xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGCall.h (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CGCALL_H
15 #define LLVM_CLANG_LIB_CODEGEN_CGCALL_H
16 
17 #include "CGValue.h"
18 #include "EHScopeStack.h"
19 #include "clang/AST/ASTFwd.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/GlobalDecl.h"
22 #include "clang/AST/Type.h"
23 #include "llvm/ADT/STLForwardCompat.h"
24 #include "llvm/IR/Value.h"
25 
26 namespace llvm {
27 class Type;
28 class Value;
29 } // namespace llvm
30 
31 namespace clang {
32 class Decl;
33 class FunctionDecl;
34 class TargetOptions;
35 class VarDecl;
36 
37 namespace CodeGen {
38 
39 /// Abstract information about a function or function prototype.
40 class CGCalleeInfo {
41   /// The function prototype of the callee.
42   const FunctionProtoType *CalleeProtoTy;
43   /// The function declaration of the callee.
44   GlobalDecl CalleeDecl;
45 
46 public:
47   explicit CGCalleeInfo() : CalleeProtoTy(nullptr) {}
48   CGCalleeInfo(const FunctionProtoType *calleeProtoTy, GlobalDecl calleeDecl)
49       : CalleeProtoTy(calleeProtoTy), CalleeDecl(calleeDecl) {}
50   CGCalleeInfo(const FunctionProtoType *calleeProtoTy)
51       : CalleeProtoTy(calleeProtoTy) {}
52   CGCalleeInfo(GlobalDecl calleeDecl)
53       : CalleeProtoTy(nullptr), CalleeDecl(calleeDecl) {}
54 
55   const FunctionProtoType *getCalleeFunctionProtoType() const {
56     return CalleeProtoTy;
57   }
58   const GlobalDecl getCalleeDecl() const { return CalleeDecl; }
59 };
60 
61 /// All available information about a concrete callee.
62 class CGCallee {
63   enum class SpecialKind : uintptr_t {
64     Invalid,
65     Builtin,
66     PseudoDestructor,
67     Virtual,
68 
69     Last = Virtual
70   };
71 
72   struct BuiltinInfoStorage {
73     const FunctionDecl *Decl;
74     unsigned ID;
75   };
76   struct PseudoDestructorInfoStorage {
77     const CXXPseudoDestructorExpr *Expr;
78   };
79   struct VirtualInfoStorage {
80     const CallExpr *CE;
81     GlobalDecl MD;
82     Address Addr;
83     llvm::FunctionType *FTy;
84   };
85 
86   SpecialKind KindOrFunctionPointer;
87   union {
88     CGCalleeInfo AbstractInfo;
89     BuiltinInfoStorage BuiltinInfo;
90     PseudoDestructorInfoStorage PseudoDestructorInfo;
91     VirtualInfoStorage VirtualInfo;
92   };
93 
94   explicit CGCallee(SpecialKind kind) : KindOrFunctionPointer(kind) {}
95 
96   CGCallee(const FunctionDecl *builtinDecl, unsigned builtinID)
97       : KindOrFunctionPointer(SpecialKind::Builtin) {
98     BuiltinInfo.Decl = builtinDecl;
99     BuiltinInfo.ID = builtinID;
100   }
101 
102 public:
103   CGCallee() : KindOrFunctionPointer(SpecialKind::Invalid) {}
104 
105   /// Construct a callee.  Call this constructor directly when this
106   /// isn't a direct call.
107   CGCallee(const CGCalleeInfo &abstractInfo, llvm::Value *functionPtr)
108       : KindOrFunctionPointer(
109             SpecialKind(reinterpret_cast<uintptr_t>(functionPtr))) {
110     AbstractInfo = abstractInfo;
111     assert(functionPtr && "configuring callee without function pointer");
112     assert(functionPtr->getType()->isPointerTy());
113   }
114 
115   static CGCallee forBuiltin(unsigned builtinID,
116                              const FunctionDecl *builtinDecl) {
117     CGCallee result(SpecialKind::Builtin);
118     result.BuiltinInfo.Decl = builtinDecl;
119     result.BuiltinInfo.ID = builtinID;
120     return result;
121   }
122 
123   static CGCallee forPseudoDestructor(const CXXPseudoDestructorExpr *E) {
124     CGCallee result(SpecialKind::PseudoDestructor);
125     result.PseudoDestructorInfo.Expr = E;
126     return result;
127   }
128 
129   static CGCallee forDirect(llvm::Constant *functionPtr,
130                             const CGCalleeInfo &abstractInfo = CGCalleeInfo()) {
131     return CGCallee(abstractInfo, functionPtr);
132   }
133 
134   static CGCallee forDirect(llvm::FunctionCallee functionPtr,
135                             const CGCalleeInfo &abstractInfo = CGCalleeInfo()) {
136     return CGCallee(abstractInfo, functionPtr.getCallee());
137   }
138 
139   static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr,
140                              llvm::FunctionType *FTy) {
141     CGCallee result(SpecialKind::Virtual);
142     result.VirtualInfo.CE = CE;
143     result.VirtualInfo.MD = MD;
144     result.VirtualInfo.Addr = Addr;
145     result.VirtualInfo.FTy = FTy;
146     return result;
147   }
148 
149   bool isBuiltin() const {
150     return KindOrFunctionPointer == SpecialKind::Builtin;
151   }
152   const FunctionDecl *getBuiltinDecl() const {
153     assert(isBuiltin());
154     return BuiltinInfo.Decl;
155   }
156   unsigned getBuiltinID() const {
157     assert(isBuiltin());
158     return BuiltinInfo.ID;
159   }
160 
161   bool isPseudoDestructor() const {
162     return KindOrFunctionPointer == SpecialKind::PseudoDestructor;
163   }
164   const CXXPseudoDestructorExpr *getPseudoDestructorExpr() const {
165     assert(isPseudoDestructor());
166     return PseudoDestructorInfo.Expr;
167   }
168 
169   bool isOrdinary() const {
170     return uintptr_t(KindOrFunctionPointer) > uintptr_t(SpecialKind::Last);
171   }
172   CGCalleeInfo getAbstractInfo() const {
173     if (isVirtual())
174       return VirtualInfo.MD;
175     assert(isOrdinary());
176     return AbstractInfo;
177   }
178   llvm::Value *getFunctionPointer() const {
179     assert(isOrdinary());
180     return reinterpret_cast<llvm::Value *>(uintptr_t(KindOrFunctionPointer));
181   }
182   void setFunctionPointer(llvm::Value *functionPtr) {
183     assert(isOrdinary());
184     KindOrFunctionPointer =
185         SpecialKind(reinterpret_cast<uintptr_t>(functionPtr));
186   }
187 
188   bool isVirtual() const {
189     return KindOrFunctionPointer == SpecialKind::Virtual;
190   }
191   const CallExpr *getVirtualCallExpr() const {
192     assert(isVirtual());
193     return VirtualInfo.CE;
194   }
195   GlobalDecl getVirtualMethodDecl() const {
196     assert(isVirtual());
197     return VirtualInfo.MD;
198   }
199   Address getThisAddress() const {
200     assert(isVirtual());
201     return VirtualInfo.Addr;
202   }
203   llvm::FunctionType *getVirtualFunctionType() const {
204     assert(isVirtual());
205     return VirtualInfo.FTy;
206   }
207 
208   /// If this is a delayed callee computation of some sort, prepare
209   /// a concrete callee.
210   CGCallee prepareConcreteCallee(CodeGenFunction &CGF) const;
211 };
212 
213 struct CallArg {
214 private:
215   union {
216     RValue RV;
217     LValue LV; /// The argument is semantically a load from this l-value.
218   };
219   bool HasLV;
220 
221   /// A data-flow flag to make sure getRValue and/or copyInto are not
222   /// called twice for duplicated IR emission.
223   mutable bool IsUsed;
224 
225 public:
226   QualType Ty;
227   CallArg(RValue rv, QualType ty)
228       : RV(rv), HasLV(false), IsUsed(false), Ty(ty) {}
229   CallArg(LValue lv, QualType ty)
230       : LV(lv), HasLV(true), IsUsed(false), Ty(ty) {}
231   bool hasLValue() const { return HasLV; }
232   QualType getType() const { return Ty; }
233 
234   /// \returns an independent RValue. If the CallArg contains an LValue,
235   /// a temporary copy is returned.
236   RValue getRValue(CodeGenFunction &CGF) const;
237 
238   LValue getKnownLValue() const {
239     assert(HasLV && !IsUsed);
240     return LV;
241   }
242   RValue getKnownRValue() const {
243     assert(!HasLV && !IsUsed);
244     return RV;
245   }
246   void setRValue(RValue _RV) {
247     assert(!HasLV);
248     RV = _RV;
249   }
250 
251   bool isAggregate() const { return HasLV || RV.isAggregate(); }
252 
253   void copyInto(CodeGenFunction &CGF, Address A) const;
254 };
255 
256 /// CallArgList - Type for representing both the value and type of
257 /// arguments in a call.
258 class CallArgList : public SmallVector<CallArg, 8> {
259 public:
260   CallArgList() = default;
261 
262   struct Writeback {
263     /// The original argument.  Note that the argument l-value
264     /// is potentially null.
265     LValue Source;
266 
267     /// The temporary alloca.
268     Address Temporary;
269 
270     /// A value to "use" after the writeback, or null.
271     llvm::Value *ToUse;
272   };
273 
274   struct CallArgCleanup {
275     EHScopeStack::stable_iterator Cleanup;
276 
277     /// The "is active" insertion point.  This instruction is temporary and
278     /// will be removed after insertion.
279     llvm::Instruction *IsActiveIP;
280   };
281 
282   void add(RValue rvalue, QualType type) { push_back(CallArg(rvalue, type)); }
283 
284   void addUncopiedAggregate(LValue LV, QualType type) {
285     push_back(CallArg(LV, type));
286   }
287 
288   /// Add all the arguments from another CallArgList to this one. After doing
289   /// this, the old CallArgList retains its list of arguments, but must not
290   /// be used to emit a call.
291   void addFrom(const CallArgList &other) {
292     insert(end(), other.begin(), other.end());
293     Writebacks.insert(Writebacks.end(), other.Writebacks.begin(),
294                       other.Writebacks.end());
295     CleanupsToDeactivate.insert(CleanupsToDeactivate.end(),
296                                 other.CleanupsToDeactivate.begin(),
297                                 other.CleanupsToDeactivate.end());
298     assert(!(StackBase && other.StackBase) && "can't merge stackbases");
299     if (!StackBase)
300       StackBase = other.StackBase;
301   }
302 
303   void addWriteback(LValue srcLV, Address temporary, llvm::Value *toUse) {
304     Writeback writeback = {srcLV, temporary, toUse};
305     Writebacks.push_back(writeback);
306   }
307 
308   bool hasWritebacks() const { return !Writebacks.empty(); }
309 
310   typedef llvm::iterator_range<SmallVectorImpl<Writeback>::const_iterator>
311       writeback_const_range;
312 
313   writeback_const_range writebacks() const {
314     return writeback_const_range(Writebacks.begin(), Writebacks.end());
315   }
316 
317   void addArgCleanupDeactivation(EHScopeStack::stable_iterator Cleanup,
318                                  llvm::Instruction *IsActiveIP) {
319     CallArgCleanup ArgCleanup;
320     ArgCleanup.Cleanup = Cleanup;
321     ArgCleanup.IsActiveIP = IsActiveIP;
322     CleanupsToDeactivate.push_back(ArgCleanup);
323   }
324 
325   ArrayRef<CallArgCleanup> getCleanupsToDeactivate() const {
326     return CleanupsToDeactivate;
327   }
328 
329   void allocateArgumentMemory(CodeGenFunction &CGF);
330   llvm::Instruction *getStackBase() const { return StackBase; }
331   void freeArgumentMemory(CodeGenFunction &CGF) const;
332 
333   /// Returns if we're using an inalloca struct to pass arguments in
334   /// memory.
335   bool isUsingInAlloca() const { return StackBase; }
336 
337 private:
338   SmallVector<Writeback, 1> Writebacks;
339 
340   /// Deactivate these cleanups immediately before making the call.  This
341   /// is used to cleanup objects that are owned by the callee once the call
342   /// occurs.
343   SmallVector<CallArgCleanup, 1> CleanupsToDeactivate;
344 
345   /// The stacksave call.  It dominates all of the argument evaluation.
346   llvm::CallInst *StackBase = nullptr;
347 };
348 
349 /// FunctionArgList - Type for representing both the decl and type
350 /// of parameters to a function. The decl must be either a
351 /// ParmVarDecl or ImplicitParamDecl.
352 class FunctionArgList : public SmallVector<const VarDecl *, 16> {};
353 
354 /// ReturnValueSlot - Contains the address where the return value of a
355 /// function can be stored, and whether the address is volatile or not.
356 class ReturnValueSlot {
357   Address Addr = Address::invalid();
358 
359   // Return value slot flags
360   unsigned IsVolatile : 1;
361   unsigned IsUnused : 1;
362   unsigned IsExternallyDestructed : 1;
363 
364 public:
365   ReturnValueSlot()
366       : IsVolatile(false), IsUnused(false), IsExternallyDestructed(false) {}
367   ReturnValueSlot(Address Addr, bool IsVolatile, bool IsUnused = false,
368                   bool IsExternallyDestructed = false)
369       : Addr(Addr), IsVolatile(IsVolatile), IsUnused(IsUnused),
370         IsExternallyDestructed(IsExternallyDestructed) {}
371 
372   bool isNull() const { return !Addr.isValid(); }
373   bool isVolatile() const { return IsVolatile; }
374   Address getValue() const { return Addr; }
375   bool isUnused() const { return IsUnused; }
376   bool isExternallyDestructed() const { return IsExternallyDestructed; }
377 };
378 
379 /// Adds attributes to \p F according to our \p CodeGenOpts and \p LangOpts, as
380 /// though we had emitted it ourselves. We remove any attributes on F that
381 /// conflict with the attributes we add here.
382 ///
383 /// This is useful for adding attrs to bitcode modules that you want to link
384 /// with but don't control, such as CUDA's libdevice.  When linking with such
385 /// a bitcode library, you might want to set e.g. its functions'
386 /// "unsafe-fp-math" attribute to match the attr of the functions you're
387 /// codegen'ing.  Otherwise, LLVM will interpret the bitcode module's lack of
388 /// unsafe-fp-math attrs as tantamount to unsafe-fp-math=false, and then LLVM
389 /// will propagate unsafe-fp-math=false up to every transitive caller of a
390 /// function in the bitcode library!
391 ///
392 /// With the exception of fast-math attrs, this will only make the attributes
393 /// on the function more conservative.  But it's unsafe to call this on a
394 /// function which relies on particular fast-math attributes for correctness.
395 /// It's up to you to ensure that this is safe.
396 void mergeDefaultFunctionDefinitionAttributes(llvm::Function &F,
397                                               const CodeGenOptions &CodeGenOpts,
398                                               const LangOptions &LangOpts,
399                                               const TargetOptions &TargetOpts,
400                                               bool WillInternalize);
401 
402 enum class FnInfoOpts {
403   None = 0,
404   IsInstanceMethod = 1 << 0,
405   IsChainCall = 1 << 1,
406   IsDelegateCall = 1 << 2,
407 };
408 
409 inline FnInfoOpts operator|(FnInfoOpts A, FnInfoOpts B) {
410   return static_cast<FnInfoOpts>(llvm::to_underlying(A) |
411                                  llvm::to_underlying(B));
412 }
413 
414 inline FnInfoOpts operator&(FnInfoOpts A, FnInfoOpts B) {
415   return static_cast<FnInfoOpts>(llvm::to_underlying(A) &
416                                  llvm::to_underlying(B));
417 }
418 
419 inline FnInfoOpts operator|=(FnInfoOpts A, FnInfoOpts B) {
420   A = A | B;
421   return A;
422 }
423 
424 inline FnInfoOpts operator&=(FnInfoOpts A, FnInfoOpts B) {
425   A = A & B;
426   return A;
427 }
428 
429 } // end namespace CodeGen
430 } // end namespace clang
431 
432 #endif
433