1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Transforms/Utils/SanitizerStats.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 /// Return the best known alignment for an unknown pointer to a 37 /// particular class. 38 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 39 if (!RD->hasDefinition()) 40 return CharUnits::One(); // Hopefully won't be used anywhere. 41 42 auto &layout = getContext().getASTRecordLayout(RD); 43 44 // If the class is final, then we know that the pointer points to an 45 // object of that type and can use the full alignment. 46 if (RD->isEffectivelyFinal()) 47 return layout.getAlignment(); 48 49 // Otherwise, we have to assume it could be a subclass. 50 return layout.getNonVirtualAlignment(); 51 } 52 53 /// Return the smallest possible amount of storage that might be allocated 54 /// starting from the beginning of an object of a particular class. 55 /// 56 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 57 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 58 if (!RD->hasDefinition()) 59 return CharUnits::One(); 60 61 auto &layout = getContext().getASTRecordLayout(RD); 62 63 // If the class is final, then we know that the pointer points to an 64 // object of that type and can use the full alignment. 65 if (RD->isEffectivelyFinal()) 66 return layout.getSize(); 67 68 // Otherwise, we have to assume it could be a subclass. 69 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 70 } 71 72 /// Return the best known alignment for a pointer to a virtual base, 73 /// given the alignment of a pointer to the derived class. 74 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 75 const CXXRecordDecl *derivedClass, 76 const CXXRecordDecl *vbaseClass) { 77 // The basic idea here is that an underaligned derived pointer might 78 // indicate an underaligned base pointer. 79 80 assert(vbaseClass->isCompleteDefinition()); 81 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 82 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 83 84 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 85 expectedVBaseAlign); 86 } 87 88 CharUnits 89 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 90 const CXXRecordDecl *baseDecl, 91 CharUnits expectedTargetAlign) { 92 // If the base is an incomplete type (which is, alas, possible with 93 // member pointers), be pessimistic. 94 if (!baseDecl->isCompleteDefinition()) 95 return std::min(actualBaseAlign, expectedTargetAlign); 96 97 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 98 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 99 100 // If the class is properly aligned, assume the target offset is, too. 101 // 102 // This actually isn't necessarily the right thing to do --- if the 103 // class is a complete object, but it's only properly aligned for a 104 // base subobject, then the alignments of things relative to it are 105 // probably off as well. (Note that this requires the alignment of 106 // the target to be greater than the NV alignment of the derived 107 // class.) 108 // 109 // However, our approach to this kind of under-alignment can only 110 // ever be best effort; after all, we're never going to propagate 111 // alignments through variables or parameters. Note, in particular, 112 // that constructing a polymorphic type in an address that's less 113 // than pointer-aligned will generally trap in the constructor, 114 // unless we someday add some sort of attribute to change the 115 // assumed alignment of 'this'. So our goal here is pretty much 116 // just to allow the user to explicitly say that a pointer is 117 // under-aligned and then safely access its fields and vtables. 118 if (actualBaseAlign >= expectedBaseAlign) { 119 return expectedTargetAlign; 120 } 121 122 // Otherwise, we might be offset by an arbitrary multiple of the 123 // actual alignment. The correct adjustment is to take the min of 124 // the two alignments. 125 return std::min(actualBaseAlign, expectedTargetAlign); 126 } 127 128 Address CodeGenFunction::LoadCXXThisAddress() { 129 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 130 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 131 132 // Lazily compute CXXThisAlignment. 133 if (CXXThisAlignment.isZero()) { 134 // Just use the best known alignment for the parent. 135 // TODO: if we're currently emitting a complete-object ctor/dtor, 136 // we can always use the complete-object alignment. 137 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 138 } 139 140 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType()); 141 return Address(LoadCXXThis(), Ty, CXXThisAlignment); 142 } 143 144 /// Emit the address of a field using a member data pointer. 145 /// 146 /// \param E Only used for emergency diagnostics 147 Address 148 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 149 llvm::Value *memberPtr, 150 const MemberPointerType *memberPtrType, 151 LValueBaseInfo *BaseInfo, 152 TBAAAccessInfo *TBAAInfo) { 153 // Ask the ABI to compute the actual address. 154 llvm::Value *ptr = 155 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 156 memberPtr, memberPtrType); 157 158 QualType memberType = memberPtrType->getPointeeType(); 159 CharUnits memberAlign = 160 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 161 memberAlign = 162 CGM.getDynamicOffsetAlignment(base.getAlignment(), 163 memberPtrType->getClass()->getAsCXXRecordDecl(), 164 memberAlign); 165 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), 166 memberAlign); 167 } 168 169 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 170 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 171 CastExpr::path_const_iterator End) { 172 CharUnits Offset = CharUnits::Zero(); 173 174 const ASTContext &Context = getContext(); 175 const CXXRecordDecl *RD = DerivedClass; 176 177 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 178 const CXXBaseSpecifier *Base = *I; 179 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 180 181 // Get the layout. 182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 183 184 const auto *BaseDecl = 185 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 186 187 // Add the offset. 188 Offset += Layout.getBaseClassOffset(BaseDecl); 189 190 RD = BaseDecl; 191 } 192 193 return Offset; 194 } 195 196 llvm::Constant * 197 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 198 CastExpr::path_const_iterator PathBegin, 199 CastExpr::path_const_iterator PathEnd) { 200 assert(PathBegin != PathEnd && "Base path should not be empty!"); 201 202 CharUnits Offset = 203 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 204 if (Offset.isZero()) 205 return nullptr; 206 207 llvm::Type *PtrDiffTy = 208 Types.ConvertType(getContext().getPointerDiffType()); 209 210 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 211 } 212 213 /// Gets the address of a direct base class within a complete object. 214 /// This should only be used for (1) non-virtual bases or (2) virtual bases 215 /// when the type is known to be complete (e.g. in complete destructors). 216 /// 217 /// The object pointed to by 'This' is assumed to be non-null. 218 Address 219 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 220 const CXXRecordDecl *Derived, 221 const CXXRecordDecl *Base, 222 bool BaseIsVirtual) { 223 // 'this' must be a pointer (in some address space) to Derived. 224 assert(This.getElementType() == ConvertType(Derived)); 225 226 // Compute the offset of the virtual base. 227 CharUnits Offset; 228 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 229 if (BaseIsVirtual) 230 Offset = Layout.getVBaseClassOffset(Base); 231 else 232 Offset = Layout.getBaseClassOffset(Base); 233 234 // Shift and cast down to the base type. 235 // TODO: for complete types, this should be possible with a GEP. 236 Address V = This; 237 if (!Offset.isZero()) { 238 V = Builder.CreateElementBitCast(V, Int8Ty); 239 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 240 } 241 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 242 243 return V; 244 } 245 246 static Address 247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 248 CharUnits nonVirtualOffset, 249 llvm::Value *virtualOffset, 250 const CXXRecordDecl *derivedClass, 251 const CXXRecordDecl *nearestVBase) { 252 // Assert that we have something to do. 253 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 254 255 // Compute the offset from the static and dynamic components. 256 llvm::Value *baseOffset; 257 if (!nonVirtualOffset.isZero()) { 258 llvm::Type *OffsetType = 259 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 260 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 261 ? CGF.Int32Ty 262 : CGF.PtrDiffTy; 263 baseOffset = 264 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 265 if (virtualOffset) { 266 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 267 } 268 } else { 269 baseOffset = virtualOffset; 270 } 271 272 // Apply the base offset. 273 llvm::Value *ptr = addr.getPointer(); 274 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 275 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 276 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 277 278 // If we have a virtual component, the alignment of the result will 279 // be relative only to the known alignment of that vbase. 280 CharUnits alignment; 281 if (virtualOffset) { 282 assert(nearestVBase && "virtual offset without vbase?"); 283 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 284 derivedClass, nearestVBase); 285 } else { 286 alignment = addr.getAlignment(); 287 } 288 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 289 290 return Address(ptr, CGF.Int8Ty, alignment); 291 } 292 293 Address CodeGenFunction::GetAddressOfBaseClass( 294 Address Value, const CXXRecordDecl *Derived, 295 CastExpr::path_const_iterator PathBegin, 296 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 297 SourceLocation Loc) { 298 assert(PathBegin != PathEnd && "Base path should not be empty!"); 299 300 CastExpr::path_const_iterator Start = PathBegin; 301 const CXXRecordDecl *VBase = nullptr; 302 303 // Sema has done some convenient canonicalization here: if the 304 // access path involved any virtual steps, the conversion path will 305 // *start* with a step down to the correct virtual base subobject, 306 // and hence will not require any further steps. 307 if ((*Start)->isVirtual()) { 308 VBase = cast<CXXRecordDecl>( 309 (*Start)->getType()->castAs<RecordType>()->getDecl()); 310 ++Start; 311 } 312 313 // Compute the static offset of the ultimate destination within its 314 // allocating subobject (the virtual base, if there is one, or else 315 // the "complete" object that we see). 316 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 317 VBase ? VBase : Derived, Start, PathEnd); 318 319 // If there's a virtual step, we can sometimes "devirtualize" it. 320 // For now, that's limited to when the derived type is final. 321 // TODO: "devirtualize" this for accesses to known-complete objects. 322 if (VBase && Derived->hasAttr<FinalAttr>()) { 323 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 324 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 325 NonVirtualOffset += vBaseOffset; 326 VBase = nullptr; // we no longer have a virtual step 327 } 328 329 // Get the base pointer type. 330 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 331 llvm::Type *BasePtrTy = 332 BaseValueTy->getPointerTo(Value.getType()->getPointerAddressSpace()); 333 334 QualType DerivedTy = getContext().getRecordType(Derived); 335 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 336 337 // If the static offset is zero and we don't have a virtual step, 338 // just do a bitcast; null checks are unnecessary. 339 if (NonVirtualOffset.isZero() && !VBase) { 340 if (sanitizePerformTypeCheck()) { 341 SanitizerSet SkippedChecks; 342 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 343 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 344 DerivedTy, DerivedAlign, SkippedChecks); 345 } 346 return Builder.CreateElementBitCast(Value, BaseValueTy); 347 } 348 349 llvm::BasicBlock *origBB = nullptr; 350 llvm::BasicBlock *endBB = nullptr; 351 352 // Skip over the offset (and the vtable load) if we're supposed to 353 // null-check the pointer. 354 if (NullCheckValue) { 355 origBB = Builder.GetInsertBlock(); 356 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 357 endBB = createBasicBlock("cast.end"); 358 359 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 360 Builder.CreateCondBr(isNull, endBB, notNullBB); 361 EmitBlock(notNullBB); 362 } 363 364 if (sanitizePerformTypeCheck()) { 365 SanitizerSet SkippedChecks; 366 SkippedChecks.set(SanitizerKind::Null, true); 367 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 368 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 369 } 370 371 // Compute the virtual offset. 372 llvm::Value *VirtualOffset = nullptr; 373 if (VBase) { 374 VirtualOffset = 375 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 376 } 377 378 // Apply both offsets. 379 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 380 VirtualOffset, Derived, VBase); 381 382 // Cast to the destination type. 383 Value = Builder.CreateElementBitCast(Value, BaseValueTy); 384 385 // Build a phi if we needed a null check. 386 if (NullCheckValue) { 387 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 388 Builder.CreateBr(endBB); 389 EmitBlock(endBB); 390 391 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 392 PHI->addIncoming(Value.getPointer(), notNullBB); 393 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 394 Value = Value.withPointer(PHI); 395 } 396 397 return Value; 398 } 399 400 Address 401 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 402 const CXXRecordDecl *Derived, 403 CastExpr::path_const_iterator PathBegin, 404 CastExpr::path_const_iterator PathEnd, 405 bool NullCheckValue) { 406 assert(PathBegin != PathEnd && "Base path should not be empty!"); 407 408 QualType DerivedTy = 409 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 410 unsigned AddrSpace = BaseAddr.getAddressSpace(); 411 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 412 llvm::Type *DerivedPtrTy = DerivedValueTy->getPointerTo(AddrSpace); 413 414 llvm::Value *NonVirtualOffset = 415 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 416 417 if (!NonVirtualOffset) { 418 // No offset, we can just cast back. 419 return Builder.CreateElementBitCast(BaseAddr, DerivedValueTy); 420 } 421 422 llvm::BasicBlock *CastNull = nullptr; 423 llvm::BasicBlock *CastNotNull = nullptr; 424 llvm::BasicBlock *CastEnd = nullptr; 425 426 if (NullCheckValue) { 427 CastNull = createBasicBlock("cast.null"); 428 CastNotNull = createBasicBlock("cast.notnull"); 429 CastEnd = createBasicBlock("cast.end"); 430 431 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 432 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 433 EmitBlock(CastNotNull); 434 } 435 436 // Apply the offset. 437 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 438 Value = Builder.CreateInBoundsGEP( 439 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr"); 440 441 // Just cast. 442 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 443 444 // Produce a PHI if we had a null-check. 445 if (NullCheckValue) { 446 Builder.CreateBr(CastEnd); 447 EmitBlock(CastNull); 448 Builder.CreateBr(CastEnd); 449 EmitBlock(CastEnd); 450 451 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 452 PHI->addIncoming(Value, CastNotNull); 453 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 454 Value = PHI; 455 } 456 457 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived)); 458 } 459 460 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 461 bool ForVirtualBase, 462 bool Delegating) { 463 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 464 // This constructor/destructor does not need a VTT parameter. 465 return nullptr; 466 } 467 468 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 469 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 470 471 uint64_t SubVTTIndex; 472 473 if (Delegating) { 474 // If this is a delegating constructor call, just load the VTT. 475 return LoadCXXVTT(); 476 } else if (RD == Base) { 477 // If the record matches the base, this is the complete ctor/dtor 478 // variant calling the base variant in a class with virtual bases. 479 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 480 "doing no-op VTT offset in base dtor/ctor?"); 481 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 482 SubVTTIndex = 0; 483 } else { 484 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 485 CharUnits BaseOffset = ForVirtualBase ? 486 Layout.getVBaseClassOffset(Base) : 487 Layout.getBaseClassOffset(Base); 488 489 SubVTTIndex = 490 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 491 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 492 } 493 494 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 495 // A VTT parameter was passed to the constructor, use it. 496 llvm::Value *VTT = LoadCXXVTT(); 497 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 498 } else { 499 // We're the complete constructor, so get the VTT by name. 500 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 501 return Builder.CreateConstInBoundsGEP2_64( 502 VTT->getValueType(), VTT, 0, SubVTTIndex); 503 } 504 } 505 506 namespace { 507 /// Call the destructor for a direct base class. 508 struct CallBaseDtor final : EHScopeStack::Cleanup { 509 const CXXRecordDecl *BaseClass; 510 bool BaseIsVirtual; 511 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 512 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 513 514 void Emit(CodeGenFunction &CGF, Flags flags) override { 515 const CXXRecordDecl *DerivedClass = 516 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 517 518 const CXXDestructorDecl *D = BaseClass->getDestructor(); 519 // We are already inside a destructor, so presumably the object being 520 // destroyed should have the expected type. 521 QualType ThisTy = D->getThisObjectType(); 522 Address Addr = 523 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 524 DerivedClass, BaseClass, 525 BaseIsVirtual); 526 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 527 /*Delegating=*/false, Addr, ThisTy); 528 } 529 }; 530 531 /// A visitor which checks whether an initializer uses 'this' in a 532 /// way which requires the vtable to be properly set. 533 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 534 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 535 536 bool UsesThis; 537 538 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 539 540 // Black-list all explicit and implicit references to 'this'. 541 // 542 // Do we need to worry about external references to 'this' derived 543 // from arbitrary code? If so, then anything which runs arbitrary 544 // external code might potentially access the vtable. 545 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 546 }; 547 } // end anonymous namespace 548 549 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 550 DynamicThisUseChecker Checker(C); 551 Checker.Visit(Init); 552 return Checker.UsesThis; 553 } 554 555 static void EmitBaseInitializer(CodeGenFunction &CGF, 556 const CXXRecordDecl *ClassDecl, 557 CXXCtorInitializer *BaseInit) { 558 assert(BaseInit->isBaseInitializer() && 559 "Must have base initializer!"); 560 561 Address ThisPtr = CGF.LoadCXXThisAddress(); 562 563 const Type *BaseType = BaseInit->getBaseClass(); 564 const auto *BaseClassDecl = 565 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 566 567 bool isBaseVirtual = BaseInit->isBaseVirtual(); 568 569 // If the initializer for the base (other than the constructor 570 // itself) accesses 'this' in any way, we need to initialize the 571 // vtables. 572 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 573 CGF.InitializeVTablePointers(ClassDecl); 574 575 // We can pretend to be a complete class because it only matters for 576 // virtual bases, and we only do virtual bases for complete ctors. 577 Address V = 578 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 579 BaseClassDecl, 580 isBaseVirtual); 581 AggValueSlot AggSlot = 582 AggValueSlot::forAddr( 583 V, Qualifiers(), 584 AggValueSlot::IsDestructed, 585 AggValueSlot::DoesNotNeedGCBarriers, 586 AggValueSlot::IsNotAliased, 587 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 588 589 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 590 591 if (CGF.CGM.getLangOpts().Exceptions && 592 !BaseClassDecl->hasTrivialDestructor()) 593 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 594 isBaseVirtual); 595 } 596 597 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 598 auto *CD = dyn_cast<CXXConstructorDecl>(D); 599 if (!(CD && CD->isCopyOrMoveConstructor()) && 600 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 601 return false; 602 603 // We can emit a memcpy for a trivial copy or move constructor/assignment. 604 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 605 return true; 606 607 // We *must* emit a memcpy for a defaulted union copy or move op. 608 if (D->getParent()->isUnion() && D->isDefaulted()) 609 return true; 610 611 return false; 612 } 613 614 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 615 CXXCtorInitializer *MemberInit, 616 LValue &LHS) { 617 FieldDecl *Field = MemberInit->getAnyMember(); 618 if (MemberInit->isIndirectMemberInitializer()) { 619 // If we are initializing an anonymous union field, drill down to the field. 620 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 621 for (const auto *I : IndirectField->chain()) 622 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 623 } else { 624 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 625 } 626 } 627 628 static void EmitMemberInitializer(CodeGenFunction &CGF, 629 const CXXRecordDecl *ClassDecl, 630 CXXCtorInitializer *MemberInit, 631 const CXXConstructorDecl *Constructor, 632 FunctionArgList &Args) { 633 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 634 assert(MemberInit->isAnyMemberInitializer() && 635 "Must have member initializer!"); 636 assert(MemberInit->getInit() && "Must have initializer!"); 637 638 // non-static data member initializers. 639 FieldDecl *Field = MemberInit->getAnyMember(); 640 QualType FieldType = Field->getType(); 641 642 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 643 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 644 LValue LHS; 645 646 // If a base constructor is being emitted, create an LValue that has the 647 // non-virtual alignment. 648 if (CGF.CurGD.getCtorType() == Ctor_Base) 649 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 650 else 651 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 652 653 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 654 655 // Special case: if we are in a copy or move constructor, and we are copying 656 // an array of PODs or classes with trivial copy constructors, ignore the 657 // AST and perform the copy we know is equivalent. 658 // FIXME: This is hacky at best... if we had a bit more explicit information 659 // in the AST, we could generalize it more easily. 660 const ConstantArrayType *Array 661 = CGF.getContext().getAsConstantArrayType(FieldType); 662 if (Array && Constructor->isDefaulted() && 663 Constructor->isCopyOrMoveConstructor()) { 664 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 665 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 666 if (BaseElementTy.isPODType(CGF.getContext()) || 667 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 668 unsigned SrcArgIndex = 669 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 670 llvm::Value *SrcPtr 671 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 672 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 673 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 674 675 // Copy the aggregate. 676 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 677 LHS.isVolatileQualified()); 678 // Ensure that we destroy the objects if an exception is thrown later in 679 // the constructor. 680 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 681 if (CGF.needsEHCleanup(dtorKind)) 682 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 683 return; 684 } 685 } 686 687 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 688 } 689 690 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 691 Expr *Init) { 692 QualType FieldType = Field->getType(); 693 switch (getEvaluationKind(FieldType)) { 694 case TEK_Scalar: 695 if (LHS.isSimple()) { 696 EmitExprAsInit(Init, Field, LHS, false); 697 } else { 698 RValue RHS = RValue::get(EmitScalarExpr(Init)); 699 EmitStoreThroughLValue(RHS, LHS); 700 } 701 break; 702 case TEK_Complex: 703 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 704 break; 705 case TEK_Aggregate: { 706 AggValueSlot Slot = AggValueSlot::forLValue( 707 LHS, *this, AggValueSlot::IsDestructed, 708 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 709 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 710 // Checks are made by the code that calls constructor. 711 AggValueSlot::IsSanitizerChecked); 712 EmitAggExpr(Init, Slot); 713 break; 714 } 715 } 716 717 // Ensure that we destroy this object if an exception is thrown 718 // later in the constructor. 719 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 720 if (needsEHCleanup(dtorKind)) 721 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 722 } 723 724 /// Checks whether the given constructor is a valid subject for the 725 /// complete-to-base constructor delegation optimization, i.e. 726 /// emitting the complete constructor as a simple call to the base 727 /// constructor. 728 bool CodeGenFunction::IsConstructorDelegationValid( 729 const CXXConstructorDecl *Ctor) { 730 731 // Currently we disable the optimization for classes with virtual 732 // bases because (1) the addresses of parameter variables need to be 733 // consistent across all initializers but (2) the delegate function 734 // call necessarily creates a second copy of the parameter variable. 735 // 736 // The limiting example (purely theoretical AFAIK): 737 // struct A { A(int &c) { c++; } }; 738 // struct B : virtual A { 739 // B(int count) : A(count) { printf("%d\n", count); } 740 // }; 741 // ...although even this example could in principle be emitted as a 742 // delegation since the address of the parameter doesn't escape. 743 if (Ctor->getParent()->getNumVBases()) { 744 // TODO: white-list trivial vbase initializers. This case wouldn't 745 // be subject to the restrictions below. 746 747 // TODO: white-list cases where: 748 // - there are no non-reference parameters to the constructor 749 // - the initializers don't access any non-reference parameters 750 // - the initializers don't take the address of non-reference 751 // parameters 752 // - etc. 753 // If we ever add any of the above cases, remember that: 754 // - function-try-blocks will always exclude this optimization 755 // - we need to perform the constructor prologue and cleanup in 756 // EmitConstructorBody. 757 758 return false; 759 } 760 761 // We also disable the optimization for variadic functions because 762 // it's impossible to "re-pass" varargs. 763 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 764 return false; 765 766 // FIXME: Decide if we can do a delegation of a delegating constructor. 767 if (Ctor->isDelegatingConstructor()) 768 return false; 769 770 return true; 771 } 772 773 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 774 // to poison the extra field paddings inserted under 775 // -fsanitize-address-field-padding=1|2. 776 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 777 ASTContext &Context = getContext(); 778 const CXXRecordDecl *ClassDecl = 779 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 780 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 781 if (!ClassDecl->mayInsertExtraPadding()) return; 782 783 struct SizeAndOffset { 784 uint64_t Size; 785 uint64_t Offset; 786 }; 787 788 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 789 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 790 791 // Populate sizes and offsets of fields. 792 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 793 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 794 SSV[i].Offset = 795 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 796 797 size_t NumFields = 0; 798 for (const auto *Field : ClassDecl->fields()) { 799 const FieldDecl *D = Field; 800 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 801 CharUnits FieldSize = FieldInfo.Width; 802 assert(NumFields < SSV.size()); 803 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 804 NumFields++; 805 } 806 assert(NumFields == SSV.size()); 807 if (SSV.size() <= 1) return; 808 809 // We will insert calls to __asan_* run-time functions. 810 // LLVM AddressSanitizer pass may decide to inline them later. 811 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 812 llvm::FunctionType *FTy = 813 llvm::FunctionType::get(CGM.VoidTy, Args, false); 814 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 815 FTy, Prologue ? "__asan_poison_intra_object_redzone" 816 : "__asan_unpoison_intra_object_redzone"); 817 818 llvm::Value *ThisPtr = LoadCXXThis(); 819 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 820 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 821 // For each field check if it has sufficient padding, 822 // if so (un)poison it with a call. 823 for (size_t i = 0; i < SSV.size(); i++) { 824 uint64_t AsanAlignment = 8; 825 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 826 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 827 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 828 if (PoisonSize < AsanAlignment || !SSV[i].Size || 829 (NextField % AsanAlignment) != 0) 830 continue; 831 Builder.CreateCall( 832 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 833 Builder.getIntN(PtrSize, PoisonSize)}); 834 } 835 } 836 837 /// EmitConstructorBody - Emits the body of the current constructor. 838 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 839 EmitAsanPrologueOrEpilogue(true); 840 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 841 CXXCtorType CtorType = CurGD.getCtorType(); 842 843 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 844 CtorType == Ctor_Complete) && 845 "can only generate complete ctor for this ABI"); 846 847 // Before we go any further, try the complete->base constructor 848 // delegation optimization. 849 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 850 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 851 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 852 return; 853 } 854 855 const FunctionDecl *Definition = nullptr; 856 Stmt *Body = Ctor->getBody(Definition); 857 assert(Definition == Ctor && "emitting wrong constructor body"); 858 859 // Enter the function-try-block before the constructor prologue if 860 // applicable. 861 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 862 if (IsTryBody) 863 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 864 865 incrementProfileCounter(Body); 866 867 RunCleanupsScope RunCleanups(*this); 868 869 // TODO: in restricted cases, we can emit the vbase initializers of 870 // a complete ctor and then delegate to the base ctor. 871 872 // Emit the constructor prologue, i.e. the base and member 873 // initializers. 874 EmitCtorPrologue(Ctor, CtorType, Args); 875 876 // Emit the body of the statement. 877 if (IsTryBody) 878 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 879 else if (Body) 880 EmitStmt(Body); 881 882 // Emit any cleanup blocks associated with the member or base 883 // initializers, which includes (along the exceptional path) the 884 // destructors for those members and bases that were fully 885 // constructed. 886 RunCleanups.ForceCleanup(); 887 888 if (IsTryBody) 889 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 890 } 891 892 namespace { 893 /// RAII object to indicate that codegen is copying the value representation 894 /// instead of the object representation. Useful when copying a struct or 895 /// class which has uninitialized members and we're only performing 896 /// lvalue-to-rvalue conversion on the object but not its members. 897 class CopyingValueRepresentation { 898 public: 899 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 900 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 901 CGF.SanOpts.set(SanitizerKind::Bool, false); 902 CGF.SanOpts.set(SanitizerKind::Enum, false); 903 } 904 ~CopyingValueRepresentation() { 905 CGF.SanOpts = OldSanOpts; 906 } 907 private: 908 CodeGenFunction &CGF; 909 SanitizerSet OldSanOpts; 910 }; 911 } // end anonymous namespace 912 913 namespace { 914 class FieldMemcpyizer { 915 public: 916 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 917 const VarDecl *SrcRec) 918 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 919 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 920 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 921 LastFieldOffset(0), LastAddedFieldIndex(0) {} 922 923 bool isMemcpyableField(FieldDecl *F) const { 924 // Never memcpy fields when we are adding poisoned paddings. 925 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 926 return false; 927 Qualifiers Qual = F->getType().getQualifiers(); 928 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 929 return false; 930 return true; 931 } 932 933 void addMemcpyableField(FieldDecl *F) { 934 if (F->isZeroSize(CGF.getContext())) 935 return; 936 if (!FirstField) 937 addInitialField(F); 938 else 939 addNextField(F); 940 } 941 942 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 943 ASTContext &Ctx = CGF.getContext(); 944 unsigned LastFieldSize = 945 LastField->isBitField() 946 ? LastField->getBitWidthValue(Ctx) 947 : Ctx.toBits( 948 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 949 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 950 FirstByteOffset + Ctx.getCharWidth() - 1; 951 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 952 return MemcpySize; 953 } 954 955 void emitMemcpy() { 956 // Give the subclass a chance to bail out if it feels the memcpy isn't 957 // worth it (e.g. Hasn't aggregated enough data). 958 if (!FirstField) { 959 return; 960 } 961 962 uint64_t FirstByteOffset; 963 if (FirstField->isBitField()) { 964 const CGRecordLayout &RL = 965 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 966 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 967 // FirstFieldOffset is not appropriate for bitfields, 968 // we need to use the storage offset instead. 969 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 970 } else { 971 FirstByteOffset = FirstFieldOffset; 972 } 973 974 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 975 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 976 Address ThisPtr = CGF.LoadCXXThisAddress(); 977 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 978 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 979 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 980 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 981 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 982 983 emitMemcpyIR( 984 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 985 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 986 MemcpySize); 987 reset(); 988 } 989 990 void reset() { 991 FirstField = nullptr; 992 } 993 994 protected: 995 CodeGenFunction &CGF; 996 const CXXRecordDecl *ClassDecl; 997 998 private: 999 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1000 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 1001 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty); 1002 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1003 } 1004 1005 void addInitialField(FieldDecl *F) { 1006 FirstField = F; 1007 LastField = F; 1008 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1009 LastFieldOffset = FirstFieldOffset; 1010 LastAddedFieldIndex = F->getFieldIndex(); 1011 } 1012 1013 void addNextField(FieldDecl *F) { 1014 // For the most part, the following invariant will hold: 1015 // F->getFieldIndex() == LastAddedFieldIndex + 1 1016 // The one exception is that Sema won't add a copy-initializer for an 1017 // unnamed bitfield, which will show up here as a gap in the sequence. 1018 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1019 "Cannot aggregate fields out of order."); 1020 LastAddedFieldIndex = F->getFieldIndex(); 1021 1022 // The 'first' and 'last' fields are chosen by offset, rather than field 1023 // index. This allows the code to support bitfields, as well as regular 1024 // fields. 1025 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1026 if (FOffset < FirstFieldOffset) { 1027 FirstField = F; 1028 FirstFieldOffset = FOffset; 1029 } else if (FOffset >= LastFieldOffset) { 1030 LastField = F; 1031 LastFieldOffset = FOffset; 1032 } 1033 } 1034 1035 const VarDecl *SrcRec; 1036 const ASTRecordLayout &RecLayout; 1037 FieldDecl *FirstField; 1038 FieldDecl *LastField; 1039 uint64_t FirstFieldOffset, LastFieldOffset; 1040 unsigned LastAddedFieldIndex; 1041 }; 1042 1043 class ConstructorMemcpyizer : public FieldMemcpyizer { 1044 private: 1045 /// Get source argument for copy constructor. Returns null if not a copy 1046 /// constructor. 1047 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1048 const CXXConstructorDecl *CD, 1049 FunctionArgList &Args) { 1050 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1051 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1052 return nullptr; 1053 } 1054 1055 // Returns true if a CXXCtorInitializer represents a member initialization 1056 // that can be rolled into a memcpy. 1057 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1058 if (!MemcpyableCtor) 1059 return false; 1060 FieldDecl *Field = MemberInit->getMember(); 1061 assert(Field && "No field for member init."); 1062 QualType FieldType = Field->getType(); 1063 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1064 1065 // Bail out on non-memcpyable, not-trivially-copyable members. 1066 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1067 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1068 FieldType->isReferenceType())) 1069 return false; 1070 1071 // Bail out on volatile fields. 1072 if (!isMemcpyableField(Field)) 1073 return false; 1074 1075 // Otherwise we're good. 1076 return true; 1077 } 1078 1079 public: 1080 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1081 FunctionArgList &Args) 1082 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1083 ConstructorDecl(CD), 1084 MemcpyableCtor(CD->isDefaulted() && 1085 CD->isCopyOrMoveConstructor() && 1086 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1087 Args(Args) { } 1088 1089 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1090 if (isMemberInitMemcpyable(MemberInit)) { 1091 AggregatedInits.push_back(MemberInit); 1092 addMemcpyableField(MemberInit->getMember()); 1093 } else { 1094 emitAggregatedInits(); 1095 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1096 ConstructorDecl, Args); 1097 } 1098 } 1099 1100 void emitAggregatedInits() { 1101 if (AggregatedInits.size() <= 1) { 1102 // This memcpy is too small to be worthwhile. Fall back on default 1103 // codegen. 1104 if (!AggregatedInits.empty()) { 1105 CopyingValueRepresentation CVR(CGF); 1106 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1107 AggregatedInits[0], ConstructorDecl, Args); 1108 AggregatedInits.clear(); 1109 } 1110 reset(); 1111 return; 1112 } 1113 1114 pushEHDestructors(); 1115 emitMemcpy(); 1116 AggregatedInits.clear(); 1117 } 1118 1119 void pushEHDestructors() { 1120 Address ThisPtr = CGF.LoadCXXThisAddress(); 1121 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1122 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1123 1124 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1125 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1126 QualType FieldType = MemberInit->getAnyMember()->getType(); 1127 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1128 if (!CGF.needsEHCleanup(dtorKind)) 1129 continue; 1130 LValue FieldLHS = LHS; 1131 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1132 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1133 } 1134 } 1135 1136 void finish() { 1137 emitAggregatedInits(); 1138 } 1139 1140 private: 1141 const CXXConstructorDecl *ConstructorDecl; 1142 bool MemcpyableCtor; 1143 FunctionArgList &Args; 1144 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1145 }; 1146 1147 class AssignmentMemcpyizer : public FieldMemcpyizer { 1148 private: 1149 // Returns the memcpyable field copied by the given statement, if one 1150 // exists. Otherwise returns null. 1151 FieldDecl *getMemcpyableField(Stmt *S) { 1152 if (!AssignmentsMemcpyable) 1153 return nullptr; 1154 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1155 // Recognise trivial assignments. 1156 if (BO->getOpcode() != BO_Assign) 1157 return nullptr; 1158 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1159 if (!ME) 1160 return nullptr; 1161 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1162 if (!Field || !isMemcpyableField(Field)) 1163 return nullptr; 1164 Stmt *RHS = BO->getRHS(); 1165 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1166 RHS = EC->getSubExpr(); 1167 if (!RHS) 1168 return nullptr; 1169 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1170 if (ME2->getMemberDecl() == Field) 1171 return Field; 1172 } 1173 return nullptr; 1174 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1175 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1176 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1177 return nullptr; 1178 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1179 if (!IOA) 1180 return nullptr; 1181 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1182 if (!Field || !isMemcpyableField(Field)) 1183 return nullptr; 1184 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1185 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1186 return nullptr; 1187 return Field; 1188 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1189 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1190 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1191 return nullptr; 1192 Expr *DstPtr = CE->getArg(0); 1193 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1194 DstPtr = DC->getSubExpr(); 1195 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1196 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1197 return nullptr; 1198 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1199 if (!ME) 1200 return nullptr; 1201 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1202 if (!Field || !isMemcpyableField(Field)) 1203 return nullptr; 1204 Expr *SrcPtr = CE->getArg(1); 1205 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1206 SrcPtr = SC->getSubExpr(); 1207 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1208 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1209 return nullptr; 1210 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1211 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1212 return nullptr; 1213 return Field; 1214 } 1215 1216 return nullptr; 1217 } 1218 1219 bool AssignmentsMemcpyable; 1220 SmallVector<Stmt*, 16> AggregatedStmts; 1221 1222 public: 1223 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1224 FunctionArgList &Args) 1225 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1226 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1227 assert(Args.size() == 2); 1228 } 1229 1230 void emitAssignment(Stmt *S) { 1231 FieldDecl *F = getMemcpyableField(S); 1232 if (F) { 1233 addMemcpyableField(F); 1234 AggregatedStmts.push_back(S); 1235 } else { 1236 emitAggregatedStmts(); 1237 CGF.EmitStmt(S); 1238 } 1239 } 1240 1241 void emitAggregatedStmts() { 1242 if (AggregatedStmts.size() <= 1) { 1243 if (!AggregatedStmts.empty()) { 1244 CopyingValueRepresentation CVR(CGF); 1245 CGF.EmitStmt(AggregatedStmts[0]); 1246 } 1247 reset(); 1248 } 1249 1250 emitMemcpy(); 1251 AggregatedStmts.clear(); 1252 } 1253 1254 void finish() { 1255 emitAggregatedStmts(); 1256 } 1257 }; 1258 } // end anonymous namespace 1259 1260 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1261 const Type *BaseType = BaseInit->getBaseClass(); 1262 const auto *BaseClassDecl = 1263 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1264 return BaseClassDecl->isDynamicClass(); 1265 } 1266 1267 /// EmitCtorPrologue - This routine generates necessary code to initialize 1268 /// base classes and non-static data members belonging to this constructor. 1269 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1270 CXXCtorType CtorType, 1271 FunctionArgList &Args) { 1272 if (CD->isDelegatingConstructor()) 1273 return EmitDelegatingCXXConstructorCall(CD, Args); 1274 1275 const CXXRecordDecl *ClassDecl = CD->getParent(); 1276 1277 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1278 E = CD->init_end(); 1279 1280 // Virtual base initializers first, if any. They aren't needed if: 1281 // - This is a base ctor variant 1282 // - There are no vbases 1283 // - The class is abstract, so a complete object of it cannot be constructed 1284 // 1285 // The check for an abstract class is necessary because sema may not have 1286 // marked virtual base destructors referenced. 1287 bool ConstructVBases = CtorType != Ctor_Base && 1288 ClassDecl->getNumVBases() != 0 && 1289 !ClassDecl->isAbstract(); 1290 1291 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1292 // constructor of a class with virtual bases takes an additional parameter to 1293 // conditionally construct the virtual bases. Emit that check here. 1294 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1295 if (ConstructVBases && 1296 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1297 BaseCtorContinueBB = 1298 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1299 assert(BaseCtorContinueBB); 1300 } 1301 1302 llvm::Value *const OldThis = CXXThisValue; 1303 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1304 if (!ConstructVBases) 1305 continue; 1306 if (CGM.getCodeGenOpts().StrictVTablePointers && 1307 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1308 isInitializerOfDynamicClass(*B)) 1309 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1310 EmitBaseInitializer(*this, ClassDecl, *B); 1311 } 1312 1313 if (BaseCtorContinueBB) { 1314 // Complete object handler should continue to the remaining initializers. 1315 Builder.CreateBr(BaseCtorContinueBB); 1316 EmitBlock(BaseCtorContinueBB); 1317 } 1318 1319 // Then, non-virtual base initializers. 1320 for (; B != E && (*B)->isBaseInitializer(); B++) { 1321 assert(!(*B)->isBaseVirtual()); 1322 1323 if (CGM.getCodeGenOpts().StrictVTablePointers && 1324 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1325 isInitializerOfDynamicClass(*B)) 1326 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1327 EmitBaseInitializer(*this, ClassDecl, *B); 1328 } 1329 1330 CXXThisValue = OldThis; 1331 1332 InitializeVTablePointers(ClassDecl); 1333 1334 // And finally, initialize class members. 1335 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1336 ConstructorMemcpyizer CM(*this, CD, Args); 1337 for (; B != E; B++) { 1338 CXXCtorInitializer *Member = (*B); 1339 assert(!Member->isBaseInitializer()); 1340 assert(Member->isAnyMemberInitializer() && 1341 "Delegating initializer on non-delegating constructor"); 1342 CM.addMemberInitializer(Member); 1343 } 1344 CM.finish(); 1345 } 1346 1347 static bool 1348 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1349 1350 static bool 1351 HasTrivialDestructorBody(ASTContext &Context, 1352 const CXXRecordDecl *BaseClassDecl, 1353 const CXXRecordDecl *MostDerivedClassDecl) 1354 { 1355 // If the destructor is trivial we don't have to check anything else. 1356 if (BaseClassDecl->hasTrivialDestructor()) 1357 return true; 1358 1359 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1360 return false; 1361 1362 // Check fields. 1363 for (const auto *Field : BaseClassDecl->fields()) 1364 if (!FieldHasTrivialDestructorBody(Context, Field)) 1365 return false; 1366 1367 // Check non-virtual bases. 1368 for (const auto &I : BaseClassDecl->bases()) { 1369 if (I.isVirtual()) 1370 continue; 1371 1372 const CXXRecordDecl *NonVirtualBase = 1373 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1374 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1375 MostDerivedClassDecl)) 1376 return false; 1377 } 1378 1379 if (BaseClassDecl == MostDerivedClassDecl) { 1380 // Check virtual bases. 1381 for (const auto &I : BaseClassDecl->vbases()) { 1382 const CXXRecordDecl *VirtualBase = 1383 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1384 if (!HasTrivialDestructorBody(Context, VirtualBase, 1385 MostDerivedClassDecl)) 1386 return false; 1387 } 1388 } 1389 1390 return true; 1391 } 1392 1393 static bool 1394 FieldHasTrivialDestructorBody(ASTContext &Context, 1395 const FieldDecl *Field) 1396 { 1397 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1398 1399 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1400 if (!RT) 1401 return true; 1402 1403 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1404 1405 // The destructor for an implicit anonymous union member is never invoked. 1406 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1407 return false; 1408 1409 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1410 } 1411 1412 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1413 /// any vtable pointers before calling this destructor. 1414 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1415 const CXXDestructorDecl *Dtor) { 1416 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1417 if (!ClassDecl->isDynamicClass()) 1418 return true; 1419 1420 // For a final class, the vtable pointer is known to already point to the 1421 // class's vtable. 1422 if (ClassDecl->isEffectivelyFinal()) 1423 return true; 1424 1425 if (!Dtor->hasTrivialBody()) 1426 return false; 1427 1428 // Check the fields. 1429 for (const auto *Field : ClassDecl->fields()) 1430 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1431 return false; 1432 1433 return true; 1434 } 1435 1436 /// EmitDestructorBody - Emits the body of the current destructor. 1437 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1438 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1439 CXXDtorType DtorType = CurGD.getDtorType(); 1440 1441 // For an abstract class, non-base destructors are never used (and can't 1442 // be emitted in general, because vbase dtors may not have been validated 1443 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1444 // in fact emit references to them from other compilations, so emit them 1445 // as functions containing a trap instruction. 1446 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1447 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1448 TrapCall->setDoesNotReturn(); 1449 TrapCall->setDoesNotThrow(); 1450 Builder.CreateUnreachable(); 1451 Builder.ClearInsertionPoint(); 1452 return; 1453 } 1454 1455 Stmt *Body = Dtor->getBody(); 1456 if (Body) 1457 incrementProfileCounter(Body); 1458 1459 // The call to operator delete in a deleting destructor happens 1460 // outside of the function-try-block, which means it's always 1461 // possible to delegate the destructor body to the complete 1462 // destructor. Do so. 1463 if (DtorType == Dtor_Deleting) { 1464 RunCleanupsScope DtorEpilogue(*this); 1465 EnterDtorCleanups(Dtor, Dtor_Deleting); 1466 if (HaveInsertPoint()) { 1467 QualType ThisTy = Dtor->getThisObjectType(); 1468 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1469 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1470 } 1471 return; 1472 } 1473 1474 // If the body is a function-try-block, enter the try before 1475 // anything else. 1476 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1477 if (isTryBody) 1478 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1479 EmitAsanPrologueOrEpilogue(false); 1480 1481 // Enter the epilogue cleanups. 1482 RunCleanupsScope DtorEpilogue(*this); 1483 1484 // If this is the complete variant, just invoke the base variant; 1485 // the epilogue will destruct the virtual bases. But we can't do 1486 // this optimization if the body is a function-try-block, because 1487 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1488 // always delegate because we might not have a definition in this TU. 1489 switch (DtorType) { 1490 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1491 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1492 1493 case Dtor_Complete: 1494 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1495 "can't emit a dtor without a body for non-Microsoft ABIs"); 1496 1497 // Enter the cleanup scopes for virtual bases. 1498 EnterDtorCleanups(Dtor, Dtor_Complete); 1499 1500 if (!isTryBody) { 1501 QualType ThisTy = Dtor->getThisObjectType(); 1502 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1503 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1504 break; 1505 } 1506 1507 // Fallthrough: act like we're in the base variant. 1508 LLVM_FALLTHROUGH; 1509 1510 case Dtor_Base: 1511 assert(Body); 1512 1513 // Enter the cleanup scopes for fields and non-virtual bases. 1514 EnterDtorCleanups(Dtor, Dtor_Base); 1515 1516 // Initialize the vtable pointers before entering the body. 1517 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1518 // Insert the llvm.launder.invariant.group intrinsic before initializing 1519 // the vptrs to cancel any previous assumptions we might have made. 1520 if (CGM.getCodeGenOpts().StrictVTablePointers && 1521 CGM.getCodeGenOpts().OptimizationLevel > 0) 1522 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1523 InitializeVTablePointers(Dtor->getParent()); 1524 } 1525 1526 if (isTryBody) 1527 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1528 else if (Body) 1529 EmitStmt(Body); 1530 else { 1531 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1532 // nothing to do besides what's in the epilogue 1533 } 1534 // -fapple-kext must inline any call to this dtor into 1535 // the caller's body. 1536 if (getLangOpts().AppleKext) 1537 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1538 1539 break; 1540 } 1541 1542 // Jump out through the epilogue cleanups. 1543 DtorEpilogue.ForceCleanup(); 1544 1545 // Exit the try if applicable. 1546 if (isTryBody) 1547 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1548 } 1549 1550 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1551 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1552 const Stmt *RootS = AssignOp->getBody(); 1553 assert(isa<CompoundStmt>(RootS) && 1554 "Body of an implicit assignment operator should be compound stmt."); 1555 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1556 1557 LexicalScope Scope(*this, RootCS->getSourceRange()); 1558 1559 incrementProfileCounter(RootCS); 1560 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1561 for (auto *I : RootCS->body()) 1562 AM.emitAssignment(I); 1563 AM.finish(); 1564 } 1565 1566 namespace { 1567 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1568 const CXXDestructorDecl *DD) { 1569 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1570 return CGF.EmitScalarExpr(ThisArg); 1571 return CGF.LoadCXXThis(); 1572 } 1573 1574 /// Call the operator delete associated with the current destructor. 1575 struct CallDtorDelete final : EHScopeStack::Cleanup { 1576 CallDtorDelete() {} 1577 1578 void Emit(CodeGenFunction &CGF, Flags flags) override { 1579 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1580 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1581 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1582 LoadThisForDtorDelete(CGF, Dtor), 1583 CGF.getContext().getTagDeclType(ClassDecl)); 1584 } 1585 }; 1586 1587 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1588 llvm::Value *ShouldDeleteCondition, 1589 bool ReturnAfterDelete) { 1590 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1591 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1592 llvm::Value *ShouldCallDelete 1593 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1594 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1595 1596 CGF.EmitBlock(callDeleteBB); 1597 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1598 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1599 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1600 LoadThisForDtorDelete(CGF, Dtor), 1601 CGF.getContext().getTagDeclType(ClassDecl)); 1602 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1603 ReturnAfterDelete && 1604 "unexpected value for ReturnAfterDelete"); 1605 if (ReturnAfterDelete) 1606 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1607 else 1608 CGF.Builder.CreateBr(continueBB); 1609 1610 CGF.EmitBlock(continueBB); 1611 } 1612 1613 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1614 llvm::Value *ShouldDeleteCondition; 1615 1616 public: 1617 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1618 : ShouldDeleteCondition(ShouldDeleteCondition) { 1619 assert(ShouldDeleteCondition != nullptr); 1620 } 1621 1622 void Emit(CodeGenFunction &CGF, Flags flags) override { 1623 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1624 /*ReturnAfterDelete*/false); 1625 } 1626 }; 1627 1628 class DestroyField final : public EHScopeStack::Cleanup { 1629 const FieldDecl *field; 1630 CodeGenFunction::Destroyer *destroyer; 1631 bool useEHCleanupForArray; 1632 1633 public: 1634 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1635 bool useEHCleanupForArray) 1636 : field(field), destroyer(destroyer), 1637 useEHCleanupForArray(useEHCleanupForArray) {} 1638 1639 void Emit(CodeGenFunction &CGF, Flags flags) override { 1640 // Find the address of the field. 1641 Address thisValue = CGF.LoadCXXThisAddress(); 1642 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1643 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1644 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1645 assert(LV.isSimple()); 1646 1647 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1648 flags.isForNormalCleanup() && useEHCleanupForArray); 1649 } 1650 }; 1651 1652 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1653 CharUnits::QuantityType PoisonSize) { 1654 CodeGenFunction::SanitizerScope SanScope(&CGF); 1655 // Pass in void pointer and size of region as arguments to runtime 1656 // function 1657 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1658 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1659 1660 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1661 1662 llvm::FunctionType *FnType = 1663 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1664 llvm::FunctionCallee Fn = 1665 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1666 CGF.EmitNounwindRuntimeCall(Fn, Args); 1667 } 1668 1669 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1670 const CXXDestructorDecl *Dtor; 1671 1672 public: 1673 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1674 1675 // Generate function call for handling object poisoning. 1676 // Disables tail call elimination, to prevent the current stack frame 1677 // from disappearing from the stack trace. 1678 void Emit(CodeGenFunction &CGF, Flags flags) override { 1679 const ASTRecordLayout &Layout = 1680 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1681 1682 // Nothing to poison. 1683 if (Layout.getFieldCount() == 0) 1684 return; 1685 1686 // Prevent the current stack frame from disappearing from the stack trace. 1687 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1688 1689 // Construct pointer to region to begin poisoning, and calculate poison 1690 // size, so that only members declared in this class are poisoned. 1691 ASTContext &Context = CGF.getContext(); 1692 1693 const RecordDecl *Decl = Dtor->getParent(); 1694 auto Fields = Decl->fields(); 1695 auto IsTrivial = [&](const FieldDecl *F) { 1696 return FieldHasTrivialDestructorBody(Context, F); 1697 }; 1698 1699 auto IsZeroSize = [&](const FieldDecl *F) { 1700 return F->isZeroSize(Context); 1701 }; 1702 1703 // Poison blocks of fields with trivial destructors making sure that block 1704 // begin and end do not point to zero-sized fields. They don't have 1705 // correct offsets so can't be used to calculate poisoning range. 1706 for (auto It = Fields.begin(); It != Fields.end();) { 1707 It = std::find_if(It, Fields.end(), [&](const FieldDecl *F) { 1708 return IsTrivial(F) && !IsZeroSize(F); 1709 }); 1710 if (It == Fields.end()) 1711 break; 1712 auto Start = It++; 1713 It = std::find_if(It, Fields.end(), [&](const FieldDecl *F) { 1714 return !IsTrivial(F) && !IsZeroSize(F); 1715 }); 1716 1717 PoisonMembers(CGF, (*Start)->getFieldIndex(), 1718 It == Fields.end() ? -1 : (*It)->getFieldIndex()); 1719 } 1720 } 1721 1722 private: 1723 /// \param layoutStartOffset index of the ASTRecordLayout field to 1724 /// start poisoning (inclusive) 1725 /// \param layoutEndOffset index of the ASTRecordLayout field to 1726 /// end poisoning (exclusive) 1727 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1728 unsigned layoutEndOffset) { 1729 ASTContext &Context = CGF.getContext(); 1730 const ASTRecordLayout &Layout = 1731 Context.getASTRecordLayout(Dtor->getParent()); 1732 1733 // It's a first trivia field so it should be at the begining of char, 1734 // still round up start offset just in case. 1735 CharUnits PoisonStart = 1736 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset) + 1737 Context.getCharWidth() - 1); 1738 llvm::ConstantInt *OffsetSizePtr = 1739 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1740 1741 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1742 CGF.Int8Ty, 1743 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1744 OffsetSizePtr); 1745 1746 CharUnits PoisonEnd; 1747 if (layoutEndOffset >= Layout.getFieldCount()) { 1748 PoisonEnd = Layout.getNonVirtualSize(); 1749 } else { 1750 PoisonEnd = 1751 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutEndOffset)); 1752 } 1753 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1754 if (!PoisonSize.isPositive()) 1755 return; 1756 1757 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1758 } 1759 }; 1760 1761 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1762 const CXXDestructorDecl *Dtor; 1763 1764 public: 1765 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1766 1767 // Generate function call for handling vtable pointer poisoning. 1768 void Emit(CodeGenFunction &CGF, Flags flags) override { 1769 assert(Dtor->getParent()->isDynamicClass()); 1770 (void)Dtor; 1771 ASTContext &Context = CGF.getContext(); 1772 // Poison vtable and vtable ptr if they exist for this class. 1773 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1774 1775 CharUnits::QuantityType PoisonSize = 1776 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1777 // Pass in void pointer and size of region as arguments to runtime 1778 // function 1779 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1780 } 1781 }; 1782 } // end anonymous namespace 1783 1784 /// Emit all code that comes at the end of class's 1785 /// destructor. This is to call destructors on members and base classes 1786 /// in reverse order of their construction. 1787 /// 1788 /// For a deleting destructor, this also handles the case where a destroying 1789 /// operator delete completely overrides the definition. 1790 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1791 CXXDtorType DtorType) { 1792 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1793 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1794 1795 // The deleting-destructor phase just needs to call the appropriate 1796 // operator delete that Sema picked up. 1797 if (DtorType == Dtor_Deleting) { 1798 assert(DD->getOperatorDelete() && 1799 "operator delete missing - EnterDtorCleanups"); 1800 if (CXXStructorImplicitParamValue) { 1801 // If there is an implicit param to the deleting dtor, it's a boolean 1802 // telling whether this is a deleting destructor. 1803 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1804 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1805 /*ReturnAfterDelete*/true); 1806 else 1807 EHStack.pushCleanup<CallDtorDeleteConditional>( 1808 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1809 } else { 1810 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1811 const CXXRecordDecl *ClassDecl = DD->getParent(); 1812 EmitDeleteCall(DD->getOperatorDelete(), 1813 LoadThisForDtorDelete(*this, DD), 1814 getContext().getTagDeclType(ClassDecl)); 1815 EmitBranchThroughCleanup(ReturnBlock); 1816 } else { 1817 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1818 } 1819 } 1820 return; 1821 } 1822 1823 const CXXRecordDecl *ClassDecl = DD->getParent(); 1824 1825 // Unions have no bases and do not call field destructors. 1826 if (ClassDecl->isUnion()) 1827 return; 1828 1829 // The complete-destructor phase just destructs all the virtual bases. 1830 if (DtorType == Dtor_Complete) { 1831 // Poison the vtable pointer such that access after the base 1832 // and member destructors are invoked is invalid. 1833 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1834 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1835 ClassDecl->isPolymorphic()) 1836 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1837 1838 // We push them in the forward order so that they'll be popped in 1839 // the reverse order. 1840 for (const auto &Base : ClassDecl->vbases()) { 1841 auto *BaseClassDecl = 1842 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1843 1844 // Ignore trivial destructors. 1845 if (BaseClassDecl->hasTrivialDestructor()) 1846 continue; 1847 1848 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1849 BaseClassDecl, 1850 /*BaseIsVirtual*/ true); 1851 } 1852 1853 return; 1854 } 1855 1856 assert(DtorType == Dtor_Base); 1857 // Poison the vtable pointer if it has no virtual bases, but inherits 1858 // virtual functions. 1859 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1860 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1861 ClassDecl->isPolymorphic()) 1862 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1863 1864 // Destroy non-virtual bases. 1865 for (const auto &Base : ClassDecl->bases()) { 1866 // Ignore virtual bases. 1867 if (Base.isVirtual()) 1868 continue; 1869 1870 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1871 1872 // Ignore trivial destructors. 1873 if (BaseClassDecl->hasTrivialDestructor()) 1874 continue; 1875 1876 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1877 BaseClassDecl, 1878 /*BaseIsVirtual*/ false); 1879 } 1880 1881 // Poison fields such that access after their destructors are 1882 // invoked, and before the base class destructor runs, is invalid. 1883 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1884 SanOpts.has(SanitizerKind::Memory)) 1885 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1886 1887 // Destroy direct fields. 1888 for (const auto *Field : ClassDecl->fields()) { 1889 QualType type = Field->getType(); 1890 QualType::DestructionKind dtorKind = type.isDestructedType(); 1891 if (!dtorKind) continue; 1892 1893 // Anonymous union members do not have their destructors called. 1894 const RecordType *RT = type->getAsUnionType(); 1895 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1896 1897 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1898 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1899 getDestroyer(dtorKind), 1900 cleanupKind & EHCleanup); 1901 } 1902 } 1903 1904 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1905 /// constructor for each of several members of an array. 1906 /// 1907 /// \param ctor the constructor to call for each element 1908 /// \param arrayType the type of the array to initialize 1909 /// \param arrayBegin an arrayType* 1910 /// \param zeroInitialize true if each element should be 1911 /// zero-initialized before it is constructed 1912 void CodeGenFunction::EmitCXXAggrConstructorCall( 1913 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1914 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1915 bool zeroInitialize) { 1916 QualType elementType; 1917 llvm::Value *numElements = 1918 emitArrayLength(arrayType, elementType, arrayBegin); 1919 1920 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1921 NewPointerIsChecked, zeroInitialize); 1922 } 1923 1924 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1925 /// constructor for each of several members of an array. 1926 /// 1927 /// \param ctor the constructor to call for each element 1928 /// \param numElements the number of elements in the array; 1929 /// may be zero 1930 /// \param arrayBase a T*, where T is the type constructed by ctor 1931 /// \param zeroInitialize true if each element should be 1932 /// zero-initialized before it is constructed 1933 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1934 llvm::Value *numElements, 1935 Address arrayBase, 1936 const CXXConstructExpr *E, 1937 bool NewPointerIsChecked, 1938 bool zeroInitialize) { 1939 // It's legal for numElements to be zero. This can happen both 1940 // dynamically, because x can be zero in 'new A[x]', and statically, 1941 // because of GCC extensions that permit zero-length arrays. There 1942 // are probably legitimate places where we could assume that this 1943 // doesn't happen, but it's not clear that it's worth it. 1944 llvm::BranchInst *zeroCheckBranch = nullptr; 1945 1946 // Optimize for a constant count. 1947 llvm::ConstantInt *constantCount 1948 = dyn_cast<llvm::ConstantInt>(numElements); 1949 if (constantCount) { 1950 // Just skip out if the constant count is zero. 1951 if (constantCount->isZero()) return; 1952 1953 // Otherwise, emit the check. 1954 } else { 1955 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1956 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1957 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1958 EmitBlock(loopBB); 1959 } 1960 1961 // Find the end of the array. 1962 llvm::Type *elementType = arrayBase.getElementType(); 1963 llvm::Value *arrayBegin = arrayBase.getPointer(); 1964 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 1965 elementType, arrayBegin, numElements, "arrayctor.end"); 1966 1967 // Enter the loop, setting up a phi for the current location to initialize. 1968 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1969 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1970 EmitBlock(loopBB); 1971 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1972 "arrayctor.cur"); 1973 cur->addIncoming(arrayBegin, entryBB); 1974 1975 // Inside the loop body, emit the constructor call on the array element. 1976 1977 // The alignment of the base, adjusted by the size of a single element, 1978 // provides a conservative estimate of the alignment of every element. 1979 // (This assumes we never start tracking offsetted alignments.) 1980 // 1981 // Note that these are complete objects and so we don't need to 1982 // use the non-virtual size or alignment. 1983 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1984 CharUnits eltAlignment = 1985 arrayBase.getAlignment() 1986 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1987 Address curAddr = Address(cur, elementType, eltAlignment); 1988 1989 // Zero initialize the storage, if requested. 1990 if (zeroInitialize) 1991 EmitNullInitialization(curAddr, type); 1992 1993 // C++ [class.temporary]p4: 1994 // There are two contexts in which temporaries are destroyed at a different 1995 // point than the end of the full-expression. The first context is when a 1996 // default constructor is called to initialize an element of an array. 1997 // If the constructor has one or more default arguments, the destruction of 1998 // every temporary created in a default argument expression is sequenced 1999 // before the construction of the next array element, if any. 2000 2001 { 2002 RunCleanupsScope Scope(*this); 2003 2004 // Evaluate the constructor and its arguments in a regular 2005 // partial-destroy cleanup. 2006 if (getLangOpts().Exceptions && 2007 !ctor->getParent()->hasTrivialDestructor()) { 2008 Destroyer *destroyer = destroyCXXObject; 2009 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2010 *destroyer); 2011 } 2012 auto currAVS = AggValueSlot::forAddr( 2013 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2014 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2015 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2016 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2017 : AggValueSlot::IsNotSanitizerChecked); 2018 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2019 /*Delegating=*/false, currAVS, E); 2020 } 2021 2022 // Go to the next element. 2023 llvm::Value *next = Builder.CreateInBoundsGEP( 2024 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2025 cur->addIncoming(next, Builder.GetInsertBlock()); 2026 2027 // Check whether that's the end of the loop. 2028 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2029 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2030 Builder.CreateCondBr(done, contBB, loopBB); 2031 2032 // Patch the earlier check to skip over the loop. 2033 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2034 2035 EmitBlock(contBB); 2036 } 2037 2038 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2039 Address addr, 2040 QualType type) { 2041 const RecordType *rtype = type->castAs<RecordType>(); 2042 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2043 const CXXDestructorDecl *dtor = record->getDestructor(); 2044 assert(!dtor->isTrivial()); 2045 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2046 /*Delegating=*/false, addr, type); 2047 } 2048 2049 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2050 CXXCtorType Type, 2051 bool ForVirtualBase, 2052 bool Delegating, 2053 AggValueSlot ThisAVS, 2054 const CXXConstructExpr *E) { 2055 CallArgList Args; 2056 Address This = ThisAVS.getAddress(); 2057 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2058 QualType ThisType = D->getThisType(); 2059 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2060 llvm::Value *ThisPtr = This.getPointer(); 2061 2062 if (SlotAS != ThisAS) { 2063 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2064 llvm::Type *NewType = llvm::PointerType::getWithSamePointeeType( 2065 This.getType(), TargetThisAS); 2066 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2067 ThisAS, SlotAS, NewType); 2068 } 2069 2070 // Push the this ptr. 2071 Args.add(RValue::get(ThisPtr), D->getThisType()); 2072 2073 // If this is a trivial constructor, emit a memcpy now before we lose 2074 // the alignment information on the argument. 2075 // FIXME: It would be better to preserve alignment information into CallArg. 2076 if (isMemcpyEquivalentSpecialMember(D)) { 2077 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2078 2079 const Expr *Arg = E->getArg(0); 2080 LValue Src = EmitLValue(Arg); 2081 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2082 LValue Dest = MakeAddrLValue(This, DestTy); 2083 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2084 return; 2085 } 2086 2087 // Add the rest of the user-supplied arguments. 2088 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2089 EvaluationOrder Order = E->isListInitialization() 2090 ? EvaluationOrder::ForceLeftToRight 2091 : EvaluationOrder::Default; 2092 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2093 /*ParamsToSkip*/ 0, Order); 2094 2095 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2096 ThisAVS.mayOverlap(), E->getExprLoc(), 2097 ThisAVS.isSanitizerChecked()); 2098 } 2099 2100 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2101 const CXXConstructorDecl *Ctor, 2102 CXXCtorType Type, CallArgList &Args) { 2103 // We can't forward a variadic call. 2104 if (Ctor->isVariadic()) 2105 return false; 2106 2107 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2108 // If the parameters are callee-cleanup, it's not safe to forward. 2109 for (auto *P : Ctor->parameters()) 2110 if (P->needsDestruction(CGF.getContext())) 2111 return false; 2112 2113 // Likewise if they're inalloca. 2114 const CGFunctionInfo &Info = 2115 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2116 if (Info.usesInAlloca()) 2117 return false; 2118 } 2119 2120 // Anything else should be OK. 2121 return true; 2122 } 2123 2124 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2125 CXXCtorType Type, 2126 bool ForVirtualBase, 2127 bool Delegating, 2128 Address This, 2129 CallArgList &Args, 2130 AggValueSlot::Overlap_t Overlap, 2131 SourceLocation Loc, 2132 bool NewPointerIsChecked) { 2133 const CXXRecordDecl *ClassDecl = D->getParent(); 2134 2135 if (!NewPointerIsChecked) 2136 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2137 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2138 2139 if (D->isTrivial() && D->isDefaultConstructor()) { 2140 assert(Args.size() == 1 && "trivial default ctor with args"); 2141 return; 2142 } 2143 2144 // If this is a trivial constructor, just emit what's needed. If this is a 2145 // union copy constructor, we must emit a memcpy, because the AST does not 2146 // model that copy. 2147 if (isMemcpyEquivalentSpecialMember(D)) { 2148 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2149 2150 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2151 Address Src(Args[1].getRValue(*this).getScalarVal(), 2152 CGM.getNaturalTypeAlignment(SrcTy)); 2153 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2154 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2155 LValue DestLVal = MakeAddrLValue(This, DestTy); 2156 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2157 return; 2158 } 2159 2160 bool PassPrototypeArgs = true; 2161 // Check whether we can actually emit the constructor before trying to do so. 2162 if (auto Inherited = D->getInheritedConstructor()) { 2163 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2164 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2165 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2166 Delegating, Args); 2167 return; 2168 } 2169 } 2170 2171 // Insert any ABI-specific implicit constructor arguments. 2172 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2173 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2174 Delegating, Args); 2175 2176 // Emit the call. 2177 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2178 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2179 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2180 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2181 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); 2182 2183 // Generate vtable assumptions if we're constructing a complete object 2184 // with a vtable. We don't do this for base subobjects for two reasons: 2185 // first, it's incorrect for classes with virtual bases, and second, we're 2186 // about to overwrite the vptrs anyway. 2187 // We also have to make sure if we can refer to vtable: 2188 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2189 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2190 // sure that definition of vtable is not hidden, 2191 // then we are always safe to refer to it. 2192 // FIXME: It looks like InstCombine is very inefficient on dealing with 2193 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2194 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2195 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2196 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2197 CGM.getCodeGenOpts().StrictVTablePointers) 2198 EmitVTableAssumptionLoads(ClassDecl, This); 2199 } 2200 2201 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2202 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2203 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2204 CallArgList Args; 2205 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2206 2207 // Forward the parameters. 2208 if (InheritedFromVBase && 2209 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2210 // Nothing to do; this construction is not responsible for constructing 2211 // the base class containing the inherited constructor. 2212 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2213 // have constructor variants? 2214 Args.push_back(ThisArg); 2215 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2216 // The inheriting constructor was inlined; just inject its arguments. 2217 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2218 "wrong number of parameters for inherited constructor call"); 2219 Args = CXXInheritedCtorInitExprArgs; 2220 Args[0] = ThisArg; 2221 } else { 2222 // The inheriting constructor was not inlined. Emit delegating arguments. 2223 Args.push_back(ThisArg); 2224 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2225 assert(OuterCtor->getNumParams() == D->getNumParams()); 2226 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2227 2228 for (const auto *Param : OuterCtor->parameters()) { 2229 assert(getContext().hasSameUnqualifiedType( 2230 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2231 Param->getType())); 2232 EmitDelegateCallArg(Args, Param, E->getLocation()); 2233 2234 // Forward __attribute__(pass_object_size). 2235 if (Param->hasAttr<PassObjectSizeAttr>()) { 2236 auto *POSParam = SizeArguments[Param]; 2237 assert(POSParam && "missing pass_object_size value for forwarding"); 2238 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2239 } 2240 } 2241 } 2242 2243 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2244 This, Args, AggValueSlot::MayOverlap, 2245 E->getLocation(), /*NewPointerIsChecked*/true); 2246 } 2247 2248 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2249 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2250 bool Delegating, CallArgList &Args) { 2251 GlobalDecl GD(Ctor, CtorType); 2252 InlinedInheritingConstructorScope Scope(*this, GD); 2253 ApplyInlineDebugLocation DebugScope(*this, GD); 2254 RunCleanupsScope RunCleanups(*this); 2255 2256 // Save the arguments to be passed to the inherited constructor. 2257 CXXInheritedCtorInitExprArgs = Args; 2258 2259 FunctionArgList Params; 2260 QualType RetType = BuildFunctionArgList(CurGD, Params); 2261 FnRetTy = RetType; 2262 2263 // Insert any ABI-specific implicit constructor arguments. 2264 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2265 ForVirtualBase, Delegating, Args); 2266 2267 // Emit a simplified prolog. We only need to emit the implicit params. 2268 assert(Args.size() >= Params.size() && "too few arguments for call"); 2269 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2270 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2271 const RValue &RV = Args[I].getRValue(*this); 2272 assert(!RV.isComplex() && "complex indirect params not supported"); 2273 ParamValue Val = RV.isScalar() 2274 ? ParamValue::forDirect(RV.getScalarVal()) 2275 : ParamValue::forIndirect(RV.getAggregateAddress()); 2276 EmitParmDecl(*Params[I], Val, I + 1); 2277 } 2278 } 2279 2280 // Create a return value slot if the ABI implementation wants one. 2281 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2282 // value instead. 2283 if (!RetType->isVoidType()) 2284 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2285 2286 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2287 CXXThisValue = CXXABIThisValue; 2288 2289 // Directly emit the constructor initializers. 2290 EmitCtorPrologue(Ctor, CtorType, Params); 2291 } 2292 2293 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2294 llvm::Value *VTableGlobal = 2295 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2296 if (!VTableGlobal) 2297 return; 2298 2299 // We can just use the base offset in the complete class. 2300 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2301 2302 if (!NonVirtualOffset.isZero()) 2303 This = 2304 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2305 Vptr.VTableClass, Vptr.NearestVBase); 2306 2307 llvm::Value *VPtrValue = 2308 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2309 llvm::Value *Cmp = 2310 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2311 Builder.CreateAssumption(Cmp); 2312 } 2313 2314 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2315 Address This) { 2316 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2317 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2318 EmitVTableAssumptionLoad(Vptr, This); 2319 } 2320 2321 void 2322 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2323 Address This, Address Src, 2324 const CXXConstructExpr *E) { 2325 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2326 2327 CallArgList Args; 2328 2329 // Push the this ptr. 2330 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2331 2332 // Push the src ptr. 2333 QualType QT = *(FPT->param_type_begin()); 2334 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2335 Src = Builder.CreateBitCast(Src, t); 2336 Args.add(RValue::get(Src.getPointer()), QT); 2337 2338 // Skip over first argument (Src). 2339 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2340 /*ParamsToSkip*/ 1); 2341 2342 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2343 /*Delegating*/false, This, Args, 2344 AggValueSlot::MayOverlap, E->getExprLoc(), 2345 /*NewPointerIsChecked*/false); 2346 } 2347 2348 void 2349 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2350 CXXCtorType CtorType, 2351 const FunctionArgList &Args, 2352 SourceLocation Loc) { 2353 CallArgList DelegateArgs; 2354 2355 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2356 assert(I != E && "no parameters to constructor"); 2357 2358 // this 2359 Address This = LoadCXXThisAddress(); 2360 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2361 ++I; 2362 2363 // FIXME: The location of the VTT parameter in the parameter list is 2364 // specific to the Itanium ABI and shouldn't be hardcoded here. 2365 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2366 assert(I != E && "cannot skip vtt parameter, already done with args"); 2367 assert((*I)->getType()->isPointerType() && 2368 "skipping parameter not of vtt type"); 2369 ++I; 2370 } 2371 2372 // Explicit arguments. 2373 for (; I != E; ++I) { 2374 const VarDecl *param = *I; 2375 // FIXME: per-argument source location 2376 EmitDelegateCallArg(DelegateArgs, param, Loc); 2377 } 2378 2379 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2380 /*Delegating=*/true, This, DelegateArgs, 2381 AggValueSlot::MayOverlap, Loc, 2382 /*NewPointerIsChecked=*/true); 2383 } 2384 2385 namespace { 2386 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2387 const CXXDestructorDecl *Dtor; 2388 Address Addr; 2389 CXXDtorType Type; 2390 2391 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2392 CXXDtorType Type) 2393 : Dtor(D), Addr(Addr), Type(Type) {} 2394 2395 void Emit(CodeGenFunction &CGF, Flags flags) override { 2396 // We are calling the destructor from within the constructor. 2397 // Therefore, "this" should have the expected type. 2398 QualType ThisTy = Dtor->getThisObjectType(); 2399 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2400 /*Delegating=*/true, Addr, ThisTy); 2401 } 2402 }; 2403 } // end anonymous namespace 2404 2405 void 2406 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2407 const FunctionArgList &Args) { 2408 assert(Ctor->isDelegatingConstructor()); 2409 2410 Address ThisPtr = LoadCXXThisAddress(); 2411 2412 AggValueSlot AggSlot = 2413 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2414 AggValueSlot::IsDestructed, 2415 AggValueSlot::DoesNotNeedGCBarriers, 2416 AggValueSlot::IsNotAliased, 2417 AggValueSlot::MayOverlap, 2418 AggValueSlot::IsNotZeroed, 2419 // Checks are made by the code that calls constructor. 2420 AggValueSlot::IsSanitizerChecked); 2421 2422 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2423 2424 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2425 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2426 CXXDtorType Type = 2427 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2428 2429 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2430 ClassDecl->getDestructor(), 2431 ThisPtr, Type); 2432 } 2433 } 2434 2435 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2436 CXXDtorType Type, 2437 bool ForVirtualBase, 2438 bool Delegating, Address This, 2439 QualType ThisTy) { 2440 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2441 Delegating, This, ThisTy); 2442 } 2443 2444 namespace { 2445 struct CallLocalDtor final : EHScopeStack::Cleanup { 2446 const CXXDestructorDecl *Dtor; 2447 Address Addr; 2448 QualType Ty; 2449 2450 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2451 : Dtor(D), Addr(Addr), Ty(Ty) {} 2452 2453 void Emit(CodeGenFunction &CGF, Flags flags) override { 2454 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2455 /*ForVirtualBase=*/false, 2456 /*Delegating=*/false, Addr, Ty); 2457 } 2458 }; 2459 } // end anonymous namespace 2460 2461 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2462 QualType T, Address Addr) { 2463 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2464 } 2465 2466 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2467 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2468 if (!ClassDecl) return; 2469 if (ClassDecl->hasTrivialDestructor()) return; 2470 2471 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2472 assert(D && D->isUsed() && "destructor not marked as used!"); 2473 PushDestructorCleanup(D, T, Addr); 2474 } 2475 2476 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2477 // Compute the address point. 2478 llvm::Value *VTableAddressPoint = 2479 CGM.getCXXABI().getVTableAddressPointInStructor( 2480 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2481 2482 if (!VTableAddressPoint) 2483 return; 2484 2485 // Compute where to store the address point. 2486 llvm::Value *VirtualOffset = nullptr; 2487 CharUnits NonVirtualOffset = CharUnits::Zero(); 2488 2489 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2490 // We need to use the virtual base offset offset because the virtual base 2491 // might have a different offset in the most derived class. 2492 2493 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2494 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2495 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2496 } else { 2497 // We can just use the base offset in the complete class. 2498 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2499 } 2500 2501 // Apply the offsets. 2502 Address VTableField = LoadCXXThisAddress(); 2503 if (!NonVirtualOffset.isZero() || VirtualOffset) 2504 VTableField = ApplyNonVirtualAndVirtualOffset( 2505 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2506 Vptr.NearestVBase); 2507 2508 // Finally, store the address point. Use the same LLVM types as the field to 2509 // support optimization. 2510 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2511 unsigned ProgAS = CGM.getDataLayout().getProgramAddressSpace(); 2512 llvm::Type *VTablePtrTy = 2513 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2514 ->getPointerTo(ProgAS) 2515 ->getPointerTo(GlobalsAS); 2516 // vtable field is is derived from `this` pointer, therefore they should be in 2517 // the same addr space. Note that this might not be LLVM address space 0. 2518 VTableField = Builder.CreateElementBitCast(VTableField, VTablePtrTy); 2519 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2520 2521 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2522 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2523 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2524 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2525 CGM.getCodeGenOpts().StrictVTablePointers) 2526 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2527 } 2528 2529 CodeGenFunction::VPtrsVector 2530 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2531 CodeGenFunction::VPtrsVector VPtrsResult; 2532 VisitedVirtualBasesSetTy VBases; 2533 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2534 /*NearestVBase=*/nullptr, 2535 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2536 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2537 VPtrsResult); 2538 return VPtrsResult; 2539 } 2540 2541 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2542 const CXXRecordDecl *NearestVBase, 2543 CharUnits OffsetFromNearestVBase, 2544 bool BaseIsNonVirtualPrimaryBase, 2545 const CXXRecordDecl *VTableClass, 2546 VisitedVirtualBasesSetTy &VBases, 2547 VPtrsVector &Vptrs) { 2548 // If this base is a non-virtual primary base the address point has already 2549 // been set. 2550 if (!BaseIsNonVirtualPrimaryBase) { 2551 // Initialize the vtable pointer for this base. 2552 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2553 Vptrs.push_back(Vptr); 2554 } 2555 2556 const CXXRecordDecl *RD = Base.getBase(); 2557 2558 // Traverse bases. 2559 for (const auto &I : RD->bases()) { 2560 auto *BaseDecl = 2561 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2562 2563 // Ignore classes without a vtable. 2564 if (!BaseDecl->isDynamicClass()) 2565 continue; 2566 2567 CharUnits BaseOffset; 2568 CharUnits BaseOffsetFromNearestVBase; 2569 bool BaseDeclIsNonVirtualPrimaryBase; 2570 2571 if (I.isVirtual()) { 2572 // Check if we've visited this virtual base before. 2573 if (!VBases.insert(BaseDecl).second) 2574 continue; 2575 2576 const ASTRecordLayout &Layout = 2577 getContext().getASTRecordLayout(VTableClass); 2578 2579 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2580 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2581 BaseDeclIsNonVirtualPrimaryBase = false; 2582 } else { 2583 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2584 2585 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2586 BaseOffsetFromNearestVBase = 2587 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2588 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2589 } 2590 2591 getVTablePointers( 2592 BaseSubobject(BaseDecl, BaseOffset), 2593 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2594 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2595 } 2596 } 2597 2598 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2599 // Ignore classes without a vtable. 2600 if (!RD->isDynamicClass()) 2601 return; 2602 2603 // Initialize the vtable pointers for this class and all of its bases. 2604 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2605 for (const VPtr &Vptr : getVTablePointers(RD)) 2606 InitializeVTablePointer(Vptr); 2607 2608 if (RD->getNumVBases()) 2609 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2610 } 2611 2612 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2613 llvm::Type *VTableTy, 2614 const CXXRecordDecl *RD) { 2615 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2616 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2617 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2618 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2619 2620 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2621 CGM.getCodeGenOpts().StrictVTablePointers) 2622 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2623 2624 return VTable; 2625 } 2626 2627 // If a class has a single non-virtual base and does not introduce or override 2628 // virtual member functions or fields, it will have the same layout as its base. 2629 // This function returns the least derived such class. 2630 // 2631 // Casting an instance of a base class to such a derived class is technically 2632 // undefined behavior, but it is a relatively common hack for introducing member 2633 // functions on class instances with specific properties (e.g. llvm::Operator) 2634 // that works under most compilers and should not have security implications, so 2635 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2636 static const CXXRecordDecl * 2637 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2638 if (!RD->field_empty()) 2639 return RD; 2640 2641 if (RD->getNumVBases() != 0) 2642 return RD; 2643 2644 if (RD->getNumBases() != 1) 2645 return RD; 2646 2647 for (const CXXMethodDecl *MD : RD->methods()) { 2648 if (MD->isVirtual()) { 2649 // Virtual member functions are only ok if they are implicit destructors 2650 // because the implicit destructor will have the same semantics as the 2651 // base class's destructor if no fields are added. 2652 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2653 continue; 2654 return RD; 2655 } 2656 } 2657 2658 return LeastDerivedClassWithSameLayout( 2659 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2660 } 2661 2662 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2663 llvm::Value *VTable, 2664 SourceLocation Loc) { 2665 if (SanOpts.has(SanitizerKind::CFIVCall)) 2666 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2667 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2668 // Don't insert type test assumes if we are forcing public std 2669 // visibility. 2670 !CGM.HasLTOVisibilityPublicStd(RD)) { 2671 llvm::Metadata *MD = 2672 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2673 llvm::Value *TypeId = 2674 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2675 2676 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2677 llvm::Value *TypeTest = 2678 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2679 {CastedVTable, TypeId}); 2680 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2681 } 2682 } 2683 2684 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2685 llvm::Value *VTable, 2686 CFITypeCheckKind TCK, 2687 SourceLocation Loc) { 2688 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2689 RD = LeastDerivedClassWithSameLayout(RD); 2690 2691 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2692 } 2693 2694 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2695 llvm::Value *Derived, 2696 bool MayBeNull, 2697 CFITypeCheckKind TCK, 2698 SourceLocation Loc) { 2699 if (!getLangOpts().CPlusPlus) 2700 return; 2701 2702 auto *ClassTy = T->getAs<RecordType>(); 2703 if (!ClassTy) 2704 return; 2705 2706 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2707 2708 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2709 return; 2710 2711 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2712 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2713 2714 llvm::BasicBlock *ContBlock = nullptr; 2715 2716 if (MayBeNull) { 2717 llvm::Value *DerivedNotNull = 2718 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2719 2720 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2721 ContBlock = createBasicBlock("cast.cont"); 2722 2723 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2724 2725 EmitBlock(CheckBlock); 2726 } 2727 2728 llvm::Value *VTable; 2729 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2730 *this, Address(Derived, getPointerAlign()), ClassDecl); 2731 2732 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2733 2734 if (MayBeNull) { 2735 Builder.CreateBr(ContBlock); 2736 EmitBlock(ContBlock); 2737 } 2738 } 2739 2740 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2741 llvm::Value *VTable, 2742 CFITypeCheckKind TCK, 2743 SourceLocation Loc) { 2744 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2745 !CGM.HasHiddenLTOVisibility(RD)) 2746 return; 2747 2748 SanitizerMask M; 2749 llvm::SanitizerStatKind SSK; 2750 switch (TCK) { 2751 case CFITCK_VCall: 2752 M = SanitizerKind::CFIVCall; 2753 SSK = llvm::SanStat_CFI_VCall; 2754 break; 2755 case CFITCK_NVCall: 2756 M = SanitizerKind::CFINVCall; 2757 SSK = llvm::SanStat_CFI_NVCall; 2758 break; 2759 case CFITCK_DerivedCast: 2760 M = SanitizerKind::CFIDerivedCast; 2761 SSK = llvm::SanStat_CFI_DerivedCast; 2762 break; 2763 case CFITCK_UnrelatedCast: 2764 M = SanitizerKind::CFIUnrelatedCast; 2765 SSK = llvm::SanStat_CFI_UnrelatedCast; 2766 break; 2767 case CFITCK_ICall: 2768 case CFITCK_NVMFCall: 2769 case CFITCK_VMFCall: 2770 llvm_unreachable("unexpected sanitizer kind"); 2771 } 2772 2773 std::string TypeName = RD->getQualifiedNameAsString(); 2774 if (getContext().getNoSanitizeList().containsType(M, TypeName)) 2775 return; 2776 2777 SanitizerScope SanScope(this); 2778 EmitSanitizerStatReport(SSK); 2779 2780 llvm::Metadata *MD = 2781 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2782 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2783 2784 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2785 llvm::Value *TypeTest = Builder.CreateCall( 2786 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2787 2788 llvm::Constant *StaticData[] = { 2789 llvm::ConstantInt::get(Int8Ty, TCK), 2790 EmitCheckSourceLocation(Loc), 2791 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2792 }; 2793 2794 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2795 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2796 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2797 return; 2798 } 2799 2800 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2801 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2802 return; 2803 } 2804 2805 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2806 CGM.getLLVMContext(), 2807 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2808 llvm::Value *ValidVtable = Builder.CreateCall( 2809 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2810 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2811 StaticData, {CastedVTable, ValidVtable}); 2812 } 2813 2814 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2815 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2816 !CGM.HasHiddenLTOVisibility(RD)) 2817 return false; 2818 2819 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2820 return true; 2821 2822 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2823 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2824 return false; 2825 2826 std::string TypeName = RD->getQualifiedNameAsString(); 2827 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2828 TypeName); 2829 } 2830 2831 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2832 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2833 SanitizerScope SanScope(this); 2834 2835 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2836 2837 llvm::Metadata *MD = 2838 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2839 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2840 2841 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2842 llvm::Value *CheckedLoad = Builder.CreateCall( 2843 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2844 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2845 TypeId}); 2846 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2847 2848 std::string TypeName = RD->getQualifiedNameAsString(); 2849 if (SanOpts.has(SanitizerKind::CFIVCall) && 2850 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2851 TypeName)) { 2852 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2853 SanitizerHandler::CFICheckFail, {}, {}); 2854 } 2855 2856 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), 2857 VTable->getType()->getPointerElementType()); 2858 } 2859 2860 void CodeGenFunction::EmitForwardingCallToLambda( 2861 const CXXMethodDecl *callOperator, 2862 CallArgList &callArgs) { 2863 // Get the address of the call operator. 2864 const CGFunctionInfo &calleeFnInfo = 2865 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2866 llvm::Constant *calleePtr = 2867 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2868 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2869 2870 // Prepare the return slot. 2871 const FunctionProtoType *FPT = 2872 callOperator->getType()->castAs<FunctionProtoType>(); 2873 QualType resultType = FPT->getReturnType(); 2874 ReturnValueSlot returnSlot; 2875 if (!resultType->isVoidType() && 2876 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2877 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2878 returnSlot = 2879 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2880 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2881 2882 // We don't need to separately arrange the call arguments because 2883 // the call can't be variadic anyway --- it's impossible to forward 2884 // variadic arguments. 2885 2886 // Now emit our call. 2887 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2888 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2889 2890 // If necessary, copy the returned value into the slot. 2891 if (!resultType->isVoidType() && returnSlot.isNull()) { 2892 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2893 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2894 } 2895 EmitReturnOfRValue(RV, resultType); 2896 } else 2897 EmitBranchThroughCleanup(ReturnBlock); 2898 } 2899 2900 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2901 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2902 const VarDecl *variable = BD->capture_begin()->getVariable(); 2903 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2904 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2905 2906 if (CallOp->isVariadic()) { 2907 // FIXME: Making this work correctly is nasty because it requires either 2908 // cloning the body of the call operator or making the call operator 2909 // forward. 2910 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2911 return; 2912 } 2913 2914 // Start building arguments for forwarding call 2915 CallArgList CallArgs; 2916 2917 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2918 Address ThisPtr = GetAddrOfBlockDecl(variable); 2919 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2920 2921 // Add the rest of the parameters. 2922 for (auto param : BD->parameters()) 2923 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2924 2925 assert(!Lambda->isGenericLambda() && 2926 "generic lambda interconversion to block not implemented"); 2927 EmitForwardingCallToLambda(CallOp, CallArgs); 2928 } 2929 2930 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2931 const CXXRecordDecl *Lambda = MD->getParent(); 2932 2933 // Start building arguments for forwarding call 2934 CallArgList CallArgs; 2935 2936 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2937 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2938 CallArgs.add(RValue::get(ThisPtr), ThisType); 2939 2940 // Add the rest of the parameters. 2941 for (auto Param : MD->parameters()) 2942 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2943 2944 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2945 // For a generic lambda, find the corresponding call operator specialization 2946 // to which the call to the static-invoker shall be forwarded. 2947 if (Lambda->isGenericLambda()) { 2948 assert(MD->isFunctionTemplateSpecialization()); 2949 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2950 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2951 void *InsertPos = nullptr; 2952 FunctionDecl *CorrespondingCallOpSpecialization = 2953 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2954 assert(CorrespondingCallOpSpecialization); 2955 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2956 } 2957 EmitForwardingCallToLambda(CallOp, CallArgs); 2958 } 2959 2960 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2961 if (MD->isVariadic()) { 2962 // FIXME: Making this work correctly is nasty because it requires either 2963 // cloning the body of the call operator or making the call operator forward. 2964 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2965 return; 2966 } 2967 2968 EmitLambdaDelegatingInvokeBody(MD); 2969 } 2970