Value *memberPtr, 151 const MemberPointerType *memberPtrType, 152 LValueBaseInfo *BaseInfo, 153 TBAAAccessInfo *TBAAInfo) { 154 // Ask the ABI to compute the actual address. 155 llvm::Value *ptr = 156 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 157 memberPtr, memberPtrType); 158 159 QualType memberType = memberPtrType->getPointeeType(); 160 CharUnits memberAlign = 161 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 162 memberAlign = 163 CGM.getDynamicOffsetAlignment(base.getAlignment(), 164 memberPtrType->getClass()->getAsCXXRecordDecl(), 165 memberAlign); 166 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), 167 memberAlign); 168 } 169 170 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 171 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 172 CastExpr::path_const_iterator End) { 173 CharUnits Offset = CharUnits::Zero(); 174 175 const ASTContext &Context = getContext(); 176 const CXXRecordDecl *RD = DerivedClass; 177 178 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 179 const CXXBaseSpecifier *Base = *I; 180 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 181 182 // Get the layout. 183 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 184 185 const auto *BaseDecl = 186 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 187 188 // Add the offset. 189 Offset += Layout.getBaseClassOffset(BaseDecl); 190 191 RD = BaseDecl; 192 } 193 194 return Offset; 195 } 196 197 llvm::Constant * 198 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 199 CastExpr::path_const_iterator PathBegin, 200 CastExpr::path_const_iterator PathEnd) { 201 assert(PathBegin != PathEnd && "Base path should not be empty!"); 202 203 CharUnits Offset = 204 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 205 if (Offset.isZero()) 206 return nullptr; 207 208 llvm::Type *PtrDiffTy = 209 Types.ConvertType(getContext().getPointerDiffType()); 210 211 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 212 } 213 214 /// Gets the address of a direct base class within a complete object. 215 /// This should only be used for (1) non-virtual bases or (2) virtual bases 216 /// when the type is known to be complete (e.g. in complete destructors). 217 /// 218 /// The object pointed to by 'This' is assumed to be non-null. 219 Address 220 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 221 const CXXRecordDecl *Derived, 222 const CXXRecordDecl *Base, 223 bool BaseIsVirtual) { 224 // 'this' must be a pointer (in some address space) to Derived. 225 assert(This.getElementType() == ConvertType(Derived)); 226 227 // Compute the offset of the virtual base. 228 CharUnits Offset; 229 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 230 if (BaseIsVirtual) 231 Offset = Layout.getVBaseClassOffset(Base); 232 else 233 Offset = Layout.getBaseClassOffset(Base); 234 235 // Shift and cast down to the base type. 236 // TODO: for complete types, this should be possible with a GEP. 237 Address V = This; 238 if (!Offset.isZero()) { 239 V = Builder.CreateElementBitCast(V, Int8Ty); 240 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 241 } 242 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 243 244 return V; 245 } 246 247 static Address 248 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 249 CharUnits nonVirtualOffset, 250 llvm::Value *virtualOffset, 251 const CXXRecordDecl *derivedClass, 252 const CXXRecordDecl *nearestVBase) { 253 // Assert that we have something to do. 254 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 255 256 // Compute the offset from the static and dynamic components. 257 llvm::Value *baseOffset; 258 if (!nonVirtualOffset.isZero()) { 259 llvm::Type *OffsetType = 260 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 261 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 262 ? CGF.Int32Ty 263 : CGF.PtrDiffTy; 264 baseOffset = 265 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 266 if (virtualOffset) { 267 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 268 } 269 } else { 270 baseOffset = virtualOffset; 271 } 272 273 // Apply the base offset. 274 llvm::Value *ptr = addr.getPointer(); 275 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 276 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 277 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 278 279 // If we have a virtual component, the alignment of the result will 280 // be relative only to the known alignment of that vbase. 281 CharUnits alignment; 282 if (virtualOffset) { 283 assert(nearestVBase && "virtual offset without vbase?"); 284 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 285 derivedClass, nearestVBase); 286 } else { 287 alignment = addr.getAlignment(); 288 } 289 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 290 291 return Address(ptr, CGF.Int8Ty, alignment); 292 } 293 294 Address CodeGenFunction::GetAddressOfBaseClass( 295 Address Value, const CXXRecordDecl *Derived, 296 CastExpr::path_const_iterator PathBegin, 297 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 298 SourceLocation Loc) { 299 assert(PathBegin != PathEnd && "Base path should not be empty!"); 300 301 CastExpr::path_const_iterator Start = PathBegin; 302 const CXXRecordDecl *VBase = nullptr; 303 304 // Sema has done some convenient canonicalization here: if the 305 // access path involved any virtual steps, the conversion path will 306 // *start* with a step down to the correct virtual base subobject, 307 // and hence will not require any further steps. 308 if ((*Start)->isVirtual()) { 309 VBase = cast<CXXRecordDecl>( 310 (*Start)->getType()->castAs<RecordType>()->getDecl()); 311 ++Start; 312 } 313 314 // Compute the static offset of the ultimate destination within its 315 // allocating subobject (the virtual base, if there is one, or else 316 // the "complete" object that we see). 317 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 318 VBase ? VBase : Derived, Start, PathEnd); 319 320 // If there's a virtual step, we can sometimes "devirtualize" it. 321 // For now, that's limited to when the derived type is final. 322 // TODO: "devirtualize" this for accesses to known-complete objects. 323 if (VBase && Derived->hasAttr<FinalAttr>()) { 324 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 325 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 326 NonVirtualOffset += vBaseOffset; 327 VBase = nullptr; // we no longer have a virtual step 328 } 329 330 // Get the base pointer type. 331 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 332 llvm::Type *BasePtrTy = 333 BaseValueTy->getPointerTo(Value.getType()->getPointerAddressSpace()); 334 335 QualType DerivedTy = getContext().getRecordType(Derived); 336 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 337 338 // If the static offset is zero and we don't have a virtual step, 339 // just do a bitcast; null checks are unnecessary. 340 if (NonVirtualOffset.isZero() && !VBase) { 341 if (sanitizePerformTypeCheck()) { 342 SanitizerSet SkippedChecks; 343 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 344 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 345 DerivedTy, DerivedAlign, SkippedChecks); 346 } 347 return Builder.CreateElementBitCast(Value, BaseValueTy); 348 } 349 350 llvm::BasicBlock *origBB = nullptr; 351 llvm::BasicBlock *endBB = nullptr; 352 353 // Skip over the offset (and the vtable load) if we're supposed to 354 // null-check the pointer. 355 if (NullCheckValue) { 356 origBB = Builder.GetInsertBlock(); 357 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 358 endBB = createBasicBlock("cast.end"); 359 360 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 361 Builder.CreateCondBr(isNull, endBB, notNullBB); 362 EmitBlock(notNullBB); 363 } 364 365 if (sanitizePerformTypeCheck()) { 366 SanitizerSet SkippedChecks; 367 SkippedChecks.set(SanitizerKind::Null, true); 368 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 369 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 370 } 371 372 // Compute the virtual offset. 373 llvm::Value *VirtualOffset = nullptr; 374 if (VBase) { 375 VirtualOffset = 376 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 377 } 378 379 // Apply both offsets. 380 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 381 VirtualOffset, Derived, VBase); 382 383 // Cast to the destination type. 384 Value = Builder.CreateElementBitCast(Value, BaseValueTy); 385 386 // Build a phi if we needed a null check. 387 if (NullCheckValue) { 388 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 389 Builder.CreateBr(endBB); 390 EmitBlock(endBB); 391 392 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 393 PHI->addIncoming(Value.getPointer(), notNullBB); 394 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 395 Value = Value.withPointer(PHI); 396 } 397 398 return Value; 399 } 400 401 Address 402 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 403 const CXXRecordDecl *Derived, 404 CastExpr::path_const_iterator PathBegin, 405 CastExpr::path_const_iterator PathEnd, 406 bool NullCheckValue) { 407 assert(PathBegin != PathEnd && "Base path should not be empty!"); 408 409 QualType DerivedTy = 410 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 411 unsigned AddrSpace = BaseAddr.getAddressSpace(); 412 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 413 llvm::Type *DerivedPtrTy = DerivedValueTy->getPointerTo(AddrSpace); 414 415 llvm::Value *NonVirtualOffset = 416 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 417 418 if (!NonVirtualOffset) { 419 // No offset, we can just cast back. 420 return Builder.CreateElementBitCast(BaseAddr, DerivedValueTy); 421 } 422 423 llvm::BasicBlock *CastNull = nullptr; 424 llvm::BasicBlock *CastNotNull = nullptr; 425 llvm::BasicBlock *CastEnd = nullptr; 426 427 if (NullCheckValue) { 428 CastNull = createBasicBlock("cast.null"); 429 CastNotNull = createBasicBlock("cast.notnull"); 430 CastEnd = createBasicBlock("cast.end"); 431 432 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 433 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 434 EmitBlock(CastNotNull); 435 } 436 437 // Apply the offset. 438 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 439 Value = Builder.CreateInBoundsGEP( 440 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr"); 441 442 // Just cast. 443 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 444 445 // Produce a PHI if we had a null-check. 446 if (NullCheckValue) { 447 Builder.CreateBr(CastEnd); 448 EmitBlock(CastNull); 449 Builder.CreateBr(CastEnd); 450 EmitBlock(CastEnd); 451 452 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 453 PHI->addIncoming(Value, CastNotNull); 454 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 455 Value = PHI; 456 } 457 458 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived)); 459 } 460 461 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 462 bool ForVirtualBase, 463 bool Delegating) { 464 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 465 // This constructor/destructor does not need a VTT parameter. 466 return nullptr; 467 } 468 469 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 470 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 471 472 uint64_t SubVTTIndex; 473 474 if (Delegating) { 475 // If this is a delegating constructor call, just load the VTT. 476 return LoadCXXVTT(); 477 } else if (RD == Base) { 478 // If the record matches the base, this is the complete ctor/dtor 479 // variant calling the base variant in a class with virtual bases. 480 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 481 "doing no-op VTT offset in base dtor/ctor?"); 482 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 483 SubVTTIndex = 0; 484 } else { 485 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 486 CharUnits BaseOffset = ForVirtualBase ? 487 Layout.getVBaseClassOffset(Base) : 488 Layout.getBaseClassOffset(Base); 489 490 SubVTTIndex = 491 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 492 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 493 } 494 495 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 496 // A VTT parameter was passed to the constructor, use it. 497 llvm::Value *VTT = LoadCXXVTT(); 498 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 499 } else { 500 // We're the complete constructor, so get the VTT by name. 501 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 502 return Builder.CreateConstInBoundsGEP2_64( 503 VTT->getValueType(), VTT, 0, SubVTTIndex); 504 } 505 } 506 507 namespace { 508 /// Call the destructor for a direct base class. 509 struct CallBaseDtor final : EHScopeStack::Cleanup { 510 const CXXRecordDecl *BaseClass; 511 bool BaseIsVirtual; 512 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 513 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 514 515 void Emit(CodeGenFunction &CGF, Flags flags) override { 516 const CXXRecordDecl *DerivedClass = 517 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 518 519 const CXXDestructorDecl *D = BaseClass->getDestructor(); 520 // We are already inside a destructor, so presumably the object being 521 // destroyed should have the expected type. 522 QualType ThisTy = D->getThisObjectType(); 523 Address Addr = 524 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 525 DerivedClass, BaseClass, 526 BaseIsVirtual); 527 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 528 /*Delegating=*/false, Addr, ThisTy); 529 } 530 }; 531 532 /// A visitor which checks whether an initializer uses 'this' in a 533 /// way which requires the vtable to be properly set. 534 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 535 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 536 537 bool UsesThis; 538 539 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 540 541 // Black-list all explicit and implicit references to 'this'. 542 // 543 // Do we need to worry about external references to 'this' derived 544 // from arbitrary code? If so, then anything which runs arbitrary 545 // external code might potentially access the vtable. 546 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 547 }; 548 } // end anonymous namespace 549 550 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 551 DynamicThisUseChecker Checker(C); 552 Checker.Visit(Init); 553 return Checker.UsesThis; 554 } 555 556 static void EmitBaseInitializer(CodeGenFunction &CGF, 557 const CXXRecordDecl *ClassDecl, 558 CXXCtorInitializer *BaseInit) { 559 assert(BaseInit->isBaseInitializer() && 560 "Must have base initializer!"); 561 562 Address ThisPtr = CGF.LoadCXXThisAddress(); 563 564 const Type *BaseType = BaseInit->getBaseClass(); 565 const auto *BaseClassDecl = 566 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 567 568 bool isBaseVirtual = BaseInit->isBaseVirtual(); 569 570 // If the initializer for the base (other than the constructor 571 // itself) accesses 'this' in any way, we need to initialize the 572 // vtables. 573 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 574 CGF.InitializeVTablePointers(ClassDecl); 575 576 // We can pretend to be a complete class because it only matters for 577 // virtual bases, and we only do virtual bases for complete ctors. 578 Address V = 579 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 580 BaseClassDecl, 581 isBaseVirtual); 582 AggValueSlot AggSlot = 583 AggValueSlot::forAddr( 584 V, Qualifiers(), 585 AggValueSlot::IsDestructed, 586 AggValueSlot::DoesNotNeedGCBarriers, 587 AggValueSlot::IsNotAliased, 588 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 589 590 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 591 592 if (CGF.CGM.getLangOpts().Exceptions && 593 !BaseClassDecl->hasTrivialDestructor()) 594 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 595 isBaseVirtual); 596 } 597 598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 599 auto *CD = dyn_cast<CXXConstructorDecl>(D); 600 if (!(CD && CD->isCopyOrMoveConstructor()) && 601 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 602 return false; 603 604 // We can emit a memcpy for a trivial copy or move constructor/assignment. 605 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 606 return true; 607 608 // We *must* emit a memcpy for a defaulted union copy or move op. 609 if (D->getParent()->isUnion() && D->isDefaulted()) 610 return true; 611 612 return false; 613 } 614 615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 616 CXXCtorInitializer *MemberInit, 617 LValue &LHS) { 618 FieldDecl *Field = MemberInit->getAnyMember(); 619 if (MemberInit->isIndirectMemberInitializer()) { 620 // If we are initializing an anonymous union field, drill down to the field. 621 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 622 for (const auto *I : IndirectField->chain()) 623 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 624 } else { 625 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 626 } 627 } 628 629 static void EmitMemberInitializer(CodeGenFunction &CGF, 630 const CXXRecordDecl *ClassDecl, 631 CXXCtorInitializer *MemberInit, 632 const CXXConstructorDecl *Constructor, 633 FunctionArgList &Args) { 634 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 635 assert(MemberInit->isAnyMemberInitializer() && 636 "Must have member initializer!"); 637 assert(MemberInit->getInit() && "Must have initializer!"); 638 639 // non-static data member initializers. 640 FieldDecl *Field = MemberInit->getAnyMember(); 641 QualType FieldType = Field->getType(); 642 643 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 644 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 645 LValue LHS; 646 647 // If a base constructor is being emitted, create an LValue that has the 648 // non-virtual alignment. 649 if (CGF.CurGD.getCtorType() == Ctor_Base) 650 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 651 else 652 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 653 654 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 655 656 // Special case: if we are in a copy or move constructor, and we are copying 657 // an array of PODs or classes with trivial copy constructors, ignore the 658 // AST and perform the copy we know is equivalent. 659 // FIXME: This is hacky at best... if we had a bit more explicit information 660 // in the AST, we could generalize it more easily. 661 const ConstantArrayType *Array 662 = CGF.getContext().getAsConstantArrayType(FieldType); 663 if (Array && Constructor->isDefaulted() && 664 Constructor->isCopyOrMoveConstructor()) { 665 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 666 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 667 if (BaseElementTy.isPODType(CGF.getContext()) || 668 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 669 unsigned SrcArgIndex = 670 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 671 llvm::Value *SrcPtr 672 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 673 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 674 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 675 676 // Copy the aggregate. 677 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 678 LHS.isVolatileQualified()); 679 // Ensure that we destroy the objects if an exception is thrown later in 680 // the constructor. 681 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 682 if (CGF.needsEHCleanup(dtorKind)) 683 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 684 return; 685 } 686 } 687 688 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 689 } 690 691 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 692 Expr *Init) { 693 QualType FieldType = Field->getType(); 694 switch (getEvaluationKind(FieldType)) { 695 case TEK_Scalar: 696 if (LHS.isSimple()) { 697 EmitExprAsInit(Init, Field, LHS, false); 698 } else { 699 RValue RHS = RValue::get(EmitScalarExpr(Init)); 700 EmitStoreThroughLValue(RHS, LHS); 701 } 702 break; 703 case TEK_Complex: 704 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 705 break; 706 case TEK_Aggregate: { 707 AggValueSlot Slot = AggValueSlot::forLValue( 708 LHS, *this, AggValueSlot::IsDestructed, 709 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 710 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 711 // Checks are made by the code that calls constructor. 712 AggValueSlot::IsSanitizerChecked); 713 EmitAggExpr(Init, Slot); 714 break; 715 } 716 } 717 718 // Ensure that we destroy this object if an exception is thrown 719 // later in the constructor. 720 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 721 if (needsEHCleanup(dtorKind)) 722 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 723 } 724 725 /// Checks whether the given constructor is a valid subject for the 726 /// complete-to-base constructor delegation optimization, i.e. 727 /// emitting the complete constructor as a simple call to the base 728 /// constructor. 729 bool CodeGenFunction::IsConstructorDelegationValid( 730 const CXXConstructorDecl *Ctor) { 731 732 // Currently we disable the optimization for classes with virtual 733 // bases because (1) the addresses of parameter variables need to be 734 // consistent across all initializers but (2) the delegate function 735 // call necessarily creates a second copy of the parameter variable. 736 // 737 // The limiting example (purely theoretical AFAIK): 738 // struct A { A(int &c) { c++; } }; 739 // struct B : virtual A { 740 // B(int count) : A(count) { printf("%d\n", count); } 741 // }; 742 // ...although even this example could in principle be emitted as a 743 // delegation since the address of the parameter doesn't escape. 744 if (Ctor->getParent()->getNumVBases()) { 745 // TODO: white-list trivial vbase initializers. This case wouldn't 746 // be subject to the restrictions below. 747 748 // TODO: white-list cases where: 749 // - there are no non-reference parameters to the constructor 750 // - the initializers don't access any non-reference parameters 751 // - the initializers don't take the address of non-reference 752 // parameters 753 // - etc. 754 // If we ever add any of the above cases, remember that: 755 // - function-try-blocks will always exclude this optimization 756 // - we need to perform the constructor prologue and cleanup in 757 // EmitConstructorBody. 758 759 return false; 760 } 761 762 // We also disable the optimization for variadic functions because 763 // it's impossible to "re-pass" varargs. 764 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 765 return false; 766 767 // FIXME: Decide if we can do a delegation of a delegating constructor. 768 if (Ctor->isDelegatingConstructor()) 769 return false; 770 771 return true; 772 } 773 774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 775 // to poison the extra field paddings inserted under 776 // -fsanitize-address-field-padding=1|2. 777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 778 ASTContext &Context = getContext(); 779 const CXXRecordDecl *ClassDecl = 780 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 781 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 782 if (!ClassDecl->mayInsertExtraPadding()) return; 783 784 struct SizeAndOffset { 785 uint64_t Size; 786 uint64_t Offset; 787 }; 788 789 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 790 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 791 792 // Populate sizes and offsets of fields. 793 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 794 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 795 SSV[i].Offset = 796 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 797 798 size_t NumFields = 0; 799 for (const auto *Field : ClassDecl->fields()) { 800 const FieldDecl *D = Field; 801 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 802 CharUnits FieldSize = FieldInfo.Width; 803 assert(NumFields < SSV.size()); 804 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 805 NumFields++; 806 } 807 assert(NumFields == SSV.size()); 808 if (SSV.size() <= 1) return; 809 810 // We will insert calls to __asan_* run-time functions. 811 // LLVM AddressSanitizer pass may decide to inline them later. 812 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 813 llvm::FunctionType *FTy = 814 llvm::FunctionType::get(CGM.VoidTy, Args, false); 815 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 816 FTy, Prologue ? "__asan_poison_intra_object_redzone" 817 : "__asan_unpoison_intra_object_redzone"); 818 819 llvm::Value *ThisPtr = LoadCXXThis(); 820 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 821 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 822 // For each field check if it has sufficient padding, 823 // if so (un)poison it with a call. 824 for (size_t i = 0; i < SSV.size(); i++) { 825 uint64_t AsanAlignment = 8; 826 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 827 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 828 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 829 if (PoisonSize < AsanAlignment || !SSV[i].Size || 830 (NextField % AsanAlignment) != 0) 831 continue; 832 Builder.CreateCall( 833 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 834 Builder.getIntN(PtrSize, PoisonSize)}); 835 } 836 } 837 838 /// EmitConstructorBody - Emits the body of the current constructor. 839 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 840 EmitAsanPrologueOrEpilogue(true); 841 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 842 CXXCtorType CtorType = CurGD.getCtorType(); 843 844 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 845 CtorType == Ctor_Complete) && 846 "can only generate complete ctor for this ABI"); 847 848 // Before we go any further, try the complete->base constructor 849 // delegation optimization. 850 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 851 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 852 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 853 return; 854 } 855 856 const FunctionDecl *Definition = nullptr; 857 Stmt *Body = Ctor->getBody(Definition); 858 assert(Definition == Ctor && "emitting wrong constructor body"); 859 860 // Enter the function-try-block before the constructor prologue if 861 // applicable. 862 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 863 if (IsTryBody) 864 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 865 866 incrementProfileCounter(Body); 867 868 RunCleanupsScope RunCleanups(*this); 869 870 // TODO: in restricted cases, we can emit the vbase initializers of 871 // a complete ctor and then delegate to the base ctor. 872 873 // Emit the constructor prologue, i.e. the base and member 874 // initializers. 875 EmitCtorPrologue(Ctor, CtorType, Args); 876 877 // Emit the body of the statement. 878 if (IsTryBody) 879 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 880 else if (Body) 881 EmitStmt(Body); 882 883 // Emit any cleanup blocks associated with the member or base 884 // initializers, which includes (along the exceptional path) the 885 // destructors for those members and bases that were fully 886 // constructed. 887 RunCleanups.ForceCleanup(); 888 889 if (IsTryBody) 890 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 891 } 892 893 namespace { 894 /// RAII object to indicate that codegen is copying the value representation 895 /// instead of the object representation. Useful when copying a struct or 896 /// class which has uninitialized members and we're only performing 897 /// lvalue-to-rvalue conversion on the object but not its members. 898 class CopyingValueRepresentation { 899 public: 900 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 901 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 902 CGF.SanOpts.set(SanitizerKind::Bool, false); 903 CGF.SanOpts.set(SanitizerKind::Enum, false); 904 } 905 ~CopyingValueRepresentation() { 906 CGF.SanOpts = OldSanOpts; 907 } 908 private: 909 CodeGenFunction &CGF; 910 SanitizerSet OldSanOpts; 911 }; 912 } // end anonymous namespace 913 914 namespace { 915 class FieldMemcpyizer { 916 public: 917 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 918 const VarDecl *SrcRec) 919 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 920 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 921 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 922 LastFieldOffset(0), LastAddedFieldIndex(0) {} 923 924 bool isMemcpyableField(FieldDecl *F) const { 925 // Never memcpy fields when we are adding poisoned paddings. 926 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 927 return false; 928 Qualifiers Qual = F->getType().getQualifiers(); 929 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 930 return false; 931 return true; 932 } 933 934 void addMemcpyableField(FieldDecl *F) { 935 if (F->isZeroSize(CGF.getContext())) 936 return; 937 if (!FirstField) 938 addInitialField(F); 939 else 940 addNextField(F); 941 } 942 943 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 944 ASTContext &Ctx = CGF.getContext(); 945 unsigned LastFieldSize = 946 LastField->isBitField() 947 ? LastField->getBitWidthValue(Ctx) 948 : Ctx.toBits( 949 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 950 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 951 FirstByteOffset + Ctx.getCharWidth() - 1; 952 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 953 return MemcpySize; 954 } 955 956 void emitMemcpy() { 957 // Give the subclass a chance to bail out if it feels the memcpy isn't 958 // worth it (e.g. Hasn't aggregated enough data). 959 if (!FirstField) { 960 return; 961 } 962 963 uint64_t FirstByteOffset; 964 if (FirstField->isBitField()) { 965 const CGRecordLayout &RL = 966 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 967 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 968 // FirstFieldOffset is not appropriate for bitfields, 969 // we need to use the storage offset instead. 970 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 971 } else { 972 FirstByteOffset = FirstFieldOffset; 973 } 974 975 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 976 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 977 Address ThisPtr = CGF.LoadCXXThisAddress(); 978 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 979 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 980 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 981 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 982 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 983 984 emitMemcpyIR( 985 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 986 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 987 MemcpySize); 988 reset(); 989 } 990 991 void reset() { 992 FirstField = nullptr; 993 } 994 995 protected: 996 CodeGenFunction &CGF; 997 const CXXRecordDecl *ClassDecl; 998 999 private: 1000 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1001 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 1002 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty); 1003 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1004 } 1005 1006 void addInitialField(FieldDecl *F) { 1007 FirstField = F; 1008 LastField = F; 1009 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1010 LastFieldOffset = FirstFieldOffset; 1011 LastAddedFieldIndex = F->getFieldIndex(); 1012 } 1013 1014 void addNextField(FieldDecl *F) { 1015 // For the most part, the following invariant will hold: 1016 // F->getFieldIndex() == LastAddedFieldIndex + 1 1017 // The one exception is that Sema won't add a copy-initializer for an 1018 // unnamed bitfield, which will show up here as a gap in the sequence. 1019 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1020 "Cannot aggregate fields out of order."); 1021 LastAddedFieldIndex = F->getFieldIndex(); 1022 1023 // The 'first' and 'last' fields are chosen by offset, rather than field 1024 // index. This allows the code to support bitfields, as well as regular 1025 // fields. 1026 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1027 if (FOffset < FirstFieldOffset) { 1028 FirstField = F; 1029 FirstFieldOffset = FOffset; 1030 } else if (FOffset >= LastFieldOffset) { 1031 LastField = F; 1032 LastFieldOffset = FOffset; 1033 } 1034 } 1035 1036 const VarDecl *SrcRec; 1037 const ASTRecordLayout &RecLayout; 1038 FieldDecl *FirstField; 1039 FieldDecl *LastField; 1040 uint64_t FirstFieldOffset, LastFieldOffset; 1041 unsigned LastAddedFieldIndex; 1042 }; 1043 1044 class ConstructorMemcpyizer : public FieldMemcpyizer { 1045 private: 1046 /// Get source argument for copy constructor. Returns null if not a copy 1047 /// constructor. 1048 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1049 const CXXConstructorDecl *CD, 1050 FunctionArgList &Args) { 1051 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1052 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1053 return nullptr; 1054 } 1055 1056 // Returns true if a CXXCtorInitializer represents a member initialization 1057 // that can be rolled into a memcpy. 1058 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1059 if (!MemcpyableCtor) 1060 return false; 1061 FieldDecl *Field = MemberInit->getMember(); 1062 assert(Field && "No field for member init."); 1063 QualType FieldType = Field->getType(); 1064 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1065 1066 // Bail out on non-memcpyable, not-trivially-copyable members. 1067 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1068 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1069 FieldType->isReferenceType())) 1070 return false; 1071 1072 // Bail out on volatile fields. 1073 if (!isMemcpyableField(Field)) 1074 return false; 1075 1076 // Otherwise we're good. 1077 return true; 1078 } 1079 1080 public: 1081 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1082 FunctionArgList &Args) 1083 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1084 ConstructorDecl(CD), 1085 MemcpyableCtor(CD->isDefaulted() && 1086 CD->isCopyOrMoveConstructor() && 1087 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1088 Args(Args) { } 1089 1090 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1091 if (isMemberInitMemcpyable(MemberInit)) { 1092 AggregatedInits.push_back(MemberInit); 1093 addMemcpyableField(MemberInit->getMember()); 1094 } else { 1095 emitAggregatedInits(); 1096 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1097 ConstructorDecl, Args); 1098 } 1099 } 1100 1101 void emitAggregatedInits() { 1102 if (AggregatedInits.size() <= 1) { 1103 // This memcpy is too small to be worthwhile. Fall back on default 1104 // codegen. 1105 if (!AggregatedInits.empty()) { 1106 CopyingValueRepresentation CVR(CGF); 1107 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1108 AggregatedInits[0], ConstructorDecl, Args); 1109 AggregatedInits.clear(); 1110 } 1111 reset(); 1112 return; 1113 } 1114 1115 pushEHDestructors(); 1116 emitMemcpy(); 1117 AggregatedInits.clear(); 1118 } 1119 1120 void pushEHDestructors() { 1121 Address ThisPtr = CGF.LoadCXXThisAddress(); 1122 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1123 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1124 1125 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1126 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1127 QualType FieldType = MemberInit->getAnyMember()->getType(); 1128 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1129 if (!CGF.needsEHCleanup(dtorKind)) 1130 continue; 1131 LValue FieldLHS = LHS; 1132 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1133 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1134 } 1135 } 1136 1137 void finish() { 1138 emitAggregatedInits(); 1139 } 1140 1141 private: 1142 const CXXConstructorDecl *ConstructorDecl; 1143 bool MemcpyableCtor; 1144 FunctionArgList &Args; 1145 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1146 }; 1147 1148 class AssignmentMemcpyizer : public FieldMemcpyizer { 1149 private: 1150 // Returns the memcpyable field copied by the given statement, if one 1151 // exists. Otherwise returns null. 1152 FieldDecl *getMemcpyableField(Stmt *S) { 1153 if (!AssignmentsMemcpyable) 1154 return nullptr; 1155 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1156 // Recognise trivial assignments. 1157 if (BO->getOpcode() != BO_Assign) 1158 return nullptr; 1159 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1160 if (!ME) 1161 return nullptr; 1162 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1163 if (!Field || !isMemcpyableField(Field)) 1164 return nullptr; 1165 Stmt *RHS = BO->getRHS(); 1166 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1167 RHS = EC->getSubExpr(); 1168 if (!RHS) 1169 return nullptr; 1170 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1171 if (ME2->getMemberDecl() == Field) 1172 return Field; 1173 } 1174 return nullptr; 1175 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1176 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1177 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1178 return nullptr; 1179 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1180 if (!IOA) 1181 return nullptr; 1182 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1183 if (!Field || !isMemcpyableField(Field)) 1184 return nullptr; 1185 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1186 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1187 return nullptr; 1188 return Field; 1189 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1190 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1191 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1192 return nullptr; 1193 Expr *DstPtr = CE->getArg(0); 1194 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1195 DstPtr = DC->getSubExpr(); 1196 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1197 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1198 return nullptr; 1199 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1200 if (!ME) 1201 return nullptr; 1202 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1203 if (!Field || !isMemcpyableField(Field)) 1204 return nullptr; 1205 Expr *SrcPtr = CE->getArg(1); 1206 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1207 SrcPtr = SC->getSubExpr(); 1208 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1209 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1210 return nullptr; 1211 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1212 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1213 return nullptr; 1214 return Field; 1215 } 1216 1217 return nullptr; 1218 } 1219 1220 bool AssignmentsMemcpyable; 1221 SmallVector<Stmt*, 16> AggregatedStmts; 1222 1223 public: 1224 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1225 FunctionArgList &Args) 1226 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1227 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1228 assert(Args.size() == 2); 1229 } 1230 1231 void emitAssignment(Stmt *S) { 1232 FieldDecl *F = getMemcpyableField(S); 1233 if (F) { 1234 addMemcpyableField(F); 1235 AggregatedStmts.push_back(S); 1236 } else { 1237 emitAggregatedStmts(); 1238 CGF.EmitStmt(S); 1239 } 1240 } 1241 1242 void emitAggregatedStmts() { 1243 if (AggregatedStmts.size() <= 1) { 1244 if (!AggregatedStmts.empty()) { 1245 CopyingValueRepresentation CVR(CGF); 1246 CGF.EmitStmt(AggregatedStmts[0]); 1247 } 1248 reset(); 1249 } 1250 1251 emitMemcpy(); 1252 AggregatedStmts.clear(); 1253 } 1254 1255 void finish() { 1256 emitAggregatedStmts(); 1257 } 1258 }; 1259 } // end anonymous namespace 1260 1261 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1262 const Type *BaseType = BaseInit->getBaseClass(); 1263 const auto *BaseClassDecl = 1264 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1265 return BaseClassDecl->isDynamicClass(); 1266 } 1267 1268 /// EmitCtorPrologue - This routine generates necessary code to initialize 1269 /// base classes and non-static data members belonging to this constructor. 1270 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1271 CXXCtorType CtorType, 1272 FunctionArgList &Args) { 1273 if (CD->isDelegatingConstructor()) 1274 return EmitDelegatingCXXConstructorCall(CD, Args); 1275 1276 const CXXRecordDecl *ClassDecl = CD->getParent(); 1277 1278 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1279 E = CD->init_end(); 1280 1281 // Virtual base initializers first, if any. They aren't needed if: 1282 // - This is a base ctor variant 1283 // - There are no vbases 1284 // - The class is abstract, so a complete object of it cannot be constructed 1285 // 1286 // The check for an abstract class is necessary because sema may not have 1287 // marked virtual base destructors referenced. 1288 bool ConstructVBases = CtorType != Ctor_Base && 1289 ClassDecl->getNumVBases() != 0 && 1290 !ClassDecl->isAbstract(); 1291 1292 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1293 // constructor of a class with virtual bases takes an additional parameter to 1294 // conditionally construct the virtual bases. Emit that check here. 1295 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1296 if (ConstructVBases && 1297 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1298 BaseCtorContinueBB = 1299 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1300 assert(BaseCtorContinueBB); 1301 } 1302 1303 llvm::Value *const OldThis = CXXThisValue; 1304 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1305 if (!ConstructVBases) 1306 continue; 1307 if (CGM.getCodeGenOpts().StrictVTablePointers && 1308 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1309 isInitializerOfDynamicClass(*B)) 1310 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1311 EmitBaseInitializer(*this, ClassDecl, *B); 1312 } 1313 1314 if (BaseCtorContinueBB) { 1315 // Complete object handler should continue to the remaining initializers. 1316 Builder.CreateBr(BaseCtorContinueBB); 1317 EmitBlock(BaseCtorContinueBB); 1318 } 1319 1320 // Then, non-virtual base initializers. 1321 for (; B != E && (*B)->isBaseInitializer(); B++) { 1322 assert(!(*B)->isBaseVirtual()); 1323 1324 if (CGM.getCodeGenOpts().StrictVTablePointers && 1325 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1326 isInitializerOfDynamicClass(*B)) 1327 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1328 EmitBaseInitializer(*this, ClassDecl, *B); 1329 } 1330 1331 CXXThisValue = OldThis; 1332 1333 InitializeVTablePointers(ClassDecl); 1334 1335 // And finally, initialize class members. 1336 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1337 ConstructorMemcpyizer CM(*this, CD, Args); 1338 for (; B != E; B++) { 1339 CXXCtorInitializer *Member = (*B); 1340 assert(!Member->isBaseInitializer()); 1341 assert(Member->isAnyMemberInitializer() && 1342 "Delegating initializer on non-delegating constructor"); 1343 CM.addMemberInitializer(Member); 1344 } 1345 CM.finish(); 1346 } 1347 1348 static bool 1349 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1350 1351 static bool 1352 HasTrivialDestructorBody(ASTContext &Context, 1353 const CXXRecordDecl *BaseClassDecl, 1354 const CXXRecordDecl *MostDerivedClassDecl) 1355 { 1356 // If the destructor is trivial we don't have to check anything else. 1357 if (BaseClassDecl->hasTrivialDestructor()) 1358 return true; 1359 1360 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1361 return false; 1362 1363 // Check fields. 1364 for (const auto *Field : BaseClassDecl->fields()) 1365 if (!FieldHasTrivialDestructorBody(Context, Field)) 1366 return false; 1367 1368 // Check non-virtual bases. 1369 for (const auto &I : BaseClassDecl->bases()) { 1370 if (I.isVirtual()) 1371 continue; 1372 1373 const CXXRecordDecl *NonVirtualBase = 1374 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1375 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1376 MostDerivedClassDecl)) 1377 return false; 1378 } 1379 1380 if (BaseClassDecl == MostDerivedClassDecl) { 1381 // Check virtual bases. 1382 for (const auto &I : BaseClassDecl->vbases()) { 1383 const CXXRecordDecl *VirtualBase = 1384 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1385 if (!HasTrivialDestructorBody(Context, VirtualBase, 1386 MostDerivedClassDecl)) 1387 return false; 1388 } 1389 } 1390 1391 return true; 1392 } 1393 1394 static bool 1395 FieldHasTrivialDestructorBody(ASTContext &Context, 1396 const FieldDecl *Field) 1397 { 1398 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1399 1400 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1401 if (!RT) 1402 return true; 1403 1404 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1405 1406 // The destructor for an implicit anonymous union member is never invoked. 1407 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1408 return false; 1409 1410 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1411 } 1412 1413 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1414 /// any vtable pointers before calling this destructor. 1415 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1416 const CXXDestructorDecl *Dtor) { 1417 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1418 if (!ClassDecl->isDynamicClass()) 1419 return true; 1420 1421 // For a final class, the vtable pointer is known to already point to the 1422 // class's vtable. 1423 if (ClassDecl->isEffectivelyFinal()) 1424 return true; 1425 1426 if (!Dtor->hasTrivialBody()) 1427 return false; 1428 1429 // Check the fields. 1430 for (const auto *Field : ClassDecl->fields()) 1431 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1432 return false; 1433 1434 return true; 1435 } 1436 1437 /// EmitDestructorBody - Emits the body of the current destructor. 1438 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1439 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1440 CXXDtorType DtorType = CurGD.getDtorType(); 1441 1442 // For an abstract class, non-base destructors are never used (and can't 1443 // be emitted in general, because vbase dtors may not have been validated 1444 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1445 // in fact emit references to them from other compilations, so emit them 1446 // as functions containing a trap instruction. 1447 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1448 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1449 TrapCall->setDoesNotReturn(); 1450 TrapCall->setDoesNotThrow(); 1451 Builder.CreateUnreachable(); 1452 Builder.ClearInsertionPoint(); 1453 return; 1454 } 1455 1456 Stmt *Body = Dtor->getBody(); 1457 if (Body) 1458 incrementProfileCounter(Body); 1459 1460 // The call to operator delete in a deleting destructor happens 1461 // outside of the function-try-block, which means it's always 1462 // possible to delegate the destructor body to the complete 1463 // destructor. Do so. 1464 if (DtorType == Dtor_Deleting) { 1465 RunCleanupsScope DtorEpilogue(*this); 1466 EnterDtorCleanups(Dtor, Dtor_Deleting); 1467 if (HaveInsertPoint()) { 1468 QualType ThisTy = Dtor->getThisObjectType(); 1469 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1470 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1471 } 1472 return; 1473 } 1474 1475 // If the body is a function-try-block, enter the try before 1476 // anything else. 1477 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1478 if (isTryBody) 1479 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1480 EmitAsanPrologueOrEpilogue(false); 1481 1482 // Enter the epilogue cleanups. 1483 RunCleanupsScope DtorEpilogue(*this); 1484 1485 // If this is the complete variant, just invoke the base variant; 1486 // the epilogue will destruct the virtual bases. But we can't do 1487 // this optimization if the body is a function-try-block, because 1488 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1489 // always delegate because we might not have a definition in this TU. 1490 switch (DtorType) { 1491 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1492 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1493 1494 case Dtor_Complete: 1495 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1496 "can't emit a dtor without a body for non-Microsoft ABIs"); 1497 1498 // Enter the cleanup scopes for virtual bases. 1499 EnterDtorCleanups(Dtor, Dtor_Complete); 1500 1501 if (!isTryBody) { 1502 QualType ThisTy = Dtor->getThisObjectType(); 1503 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1504 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1505 break; 1506 } 1507 1508 // Fallthrough: act like we're in the base variant. 1509 [[fallthrough]]; 1510 1511 case Dtor_Base: 1512 assert(Body); 1513 1514 // Enter the cleanup scopes for fields and non-virtual bases. 1515 EnterDtorCleanups(Dtor, Dtor_Base); 1516 1517 // Initialize the vtable pointers before entering the body. 1518 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1519 // Insert the llvm.launder.invariant.group intrinsic before initializing 1520 // the vptrs to cancel any previous assumptions we might have made. 1521 if (CGM.getCodeGenOpts().StrictVTablePointers && 1522 CGM.getCodeGenOpts().OptimizationLevel > 0) 1523 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1524 InitializeVTablePointers(Dtor->getParent()); 1525 } 1526 1527 if (isTryBody) 1528 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1529 else if (Body) 1530 EmitStmt(Body); 1531 else { 1532 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1533 // nothing to do besides what's in the epilogue 1534 } 1535 // -fapple-kext must inline any call to this dtor into 1536 // the caller's body. 1537 if (getLangOpts().AppleKext) 1538 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1539 1540 break; 1541 } 1542 1543 // Jump out through the epilogue cleanups. 1544 DtorEpilogue.ForceCleanup(); 1545 1546 // Exit the try if applicable. 1547 if (isTryBody) 1548 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1549 } 1550 1551 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1552 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1553 const Stmt *RootS = AssignOp->getBody(); 1554 assert(isa<CompoundStmt>(RootS) && 1555 "Body of an implicit assignment operator should be compound stmt."); 1556 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1557 1558 LexicalScope Scope(*this, RootCS->getSourceRange()); 1559 1560 incrementProfileCounter(RootCS); 1561 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1562 for (auto *I : RootCS->body()) 1563 AM.emitAssignment(I); 1564 AM.finish(); 1565 } 1566 1567 namespace { 1568 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1569 const CXXDestructorDecl *DD) { 1570 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1571 return CGF.EmitScalarExpr(ThisArg); 1572 return CGF.LoadCXXThis(); 1573 } 1574 1575 /// Call the operator delete associated with the current destructor. 1576 struct CallDtorDelete final : EHScopeStack::Cleanup { 1577 CallDtorDelete() {} 1578 1579 void Emit(CodeGenFunction &CGF, Flags flags) override { 1580 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1581 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1582 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1583 LoadThisForDtorDelete(CGF, Dtor), 1584 CGF.getContext().getTagDeclType(ClassDecl)); 1585 } 1586 }; 1587 1588 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1589 llvm::Value *ShouldDeleteCondition, 1590 bool ReturnAfterDelete) { 1591 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1592 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1593 llvm::Value *ShouldCallDelete 1594 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1595 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1596 1597 CGF.EmitBlock(callDeleteBB); 1598 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1599 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1600 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1601 LoadThisForDtorDelete(CGF, Dtor), 1602 CGF.getContext().getTagDeclType(ClassDecl)); 1603 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1604 ReturnAfterDelete && 1605 "unexpected value for ReturnAfterDelete"); 1606 if (ReturnAfterDelete) 1607 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1608 else 1609 CGF.Builder.CreateBr(continueBB); 1610 1611 CGF.EmitBlock(continueBB); 1612 } 1613 1614 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1615 llvm::Value *ShouldDeleteCondition; 1616 1617 public: 1618 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1619 : ShouldDeleteCondition(ShouldDeleteCondition) { 1620 assert(ShouldDeleteCondition != nullptr); 1621 } 1622 1623 void Emit(CodeGenFunction &CGF, Flags flags) override { 1624 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1625 /*ReturnAfterDelete*/false); 1626 } 1627 }; 1628 1629 class DestroyField final : public EHScopeStack::Cleanup { 1630 const FieldDecl *field; 1631 CodeGenFunction::Destroyer *destroyer; 1632 bool useEHCleanupForArray; 1633 1634 public: 1635 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1636 bool useEHCleanupForArray) 1637 : field(field), destroyer(destroyer), 1638 useEHCleanupForArray(useEHCleanupForArray) {} 1639 1640 void Emit(CodeGenFunction &CGF, Flags flags) override { 1641 // Find the address of the field. 1642 Address thisValue = CGF.LoadCXXThisAddress(); 1643 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1644 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1645 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1646 assert(LV.isSimple()); 1647 1648 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1649 flags.isForNormalCleanup() && useEHCleanupForArray); 1650 } 1651 }; 1652 1653 class DeclAsInlineDebugLocation { 1654 CGDebugInfo *DI; 1655 llvm::MDNode *InlinedAt; 1656 std::optional<ApplyDebugLocation> Location; 1657 1658 public: 1659 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) 1660 : DI(CGF.getDebugInfo()) { 1661 if (!DI) 1662 return; 1663 InlinedAt = DI->getInlinedAt(); 1664 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); 1665 Location.emplace(CGF, Decl.getLocation()); 1666 } 1667 1668 ~DeclAsInlineDebugLocation() { 1669 if (!DI) 1670 return; 1671 Location.reset(); 1672 DI->setInlinedAt(InlinedAt); 1673 } 1674 }; 1675 1676 static void EmitSanitizerDtorCallback( 1677 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, 1678 std::optional<CharUnits::QuantityType> PoisonSize = {}) { 1679 CodeGenFunction::SanitizerScope SanScope(&CGF); 1680 // Pass in void pointer and size of region as arguments to runtime 1681 // function 1682 SmallVector<llvm::Value *, 2> Args = { 1683 CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy)}; 1684 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy}; 1685 1686 if (PoisonSize.has_value()) { 1687 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize)); 1688 ArgTypes.emplace_back(CGF.SizeTy); 1689 } 1690 1691 llvm::FunctionType *FnType = 1692 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1693 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name); 1694 1695 CGF.EmitNounwindRuntimeCall(Fn, Args); 1696 } 1697 1698 static void 1699 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1700 CharUnits::QuantityType PoisonSize) { 1701 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr, 1702 PoisonSize); 1703 } 1704 1705 /// Poison base class with a trivial destructor. 1706 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { 1707 const CXXRecordDecl *BaseClass; 1708 bool BaseIsVirtual; 1709 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) 1710 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 1711 1712 void Emit(CodeGenFunction &CGF, Flags flags) override { 1713 const CXXRecordDecl *DerivedClass = 1714 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 1715 1716 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( 1717 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); 1718 1719 const ASTRecordLayout &BaseLayout = 1720 CGF.getContext().getASTRecordLayout(BaseClass); 1721 CharUnits BaseSize = BaseLayout.getSize(); 1722 1723 if (!BaseSize.isPositive()) 1724 return; 1725 1726 // Use the base class declaration location as inline DebugLocation. All 1727 // fields of the class are destroyed. 1728 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); 1729 EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(), 1730 BaseSize.getQuantity()); 1731 1732 // Prevent the current stack frame from disappearing from the stack trace. 1733 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1734 } 1735 }; 1736 1737 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { 1738 const CXXDestructorDecl *Dtor; 1739 unsigned StartIndex; 1740 unsigned EndIndex; 1741 1742 public: 1743 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, 1744 unsigned EndIndex) 1745 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} 1746 1747 // Generate function call for handling object poisoning. 1748 // Disables tail call elimination, to prevent the current stack frame 1749 // from disappearing from the stack trace. 1750 void Emit(CodeGenFunction &CGF, Flags flags) override { 1751 const ASTContext &Context = CGF.getContext(); 1752 const ASTRecordLayout &Layout = 1753 Context.getASTRecordLayout(Dtor->getParent()); 1754 1755 // It's a first trivial field so it should be at the begining of a char, 1756 // still round up start offset just in case. 1757 CharUnits PoisonStart = Context.toCharUnitsFromBits( 1758 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1); 1759 llvm::ConstantInt *OffsetSizePtr = 1760 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1761 1762 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1763 CGF.Int8Ty, 1764 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1765 OffsetSizePtr); 1766 1767 CharUnits PoisonEnd; 1768 if (EndIndex >= Layout.getFieldCount()) { 1769 PoisonEnd = Layout.getNonVirtualSize(); 1770 } else { 1771 PoisonEnd = 1772 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex)); 1773 } 1774 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1775 if (!PoisonSize.isPositive()) 1776 return; 1777 1778 // Use the top field declaration location as inline DebugLocation. 1779 DeclAsInlineDebugLocation InlineHere( 1780 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex)); 1781 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1782 1783 // Prevent the current stack frame from disappearing from the stack trace. 1784 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1785 } 1786 }; 1787 1788 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1789 const CXXDestructorDecl *Dtor; 1790 1791 public: 1792 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1793 1794 // Generate function call for handling vtable pointer poisoning. 1795 void Emit(CodeGenFunction &CGF, Flags flags) override { 1796 assert(Dtor->getParent()->isDynamicClass()); 1797 (void)Dtor; 1798 // Poison vtable and vtable ptr if they exist for this class. 1799 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1800 1801 // Pass in void pointer and size of region as arguments to runtime 1802 // function 1803 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", 1804 VTablePtr); 1805 } 1806 }; 1807 1808 class SanitizeDtorCleanupBuilder { 1809 ASTContext &Context; 1810 EHScopeStack &EHStack; 1811 const CXXDestructorDecl *DD; 1812 std::optional<unsigned> StartIndex; 1813 1814 public: 1815 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, 1816 const CXXDestructorDecl *DD) 1817 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} 1818 void PushCleanupForField(const FieldDecl *Field) { 1819 if (Field->isZeroSize(Context)) 1820 return; 1821 unsigned FieldIndex = Field->getFieldIndex(); 1822 if (FieldHasTrivialDestructorBody(Context, Field)) { 1823 if (!StartIndex) 1824 StartIndex = FieldIndex; 1825 } else if (StartIndex) { 1826 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1827 *StartIndex, FieldIndex); 1828 StartIndex = std::nullopt; 1829 } 1830 } 1831 void End() { 1832 if (StartIndex) 1833 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1834 *StartIndex, -1); 1835 } 1836 }; 1837 } // end anonymous namespace 1838 1839 /// Emit all code that comes at the end of class's 1840 /// destructor. This is to call destructors on members and base classes 1841 /// in reverse order of their construction. 1842 /// 1843 /// For a deleting destructor, this also handles the case where a destroying 1844 /// operator delete completely overrides the definition. 1845 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1846 CXXDtorType DtorType) { 1847 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1848 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1849 1850 // The deleting-destructor phase just needs to call the appropriate 1851 // operator delete that Sema picked up. 1852 if (DtorType == Dtor_Deleting) { 1853 assert(DD->getOperatorDelete() && 1854 "operator delete missing - EnterDtorCleanups"); 1855 if (CXXStructorImplicitParamValue) { 1856 // If there is an implicit param to the deleting dtor, it's a boolean 1857 // telling whether this is a deleting destructor. 1858 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1859 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1860 /*ReturnAfterDelete*/true); 1861 else 1862 EHStack.pushCleanup<CallDtorDeleteConditional>( 1863 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1864 } else { 1865 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1866 const CXXRecordDecl *ClassDecl = DD->getParent(); 1867 EmitDeleteCall(DD->getOperatorDelete(), 1868 LoadThisForDtorDelete(*this, DD), 1869 getContext().getTagDeclType(ClassDecl)); 1870 EmitBranchThroughCleanup(ReturnBlock); 1871 } else { 1872 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1873 } 1874 } 1875 return; 1876 } 1877 1878 const CXXRecordDecl *ClassDecl = DD->getParent(); 1879 1880 // Unions have no bases and do not call field destructors. 1881 if (ClassDecl->isUnion()) 1882 return; 1883 1884 // The complete-destructor phase just destructs all the virtual bases. 1885 if (DtorType == Dtor_Complete) { 1886 // Poison the vtable pointer such that access after the base 1887 // and member destructors are invoked is invalid. 1888 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1889 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1890 ClassDecl->isPolymorphic()) 1891 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1892 1893 // We push them in the forward order so that they'll be popped in 1894 // the reverse order. 1895 for (const auto &Base : ClassDecl->vbases()) { 1896 auto *BaseClassDecl = 1897 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1898 1899 if (BaseClassDecl->hasTrivialDestructor()) { 1900 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class 1901 // memory. For non-trival base classes the same is done in the class 1902 // destructor. 1903 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1904 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1905 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1906 BaseClassDecl, 1907 /*BaseIsVirtual*/ true); 1908 } else { 1909 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1910 /*BaseIsVirtual*/ true); 1911 } 1912 } 1913 1914 return; 1915 } 1916 1917 assert(DtorType == Dtor_Base); 1918 // Poison the vtable pointer if it has no virtual bases, but inherits 1919 // virtual functions. 1920 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1921 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1922 ClassDecl->isPolymorphic()) 1923 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1924 1925 // Destroy non-virtual bases. 1926 for (const auto &Base : ClassDecl->bases()) { 1927 // Ignore virtual bases. 1928 if (Base.isVirtual()) 1929 continue; 1930 1931 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1932 1933 if (BaseClassDecl->hasTrivialDestructor()) { 1934 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1935 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1936 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1937 BaseClassDecl, 1938 /*BaseIsVirtual*/ false); 1939 } else { 1940 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1941 /*BaseIsVirtual*/ false); 1942 } 1943 } 1944 1945 // Poison fields such that access after their destructors are 1946 // invoked, and before the base class destructor runs, is invalid. 1947 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1948 SanOpts.has(SanitizerKind::Memory); 1949 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); 1950 1951 // Destroy direct fields. 1952 for (const auto *Field : ClassDecl->fields()) { 1953 if (SanitizeFields) 1954 SanitizeBuilder.PushCleanupForField(Field); 1955 1956 QualType type = Field->getType(); 1957 QualType::DestructionKind dtorKind = type.isDestructedType(); 1958 if (!dtorKind) 1959 continue; 1960 1961 // Anonymous union members do not have their destructors called. 1962 const RecordType *RT = type->getAsUnionType(); 1963 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) 1964 continue; 1965 1966 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1967 EHStack.pushCleanup<DestroyField>( 1968 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup); 1969 } 1970 1971 if (SanitizeFields) 1972 SanitizeBuilder.End(); 1973 } 1974 1975 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1976 /// constructor for each of several members of an array. 1977 /// 1978 /// \param ctor the constructor to call for each element 1979 /// \param arrayType the type of the array to initialize 1980 /// \param arrayBegin an arrayType* 1981 /// \param zeroInitialize true if each element should be 1982 /// zero-initialized before it is constructed 1983 void CodeGenFunction::EmitCXXAggrConstructorCall( 1984 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1985 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1986 bool zeroInitialize) { 1987 QualType elementType; 1988 llvm::Value *numElements = 1989 emitArrayLength(arrayType, elementType, arrayBegin); 1990 1991 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1992 NewPointerIsChecked, zeroInitialize); 1993 } 1994 1995 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1996 /// constructor for each of several members of an array. 1997 /// 1998 /// \param ctor the constructor to call for each element 1999 /// \param numElements the number of elements in the array; 2000 /// may be zero 2001 /// \param arrayBase a T*, where T is the type constructed by ctor 2002 /// \param zeroInitialize true if each element should be 2003 /// zero-initialized before it is constructed 2004 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 2005 llvm::Value *numElements, 2006 Address arrayBase, 2007 const CXXConstructExpr *E, 2008 bool NewPointerIsChecked, 2009 bool zeroInitialize) { 2010 // It's legal for numElements to be zero. This can happen both 2011 // dynamically, because x can be zero in 'new A[x]', and statically, 2012 // because of GCC extensions that permit zero-length arrays. There 2013 // are probably legitimate places where we could assume that this 2014 // doesn't happen, but it's not clear that it's worth it. 2015 llvm::BranchInst *zeroCheckBranch = nullptr; 2016 2017 // Optimize for a constant count. 2018 llvm::ConstantInt *constantCount 2019 = dyn_cast<llvm::ConstantInt>(numElements); 2020 if (constantCount) { 2021 // Just skip out if the constant count is zero. 2022 if (constantCount->isZero()) return; 2023 2024 // Otherwise, emit the check. 2025 } else { 2026 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 2027 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 2028 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 2029 EmitBlock(loopBB); 2030 } 2031 2032 // Find the end of the array. 2033 llvm::Type *elementType = arrayBase.getElementType(); 2034 llvm::Value *arrayBegin = arrayBase.getPointer(); 2035 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 2036 elementType, arrayBegin, numElements, "arrayctor.end"); 2037 2038 // Enter the loop, setting up a phi for the current location to initialize. 2039 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2040 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 2041 EmitBlock(loopBB); 2042 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 2043 "arrayctor.cur"); 2044 cur->addIncoming(arrayBegin, entryBB); 2045 2046 // Inside the loop body, emit the constructor call on the array element. 2047 2048 // The alignment of the base, adjusted by the size of a single element, 2049 // provides a conservative estimate of the alignment of every element. 2050 // (This assumes we never start tracking offsetted alignments.) 2051 // 2052 // Note that these are complete objects and so we don't need to 2053 // use the non-virtual size or alignment. 2054 QualType type = getContext().getTypeDeclType(ctor->getParent()); 2055 CharUnits eltAlignment = 2056 arrayBase.getAlignment() 2057 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2058 Address curAddr = Address(cur, elementType, eltAlignment); 2059 2060 // Zero initialize the storage, if requested. 2061 if (zeroInitialize) 2062 EmitNullInitialization(curAddr, type); 2063 2064 // C++ [class.temporary]p4: 2065 // There are two contexts in which temporaries are destroyed at a different 2066 // point than the end of the full-expression. The first context is when a 2067 // default constructor is called to initialize an element of an array. 2068 // If the constructor has one or more default arguments, the destruction of 2069 // every temporary created in a default argument expression is sequenced 2070 // before the construction of the next array element, if any. 2071 2072 { 2073 RunCleanupsScope Scope(*this); 2074 2075 // Evaluate the constructor and its arguments in a regular 2076 // partial-destroy cleanup. 2077 if (getLangOpts().Exceptions && 2078 !ctor->getParent()->hasTrivialDestructor()) { 2079 Destroyer *destroyer = destroyCXXObject; 2080 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2081 *destroyer); 2082 } 2083 auto currAVS = AggValueSlot::forAddr( 2084 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2085 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2086 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2087 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2088 : AggValueSlot::IsNotSanitizerChecked); 2089 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2090 /*Delegating=*/false, currAVS, E); 2091 } 2092 2093 // Go to the next element. 2094 llvm::Value *next = Builder.CreateInBoundsGEP( 2095 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2096 cur->addIncoming(next, Builder.GetInsertBlock()); 2097 2098 // Check whether that's the end of the loop. 2099 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2100 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2101 Builder.CreateCondBr(done, contBB, loopBB); 2102 2103 // Patch the earlier check to skip over the loop. 2104 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2105 2106 EmitBlock(contBB); 2107 } 2108 2109 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2110 Address addr, 2111 QualType type) { 2112 const RecordType *rtype = type->castAs<RecordType>(); 2113 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2114 const CXXDestructorDecl *dtor = record->getDestructor(); 2115 assert(!dtor->isTrivial()); 2116 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2117 /*Delegating=*/false, addr, type); 2118 } 2119 2120 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2121 CXXCtorType Type, 2122 bool ForVirtualBase, 2123 bool Delegating, 2124 AggValueSlot ThisAVS, 2125 const CXXConstructExpr *E) { 2126 CallArgList Args; 2127 Address This = ThisAVS.getAddress(); 2128 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2129 QualType ThisType = D->getThisType(); 2130 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2131 llvm::Value *ThisPtr = This.getPointer(); 2132 2133 if (SlotAS != ThisAS) { 2134 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2135 llvm::Type *NewType = llvm::PointerType::getWithSamePointeeType( 2136 This.getType(), TargetThisAS); 2137 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2138 ThisAS, SlotAS, NewType); 2139 } 2140 2141 // Push the this ptr. 2142 Args.add(RValue::get(ThisPtr), D->getThisType()); 2143 2144 // If this is a trivial constructor, emit a memcpy now before we lose 2145 // the alignment information on the argument. 2146 // FIXME: It would be better to preserve alignment information into CallArg. 2147 if (isMemcpyEquivalentSpecialMember(D)) { 2148 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2149 2150 const Expr *Arg = E->getArg(0); 2151 LValue Src = EmitLValue(Arg); 2152 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2153 LValue Dest = MakeAddrLValue(This, DestTy); 2154 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2155 return; 2156 } 2157 2158 // Add the rest of the user-supplied arguments. 2159 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2160 EvaluationOrder Order = E->isListInitialization() 2161 ? EvaluationOrder::ForceLeftToRight 2162 : EvaluationOrder::Default; 2163 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2164 /*ParamsToSkip*/ 0, Order); 2165 2166 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2167 ThisAVS.mayOverlap(), E->getExprLoc(), 2168 ThisAVS.isSanitizerChecked()); 2169 } 2170 2171 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2172 const CXXConstructorDecl *Ctor, 2173 CXXCtorType Type, CallArgList &Args) { 2174 // We can't forward a variadic call. 2175 if (Ctor->isVariadic()) 2176 return false; 2177 2178 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2179 // If the parameters are callee-cleanup, it's not safe to forward. 2180 for (auto *P : Ctor->parameters()) 2181 if (P->needsDestruction(CGF.getContext())) 2182 return false; 2183 2184 // Likewise if they're inalloca. 2185 const CGFunctionInfo &Info = 2186 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2187 if (Info.usesInAlloca()) 2188 return false; 2189 } 2190 2191 // Anything else should be OK. 2192 return true; 2193 } 2194 2195 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2196 CXXCtorType Type, 2197 bool ForVirtualBase, 2198 bool Delegating, 2199 Address This, 2200 CallArgList &Args, 2201 AggValueSlot::Overlap_t Overlap, 2202 SourceLocation Loc, 2203 bool NewPointerIsChecked) { 2204 const CXXRecordDecl *ClassDecl = D->getParent(); 2205 2206 if (!NewPointerIsChecked) 2207 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2208 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2209 2210 if (D->isTrivial() && D->isDefaultConstructor()) { 2211 assert(Args.size() == 1 && "trivial default ctor with args"); 2212 return; 2213 } 2214 2215 // If this is a trivial constructor, just emit what's needed. If this is a 2216 // union copy constructor, we must emit a memcpy, because the AST does not 2217 // model that copy. 2218 if (isMemcpyEquivalentSpecialMember(D)) { 2219 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2220 2221 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2222 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy), 2223 CGM.getNaturalTypeAlignment(SrcTy)); 2224 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2225 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2226 LValue DestLVal = MakeAddrLValue(This, DestTy); 2227 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2228 return; 2229 } 2230 2231 bool PassPrototypeArgs = true; 2232 // Check whether we can actually emit the constructor before trying to do so. 2233 if (auto Inherited = D->getInheritedConstructor()) { 2234 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2235 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2236 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2237 Delegating, Args); 2238 return; 2239 } 2240 } 2241 2242 // Insert any ABI-specific implicit constructor arguments. 2243 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2244 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2245 Delegating, Args); 2246 2247 // Emit the call. 2248 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2249 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2250 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2251 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2252 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); 2253 2254 // Generate vtable assumptions if we're constructing a complete object 2255 // with a vtable. We don't do this for base subobjects for two reasons: 2256 // first, it's incorrect for classes with virtual bases, and second, we're 2257 // about to overwrite the vptrs anyway. 2258 // We also have to make sure if we can refer to vtable: 2259 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2260 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2261 // sure that definition of vtable is not hidden, 2262 // then we are always safe to refer to it. 2263 // FIXME: It looks like InstCombine is very inefficient on dealing with 2264 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2265 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2266 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2267 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2268 CGM.getCodeGenOpts().StrictVTablePointers) 2269 EmitVTableAssumptionLoads(ClassDecl, This); 2270 } 2271 2272 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2273 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2274 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2275 CallArgList Args; 2276 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2277 2278 // Forward the parameters. 2279 if (InheritedFromVBase && 2280 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2281 // Nothing to do; this construction is not responsible for constructing 2282 // the base class containing the inherited constructor. 2283 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2284 // have constructor variants? 2285 Args.push_back(ThisArg); 2286 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2287 // The inheriting constructor was inlined; just inject its arguments. 2288 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2289 "wrong number of parameters for inherited constructor call"); 2290 Args = CXXInheritedCtorInitExprArgs; 2291 Args[0] = ThisArg; 2292 } else { 2293 // The inheriting constructor was not inlined. Emit delegating arguments. 2294 Args.push_back(ThisArg); 2295 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2296 assert(OuterCtor->getNumParams() == D->getNumParams()); 2297 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2298 2299 for (const auto *Param : OuterCtor->parameters()) { 2300 assert(getContext().hasSameUnqualifiedType( 2301 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2302 Param->getType())); 2303 EmitDelegateCallArg(Args, Param, E->getLocation()); 2304 2305 // Forward __attribute__(pass_object_size). 2306 if (Param->hasAttr<PassObjectSizeAttr>()) { 2307 auto *POSParam = SizeArguments[Param]; 2308 assert(POSParam && "missing pass_object_size value for forwarding"); 2309 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2310 } 2311 } 2312 } 2313 2314 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2315 This, Args, AggValueSlot::MayOverlap, 2316 E->getLocation(), /*NewPointerIsChecked*/true); 2317 } 2318 2319 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2320 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2321 bool Delegating, CallArgList &Args) { 2322 GlobalDecl GD(Ctor, CtorType); 2323 InlinedInheritingConstructorScope Scope(*this, GD); 2324 ApplyInlineDebugLocation DebugScope(*this, GD); 2325 RunCleanupsScope RunCleanups(*this); 2326 2327 // Save the arguments to be passed to the inherited constructor. 2328 CXXInheritedCtorInitExprArgs = Args; 2329 2330 FunctionArgList Params; 2331 QualType RetType = BuildFunctionArgList(CurGD, Params); 2332 FnRetTy = RetType; 2333 2334 // Insert any ABI-specific implicit constructor arguments. 2335 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2336 ForVirtualBase, Delegating, Args); 2337 2338 // Emit a simplified prolog. We only need to emit the implicit params. 2339 assert(Args.size() >= Params.size() && "too few arguments for call"); 2340 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2341 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2342 const RValue &RV = Args[I].getRValue(*this); 2343 assert(!RV.isComplex() && "complex indirect params not supported"); 2344 ParamValue Val = RV.isScalar() 2345 ? ParamValue::forDirect(RV.getScalarVal()) 2346 : ParamValue::forIndirect(RV.getAggregateAddress()); 2347 EmitParmDecl(*Params[I], Val, I + 1); 2348 } 2349 } 2350 2351 // Create a return value slot if the ABI implementation wants one. 2352 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2353 // value instead. 2354 if (!RetType->isVoidType()) 2355 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2356 2357 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2358 CXXThisValue = CXXABIThisValue; 2359 2360 // Directly emit the constructor initializers. 2361 EmitCtorPrologue(Ctor, CtorType, Params); 2362 } 2363 2364 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2365 llvm::Value *VTableGlobal = 2366 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2367 if (!VTableGlobal) 2368 return; 2369 2370 // We can just use the base offset in the complete class. 2371 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2372 2373 if (!NonVirtualOffset.isZero()) 2374 This = 2375 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2376 Vptr.VTableClass, Vptr.NearestVBase); 2377 2378 llvm::Value *VPtrValue = 2379 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2380 llvm::Value *Cmp = 2381 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2382 Builder.CreateAssumption(Cmp); 2383 } 2384 2385 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2386 Address This) { 2387 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2388 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2389 EmitVTableAssumptionLoad(Vptr, This); 2390 } 2391 2392 void 2393 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2394 Address This, Address Src, 2395 const CXXConstructExpr *E) { 2396 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2397 2398 CallArgList Args; 2399 2400 // Push the this ptr. 2401 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2402 2403 // Push the src ptr. 2404 QualType QT = *(FPT->param_type_begin()); 2405 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2406 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t); 2407 Args.add(RValue::get(SrcVal), QT); 2408 2409 // Skip over first argument (Src). 2410 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2411 /*ParamsToSkip*/ 1); 2412 2413 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2414 /*Delegating*/false, This, Args, 2415 AggValueSlot::MayOverlap, E->getExprLoc(), 2416 /*NewPointerIsChecked*/false); 2417 } 2418 2419 void 2420 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2421 CXXCtorType CtorType, 2422 const FunctionArgList &Args, 2423 SourceLocation Loc) { 2424 CallArgList DelegateArgs; 2425 2426 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2427 assert(I != E && "no parameters to constructor"); 2428 2429 // this 2430 Address This = LoadCXXThisAddress(); 2431 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2432 ++I; 2433 2434 // FIXME: The location of the VTT parameter in the parameter list is 2435 // specific to the Itanium ABI and shouldn't be hardcoded here. 2436 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2437 assert(I != E && "cannot skip vtt parameter, already done with args"); 2438 assert((*I)->getType()->isPointerType() && 2439 "skipping parameter not of vtt type"); 2440 ++I; 2441 } 2442 2443 // Explicit arguments. 2444 for (; I != E; ++I) { 2445 const VarDecl *param = *I; 2446 // FIXME: per-argument source location 2447 EmitDelegateCallArg(DelegateArgs, param, Loc); 2448 } 2449 2450 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2451 /*Delegating=*/true, This, DelegateArgs, 2452 AggValueSlot::MayOverlap, Loc, 2453 /*NewPointerIsChecked=*/true); 2454 } 2455 2456 namespace { 2457 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2458 const CXXDestructorDecl *Dtor; 2459 Address Addr; 2460 CXXDtorType Type; 2461 2462 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2463 CXXDtorType Type) 2464 : Dtor(D), Addr(Addr), Type(Type) {} 2465 2466 void Emit(CodeGenFunction &CGF, Flags flags) override { 2467 // We are calling the destructor from within the constructor. 2468 // Therefore, "this" should have the expected type. 2469 QualType ThisTy = Dtor->getThisObjectType(); 2470 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2471 /*Delegating=*/true, Addr, ThisTy); 2472 } 2473 }; 2474 } // end anonymous namespace 2475 2476 void 2477 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2478 const FunctionArgList &Args) { 2479 assert(Ctor->isDelegatingConstructor()); 2480 2481 Address ThisPtr = LoadCXXThisAddress(); 2482 2483 AggValueSlot AggSlot = 2484 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2485 AggValueSlot::IsDestructed, 2486 AggValueSlot::DoesNotNeedGCBarriers, 2487 AggValueSlot::IsNotAliased, 2488 AggValueSlot::MayOverlap, 2489 AggValueSlot::IsNotZeroed, 2490 // Checks are made by the code that calls constructor. 2491 AggValueSlot::IsSanitizerChecked); 2492 2493 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2494 2495 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2496 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2497 CXXDtorType Type = 2498 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2499 2500 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2501 ClassDecl->getDestructor(), 2502 ThisPtr, Type); 2503 } 2504 } 2505 2506 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2507 CXXDtorType Type, 2508 bool ForVirtualBase, 2509 bool Delegating, Address This, 2510 QualType ThisTy) { 2511 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2512 Delegating, This, ThisTy); 2513 } 2514 2515 namespace { 2516 struct CallLocalDtor final : EHScopeStack::Cleanup { 2517 const CXXDestructorDecl *Dtor; 2518 Address Addr; 2519 QualType Ty; 2520 2521 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2522 : Dtor(D), Addr(Addr), Ty(Ty) {} 2523 2524 void Emit(CodeGenFunction &CGF, Flags flags) override { 2525 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2526 /*ForVirtualBase=*/false, 2527 /*Delegating=*/false, Addr, Ty); 2528 } 2529 }; 2530 } // end anonymous namespace 2531 2532 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2533 QualType T, Address Addr) { 2534 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2535 } 2536 2537 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2538 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2539 if (!ClassDecl) return; 2540 if (ClassDecl->hasTrivialDestructor()) return; 2541 2542 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2543 assert(D && D->isUsed() && "destructor not marked as used!"); 2544 PushDestructorCleanup(D, T, Addr); 2545 } 2546 2547 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2548 // Compute the address point. 2549 llvm::Value *VTableAddressPoint = 2550 CGM.getCXXABI().getVTableAddressPointInStructor( 2551 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2552 2553 if (!VTableAddressPoint) 2554 return; 2555 2556 // Compute where to store the address point. 2557 llvm::Value *VirtualOffset = nullptr; 2558 CharUnits NonVirtualOffset = CharUnits::Zero(); 2559 2560 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2561 // We need to use the virtual base offset offset because the virtual base 2562 // might have a different offset in the most derived class. 2563 2564 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2565 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2566 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2567 } else { 2568 // We can just use the base offset in the complete class. 2569 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2570 } 2571 2572 // Apply the offsets. 2573 Address VTableField = LoadCXXThisAddress(); 2574 if (!NonVirtualOffset.isZero() || VirtualOffset) 2575 VTableField = ApplyNonVirtualAndVirtualOffset( 2576 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2577 Vptr.NearestVBase); 2578 2579 // Finally, store the address point. Use the same LLVM types as the field to 2580 // support optimization. 2581 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2582 unsigned ProgAS = CGM.getDataLayout().getProgramAddressSpace(); 2583 llvm::Type *VTablePtrTy = 2584 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2585 ->getPointerTo(ProgAS) 2586 ->getPointerTo(GlobalsAS); 2587 // vtable field is derived from `this` pointer, therefore they should be in 2588 // the same addr space. Note that this might not be LLVM address space 0. 2589 VTableField = Builder.CreateElementBitCast(VTableField, VTablePtrTy); 2590 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2591 2592 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2593 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2594 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2595 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2596 CGM.getCodeGenOpts().StrictVTablePointers) 2597 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2598 } 2599 2600 CodeGenFunction::VPtrsVector 2601 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2602 CodeGenFunction::VPtrsVector VPtrsResult; 2603 VisitedVirtualBasesSetTy VBases; 2604 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2605 /*NearestVBase=*/nullptr, 2606 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2607 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2608 VPtrsResult); 2609 return VPtrsResult; 2610 } 2611 2612 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2613 const CXXRecordDecl *NearestVBase, 2614 CharUnits OffsetFromNearestVBase, 2615 bool BaseIsNonVirtualPrimaryBase, 2616 const CXXRecordDecl *VTableClass, 2617 VisitedVirtualBasesSetTy &VBases, 2618 VPtrsVector &Vptrs) { 2619 // If this base is a non-virtual primary base the address point has already 2620 // been set. 2621 if (!BaseIsNonVirtualPrimaryBase) { 2622 // Initialize the vtable pointer for this base. 2623 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2624 Vptrs.push_back(Vptr); 2625 } 2626 2627 const CXXRecordDecl *RD = Base.getBase(); 2628 2629 // Traverse bases. 2630 for (const auto &I : RD->bases()) { 2631 auto *BaseDecl = 2632 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2633 2634 // Ignore classes without a vtable. 2635 if (!BaseDecl->isDynamicClass()) 2636 continue; 2637 2638 CharUnits BaseOffset; 2639 CharUnits BaseOffsetFromNearestVBase; 2640 bool BaseDeclIsNonVirtualPrimaryBase; 2641 2642 if (I.isVirtual()) { 2643 // Check if we've visited this virtual base before. 2644 if (!VBases.insert(BaseDecl).second) 2645 continue; 2646 2647 const ASTRecordLayout &Layout = 2648 getContext().getASTRecordLayout(VTableClass); 2649 2650 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2651 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2652 BaseDeclIsNonVirtualPrimaryBase = false; 2653 } else { 2654 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2655 2656 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2657 BaseOffsetFromNearestVBase = 2658 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2659 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2660 } 2661 2662 getVTablePointers( 2663 BaseSubobject(BaseDecl, BaseOffset), 2664 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2665 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2666 } 2667 } 2668 2669 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2670 // Ignore classes without a vtable. 2671 if (!RD->isDynamicClass()) 2672 return; 2673 2674 // Initialize the vtable pointers for this class and all of its bases. 2675 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2676 for (const VPtr &Vptr : getVTablePointers(RD)) 2677 InitializeVTablePointer(Vptr); 2678 2679 if (RD->getNumVBases()) 2680 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2681 } 2682 2683 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2684 llvm::Type *VTableTy, 2685 const CXXRecordDecl *RD) { 2686 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2687 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2688 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2689 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2690 2691 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2692 CGM.getCodeGenOpts().StrictVTablePointers) 2693 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2694 2695 return VTable; 2696 } 2697 2698 // If a class has a single non-virtual base and does not introduce or override 2699 // virtual member functions or fields, it will have the same layout as its base. 2700 // This function returns the least derived such class. 2701 // 2702 // Casting an instance of a base class to such a derived class is technically 2703 // undefined behavior, but it is a relatively common hack for introducing member 2704 // functions on class instances with specific properties (e.g. llvm::Operator) 2705 // that works under most compilers and should not have security implications, so 2706 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2707 static const CXXRecordDecl * 2708 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2709 if (!RD->field_empty()) 2710 return RD; 2711 2712 if (RD->getNumVBases() != 0) 2713 return RD; 2714 2715 if (RD->getNumBases() != 1) 2716 return RD; 2717 2718 for (const CXXMethodDecl *MD : RD->methods()) { 2719 if (MD->isVirtual()) { 2720 // Virtual member functions are only ok if they are implicit destructors 2721 // because the implicit destructor will have the same semantics as the 2722 // base class's destructor if no fields are added. 2723 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2724 continue; 2725 return RD; 2726 } 2727 } 2728 2729 return LeastDerivedClassWithSameLayout( 2730 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2731 } 2732 2733 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2734 llvm::Value *VTable, 2735 SourceLocation Loc) { 2736 if (SanOpts.has(SanitizerKind::CFIVCall)) 2737 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2738 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2739 // Don't insert type test assumes if we are forcing public 2740 // visibility. 2741 !CGM.AlwaysHasLTOVisibilityPublic(RD)) { 2742 QualType Ty = QualType(RD->getTypeForDecl(), 0); 2743 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty); 2744 llvm::Value *TypeId = 2745 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2746 2747 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2748 // If we already know that the call has hidden LTO visibility, emit 2749 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD 2750 // will convert to @llvm.type.test() if we assert at link time that we have 2751 // whole program visibility. 2752 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) 2753 ? llvm::Intrinsic::type_test 2754 : llvm::Intrinsic::public_type_test; 2755 llvm::Value *TypeTest = 2756 Builder.CreateCall(CGM.getIntrinsic(IID), {CastedVTable, TypeId}); 2757 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2758 } 2759 } 2760 2761 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2762 llvm::Value *VTable, 2763 CFITypeCheckKind TCK, 2764 SourceLocation Loc) { 2765 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2766 RD = LeastDerivedClassWithSameLayout(RD); 2767 2768 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2769 } 2770 2771 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, 2772 bool MayBeNull, 2773 CFITypeCheckKind TCK, 2774 SourceLocation Loc) { 2775 if (!getLangOpts().CPlusPlus) 2776 return; 2777 2778 auto *ClassTy = T->getAs<RecordType>(); 2779 if (!ClassTy) 2780 return; 2781 2782 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2783 2784 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2785 return; 2786 2787 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2788 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2789 2790 llvm::BasicBlock *ContBlock = nullptr; 2791 2792 if (MayBeNull) { 2793 llvm::Value *DerivedNotNull = 2794 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull"); 2795 2796 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2797 ContBlock = createBasicBlock("cast.cont"); 2798 2799 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2800 2801 EmitBlock(CheckBlock); 2802 } 2803 2804 llvm::Value *VTable; 2805 std::tie(VTable, ClassDecl) = 2806 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl); 2807 2808 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2809 2810 if (MayBeNull) { 2811 Builder.CreateBr(ContBlock); 2812 EmitBlock(ContBlock); 2813 } 2814 } 2815 2816 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2817 llvm::Value *VTable, 2818 CFITypeCheckKind TCK, 2819 SourceLocation Loc) { 2820 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2821 !CGM.HasHiddenLTOVisibility(RD)) 2822 return; 2823 2824 SanitizerMask M; 2825 llvm::SanitizerStatKind SSK; 2826 switch (TCK) { 2827 case CFITCK_VCall: 2828 M = SanitizerKind::CFIVCall; 2829 SSK = llvm::SanStat_CFI_VCall; 2830 break; 2831 case CFITCK_NVCall: 2832 M = SanitizerKind::CFINVCall; 2833 SSK = llvm::SanStat_CFI_NVCall; 2834 break; 2835 case CFITCK_DerivedCast: 2836 M = SanitizerKind::CFIDerivedCast; 2837 SSK = llvm::SanStat_CFI_DerivedCast; 2838 break; 2839 case CFITCK_UnrelatedCast: 2840 M = SanitizerKind::CFIUnrelatedCast; 2841 SSK = llvm::SanStat_CFI_UnrelatedCast; 2842 break; 2843 case CFITCK_ICall: 2844 case CFITCK_NVMFCall: 2845 case CFITCK_VMFCall: 2846 llvm_unreachable("unexpected sanitizer kind"); 2847 } 2848 2849 std::string TypeName = RD->getQualifiedNameAsString(); 2850 if (getContext().getNoSanitizeList().containsType(M, TypeName)) 2851 return; 2852 2853 SanitizerScope SanScope(this); 2854 EmitSanitizerStatReport(SSK); 2855 2856 llvm::Metadata *MD = 2857 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2858 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2859 2860 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2861 llvm::Value *TypeTest = Builder.CreateCall( 2862 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2863 2864 llvm::Constant *StaticData[] = { 2865 llvm::ConstantInt::get(Int8Ty, TCK), 2866 EmitCheckSourceLocation(Loc), 2867 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2868 }; 2869 2870 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2871 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2872 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2873 return; 2874 } 2875 2876 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2877 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2878 return; 2879 } 2880 2881 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2882 CGM.getLLVMContext(), 2883 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2884 llvm::Value *ValidVtable = Builder.CreateCall( 2885 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2886 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2887 StaticData, {CastedVTable, ValidVtable}); 2888 } 2889 2890 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2891 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2892 !CGM.HasHiddenLTOVisibility(RD)) 2893 return false; 2894 2895 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2896 return true; 2897 2898 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2899 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2900 return false; 2901 2902 std::string TypeName = RD->getQualifiedNameAsString(); 2903 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2904 TypeName); 2905 } 2906 2907 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2908 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, 2909 uint64_t VTableByteOffset) { 2910 SanitizerScope SanScope(this); 2911 2912 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2913 2914 llvm::Metadata *MD = 2915 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2916 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2917 2918 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2919 llvm::Value *CheckedLoad = Builder.CreateCall( 2920 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2921 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2922 TypeId}); 2923 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2924 2925 std::string TypeName = RD->getQualifiedNameAsString(); 2926 if (SanOpts.has(SanitizerKind::CFIVCall) && 2927 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2928 TypeName)) { 2929 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2930 SanitizerHandler::CFICheckFail, {}, {}); 2931 } 2932 2933 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), 2934 VTableTy); 2935 } 2936 2937 void CodeGenFunction::EmitForwardingCallToLambda( 2938 const CXXMethodDecl *callOperator, 2939 CallArgList &callArgs) { 2940 // Get the address of the call operator. 2941 const CGFunctionInfo &calleeFnInfo = 2942 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2943 llvm::Constant *calleePtr = 2944 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2945 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2946 2947 // Prepare the return slot. 2948 const FunctionProtoType *FPT = 2949 callOperator->getType()->castAs<FunctionProtoType>(); 2950 QualType resultType = FPT->getReturnType(); 2951 ReturnValueSlot returnSlot; 2952 if (!resultType->isVoidType() && 2953 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2954 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2955 returnSlot = 2956 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2957 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2958 2959 // We don't need to separately arrange the call arguments because 2960 // the call can't be variadic anyway --- it's impossible to forward 2961 // variadic arguments. 2962 2963 // Now emit our call. 2964 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2965 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2966 2967 // If necessary, copy the returned value into the slot. 2968 if (!resultType->isVoidType() && returnSlot.isNull()) { 2969 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2970 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2971 } 2972 EmitReturnOfRValue(RV, resultType); 2973 } else 2974 EmitBranchThroughCleanup(ReturnBlock); 2975 } 2976 2977 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2978 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2979 const VarDecl *variable = BD->capture_begin()->getVariable(); 2980 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2981 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2982 2983 if (CallOp->isVariadic()) { 2984 // FIXME: Making this work correctly is nasty because it requires either 2985 // cloning the body of the call operator or making the call operator 2986 // forward. 2987 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2988 return; 2989 } 2990 2991 // Start building arguments for forwarding call 2992 CallArgList CallArgs; 2993 2994 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2995 Address ThisPtr = GetAddrOfBlockDecl(variable); 2996 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2997 2998 // Add the rest of the parameters. 2999 for (auto *param : BD->parameters()) 3000 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 3001 3002 assert(!Lambda->isGenericLambda() && 3003 "generic lambda interconversion to block not implemented"); 3004 EmitForwardingCallToLambda(CallOp, CallArgs); 3005 } 3006 3007 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 3008 const CXXRecordDecl *Lambda = MD->getParent(); 3009 3010 // Start building arguments for forwarding call 3011 CallArgList CallArgs; 3012 3013 QualType LambdaType = getContext().getRecordType(Lambda); 3014 QualType ThisType = getContext().getPointerType(LambdaType); 3015 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture"); 3016 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 3017 3018 // Add the rest of the parameters. 3019 for (auto *Param : MD->parameters()) 3020 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 3021 3022 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3023 // For a generic lambda, find the corresponding call operator specialization 3024 // to which the call to the static-invoker shall be forwarded. 3025 if (Lambda->isGenericLambda()) { 3026 assert(MD->isFunctionTemplateSpecialization()); 3027 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 3028 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 3029 void *InsertPos = nullptr; 3030 FunctionDecl *CorrespondingCallOpSpecialization = 3031 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 3032 assert(CorrespondingCallOpSpecialization); 3033 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 3034 } 3035 EmitForwardingCallToLambda(CallOp, CallArgs); 3036 } 3037 3038 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 3039 if (MD->isVariadic()) { 3040 // FIXME: Making this work correctly is nasty because it requires either 3041 // cloning the body of the call operator or making the call operator forward. 3042 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3043 return; 3044 } 3045 3046 EmitLambdaDelegatingInvokeBody(MD); 3047 } 3048