1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /***/ 47 48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 49 switch (CC) { 50 default: return llvm::CallingConv::C; 51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 55 case CC_Win64: return llvm::CallingConv::Win64; 56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 60 // TODO: Add support for __pascal to LLVM. 61 case CC_X86Pascal: return llvm::CallingConv::C; 62 // TODO: Add support for __vectorcall to LLVM. 63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 65 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 66 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 67 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 68 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 69 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 70 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 71 case CC_Swift: return llvm::CallingConv::Swift; 72 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 73 } 74 } 75 76 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 77 /// qualification. Either or both of RD and MD may be null. A null RD indicates 78 /// that there is no meaningful 'this' type, and a null MD can occur when 79 /// calling a method pointer. 80 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 81 const CXXMethodDecl *MD) { 82 QualType RecTy; 83 if (RD) 84 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 85 else 86 RecTy = Context.VoidTy; 87 88 if (MD) 89 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 90 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 91 } 92 93 /// Returns the canonical formal type of the given C++ method. 94 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 95 return MD->getType()->getCanonicalTypeUnqualified() 96 .getAs<FunctionProtoType>(); 97 } 98 99 /// Returns the "extra-canonicalized" return type, which discards 100 /// qualifiers on the return type. Codegen doesn't care about them, 101 /// and it makes ABI code a little easier to be able to assume that 102 /// all parameter and return types are top-level unqualified. 103 static CanQualType GetReturnType(QualType RetTy) { 104 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 105 } 106 107 /// Arrange the argument and result information for a value of the given 108 /// unprototyped freestanding function type. 109 const CGFunctionInfo & 110 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 111 // When translating an unprototyped function type, always use a 112 // variadic type. 113 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 114 /*instanceMethod=*/false, 115 /*chainCall=*/false, None, 116 FTNP->getExtInfo(), {}, RequiredArgs(0)); 117 } 118 119 static void addExtParameterInfosForCall( 120 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 121 const FunctionProtoType *proto, 122 unsigned prefixArgs, 123 unsigned totalArgs) { 124 assert(proto->hasExtParameterInfos()); 125 assert(paramInfos.size() <= prefixArgs); 126 assert(proto->getNumParams() + prefixArgs <= totalArgs); 127 128 paramInfos.reserve(totalArgs); 129 130 // Add default infos for any prefix args that don't already have infos. 131 paramInfos.resize(prefixArgs); 132 133 // Add infos for the prototype. 134 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 135 paramInfos.push_back(ParamInfo); 136 // pass_object_size params have no parameter info. 137 if (ParamInfo.hasPassObjectSize()) 138 paramInfos.emplace_back(); 139 } 140 141 assert(paramInfos.size() <= totalArgs && 142 "Did we forget to insert pass_object_size args?"); 143 // Add default infos for the variadic and/or suffix arguments. 144 paramInfos.resize(totalArgs); 145 } 146 147 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 148 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 149 static void appendParameterTypes(const CodeGenTypes &CGT, 150 SmallVectorImpl<CanQualType> &prefix, 151 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 152 CanQual<FunctionProtoType> FPT) { 153 // Fast path: don't touch param info if we don't need to. 154 if (!FPT->hasExtParameterInfos()) { 155 assert(paramInfos.empty() && 156 "We have paramInfos, but the prototype doesn't?"); 157 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 158 return; 159 } 160 161 unsigned PrefixSize = prefix.size(); 162 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 163 // parameters; the only thing that can change this is the presence of 164 // pass_object_size. So, we preallocate for the common case. 165 prefix.reserve(prefix.size() + FPT->getNumParams()); 166 167 auto ExtInfos = FPT->getExtParameterInfos(); 168 assert(ExtInfos.size() == FPT->getNumParams()); 169 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 170 prefix.push_back(FPT->getParamType(I)); 171 if (ExtInfos[I].hasPassObjectSize()) 172 prefix.push_back(CGT.getContext().getSizeType()); 173 } 174 175 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 176 prefix.size()); 177 } 178 179 /// Arrange the LLVM function layout for a value of the given function 180 /// type, on top of any implicit parameters already stored. 181 static const CGFunctionInfo & 182 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 183 SmallVectorImpl<CanQualType> &prefix, 184 CanQual<FunctionProtoType> FTP) { 185 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 186 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 187 // FIXME: Kill copy. 188 appendParameterTypes(CGT, prefix, paramInfos, FTP); 189 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 190 191 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 192 /*chainCall=*/false, prefix, 193 FTP->getExtInfo(), paramInfos, 194 Required); 195 } 196 197 /// Arrange the argument and result information for a value of the 198 /// given freestanding function type. 199 const CGFunctionInfo & 200 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 201 SmallVector<CanQualType, 16> argTypes; 202 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 203 FTP); 204 } 205 206 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 207 bool IsWindows) { 208 // Set the appropriate calling convention for the Function. 209 if (D->hasAttr<StdCallAttr>()) 210 return CC_X86StdCall; 211 212 if (D->hasAttr<FastCallAttr>()) 213 return CC_X86FastCall; 214 215 if (D->hasAttr<RegCallAttr>()) 216 return CC_X86RegCall; 217 218 if (D->hasAttr<ThisCallAttr>()) 219 return CC_X86ThisCall; 220 221 if (D->hasAttr<VectorCallAttr>()) 222 return CC_X86VectorCall; 223 224 if (D->hasAttr<PascalAttr>()) 225 return CC_X86Pascal; 226 227 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 228 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 229 230 if (D->hasAttr<AArch64VectorPcsAttr>()) 231 return CC_AArch64VectorCall; 232 233 if (D->hasAttr<AArch64SVEPcsAttr>()) 234 return CC_AArch64SVEPCS; 235 236 if (D->hasAttr<AMDGPUKernelCallAttr>()) 237 return CC_AMDGPUKernelCall; 238 239 if (D->hasAttr<IntelOclBiccAttr>()) 240 return CC_IntelOclBicc; 241 242 if (D->hasAttr<MSABIAttr>()) 243 return IsWindows ? CC_C : CC_Win64; 244 245 if (D->hasAttr<SysVABIAttr>()) 246 return IsWindows ? CC_X86_64SysV : CC_C; 247 248 if (D->hasAttr<PreserveMostAttr>()) 249 return CC_PreserveMost; 250 251 if (D->hasAttr<PreserveAllAttr>()) 252 return CC_PreserveAll; 253 254 return CC_C; 255 } 256 257 /// Arrange the argument and result information for a call to an 258 /// unknown C++ non-static member function of the given abstract type. 259 /// (A null RD means we don't have any meaningful "this" argument type, 260 /// so fall back to a generic pointer type). 261 /// The member function must be an ordinary function, i.e. not a 262 /// constructor or destructor. 263 const CGFunctionInfo & 264 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 265 const FunctionProtoType *FTP, 266 const CXXMethodDecl *MD) { 267 SmallVector<CanQualType, 16> argTypes; 268 269 // Add the 'this' pointer. 270 argTypes.push_back(DeriveThisType(RD, MD)); 271 272 return ::arrangeLLVMFunctionInfo( 273 *this, true, argTypes, 274 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 275 } 276 277 /// Set calling convention for CUDA/HIP kernel. 278 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 279 const FunctionDecl *FD) { 280 if (FD->hasAttr<CUDAGlobalAttr>()) { 281 const FunctionType *FT = FTy->getAs<FunctionType>(); 282 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 283 FTy = FT->getCanonicalTypeUnqualified(); 284 } 285 } 286 287 /// Arrange the argument and result information for a declaration or 288 /// definition of the given C++ non-static member function. The 289 /// member function must be an ordinary function, i.e. not a 290 /// constructor or destructor. 291 const CGFunctionInfo & 292 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 293 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 294 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 295 296 CanQualType FT = GetFormalType(MD).getAs<Type>(); 297 setCUDAKernelCallingConvention(FT, CGM, MD); 298 auto prototype = FT.getAs<FunctionProtoType>(); 299 300 if (MD->isInstance()) { 301 // The abstract case is perfectly fine. 302 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 303 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 304 } 305 306 return arrangeFreeFunctionType(prototype); 307 } 308 309 bool CodeGenTypes::inheritingCtorHasParams( 310 const InheritedConstructor &Inherited, CXXCtorType Type) { 311 // Parameters are unnecessary if we're constructing a base class subobject 312 // and the inherited constructor lives in a virtual base. 313 return Type == Ctor_Complete || 314 !Inherited.getShadowDecl()->constructsVirtualBase() || 315 !Target.getCXXABI().hasConstructorVariants(); 316 } 317 318 const CGFunctionInfo & 319 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 320 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 321 322 SmallVector<CanQualType, 16> argTypes; 323 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 324 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 325 326 bool PassParams = true; 327 328 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 329 // A base class inheriting constructor doesn't get forwarded arguments 330 // needed to construct a virtual base (or base class thereof). 331 if (auto Inherited = CD->getInheritedConstructor()) 332 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 333 } 334 335 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 336 337 // Add the formal parameters. 338 if (PassParams) 339 appendParameterTypes(*this, argTypes, paramInfos, FTP); 340 341 CGCXXABI::AddedStructorArgCounts AddedArgs = 342 TheCXXABI.buildStructorSignature(GD, argTypes); 343 if (!paramInfos.empty()) { 344 // Note: prefix implies after the first param. 345 if (AddedArgs.Prefix) 346 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 347 FunctionProtoType::ExtParameterInfo{}); 348 if (AddedArgs.Suffix) 349 paramInfos.append(AddedArgs.Suffix, 350 FunctionProtoType::ExtParameterInfo{}); 351 } 352 353 RequiredArgs required = 354 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 355 : RequiredArgs::All); 356 357 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 358 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 359 ? argTypes.front() 360 : TheCXXABI.hasMostDerivedReturn(GD) 361 ? CGM.getContext().VoidPtrTy 362 : Context.VoidTy; 363 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 364 /*chainCall=*/false, argTypes, extInfo, 365 paramInfos, required); 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 373 return argTypes; 374 } 375 376 static SmallVector<CanQualType, 16> 377 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 378 SmallVector<CanQualType, 16> argTypes; 379 for (auto &arg : args) 380 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 381 return argTypes; 382 } 383 384 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 385 getExtParameterInfosForCall(const FunctionProtoType *proto, 386 unsigned prefixArgs, unsigned totalArgs) { 387 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 388 if (proto->hasExtParameterInfos()) { 389 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 390 } 391 return result; 392 } 393 394 /// Arrange a call to a C++ method, passing the given arguments. 395 /// 396 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 397 /// parameter. 398 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 399 /// args. 400 /// PassProtoArgs indicates whether `args` has args for the parameters in the 401 /// given CXXConstructorDecl. 402 const CGFunctionInfo & 403 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 404 const CXXConstructorDecl *D, 405 CXXCtorType CtorKind, 406 unsigned ExtraPrefixArgs, 407 unsigned ExtraSuffixArgs, 408 bool PassProtoArgs) { 409 // FIXME: Kill copy. 410 SmallVector<CanQualType, 16> ArgTypes; 411 for (const auto &Arg : args) 412 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 413 414 // +1 for implicit this, which should always be args[0]. 415 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 416 417 CanQual<FunctionProtoType> FPT = GetFormalType(D); 418 RequiredArgs Required = PassProtoArgs 419 ? RequiredArgs::forPrototypePlus( 420 FPT, TotalPrefixArgs + ExtraSuffixArgs) 421 : RequiredArgs::All; 422 423 GlobalDecl GD(D, CtorKind); 424 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 425 ? ArgTypes.front() 426 : TheCXXABI.hasMostDerivedReturn(GD) 427 ? CGM.getContext().VoidPtrTy 428 : Context.VoidTy; 429 430 FunctionType::ExtInfo Info = FPT->getExtInfo(); 431 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 432 // If the prototype args are elided, we should only have ABI-specific args, 433 // which never have param info. 434 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 435 // ABI-specific suffix arguments are treated the same as variadic arguments. 436 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 437 ArgTypes.size()); 438 } 439 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 440 /*chainCall=*/false, ArgTypes, Info, 441 ParamInfos, Required); 442 } 443 444 /// Arrange the argument and result information for the declaration or 445 /// definition of the given function. 446 const CGFunctionInfo & 447 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 448 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 449 if (MD->isInstance()) 450 return arrangeCXXMethodDeclaration(MD); 451 452 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 453 454 assert(isa<FunctionType>(FTy)); 455 setCUDAKernelCallingConvention(FTy, CGM, FD); 456 457 // When declaring a function without a prototype, always use a 458 // non-variadic type. 459 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 460 return arrangeLLVMFunctionInfo( 461 noProto->getReturnType(), /*instanceMethod=*/false, 462 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 463 } 464 465 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 466 } 467 468 /// Arrange the argument and result information for the declaration or 469 /// definition of an Objective-C method. 470 const CGFunctionInfo & 471 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 472 // It happens that this is the same as a call with no optional 473 // arguments, except also using the formal 'self' type. 474 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 475 } 476 477 /// Arrange the argument and result information for the function type 478 /// through which to perform a send to the given Objective-C method, 479 /// using the given receiver type. The receiver type is not always 480 /// the 'self' type of the method or even an Objective-C pointer type. 481 /// This is *not* the right method for actually performing such a 482 /// message send, due to the possibility of optional arguments. 483 const CGFunctionInfo & 484 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 485 QualType receiverType) { 486 SmallVector<CanQualType, 16> argTys; 487 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 488 argTys.push_back(Context.getCanonicalParamType(receiverType)); 489 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 490 // FIXME: Kill copy? 491 for (const auto *I : MD->parameters()) { 492 argTys.push_back(Context.getCanonicalParamType(I->getType())); 493 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 494 I->hasAttr<NoEscapeAttr>()); 495 extParamInfos.push_back(extParamInfo); 496 } 497 498 FunctionType::ExtInfo einfo; 499 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 500 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 501 502 if (getContext().getLangOpts().ObjCAutoRefCount && 503 MD->hasAttr<NSReturnsRetainedAttr>()) 504 einfo = einfo.withProducesResult(true); 505 506 RequiredArgs required = 507 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 508 509 return arrangeLLVMFunctionInfo( 510 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 511 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 512 } 513 514 const CGFunctionInfo & 515 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 516 const CallArgList &args) { 517 auto argTypes = getArgTypesForCall(Context, args); 518 FunctionType::ExtInfo einfo; 519 520 return arrangeLLVMFunctionInfo( 521 GetReturnType(returnType), /*instanceMethod=*/false, 522 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 523 } 524 525 const CGFunctionInfo & 526 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 527 // FIXME: Do we need to handle ObjCMethodDecl? 528 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 529 530 if (isa<CXXConstructorDecl>(GD.getDecl()) || 531 isa<CXXDestructorDecl>(GD.getDecl())) 532 return arrangeCXXStructorDeclaration(GD); 533 534 return arrangeFunctionDeclaration(FD); 535 } 536 537 /// Arrange a thunk that takes 'this' as the first parameter followed by 538 /// varargs. Return a void pointer, regardless of the actual return type. 539 /// The body of the thunk will end in a musttail call to a function of the 540 /// correct type, and the caller will bitcast the function to the correct 541 /// prototype. 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 544 assert(MD->isVirtual() && "only methods have thunks"); 545 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 546 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 547 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 548 /*chainCall=*/false, ArgTys, 549 FTP->getExtInfo(), {}, RequiredArgs(1)); 550 } 551 552 const CGFunctionInfo & 553 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 554 CXXCtorType CT) { 555 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 556 557 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 558 SmallVector<CanQualType, 2> ArgTys; 559 const CXXRecordDecl *RD = CD->getParent(); 560 ArgTys.push_back(DeriveThisType(RD, CD)); 561 if (CT == Ctor_CopyingClosure) 562 ArgTys.push_back(*FTP->param_type_begin()); 563 if (RD->getNumVBases() > 0) 564 ArgTys.push_back(Context.IntTy); 565 CallingConv CC = Context.getDefaultCallingConvention( 566 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 567 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 568 /*chainCall=*/false, ArgTys, 569 FunctionType::ExtInfo(CC), {}, 570 RequiredArgs::All); 571 } 572 573 /// Arrange a call as unto a free function, except possibly with an 574 /// additional number of formal parameters considered required. 575 static const CGFunctionInfo & 576 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 577 CodeGenModule &CGM, 578 const CallArgList &args, 579 const FunctionType *fnType, 580 unsigned numExtraRequiredArgs, 581 bool chainCall) { 582 assert(args.size() >= numExtraRequiredArgs); 583 584 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 585 586 // In most cases, there are no optional arguments. 587 RequiredArgs required = RequiredArgs::All; 588 589 // If we have a variadic prototype, the required arguments are the 590 // extra prefix plus the arguments in the prototype. 591 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 592 if (proto->isVariadic()) 593 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 594 595 if (proto->hasExtParameterInfos()) 596 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 597 args.size()); 598 599 // If we don't have a prototype at all, but we're supposed to 600 // explicitly use the variadic convention for unprototyped calls, 601 // treat all of the arguments as required but preserve the nominal 602 // possibility of variadics. 603 } else if (CGM.getTargetCodeGenInfo() 604 .isNoProtoCallVariadic(args, 605 cast<FunctionNoProtoType>(fnType))) { 606 required = RequiredArgs(args.size()); 607 } 608 609 // FIXME: Kill copy. 610 SmallVector<CanQualType, 16> argTypes; 611 for (const auto &arg : args) 612 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 613 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 614 /*instanceMethod=*/false, chainCall, 615 argTypes, fnType->getExtInfo(), paramInfos, 616 required); 617 } 618 619 /// Figure out the rules for calling a function with the given formal 620 /// type using the given arguments. The arguments are necessary 621 /// because the function might be unprototyped, in which case it's 622 /// target-dependent in crazy ways. 623 const CGFunctionInfo & 624 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 625 const FunctionType *fnType, 626 bool chainCall) { 627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 628 chainCall ? 1 : 0, chainCall); 629 } 630 631 /// A block function is essentially a free function with an 632 /// extra implicit argument. 633 const CGFunctionInfo & 634 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 635 const FunctionType *fnType) { 636 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 637 /*chainCall=*/false); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 642 const FunctionArgList ¶ms) { 643 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 644 auto argTypes = getArgTypesForDeclaration(Context, params); 645 646 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 647 /*instanceMethod*/ false, /*chainCall*/ false, 648 argTypes, proto->getExtInfo(), paramInfos, 649 RequiredArgs::forPrototypePlus(proto, 1)); 650 } 651 652 const CGFunctionInfo & 653 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 654 const CallArgList &args) { 655 // FIXME: Kill copy. 656 SmallVector<CanQualType, 16> argTypes; 657 for (const auto &Arg : args) 658 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 659 return arrangeLLVMFunctionInfo( 660 GetReturnType(resultType), /*instanceMethod=*/false, 661 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 662 /*paramInfos=*/ {}, RequiredArgs::All); 663 } 664 665 const CGFunctionInfo & 666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 667 const FunctionArgList &args) { 668 auto argTypes = getArgTypesForDeclaration(Context, args); 669 670 return arrangeLLVMFunctionInfo( 671 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 673 } 674 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 677 ArrayRef<CanQualType> argTypes) { 678 return arrangeLLVMFunctionInfo( 679 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 680 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 681 } 682 683 /// Arrange a call to a C++ method, passing the given arguments. 684 /// 685 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 686 /// does not count `this`. 687 const CGFunctionInfo & 688 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 689 const FunctionProtoType *proto, 690 RequiredArgs required, 691 unsigned numPrefixArgs) { 692 assert(numPrefixArgs + 1 <= args.size() && 693 "Emitting a call with less args than the required prefix?"); 694 // Add one to account for `this`. It's a bit awkward here, but we don't count 695 // `this` in similar places elsewhere. 696 auto paramInfos = 697 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 698 699 // FIXME: Kill copy. 700 auto argTypes = getArgTypesForCall(Context, args); 701 702 FunctionType::ExtInfo info = proto->getExtInfo(); 703 return arrangeLLVMFunctionInfo( 704 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 705 /*chainCall=*/false, argTypes, info, paramInfos, required); 706 } 707 708 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 709 return arrangeLLVMFunctionInfo( 710 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 711 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 712 } 713 714 const CGFunctionInfo & 715 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 716 const CallArgList &args) { 717 assert(signature.arg_size() <= args.size()); 718 if (signature.arg_size() == args.size()) 719 return signature; 720 721 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 722 auto sigParamInfos = signature.getExtParameterInfos(); 723 if (!sigParamInfos.empty()) { 724 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 725 paramInfos.resize(args.size()); 726 } 727 728 auto argTypes = getArgTypesForCall(Context, args); 729 730 assert(signature.getRequiredArgs().allowsOptionalArgs()); 731 return arrangeLLVMFunctionInfo(signature.getReturnType(), 732 signature.isInstanceMethod(), 733 signature.isChainCall(), 734 argTypes, 735 signature.getExtInfo(), 736 paramInfos, 737 signature.getRequiredArgs()); 738 } 739 740 namespace clang { 741 namespace CodeGen { 742 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 743 } 744 } 745 746 /// Arrange the argument and result information for an abstract value 747 /// of a given function type. This is the method which all of the 748 /// above functions ultimately defer to. 749 const CGFunctionInfo & 750 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 751 bool instanceMethod, 752 bool chainCall, 753 ArrayRef<CanQualType> argTypes, 754 FunctionType::ExtInfo info, 755 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 756 RequiredArgs required) { 757 assert(llvm::all_of(argTypes, 758 [](CanQualType T) { return T.isCanonicalAsParam(); })); 759 760 // Lookup or create unique function info. 761 llvm::FoldingSetNodeID ID; 762 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 763 required, resultType, argTypes); 764 765 void *insertPos = nullptr; 766 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 767 if (FI) 768 return *FI; 769 770 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 771 772 // Construct the function info. We co-allocate the ArgInfos. 773 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 774 paramInfos, resultType, argTypes, required); 775 FunctionInfos.InsertNode(FI, insertPos); 776 777 bool inserted = FunctionsBeingProcessed.insert(FI).second; 778 (void)inserted; 779 assert(inserted && "Recursively being processed?"); 780 781 // Compute ABI information. 782 if (CC == llvm::CallingConv::SPIR_KERNEL) { 783 // Force target independent argument handling for the host visible 784 // kernel functions. 785 computeSPIRKernelABIInfo(CGM, *FI); 786 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 787 swiftcall::computeABIInfo(CGM, *FI); 788 } else { 789 getABIInfo().computeInfo(*FI); 790 } 791 792 // Loop over all of the computed argument and return value info. If any of 793 // them are direct or extend without a specified coerce type, specify the 794 // default now. 795 ABIArgInfo &retInfo = FI->getReturnInfo(); 796 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 797 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 798 799 for (auto &I : FI->arguments()) 800 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 801 I.info.setCoerceToType(ConvertType(I.type)); 802 803 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 804 assert(erased && "Not in set?"); 805 806 return *FI; 807 } 808 809 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 810 bool instanceMethod, 811 bool chainCall, 812 const FunctionType::ExtInfo &info, 813 ArrayRef<ExtParameterInfo> paramInfos, 814 CanQualType resultType, 815 ArrayRef<CanQualType> argTypes, 816 RequiredArgs required) { 817 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 818 assert(!required.allowsOptionalArgs() || 819 required.getNumRequiredArgs() <= argTypes.size()); 820 821 void *buffer = 822 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 823 argTypes.size() + 1, paramInfos.size())); 824 825 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 826 FI->CallingConvention = llvmCC; 827 FI->EffectiveCallingConvention = llvmCC; 828 FI->ASTCallingConvention = info.getCC(); 829 FI->InstanceMethod = instanceMethod; 830 FI->ChainCall = chainCall; 831 FI->CmseNSCall = info.getCmseNSCall(); 832 FI->NoReturn = info.getNoReturn(); 833 FI->ReturnsRetained = info.getProducesResult(); 834 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 835 FI->NoCfCheck = info.getNoCfCheck(); 836 FI->Required = required; 837 FI->HasRegParm = info.getHasRegParm(); 838 FI->RegParm = info.getRegParm(); 839 FI->ArgStruct = nullptr; 840 FI->ArgStructAlign = 0; 841 FI->NumArgs = argTypes.size(); 842 FI->HasExtParameterInfos = !paramInfos.empty(); 843 FI->getArgsBuffer()[0].type = resultType; 844 FI->MaxVectorWidth = 0; 845 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 846 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 847 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 848 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 849 return FI; 850 } 851 852 /***/ 853 854 namespace { 855 // ABIArgInfo::Expand implementation. 856 857 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 858 struct TypeExpansion { 859 enum TypeExpansionKind { 860 // Elements of constant arrays are expanded recursively. 861 TEK_ConstantArray, 862 // Record fields are expanded recursively (but if record is a union, only 863 // the field with the largest size is expanded). 864 TEK_Record, 865 // For complex types, real and imaginary parts are expanded recursively. 866 TEK_Complex, 867 // All other types are not expandable. 868 TEK_None 869 }; 870 871 const TypeExpansionKind Kind; 872 873 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 874 virtual ~TypeExpansion() {} 875 }; 876 877 struct ConstantArrayExpansion : TypeExpansion { 878 QualType EltTy; 879 uint64_t NumElts; 880 881 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 882 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 883 static bool classof(const TypeExpansion *TE) { 884 return TE->Kind == TEK_ConstantArray; 885 } 886 }; 887 888 struct RecordExpansion : TypeExpansion { 889 SmallVector<const CXXBaseSpecifier *, 1> Bases; 890 891 SmallVector<const FieldDecl *, 1> Fields; 892 893 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 894 SmallVector<const FieldDecl *, 1> &&Fields) 895 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 896 Fields(std::move(Fields)) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_Record; 899 } 900 }; 901 902 struct ComplexExpansion : TypeExpansion { 903 QualType EltTy; 904 905 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 906 static bool classof(const TypeExpansion *TE) { 907 return TE->Kind == TEK_Complex; 908 } 909 }; 910 911 struct NoExpansion : TypeExpansion { 912 NoExpansion() : TypeExpansion(TEK_None) {} 913 static bool classof(const TypeExpansion *TE) { 914 return TE->Kind == TEK_None; 915 } 916 }; 917 } // namespace 918 919 static std::unique_ptr<TypeExpansion> 920 getTypeExpansion(QualType Ty, const ASTContext &Context) { 921 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 922 return std::make_unique<ConstantArrayExpansion>( 923 AT->getElementType(), AT->getSize().getZExtValue()); 924 } 925 if (const RecordType *RT = Ty->getAs<RecordType>()) { 926 SmallVector<const CXXBaseSpecifier *, 1> Bases; 927 SmallVector<const FieldDecl *, 1> Fields; 928 const RecordDecl *RD = RT->getDecl(); 929 assert(!RD->hasFlexibleArrayMember() && 930 "Cannot expand structure with flexible array."); 931 if (RD->isUnion()) { 932 // Unions can be here only in degenerative cases - all the fields are same 933 // after flattening. Thus we have to use the "largest" field. 934 const FieldDecl *LargestFD = nullptr; 935 CharUnits UnionSize = CharUnits::Zero(); 936 937 for (const auto *FD : RD->fields()) { 938 if (FD->isZeroLengthBitField(Context)) 939 continue; 940 assert(!FD->isBitField() && 941 "Cannot expand structure with bit-field members."); 942 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 943 if (UnionSize < FieldSize) { 944 UnionSize = FieldSize; 945 LargestFD = FD; 946 } 947 } 948 if (LargestFD) 949 Fields.push_back(LargestFD); 950 } else { 951 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 952 assert(!CXXRD->isDynamicClass() && 953 "cannot expand vtable pointers in dynamic classes"); 954 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 955 } 956 957 for (const auto *FD : RD->fields()) { 958 if (FD->isZeroLengthBitField(Context)) 959 continue; 960 assert(!FD->isBitField() && 961 "Cannot expand structure with bit-field members."); 962 Fields.push_back(FD); 963 } 964 } 965 return std::make_unique<RecordExpansion>(std::move(Bases), 966 std::move(Fields)); 967 } 968 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 969 return std::make_unique<ComplexExpansion>(CT->getElementType()); 970 } 971 return std::make_unique<NoExpansion>(); 972 } 973 974 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 975 auto Exp = getTypeExpansion(Ty, Context); 976 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 977 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 978 } 979 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 980 int Res = 0; 981 for (auto BS : RExp->Bases) 982 Res += getExpansionSize(BS->getType(), Context); 983 for (auto FD : RExp->Fields) 984 Res += getExpansionSize(FD->getType(), Context); 985 return Res; 986 } 987 if (isa<ComplexExpansion>(Exp.get())) 988 return 2; 989 assert(isa<NoExpansion>(Exp.get())); 990 return 1; 991 } 992 993 void 994 CodeGenTypes::getExpandedTypes(QualType Ty, 995 SmallVectorImpl<llvm::Type *>::iterator &TI) { 996 auto Exp = getTypeExpansion(Ty, Context); 997 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 998 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 999 getExpandedTypes(CAExp->EltTy, TI); 1000 } 1001 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1002 for (auto BS : RExp->Bases) 1003 getExpandedTypes(BS->getType(), TI); 1004 for (auto FD : RExp->Fields) 1005 getExpandedTypes(FD->getType(), TI); 1006 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1007 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1008 *TI++ = EltTy; 1009 *TI++ = EltTy; 1010 } else { 1011 assert(isa<NoExpansion>(Exp.get())); 1012 *TI++ = ConvertType(Ty); 1013 } 1014 } 1015 1016 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1017 ConstantArrayExpansion *CAE, 1018 Address BaseAddr, 1019 llvm::function_ref<void(Address)> Fn) { 1020 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1021 CharUnits EltAlign = 1022 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1023 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy); 1024 1025 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1026 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1027 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1028 Fn(Address(EltAddr, EltTy, EltAlign)); 1029 } 1030 } 1031 1032 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1033 llvm::Function::arg_iterator &AI) { 1034 assert(LV.isSimple() && 1035 "Unexpected non-simple lvalue during struct expansion."); 1036 1037 auto Exp = getTypeExpansion(Ty, getContext()); 1038 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1039 forConstantArrayExpansion( 1040 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1041 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1042 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1043 }); 1044 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1045 Address This = LV.getAddress(*this); 1046 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1047 // Perform a single step derived-to-base conversion. 1048 Address Base = 1049 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1050 /*NullCheckValue=*/false, SourceLocation()); 1051 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1052 1053 // Recurse onto bases. 1054 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1055 } 1056 for (auto FD : RExp->Fields) { 1057 // FIXME: What are the right qualifiers here? 1058 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1059 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1060 } 1061 } else if (isa<ComplexExpansion>(Exp.get())) { 1062 auto realValue = &*AI++; 1063 auto imagValue = &*AI++; 1064 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1065 } else { 1066 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1067 // primitive store. 1068 assert(isa<NoExpansion>(Exp.get())); 1069 llvm::Value *Arg = &*AI++; 1070 if (LV.isBitField()) { 1071 EmitStoreThroughLValue(RValue::get(Arg), LV); 1072 } else { 1073 // TODO: currently there are some places are inconsistent in what LLVM 1074 // pointer type they use (see D118744). Once clang uses opaque pointers 1075 // all LLVM pointer types will be the same and we can remove this check. 1076 if (Arg->getType()->isPointerTy()) { 1077 Address Addr = LV.getAddress(*this); 1078 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1079 } 1080 EmitStoreOfScalar(Arg, LV); 1081 } 1082 } 1083 } 1084 1085 void CodeGenFunction::ExpandTypeToArgs( 1086 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1087 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1088 auto Exp = getTypeExpansion(Ty, getContext()); 1089 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1090 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1091 : Arg.getKnownRValue().getAggregateAddress(); 1092 forConstantArrayExpansion( 1093 *this, CAExp, Addr, [&](Address EltAddr) { 1094 CallArg EltArg = CallArg( 1095 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1096 CAExp->EltTy); 1097 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 }); 1100 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1101 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1102 : Arg.getKnownRValue().getAggregateAddress(); 1103 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1104 // Perform a single step derived-to-base conversion. 1105 Address Base = 1106 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1107 /*NullCheckValue=*/false, SourceLocation()); 1108 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1109 1110 // Recurse onto bases. 1111 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1112 IRCallArgPos); 1113 } 1114 1115 LValue LV = MakeAddrLValue(This, Ty); 1116 for (auto FD : RExp->Fields) { 1117 CallArg FldArg = 1118 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1119 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1120 IRCallArgPos); 1121 } 1122 } else if (isa<ComplexExpansion>(Exp.get())) { 1123 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1124 IRCallArgs[IRCallArgPos++] = CV.first; 1125 IRCallArgs[IRCallArgPos++] = CV.second; 1126 } else { 1127 assert(isa<NoExpansion>(Exp.get())); 1128 auto RV = Arg.getKnownRValue(); 1129 assert(RV.isScalar() && 1130 "Unexpected non-scalar rvalue during struct expansion."); 1131 1132 // Insert a bitcast as needed. 1133 llvm::Value *V = RV.getScalarVal(); 1134 if (IRCallArgPos < IRFuncTy->getNumParams() && 1135 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1136 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1137 1138 IRCallArgs[IRCallArgPos++] = V; 1139 } 1140 } 1141 1142 /// Create a temporary allocation for the purposes of coercion. 1143 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1144 CharUnits MinAlign, 1145 const Twine &Name = "tmp") { 1146 // Don't use an alignment that's worse than what LLVM would prefer. 1147 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1148 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1149 1150 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1151 } 1152 1153 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1154 /// accessing some number of bytes out of it, try to gep into the struct to get 1155 /// at its inner goodness. Dive as deep as possible without entering an element 1156 /// with an in-memory size smaller than DstSize. 1157 static Address 1158 EnterStructPointerForCoercedAccess(Address SrcPtr, 1159 llvm::StructType *SrcSTy, 1160 uint64_t DstSize, CodeGenFunction &CGF) { 1161 // We can't dive into a zero-element struct. 1162 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1163 1164 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1165 1166 // If the first elt is at least as large as what we're looking for, or if the 1167 // first element is the same size as the whole struct, we can enter it. The 1168 // comparison must be made on the store size and not the alloca size. Using 1169 // the alloca size may overstate the size of the load. 1170 uint64_t FirstEltSize = 1171 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1172 if (FirstEltSize < DstSize && 1173 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1174 return SrcPtr; 1175 1176 // GEP into the first element. 1177 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1178 1179 // If the first element is a struct, recurse. 1180 llvm::Type *SrcTy = SrcPtr.getElementType(); 1181 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1182 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1183 1184 return SrcPtr; 1185 } 1186 1187 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1188 /// are either integers or pointers. This does a truncation of the value if it 1189 /// is too large or a zero extension if it is too small. 1190 /// 1191 /// This behaves as if the value were coerced through memory, so on big-endian 1192 /// targets the high bits are preserved in a truncation, while little-endian 1193 /// targets preserve the low bits. 1194 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1195 llvm::Type *Ty, 1196 CodeGenFunction &CGF) { 1197 if (Val->getType() == Ty) 1198 return Val; 1199 1200 if (isa<llvm::PointerType>(Val->getType())) { 1201 // If this is Pointer->Pointer avoid conversion to and from int. 1202 if (isa<llvm::PointerType>(Ty)) 1203 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1204 1205 // Convert the pointer to an integer so we can play with its width. 1206 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1207 } 1208 1209 llvm::Type *DestIntTy = Ty; 1210 if (isa<llvm::PointerType>(DestIntTy)) 1211 DestIntTy = CGF.IntPtrTy; 1212 1213 if (Val->getType() != DestIntTy) { 1214 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1215 if (DL.isBigEndian()) { 1216 // Preserve the high bits on big-endian targets. 1217 // That is what memory coercion does. 1218 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1219 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1220 1221 if (SrcSize > DstSize) { 1222 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1223 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1224 } else { 1225 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1226 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1227 } 1228 } else { 1229 // Little-endian targets preserve the low bits. No shifts required. 1230 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1231 } 1232 } 1233 1234 if (isa<llvm::PointerType>(Ty)) 1235 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1236 return Val; 1237 } 1238 1239 1240 1241 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1242 /// a pointer to an object of type \arg Ty, known to be aligned to 1243 /// \arg SrcAlign bytes. 1244 /// 1245 /// This safely handles the case when the src type is smaller than the 1246 /// destination type; in this situation the values of bits which not 1247 /// present in the src are undefined. 1248 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1249 CodeGenFunction &CGF) { 1250 llvm::Type *SrcTy = Src.getElementType(); 1251 1252 // If SrcTy and Ty are the same, just do a load. 1253 if (SrcTy == Ty) 1254 return CGF.Builder.CreateLoad(Src); 1255 1256 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1257 1258 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1259 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1260 DstSize.getFixedSize(), CGF); 1261 SrcTy = Src.getElementType(); 1262 } 1263 1264 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1265 1266 // If the source and destination are integer or pointer types, just do an 1267 // extension or truncation to the desired type. 1268 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1269 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1270 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1271 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1272 } 1273 1274 // If load is legal, just bitcast the src pointer. 1275 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1276 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1277 // Generally SrcSize is never greater than DstSize, since this means we are 1278 // losing bits. However, this can happen in cases where the structure has 1279 // additional padding, for example due to a user specified alignment. 1280 // 1281 // FIXME: Assert that we aren't truncating non-padding bits when have access 1282 // to that information. 1283 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1284 return CGF.Builder.CreateLoad(Src); 1285 } 1286 1287 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1288 // the types match, use the llvm.vector.insert intrinsic to perform the 1289 // conversion. 1290 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1291 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1292 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1293 // vector, use a vector insert and bitcast the result. 1294 bool NeedsBitcast = false; 1295 auto PredType = 1296 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1297 llvm::Type *OrigType = Ty; 1298 if (ScalableDst == PredType && 1299 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1300 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1301 NeedsBitcast = true; 1302 } 1303 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1304 auto *Load = CGF.Builder.CreateLoad(Src); 1305 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1306 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1307 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1308 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1309 if (NeedsBitcast) 1310 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1311 return Result; 1312 } 1313 } 1314 } 1315 1316 // Otherwise do coercion through memory. This is stupid, but simple. 1317 Address Tmp = 1318 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1319 CGF.Builder.CreateMemCpy( 1320 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1321 Src.getAlignment().getAsAlign(), 1322 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1323 return CGF.Builder.CreateLoad(Tmp); 1324 } 1325 1326 // Function to store a first-class aggregate into memory. We prefer to 1327 // store the elements rather than the aggregate to be more friendly to 1328 // fast-isel. 1329 // FIXME: Do we need to recurse here? 1330 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1331 bool DestIsVolatile) { 1332 // Prefer scalar stores to first-class aggregate stores. 1333 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1334 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1335 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1336 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1337 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1338 } 1339 } else { 1340 Builder.CreateStore(Val, Dest, DestIsVolatile); 1341 } 1342 } 1343 1344 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1345 /// where the source and destination may have different types. The 1346 /// destination is known to be aligned to \arg DstAlign bytes. 1347 /// 1348 /// This safely handles the case when the src type is larger than the 1349 /// destination type; the upper bits of the src will be lost. 1350 static void CreateCoercedStore(llvm::Value *Src, 1351 Address Dst, 1352 bool DstIsVolatile, 1353 CodeGenFunction &CGF) { 1354 llvm::Type *SrcTy = Src->getType(); 1355 llvm::Type *DstTy = Dst.getElementType(); 1356 if (SrcTy == DstTy) { 1357 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1358 return; 1359 } 1360 1361 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1362 1363 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1364 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1365 SrcSize.getFixedSize(), CGF); 1366 DstTy = Dst.getElementType(); 1367 } 1368 1369 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1370 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1371 if (SrcPtrTy && DstPtrTy && 1372 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1373 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1374 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1375 return; 1376 } 1377 1378 // If the source and destination are integer or pointer types, just do an 1379 // extension or truncation to the desired type. 1380 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1381 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1382 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1383 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1384 return; 1385 } 1386 1387 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1388 1389 // If store is legal, just bitcast the src pointer. 1390 if (isa<llvm::ScalableVectorType>(SrcTy) || 1391 isa<llvm::ScalableVectorType>(DstTy) || 1392 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1393 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1394 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1395 } else { 1396 // Otherwise do coercion through memory. This is stupid, but 1397 // simple. 1398 1399 // Generally SrcSize is never greater than DstSize, since this means we are 1400 // losing bits. However, this can happen in cases where the structure has 1401 // additional padding, for example due to a user specified alignment. 1402 // 1403 // FIXME: Assert that we aren't truncating non-padding bits when have access 1404 // to that information. 1405 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1406 CGF.Builder.CreateStore(Src, Tmp); 1407 CGF.Builder.CreateMemCpy( 1408 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1409 Tmp.getAlignment().getAsAlign(), 1410 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1411 } 1412 } 1413 1414 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1415 const ABIArgInfo &info) { 1416 if (unsigned offset = info.getDirectOffset()) { 1417 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1418 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1419 CharUnits::fromQuantity(offset)); 1420 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1421 } 1422 return addr; 1423 } 1424 1425 namespace { 1426 1427 /// Encapsulates information about the way function arguments from 1428 /// CGFunctionInfo should be passed to actual LLVM IR function. 1429 class ClangToLLVMArgMapping { 1430 static const unsigned InvalidIndex = ~0U; 1431 unsigned InallocaArgNo; 1432 unsigned SRetArgNo; 1433 unsigned TotalIRArgs; 1434 1435 /// Arguments of LLVM IR function corresponding to single Clang argument. 1436 struct IRArgs { 1437 unsigned PaddingArgIndex; 1438 // Argument is expanded to IR arguments at positions 1439 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1440 unsigned FirstArgIndex; 1441 unsigned NumberOfArgs; 1442 1443 IRArgs() 1444 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1445 NumberOfArgs(0) {} 1446 }; 1447 1448 SmallVector<IRArgs, 8> ArgInfo; 1449 1450 public: 1451 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1452 bool OnlyRequiredArgs = false) 1453 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1454 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1455 construct(Context, FI, OnlyRequiredArgs); 1456 } 1457 1458 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1459 unsigned getInallocaArgNo() const { 1460 assert(hasInallocaArg()); 1461 return InallocaArgNo; 1462 } 1463 1464 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1465 unsigned getSRetArgNo() const { 1466 assert(hasSRetArg()); 1467 return SRetArgNo; 1468 } 1469 1470 unsigned totalIRArgs() const { return TotalIRArgs; } 1471 1472 bool hasPaddingArg(unsigned ArgNo) const { 1473 assert(ArgNo < ArgInfo.size()); 1474 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1475 } 1476 unsigned getPaddingArgNo(unsigned ArgNo) const { 1477 assert(hasPaddingArg(ArgNo)); 1478 return ArgInfo[ArgNo].PaddingArgIndex; 1479 } 1480 1481 /// Returns index of first IR argument corresponding to ArgNo, and their 1482 /// quantity. 1483 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1484 assert(ArgNo < ArgInfo.size()); 1485 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1486 ArgInfo[ArgNo].NumberOfArgs); 1487 } 1488 1489 private: 1490 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1491 bool OnlyRequiredArgs); 1492 }; 1493 1494 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1495 const CGFunctionInfo &FI, 1496 bool OnlyRequiredArgs) { 1497 unsigned IRArgNo = 0; 1498 bool SwapThisWithSRet = false; 1499 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1500 1501 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1502 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1503 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1504 } 1505 1506 unsigned ArgNo = 0; 1507 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1508 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1509 ++I, ++ArgNo) { 1510 assert(I != FI.arg_end()); 1511 QualType ArgType = I->type; 1512 const ABIArgInfo &AI = I->info; 1513 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1514 auto &IRArgs = ArgInfo[ArgNo]; 1515 1516 if (AI.getPaddingType()) 1517 IRArgs.PaddingArgIndex = IRArgNo++; 1518 1519 switch (AI.getKind()) { 1520 case ABIArgInfo::Extend: 1521 case ABIArgInfo::Direct: { 1522 // FIXME: handle sseregparm someday... 1523 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1524 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1525 IRArgs.NumberOfArgs = STy->getNumElements(); 1526 } else { 1527 IRArgs.NumberOfArgs = 1; 1528 } 1529 break; 1530 } 1531 case ABIArgInfo::Indirect: 1532 case ABIArgInfo::IndirectAliased: 1533 IRArgs.NumberOfArgs = 1; 1534 break; 1535 case ABIArgInfo::Ignore: 1536 case ABIArgInfo::InAlloca: 1537 // ignore and inalloca doesn't have matching LLVM parameters. 1538 IRArgs.NumberOfArgs = 0; 1539 break; 1540 case ABIArgInfo::CoerceAndExpand: 1541 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1542 break; 1543 case ABIArgInfo::Expand: 1544 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1545 break; 1546 } 1547 1548 if (IRArgs.NumberOfArgs > 0) { 1549 IRArgs.FirstArgIndex = IRArgNo; 1550 IRArgNo += IRArgs.NumberOfArgs; 1551 } 1552 1553 // Skip over the sret parameter when it comes second. We already handled it 1554 // above. 1555 if (IRArgNo == 1 && SwapThisWithSRet) 1556 IRArgNo++; 1557 } 1558 assert(ArgNo == ArgInfo.size()); 1559 1560 if (FI.usesInAlloca()) 1561 InallocaArgNo = IRArgNo++; 1562 1563 TotalIRArgs = IRArgNo; 1564 } 1565 } // namespace 1566 1567 /***/ 1568 1569 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1570 const auto &RI = FI.getReturnInfo(); 1571 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1572 } 1573 1574 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1575 return ReturnTypeUsesSRet(FI) && 1576 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1577 } 1578 1579 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1580 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1581 switch (BT->getKind()) { 1582 default: 1583 return false; 1584 case BuiltinType::Float: 1585 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1586 case BuiltinType::Double: 1587 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1588 case BuiltinType::LongDouble: 1589 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1590 } 1591 } 1592 1593 return false; 1594 } 1595 1596 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1597 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1598 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1599 if (BT->getKind() == BuiltinType::LongDouble) 1600 return getTarget().useObjCFP2RetForComplexLongDouble(); 1601 } 1602 } 1603 1604 return false; 1605 } 1606 1607 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1608 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1609 return GetFunctionType(FI); 1610 } 1611 1612 llvm::FunctionType * 1613 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1614 1615 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1616 (void)Inserted; 1617 assert(Inserted && "Recursively being processed?"); 1618 1619 llvm::Type *resultType = nullptr; 1620 const ABIArgInfo &retAI = FI.getReturnInfo(); 1621 switch (retAI.getKind()) { 1622 case ABIArgInfo::Expand: 1623 case ABIArgInfo::IndirectAliased: 1624 llvm_unreachable("Invalid ABI kind for return argument"); 1625 1626 case ABIArgInfo::Extend: 1627 case ABIArgInfo::Direct: 1628 resultType = retAI.getCoerceToType(); 1629 break; 1630 1631 case ABIArgInfo::InAlloca: 1632 if (retAI.getInAllocaSRet()) { 1633 // sret things on win32 aren't void, they return the sret pointer. 1634 QualType ret = FI.getReturnType(); 1635 llvm::Type *ty = ConvertType(ret); 1636 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1637 resultType = llvm::PointerType::get(ty, addressSpace); 1638 } else { 1639 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1640 } 1641 break; 1642 1643 case ABIArgInfo::Indirect: 1644 case ABIArgInfo::Ignore: 1645 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1646 break; 1647 1648 case ABIArgInfo::CoerceAndExpand: 1649 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1650 break; 1651 } 1652 1653 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1654 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1655 1656 // Add type for sret argument. 1657 if (IRFunctionArgs.hasSRetArg()) { 1658 QualType Ret = FI.getReturnType(); 1659 llvm::Type *Ty = ConvertType(Ret); 1660 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1661 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1662 llvm::PointerType::get(Ty, AddressSpace); 1663 } 1664 1665 // Add type for inalloca argument. 1666 if (IRFunctionArgs.hasInallocaArg()) { 1667 auto ArgStruct = FI.getArgStruct(); 1668 assert(ArgStruct); 1669 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1670 } 1671 1672 // Add in all of the required arguments. 1673 unsigned ArgNo = 0; 1674 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1675 ie = it + FI.getNumRequiredArgs(); 1676 for (; it != ie; ++it, ++ArgNo) { 1677 const ABIArgInfo &ArgInfo = it->info; 1678 1679 // Insert a padding type to ensure proper alignment. 1680 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1681 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1682 ArgInfo.getPaddingType(); 1683 1684 unsigned FirstIRArg, NumIRArgs; 1685 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1686 1687 switch (ArgInfo.getKind()) { 1688 case ABIArgInfo::Ignore: 1689 case ABIArgInfo::InAlloca: 1690 assert(NumIRArgs == 0); 1691 break; 1692 1693 case ABIArgInfo::Indirect: { 1694 assert(NumIRArgs == 1); 1695 // indirect arguments are always on the stack, which is alloca addr space. 1696 llvm::Type *LTy = ConvertTypeForMem(it->type); 1697 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1698 CGM.getDataLayout().getAllocaAddrSpace()); 1699 break; 1700 } 1701 case ABIArgInfo::IndirectAliased: { 1702 assert(NumIRArgs == 1); 1703 llvm::Type *LTy = ConvertTypeForMem(it->type); 1704 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1705 break; 1706 } 1707 case ABIArgInfo::Extend: 1708 case ABIArgInfo::Direct: { 1709 // Fast-isel and the optimizer generally like scalar values better than 1710 // FCAs, so we flatten them if this is safe to do for this argument. 1711 llvm::Type *argType = ArgInfo.getCoerceToType(); 1712 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1713 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1714 assert(NumIRArgs == st->getNumElements()); 1715 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1716 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1717 } else { 1718 assert(NumIRArgs == 1); 1719 ArgTypes[FirstIRArg] = argType; 1720 } 1721 break; 1722 } 1723 1724 case ABIArgInfo::CoerceAndExpand: { 1725 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1726 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1727 *ArgTypesIter++ = EltTy; 1728 } 1729 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1730 break; 1731 } 1732 1733 case ABIArgInfo::Expand: 1734 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1735 getExpandedTypes(it->type, ArgTypesIter); 1736 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1737 break; 1738 } 1739 } 1740 1741 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1742 assert(Erased && "Not in set?"); 1743 1744 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1745 } 1746 1747 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1748 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1749 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1750 1751 if (!isFuncTypeConvertible(FPT)) 1752 return llvm::StructType::get(getLLVMContext()); 1753 1754 return GetFunctionType(GD); 1755 } 1756 1757 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1758 llvm::AttrBuilder &FuncAttrs, 1759 const FunctionProtoType *FPT) { 1760 if (!FPT) 1761 return; 1762 1763 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1764 FPT->isNothrow()) 1765 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1766 } 1767 1768 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1769 const Decl *Callee) { 1770 if (!Callee) 1771 return; 1772 1773 SmallVector<StringRef, 4> Attrs; 1774 1775 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1776 AA->getAssumption().split(Attrs, ","); 1777 1778 if (!Attrs.empty()) 1779 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1780 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1781 } 1782 1783 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1784 QualType ReturnType) { 1785 // We can't just discard the return value for a record type with a 1786 // complex destructor or a non-trivially copyable type. 1787 if (const RecordType *RT = 1788 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1789 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1790 return ClassDecl->hasTrivialDestructor(); 1791 } 1792 return ReturnType.isTriviallyCopyableType(Context); 1793 } 1794 1795 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1796 bool HasOptnone, 1797 bool AttrOnCallSite, 1798 llvm::AttrBuilder &FuncAttrs) { 1799 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1800 if (!HasOptnone) { 1801 if (CodeGenOpts.OptimizeSize) 1802 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1803 if (CodeGenOpts.OptimizeSize == 2) 1804 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1805 } 1806 1807 if (CodeGenOpts.DisableRedZone) 1808 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1809 if (CodeGenOpts.IndirectTlsSegRefs) 1810 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1811 if (CodeGenOpts.NoImplicitFloat) 1812 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1813 1814 if (AttrOnCallSite) { 1815 // Attributes that should go on the call site only. 1816 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1817 // the -fno-builtin-foo list. 1818 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1819 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1820 if (!CodeGenOpts.TrapFuncName.empty()) 1821 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1822 } else { 1823 StringRef FpKind; 1824 switch (CodeGenOpts.getFramePointer()) { 1825 case CodeGenOptions::FramePointerKind::None: 1826 FpKind = "none"; 1827 break; 1828 case CodeGenOptions::FramePointerKind::NonLeaf: 1829 FpKind = "non-leaf"; 1830 break; 1831 case CodeGenOptions::FramePointerKind::All: 1832 FpKind = "all"; 1833 break; 1834 } 1835 FuncAttrs.addAttribute("frame-pointer", FpKind); 1836 1837 if (CodeGenOpts.LessPreciseFPMAD) 1838 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1839 1840 if (CodeGenOpts.NullPointerIsValid) 1841 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1842 1843 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1844 FuncAttrs.addAttribute("denormal-fp-math", 1845 CodeGenOpts.FPDenormalMode.str()); 1846 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1847 FuncAttrs.addAttribute( 1848 "denormal-fp-math-f32", 1849 CodeGenOpts.FP32DenormalMode.str()); 1850 } 1851 1852 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1853 FuncAttrs.addAttribute("no-trapping-math", "true"); 1854 1855 // TODO: Are these all needed? 1856 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1857 if (LangOpts.NoHonorInfs) 1858 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1859 if (LangOpts.NoHonorNaNs) 1860 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1861 if (LangOpts.ApproxFunc) 1862 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1863 if (LangOpts.UnsafeFPMath) 1864 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1865 if (CodeGenOpts.SoftFloat) 1866 FuncAttrs.addAttribute("use-soft-float", "true"); 1867 FuncAttrs.addAttribute("stack-protector-buffer-size", 1868 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1869 if (LangOpts.NoSignedZero) 1870 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1871 1872 // TODO: Reciprocal estimate codegen options should apply to instructions? 1873 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1874 if (!Recips.empty()) 1875 FuncAttrs.addAttribute("reciprocal-estimates", 1876 llvm::join(Recips, ",")); 1877 1878 if (!CodeGenOpts.PreferVectorWidth.empty() && 1879 CodeGenOpts.PreferVectorWidth != "none") 1880 FuncAttrs.addAttribute("prefer-vector-width", 1881 CodeGenOpts.PreferVectorWidth); 1882 1883 if (CodeGenOpts.StackRealignment) 1884 FuncAttrs.addAttribute("stackrealign"); 1885 if (CodeGenOpts.Backchain) 1886 FuncAttrs.addAttribute("backchain"); 1887 if (CodeGenOpts.EnableSegmentedStacks) 1888 FuncAttrs.addAttribute("split-stack"); 1889 1890 if (CodeGenOpts.SpeculativeLoadHardening) 1891 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1892 1893 // Add zero-call-used-regs attribute. 1894 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1895 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1896 FuncAttrs.removeAttribute("zero-call-used-regs"); 1897 break; 1898 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1899 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1900 break; 1901 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1902 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1903 break; 1904 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1905 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1906 break; 1907 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1908 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1909 break; 1910 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1911 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1912 break; 1913 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1914 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1915 break; 1916 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1917 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1918 break; 1919 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1920 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1921 break; 1922 } 1923 } 1924 1925 if (getLangOpts().assumeFunctionsAreConvergent()) { 1926 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1927 // convergent (meaning, they may call an intrinsically convergent op, such 1928 // as __syncthreads() / barrier(), and so can't have certain optimizations 1929 // applied around them). LLVM will remove this attribute where it safely 1930 // can. 1931 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1932 } 1933 1934 // TODO: NoUnwind attribute should be added for other GPU modes OpenCL, HIP, 1935 // SYCL, OpenMP offload. AFAIK, none of them support exceptions in device 1936 // code. 1937 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1938 // Exceptions aren't supported in CUDA device code. 1939 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1940 } 1941 1942 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1943 StringRef Var, Value; 1944 std::tie(Var, Value) = Attr.split('='); 1945 FuncAttrs.addAttribute(Var, Value); 1946 } 1947 } 1948 1949 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1950 llvm::AttrBuilder FuncAttrs(F.getContext()); 1951 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1952 /* AttrOnCallSite = */ false, FuncAttrs); 1953 // TODO: call GetCPUAndFeaturesAttributes? 1954 F.addFnAttrs(FuncAttrs); 1955 } 1956 1957 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1958 llvm::AttrBuilder &attrs) { 1959 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1960 /*for call*/ false, attrs); 1961 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1962 } 1963 1964 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1965 const LangOptions &LangOpts, 1966 const NoBuiltinAttr *NBA = nullptr) { 1967 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1968 SmallString<32> AttributeName; 1969 AttributeName += "no-builtin-"; 1970 AttributeName += BuiltinName; 1971 FuncAttrs.addAttribute(AttributeName); 1972 }; 1973 1974 // First, handle the language options passed through -fno-builtin. 1975 if (LangOpts.NoBuiltin) { 1976 // -fno-builtin disables them all. 1977 FuncAttrs.addAttribute("no-builtins"); 1978 return; 1979 } 1980 1981 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1982 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1983 1984 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1985 // the source. 1986 if (!NBA) 1987 return; 1988 1989 // If there is a wildcard in the builtin names specified through the 1990 // attribute, disable them all. 1991 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1992 FuncAttrs.addAttribute("no-builtins"); 1993 return; 1994 } 1995 1996 // And last, add the rest of the builtin names. 1997 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1998 } 1999 2000 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2001 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2002 bool CheckCoerce = true) { 2003 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2004 if (AI.getKind() == ABIArgInfo::Indirect) 2005 return true; 2006 if (AI.getKind() == ABIArgInfo::Extend) 2007 return true; 2008 if (!DL.typeSizeEqualsStoreSize(Ty)) 2009 // TODO: This will result in a modest amount of values not marked noundef 2010 // when they could be. We care about values that *invisibly* contain undef 2011 // bits from the perspective of LLVM IR. 2012 return false; 2013 if (CheckCoerce && AI.canHaveCoerceToType()) { 2014 llvm::Type *CoerceTy = AI.getCoerceToType(); 2015 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2016 DL.getTypeSizeInBits(Ty))) 2017 // If we're coercing to a type with a greater size than the canonical one, 2018 // we're introducing new undef bits. 2019 // Coercing to a type of smaller or equal size is ok, as we know that 2020 // there's no internal padding (typeSizeEqualsStoreSize). 2021 return false; 2022 } 2023 if (QTy->isBitIntType()) 2024 return true; 2025 if (QTy->isReferenceType()) 2026 return true; 2027 if (QTy->isNullPtrType()) 2028 return false; 2029 if (QTy->isMemberPointerType()) 2030 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2031 // now, never mark them. 2032 return false; 2033 if (QTy->isScalarType()) { 2034 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2035 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2036 return true; 2037 } 2038 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2039 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2040 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2041 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2042 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2043 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2044 2045 // TODO: Some structs may be `noundef`, in specific situations. 2046 return false; 2047 } 2048 2049 /// Construct the IR attribute list of a function or call. 2050 /// 2051 /// When adding an attribute, please consider where it should be handled: 2052 /// 2053 /// - getDefaultFunctionAttributes is for attributes that are essentially 2054 /// part of the global target configuration (but perhaps can be 2055 /// overridden on a per-function basis). Adding attributes there 2056 /// will cause them to also be set in frontends that build on Clang's 2057 /// target-configuration logic, as well as for code defined in library 2058 /// modules such as CUDA's libdevice. 2059 /// 2060 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2061 /// and adds declaration-specific, convention-specific, and 2062 /// frontend-specific logic. The last is of particular importance: 2063 /// attributes that restrict how the frontend generates code must be 2064 /// added here rather than getDefaultFunctionAttributes. 2065 /// 2066 void CodeGenModule::ConstructAttributeList(StringRef Name, 2067 const CGFunctionInfo &FI, 2068 CGCalleeInfo CalleeInfo, 2069 llvm::AttributeList &AttrList, 2070 unsigned &CallingConv, 2071 bool AttrOnCallSite, bool IsThunk) { 2072 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2073 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2074 2075 // Collect function IR attributes from the CC lowering. 2076 // We'll collect the paramete and result attributes later. 2077 CallingConv = FI.getEffectiveCallingConvention(); 2078 if (FI.isNoReturn()) 2079 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2080 if (FI.isCmseNSCall()) 2081 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2082 2083 // Collect function IR attributes from the callee prototype if we have one. 2084 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2085 CalleeInfo.getCalleeFunctionProtoType()); 2086 2087 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2088 2089 // Attach assumption attributes to the declaration. If this is a call 2090 // site, attach assumptions from the caller to the call as well. 2091 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2092 2093 bool HasOptnone = false; 2094 // The NoBuiltinAttr attached to the target FunctionDecl. 2095 const NoBuiltinAttr *NBA = nullptr; 2096 2097 // Collect function IR attributes based on declaration-specific 2098 // information. 2099 // FIXME: handle sseregparm someday... 2100 if (TargetDecl) { 2101 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2102 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2103 if (TargetDecl->hasAttr<NoThrowAttr>()) 2104 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2105 if (TargetDecl->hasAttr<NoReturnAttr>()) 2106 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2107 if (TargetDecl->hasAttr<ColdAttr>()) 2108 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2109 if (TargetDecl->hasAttr<HotAttr>()) 2110 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2111 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2112 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2113 if (TargetDecl->hasAttr<ConvergentAttr>()) 2114 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2115 2116 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2117 AddAttributesFromFunctionProtoType( 2118 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2119 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2120 // A sane operator new returns a non-aliasing pointer. 2121 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2122 if (getCodeGenOpts().AssumeSaneOperatorNew && 2123 (Kind == OO_New || Kind == OO_Array_New)) 2124 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2125 } 2126 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2127 const bool IsVirtualCall = MD && MD->isVirtual(); 2128 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2129 // virtual function. These attributes are not inherited by overloads. 2130 if (!(AttrOnCallSite && IsVirtualCall)) { 2131 if (Fn->isNoReturn()) 2132 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2133 NBA = Fn->getAttr<NoBuiltinAttr>(); 2134 } 2135 // Only place nomerge attribute on call sites, never functions. This 2136 // allows it to work on indirect virtual function calls. 2137 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2138 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2139 } 2140 2141 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2142 if (TargetDecl->hasAttr<ConstAttr>()) { 2143 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2144 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2145 // gcc specifies that 'const' functions have greater restrictions than 2146 // 'pure' functions, so they also cannot have infinite loops. 2147 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2148 } else if (TargetDecl->hasAttr<PureAttr>()) { 2149 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2150 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2151 // gcc specifies that 'pure' functions cannot have infinite loops. 2152 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2153 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2154 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2155 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2156 } 2157 if (TargetDecl->hasAttr<RestrictAttr>()) 2158 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2159 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2160 !CodeGenOpts.NullPointerIsValid) 2161 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2162 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2163 FuncAttrs.addAttribute("no_caller_saved_registers"); 2164 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2165 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2166 if (TargetDecl->hasAttr<LeafAttr>()) 2167 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2168 2169 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2170 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2171 Optional<unsigned> NumElemsParam; 2172 if (AllocSize->getNumElemsParam().isValid()) 2173 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2174 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2175 NumElemsParam); 2176 } 2177 2178 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2179 if (getLangOpts().OpenCLVersion <= 120) { 2180 // OpenCL v1.2 Work groups are always uniform 2181 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2182 } else { 2183 // OpenCL v2.0 Work groups may be whether uniform or not. 2184 // '-cl-uniform-work-group-size' compile option gets a hint 2185 // to the compiler that the global work-size be a multiple of 2186 // the work-group size specified to clEnqueueNDRangeKernel 2187 // (i.e. work groups are uniform). 2188 FuncAttrs.addAttribute("uniform-work-group-size", 2189 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2190 } 2191 } 2192 } 2193 2194 // Attach "no-builtins" attributes to: 2195 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2196 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2197 // The attributes can come from: 2198 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2199 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2200 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2201 2202 // Collect function IR attributes based on global settiings. 2203 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2204 2205 // Override some default IR attributes based on declaration-specific 2206 // information. 2207 if (TargetDecl) { 2208 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2209 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2210 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2211 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2212 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2213 FuncAttrs.removeAttribute("split-stack"); 2214 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2215 // A function "__attribute__((...))" overrides the command-line flag. 2216 auto Kind = 2217 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2218 FuncAttrs.removeAttribute("zero-call-used-regs"); 2219 FuncAttrs.addAttribute( 2220 "zero-call-used-regs", 2221 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2222 } 2223 2224 // Add NonLazyBind attribute to function declarations when -fno-plt 2225 // is used. 2226 // FIXME: what if we just haven't processed the function definition 2227 // yet, or if it's an external definition like C99 inline? 2228 if (CodeGenOpts.NoPLT) { 2229 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2230 if (!Fn->isDefined() && !AttrOnCallSite) { 2231 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2232 } 2233 } 2234 } 2235 } 2236 2237 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2238 // functions with -funique-internal-linkage-names. 2239 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2240 if (isa<FunctionDecl>(TargetDecl)) { 2241 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2242 llvm::GlobalValue::InternalLinkage) 2243 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2244 "selected"); 2245 } 2246 } 2247 2248 // Collect non-call-site function IR attributes from declaration-specific 2249 // information. 2250 if (!AttrOnCallSite) { 2251 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2252 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2253 2254 // Whether tail calls are enabled. 2255 auto shouldDisableTailCalls = [&] { 2256 // Should this be honored in getDefaultFunctionAttributes? 2257 if (CodeGenOpts.DisableTailCalls) 2258 return true; 2259 2260 if (!TargetDecl) 2261 return false; 2262 2263 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2264 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2265 return true; 2266 2267 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2268 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2269 if (!BD->doesNotEscape()) 2270 return true; 2271 } 2272 2273 return false; 2274 }; 2275 if (shouldDisableTailCalls()) 2276 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2277 2278 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2279 // handles these separately to set them based on the global defaults. 2280 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2281 } 2282 2283 // Collect attributes from arguments and return values. 2284 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2285 2286 QualType RetTy = FI.getReturnType(); 2287 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2288 const llvm::DataLayout &DL = getDataLayout(); 2289 2290 // C++ explicitly makes returning undefined values UB. C's rule only applies 2291 // to used values, so we never mark them noundef for now. 2292 bool HasStrictReturn = getLangOpts().CPlusPlus; 2293 if (TargetDecl && HasStrictReturn) { 2294 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2295 HasStrictReturn &= !FDecl->isExternC(); 2296 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2297 // Function pointer 2298 HasStrictReturn &= !VDecl->isExternC(); 2299 } 2300 2301 // We don't want to be too aggressive with the return checking, unless 2302 // it's explicit in the code opts or we're using an appropriate sanitizer. 2303 // Try to respect what the programmer intended. 2304 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2305 !MayDropFunctionReturn(getContext(), RetTy) || 2306 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2307 getLangOpts().Sanitize.has(SanitizerKind::Return); 2308 2309 // Determine if the return type could be partially undef 2310 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) { 2311 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2312 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2313 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2314 } 2315 2316 switch (RetAI.getKind()) { 2317 case ABIArgInfo::Extend: 2318 if (RetAI.isSignExt()) 2319 RetAttrs.addAttribute(llvm::Attribute::SExt); 2320 else 2321 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2322 LLVM_FALLTHROUGH; 2323 case ABIArgInfo::Direct: 2324 if (RetAI.getInReg()) 2325 RetAttrs.addAttribute(llvm::Attribute::InReg); 2326 break; 2327 case ABIArgInfo::Ignore: 2328 break; 2329 2330 case ABIArgInfo::InAlloca: 2331 case ABIArgInfo::Indirect: { 2332 // inalloca and sret disable readnone and readonly 2333 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2334 .removeAttribute(llvm::Attribute::ReadNone); 2335 break; 2336 } 2337 2338 case ABIArgInfo::CoerceAndExpand: 2339 break; 2340 2341 case ABIArgInfo::Expand: 2342 case ABIArgInfo::IndirectAliased: 2343 llvm_unreachable("Invalid ABI kind for return argument"); 2344 } 2345 2346 if (!IsThunk) { 2347 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2348 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2349 QualType PTy = RefTy->getPointeeType(); 2350 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2351 RetAttrs.addDereferenceableAttr( 2352 getMinimumObjectSize(PTy).getQuantity()); 2353 if (getContext().getTargetAddressSpace(PTy) == 0 && 2354 !CodeGenOpts.NullPointerIsValid) 2355 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2356 if (PTy->isObjectType()) { 2357 llvm::Align Alignment = 2358 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2359 RetAttrs.addAlignmentAttr(Alignment); 2360 } 2361 } 2362 } 2363 2364 bool hasUsedSRet = false; 2365 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2366 2367 // Attach attributes to sret. 2368 if (IRFunctionArgs.hasSRetArg()) { 2369 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2370 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2371 hasUsedSRet = true; 2372 if (RetAI.getInReg()) 2373 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2374 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2375 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2376 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2377 } 2378 2379 // Attach attributes to inalloca argument. 2380 if (IRFunctionArgs.hasInallocaArg()) { 2381 llvm::AttrBuilder Attrs(getLLVMContext()); 2382 Attrs.addInAllocaAttr(FI.getArgStruct()); 2383 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2384 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2385 } 2386 2387 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2388 // unless this is a thunk function. 2389 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2390 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2391 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2392 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2393 2394 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2395 2396 llvm::AttrBuilder Attrs(getLLVMContext()); 2397 2398 QualType ThisTy = 2399 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2400 2401 if (!CodeGenOpts.NullPointerIsValid && 2402 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2403 Attrs.addAttribute(llvm::Attribute::NonNull); 2404 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2405 } else { 2406 // FIXME dereferenceable should be correct here, regardless of 2407 // NullPointerIsValid. However, dereferenceable currently does not always 2408 // respect NullPointerIsValid and may imply nonnull and break the program. 2409 // See https://reviews.llvm.org/D66618 for discussions. 2410 Attrs.addDereferenceableOrNullAttr( 2411 getMinimumObjectSize( 2412 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2413 .getQuantity()); 2414 } 2415 2416 llvm::Align Alignment = 2417 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2418 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2419 .getAsAlign(); 2420 Attrs.addAlignmentAttr(Alignment); 2421 2422 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2423 } 2424 2425 unsigned ArgNo = 0; 2426 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2427 E = FI.arg_end(); 2428 I != E; ++I, ++ArgNo) { 2429 QualType ParamType = I->type; 2430 const ABIArgInfo &AI = I->info; 2431 llvm::AttrBuilder Attrs(getLLVMContext()); 2432 2433 // Add attribute for padding argument, if necessary. 2434 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2435 if (AI.getPaddingInReg()) { 2436 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2437 llvm::AttributeSet::get( 2438 getLLVMContext(), 2439 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2440 } 2441 } 2442 2443 // Decide whether the argument we're handling could be partially undef 2444 if (CodeGenOpts.EnableNoundefAttrs && 2445 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2446 Attrs.addAttribute(llvm::Attribute::NoUndef); 2447 } 2448 2449 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2450 // have the corresponding parameter variable. It doesn't make 2451 // sense to do it here because parameters are so messed up. 2452 switch (AI.getKind()) { 2453 case ABIArgInfo::Extend: 2454 if (AI.isSignExt()) 2455 Attrs.addAttribute(llvm::Attribute::SExt); 2456 else 2457 Attrs.addAttribute(llvm::Attribute::ZExt); 2458 LLVM_FALLTHROUGH; 2459 case ABIArgInfo::Direct: 2460 if (ArgNo == 0 && FI.isChainCall()) 2461 Attrs.addAttribute(llvm::Attribute::Nest); 2462 else if (AI.getInReg()) 2463 Attrs.addAttribute(llvm::Attribute::InReg); 2464 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2465 break; 2466 2467 case ABIArgInfo::Indirect: { 2468 if (AI.getInReg()) 2469 Attrs.addAttribute(llvm::Attribute::InReg); 2470 2471 if (AI.getIndirectByVal()) 2472 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2473 2474 auto *Decl = ParamType->getAsRecordDecl(); 2475 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2476 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2477 // When calling the function, the pointer passed in will be the only 2478 // reference to the underlying object. Mark it accordingly. 2479 Attrs.addAttribute(llvm::Attribute::NoAlias); 2480 2481 // TODO: We could add the byref attribute if not byval, but it would 2482 // require updating many testcases. 2483 2484 CharUnits Align = AI.getIndirectAlign(); 2485 2486 // In a byval argument, it is important that the required 2487 // alignment of the type is honored, as LLVM might be creating a 2488 // *new* stack object, and needs to know what alignment to give 2489 // it. (Sometimes it can deduce a sensible alignment on its own, 2490 // but not if clang decides it must emit a packed struct, or the 2491 // user specifies increased alignment requirements.) 2492 // 2493 // This is different from indirect *not* byval, where the object 2494 // exists already, and the align attribute is purely 2495 // informative. 2496 assert(!Align.isZero()); 2497 2498 // For now, only add this when we have a byval argument. 2499 // TODO: be less lazy about updating test cases. 2500 if (AI.getIndirectByVal()) 2501 Attrs.addAlignmentAttr(Align.getQuantity()); 2502 2503 // byval disables readnone and readonly. 2504 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2505 .removeAttribute(llvm::Attribute::ReadNone); 2506 2507 break; 2508 } 2509 case ABIArgInfo::IndirectAliased: { 2510 CharUnits Align = AI.getIndirectAlign(); 2511 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2512 Attrs.addAlignmentAttr(Align.getQuantity()); 2513 break; 2514 } 2515 case ABIArgInfo::Ignore: 2516 case ABIArgInfo::Expand: 2517 case ABIArgInfo::CoerceAndExpand: 2518 break; 2519 2520 case ABIArgInfo::InAlloca: 2521 // inalloca disables readnone and readonly. 2522 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2523 .removeAttribute(llvm::Attribute::ReadNone); 2524 continue; 2525 } 2526 2527 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2528 QualType PTy = RefTy->getPointeeType(); 2529 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2530 Attrs.addDereferenceableAttr( 2531 getMinimumObjectSize(PTy).getQuantity()); 2532 if (getContext().getTargetAddressSpace(PTy) == 0 && 2533 !CodeGenOpts.NullPointerIsValid) 2534 Attrs.addAttribute(llvm::Attribute::NonNull); 2535 if (PTy->isObjectType()) { 2536 llvm::Align Alignment = 2537 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2538 Attrs.addAlignmentAttr(Alignment); 2539 } 2540 } 2541 2542 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2543 // > For arguments to a __kernel function declared to be a pointer to a 2544 // > data type, the OpenCL compiler can assume that the pointee is always 2545 // > appropriately aligned as required by the data type. 2546 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2547 ParamType->isPointerType()) { 2548 QualType PTy = ParamType->getPointeeType(); 2549 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2550 llvm::Align Alignment = 2551 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2552 Attrs.addAlignmentAttr(Alignment); 2553 } 2554 } 2555 2556 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2557 case ParameterABI::Ordinary: 2558 break; 2559 2560 case ParameterABI::SwiftIndirectResult: { 2561 // Add 'sret' if we haven't already used it for something, but 2562 // only if the result is void. 2563 if (!hasUsedSRet && RetTy->isVoidType()) { 2564 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2565 hasUsedSRet = true; 2566 } 2567 2568 // Add 'noalias' in either case. 2569 Attrs.addAttribute(llvm::Attribute::NoAlias); 2570 2571 // Add 'dereferenceable' and 'alignment'. 2572 auto PTy = ParamType->getPointeeType(); 2573 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2574 auto info = getContext().getTypeInfoInChars(PTy); 2575 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2576 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2577 } 2578 break; 2579 } 2580 2581 case ParameterABI::SwiftErrorResult: 2582 Attrs.addAttribute(llvm::Attribute::SwiftError); 2583 break; 2584 2585 case ParameterABI::SwiftContext: 2586 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2587 break; 2588 2589 case ParameterABI::SwiftAsyncContext: 2590 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2591 break; 2592 } 2593 2594 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2595 Attrs.addAttribute(llvm::Attribute::NoCapture); 2596 2597 if (Attrs.hasAttributes()) { 2598 unsigned FirstIRArg, NumIRArgs; 2599 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2600 for (unsigned i = 0; i < NumIRArgs; i++) 2601 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2602 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2603 } 2604 } 2605 assert(ArgNo == FI.arg_size()); 2606 2607 AttrList = llvm::AttributeList::get( 2608 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2609 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2610 } 2611 2612 /// An argument came in as a promoted argument; demote it back to its 2613 /// declared type. 2614 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2615 const VarDecl *var, 2616 llvm::Value *value) { 2617 llvm::Type *varType = CGF.ConvertType(var->getType()); 2618 2619 // This can happen with promotions that actually don't change the 2620 // underlying type, like the enum promotions. 2621 if (value->getType() == varType) return value; 2622 2623 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2624 && "unexpected promotion type"); 2625 2626 if (isa<llvm::IntegerType>(varType)) 2627 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2628 2629 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2630 } 2631 2632 /// Returns the attribute (either parameter attribute, or function 2633 /// attribute), which declares argument ArgNo to be non-null. 2634 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2635 QualType ArgType, unsigned ArgNo) { 2636 // FIXME: __attribute__((nonnull)) can also be applied to: 2637 // - references to pointers, where the pointee is known to be 2638 // nonnull (apparently a Clang extension) 2639 // - transparent unions containing pointers 2640 // In the former case, LLVM IR cannot represent the constraint. In 2641 // the latter case, we have no guarantee that the transparent union 2642 // is in fact passed as a pointer. 2643 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2644 return nullptr; 2645 // First, check attribute on parameter itself. 2646 if (PVD) { 2647 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2648 return ParmNNAttr; 2649 } 2650 // Check function attributes. 2651 if (!FD) 2652 return nullptr; 2653 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2654 if (NNAttr->isNonNull(ArgNo)) 2655 return NNAttr; 2656 } 2657 return nullptr; 2658 } 2659 2660 namespace { 2661 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2662 Address Temp; 2663 Address Arg; 2664 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2665 void Emit(CodeGenFunction &CGF, Flags flags) override { 2666 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2667 CGF.Builder.CreateStore(errorValue, Arg); 2668 } 2669 }; 2670 } 2671 2672 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2673 llvm::Function *Fn, 2674 const FunctionArgList &Args) { 2675 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2676 // Naked functions don't have prologues. 2677 return; 2678 2679 // If this is an implicit-return-zero function, go ahead and 2680 // initialize the return value. TODO: it might be nice to have 2681 // a more general mechanism for this that didn't require synthesized 2682 // return statements. 2683 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2684 if (FD->hasImplicitReturnZero()) { 2685 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2686 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2687 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2688 Builder.CreateStore(Zero, ReturnValue); 2689 } 2690 } 2691 2692 // FIXME: We no longer need the types from FunctionArgList; lift up and 2693 // simplify. 2694 2695 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2696 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2697 2698 // If we're using inalloca, all the memory arguments are GEPs off of the last 2699 // parameter, which is a pointer to the complete memory area. 2700 Address ArgStruct = Address::invalid(); 2701 if (IRFunctionArgs.hasInallocaArg()) { 2702 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2703 FI.getArgStruct(), FI.getArgStructAlignment()); 2704 2705 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2706 } 2707 2708 // Name the struct return parameter. 2709 if (IRFunctionArgs.hasSRetArg()) { 2710 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2711 AI->setName("agg.result"); 2712 AI->addAttr(llvm::Attribute::NoAlias); 2713 } 2714 2715 // Track if we received the parameter as a pointer (indirect, byval, or 2716 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2717 // into a local alloca for us. 2718 SmallVector<ParamValue, 16> ArgVals; 2719 ArgVals.reserve(Args.size()); 2720 2721 // Create a pointer value for every parameter declaration. This usually 2722 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2723 // any cleanups or do anything that might unwind. We do that separately, so 2724 // we can push the cleanups in the correct order for the ABI. 2725 assert(FI.arg_size() == Args.size() && 2726 "Mismatch between function signature & arguments."); 2727 unsigned ArgNo = 0; 2728 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2729 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2730 i != e; ++i, ++info_it, ++ArgNo) { 2731 const VarDecl *Arg = *i; 2732 const ABIArgInfo &ArgI = info_it->info; 2733 2734 bool isPromoted = 2735 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2736 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2737 // the parameter is promoted. In this case we convert to 2738 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2739 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2740 assert(hasScalarEvaluationKind(Ty) == 2741 hasScalarEvaluationKind(Arg->getType())); 2742 2743 unsigned FirstIRArg, NumIRArgs; 2744 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2745 2746 switch (ArgI.getKind()) { 2747 case ABIArgInfo::InAlloca: { 2748 assert(NumIRArgs == 0); 2749 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2750 Address V = 2751 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2752 if (ArgI.getInAllocaIndirect()) 2753 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2754 getContext().getTypeAlignInChars(Ty)); 2755 ArgVals.push_back(ParamValue::forIndirect(V)); 2756 break; 2757 } 2758 2759 case ABIArgInfo::Indirect: 2760 case ABIArgInfo::IndirectAliased: { 2761 assert(NumIRArgs == 1); 2762 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2763 ArgI.getIndirectAlign()); 2764 2765 if (!hasScalarEvaluationKind(Ty)) { 2766 // Aggregates and complex variables are accessed by reference. All we 2767 // need to do is realign the value, if requested. Also, if the address 2768 // may be aliased, copy it to ensure that the parameter variable is 2769 // mutable and has a unique adress, as C requires. 2770 Address V = ParamAddr; 2771 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2772 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2773 2774 // Copy from the incoming argument pointer to the temporary with the 2775 // appropriate alignment. 2776 // 2777 // FIXME: We should have a common utility for generating an aggregate 2778 // copy. 2779 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2780 Builder.CreateMemCpy( 2781 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2782 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2783 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2784 V = AlignedTemp; 2785 } 2786 ArgVals.push_back(ParamValue::forIndirect(V)); 2787 } else { 2788 // Load scalar value from indirect argument. 2789 llvm::Value *V = 2790 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2791 2792 if (isPromoted) 2793 V = emitArgumentDemotion(*this, Arg, V); 2794 ArgVals.push_back(ParamValue::forDirect(V)); 2795 } 2796 break; 2797 } 2798 2799 case ABIArgInfo::Extend: 2800 case ABIArgInfo::Direct: { 2801 auto AI = Fn->getArg(FirstIRArg); 2802 llvm::Type *LTy = ConvertType(Arg->getType()); 2803 2804 // Prepare parameter attributes. So far, only attributes for pointer 2805 // parameters are prepared. See 2806 // http://llvm.org/docs/LangRef.html#paramattrs. 2807 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2808 ArgI.getCoerceToType()->isPointerTy()) { 2809 assert(NumIRArgs == 1); 2810 2811 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2812 // Set `nonnull` attribute if any. 2813 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2814 PVD->getFunctionScopeIndex()) && 2815 !CGM.getCodeGenOpts().NullPointerIsValid) 2816 AI->addAttr(llvm::Attribute::NonNull); 2817 2818 QualType OTy = PVD->getOriginalType(); 2819 if (const auto *ArrTy = 2820 getContext().getAsConstantArrayType(OTy)) { 2821 // A C99 array parameter declaration with the static keyword also 2822 // indicates dereferenceability, and if the size is constant we can 2823 // use the dereferenceable attribute (which requires the size in 2824 // bytes). 2825 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2826 QualType ETy = ArrTy->getElementType(); 2827 llvm::Align Alignment = 2828 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2829 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2830 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2831 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2832 ArrSize) { 2833 llvm::AttrBuilder Attrs(getLLVMContext()); 2834 Attrs.addDereferenceableAttr( 2835 getContext().getTypeSizeInChars(ETy).getQuantity() * 2836 ArrSize); 2837 AI->addAttrs(Attrs); 2838 } else if (getContext().getTargetInfo().getNullPointerValue( 2839 ETy.getAddressSpace()) == 0 && 2840 !CGM.getCodeGenOpts().NullPointerIsValid) { 2841 AI->addAttr(llvm::Attribute::NonNull); 2842 } 2843 } 2844 } else if (const auto *ArrTy = 2845 getContext().getAsVariableArrayType(OTy)) { 2846 // For C99 VLAs with the static keyword, we don't know the size so 2847 // we can't use the dereferenceable attribute, but in addrspace(0) 2848 // we know that it must be nonnull. 2849 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2850 QualType ETy = ArrTy->getElementType(); 2851 llvm::Align Alignment = 2852 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2853 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2854 if (!getContext().getTargetAddressSpace(ETy) && 2855 !CGM.getCodeGenOpts().NullPointerIsValid) 2856 AI->addAttr(llvm::Attribute::NonNull); 2857 } 2858 } 2859 2860 // Set `align` attribute if any. 2861 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2862 if (!AVAttr) 2863 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2864 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2865 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2866 // If alignment-assumption sanitizer is enabled, we do *not* add 2867 // alignment attribute here, but emit normal alignment assumption, 2868 // so the UBSAN check could function. 2869 llvm::ConstantInt *AlignmentCI = 2870 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2871 uint64_t AlignmentInt = 2872 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2873 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2874 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2875 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2876 llvm::Align(AlignmentInt))); 2877 } 2878 } 2879 } 2880 2881 // Set 'noalias' if an argument type has the `restrict` qualifier. 2882 if (Arg->getType().isRestrictQualified()) 2883 AI->addAttr(llvm::Attribute::NoAlias); 2884 } 2885 2886 // Prepare the argument value. If we have the trivial case, handle it 2887 // with no muss and fuss. 2888 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2889 ArgI.getCoerceToType() == ConvertType(Ty) && 2890 ArgI.getDirectOffset() == 0) { 2891 assert(NumIRArgs == 1); 2892 2893 // LLVM expects swifterror parameters to be used in very restricted 2894 // ways. Copy the value into a less-restricted temporary. 2895 llvm::Value *V = AI; 2896 if (FI.getExtParameterInfo(ArgNo).getABI() 2897 == ParameterABI::SwiftErrorResult) { 2898 QualType pointeeTy = Ty->getPointeeType(); 2899 assert(pointeeTy->isPointerType()); 2900 Address temp = 2901 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2902 Address arg(V, ConvertTypeForMem(pointeeTy), 2903 getContext().getTypeAlignInChars(pointeeTy)); 2904 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2905 Builder.CreateStore(incomingErrorValue, temp); 2906 V = temp.getPointer(); 2907 2908 // Push a cleanup to copy the value back at the end of the function. 2909 // The convention does not guarantee that the value will be written 2910 // back if the function exits with an unwind exception. 2911 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2912 } 2913 2914 // Ensure the argument is the correct type. 2915 if (V->getType() != ArgI.getCoerceToType()) 2916 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2917 2918 if (isPromoted) 2919 V = emitArgumentDemotion(*this, Arg, V); 2920 2921 // Because of merging of function types from multiple decls it is 2922 // possible for the type of an argument to not match the corresponding 2923 // type in the function type. Since we are codegening the callee 2924 // in here, add a cast to the argument type. 2925 llvm::Type *LTy = ConvertType(Arg->getType()); 2926 if (V->getType() != LTy) 2927 V = Builder.CreateBitCast(V, LTy); 2928 2929 ArgVals.push_back(ParamValue::forDirect(V)); 2930 break; 2931 } 2932 2933 // VLST arguments are coerced to VLATs at the function boundary for 2934 // ABI consistency. If this is a VLST that was coerced to 2935 // a VLAT at the function boundary and the types match up, use 2936 // llvm.vector.extract to convert back to the original VLST. 2937 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2938 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2939 if (auto *VecTyFrom = 2940 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2941 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2942 // vector, bitcast the source and use a vector extract. 2943 auto PredType = 2944 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2945 if (VecTyFrom == PredType && 2946 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2947 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2948 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2949 } 2950 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2951 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2952 2953 assert(NumIRArgs == 1); 2954 Coerced->setName(Arg->getName() + ".coerce"); 2955 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2956 VecTyTo, Coerced, Zero, "castFixedSve"))); 2957 break; 2958 } 2959 } 2960 } 2961 2962 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2963 Arg->getName()); 2964 2965 // Pointer to store into. 2966 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2967 2968 // Fast-isel and the optimizer generally like scalar values better than 2969 // FCAs, so we flatten them if this is safe to do for this argument. 2970 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2971 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2972 STy->getNumElements() > 1) { 2973 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2974 llvm::Type *DstTy = Ptr.getElementType(); 2975 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2976 2977 Address AddrToStoreInto = Address::invalid(); 2978 if (SrcSize <= DstSize) { 2979 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2980 } else { 2981 AddrToStoreInto = 2982 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2983 } 2984 2985 assert(STy->getNumElements() == NumIRArgs); 2986 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2987 auto AI = Fn->getArg(FirstIRArg + i); 2988 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2989 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2990 Builder.CreateStore(AI, EltPtr); 2991 } 2992 2993 if (SrcSize > DstSize) { 2994 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2995 } 2996 2997 } else { 2998 // Simple case, just do a coerced store of the argument into the alloca. 2999 assert(NumIRArgs == 1); 3000 auto AI = Fn->getArg(FirstIRArg); 3001 AI->setName(Arg->getName() + ".coerce"); 3002 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 3003 } 3004 3005 // Match to what EmitParmDecl is expecting for this type. 3006 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3007 llvm::Value *V = 3008 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3009 if (isPromoted) 3010 V = emitArgumentDemotion(*this, Arg, V); 3011 ArgVals.push_back(ParamValue::forDirect(V)); 3012 } else { 3013 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3014 } 3015 break; 3016 } 3017 3018 case ABIArgInfo::CoerceAndExpand: { 3019 // Reconstruct into a temporary. 3020 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3021 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3022 3023 auto coercionType = ArgI.getCoerceAndExpandType(); 3024 alloca = Builder.CreateElementBitCast(alloca, coercionType); 3025 3026 unsigned argIndex = FirstIRArg; 3027 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3028 llvm::Type *eltType = coercionType->getElementType(i); 3029 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3030 continue; 3031 3032 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3033 auto elt = Fn->getArg(argIndex++); 3034 Builder.CreateStore(elt, eltAddr); 3035 } 3036 assert(argIndex == FirstIRArg + NumIRArgs); 3037 break; 3038 } 3039 3040 case ABIArgInfo::Expand: { 3041 // If this structure was expanded into multiple arguments then 3042 // we need to create a temporary and reconstruct it from the 3043 // arguments. 3044 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3045 LValue LV = MakeAddrLValue(Alloca, Ty); 3046 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3047 3048 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3049 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3050 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3051 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3052 auto AI = Fn->getArg(FirstIRArg + i); 3053 AI->setName(Arg->getName() + "." + Twine(i)); 3054 } 3055 break; 3056 } 3057 3058 case ABIArgInfo::Ignore: 3059 assert(NumIRArgs == 0); 3060 // Initialize the local variable appropriately. 3061 if (!hasScalarEvaluationKind(Ty)) { 3062 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3063 } else { 3064 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3065 ArgVals.push_back(ParamValue::forDirect(U)); 3066 } 3067 break; 3068 } 3069 } 3070 3071 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3072 for (int I = Args.size() - 1; I >= 0; --I) 3073 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3074 } else { 3075 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3076 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3077 } 3078 } 3079 3080 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3081 while (insn->use_empty()) { 3082 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3083 if (!bitcast) return; 3084 3085 // This is "safe" because we would have used a ConstantExpr otherwise. 3086 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3087 bitcast->eraseFromParent(); 3088 } 3089 } 3090 3091 /// Try to emit a fused autorelease of a return result. 3092 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3093 llvm::Value *result) { 3094 // We must be immediately followed the cast. 3095 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3096 if (BB->empty()) return nullptr; 3097 if (&BB->back() != result) return nullptr; 3098 3099 llvm::Type *resultType = result->getType(); 3100 3101 // result is in a BasicBlock and is therefore an Instruction. 3102 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3103 3104 SmallVector<llvm::Instruction *, 4> InstsToKill; 3105 3106 // Look for: 3107 // %generator = bitcast %type1* %generator2 to %type2* 3108 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3109 // We would have emitted this as a constant if the operand weren't 3110 // an Instruction. 3111 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3112 3113 // Require the generator to be immediately followed by the cast. 3114 if (generator->getNextNode() != bitcast) 3115 return nullptr; 3116 3117 InstsToKill.push_back(bitcast); 3118 } 3119 3120 // Look for: 3121 // %generator = call i8* @objc_retain(i8* %originalResult) 3122 // or 3123 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3124 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3125 if (!call) return nullptr; 3126 3127 bool doRetainAutorelease; 3128 3129 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3130 doRetainAutorelease = true; 3131 } else if (call->getCalledOperand() == 3132 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3133 doRetainAutorelease = false; 3134 3135 // If we emitted an assembly marker for this call (and the 3136 // ARCEntrypoints field should have been set if so), go looking 3137 // for that call. If we can't find it, we can't do this 3138 // optimization. But it should always be the immediately previous 3139 // instruction, unless we needed bitcasts around the call. 3140 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3141 llvm::Instruction *prev = call->getPrevNode(); 3142 assert(prev); 3143 if (isa<llvm::BitCastInst>(prev)) { 3144 prev = prev->getPrevNode(); 3145 assert(prev); 3146 } 3147 assert(isa<llvm::CallInst>(prev)); 3148 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3149 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3150 InstsToKill.push_back(prev); 3151 } 3152 } else { 3153 return nullptr; 3154 } 3155 3156 result = call->getArgOperand(0); 3157 InstsToKill.push_back(call); 3158 3159 // Keep killing bitcasts, for sanity. Note that we no longer care 3160 // about precise ordering as long as there's exactly one use. 3161 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3162 if (!bitcast->hasOneUse()) break; 3163 InstsToKill.push_back(bitcast); 3164 result = bitcast->getOperand(0); 3165 } 3166 3167 // Delete all the unnecessary instructions, from latest to earliest. 3168 for (auto *I : InstsToKill) 3169 I->eraseFromParent(); 3170 3171 // Do the fused retain/autorelease if we were asked to. 3172 if (doRetainAutorelease) 3173 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3174 3175 // Cast back to the result type. 3176 return CGF.Builder.CreateBitCast(result, resultType); 3177 } 3178 3179 /// If this is a +1 of the value of an immutable 'self', remove it. 3180 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3181 llvm::Value *result) { 3182 // This is only applicable to a method with an immutable 'self'. 3183 const ObjCMethodDecl *method = 3184 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3185 if (!method) return nullptr; 3186 const VarDecl *self = method->getSelfDecl(); 3187 if (!self->getType().isConstQualified()) return nullptr; 3188 3189 // Look for a retain call. 3190 llvm::CallInst *retainCall = 3191 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3192 if (!retainCall || retainCall->getCalledOperand() != 3193 CGF.CGM.getObjCEntrypoints().objc_retain) 3194 return nullptr; 3195 3196 // Look for an ordinary load of 'self'. 3197 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3198 llvm::LoadInst *load = 3199 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3200 if (!load || load->isAtomic() || load->isVolatile() || 3201 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3202 return nullptr; 3203 3204 // Okay! Burn it all down. This relies for correctness on the 3205 // assumption that the retain is emitted as part of the return and 3206 // that thereafter everything is used "linearly". 3207 llvm::Type *resultType = result->getType(); 3208 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3209 assert(retainCall->use_empty()); 3210 retainCall->eraseFromParent(); 3211 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3212 3213 return CGF.Builder.CreateBitCast(load, resultType); 3214 } 3215 3216 /// Emit an ARC autorelease of the result of a function. 3217 /// 3218 /// \return the value to actually return from the function 3219 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3220 llvm::Value *result) { 3221 // If we're returning 'self', kill the initial retain. This is a 3222 // heuristic attempt to "encourage correctness" in the really unfortunate 3223 // case where we have a return of self during a dealloc and we desperately 3224 // need to avoid the possible autorelease. 3225 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3226 return self; 3227 3228 // At -O0, try to emit a fused retain/autorelease. 3229 if (CGF.shouldUseFusedARCCalls()) 3230 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3231 return fused; 3232 3233 return CGF.EmitARCAutoreleaseReturnValue(result); 3234 } 3235 3236 /// Heuristically search for a dominating store to the return-value slot. 3237 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3238 // Check if a User is a store which pointerOperand is the ReturnValue. 3239 // We are looking for stores to the ReturnValue, not for stores of the 3240 // ReturnValue to some other location. 3241 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3242 auto *SI = dyn_cast<llvm::StoreInst>(U); 3243 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() || 3244 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3245 return nullptr; 3246 // These aren't actually possible for non-coerced returns, and we 3247 // only care about non-coerced returns on this code path. 3248 assert(!SI->isAtomic() && !SI->isVolatile()); 3249 return SI; 3250 }; 3251 // If there are multiple uses of the return-value slot, just check 3252 // for something immediately preceding the IP. Sometimes this can 3253 // happen with how we generate implicit-returns; it can also happen 3254 // with noreturn cleanups. 3255 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3256 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3257 if (IP->empty()) return nullptr; 3258 3259 // Look at directly preceding instruction, skipping bitcasts and lifetime 3260 // markers. 3261 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3262 if (isa<llvm::BitCastInst>(&I)) 3263 continue; 3264 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3265 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3266 continue; 3267 3268 return GetStoreIfValid(&I); 3269 } 3270 return nullptr; 3271 } 3272 3273 llvm::StoreInst *store = 3274 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3275 if (!store) return nullptr; 3276 3277 // Now do a first-and-dirty dominance check: just walk up the 3278 // single-predecessors chain from the current insertion point. 3279 llvm::BasicBlock *StoreBB = store->getParent(); 3280 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3281 while (IP != StoreBB) { 3282 if (!(IP = IP->getSinglePredecessor())) 3283 return nullptr; 3284 } 3285 3286 // Okay, the store's basic block dominates the insertion point; we 3287 // can do our thing. 3288 return store; 3289 } 3290 3291 // Helper functions for EmitCMSEClearRecord 3292 3293 // Set the bits corresponding to a field having width `BitWidth` and located at 3294 // offset `BitOffset` (from the least significant bit) within a storage unit of 3295 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3296 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3297 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3298 int BitWidth, int CharWidth) { 3299 assert(CharWidth <= 64); 3300 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3301 3302 int Pos = 0; 3303 if (BitOffset >= CharWidth) { 3304 Pos += BitOffset / CharWidth; 3305 BitOffset = BitOffset % CharWidth; 3306 } 3307 3308 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3309 if (BitOffset + BitWidth >= CharWidth) { 3310 Bits[Pos++] |= (Used << BitOffset) & Used; 3311 BitWidth -= CharWidth - BitOffset; 3312 BitOffset = 0; 3313 } 3314 3315 while (BitWidth >= CharWidth) { 3316 Bits[Pos++] = Used; 3317 BitWidth -= CharWidth; 3318 } 3319 3320 if (BitWidth > 0) 3321 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3322 } 3323 3324 // Set the bits corresponding to a field having width `BitWidth` and located at 3325 // offset `BitOffset` (from the least significant bit) within a storage unit of 3326 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3327 // `Bits` corresponds to one target byte. Use target endian layout. 3328 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3329 int StorageSize, int BitOffset, int BitWidth, 3330 int CharWidth, bool BigEndian) { 3331 3332 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3333 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3334 3335 if (BigEndian) 3336 std::reverse(TmpBits.begin(), TmpBits.end()); 3337 3338 for (uint64_t V : TmpBits) 3339 Bits[StorageOffset++] |= V; 3340 } 3341 3342 static void setUsedBits(CodeGenModule &, QualType, int, 3343 SmallVectorImpl<uint64_t> &); 3344 3345 // Set the bits in `Bits`, which correspond to the value representations of 3346 // the actual members of the record type `RTy`. Note that this function does 3347 // not handle base classes, virtual tables, etc, since they cannot happen in 3348 // CMSE function arguments or return. The bit mask corresponds to the target 3349 // memory layout, i.e. it's endian dependent. 3350 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3351 SmallVectorImpl<uint64_t> &Bits) { 3352 ASTContext &Context = CGM.getContext(); 3353 int CharWidth = Context.getCharWidth(); 3354 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3355 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3356 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3357 3358 int Idx = 0; 3359 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3360 const FieldDecl *F = *I; 3361 3362 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3363 F->getType()->isIncompleteArrayType()) 3364 continue; 3365 3366 if (F->isBitField()) { 3367 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3368 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3369 BFI.StorageSize / CharWidth, BFI.Offset, 3370 BFI.Size, CharWidth, 3371 CGM.getDataLayout().isBigEndian()); 3372 continue; 3373 } 3374 3375 setUsedBits(CGM, F->getType(), 3376 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3377 } 3378 } 3379 3380 // Set the bits in `Bits`, which correspond to the value representations of 3381 // the elements of an array type `ATy`. 3382 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3383 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3384 const ASTContext &Context = CGM.getContext(); 3385 3386 QualType ETy = Context.getBaseElementType(ATy); 3387 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3388 SmallVector<uint64_t, 4> TmpBits(Size); 3389 setUsedBits(CGM, ETy, 0, TmpBits); 3390 3391 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3392 auto Src = TmpBits.begin(); 3393 auto Dst = Bits.begin() + Offset + I * Size; 3394 for (int J = 0; J < Size; ++J) 3395 *Dst++ |= *Src++; 3396 } 3397 } 3398 3399 // Set the bits in `Bits`, which correspond to the value representations of 3400 // the type `QTy`. 3401 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3402 SmallVectorImpl<uint64_t> &Bits) { 3403 if (const auto *RTy = QTy->getAs<RecordType>()) 3404 return setUsedBits(CGM, RTy, Offset, Bits); 3405 3406 ASTContext &Context = CGM.getContext(); 3407 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3408 return setUsedBits(CGM, ATy, Offset, Bits); 3409 3410 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3411 if (Size <= 0) 3412 return; 3413 3414 std::fill_n(Bits.begin() + Offset, Size, 3415 (uint64_t(1) << Context.getCharWidth()) - 1); 3416 } 3417 3418 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3419 int Pos, int Size, int CharWidth, 3420 bool BigEndian) { 3421 assert(Size > 0); 3422 uint64_t Mask = 0; 3423 if (BigEndian) { 3424 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3425 ++P) 3426 Mask = (Mask << CharWidth) | *P; 3427 } else { 3428 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3429 do 3430 Mask = (Mask << CharWidth) | *--P; 3431 while (P != End); 3432 } 3433 return Mask; 3434 } 3435 3436 // Emit code to clear the bits in a record, which aren't a part of any user 3437 // declared member, when the record is a function return. 3438 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3439 llvm::IntegerType *ITy, 3440 QualType QTy) { 3441 assert(Src->getType() == ITy); 3442 assert(ITy->getScalarSizeInBits() <= 64); 3443 3444 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3445 int Size = DataLayout.getTypeStoreSize(ITy); 3446 SmallVector<uint64_t, 4> Bits(Size); 3447 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3448 3449 int CharWidth = CGM.getContext().getCharWidth(); 3450 uint64_t Mask = 3451 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3452 3453 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3454 } 3455 3456 // Emit code to clear the bits in a record, which aren't a part of any user 3457 // declared member, when the record is a function argument. 3458 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3459 llvm::ArrayType *ATy, 3460 QualType QTy) { 3461 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3462 int Size = DataLayout.getTypeStoreSize(ATy); 3463 SmallVector<uint64_t, 16> Bits(Size); 3464 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3465 3466 // Clear each element of the LLVM array. 3467 int CharWidth = CGM.getContext().getCharWidth(); 3468 int CharsPerElt = 3469 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3470 int MaskIndex = 0; 3471 llvm::Value *R = llvm::PoisonValue::get(ATy); 3472 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3473 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3474 DataLayout.isBigEndian()); 3475 MaskIndex += CharsPerElt; 3476 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3477 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3478 R = Builder.CreateInsertValue(R, T1, I); 3479 } 3480 3481 return R; 3482 } 3483 3484 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3485 bool EmitRetDbgLoc, 3486 SourceLocation EndLoc) { 3487 if (FI.isNoReturn()) { 3488 // Noreturn functions don't return. 3489 EmitUnreachable(EndLoc); 3490 return; 3491 } 3492 3493 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3494 // Naked functions don't have epilogues. 3495 Builder.CreateUnreachable(); 3496 return; 3497 } 3498 3499 // Functions with no result always return void. 3500 if (!ReturnValue.isValid()) { 3501 Builder.CreateRetVoid(); 3502 return; 3503 } 3504 3505 llvm::DebugLoc RetDbgLoc; 3506 llvm::Value *RV = nullptr; 3507 QualType RetTy = FI.getReturnType(); 3508 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3509 3510 switch (RetAI.getKind()) { 3511 case ABIArgInfo::InAlloca: 3512 // Aggregrates get evaluated directly into the destination. Sometimes we 3513 // need to return the sret value in a register, though. 3514 assert(hasAggregateEvaluationKind(RetTy)); 3515 if (RetAI.getInAllocaSRet()) { 3516 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3517 --EI; 3518 llvm::Value *ArgStruct = &*EI; 3519 llvm::Value *SRet = Builder.CreateStructGEP( 3520 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3521 llvm::Type *Ty = 3522 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3523 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3524 } 3525 break; 3526 3527 case ABIArgInfo::Indirect: { 3528 auto AI = CurFn->arg_begin(); 3529 if (RetAI.isSRetAfterThis()) 3530 ++AI; 3531 switch (getEvaluationKind(RetTy)) { 3532 case TEK_Complex: { 3533 ComplexPairTy RT = 3534 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3535 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3536 /*isInit*/ true); 3537 break; 3538 } 3539 case TEK_Aggregate: 3540 // Do nothing; aggregrates get evaluated directly into the destination. 3541 break; 3542 case TEK_Scalar: { 3543 LValueBaseInfo BaseInfo; 3544 TBAAAccessInfo TBAAInfo; 3545 CharUnits Alignment = 3546 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3547 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3548 LValue ArgVal = 3549 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3550 EmitStoreOfScalar( 3551 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3552 break; 3553 } 3554 } 3555 break; 3556 } 3557 3558 case ABIArgInfo::Extend: 3559 case ABIArgInfo::Direct: 3560 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3561 RetAI.getDirectOffset() == 0) { 3562 // The internal return value temp always will have pointer-to-return-type 3563 // type, just do a load. 3564 3565 // If there is a dominating store to ReturnValue, we can elide 3566 // the load, zap the store, and usually zap the alloca. 3567 if (llvm::StoreInst *SI = 3568 findDominatingStoreToReturnValue(*this)) { 3569 // Reuse the debug location from the store unless there is 3570 // cleanup code to be emitted between the store and return 3571 // instruction. 3572 if (EmitRetDbgLoc && !AutoreleaseResult) 3573 RetDbgLoc = SI->getDebugLoc(); 3574 // Get the stored value and nuke the now-dead store. 3575 RV = SI->getValueOperand(); 3576 SI->eraseFromParent(); 3577 3578 // Otherwise, we have to do a simple load. 3579 } else { 3580 RV = Builder.CreateLoad(ReturnValue); 3581 } 3582 } else { 3583 // If the value is offset in memory, apply the offset now. 3584 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3585 3586 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3587 } 3588 3589 // In ARC, end functions that return a retainable type with a call 3590 // to objc_autoreleaseReturnValue. 3591 if (AutoreleaseResult) { 3592 #ifndef NDEBUG 3593 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3594 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3595 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3596 // CurCodeDecl or BlockInfo. 3597 QualType RT; 3598 3599 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3600 RT = FD->getReturnType(); 3601 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3602 RT = MD->getReturnType(); 3603 else if (isa<BlockDecl>(CurCodeDecl)) 3604 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3605 else 3606 llvm_unreachable("Unexpected function/method type"); 3607 3608 assert(getLangOpts().ObjCAutoRefCount && 3609 !FI.isReturnsRetained() && 3610 RT->isObjCRetainableType()); 3611 #endif 3612 RV = emitAutoreleaseOfResult(*this, RV); 3613 } 3614 3615 break; 3616 3617 case ABIArgInfo::Ignore: 3618 break; 3619 3620 case ABIArgInfo::CoerceAndExpand: { 3621 auto coercionType = RetAI.getCoerceAndExpandType(); 3622 3623 // Load all of the coerced elements out into results. 3624 llvm::SmallVector<llvm::Value*, 4> results; 3625 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3626 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3627 auto coercedEltType = coercionType->getElementType(i); 3628 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3629 continue; 3630 3631 auto eltAddr = Builder.CreateStructGEP(addr, i); 3632 auto elt = Builder.CreateLoad(eltAddr); 3633 results.push_back(elt); 3634 } 3635 3636 // If we have one result, it's the single direct result type. 3637 if (results.size() == 1) { 3638 RV = results[0]; 3639 3640 // Otherwise, we need to make a first-class aggregate. 3641 } else { 3642 // Construct a return type that lacks padding elements. 3643 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3644 3645 RV = llvm::PoisonValue::get(returnType); 3646 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3647 RV = Builder.CreateInsertValue(RV, results[i], i); 3648 } 3649 } 3650 break; 3651 } 3652 case ABIArgInfo::Expand: 3653 case ABIArgInfo::IndirectAliased: 3654 llvm_unreachable("Invalid ABI kind for return argument"); 3655 } 3656 3657 llvm::Instruction *Ret; 3658 if (RV) { 3659 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3660 // For certain return types, clear padding bits, as they may reveal 3661 // sensitive information. 3662 // Small struct/union types are passed as integers. 3663 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3664 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3665 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3666 } 3667 EmitReturnValueCheck(RV); 3668 Ret = Builder.CreateRet(RV); 3669 } else { 3670 Ret = Builder.CreateRetVoid(); 3671 } 3672 3673 if (RetDbgLoc) 3674 Ret->setDebugLoc(std::move(RetDbgLoc)); 3675 } 3676 3677 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3678 // A current decl may not be available when emitting vtable thunks. 3679 if (!CurCodeDecl) 3680 return; 3681 3682 // If the return block isn't reachable, neither is this check, so don't emit 3683 // it. 3684 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3685 return; 3686 3687 ReturnsNonNullAttr *RetNNAttr = nullptr; 3688 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3689 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3690 3691 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3692 return; 3693 3694 // Prefer the returns_nonnull attribute if it's present. 3695 SourceLocation AttrLoc; 3696 SanitizerMask CheckKind; 3697 SanitizerHandler Handler; 3698 if (RetNNAttr) { 3699 assert(!requiresReturnValueNullabilityCheck() && 3700 "Cannot check nullability and the nonnull attribute"); 3701 AttrLoc = RetNNAttr->getLocation(); 3702 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3703 Handler = SanitizerHandler::NonnullReturn; 3704 } else { 3705 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3706 if (auto *TSI = DD->getTypeSourceInfo()) 3707 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3708 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3709 CheckKind = SanitizerKind::NullabilityReturn; 3710 Handler = SanitizerHandler::NullabilityReturn; 3711 } 3712 3713 SanitizerScope SanScope(this); 3714 3715 // Make sure the "return" source location is valid. If we're checking a 3716 // nullability annotation, make sure the preconditions for the check are met. 3717 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3718 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3719 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3720 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3721 if (requiresReturnValueNullabilityCheck()) 3722 CanNullCheck = 3723 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3724 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3725 EmitBlock(Check); 3726 3727 // Now do the null check. 3728 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3729 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3730 llvm::Value *DynamicData[] = {SLocPtr}; 3731 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3732 3733 EmitBlock(NoCheck); 3734 3735 #ifndef NDEBUG 3736 // The return location should not be used after the check has been emitted. 3737 ReturnLocation = Address::invalid(); 3738 #endif 3739 } 3740 3741 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3742 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3743 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3744 } 3745 3746 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3747 QualType Ty) { 3748 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3749 // placeholders. 3750 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3751 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3752 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy->getPointerTo()); 3753 3754 // FIXME: When we generate this IR in one pass, we shouldn't need 3755 // this win32-specific alignment hack. 3756 CharUnits Align = CharUnits::fromQuantity(4); 3757 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3758 3759 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 3760 Ty.getQualifiers(), 3761 AggValueSlot::IsNotDestructed, 3762 AggValueSlot::DoesNotNeedGCBarriers, 3763 AggValueSlot::IsNotAliased, 3764 AggValueSlot::DoesNotOverlap); 3765 } 3766 3767 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3768 const VarDecl *param, 3769 SourceLocation loc) { 3770 // StartFunction converted the ABI-lowered parameter(s) into a 3771 // local alloca. We need to turn that into an r-value suitable 3772 // for EmitCall. 3773 Address local = GetAddrOfLocalVar(param); 3774 3775 QualType type = param->getType(); 3776 3777 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3778 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3779 } 3780 3781 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3782 // but the argument needs to be the original pointer. 3783 if (type->isReferenceType()) { 3784 args.add(RValue::get(Builder.CreateLoad(local)), type); 3785 3786 // In ARC, move out of consumed arguments so that the release cleanup 3787 // entered by StartFunction doesn't cause an over-release. This isn't 3788 // optimal -O0 code generation, but it should get cleaned up when 3789 // optimization is enabled. This also assumes that delegate calls are 3790 // performed exactly once for a set of arguments, but that should be safe. 3791 } else if (getLangOpts().ObjCAutoRefCount && 3792 param->hasAttr<NSConsumedAttr>() && 3793 type->isObjCRetainableType()) { 3794 llvm::Value *ptr = Builder.CreateLoad(local); 3795 auto null = 3796 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3797 Builder.CreateStore(null, local); 3798 args.add(RValue::get(ptr), type); 3799 3800 // For the most part, we just need to load the alloca, except that 3801 // aggregate r-values are actually pointers to temporaries. 3802 } else { 3803 args.add(convertTempToRValue(local, type, loc), type); 3804 } 3805 3806 // Deactivate the cleanup for the callee-destructed param that was pushed. 3807 if (type->isRecordType() && !CurFuncIsThunk && 3808 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3809 param->needsDestruction(getContext())) { 3810 EHScopeStack::stable_iterator cleanup = 3811 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3812 assert(cleanup.isValid() && 3813 "cleanup for callee-destructed param not recorded"); 3814 // This unreachable is a temporary marker which will be removed later. 3815 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3816 args.addArgCleanupDeactivation(cleanup, isActive); 3817 } 3818 } 3819 3820 static bool isProvablyNull(llvm::Value *addr) { 3821 return isa<llvm::ConstantPointerNull>(addr); 3822 } 3823 3824 /// Emit the actual writing-back of a writeback. 3825 static void emitWriteback(CodeGenFunction &CGF, 3826 const CallArgList::Writeback &writeback) { 3827 const LValue &srcLV = writeback.Source; 3828 Address srcAddr = srcLV.getAddress(CGF); 3829 assert(!isProvablyNull(srcAddr.getPointer()) && 3830 "shouldn't have writeback for provably null argument"); 3831 3832 llvm::BasicBlock *contBB = nullptr; 3833 3834 // If the argument wasn't provably non-null, we need to null check 3835 // before doing the store. 3836 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3837 CGF.CGM.getDataLayout()); 3838 if (!provablyNonNull) { 3839 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3840 contBB = CGF.createBasicBlock("icr.done"); 3841 3842 llvm::Value *isNull = 3843 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3844 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3845 CGF.EmitBlock(writebackBB); 3846 } 3847 3848 // Load the value to writeback. 3849 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3850 3851 // Cast it back, in case we're writing an id to a Foo* or something. 3852 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3853 "icr.writeback-cast"); 3854 3855 // Perform the writeback. 3856 3857 // If we have a "to use" value, it's something we need to emit a use 3858 // of. This has to be carefully threaded in: if it's done after the 3859 // release it's potentially undefined behavior (and the optimizer 3860 // will ignore it), and if it happens before the retain then the 3861 // optimizer could move the release there. 3862 if (writeback.ToUse) { 3863 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3864 3865 // Retain the new value. No need to block-copy here: the block's 3866 // being passed up the stack. 3867 value = CGF.EmitARCRetainNonBlock(value); 3868 3869 // Emit the intrinsic use here. 3870 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3871 3872 // Load the old value (primitively). 3873 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3874 3875 // Put the new value in place (primitively). 3876 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3877 3878 // Release the old value. 3879 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3880 3881 // Otherwise, we can just do a normal lvalue store. 3882 } else { 3883 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3884 } 3885 3886 // Jump to the continuation block. 3887 if (!provablyNonNull) 3888 CGF.EmitBlock(contBB); 3889 } 3890 3891 static void emitWritebacks(CodeGenFunction &CGF, 3892 const CallArgList &args) { 3893 for (const auto &I : args.writebacks()) 3894 emitWriteback(CGF, I); 3895 } 3896 3897 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3898 const CallArgList &CallArgs) { 3899 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3900 CallArgs.getCleanupsToDeactivate(); 3901 // Iterate in reverse to increase the likelihood of popping the cleanup. 3902 for (const auto &I : llvm::reverse(Cleanups)) { 3903 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3904 I.IsActiveIP->eraseFromParent(); 3905 } 3906 } 3907 3908 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3909 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3910 if (uop->getOpcode() == UO_AddrOf) 3911 return uop->getSubExpr(); 3912 return nullptr; 3913 } 3914 3915 /// Emit an argument that's being passed call-by-writeback. That is, 3916 /// we are passing the address of an __autoreleased temporary; it 3917 /// might be copy-initialized with the current value of the given 3918 /// address, but it will definitely be copied out of after the call. 3919 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3920 const ObjCIndirectCopyRestoreExpr *CRE) { 3921 LValue srcLV; 3922 3923 // Make an optimistic effort to emit the address as an l-value. 3924 // This can fail if the argument expression is more complicated. 3925 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3926 srcLV = CGF.EmitLValue(lvExpr); 3927 3928 // Otherwise, just emit it as a scalar. 3929 } else { 3930 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3931 3932 QualType srcAddrType = 3933 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3934 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3935 } 3936 Address srcAddr = srcLV.getAddress(CGF); 3937 3938 // The dest and src types don't necessarily match in LLVM terms 3939 // because of the crazy ObjC compatibility rules. 3940 3941 llvm::PointerType *destType = 3942 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3943 llvm::Type *destElemType = 3944 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 3945 3946 // If the address is a constant null, just pass the appropriate null. 3947 if (isProvablyNull(srcAddr.getPointer())) { 3948 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3949 CRE->getType()); 3950 return; 3951 } 3952 3953 // Create the temporary. 3954 Address temp = 3955 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 3956 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3957 // and that cleanup will be conditional if we can't prove that the l-value 3958 // isn't null, so we need to register a dominating point so that the cleanups 3959 // system will make valid IR. 3960 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3961 3962 // Zero-initialize it if we're not doing a copy-initialization. 3963 bool shouldCopy = CRE->shouldCopy(); 3964 if (!shouldCopy) { 3965 llvm::Value *null = 3966 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 3967 CGF.Builder.CreateStore(null, temp); 3968 } 3969 3970 llvm::BasicBlock *contBB = nullptr; 3971 llvm::BasicBlock *originBB = nullptr; 3972 3973 // If the address is *not* known to be non-null, we need to switch. 3974 llvm::Value *finalArgument; 3975 3976 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3977 CGF.CGM.getDataLayout()); 3978 if (provablyNonNull) { 3979 finalArgument = temp.getPointer(); 3980 } else { 3981 llvm::Value *isNull = 3982 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3983 3984 finalArgument = CGF.Builder.CreateSelect(isNull, 3985 llvm::ConstantPointerNull::get(destType), 3986 temp.getPointer(), "icr.argument"); 3987 3988 // If we need to copy, then the load has to be conditional, which 3989 // means we need control flow. 3990 if (shouldCopy) { 3991 originBB = CGF.Builder.GetInsertBlock(); 3992 contBB = CGF.createBasicBlock("icr.cont"); 3993 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3994 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3995 CGF.EmitBlock(copyBB); 3996 condEval.begin(CGF); 3997 } 3998 } 3999 4000 llvm::Value *valueToUse = nullptr; 4001 4002 // Perform a copy if necessary. 4003 if (shouldCopy) { 4004 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4005 assert(srcRV.isScalar()); 4006 4007 llvm::Value *src = srcRV.getScalarVal(); 4008 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4009 4010 // Use an ordinary store, not a store-to-lvalue. 4011 CGF.Builder.CreateStore(src, temp); 4012 4013 // If optimization is enabled, and the value was held in a 4014 // __strong variable, we need to tell the optimizer that this 4015 // value has to stay alive until we're doing the store back. 4016 // This is because the temporary is effectively unretained, 4017 // and so otherwise we can violate the high-level semantics. 4018 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4019 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4020 valueToUse = src; 4021 } 4022 } 4023 4024 // Finish the control flow if we needed it. 4025 if (shouldCopy && !provablyNonNull) { 4026 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4027 CGF.EmitBlock(contBB); 4028 4029 // Make a phi for the value to intrinsically use. 4030 if (valueToUse) { 4031 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4032 "icr.to-use"); 4033 phiToUse->addIncoming(valueToUse, copyBB); 4034 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4035 originBB); 4036 valueToUse = phiToUse; 4037 } 4038 4039 condEval.end(CGF); 4040 } 4041 4042 args.addWriteback(srcLV, temp, valueToUse); 4043 args.add(RValue::get(finalArgument), CRE->getType()); 4044 } 4045 4046 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4047 assert(!StackBase); 4048 4049 // Save the stack. 4050 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 4051 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 4052 } 4053 4054 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4055 if (StackBase) { 4056 // Restore the stack after the call. 4057 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 4058 CGF.Builder.CreateCall(F, StackBase); 4059 } 4060 } 4061 4062 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4063 SourceLocation ArgLoc, 4064 AbstractCallee AC, 4065 unsigned ParmNum) { 4066 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4067 SanOpts.has(SanitizerKind::NullabilityArg))) 4068 return; 4069 4070 // The param decl may be missing in a variadic function. 4071 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4072 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4073 4074 // Prefer the nonnull attribute if it's present. 4075 const NonNullAttr *NNAttr = nullptr; 4076 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4077 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4078 4079 bool CanCheckNullability = false; 4080 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4081 auto Nullability = PVD->getType()->getNullability(getContext()); 4082 CanCheckNullability = Nullability && 4083 *Nullability == NullabilityKind::NonNull && 4084 PVD->getTypeSourceInfo(); 4085 } 4086 4087 if (!NNAttr && !CanCheckNullability) 4088 return; 4089 4090 SourceLocation AttrLoc; 4091 SanitizerMask CheckKind; 4092 SanitizerHandler Handler; 4093 if (NNAttr) { 4094 AttrLoc = NNAttr->getLocation(); 4095 CheckKind = SanitizerKind::NonnullAttribute; 4096 Handler = SanitizerHandler::NonnullArg; 4097 } else { 4098 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4099 CheckKind = SanitizerKind::NullabilityArg; 4100 Handler = SanitizerHandler::NullabilityArg; 4101 } 4102 4103 SanitizerScope SanScope(this); 4104 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4105 llvm::Constant *StaticData[] = { 4106 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4107 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4108 }; 4109 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4110 } 4111 4112 // Check if the call is going to use the inalloca convention. This needs to 4113 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4114 // later, so we can't check it directly. 4115 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4116 ArrayRef<QualType> ArgTypes) { 4117 // The Swift calling conventions don't go through the target-specific 4118 // argument classification, they never use inalloca. 4119 // TODO: Consider limiting inalloca use to only calling conventions supported 4120 // by MSVC. 4121 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4122 return false; 4123 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4124 return false; 4125 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4126 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4127 }); 4128 } 4129 4130 #ifndef NDEBUG 4131 // Determine whether the given argument is an Objective-C method 4132 // that may have type parameters in its signature. 4133 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4134 const DeclContext *dc = method->getDeclContext(); 4135 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4136 return classDecl->getTypeParamListAsWritten(); 4137 } 4138 4139 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4140 return catDecl->getTypeParamList(); 4141 } 4142 4143 return false; 4144 } 4145 #endif 4146 4147 /// EmitCallArgs - Emit call arguments for a function. 4148 void CodeGenFunction::EmitCallArgs( 4149 CallArgList &Args, PrototypeWrapper Prototype, 4150 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4151 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4152 SmallVector<QualType, 16> ArgTypes; 4153 4154 assert((ParamsToSkip == 0 || Prototype.P) && 4155 "Can't skip parameters if type info is not provided"); 4156 4157 // This variable only captures *explicitly* written conventions, not those 4158 // applied by default via command line flags or target defaults, such as 4159 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4160 // require knowing if this is a C++ instance method or being able to see 4161 // unprototyped FunctionTypes. 4162 CallingConv ExplicitCC = CC_C; 4163 4164 // First, if a prototype was provided, use those argument types. 4165 bool IsVariadic = false; 4166 if (Prototype.P) { 4167 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4168 if (MD) { 4169 IsVariadic = MD->isVariadic(); 4170 ExplicitCC = getCallingConventionForDecl( 4171 MD, CGM.getTarget().getTriple().isOSWindows()); 4172 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4173 MD->param_type_end()); 4174 } else { 4175 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4176 IsVariadic = FPT->isVariadic(); 4177 ExplicitCC = FPT->getExtInfo().getCC(); 4178 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4179 FPT->param_type_end()); 4180 } 4181 4182 #ifndef NDEBUG 4183 // Check that the prototyped types match the argument expression types. 4184 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4185 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4186 for (QualType Ty : ArgTypes) { 4187 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4188 assert( 4189 (isGenericMethod || Ty->isVariablyModifiedType() || 4190 Ty.getNonReferenceType()->isObjCRetainableType() || 4191 getContext() 4192 .getCanonicalType(Ty.getNonReferenceType()) 4193 .getTypePtr() == 4194 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4195 "type mismatch in call argument!"); 4196 ++Arg; 4197 } 4198 4199 // Either we've emitted all the call args, or we have a call to variadic 4200 // function. 4201 assert((Arg == ArgRange.end() || IsVariadic) && 4202 "Extra arguments in non-variadic function!"); 4203 #endif 4204 } 4205 4206 // If we still have any arguments, emit them using the type of the argument. 4207 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4208 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4209 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4210 4211 // We must evaluate arguments from right to left in the MS C++ ABI, 4212 // because arguments are destroyed left to right in the callee. As a special 4213 // case, there are certain language constructs that require left-to-right 4214 // evaluation, and in those cases we consider the evaluation order requirement 4215 // to trump the "destruction order is reverse construction order" guarantee. 4216 bool LeftToRight = 4217 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4218 ? Order == EvaluationOrder::ForceLeftToRight 4219 : Order != EvaluationOrder::ForceRightToLeft; 4220 4221 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4222 RValue EmittedArg) { 4223 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4224 return; 4225 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4226 if (PS == nullptr) 4227 return; 4228 4229 const auto &Context = getContext(); 4230 auto SizeTy = Context.getSizeType(); 4231 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4232 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4233 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4234 EmittedArg.getScalarVal(), 4235 PS->isDynamic()); 4236 Args.add(RValue::get(V), SizeTy); 4237 // If we're emitting args in reverse, be sure to do so with 4238 // pass_object_size, as well. 4239 if (!LeftToRight) 4240 std::swap(Args.back(), *(&Args.back() - 1)); 4241 }; 4242 4243 // Insert a stack save if we're going to need any inalloca args. 4244 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4245 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4246 "inalloca only supported on x86"); 4247 Args.allocateArgumentMemory(*this); 4248 } 4249 4250 // Evaluate each argument in the appropriate order. 4251 size_t CallArgsStart = Args.size(); 4252 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4253 unsigned Idx = LeftToRight ? I : E - I - 1; 4254 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4255 unsigned InitialArgSize = Args.size(); 4256 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4257 // the argument and parameter match or the objc method is parameterized. 4258 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4259 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4260 ArgTypes[Idx]) || 4261 (isa<ObjCMethodDecl>(AC.getDecl()) && 4262 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4263 "Argument and parameter types don't match"); 4264 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4265 // In particular, we depend on it being the last arg in Args, and the 4266 // objectsize bits depend on there only being one arg if !LeftToRight. 4267 assert(InitialArgSize + 1 == Args.size() && 4268 "The code below depends on only adding one arg per EmitCallArg"); 4269 (void)InitialArgSize; 4270 // Since pointer argument are never emitted as LValue, it is safe to emit 4271 // non-null argument check for r-value only. 4272 if (!Args.back().hasLValue()) { 4273 RValue RVArg = Args.back().getKnownRValue(); 4274 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4275 ParamsToSkip + Idx); 4276 // @llvm.objectsize should never have side-effects and shouldn't need 4277 // destruction/cleanups, so we can safely "emit" it after its arg, 4278 // regardless of right-to-leftness 4279 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4280 } 4281 } 4282 4283 if (!LeftToRight) { 4284 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4285 // IR function. 4286 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4287 } 4288 } 4289 4290 namespace { 4291 4292 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4293 DestroyUnpassedArg(Address Addr, QualType Ty) 4294 : Addr(Addr), Ty(Ty) {} 4295 4296 Address Addr; 4297 QualType Ty; 4298 4299 void Emit(CodeGenFunction &CGF, Flags flags) override { 4300 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4301 if (DtorKind == QualType::DK_cxx_destructor) { 4302 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4303 assert(!Dtor->isTrivial()); 4304 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4305 /*Delegating=*/false, Addr, Ty); 4306 } else { 4307 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4308 } 4309 } 4310 }; 4311 4312 struct DisableDebugLocationUpdates { 4313 CodeGenFunction &CGF; 4314 bool disabledDebugInfo; 4315 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4316 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4317 CGF.disableDebugInfo(); 4318 } 4319 ~DisableDebugLocationUpdates() { 4320 if (disabledDebugInfo) 4321 CGF.enableDebugInfo(); 4322 } 4323 }; 4324 4325 } // end anonymous namespace 4326 4327 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4328 if (!HasLV) 4329 return RV; 4330 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4331 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4332 LV.isVolatile()); 4333 IsUsed = true; 4334 return RValue::getAggregate(Copy.getAddress(CGF)); 4335 } 4336 4337 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4338 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4339 if (!HasLV && RV.isScalar()) 4340 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4341 else if (!HasLV && RV.isComplex()) 4342 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4343 else { 4344 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4345 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4346 // We assume that call args are never copied into subobjects. 4347 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4348 HasLV ? LV.isVolatileQualified() 4349 : RV.isVolatileQualified()); 4350 } 4351 IsUsed = true; 4352 } 4353 4354 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4355 QualType type) { 4356 DisableDebugLocationUpdates Dis(*this, E); 4357 if (const ObjCIndirectCopyRestoreExpr *CRE 4358 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4359 assert(getLangOpts().ObjCAutoRefCount); 4360 return emitWritebackArg(*this, args, CRE); 4361 } 4362 4363 assert(type->isReferenceType() == E->isGLValue() && 4364 "reference binding to unmaterialized r-value!"); 4365 4366 if (E->isGLValue()) { 4367 assert(E->getObjectKind() == OK_Ordinary); 4368 return args.add(EmitReferenceBindingToExpr(E), type); 4369 } 4370 4371 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4372 4373 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4374 // However, we still have to push an EH-only cleanup in case we unwind before 4375 // we make it to the call. 4376 if (type->isRecordType() && 4377 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4378 // If we're using inalloca, use the argument memory. Otherwise, use a 4379 // temporary. 4380 AggValueSlot Slot = args.isUsingInAlloca() 4381 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4382 4383 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4384 if (const auto *RD = type->getAsCXXRecordDecl()) 4385 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4386 else 4387 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4388 4389 if (DestroyedInCallee) 4390 Slot.setExternallyDestructed(); 4391 4392 EmitAggExpr(E, Slot); 4393 RValue RV = Slot.asRValue(); 4394 args.add(RV, type); 4395 4396 if (DestroyedInCallee && NeedsEHCleanup) { 4397 // Create a no-op GEP between the placeholder and the cleanup so we can 4398 // RAUW it successfully. It also serves as a marker of the first 4399 // instruction where the cleanup is active. 4400 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4401 type); 4402 // This unreachable is a temporary marker which will be removed later. 4403 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4404 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4405 } 4406 return; 4407 } 4408 4409 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4410 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4411 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4412 assert(L.isSimple()); 4413 args.addUncopiedAggregate(L, type); 4414 return; 4415 } 4416 4417 args.add(EmitAnyExprToTemp(E), type); 4418 } 4419 4420 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4421 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4422 // implicitly widens null pointer constants that are arguments to varargs 4423 // functions to pointer-sized ints. 4424 if (!getTarget().getTriple().isOSWindows()) 4425 return Arg->getType(); 4426 4427 if (Arg->getType()->isIntegerType() && 4428 getContext().getTypeSize(Arg->getType()) < 4429 getContext().getTargetInfo().getPointerWidth(0) && 4430 Arg->isNullPointerConstant(getContext(), 4431 Expr::NPC_ValueDependentIsNotNull)) { 4432 return getContext().getIntPtrType(); 4433 } 4434 4435 return Arg->getType(); 4436 } 4437 4438 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4439 // optimizer it can aggressively ignore unwind edges. 4440 void 4441 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4442 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4443 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4444 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4445 CGM.getNoObjCARCExceptionsMetadata()); 4446 } 4447 4448 /// Emits a call to the given no-arguments nounwind runtime function. 4449 llvm::CallInst * 4450 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4451 const llvm::Twine &name) { 4452 return EmitNounwindRuntimeCall(callee, None, name); 4453 } 4454 4455 /// Emits a call to the given nounwind runtime function. 4456 llvm::CallInst * 4457 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4458 ArrayRef<llvm::Value *> args, 4459 const llvm::Twine &name) { 4460 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4461 call->setDoesNotThrow(); 4462 return call; 4463 } 4464 4465 /// Emits a simple call (never an invoke) to the given no-arguments 4466 /// runtime function. 4467 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4468 const llvm::Twine &name) { 4469 return EmitRuntimeCall(callee, None, name); 4470 } 4471 4472 // Calls which may throw must have operand bundles indicating which funclet 4473 // they are nested within. 4474 SmallVector<llvm::OperandBundleDef, 1> 4475 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4476 // There is no need for a funclet operand bundle if we aren't inside a 4477 // funclet. 4478 if (!CurrentFuncletPad) 4479 return (SmallVector<llvm::OperandBundleDef, 1>()); 4480 4481 // Skip intrinsics which cannot throw (as long as they don't lower into 4482 // regular function calls in the course of IR transformations). 4483 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4484 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4485 auto IID = CalleeFn->getIntrinsicID(); 4486 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4487 return (SmallVector<llvm::OperandBundleDef, 1>()); 4488 } 4489 } 4490 4491 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4492 BundleList.emplace_back("funclet", CurrentFuncletPad); 4493 return BundleList; 4494 } 4495 4496 /// Emits a simple call (never an invoke) to the given runtime function. 4497 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4498 ArrayRef<llvm::Value *> args, 4499 const llvm::Twine &name) { 4500 llvm::CallInst *call = Builder.CreateCall( 4501 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4502 call->setCallingConv(getRuntimeCC()); 4503 return call; 4504 } 4505 4506 /// Emits a call or invoke to the given noreturn runtime function. 4507 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4508 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4509 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4510 getBundlesForFunclet(callee.getCallee()); 4511 4512 if (getInvokeDest()) { 4513 llvm::InvokeInst *invoke = 4514 Builder.CreateInvoke(callee, 4515 getUnreachableBlock(), 4516 getInvokeDest(), 4517 args, 4518 BundleList); 4519 invoke->setDoesNotReturn(); 4520 invoke->setCallingConv(getRuntimeCC()); 4521 } else { 4522 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4523 call->setDoesNotReturn(); 4524 call->setCallingConv(getRuntimeCC()); 4525 Builder.CreateUnreachable(); 4526 } 4527 } 4528 4529 /// Emits a call or invoke instruction to the given nullary runtime function. 4530 llvm::CallBase * 4531 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4532 const Twine &name) { 4533 return EmitRuntimeCallOrInvoke(callee, None, name); 4534 } 4535 4536 /// Emits a call or invoke instruction to the given runtime function. 4537 llvm::CallBase * 4538 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4539 ArrayRef<llvm::Value *> args, 4540 const Twine &name) { 4541 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4542 call->setCallingConv(getRuntimeCC()); 4543 return call; 4544 } 4545 4546 /// Emits a call or invoke instruction to the given function, depending 4547 /// on the current state of the EH stack. 4548 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4549 ArrayRef<llvm::Value *> Args, 4550 const Twine &Name) { 4551 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4552 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4553 getBundlesForFunclet(Callee.getCallee()); 4554 4555 llvm::CallBase *Inst; 4556 if (!InvokeDest) 4557 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4558 else { 4559 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4560 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4561 Name); 4562 EmitBlock(ContBB); 4563 } 4564 4565 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4566 // optimizer it can aggressively ignore unwind edges. 4567 if (CGM.getLangOpts().ObjCAutoRefCount) 4568 AddObjCARCExceptionMetadata(Inst); 4569 4570 return Inst; 4571 } 4572 4573 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4574 llvm::Value *New) { 4575 DeferredReplacements.push_back( 4576 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4577 } 4578 4579 namespace { 4580 4581 /// Specify given \p NewAlign as the alignment of return value attribute. If 4582 /// such attribute already exists, re-set it to the maximal one of two options. 4583 LLVM_NODISCARD llvm::AttributeList 4584 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4585 const llvm::AttributeList &Attrs, 4586 llvm::Align NewAlign) { 4587 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4588 if (CurAlign >= NewAlign) 4589 return Attrs; 4590 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4591 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4592 .addRetAttribute(Ctx, AlignAttr); 4593 } 4594 4595 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4596 protected: 4597 CodeGenFunction &CGF; 4598 4599 /// We do nothing if this is, or becomes, nullptr. 4600 const AlignedAttrTy *AA = nullptr; 4601 4602 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4603 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4604 4605 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4606 : CGF(CGF_) { 4607 if (!FuncDecl) 4608 return; 4609 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4610 } 4611 4612 public: 4613 /// If we can, materialize the alignment as an attribute on return value. 4614 LLVM_NODISCARD llvm::AttributeList 4615 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4616 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4617 return Attrs; 4618 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4619 if (!AlignmentCI) 4620 return Attrs; 4621 // We may legitimately have non-power-of-2 alignment here. 4622 // If so, this is UB land, emit it via `@llvm.assume` instead. 4623 if (!AlignmentCI->getValue().isPowerOf2()) 4624 return Attrs; 4625 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4626 CGF.getLLVMContext(), Attrs, 4627 llvm::Align( 4628 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4629 AA = nullptr; // We're done. Disallow doing anything else. 4630 return NewAttrs; 4631 } 4632 4633 /// Emit alignment assumption. 4634 /// This is a general fallback that we take if either there is an offset, 4635 /// or the alignment is variable or we are sanitizing for alignment. 4636 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4637 if (!AA) 4638 return; 4639 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4640 AA->getLocation(), Alignment, OffsetCI); 4641 AA = nullptr; // We're done. Disallow doing anything else. 4642 } 4643 }; 4644 4645 /// Helper data structure to emit `AssumeAlignedAttr`. 4646 class AssumeAlignedAttrEmitter final 4647 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4648 public: 4649 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4650 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4651 if (!AA) 4652 return; 4653 // It is guaranteed that the alignment/offset are constants. 4654 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4655 if (Expr *Offset = AA->getOffset()) { 4656 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4657 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4658 OffsetCI = nullptr; 4659 } 4660 } 4661 }; 4662 4663 /// Helper data structure to emit `AllocAlignAttr`. 4664 class AllocAlignAttrEmitter final 4665 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4666 public: 4667 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4668 const CallArgList &CallArgs) 4669 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4670 if (!AA) 4671 return; 4672 // Alignment may or may not be a constant, and that is okay. 4673 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4674 .getRValue(CGF) 4675 .getScalarVal(); 4676 } 4677 }; 4678 4679 } // namespace 4680 4681 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4682 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 4683 return VT->getPrimitiveSizeInBits().getKnownMinSize(); 4684 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 4685 return getMaxVectorWidth(AT->getElementType()); 4686 4687 unsigned MaxVectorWidth = 0; 4688 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 4689 for (auto *I : ST->elements()) 4690 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 4691 return MaxVectorWidth; 4692 } 4693 4694 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4695 const CGCallee &Callee, 4696 ReturnValueSlot ReturnValue, 4697 const CallArgList &CallArgs, 4698 llvm::CallBase **callOrInvoke, bool IsMustTail, 4699 SourceLocation Loc) { 4700 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4701 4702 assert(Callee.isOrdinary() || Callee.isVirtual()); 4703 4704 // Handle struct-return functions by passing a pointer to the 4705 // location that we would like to return into. 4706 QualType RetTy = CallInfo.getReturnType(); 4707 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4708 4709 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4710 4711 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4712 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4713 // We can only guarantee that a function is called from the correct 4714 // context/function based on the appropriate target attributes, 4715 // so only check in the case where we have both always_inline and target 4716 // since otherwise we could be making a conditional call after a check for 4717 // the proper cpu features (and it won't cause code generation issues due to 4718 // function based code generation). 4719 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4720 TargetDecl->hasAttr<TargetAttr>()) 4721 checkTargetFeatures(Loc, FD); 4722 4723 // Some architectures (such as x86-64) have the ABI changed based on 4724 // attribute-target/features. Give them a chance to diagnose. 4725 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4726 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4727 } 4728 4729 #ifndef NDEBUG 4730 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4731 // For an inalloca varargs function, we don't expect CallInfo to match the 4732 // function pointer's type, because the inalloca struct a will have extra 4733 // fields in it for the varargs parameters. Code later in this function 4734 // bitcasts the function pointer to the type derived from CallInfo. 4735 // 4736 // In other cases, we assert that the types match up (until pointers stop 4737 // having pointee types). 4738 if (Callee.isVirtual()) 4739 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4740 else { 4741 llvm::PointerType *PtrTy = 4742 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4743 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4744 } 4745 } 4746 #endif 4747 4748 // 1. Set up the arguments. 4749 4750 // If we're using inalloca, insert the allocation after the stack save. 4751 // FIXME: Do this earlier rather than hacking it in here! 4752 Address ArgMemory = Address::invalid(); 4753 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4754 const llvm::DataLayout &DL = CGM.getDataLayout(); 4755 llvm::Instruction *IP = CallArgs.getStackBase(); 4756 llvm::AllocaInst *AI; 4757 if (IP) { 4758 IP = IP->getNextNode(); 4759 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4760 "argmem", IP); 4761 } else { 4762 AI = CreateTempAlloca(ArgStruct, "argmem"); 4763 } 4764 auto Align = CallInfo.getArgStructAlignment(); 4765 AI->setAlignment(Align.getAsAlign()); 4766 AI->setUsedWithInAlloca(true); 4767 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4768 ArgMemory = Address(AI, ArgStruct, Align); 4769 } 4770 4771 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4772 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4773 4774 // If the call returns a temporary with struct return, create a temporary 4775 // alloca to hold the result, unless one is given to us. 4776 Address SRetPtr = Address::invalid(); 4777 Address SRetAlloca = Address::invalid(); 4778 llvm::Value *UnusedReturnSizePtr = nullptr; 4779 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4780 if (!ReturnValue.isNull()) { 4781 SRetPtr = ReturnValue.getValue(); 4782 } else { 4783 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4784 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4785 llvm::TypeSize size = 4786 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4787 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4788 } 4789 } 4790 if (IRFunctionArgs.hasSRetArg()) { 4791 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4792 } else if (RetAI.isInAlloca()) { 4793 Address Addr = 4794 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4795 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4796 } 4797 } 4798 4799 Address swiftErrorTemp = Address::invalid(); 4800 Address swiftErrorArg = Address::invalid(); 4801 4802 // When passing arguments using temporary allocas, we need to add the 4803 // appropriate lifetime markers. This vector keeps track of all the lifetime 4804 // markers that need to be ended right after the call. 4805 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4806 4807 // Translate all of the arguments as necessary to match the IR lowering. 4808 assert(CallInfo.arg_size() == CallArgs.size() && 4809 "Mismatch between function signature & arguments."); 4810 unsigned ArgNo = 0; 4811 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4812 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4813 I != E; ++I, ++info_it, ++ArgNo) { 4814 const ABIArgInfo &ArgInfo = info_it->info; 4815 4816 // Insert a padding argument to ensure proper alignment. 4817 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4818 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4819 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4820 4821 unsigned FirstIRArg, NumIRArgs; 4822 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4823 4824 switch (ArgInfo.getKind()) { 4825 case ABIArgInfo::InAlloca: { 4826 assert(NumIRArgs == 0); 4827 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4828 if (I->isAggregate()) { 4829 Address Addr = I->hasLValue() 4830 ? I->getKnownLValue().getAddress(*this) 4831 : I->getKnownRValue().getAggregateAddress(); 4832 llvm::Instruction *Placeholder = 4833 cast<llvm::Instruction>(Addr.getPointer()); 4834 4835 if (!ArgInfo.getInAllocaIndirect()) { 4836 // Replace the placeholder with the appropriate argument slot GEP. 4837 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4838 Builder.SetInsertPoint(Placeholder); 4839 Addr = Builder.CreateStructGEP(ArgMemory, 4840 ArgInfo.getInAllocaFieldIndex()); 4841 Builder.restoreIP(IP); 4842 } else { 4843 // For indirect things such as overaligned structs, replace the 4844 // placeholder with a regular aggregate temporary alloca. Store the 4845 // address of this alloca into the struct. 4846 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4847 Address ArgSlot = Builder.CreateStructGEP( 4848 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4849 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4850 } 4851 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4852 } else if (ArgInfo.getInAllocaIndirect()) { 4853 // Make a temporary alloca and store the address of it into the argument 4854 // struct. 4855 Address Addr = CreateMemTempWithoutCast( 4856 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4857 "indirect-arg-temp"); 4858 I->copyInto(*this, Addr); 4859 Address ArgSlot = 4860 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4861 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4862 } else { 4863 // Store the RValue into the argument struct. 4864 Address Addr = 4865 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4866 // There are some cases where a trivial bitcast is not avoidable. The 4867 // definition of a type later in a translation unit may change it's type 4868 // from {}* to (%struct.foo*)*. 4869 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty)); 4870 I->copyInto(*this, Addr); 4871 } 4872 break; 4873 } 4874 4875 case ABIArgInfo::Indirect: 4876 case ABIArgInfo::IndirectAliased: { 4877 assert(NumIRArgs == 1); 4878 if (!I->isAggregate()) { 4879 // Make a temporary alloca to pass the argument. 4880 Address Addr = CreateMemTempWithoutCast( 4881 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4882 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4883 4884 I->copyInto(*this, Addr); 4885 } else { 4886 // We want to avoid creating an unnecessary temporary+copy here; 4887 // however, we need one in three cases: 4888 // 1. If the argument is not byval, and we are required to copy the 4889 // source. (This case doesn't occur on any common architecture.) 4890 // 2. If the argument is byval, RV is not sufficiently aligned, and 4891 // we cannot force it to be sufficiently aligned. 4892 // 3. If the argument is byval, but RV is not located in default 4893 // or alloca address space. 4894 Address Addr = I->hasLValue() 4895 ? I->getKnownLValue().getAddress(*this) 4896 : I->getKnownRValue().getAggregateAddress(); 4897 llvm::Value *V = Addr.getPointer(); 4898 CharUnits Align = ArgInfo.getIndirectAlign(); 4899 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4900 4901 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4902 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4903 TD->getAllocaAddrSpace()) && 4904 "indirect argument must be in alloca address space"); 4905 4906 bool NeedCopy = false; 4907 4908 if (Addr.getAlignment() < Align && 4909 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4910 Align.getAsAlign()) { 4911 NeedCopy = true; 4912 } else if (I->hasLValue()) { 4913 auto LV = I->getKnownLValue(); 4914 auto AS = LV.getAddressSpace(); 4915 4916 if (!ArgInfo.getIndirectByVal() || 4917 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4918 NeedCopy = true; 4919 } 4920 if (!getLangOpts().OpenCL) { 4921 if ((ArgInfo.getIndirectByVal() && 4922 (AS != LangAS::Default && 4923 AS != CGM.getASTAllocaAddressSpace()))) { 4924 NeedCopy = true; 4925 } 4926 } 4927 // For OpenCL even if RV is located in default or alloca address space 4928 // we don't want to perform address space cast for it. 4929 else if ((ArgInfo.getIndirectByVal() && 4930 Addr.getType()->getAddressSpace() != IRFuncTy-> 4931 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4932 NeedCopy = true; 4933 } 4934 } 4935 4936 if (NeedCopy) { 4937 // Create an aligned temporary, and copy to it. 4938 Address AI = CreateMemTempWithoutCast( 4939 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4940 IRCallArgs[FirstIRArg] = AI.getPointer(); 4941 4942 // Emit lifetime markers for the temporary alloca. 4943 llvm::TypeSize ByvalTempElementSize = 4944 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4945 llvm::Value *LifetimeSize = 4946 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4947 4948 // Add cleanup code to emit the end lifetime marker after the call. 4949 if (LifetimeSize) // In case we disabled lifetime markers. 4950 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4951 4952 // Generate the copy. 4953 I->copyInto(*this, AI); 4954 } else { 4955 // Skip the extra memcpy call. 4956 auto *T = llvm::PointerType::getWithSamePointeeType( 4957 cast<llvm::PointerType>(V->getType()), 4958 CGM.getDataLayout().getAllocaAddrSpace()); 4959 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4960 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4961 true); 4962 } 4963 } 4964 break; 4965 } 4966 4967 case ABIArgInfo::Ignore: 4968 assert(NumIRArgs == 0); 4969 break; 4970 4971 case ABIArgInfo::Extend: 4972 case ABIArgInfo::Direct: { 4973 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4974 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4975 ArgInfo.getDirectOffset() == 0) { 4976 assert(NumIRArgs == 1); 4977 llvm::Value *V; 4978 if (!I->isAggregate()) 4979 V = I->getKnownRValue().getScalarVal(); 4980 else 4981 V = Builder.CreateLoad( 4982 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4983 : I->getKnownRValue().getAggregateAddress()); 4984 4985 // Implement swifterror by copying into a new swifterror argument. 4986 // We'll write back in the normal path out of the call. 4987 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4988 == ParameterABI::SwiftErrorResult) { 4989 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4990 4991 QualType pointeeTy = I->Ty->getPointeeType(); 4992 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy), 4993 getContext().getTypeAlignInChars(pointeeTy)); 4994 4995 swiftErrorTemp = 4996 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4997 V = swiftErrorTemp.getPointer(); 4998 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4999 5000 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5001 Builder.CreateStore(errorValue, swiftErrorTemp); 5002 } 5003 5004 // We might have to widen integers, but we should never truncate. 5005 if (ArgInfo.getCoerceToType() != V->getType() && 5006 V->getType()->isIntegerTy()) 5007 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5008 5009 // If the argument doesn't match, perform a bitcast to coerce it. This 5010 // can happen due to trivial type mismatches. 5011 if (FirstIRArg < IRFuncTy->getNumParams() && 5012 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5013 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5014 5015 IRCallArgs[FirstIRArg] = V; 5016 break; 5017 } 5018 5019 // FIXME: Avoid the conversion through memory if possible. 5020 Address Src = Address::invalid(); 5021 if (!I->isAggregate()) { 5022 Src = CreateMemTemp(I->Ty, "coerce"); 5023 I->copyInto(*this, Src); 5024 } else { 5025 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5026 : I->getKnownRValue().getAggregateAddress(); 5027 } 5028 5029 // If the value is offset in memory, apply the offset now. 5030 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5031 5032 // Fast-isel and the optimizer generally like scalar values better than 5033 // FCAs, so we flatten them if this is safe to do for this argument. 5034 llvm::StructType *STy = 5035 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5036 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5037 llvm::Type *SrcTy = Src.getElementType(); 5038 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5039 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 5040 5041 // If the source type is smaller than the destination type of the 5042 // coerce-to logic, copy the source value into a temp alloca the size 5043 // of the destination type to allow loading all of it. The bits past 5044 // the source value are left undef. 5045 if (SrcSize < DstSize) { 5046 Address TempAlloca 5047 = CreateTempAlloca(STy, Src.getAlignment(), 5048 Src.getName() + ".coerce"); 5049 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5050 Src = TempAlloca; 5051 } else { 5052 Src = Builder.CreateElementBitCast(Src, STy); 5053 } 5054 5055 assert(NumIRArgs == STy->getNumElements()); 5056 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5057 Address EltPtr = Builder.CreateStructGEP(Src, i); 5058 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5059 IRCallArgs[FirstIRArg + i] = LI; 5060 } 5061 } else { 5062 // In the simple case, just pass the coerced loaded value. 5063 assert(NumIRArgs == 1); 5064 llvm::Value *Load = 5065 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5066 5067 if (CallInfo.isCmseNSCall()) { 5068 // For certain parameter types, clear padding bits, as they may reveal 5069 // sensitive information. 5070 // Small struct/union types are passed as integer arrays. 5071 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5072 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5073 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5074 } 5075 IRCallArgs[FirstIRArg] = Load; 5076 } 5077 5078 break; 5079 } 5080 5081 case ABIArgInfo::CoerceAndExpand: { 5082 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5083 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5084 5085 llvm::Value *tempSize = nullptr; 5086 Address addr = Address::invalid(); 5087 Address AllocaAddr = Address::invalid(); 5088 if (I->isAggregate()) { 5089 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5090 : I->getKnownRValue().getAggregateAddress(); 5091 5092 } else { 5093 RValue RV = I->getKnownRValue(); 5094 assert(RV.isScalar()); // complex should always just be direct 5095 5096 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5097 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5098 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5099 5100 // Materialize to a temporary. 5101 addr = 5102 CreateTempAlloca(RV.getScalarVal()->getType(), 5103 CharUnits::fromQuantity(std::max( 5104 layout->getAlignment().value(), scalarAlign)), 5105 "tmp", 5106 /*ArraySize=*/nullptr, &AllocaAddr); 5107 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5108 5109 Builder.CreateStore(RV.getScalarVal(), addr); 5110 } 5111 5112 addr = Builder.CreateElementBitCast(addr, coercionType); 5113 5114 unsigned IRArgPos = FirstIRArg; 5115 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5116 llvm::Type *eltType = coercionType->getElementType(i); 5117 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5118 Address eltAddr = Builder.CreateStructGEP(addr, i); 5119 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5120 IRCallArgs[IRArgPos++] = elt; 5121 } 5122 assert(IRArgPos == FirstIRArg + NumIRArgs); 5123 5124 if (tempSize) { 5125 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5126 } 5127 5128 break; 5129 } 5130 5131 case ABIArgInfo::Expand: { 5132 unsigned IRArgPos = FirstIRArg; 5133 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5134 assert(IRArgPos == FirstIRArg + NumIRArgs); 5135 break; 5136 } 5137 } 5138 } 5139 5140 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5141 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5142 5143 // If we're using inalloca, set up that argument. 5144 if (ArgMemory.isValid()) { 5145 llvm::Value *Arg = ArgMemory.getPointer(); 5146 if (CallInfo.isVariadic()) { 5147 // When passing non-POD arguments by value to variadic functions, we will 5148 // end up with a variadic prototype and an inalloca call site. In such 5149 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5150 // the callee. 5151 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5152 CalleePtr = 5153 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5154 } else { 5155 llvm::Type *LastParamTy = 5156 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5157 if (Arg->getType() != LastParamTy) { 5158 #ifndef NDEBUG 5159 // Assert that these structs have equivalent element types. 5160 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5161 if (!LastParamTy->isOpaquePointerTy()) { 5162 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 5163 LastParamTy->getNonOpaquePointerElementType()); 5164 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5165 for (auto DI = DeclaredTy->element_begin(), 5166 DE = DeclaredTy->element_end(), 5167 FI = FullTy->element_begin(); 5168 DI != DE; ++DI, ++FI) 5169 assert(*DI == *FI); 5170 } 5171 #endif 5172 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5173 } 5174 } 5175 assert(IRFunctionArgs.hasInallocaArg()); 5176 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5177 } 5178 5179 // 2. Prepare the function pointer. 5180 5181 // If the callee is a bitcast of a non-variadic function to have a 5182 // variadic function pointer type, check to see if we can remove the 5183 // bitcast. This comes up with unprototyped functions. 5184 // 5185 // This makes the IR nicer, but more importantly it ensures that we 5186 // can inline the function at -O0 if it is marked always_inline. 5187 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5188 llvm::Value *Ptr) -> llvm::Function * { 5189 if (!CalleeFT->isVarArg()) 5190 return nullptr; 5191 5192 // Get underlying value if it's a bitcast 5193 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5194 if (CE->getOpcode() == llvm::Instruction::BitCast) 5195 Ptr = CE->getOperand(0); 5196 } 5197 5198 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5199 if (!OrigFn) 5200 return nullptr; 5201 5202 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5203 5204 // If the original type is variadic, or if any of the component types 5205 // disagree, we cannot remove the cast. 5206 if (OrigFT->isVarArg() || 5207 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5208 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5209 return nullptr; 5210 5211 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5212 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5213 return nullptr; 5214 5215 return OrigFn; 5216 }; 5217 5218 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5219 CalleePtr = OrigFn; 5220 IRFuncTy = OrigFn->getFunctionType(); 5221 } 5222 5223 // 3. Perform the actual call. 5224 5225 // Deactivate any cleanups that we're supposed to do immediately before 5226 // the call. 5227 if (!CallArgs.getCleanupsToDeactivate().empty()) 5228 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5229 5230 // Assert that the arguments we computed match up. The IR verifier 5231 // will catch this, but this is a common enough source of problems 5232 // during IRGen changes that it's way better for debugging to catch 5233 // it ourselves here. 5234 #ifndef NDEBUG 5235 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5236 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5237 // Inalloca argument can have different type. 5238 if (IRFunctionArgs.hasInallocaArg() && 5239 i == IRFunctionArgs.getInallocaArgNo()) 5240 continue; 5241 if (i < IRFuncTy->getNumParams()) 5242 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5243 } 5244 #endif 5245 5246 // Update the largest vector width if any arguments have vector types. 5247 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5248 LargestVectorWidth = std::max(LargestVectorWidth, 5249 getMaxVectorWidth(IRCallArgs[i]->getType())); 5250 5251 // Compute the calling convention and attributes. 5252 unsigned CallingConv; 5253 llvm::AttributeList Attrs; 5254 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5255 Callee.getAbstractInfo(), Attrs, CallingConv, 5256 /*AttrOnCallSite=*/true, 5257 /*IsThunk=*/false); 5258 5259 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5260 if (FD->hasAttr<StrictFPAttr>()) 5261 // All calls within a strictfp function are marked strictfp 5262 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5263 5264 // Add call-site nomerge attribute if exists. 5265 if (InNoMergeAttributedStmt) 5266 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5267 5268 // Add call-site noinline attribute if exists. 5269 if (InNoInlineAttributedStmt) 5270 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5271 5272 // Add call-site always_inline attribute if exists. 5273 if (InAlwaysInlineAttributedStmt) 5274 Attrs = 5275 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5276 5277 // Apply some call-site-specific attributes. 5278 // TODO: work this into building the attribute set. 5279 5280 // Apply always_inline to all calls within flatten functions. 5281 // FIXME: should this really take priority over __try, below? 5282 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5283 !InNoInlineAttributedStmt && 5284 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5285 Attrs = 5286 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5287 } 5288 5289 // Disable inlining inside SEH __try blocks. 5290 if (isSEHTryScope()) { 5291 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5292 } 5293 5294 // Decide whether to use a call or an invoke. 5295 bool CannotThrow; 5296 if (currentFunctionUsesSEHTry()) { 5297 // SEH cares about asynchronous exceptions, so everything can "throw." 5298 CannotThrow = false; 5299 } else if (isCleanupPadScope() && 5300 EHPersonality::get(*this).isMSVCXXPersonality()) { 5301 // The MSVC++ personality will implicitly terminate the program if an 5302 // exception is thrown during a cleanup outside of a try/catch. 5303 // We don't need to model anything in IR to get this behavior. 5304 CannotThrow = true; 5305 } else { 5306 // Otherwise, nounwind call sites will never throw. 5307 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5308 5309 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5310 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5311 CannotThrow = true; 5312 } 5313 5314 // If we made a temporary, be sure to clean up after ourselves. Note that we 5315 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5316 // pop this cleanup later on. Being eager about this is OK, since this 5317 // temporary is 'invisible' outside of the callee. 5318 if (UnusedReturnSizePtr) 5319 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5320 UnusedReturnSizePtr); 5321 5322 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5323 5324 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5325 getBundlesForFunclet(CalleePtr); 5326 5327 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5328 if (FD->hasAttr<StrictFPAttr>()) 5329 // All calls within a strictfp function are marked strictfp 5330 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5331 5332 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5333 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5334 5335 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5336 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5337 5338 // Emit the actual call/invoke instruction. 5339 llvm::CallBase *CI; 5340 if (!InvokeDest) { 5341 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5342 } else { 5343 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5344 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5345 BundleList); 5346 EmitBlock(Cont); 5347 } 5348 if (callOrInvoke) 5349 *callOrInvoke = CI; 5350 5351 // If this is within a function that has the guard(nocf) attribute and is an 5352 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5353 // Control Flow Guard checks should not be added, even if the call is inlined. 5354 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5355 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5356 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5357 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5358 } 5359 } 5360 5361 // Apply the attributes and calling convention. 5362 CI->setAttributes(Attrs); 5363 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5364 5365 // Apply various metadata. 5366 5367 if (!CI->getType()->isVoidTy()) 5368 CI->setName("call"); 5369 5370 // Update largest vector width from the return type. 5371 LargestVectorWidth = 5372 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5373 5374 // Insert instrumentation or attach profile metadata at indirect call sites. 5375 // For more details, see the comment before the definition of 5376 // IPVK_IndirectCallTarget in InstrProfData.inc. 5377 if (!CI->getCalledFunction()) 5378 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5379 CI, CalleePtr); 5380 5381 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5382 // optimizer it can aggressively ignore unwind edges. 5383 if (CGM.getLangOpts().ObjCAutoRefCount) 5384 AddObjCARCExceptionMetadata(CI); 5385 5386 // Set tail call kind if necessary. 5387 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5388 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5389 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5390 else if (IsMustTail) 5391 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5392 } 5393 5394 // Add metadata for calls to MSAllocator functions 5395 if (getDebugInfo() && TargetDecl && 5396 TargetDecl->hasAttr<MSAllocatorAttr>()) 5397 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5398 5399 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5400 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5401 llvm::ConstantInt *Line = 5402 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5403 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5404 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5405 CI->setMetadata("srcloc", MDT); 5406 } 5407 5408 // 4. Finish the call. 5409 5410 // If the call doesn't return, finish the basic block and clear the 5411 // insertion point; this allows the rest of IRGen to discard 5412 // unreachable code. 5413 if (CI->doesNotReturn()) { 5414 if (UnusedReturnSizePtr) 5415 PopCleanupBlock(); 5416 5417 // Strip away the noreturn attribute to better diagnose unreachable UB. 5418 if (SanOpts.has(SanitizerKind::Unreachable)) { 5419 // Also remove from function since CallBase::hasFnAttr additionally checks 5420 // attributes of the called function. 5421 if (auto *F = CI->getCalledFunction()) 5422 F->removeFnAttr(llvm::Attribute::NoReturn); 5423 CI->removeFnAttr(llvm::Attribute::NoReturn); 5424 5425 // Avoid incompatibility with ASan which relies on the `noreturn` 5426 // attribute to insert handler calls. 5427 if (SanOpts.hasOneOf(SanitizerKind::Address | 5428 SanitizerKind::KernelAddress)) { 5429 SanitizerScope SanScope(this); 5430 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5431 Builder.SetInsertPoint(CI); 5432 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5433 llvm::FunctionCallee Fn = 5434 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5435 EmitNounwindRuntimeCall(Fn); 5436 } 5437 } 5438 5439 EmitUnreachable(Loc); 5440 Builder.ClearInsertionPoint(); 5441 5442 // FIXME: For now, emit a dummy basic block because expr emitters in 5443 // generally are not ready to handle emitting expressions at unreachable 5444 // points. 5445 EnsureInsertPoint(); 5446 5447 // Return a reasonable RValue. 5448 return GetUndefRValue(RetTy); 5449 } 5450 5451 // If this is a musttail call, return immediately. We do not branch to the 5452 // epilogue in this case. 5453 if (IsMustTail) { 5454 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5455 ++it) { 5456 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5457 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5458 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5459 } 5460 if (CI->getType()->isVoidTy()) 5461 Builder.CreateRetVoid(); 5462 else 5463 Builder.CreateRet(CI); 5464 Builder.ClearInsertionPoint(); 5465 EnsureInsertPoint(); 5466 return GetUndefRValue(RetTy); 5467 } 5468 5469 // Perform the swifterror writeback. 5470 if (swiftErrorTemp.isValid()) { 5471 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5472 Builder.CreateStore(errorResult, swiftErrorArg); 5473 } 5474 5475 // Emit any call-associated writebacks immediately. Arguably this 5476 // should happen after any return-value munging. 5477 if (CallArgs.hasWritebacks()) 5478 emitWritebacks(*this, CallArgs); 5479 5480 // The stack cleanup for inalloca arguments has to run out of the normal 5481 // lexical order, so deactivate it and run it manually here. 5482 CallArgs.freeArgumentMemory(*this); 5483 5484 // Extract the return value. 5485 RValue Ret = [&] { 5486 switch (RetAI.getKind()) { 5487 case ABIArgInfo::CoerceAndExpand: { 5488 auto coercionType = RetAI.getCoerceAndExpandType(); 5489 5490 Address addr = SRetPtr; 5491 addr = Builder.CreateElementBitCast(addr, coercionType); 5492 5493 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5494 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5495 5496 unsigned unpaddedIndex = 0; 5497 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5498 llvm::Type *eltType = coercionType->getElementType(i); 5499 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5500 Address eltAddr = Builder.CreateStructGEP(addr, i); 5501 llvm::Value *elt = CI; 5502 if (requiresExtract) 5503 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5504 else 5505 assert(unpaddedIndex == 0); 5506 Builder.CreateStore(elt, eltAddr); 5507 } 5508 // FALLTHROUGH 5509 LLVM_FALLTHROUGH; 5510 } 5511 5512 case ABIArgInfo::InAlloca: 5513 case ABIArgInfo::Indirect: { 5514 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5515 if (UnusedReturnSizePtr) 5516 PopCleanupBlock(); 5517 return ret; 5518 } 5519 5520 case ABIArgInfo::Ignore: 5521 // If we are ignoring an argument that had a result, make sure to 5522 // construct the appropriate return value for our caller. 5523 return GetUndefRValue(RetTy); 5524 5525 case ABIArgInfo::Extend: 5526 case ABIArgInfo::Direct: { 5527 llvm::Type *RetIRTy = ConvertType(RetTy); 5528 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5529 switch (getEvaluationKind(RetTy)) { 5530 case TEK_Complex: { 5531 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5532 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5533 return RValue::getComplex(std::make_pair(Real, Imag)); 5534 } 5535 case TEK_Aggregate: { 5536 Address DestPtr = ReturnValue.getValue(); 5537 bool DestIsVolatile = ReturnValue.isVolatile(); 5538 5539 if (!DestPtr.isValid()) { 5540 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5541 DestIsVolatile = false; 5542 } 5543 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5544 return RValue::getAggregate(DestPtr); 5545 } 5546 case TEK_Scalar: { 5547 // If the argument doesn't match, perform a bitcast to coerce it. This 5548 // can happen due to trivial type mismatches. 5549 llvm::Value *V = CI; 5550 if (V->getType() != RetIRTy) 5551 V = Builder.CreateBitCast(V, RetIRTy); 5552 return RValue::get(V); 5553 } 5554 } 5555 llvm_unreachable("bad evaluation kind"); 5556 } 5557 5558 Address DestPtr = ReturnValue.getValue(); 5559 bool DestIsVolatile = ReturnValue.isVolatile(); 5560 5561 if (!DestPtr.isValid()) { 5562 DestPtr = CreateMemTemp(RetTy, "coerce"); 5563 DestIsVolatile = false; 5564 } 5565 5566 // If the value is offset in memory, apply the offset now. 5567 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5568 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5569 5570 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5571 } 5572 5573 case ABIArgInfo::Expand: 5574 case ABIArgInfo::IndirectAliased: 5575 llvm_unreachable("Invalid ABI kind for return argument"); 5576 } 5577 5578 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5579 } (); 5580 5581 // Emit the assume_aligned check on the return value. 5582 if (Ret.isScalar() && TargetDecl) { 5583 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5584 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5585 } 5586 5587 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5588 // we can't use the full cleanup mechanism. 5589 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5590 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5591 5592 if (!ReturnValue.isExternallyDestructed() && 5593 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5594 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5595 RetTy); 5596 5597 return Ret; 5598 } 5599 5600 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5601 if (isVirtual()) { 5602 const CallExpr *CE = getVirtualCallExpr(); 5603 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5604 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5605 CE ? CE->getBeginLoc() : SourceLocation()); 5606 } 5607 5608 return *this; 5609 } 5610 5611 /* VarArg handling */ 5612 5613 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5614 VAListAddr = VE->isMicrosoftABI() 5615 ? EmitMSVAListRef(VE->getSubExpr()) 5616 : EmitVAListRef(VE->getSubExpr()); 5617 QualType Ty = VE->getType(); 5618 if (VE->isMicrosoftABI()) 5619 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5620 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5621 } 5622