1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/CodeGenOptions.h" 25 #include "clang/Basic/TargetBuiltins.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType()) 306 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 307 308 QualType DerivedTy = getContext().getRecordType(Derived); 309 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 310 311 // If the static offset is zero and we don't have a virtual step, 312 // just do a bitcast; null checks are unnecessary. 313 if (NonVirtualOffset.isZero() && !VBase) { 314 if (sanitizePerformTypeCheck()) { 315 SanitizerSet SkippedChecks; 316 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 317 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 318 DerivedTy, DerivedAlign, SkippedChecks); 319 } 320 return Builder.CreateBitCast(Value, BasePtrTy); 321 } 322 323 llvm::BasicBlock *origBB = nullptr; 324 llvm::BasicBlock *endBB = nullptr; 325 326 // Skip over the offset (and the vtable load) if we're supposed to 327 // null-check the pointer. 328 if (NullCheckValue) { 329 origBB = Builder.GetInsertBlock(); 330 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 331 endBB = createBasicBlock("cast.end"); 332 333 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 334 Builder.CreateCondBr(isNull, endBB, notNullBB); 335 EmitBlock(notNullBB); 336 } 337 338 if (sanitizePerformTypeCheck()) { 339 SanitizerSet SkippedChecks; 340 SkippedChecks.set(SanitizerKind::Null, true); 341 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 342 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 343 } 344 345 // Compute the virtual offset. 346 llvm::Value *VirtualOffset = nullptr; 347 if (VBase) { 348 VirtualOffset = 349 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 350 } 351 352 // Apply both offsets. 353 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 354 VirtualOffset, Derived, VBase); 355 356 // Cast to the destination type. 357 Value = Builder.CreateBitCast(Value, BasePtrTy); 358 359 // Build a phi if we needed a null check. 360 if (NullCheckValue) { 361 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 362 Builder.CreateBr(endBB); 363 EmitBlock(endBB); 364 365 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 366 PHI->addIncoming(Value.getPointer(), notNullBB); 367 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 368 Value = Address(PHI, Value.getAlignment()); 369 } 370 371 return Value; 372 } 373 374 Address 375 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 376 const CXXRecordDecl *Derived, 377 CastExpr::path_const_iterator PathBegin, 378 CastExpr::path_const_iterator PathEnd, 379 bool NullCheckValue) { 380 assert(PathBegin != PathEnd && "Base path should not be empty!"); 381 382 QualType DerivedTy = 383 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 384 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 385 386 llvm::Value *NonVirtualOffset = 387 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 388 389 if (!NonVirtualOffset) { 390 // No offset, we can just cast back. 391 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 392 } 393 394 llvm::BasicBlock *CastNull = nullptr; 395 llvm::BasicBlock *CastNotNull = nullptr; 396 llvm::BasicBlock *CastEnd = nullptr; 397 398 if (NullCheckValue) { 399 CastNull = createBasicBlock("cast.null"); 400 CastNotNull = createBasicBlock("cast.notnull"); 401 CastEnd = createBasicBlock("cast.end"); 402 403 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 404 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 405 EmitBlock(CastNotNull); 406 } 407 408 // Apply the offset. 409 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 410 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 411 "sub.ptr"); 412 413 // Just cast. 414 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 415 416 // Produce a PHI if we had a null-check. 417 if (NullCheckValue) { 418 Builder.CreateBr(CastEnd); 419 EmitBlock(CastNull); 420 Builder.CreateBr(CastEnd); 421 EmitBlock(CastEnd); 422 423 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 424 PHI->addIncoming(Value, CastNotNull); 425 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 426 Value = PHI; 427 } 428 429 return Address(Value, CGM.getClassPointerAlignment(Derived)); 430 } 431 432 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 433 bool ForVirtualBase, 434 bool Delegating) { 435 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 436 // This constructor/destructor does not need a VTT parameter. 437 return nullptr; 438 } 439 440 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 441 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 442 443 llvm::Value *VTT; 444 445 uint64_t SubVTTIndex; 446 447 if (Delegating) { 448 // If this is a delegating constructor call, just load the VTT. 449 return LoadCXXVTT(); 450 } else if (RD == Base) { 451 // If the record matches the base, this is the complete ctor/dtor 452 // variant calling the base variant in a class with virtual bases. 453 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 454 "doing no-op VTT offset in base dtor/ctor?"); 455 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 456 SubVTTIndex = 0; 457 } else { 458 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 459 CharUnits BaseOffset = ForVirtualBase ? 460 Layout.getVBaseClassOffset(Base) : 461 Layout.getBaseClassOffset(Base); 462 463 SubVTTIndex = 464 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 465 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 466 } 467 468 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 469 // A VTT parameter was passed to the constructor, use it. 470 VTT = LoadCXXVTT(); 471 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 472 } else { 473 // We're the complete constructor, so get the VTT by name. 474 VTT = CGM.getVTables().GetAddrOfVTT(RD); 475 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 476 } 477 478 return VTT; 479 } 480 481 namespace { 482 /// Call the destructor for a direct base class. 483 struct CallBaseDtor final : EHScopeStack::Cleanup { 484 const CXXRecordDecl *BaseClass; 485 bool BaseIsVirtual; 486 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 487 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 488 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const CXXRecordDecl *DerivedClass = 491 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 492 493 const CXXDestructorDecl *D = BaseClass->getDestructor(); 494 // We are already inside a destructor, so presumably the object being 495 // destroyed should have the expected type. 496 QualType ThisTy = D->getThisObjectType(); 497 Address Addr = 498 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 499 DerivedClass, BaseClass, 500 BaseIsVirtual); 501 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 502 /*Delegating=*/false, Addr, ThisTy); 503 } 504 }; 505 506 /// A visitor which checks whether an initializer uses 'this' in a 507 /// way which requires the vtable to be properly set. 508 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 509 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 510 511 bool UsesThis; 512 513 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 514 515 // Black-list all explicit and implicit references to 'this'. 516 // 517 // Do we need to worry about external references to 'this' derived 518 // from arbitrary code? If so, then anything which runs arbitrary 519 // external code might potentially access the vtable. 520 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 521 }; 522 } // end anonymous namespace 523 524 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 525 DynamicThisUseChecker Checker(C); 526 Checker.Visit(Init); 527 return Checker.UsesThis; 528 } 529 530 static void EmitBaseInitializer(CodeGenFunction &CGF, 531 const CXXRecordDecl *ClassDecl, 532 CXXCtorInitializer *BaseInit) { 533 assert(BaseInit->isBaseInitializer() && 534 "Must have base initializer!"); 535 536 Address ThisPtr = CGF.LoadCXXThisAddress(); 537 538 const Type *BaseType = BaseInit->getBaseClass(); 539 CXXRecordDecl *BaseClassDecl = 540 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 541 542 bool isBaseVirtual = BaseInit->isBaseVirtual(); 543 544 // If the initializer for the base (other than the constructor 545 // itself) accesses 'this' in any way, we need to initialize the 546 // vtables. 547 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 548 CGF.InitializeVTablePointers(ClassDecl); 549 550 // We can pretend to be a complete class because it only matters for 551 // virtual bases, and we only do virtual bases for complete ctors. 552 Address V = 553 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 554 BaseClassDecl, 555 isBaseVirtual); 556 AggValueSlot AggSlot = 557 AggValueSlot::forAddr( 558 V, Qualifiers(), 559 AggValueSlot::IsDestructed, 560 AggValueSlot::DoesNotNeedGCBarriers, 561 AggValueSlot::IsNotAliased, 562 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 563 564 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 565 566 if (CGF.CGM.getLangOpts().Exceptions && 567 !BaseClassDecl->hasTrivialDestructor()) 568 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 569 isBaseVirtual); 570 } 571 572 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 573 auto *CD = dyn_cast<CXXConstructorDecl>(D); 574 if (!(CD && CD->isCopyOrMoveConstructor()) && 575 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 576 return false; 577 578 // We can emit a memcpy for a trivial copy or move constructor/assignment. 579 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 580 return true; 581 582 // We *must* emit a memcpy for a defaulted union copy or move op. 583 if (D->getParent()->isUnion() && D->isDefaulted()) 584 return true; 585 586 return false; 587 } 588 589 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 590 CXXCtorInitializer *MemberInit, 591 LValue &LHS) { 592 FieldDecl *Field = MemberInit->getAnyMember(); 593 if (MemberInit->isIndirectMemberInitializer()) { 594 // If we are initializing an anonymous union field, drill down to the field. 595 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 596 for (const auto *I : IndirectField->chain()) 597 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 598 } else { 599 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 600 } 601 } 602 603 static void EmitMemberInitializer(CodeGenFunction &CGF, 604 const CXXRecordDecl *ClassDecl, 605 CXXCtorInitializer *MemberInit, 606 const CXXConstructorDecl *Constructor, 607 FunctionArgList &Args) { 608 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 609 assert(MemberInit->isAnyMemberInitializer() && 610 "Must have member initializer!"); 611 assert(MemberInit->getInit() && "Must have initializer!"); 612 613 // non-static data member initializers. 614 FieldDecl *Field = MemberInit->getAnyMember(); 615 QualType FieldType = Field->getType(); 616 617 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 618 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 619 LValue LHS; 620 621 // If a base constructor is being emitted, create an LValue that has the 622 // non-virtual alignment. 623 if (CGF.CurGD.getCtorType() == Ctor_Base) 624 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 625 else 626 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 627 628 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 629 630 // Special case: if we are in a copy or move constructor, and we are copying 631 // an array of PODs or classes with trivial copy constructors, ignore the 632 // AST and perform the copy we know is equivalent. 633 // FIXME: This is hacky at best... if we had a bit more explicit information 634 // in the AST, we could generalize it more easily. 635 const ConstantArrayType *Array 636 = CGF.getContext().getAsConstantArrayType(FieldType); 637 if (Array && Constructor->isDefaulted() && 638 Constructor->isCopyOrMoveConstructor()) { 639 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 640 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 641 if (BaseElementTy.isPODType(CGF.getContext()) || 642 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 643 unsigned SrcArgIndex = 644 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 645 llvm::Value *SrcPtr 646 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 647 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 648 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 649 650 // Copy the aggregate. 651 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 652 LHS.isVolatileQualified()); 653 // Ensure that we destroy the objects if an exception is thrown later in 654 // the constructor. 655 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 656 if (CGF.needsEHCleanup(dtorKind)) 657 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 658 return; 659 } 660 } 661 662 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 663 } 664 665 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 666 Expr *Init) { 667 QualType FieldType = Field->getType(); 668 switch (getEvaluationKind(FieldType)) { 669 case TEK_Scalar: 670 if (LHS.isSimple()) { 671 EmitExprAsInit(Init, Field, LHS, false); 672 } else { 673 RValue RHS = RValue::get(EmitScalarExpr(Init)); 674 EmitStoreThroughLValue(RHS, LHS); 675 } 676 break; 677 case TEK_Complex: 678 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 679 break; 680 case TEK_Aggregate: { 681 AggValueSlot Slot = 682 AggValueSlot::forLValue( 683 LHS, 684 AggValueSlot::IsDestructed, 685 AggValueSlot::DoesNotNeedGCBarriers, 686 AggValueSlot::IsNotAliased, 687 getOverlapForFieldInit(Field), 688 AggValueSlot::IsNotZeroed, 689 // Checks are made by the code that calls constructor. 690 AggValueSlot::IsSanitizerChecked); 691 EmitAggExpr(Init, Slot); 692 break; 693 } 694 } 695 696 // Ensure that we destroy this object if an exception is thrown 697 // later in the constructor. 698 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 699 if (needsEHCleanup(dtorKind)) 700 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 701 } 702 703 /// Checks whether the given constructor is a valid subject for the 704 /// complete-to-base constructor delegation optimization, i.e. 705 /// emitting the complete constructor as a simple call to the base 706 /// constructor. 707 bool CodeGenFunction::IsConstructorDelegationValid( 708 const CXXConstructorDecl *Ctor) { 709 710 // Currently we disable the optimization for classes with virtual 711 // bases because (1) the addresses of parameter variables need to be 712 // consistent across all initializers but (2) the delegate function 713 // call necessarily creates a second copy of the parameter variable. 714 // 715 // The limiting example (purely theoretical AFAIK): 716 // struct A { A(int &c) { c++; } }; 717 // struct B : virtual A { 718 // B(int count) : A(count) { printf("%d\n", count); } 719 // }; 720 // ...although even this example could in principle be emitted as a 721 // delegation since the address of the parameter doesn't escape. 722 if (Ctor->getParent()->getNumVBases()) { 723 // TODO: white-list trivial vbase initializers. This case wouldn't 724 // be subject to the restrictions below. 725 726 // TODO: white-list cases where: 727 // - there are no non-reference parameters to the constructor 728 // - the initializers don't access any non-reference parameters 729 // - the initializers don't take the address of non-reference 730 // parameters 731 // - etc. 732 // If we ever add any of the above cases, remember that: 733 // - function-try-blocks will always blacklist this optimization 734 // - we need to perform the constructor prologue and cleanup in 735 // EmitConstructorBody. 736 737 return false; 738 } 739 740 // We also disable the optimization for variadic functions because 741 // it's impossible to "re-pass" varargs. 742 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 743 return false; 744 745 // FIXME: Decide if we can do a delegation of a delegating constructor. 746 if (Ctor->isDelegatingConstructor()) 747 return false; 748 749 return true; 750 } 751 752 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 753 // to poison the extra field paddings inserted under 754 // -fsanitize-address-field-padding=1|2. 755 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 756 ASTContext &Context = getContext(); 757 const CXXRecordDecl *ClassDecl = 758 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 759 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 760 if (!ClassDecl->mayInsertExtraPadding()) return; 761 762 struct SizeAndOffset { 763 uint64_t Size; 764 uint64_t Offset; 765 }; 766 767 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 768 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 769 770 // Populate sizes and offsets of fields. 771 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 772 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 773 SSV[i].Offset = 774 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 775 776 size_t NumFields = 0; 777 for (const auto *Field : ClassDecl->fields()) { 778 const FieldDecl *D = Field; 779 std::pair<CharUnits, CharUnits> FieldInfo = 780 Context.getTypeInfoInChars(D->getType()); 781 CharUnits FieldSize = FieldInfo.first; 782 assert(NumFields < SSV.size()); 783 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 784 NumFields++; 785 } 786 assert(NumFields == SSV.size()); 787 if (SSV.size() <= 1) return; 788 789 // We will insert calls to __asan_* run-time functions. 790 // LLVM AddressSanitizer pass may decide to inline them later. 791 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 792 llvm::FunctionType *FTy = 793 llvm::FunctionType::get(CGM.VoidTy, Args, false); 794 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 795 FTy, Prologue ? "__asan_poison_intra_object_redzone" 796 : "__asan_unpoison_intra_object_redzone"); 797 798 llvm::Value *ThisPtr = LoadCXXThis(); 799 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 800 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 801 // For each field check if it has sufficient padding, 802 // if so (un)poison it with a call. 803 for (size_t i = 0; i < SSV.size(); i++) { 804 uint64_t AsanAlignment = 8; 805 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 806 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 807 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 808 if (PoisonSize < AsanAlignment || !SSV[i].Size || 809 (NextField % AsanAlignment) != 0) 810 continue; 811 Builder.CreateCall( 812 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 813 Builder.getIntN(PtrSize, PoisonSize)}); 814 } 815 } 816 817 /// EmitConstructorBody - Emits the body of the current constructor. 818 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 819 EmitAsanPrologueOrEpilogue(true); 820 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 821 CXXCtorType CtorType = CurGD.getCtorType(); 822 823 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 824 CtorType == Ctor_Complete) && 825 "can only generate complete ctor for this ABI"); 826 827 // Before we go any further, try the complete->base constructor 828 // delegation optimization. 829 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 830 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 831 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 832 return; 833 } 834 835 const FunctionDecl *Definition = nullptr; 836 Stmt *Body = Ctor->getBody(Definition); 837 assert(Definition == Ctor && "emitting wrong constructor body"); 838 839 // Enter the function-try-block before the constructor prologue if 840 // applicable. 841 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 842 if (IsTryBody) 843 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 844 845 incrementProfileCounter(Body); 846 847 RunCleanupsScope RunCleanups(*this); 848 849 // TODO: in restricted cases, we can emit the vbase initializers of 850 // a complete ctor and then delegate to the base ctor. 851 852 // Emit the constructor prologue, i.e. the base and member 853 // initializers. 854 EmitCtorPrologue(Ctor, CtorType, Args); 855 856 // Emit the body of the statement. 857 if (IsTryBody) 858 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 859 else if (Body) 860 EmitStmt(Body); 861 862 // Emit any cleanup blocks associated with the member or base 863 // initializers, which includes (along the exceptional path) the 864 // destructors for those members and bases that were fully 865 // constructed. 866 RunCleanups.ForceCleanup(); 867 868 if (IsTryBody) 869 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 870 } 871 872 namespace { 873 /// RAII object to indicate that codegen is copying the value representation 874 /// instead of the object representation. Useful when copying a struct or 875 /// class which has uninitialized members and we're only performing 876 /// lvalue-to-rvalue conversion on the object but not its members. 877 class CopyingValueRepresentation { 878 public: 879 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 880 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 881 CGF.SanOpts.set(SanitizerKind::Bool, false); 882 CGF.SanOpts.set(SanitizerKind::Enum, false); 883 } 884 ~CopyingValueRepresentation() { 885 CGF.SanOpts = OldSanOpts; 886 } 887 private: 888 CodeGenFunction &CGF; 889 SanitizerSet OldSanOpts; 890 }; 891 } // end anonymous namespace 892 893 namespace { 894 class FieldMemcpyizer { 895 public: 896 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 897 const VarDecl *SrcRec) 898 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 899 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 900 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 901 LastFieldOffset(0), LastAddedFieldIndex(0) {} 902 903 bool isMemcpyableField(FieldDecl *F) const { 904 // Never memcpy fields when we are adding poisoned paddings. 905 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 906 return false; 907 Qualifiers Qual = F->getType().getQualifiers(); 908 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 909 return false; 910 return true; 911 } 912 913 void addMemcpyableField(FieldDecl *F) { 914 if (!FirstField) 915 addInitialField(F); 916 else 917 addNextField(F); 918 } 919 920 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 921 ASTContext &Ctx = CGF.getContext(); 922 unsigned LastFieldSize = 923 LastField->isBitField() 924 ? LastField->getBitWidthValue(Ctx) 925 : Ctx.toBits( 926 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 927 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 928 FirstByteOffset + Ctx.getCharWidth() - 1; 929 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 930 return MemcpySize; 931 } 932 933 void emitMemcpy() { 934 // Give the subclass a chance to bail out if it feels the memcpy isn't 935 // worth it (e.g. Hasn't aggregated enough data). 936 if (!FirstField) { 937 return; 938 } 939 940 uint64_t FirstByteOffset; 941 if (FirstField->isBitField()) { 942 const CGRecordLayout &RL = 943 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 944 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 945 // FirstFieldOffset is not appropriate for bitfields, 946 // we need to use the storage offset instead. 947 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 948 } else { 949 FirstByteOffset = FirstFieldOffset; 950 } 951 952 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 953 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 954 Address ThisPtr = CGF.LoadCXXThisAddress(); 955 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 956 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 957 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 958 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 959 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 960 961 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 962 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 963 MemcpySize); 964 reset(); 965 } 966 967 void reset() { 968 FirstField = nullptr; 969 } 970 971 protected: 972 CodeGenFunction &CGF; 973 const CXXRecordDecl *ClassDecl; 974 975 private: 976 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 977 llvm::PointerType *DPT = DestPtr.getType(); 978 llvm::Type *DBP = 979 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 980 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 981 982 llvm::PointerType *SPT = SrcPtr.getType(); 983 llvm::Type *SBP = 984 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 985 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 986 987 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 988 } 989 990 void addInitialField(FieldDecl *F) { 991 FirstField = F; 992 LastField = F; 993 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 994 LastFieldOffset = FirstFieldOffset; 995 LastAddedFieldIndex = F->getFieldIndex(); 996 } 997 998 void addNextField(FieldDecl *F) { 999 // For the most part, the following invariant will hold: 1000 // F->getFieldIndex() == LastAddedFieldIndex + 1 1001 // The one exception is that Sema won't add a copy-initializer for an 1002 // unnamed bitfield, which will show up here as a gap in the sequence. 1003 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1004 "Cannot aggregate fields out of order."); 1005 LastAddedFieldIndex = F->getFieldIndex(); 1006 1007 // The 'first' and 'last' fields are chosen by offset, rather than field 1008 // index. This allows the code to support bitfields, as well as regular 1009 // fields. 1010 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1011 if (FOffset < FirstFieldOffset) { 1012 FirstField = F; 1013 FirstFieldOffset = FOffset; 1014 } else if (FOffset >= LastFieldOffset) { 1015 LastField = F; 1016 LastFieldOffset = FOffset; 1017 } 1018 } 1019 1020 const VarDecl *SrcRec; 1021 const ASTRecordLayout &RecLayout; 1022 FieldDecl *FirstField; 1023 FieldDecl *LastField; 1024 uint64_t FirstFieldOffset, LastFieldOffset; 1025 unsigned LastAddedFieldIndex; 1026 }; 1027 1028 class ConstructorMemcpyizer : public FieldMemcpyizer { 1029 private: 1030 /// Get source argument for copy constructor. Returns null if not a copy 1031 /// constructor. 1032 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1033 const CXXConstructorDecl *CD, 1034 FunctionArgList &Args) { 1035 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1036 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1037 return nullptr; 1038 } 1039 1040 // Returns true if a CXXCtorInitializer represents a member initialization 1041 // that can be rolled into a memcpy. 1042 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1043 if (!MemcpyableCtor) 1044 return false; 1045 FieldDecl *Field = MemberInit->getMember(); 1046 assert(Field && "No field for member init."); 1047 QualType FieldType = Field->getType(); 1048 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1049 1050 // Bail out on non-memcpyable, not-trivially-copyable members. 1051 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1052 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1053 FieldType->isReferenceType())) 1054 return false; 1055 1056 // Bail out on volatile fields. 1057 if (!isMemcpyableField(Field)) 1058 return false; 1059 1060 // Otherwise we're good. 1061 return true; 1062 } 1063 1064 public: 1065 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1066 FunctionArgList &Args) 1067 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1068 ConstructorDecl(CD), 1069 MemcpyableCtor(CD->isDefaulted() && 1070 CD->isCopyOrMoveConstructor() && 1071 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1072 Args(Args) { } 1073 1074 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1075 if (isMemberInitMemcpyable(MemberInit)) { 1076 AggregatedInits.push_back(MemberInit); 1077 addMemcpyableField(MemberInit->getMember()); 1078 } else { 1079 emitAggregatedInits(); 1080 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1081 ConstructorDecl, Args); 1082 } 1083 } 1084 1085 void emitAggregatedInits() { 1086 if (AggregatedInits.size() <= 1) { 1087 // This memcpy is too small to be worthwhile. Fall back on default 1088 // codegen. 1089 if (!AggregatedInits.empty()) { 1090 CopyingValueRepresentation CVR(CGF); 1091 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1092 AggregatedInits[0], ConstructorDecl, Args); 1093 AggregatedInits.clear(); 1094 } 1095 reset(); 1096 return; 1097 } 1098 1099 pushEHDestructors(); 1100 emitMemcpy(); 1101 AggregatedInits.clear(); 1102 } 1103 1104 void pushEHDestructors() { 1105 Address ThisPtr = CGF.LoadCXXThisAddress(); 1106 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1107 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1108 1109 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1110 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1111 QualType FieldType = MemberInit->getAnyMember()->getType(); 1112 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1113 if (!CGF.needsEHCleanup(dtorKind)) 1114 continue; 1115 LValue FieldLHS = LHS; 1116 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1117 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1118 } 1119 } 1120 1121 void finish() { 1122 emitAggregatedInits(); 1123 } 1124 1125 private: 1126 const CXXConstructorDecl *ConstructorDecl; 1127 bool MemcpyableCtor; 1128 FunctionArgList &Args; 1129 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1130 }; 1131 1132 class AssignmentMemcpyizer : public FieldMemcpyizer { 1133 private: 1134 // Returns the memcpyable field copied by the given statement, if one 1135 // exists. Otherwise returns null. 1136 FieldDecl *getMemcpyableField(Stmt *S) { 1137 if (!AssignmentsMemcpyable) 1138 return nullptr; 1139 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1140 // Recognise trivial assignments. 1141 if (BO->getOpcode() != BO_Assign) 1142 return nullptr; 1143 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1144 if (!ME) 1145 return nullptr; 1146 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1147 if (!Field || !isMemcpyableField(Field)) 1148 return nullptr; 1149 Stmt *RHS = BO->getRHS(); 1150 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1151 RHS = EC->getSubExpr(); 1152 if (!RHS) 1153 return nullptr; 1154 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1155 if (ME2->getMemberDecl() == Field) 1156 return Field; 1157 } 1158 return nullptr; 1159 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1160 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1161 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1162 return nullptr; 1163 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1164 if (!IOA) 1165 return nullptr; 1166 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1167 if (!Field || !isMemcpyableField(Field)) 1168 return nullptr; 1169 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1170 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1171 return nullptr; 1172 return Field; 1173 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1174 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1175 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1176 return nullptr; 1177 Expr *DstPtr = CE->getArg(0); 1178 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1179 DstPtr = DC->getSubExpr(); 1180 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1181 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1182 return nullptr; 1183 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1184 if (!ME) 1185 return nullptr; 1186 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1187 if (!Field || !isMemcpyableField(Field)) 1188 return nullptr; 1189 Expr *SrcPtr = CE->getArg(1); 1190 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1191 SrcPtr = SC->getSubExpr(); 1192 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1193 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1194 return nullptr; 1195 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1196 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1197 return nullptr; 1198 return Field; 1199 } 1200 1201 return nullptr; 1202 } 1203 1204 bool AssignmentsMemcpyable; 1205 SmallVector<Stmt*, 16> AggregatedStmts; 1206 1207 public: 1208 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1209 FunctionArgList &Args) 1210 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1211 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1212 assert(Args.size() == 2); 1213 } 1214 1215 void emitAssignment(Stmt *S) { 1216 FieldDecl *F = getMemcpyableField(S); 1217 if (F) { 1218 addMemcpyableField(F); 1219 AggregatedStmts.push_back(S); 1220 } else { 1221 emitAggregatedStmts(); 1222 CGF.EmitStmt(S); 1223 } 1224 } 1225 1226 void emitAggregatedStmts() { 1227 if (AggregatedStmts.size() <= 1) { 1228 if (!AggregatedStmts.empty()) { 1229 CopyingValueRepresentation CVR(CGF); 1230 CGF.EmitStmt(AggregatedStmts[0]); 1231 } 1232 reset(); 1233 } 1234 1235 emitMemcpy(); 1236 AggregatedStmts.clear(); 1237 } 1238 1239 void finish() { 1240 emitAggregatedStmts(); 1241 } 1242 }; 1243 } // end anonymous namespace 1244 1245 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1246 const Type *BaseType = BaseInit->getBaseClass(); 1247 const auto *BaseClassDecl = 1248 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1249 return BaseClassDecl->isDynamicClass(); 1250 } 1251 1252 /// EmitCtorPrologue - This routine generates necessary code to initialize 1253 /// base classes and non-static data members belonging to this constructor. 1254 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1255 CXXCtorType CtorType, 1256 FunctionArgList &Args) { 1257 if (CD->isDelegatingConstructor()) 1258 return EmitDelegatingCXXConstructorCall(CD, Args); 1259 1260 const CXXRecordDecl *ClassDecl = CD->getParent(); 1261 1262 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1263 E = CD->init_end(); 1264 1265 // Virtual base initializers first, if any. They aren't needed if: 1266 // - This is a base ctor variant 1267 // - There are no vbases 1268 // - The class is abstract, so a complete object of it cannot be constructed 1269 // 1270 // The check for an abstract class is necessary because sema may not have 1271 // marked virtual base destructors referenced. 1272 bool ConstructVBases = CtorType != Ctor_Base && 1273 ClassDecl->getNumVBases() != 0 && 1274 !ClassDecl->isAbstract(); 1275 1276 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1277 // constructor of a class with virtual bases takes an additional parameter to 1278 // conditionally construct the virtual bases. Emit that check here. 1279 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1280 if (ConstructVBases && 1281 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1282 BaseCtorContinueBB = 1283 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1284 assert(BaseCtorContinueBB); 1285 } 1286 1287 llvm::Value *const OldThis = CXXThisValue; 1288 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1289 if (!ConstructVBases) 1290 continue; 1291 if (CGM.getCodeGenOpts().StrictVTablePointers && 1292 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1293 isInitializerOfDynamicClass(*B)) 1294 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1295 EmitBaseInitializer(*this, ClassDecl, *B); 1296 } 1297 1298 if (BaseCtorContinueBB) { 1299 // Complete object handler should continue to the remaining initializers. 1300 Builder.CreateBr(BaseCtorContinueBB); 1301 EmitBlock(BaseCtorContinueBB); 1302 } 1303 1304 // Then, non-virtual base initializers. 1305 for (; B != E && (*B)->isBaseInitializer(); B++) { 1306 assert(!(*B)->isBaseVirtual()); 1307 1308 if (CGM.getCodeGenOpts().StrictVTablePointers && 1309 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1310 isInitializerOfDynamicClass(*B)) 1311 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1312 EmitBaseInitializer(*this, ClassDecl, *B); 1313 } 1314 1315 CXXThisValue = OldThis; 1316 1317 InitializeVTablePointers(ClassDecl); 1318 1319 // And finally, initialize class members. 1320 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1321 ConstructorMemcpyizer CM(*this, CD, Args); 1322 for (; B != E; B++) { 1323 CXXCtorInitializer *Member = (*B); 1324 assert(!Member->isBaseInitializer()); 1325 assert(Member->isAnyMemberInitializer() && 1326 "Delegating initializer on non-delegating constructor"); 1327 CM.addMemberInitializer(Member); 1328 } 1329 CM.finish(); 1330 } 1331 1332 static bool 1333 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1334 1335 static bool 1336 HasTrivialDestructorBody(ASTContext &Context, 1337 const CXXRecordDecl *BaseClassDecl, 1338 const CXXRecordDecl *MostDerivedClassDecl) 1339 { 1340 // If the destructor is trivial we don't have to check anything else. 1341 if (BaseClassDecl->hasTrivialDestructor()) 1342 return true; 1343 1344 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1345 return false; 1346 1347 // Check fields. 1348 for (const auto *Field : BaseClassDecl->fields()) 1349 if (!FieldHasTrivialDestructorBody(Context, Field)) 1350 return false; 1351 1352 // Check non-virtual bases. 1353 for (const auto &I : BaseClassDecl->bases()) { 1354 if (I.isVirtual()) 1355 continue; 1356 1357 const CXXRecordDecl *NonVirtualBase = 1358 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1359 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1360 MostDerivedClassDecl)) 1361 return false; 1362 } 1363 1364 if (BaseClassDecl == MostDerivedClassDecl) { 1365 // Check virtual bases. 1366 for (const auto &I : BaseClassDecl->vbases()) { 1367 const CXXRecordDecl *VirtualBase = 1368 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1369 if (!HasTrivialDestructorBody(Context, VirtualBase, 1370 MostDerivedClassDecl)) 1371 return false; 1372 } 1373 } 1374 1375 return true; 1376 } 1377 1378 static bool 1379 FieldHasTrivialDestructorBody(ASTContext &Context, 1380 const FieldDecl *Field) 1381 { 1382 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1383 1384 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1385 if (!RT) 1386 return true; 1387 1388 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1389 1390 // The destructor for an implicit anonymous union member is never invoked. 1391 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1392 return false; 1393 1394 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1395 } 1396 1397 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1398 /// any vtable pointers before calling this destructor. 1399 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1400 const CXXDestructorDecl *Dtor) { 1401 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1402 if (!ClassDecl->isDynamicClass()) 1403 return true; 1404 1405 if (!Dtor->hasTrivialBody()) 1406 return false; 1407 1408 // Check the fields. 1409 for (const auto *Field : ClassDecl->fields()) 1410 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1411 return false; 1412 1413 return true; 1414 } 1415 1416 /// EmitDestructorBody - Emits the body of the current destructor. 1417 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1418 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1419 CXXDtorType DtorType = CurGD.getDtorType(); 1420 1421 // For an abstract class, non-base destructors are never used (and can't 1422 // be emitted in general, because vbase dtors may not have been validated 1423 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1424 // in fact emit references to them from other compilations, so emit them 1425 // as functions containing a trap instruction. 1426 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1427 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1428 TrapCall->setDoesNotReturn(); 1429 TrapCall->setDoesNotThrow(); 1430 Builder.CreateUnreachable(); 1431 Builder.ClearInsertionPoint(); 1432 return; 1433 } 1434 1435 Stmt *Body = Dtor->getBody(); 1436 if (Body) 1437 incrementProfileCounter(Body); 1438 1439 // The call to operator delete in a deleting destructor happens 1440 // outside of the function-try-block, which means it's always 1441 // possible to delegate the destructor body to the complete 1442 // destructor. Do so. 1443 if (DtorType == Dtor_Deleting) { 1444 RunCleanupsScope DtorEpilogue(*this); 1445 EnterDtorCleanups(Dtor, Dtor_Deleting); 1446 if (HaveInsertPoint()) { 1447 QualType ThisTy = Dtor->getThisObjectType(); 1448 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1449 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1450 } 1451 return; 1452 } 1453 1454 // If the body is a function-try-block, enter the try before 1455 // anything else. 1456 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1457 if (isTryBody) 1458 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1459 EmitAsanPrologueOrEpilogue(false); 1460 1461 // Enter the epilogue cleanups. 1462 RunCleanupsScope DtorEpilogue(*this); 1463 1464 // If this is the complete variant, just invoke the base variant; 1465 // the epilogue will destruct the virtual bases. But we can't do 1466 // this optimization if the body is a function-try-block, because 1467 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1468 // always delegate because we might not have a definition in this TU. 1469 switch (DtorType) { 1470 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1471 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1472 1473 case Dtor_Complete: 1474 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1475 "can't emit a dtor without a body for non-Microsoft ABIs"); 1476 1477 // Enter the cleanup scopes for virtual bases. 1478 EnterDtorCleanups(Dtor, Dtor_Complete); 1479 1480 if (!isTryBody) { 1481 QualType ThisTy = Dtor->getThisObjectType(); 1482 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1483 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1484 break; 1485 } 1486 1487 // Fallthrough: act like we're in the base variant. 1488 LLVM_FALLTHROUGH; 1489 1490 case Dtor_Base: 1491 assert(Body); 1492 1493 // Enter the cleanup scopes for fields and non-virtual bases. 1494 EnterDtorCleanups(Dtor, Dtor_Base); 1495 1496 // Initialize the vtable pointers before entering the body. 1497 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1498 // Insert the llvm.launder.invariant.group intrinsic before initializing 1499 // the vptrs to cancel any previous assumptions we might have made. 1500 if (CGM.getCodeGenOpts().StrictVTablePointers && 1501 CGM.getCodeGenOpts().OptimizationLevel > 0) 1502 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1503 InitializeVTablePointers(Dtor->getParent()); 1504 } 1505 1506 if (isTryBody) 1507 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1508 else if (Body) 1509 EmitStmt(Body); 1510 else { 1511 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1512 // nothing to do besides what's in the epilogue 1513 } 1514 // -fapple-kext must inline any call to this dtor into 1515 // the caller's body. 1516 if (getLangOpts().AppleKext) 1517 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1518 1519 break; 1520 } 1521 1522 // Jump out through the epilogue cleanups. 1523 DtorEpilogue.ForceCleanup(); 1524 1525 // Exit the try if applicable. 1526 if (isTryBody) 1527 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1528 } 1529 1530 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1531 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1532 const Stmt *RootS = AssignOp->getBody(); 1533 assert(isa<CompoundStmt>(RootS) && 1534 "Body of an implicit assignment operator should be compound stmt."); 1535 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1536 1537 LexicalScope Scope(*this, RootCS->getSourceRange()); 1538 1539 incrementProfileCounter(RootCS); 1540 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1541 for (auto *I : RootCS->body()) 1542 AM.emitAssignment(I); 1543 AM.finish(); 1544 } 1545 1546 namespace { 1547 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1548 const CXXDestructorDecl *DD) { 1549 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1550 return CGF.EmitScalarExpr(ThisArg); 1551 return CGF.LoadCXXThis(); 1552 } 1553 1554 /// Call the operator delete associated with the current destructor. 1555 struct CallDtorDelete final : EHScopeStack::Cleanup { 1556 CallDtorDelete() {} 1557 1558 void Emit(CodeGenFunction &CGF, Flags flags) override { 1559 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1560 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1561 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1562 LoadThisForDtorDelete(CGF, Dtor), 1563 CGF.getContext().getTagDeclType(ClassDecl)); 1564 } 1565 }; 1566 1567 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1568 llvm::Value *ShouldDeleteCondition, 1569 bool ReturnAfterDelete) { 1570 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1571 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1572 llvm::Value *ShouldCallDelete 1573 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1574 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1575 1576 CGF.EmitBlock(callDeleteBB); 1577 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1578 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1579 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1580 LoadThisForDtorDelete(CGF, Dtor), 1581 CGF.getContext().getTagDeclType(ClassDecl)); 1582 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1583 ReturnAfterDelete && 1584 "unexpected value for ReturnAfterDelete"); 1585 if (ReturnAfterDelete) 1586 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1587 else 1588 CGF.Builder.CreateBr(continueBB); 1589 1590 CGF.EmitBlock(continueBB); 1591 } 1592 1593 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1594 llvm::Value *ShouldDeleteCondition; 1595 1596 public: 1597 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1598 : ShouldDeleteCondition(ShouldDeleteCondition) { 1599 assert(ShouldDeleteCondition != nullptr); 1600 } 1601 1602 void Emit(CodeGenFunction &CGF, Flags flags) override { 1603 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1604 /*ReturnAfterDelete*/false); 1605 } 1606 }; 1607 1608 class DestroyField final : public EHScopeStack::Cleanup { 1609 const FieldDecl *field; 1610 CodeGenFunction::Destroyer *destroyer; 1611 bool useEHCleanupForArray; 1612 1613 public: 1614 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1615 bool useEHCleanupForArray) 1616 : field(field), destroyer(destroyer), 1617 useEHCleanupForArray(useEHCleanupForArray) {} 1618 1619 void Emit(CodeGenFunction &CGF, Flags flags) override { 1620 // Find the address of the field. 1621 Address thisValue = CGF.LoadCXXThisAddress(); 1622 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1623 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1624 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1625 assert(LV.isSimple()); 1626 1627 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1628 flags.isForNormalCleanup() && useEHCleanupForArray); 1629 } 1630 }; 1631 1632 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1633 CharUnits::QuantityType PoisonSize) { 1634 CodeGenFunction::SanitizerScope SanScope(&CGF); 1635 // Pass in void pointer and size of region as arguments to runtime 1636 // function 1637 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1638 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1639 1640 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1641 1642 llvm::FunctionType *FnType = 1643 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1644 llvm::FunctionCallee Fn = 1645 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1646 CGF.EmitNounwindRuntimeCall(Fn, Args); 1647 } 1648 1649 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1650 const CXXDestructorDecl *Dtor; 1651 1652 public: 1653 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1654 1655 // Generate function call for handling object poisoning. 1656 // Disables tail call elimination, to prevent the current stack frame 1657 // from disappearing from the stack trace. 1658 void Emit(CodeGenFunction &CGF, Flags flags) override { 1659 const ASTRecordLayout &Layout = 1660 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1661 1662 // Nothing to poison. 1663 if (Layout.getFieldCount() == 0) 1664 return; 1665 1666 // Prevent the current stack frame from disappearing from the stack trace. 1667 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1668 1669 // Construct pointer to region to begin poisoning, and calculate poison 1670 // size, so that only members declared in this class are poisoned. 1671 ASTContext &Context = CGF.getContext(); 1672 unsigned fieldIndex = 0; 1673 int startIndex = -1; 1674 // RecordDecl::field_iterator Field; 1675 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1676 // Poison field if it is trivial 1677 if (FieldHasTrivialDestructorBody(Context, Field)) { 1678 // Start sanitizing at this field 1679 if (startIndex < 0) 1680 startIndex = fieldIndex; 1681 1682 // Currently on the last field, and it must be poisoned with the 1683 // current block. 1684 if (fieldIndex == Layout.getFieldCount() - 1) { 1685 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1686 } 1687 } else if (startIndex >= 0) { 1688 // No longer within a block of memory to poison, so poison the block 1689 PoisonMembers(CGF, startIndex, fieldIndex); 1690 // Re-set the start index 1691 startIndex = -1; 1692 } 1693 fieldIndex += 1; 1694 } 1695 } 1696 1697 private: 1698 /// \param layoutStartOffset index of the ASTRecordLayout field to 1699 /// start poisoning (inclusive) 1700 /// \param layoutEndOffset index of the ASTRecordLayout field to 1701 /// end poisoning (exclusive) 1702 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1703 unsigned layoutEndOffset) { 1704 ASTContext &Context = CGF.getContext(); 1705 const ASTRecordLayout &Layout = 1706 Context.getASTRecordLayout(Dtor->getParent()); 1707 1708 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1709 CGF.SizeTy, 1710 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1711 .getQuantity()); 1712 1713 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1714 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1715 OffsetSizePtr); 1716 1717 CharUnits::QuantityType PoisonSize; 1718 if (layoutEndOffset >= Layout.getFieldCount()) { 1719 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1720 Context.toCharUnitsFromBits( 1721 Layout.getFieldOffset(layoutStartOffset)) 1722 .getQuantity(); 1723 } else { 1724 PoisonSize = Context.toCharUnitsFromBits( 1725 Layout.getFieldOffset(layoutEndOffset) - 1726 Layout.getFieldOffset(layoutStartOffset)) 1727 .getQuantity(); 1728 } 1729 1730 if (PoisonSize == 0) 1731 return; 1732 1733 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1734 } 1735 }; 1736 1737 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1738 const CXXDestructorDecl *Dtor; 1739 1740 public: 1741 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1742 1743 // Generate function call for handling vtable pointer poisoning. 1744 void Emit(CodeGenFunction &CGF, Flags flags) override { 1745 assert(Dtor->getParent()->isDynamicClass()); 1746 (void)Dtor; 1747 ASTContext &Context = CGF.getContext(); 1748 // Poison vtable and vtable ptr if they exist for this class. 1749 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1750 1751 CharUnits::QuantityType PoisonSize = 1752 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1753 // Pass in void pointer and size of region as arguments to runtime 1754 // function 1755 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1756 } 1757 }; 1758 } // end anonymous namespace 1759 1760 /// Emit all code that comes at the end of class's 1761 /// destructor. This is to call destructors on members and base classes 1762 /// in reverse order of their construction. 1763 /// 1764 /// For a deleting destructor, this also handles the case where a destroying 1765 /// operator delete completely overrides the definition. 1766 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1767 CXXDtorType DtorType) { 1768 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1769 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1770 1771 // The deleting-destructor phase just needs to call the appropriate 1772 // operator delete that Sema picked up. 1773 if (DtorType == Dtor_Deleting) { 1774 assert(DD->getOperatorDelete() && 1775 "operator delete missing - EnterDtorCleanups"); 1776 if (CXXStructorImplicitParamValue) { 1777 // If there is an implicit param to the deleting dtor, it's a boolean 1778 // telling whether this is a deleting destructor. 1779 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1780 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1781 /*ReturnAfterDelete*/true); 1782 else 1783 EHStack.pushCleanup<CallDtorDeleteConditional>( 1784 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1785 } else { 1786 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1787 const CXXRecordDecl *ClassDecl = DD->getParent(); 1788 EmitDeleteCall(DD->getOperatorDelete(), 1789 LoadThisForDtorDelete(*this, DD), 1790 getContext().getTagDeclType(ClassDecl)); 1791 EmitBranchThroughCleanup(ReturnBlock); 1792 } else { 1793 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1794 } 1795 } 1796 return; 1797 } 1798 1799 const CXXRecordDecl *ClassDecl = DD->getParent(); 1800 1801 // Unions have no bases and do not call field destructors. 1802 if (ClassDecl->isUnion()) 1803 return; 1804 1805 // The complete-destructor phase just destructs all the virtual bases. 1806 if (DtorType == Dtor_Complete) { 1807 // Poison the vtable pointer such that access after the base 1808 // and member destructors are invoked is invalid. 1809 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1810 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1811 ClassDecl->isPolymorphic()) 1812 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1813 1814 // We push them in the forward order so that they'll be popped in 1815 // the reverse order. 1816 for (const auto &Base : ClassDecl->vbases()) { 1817 CXXRecordDecl *BaseClassDecl 1818 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1819 1820 // Ignore trivial destructors. 1821 if (BaseClassDecl->hasTrivialDestructor()) 1822 continue; 1823 1824 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1825 BaseClassDecl, 1826 /*BaseIsVirtual*/ true); 1827 } 1828 1829 return; 1830 } 1831 1832 assert(DtorType == Dtor_Base); 1833 // Poison the vtable pointer if it has no virtual bases, but inherits 1834 // virtual functions. 1835 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1836 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1837 ClassDecl->isPolymorphic()) 1838 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1839 1840 // Destroy non-virtual bases. 1841 for (const auto &Base : ClassDecl->bases()) { 1842 // Ignore virtual bases. 1843 if (Base.isVirtual()) 1844 continue; 1845 1846 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1847 1848 // Ignore trivial destructors. 1849 if (BaseClassDecl->hasTrivialDestructor()) 1850 continue; 1851 1852 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1853 BaseClassDecl, 1854 /*BaseIsVirtual*/ false); 1855 } 1856 1857 // Poison fields such that access after their destructors are 1858 // invoked, and before the base class destructor runs, is invalid. 1859 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1860 SanOpts.has(SanitizerKind::Memory)) 1861 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1862 1863 // Destroy direct fields. 1864 for (const auto *Field : ClassDecl->fields()) { 1865 QualType type = Field->getType(); 1866 QualType::DestructionKind dtorKind = type.isDestructedType(); 1867 if (!dtorKind) continue; 1868 1869 // Anonymous union members do not have their destructors called. 1870 const RecordType *RT = type->getAsUnionType(); 1871 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1872 1873 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1874 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1875 getDestroyer(dtorKind), 1876 cleanupKind & EHCleanup); 1877 } 1878 } 1879 1880 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1881 /// constructor for each of several members of an array. 1882 /// 1883 /// \param ctor the constructor to call for each element 1884 /// \param arrayType the type of the array to initialize 1885 /// \param arrayBegin an arrayType* 1886 /// \param zeroInitialize true if each element should be 1887 /// zero-initialized before it is constructed 1888 void CodeGenFunction::EmitCXXAggrConstructorCall( 1889 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1890 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1891 bool zeroInitialize) { 1892 QualType elementType; 1893 llvm::Value *numElements = 1894 emitArrayLength(arrayType, elementType, arrayBegin); 1895 1896 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1897 NewPointerIsChecked, zeroInitialize); 1898 } 1899 1900 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1901 /// constructor for each of several members of an array. 1902 /// 1903 /// \param ctor the constructor to call for each element 1904 /// \param numElements the number of elements in the array; 1905 /// may be zero 1906 /// \param arrayBase a T*, where T is the type constructed by ctor 1907 /// \param zeroInitialize true if each element should be 1908 /// zero-initialized before it is constructed 1909 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1910 llvm::Value *numElements, 1911 Address arrayBase, 1912 const CXXConstructExpr *E, 1913 bool NewPointerIsChecked, 1914 bool zeroInitialize) { 1915 // It's legal for numElements to be zero. This can happen both 1916 // dynamically, because x can be zero in 'new A[x]', and statically, 1917 // because of GCC extensions that permit zero-length arrays. There 1918 // are probably legitimate places where we could assume that this 1919 // doesn't happen, but it's not clear that it's worth it. 1920 llvm::BranchInst *zeroCheckBranch = nullptr; 1921 1922 // Optimize for a constant count. 1923 llvm::ConstantInt *constantCount 1924 = dyn_cast<llvm::ConstantInt>(numElements); 1925 if (constantCount) { 1926 // Just skip out if the constant count is zero. 1927 if (constantCount->isZero()) return; 1928 1929 // Otherwise, emit the check. 1930 } else { 1931 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1932 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1933 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1934 EmitBlock(loopBB); 1935 } 1936 1937 // Find the end of the array. 1938 llvm::Value *arrayBegin = arrayBase.getPointer(); 1939 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1940 "arrayctor.end"); 1941 1942 // Enter the loop, setting up a phi for the current location to initialize. 1943 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1944 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1945 EmitBlock(loopBB); 1946 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1947 "arrayctor.cur"); 1948 cur->addIncoming(arrayBegin, entryBB); 1949 1950 // Inside the loop body, emit the constructor call on the array element. 1951 1952 // The alignment of the base, adjusted by the size of a single element, 1953 // provides a conservative estimate of the alignment of every element. 1954 // (This assumes we never start tracking offsetted alignments.) 1955 // 1956 // Note that these are complete objects and so we don't need to 1957 // use the non-virtual size or alignment. 1958 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1959 CharUnits eltAlignment = 1960 arrayBase.getAlignment() 1961 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1962 Address curAddr = Address(cur, eltAlignment); 1963 1964 // Zero initialize the storage, if requested. 1965 if (zeroInitialize) 1966 EmitNullInitialization(curAddr, type); 1967 1968 // C++ [class.temporary]p4: 1969 // There are two contexts in which temporaries are destroyed at a different 1970 // point than the end of the full-expression. The first context is when a 1971 // default constructor is called to initialize an element of an array. 1972 // If the constructor has one or more default arguments, the destruction of 1973 // every temporary created in a default argument expression is sequenced 1974 // before the construction of the next array element, if any. 1975 1976 { 1977 RunCleanupsScope Scope(*this); 1978 1979 // Evaluate the constructor and its arguments in a regular 1980 // partial-destroy cleanup. 1981 if (getLangOpts().Exceptions && 1982 !ctor->getParent()->hasTrivialDestructor()) { 1983 Destroyer *destroyer = destroyCXXObject; 1984 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1985 *destroyer); 1986 } 1987 auto currAVS = AggValueSlot::forAddr( 1988 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 1989 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1990 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 1991 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 1992 : AggValueSlot::IsNotSanitizerChecked); 1993 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1994 /*Delegating=*/false, currAVS, E); 1995 } 1996 1997 // Go to the next element. 1998 llvm::Value *next = 1999 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2000 "arrayctor.next"); 2001 cur->addIncoming(next, Builder.GetInsertBlock()); 2002 2003 // Check whether that's the end of the loop. 2004 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2005 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2006 Builder.CreateCondBr(done, contBB, loopBB); 2007 2008 // Patch the earlier check to skip over the loop. 2009 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2010 2011 EmitBlock(contBB); 2012 } 2013 2014 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2015 Address addr, 2016 QualType type) { 2017 const RecordType *rtype = type->castAs<RecordType>(); 2018 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2019 const CXXDestructorDecl *dtor = record->getDestructor(); 2020 assert(!dtor->isTrivial()); 2021 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2022 /*Delegating=*/false, addr, type); 2023 } 2024 2025 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2026 CXXCtorType Type, 2027 bool ForVirtualBase, 2028 bool Delegating, 2029 AggValueSlot ThisAVS, 2030 const CXXConstructExpr *E) { 2031 CallArgList Args; 2032 Address This = ThisAVS.getAddress(); 2033 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2034 QualType ThisType = D->getThisType(); 2035 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2036 llvm::Value *ThisPtr = This.getPointer(); 2037 2038 if (SlotAS != ThisAS) { 2039 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2040 llvm::Type *NewType = 2041 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2042 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2043 ThisAS, SlotAS, NewType); 2044 } 2045 2046 // Push the this ptr. 2047 Args.add(RValue::get(ThisPtr), D->getThisType()); 2048 2049 // If this is a trivial constructor, emit a memcpy now before we lose 2050 // the alignment information on the argument. 2051 // FIXME: It would be better to preserve alignment information into CallArg. 2052 if (isMemcpyEquivalentSpecialMember(D)) { 2053 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2054 2055 const Expr *Arg = E->getArg(0); 2056 LValue Src = EmitLValue(Arg); 2057 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2058 LValue Dest = MakeAddrLValue(This, DestTy); 2059 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2060 return; 2061 } 2062 2063 // Add the rest of the user-supplied arguments. 2064 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2065 EvaluationOrder Order = E->isListInitialization() 2066 ? EvaluationOrder::ForceLeftToRight 2067 : EvaluationOrder::Default; 2068 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2069 /*ParamsToSkip*/ 0, Order); 2070 2071 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2072 ThisAVS.mayOverlap(), E->getExprLoc(), 2073 ThisAVS.isSanitizerChecked()); 2074 } 2075 2076 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2077 const CXXConstructorDecl *Ctor, 2078 CXXCtorType Type, CallArgList &Args) { 2079 // We can't forward a variadic call. 2080 if (Ctor->isVariadic()) 2081 return false; 2082 2083 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2084 // If the parameters are callee-cleanup, it's not safe to forward. 2085 for (auto *P : Ctor->parameters()) 2086 if (P->getType().isDestructedType()) 2087 return false; 2088 2089 // Likewise if they're inalloca. 2090 const CGFunctionInfo &Info = 2091 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2092 if (Info.usesInAlloca()) 2093 return false; 2094 } 2095 2096 // Anything else should be OK. 2097 return true; 2098 } 2099 2100 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2101 CXXCtorType Type, 2102 bool ForVirtualBase, 2103 bool Delegating, 2104 Address This, 2105 CallArgList &Args, 2106 AggValueSlot::Overlap_t Overlap, 2107 SourceLocation Loc, 2108 bool NewPointerIsChecked) { 2109 const CXXRecordDecl *ClassDecl = D->getParent(); 2110 2111 if (!NewPointerIsChecked) 2112 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2113 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2114 2115 if (D->isTrivial() && D->isDefaultConstructor()) { 2116 assert(Args.size() == 1 && "trivial default ctor with args"); 2117 return; 2118 } 2119 2120 // If this is a trivial constructor, just emit what's needed. If this is a 2121 // union copy constructor, we must emit a memcpy, because the AST does not 2122 // model that copy. 2123 if (isMemcpyEquivalentSpecialMember(D)) { 2124 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2125 2126 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2127 Address Src(Args[1].getRValue(*this).getScalarVal(), 2128 getNaturalTypeAlignment(SrcTy)); 2129 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2130 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2131 LValue DestLVal = MakeAddrLValue(This, DestTy); 2132 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2133 return; 2134 } 2135 2136 bool PassPrototypeArgs = true; 2137 // Check whether we can actually emit the constructor before trying to do so. 2138 if (auto Inherited = D->getInheritedConstructor()) { 2139 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2140 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2141 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2142 Delegating, Args); 2143 return; 2144 } 2145 } 2146 2147 // Insert any ABI-specific implicit constructor arguments. 2148 CGCXXABI::AddedStructorArgs ExtraArgs = 2149 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2150 Delegating, Args); 2151 2152 // Emit the call. 2153 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2154 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2155 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2156 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2157 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2158 2159 // Generate vtable assumptions if we're constructing a complete object 2160 // with a vtable. We don't do this for base subobjects for two reasons: 2161 // first, it's incorrect for classes with virtual bases, and second, we're 2162 // about to overwrite the vptrs anyway. 2163 // We also have to make sure if we can refer to vtable: 2164 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2165 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2166 // sure that definition of vtable is not hidden, 2167 // then we are always safe to refer to it. 2168 // FIXME: It looks like InstCombine is very inefficient on dealing with 2169 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2170 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2171 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2172 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2173 CGM.getCodeGenOpts().StrictVTablePointers) 2174 EmitVTableAssumptionLoads(ClassDecl, This); 2175 } 2176 2177 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2178 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2179 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2180 CallArgList Args; 2181 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2182 2183 // Forward the parameters. 2184 if (InheritedFromVBase && 2185 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2186 // Nothing to do; this construction is not responsible for constructing 2187 // the base class containing the inherited constructor. 2188 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2189 // have constructor variants? 2190 Args.push_back(ThisArg); 2191 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2192 // The inheriting constructor was inlined; just inject its arguments. 2193 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2194 "wrong number of parameters for inherited constructor call"); 2195 Args = CXXInheritedCtorInitExprArgs; 2196 Args[0] = ThisArg; 2197 } else { 2198 // The inheriting constructor was not inlined. Emit delegating arguments. 2199 Args.push_back(ThisArg); 2200 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2201 assert(OuterCtor->getNumParams() == D->getNumParams()); 2202 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2203 2204 for (const auto *Param : OuterCtor->parameters()) { 2205 assert(getContext().hasSameUnqualifiedType( 2206 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2207 Param->getType())); 2208 EmitDelegateCallArg(Args, Param, E->getLocation()); 2209 2210 // Forward __attribute__(pass_object_size). 2211 if (Param->hasAttr<PassObjectSizeAttr>()) { 2212 auto *POSParam = SizeArguments[Param]; 2213 assert(POSParam && "missing pass_object_size value for forwarding"); 2214 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2215 } 2216 } 2217 } 2218 2219 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2220 This, Args, AggValueSlot::MayOverlap, 2221 E->getLocation(), /*NewPointerIsChecked*/true); 2222 } 2223 2224 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2225 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2226 bool Delegating, CallArgList &Args) { 2227 GlobalDecl GD(Ctor, CtorType); 2228 InlinedInheritingConstructorScope Scope(*this, GD); 2229 ApplyInlineDebugLocation DebugScope(*this, GD); 2230 RunCleanupsScope RunCleanups(*this); 2231 2232 // Save the arguments to be passed to the inherited constructor. 2233 CXXInheritedCtorInitExprArgs = Args; 2234 2235 FunctionArgList Params; 2236 QualType RetType = BuildFunctionArgList(CurGD, Params); 2237 FnRetTy = RetType; 2238 2239 // Insert any ABI-specific implicit constructor arguments. 2240 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2241 ForVirtualBase, Delegating, Args); 2242 2243 // Emit a simplified prolog. We only need to emit the implicit params. 2244 assert(Args.size() >= Params.size() && "too few arguments for call"); 2245 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2246 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2247 const RValue &RV = Args[I].getRValue(*this); 2248 assert(!RV.isComplex() && "complex indirect params not supported"); 2249 ParamValue Val = RV.isScalar() 2250 ? ParamValue::forDirect(RV.getScalarVal()) 2251 : ParamValue::forIndirect(RV.getAggregateAddress()); 2252 EmitParmDecl(*Params[I], Val, I + 1); 2253 } 2254 } 2255 2256 // Create a return value slot if the ABI implementation wants one. 2257 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2258 // value instead. 2259 if (!RetType->isVoidType()) 2260 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2261 2262 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2263 CXXThisValue = CXXABIThisValue; 2264 2265 // Directly emit the constructor initializers. 2266 EmitCtorPrologue(Ctor, CtorType, Params); 2267 } 2268 2269 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2270 llvm::Value *VTableGlobal = 2271 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2272 if (!VTableGlobal) 2273 return; 2274 2275 // We can just use the base offset in the complete class. 2276 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2277 2278 if (!NonVirtualOffset.isZero()) 2279 This = 2280 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2281 Vptr.VTableClass, Vptr.NearestVBase); 2282 2283 llvm::Value *VPtrValue = 2284 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2285 llvm::Value *Cmp = 2286 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2287 Builder.CreateAssumption(Cmp); 2288 } 2289 2290 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2291 Address This) { 2292 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2293 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2294 EmitVTableAssumptionLoad(Vptr, This); 2295 } 2296 2297 void 2298 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2299 Address This, Address Src, 2300 const CXXConstructExpr *E) { 2301 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2302 2303 CallArgList Args; 2304 2305 // Push the this ptr. 2306 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2307 2308 // Push the src ptr. 2309 QualType QT = *(FPT->param_type_begin()); 2310 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2311 Src = Builder.CreateBitCast(Src, t); 2312 Args.add(RValue::get(Src.getPointer()), QT); 2313 2314 // Skip over first argument (Src). 2315 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2316 /*ParamsToSkip*/ 1); 2317 2318 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2319 /*Delegating*/false, This, Args, 2320 AggValueSlot::MayOverlap, E->getExprLoc(), 2321 /*NewPointerIsChecked*/false); 2322 } 2323 2324 void 2325 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2326 CXXCtorType CtorType, 2327 const FunctionArgList &Args, 2328 SourceLocation Loc) { 2329 CallArgList DelegateArgs; 2330 2331 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2332 assert(I != E && "no parameters to constructor"); 2333 2334 // this 2335 Address This = LoadCXXThisAddress(); 2336 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2337 ++I; 2338 2339 // FIXME: The location of the VTT parameter in the parameter list is 2340 // specific to the Itanium ABI and shouldn't be hardcoded here. 2341 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2342 assert(I != E && "cannot skip vtt parameter, already done with args"); 2343 assert((*I)->getType()->isPointerType() && 2344 "skipping parameter not of vtt type"); 2345 ++I; 2346 } 2347 2348 // Explicit arguments. 2349 for (; I != E; ++I) { 2350 const VarDecl *param = *I; 2351 // FIXME: per-argument source location 2352 EmitDelegateCallArg(DelegateArgs, param, Loc); 2353 } 2354 2355 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2356 /*Delegating=*/true, This, DelegateArgs, 2357 AggValueSlot::MayOverlap, Loc, 2358 /*NewPointerIsChecked=*/true); 2359 } 2360 2361 namespace { 2362 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2363 const CXXDestructorDecl *Dtor; 2364 Address Addr; 2365 CXXDtorType Type; 2366 2367 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2368 CXXDtorType Type) 2369 : Dtor(D), Addr(Addr), Type(Type) {} 2370 2371 void Emit(CodeGenFunction &CGF, Flags flags) override { 2372 // We are calling the destructor from within the constructor. 2373 // Therefore, "this" should have the expected type. 2374 QualType ThisTy = Dtor->getThisObjectType(); 2375 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2376 /*Delegating=*/true, Addr, ThisTy); 2377 } 2378 }; 2379 } // end anonymous namespace 2380 2381 void 2382 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2383 const FunctionArgList &Args) { 2384 assert(Ctor->isDelegatingConstructor()); 2385 2386 Address ThisPtr = LoadCXXThisAddress(); 2387 2388 AggValueSlot AggSlot = 2389 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2390 AggValueSlot::IsDestructed, 2391 AggValueSlot::DoesNotNeedGCBarriers, 2392 AggValueSlot::IsNotAliased, 2393 AggValueSlot::MayOverlap, 2394 AggValueSlot::IsNotZeroed, 2395 // Checks are made by the code that calls constructor. 2396 AggValueSlot::IsSanitizerChecked); 2397 2398 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2399 2400 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2401 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2402 CXXDtorType Type = 2403 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2404 2405 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2406 ClassDecl->getDestructor(), 2407 ThisPtr, Type); 2408 } 2409 } 2410 2411 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2412 CXXDtorType Type, 2413 bool ForVirtualBase, 2414 bool Delegating, Address This, 2415 QualType ThisTy) { 2416 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2417 Delegating, This, ThisTy); 2418 } 2419 2420 namespace { 2421 struct CallLocalDtor final : EHScopeStack::Cleanup { 2422 const CXXDestructorDecl *Dtor; 2423 Address Addr; 2424 QualType Ty; 2425 2426 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2427 : Dtor(D), Addr(Addr), Ty(Ty) {} 2428 2429 void Emit(CodeGenFunction &CGF, Flags flags) override { 2430 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2431 /*ForVirtualBase=*/false, 2432 /*Delegating=*/false, Addr, Ty); 2433 } 2434 }; 2435 } // end anonymous namespace 2436 2437 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2438 QualType T, Address Addr) { 2439 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2440 } 2441 2442 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2443 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2444 if (!ClassDecl) return; 2445 if (ClassDecl->hasTrivialDestructor()) return; 2446 2447 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2448 assert(D && D->isUsed() && "destructor not marked as used!"); 2449 PushDestructorCleanup(D, T, Addr); 2450 } 2451 2452 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2453 // Compute the address point. 2454 llvm::Value *VTableAddressPoint = 2455 CGM.getCXXABI().getVTableAddressPointInStructor( 2456 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2457 2458 if (!VTableAddressPoint) 2459 return; 2460 2461 // Compute where to store the address point. 2462 llvm::Value *VirtualOffset = nullptr; 2463 CharUnits NonVirtualOffset = CharUnits::Zero(); 2464 2465 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2466 // We need to use the virtual base offset offset because the virtual base 2467 // might have a different offset in the most derived class. 2468 2469 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2470 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2471 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2472 } else { 2473 // We can just use the base offset in the complete class. 2474 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2475 } 2476 2477 // Apply the offsets. 2478 Address VTableField = LoadCXXThisAddress(); 2479 2480 if (!NonVirtualOffset.isZero() || VirtualOffset) 2481 VTableField = ApplyNonVirtualAndVirtualOffset( 2482 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2483 Vptr.NearestVBase); 2484 2485 // Finally, store the address point. Use the same LLVM types as the field to 2486 // support optimization. 2487 llvm::Type *VTablePtrTy = 2488 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2489 ->getPointerTo() 2490 ->getPointerTo(); 2491 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2492 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2493 2494 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2495 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2496 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2497 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2498 CGM.getCodeGenOpts().StrictVTablePointers) 2499 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2500 } 2501 2502 CodeGenFunction::VPtrsVector 2503 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2504 CodeGenFunction::VPtrsVector VPtrsResult; 2505 VisitedVirtualBasesSetTy VBases; 2506 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2507 /*NearestVBase=*/nullptr, 2508 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2509 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2510 VPtrsResult); 2511 return VPtrsResult; 2512 } 2513 2514 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2515 const CXXRecordDecl *NearestVBase, 2516 CharUnits OffsetFromNearestVBase, 2517 bool BaseIsNonVirtualPrimaryBase, 2518 const CXXRecordDecl *VTableClass, 2519 VisitedVirtualBasesSetTy &VBases, 2520 VPtrsVector &Vptrs) { 2521 // If this base is a non-virtual primary base the address point has already 2522 // been set. 2523 if (!BaseIsNonVirtualPrimaryBase) { 2524 // Initialize the vtable pointer for this base. 2525 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2526 Vptrs.push_back(Vptr); 2527 } 2528 2529 const CXXRecordDecl *RD = Base.getBase(); 2530 2531 // Traverse bases. 2532 for (const auto &I : RD->bases()) { 2533 CXXRecordDecl *BaseDecl 2534 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2535 2536 // Ignore classes without a vtable. 2537 if (!BaseDecl->isDynamicClass()) 2538 continue; 2539 2540 CharUnits BaseOffset; 2541 CharUnits BaseOffsetFromNearestVBase; 2542 bool BaseDeclIsNonVirtualPrimaryBase; 2543 2544 if (I.isVirtual()) { 2545 // Check if we've visited this virtual base before. 2546 if (!VBases.insert(BaseDecl).second) 2547 continue; 2548 2549 const ASTRecordLayout &Layout = 2550 getContext().getASTRecordLayout(VTableClass); 2551 2552 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2553 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2554 BaseDeclIsNonVirtualPrimaryBase = false; 2555 } else { 2556 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2557 2558 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2559 BaseOffsetFromNearestVBase = 2560 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2561 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2562 } 2563 2564 getVTablePointers( 2565 BaseSubobject(BaseDecl, BaseOffset), 2566 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2567 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2568 } 2569 } 2570 2571 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2572 // Ignore classes without a vtable. 2573 if (!RD->isDynamicClass()) 2574 return; 2575 2576 // Initialize the vtable pointers for this class and all of its bases. 2577 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2578 for (const VPtr &Vptr : getVTablePointers(RD)) 2579 InitializeVTablePointer(Vptr); 2580 2581 if (RD->getNumVBases()) 2582 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2583 } 2584 2585 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2586 llvm::Type *VTableTy, 2587 const CXXRecordDecl *RD) { 2588 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2589 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2590 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2591 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2592 2593 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2594 CGM.getCodeGenOpts().StrictVTablePointers) 2595 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2596 2597 return VTable; 2598 } 2599 2600 // If a class has a single non-virtual base and does not introduce or override 2601 // virtual member functions or fields, it will have the same layout as its base. 2602 // This function returns the least derived such class. 2603 // 2604 // Casting an instance of a base class to such a derived class is technically 2605 // undefined behavior, but it is a relatively common hack for introducing member 2606 // functions on class instances with specific properties (e.g. llvm::Operator) 2607 // that works under most compilers and should not have security implications, so 2608 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2609 static const CXXRecordDecl * 2610 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2611 if (!RD->field_empty()) 2612 return RD; 2613 2614 if (RD->getNumVBases() != 0) 2615 return RD; 2616 2617 if (RD->getNumBases() != 1) 2618 return RD; 2619 2620 for (const CXXMethodDecl *MD : RD->methods()) { 2621 if (MD->isVirtual()) { 2622 // Virtual member functions are only ok if they are implicit destructors 2623 // because the implicit destructor will have the same semantics as the 2624 // base class's destructor if no fields are added. 2625 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2626 continue; 2627 return RD; 2628 } 2629 } 2630 2631 return LeastDerivedClassWithSameLayout( 2632 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2633 } 2634 2635 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2636 llvm::Value *VTable, 2637 SourceLocation Loc) { 2638 if (SanOpts.has(SanitizerKind::CFIVCall)) 2639 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2640 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2641 CGM.HasHiddenLTOVisibility(RD)) { 2642 llvm::Metadata *MD = 2643 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2644 llvm::Value *TypeId = 2645 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2646 2647 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2648 llvm::Value *TypeTest = 2649 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2650 {CastedVTable, TypeId}); 2651 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2652 } 2653 } 2654 2655 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2656 llvm::Value *VTable, 2657 CFITypeCheckKind TCK, 2658 SourceLocation Loc) { 2659 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2660 RD = LeastDerivedClassWithSameLayout(RD); 2661 2662 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2663 } 2664 2665 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2666 llvm::Value *Derived, 2667 bool MayBeNull, 2668 CFITypeCheckKind TCK, 2669 SourceLocation Loc) { 2670 if (!getLangOpts().CPlusPlus) 2671 return; 2672 2673 auto *ClassTy = T->getAs<RecordType>(); 2674 if (!ClassTy) 2675 return; 2676 2677 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2678 2679 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2680 return; 2681 2682 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2683 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2684 2685 llvm::BasicBlock *ContBlock = nullptr; 2686 2687 if (MayBeNull) { 2688 llvm::Value *DerivedNotNull = 2689 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2690 2691 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2692 ContBlock = createBasicBlock("cast.cont"); 2693 2694 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2695 2696 EmitBlock(CheckBlock); 2697 } 2698 2699 llvm::Value *VTable; 2700 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2701 *this, Address(Derived, getPointerAlign()), ClassDecl); 2702 2703 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2704 2705 if (MayBeNull) { 2706 Builder.CreateBr(ContBlock); 2707 EmitBlock(ContBlock); 2708 } 2709 } 2710 2711 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2712 llvm::Value *VTable, 2713 CFITypeCheckKind TCK, 2714 SourceLocation Loc) { 2715 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2716 !CGM.HasHiddenLTOVisibility(RD)) 2717 return; 2718 2719 SanitizerMask M; 2720 llvm::SanitizerStatKind SSK; 2721 switch (TCK) { 2722 case CFITCK_VCall: 2723 M = SanitizerKind::CFIVCall; 2724 SSK = llvm::SanStat_CFI_VCall; 2725 break; 2726 case CFITCK_NVCall: 2727 M = SanitizerKind::CFINVCall; 2728 SSK = llvm::SanStat_CFI_NVCall; 2729 break; 2730 case CFITCK_DerivedCast: 2731 M = SanitizerKind::CFIDerivedCast; 2732 SSK = llvm::SanStat_CFI_DerivedCast; 2733 break; 2734 case CFITCK_UnrelatedCast: 2735 M = SanitizerKind::CFIUnrelatedCast; 2736 SSK = llvm::SanStat_CFI_UnrelatedCast; 2737 break; 2738 case CFITCK_ICall: 2739 case CFITCK_NVMFCall: 2740 case CFITCK_VMFCall: 2741 llvm_unreachable("unexpected sanitizer kind"); 2742 } 2743 2744 std::string TypeName = RD->getQualifiedNameAsString(); 2745 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2746 return; 2747 2748 SanitizerScope SanScope(this); 2749 EmitSanitizerStatReport(SSK); 2750 2751 llvm::Metadata *MD = 2752 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2753 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2754 2755 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2756 llvm::Value *TypeTest = Builder.CreateCall( 2757 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2758 2759 llvm::Constant *StaticData[] = { 2760 llvm::ConstantInt::get(Int8Ty, TCK), 2761 EmitCheckSourceLocation(Loc), 2762 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2763 }; 2764 2765 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2766 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2767 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2768 return; 2769 } 2770 2771 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2772 EmitTrapCheck(TypeTest); 2773 return; 2774 } 2775 2776 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2777 CGM.getLLVMContext(), 2778 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2779 llvm::Value *ValidVtable = Builder.CreateCall( 2780 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2781 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2782 StaticData, {CastedVTable, ValidVtable}); 2783 } 2784 2785 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2786 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2787 !SanOpts.has(SanitizerKind::CFIVCall) || 2788 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2789 !CGM.HasHiddenLTOVisibility(RD)) 2790 return false; 2791 2792 std::string TypeName = RD->getQualifiedNameAsString(); 2793 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2794 SanitizerKind::CFIVCall, TypeName); 2795 } 2796 2797 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2798 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2799 SanitizerScope SanScope(this); 2800 2801 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2802 2803 llvm::Metadata *MD = 2804 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2805 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2806 2807 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2808 llvm::Value *CheckedLoad = Builder.CreateCall( 2809 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2810 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2811 TypeId}); 2812 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2813 2814 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2815 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2816 2817 return Builder.CreateBitCast( 2818 Builder.CreateExtractValue(CheckedLoad, 0), 2819 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2820 } 2821 2822 void CodeGenFunction::EmitForwardingCallToLambda( 2823 const CXXMethodDecl *callOperator, 2824 CallArgList &callArgs) { 2825 // Get the address of the call operator. 2826 const CGFunctionInfo &calleeFnInfo = 2827 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2828 llvm::Constant *calleePtr = 2829 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2830 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2831 2832 // Prepare the return slot. 2833 const FunctionProtoType *FPT = 2834 callOperator->getType()->castAs<FunctionProtoType>(); 2835 QualType resultType = FPT->getReturnType(); 2836 ReturnValueSlot returnSlot; 2837 if (!resultType->isVoidType() && 2838 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2839 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2840 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2841 2842 // We don't need to separately arrange the call arguments because 2843 // the call can't be variadic anyway --- it's impossible to forward 2844 // variadic arguments. 2845 2846 // Now emit our call. 2847 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2848 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2849 2850 // If necessary, copy the returned value into the slot. 2851 if (!resultType->isVoidType() && returnSlot.isNull()) { 2852 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2853 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2854 } 2855 EmitReturnOfRValue(RV, resultType); 2856 } else 2857 EmitBranchThroughCleanup(ReturnBlock); 2858 } 2859 2860 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2861 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2862 const VarDecl *variable = BD->capture_begin()->getVariable(); 2863 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2864 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2865 2866 if (CallOp->isVariadic()) { 2867 // FIXME: Making this work correctly is nasty because it requires either 2868 // cloning the body of the call operator or making the call operator 2869 // forward. 2870 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2871 return; 2872 } 2873 2874 // Start building arguments for forwarding call 2875 CallArgList CallArgs; 2876 2877 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2878 Address ThisPtr = GetAddrOfBlockDecl(variable); 2879 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2880 2881 // Add the rest of the parameters. 2882 for (auto param : BD->parameters()) 2883 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2884 2885 assert(!Lambda->isGenericLambda() && 2886 "generic lambda interconversion to block not implemented"); 2887 EmitForwardingCallToLambda(CallOp, CallArgs); 2888 } 2889 2890 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2891 const CXXRecordDecl *Lambda = MD->getParent(); 2892 2893 // Start building arguments for forwarding call 2894 CallArgList CallArgs; 2895 2896 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2897 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2898 CallArgs.add(RValue::get(ThisPtr), ThisType); 2899 2900 // Add the rest of the parameters. 2901 for (auto Param : MD->parameters()) 2902 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2903 2904 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2905 // For a generic lambda, find the corresponding call operator specialization 2906 // to which the call to the static-invoker shall be forwarded. 2907 if (Lambda->isGenericLambda()) { 2908 assert(MD->isFunctionTemplateSpecialization()); 2909 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2910 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2911 void *InsertPos = nullptr; 2912 FunctionDecl *CorrespondingCallOpSpecialization = 2913 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2914 assert(CorrespondingCallOpSpecialization); 2915 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2916 } 2917 EmitForwardingCallToLambda(CallOp, CallArgs); 2918 } 2919 2920 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2921 if (MD->isVariadic()) { 2922 // FIXME: Making this work correctly is nasty because it requires either 2923 // cloning the body of the call operator or making the call operator forward. 2924 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2925 return; 2926 } 2927 2928 EmitLambdaDelegatingInvokeBody(MD); 2929 } 2930