1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 /***/ 46 47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 48 switch (CC) { 49 default: return llvm::CallingConv::C; 50 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 51 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 52 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 53 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 54 case CC_Win64: return llvm::CallingConv::Win64; 55 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 56 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 57 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 58 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 59 // TODO: Add support for __pascal to LLVM. 60 case CC_X86Pascal: return llvm::CallingConv::C; 61 // TODO: Add support for __vectorcall to LLVM. 62 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 63 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 64 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 65 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 66 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 67 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 68 case CC_Swift: return llvm::CallingConv::Swift; 69 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 70 } 71 } 72 73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 74 /// qualification. Either or both of RD and MD may be null. A null RD indicates 75 /// that there is no meaningful 'this' type, and a null MD can occur when 76 /// calling a method pointer. 77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 78 const CXXMethodDecl *MD) { 79 QualType RecTy; 80 if (RD) 81 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 82 else 83 RecTy = Context.VoidTy; 84 85 if (MD) 86 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 87 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 88 } 89 90 /// Returns the canonical formal type of the given C++ method. 91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 92 return MD->getType()->getCanonicalTypeUnqualified() 93 .getAs<FunctionProtoType>(); 94 } 95 96 /// Returns the "extra-canonicalized" return type, which discards 97 /// qualifiers on the return type. Codegen doesn't care about them, 98 /// and it makes ABI code a little easier to be able to assume that 99 /// all parameter and return types are top-level unqualified. 100 static CanQualType GetReturnType(QualType RetTy) { 101 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 102 } 103 104 /// Arrange the argument and result information for a value of the given 105 /// unprototyped freestanding function type. 106 const CGFunctionInfo & 107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 108 // When translating an unprototyped function type, always use a 109 // variadic type. 110 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 111 /*instanceMethod=*/false, 112 /*chainCall=*/false, None, 113 FTNP->getExtInfo(), {}, RequiredArgs(0)); 114 } 115 116 static void addExtParameterInfosForCall( 117 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 118 const FunctionProtoType *proto, 119 unsigned prefixArgs, 120 unsigned totalArgs) { 121 assert(proto->hasExtParameterInfos()); 122 assert(paramInfos.size() <= prefixArgs); 123 assert(proto->getNumParams() + prefixArgs <= totalArgs); 124 125 paramInfos.reserve(totalArgs); 126 127 // Add default infos for any prefix args that don't already have infos. 128 paramInfos.resize(prefixArgs); 129 130 // Add infos for the prototype. 131 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 132 paramInfos.push_back(ParamInfo); 133 // pass_object_size params have no parameter info. 134 if (ParamInfo.hasPassObjectSize()) 135 paramInfos.emplace_back(); 136 } 137 138 assert(paramInfos.size() <= totalArgs && 139 "Did we forget to insert pass_object_size args?"); 140 // Add default infos for the variadic and/or suffix arguments. 141 paramInfos.resize(totalArgs); 142 } 143 144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 146 static void appendParameterTypes(const CodeGenTypes &CGT, 147 SmallVectorImpl<CanQualType> &prefix, 148 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 149 CanQual<FunctionProtoType> FPT) { 150 // Fast path: don't touch param info if we don't need to. 151 if (!FPT->hasExtParameterInfos()) { 152 assert(paramInfos.empty() && 153 "We have paramInfos, but the prototype doesn't?"); 154 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 155 return; 156 } 157 158 unsigned PrefixSize = prefix.size(); 159 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 160 // parameters; the only thing that can change this is the presence of 161 // pass_object_size. So, we preallocate for the common case. 162 prefix.reserve(prefix.size() + FPT->getNumParams()); 163 164 auto ExtInfos = FPT->getExtParameterInfos(); 165 assert(ExtInfos.size() == FPT->getNumParams()); 166 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 167 prefix.push_back(FPT->getParamType(I)); 168 if (ExtInfos[I].hasPassObjectSize()) 169 prefix.push_back(CGT.getContext().getSizeType()); 170 } 171 172 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 173 prefix.size()); 174 } 175 176 /// Arrange the LLVM function layout for a value of the given function 177 /// type, on top of any implicit parameters already stored. 178 static const CGFunctionInfo & 179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 180 SmallVectorImpl<CanQualType> &prefix, 181 CanQual<FunctionProtoType> FTP) { 182 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 183 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 184 // FIXME: Kill copy. 185 appendParameterTypes(CGT, prefix, paramInfos, FTP); 186 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 187 188 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 189 /*chainCall=*/false, prefix, 190 FTP->getExtInfo(), paramInfos, 191 Required); 192 } 193 194 /// Arrange the argument and result information for a value of the 195 /// given freestanding function type. 196 const CGFunctionInfo & 197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 198 SmallVector<CanQualType, 16> argTypes; 199 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 200 FTP); 201 } 202 203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 204 bool IsWindows) { 205 // Set the appropriate calling convention for the Function. 206 if (D->hasAttr<StdCallAttr>()) 207 return CC_X86StdCall; 208 209 if (D->hasAttr<FastCallAttr>()) 210 return CC_X86FastCall; 211 212 if (D->hasAttr<RegCallAttr>()) 213 return CC_X86RegCall; 214 215 if (D->hasAttr<ThisCallAttr>()) 216 return CC_X86ThisCall; 217 218 if (D->hasAttr<VectorCallAttr>()) 219 return CC_X86VectorCall; 220 221 if (D->hasAttr<PascalAttr>()) 222 return CC_X86Pascal; 223 224 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 225 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 226 227 if (D->hasAttr<AArch64VectorPcsAttr>()) 228 return CC_AArch64VectorCall; 229 230 if (D->hasAttr<IntelOclBiccAttr>()) 231 return CC_IntelOclBicc; 232 233 if (D->hasAttr<MSABIAttr>()) 234 return IsWindows ? CC_C : CC_Win64; 235 236 if (D->hasAttr<SysVABIAttr>()) 237 return IsWindows ? CC_X86_64SysV : CC_C; 238 239 if (D->hasAttr<PreserveMostAttr>()) 240 return CC_PreserveMost; 241 242 if (D->hasAttr<PreserveAllAttr>()) 243 return CC_PreserveAll; 244 245 return CC_C; 246 } 247 248 /// Arrange the argument and result information for a call to an 249 /// unknown C++ non-static member function of the given abstract type. 250 /// (A null RD means we don't have any meaningful "this" argument type, 251 /// so fall back to a generic pointer type). 252 /// The member function must be an ordinary function, i.e. not a 253 /// constructor or destructor. 254 const CGFunctionInfo & 255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 256 const FunctionProtoType *FTP, 257 const CXXMethodDecl *MD) { 258 SmallVector<CanQualType, 16> argTypes; 259 260 // Add the 'this' pointer. 261 argTypes.push_back(DeriveThisType(RD, MD)); 262 263 return ::arrangeLLVMFunctionInfo( 264 *this, true, argTypes, 265 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 266 } 267 268 /// Set calling convention for CUDA/HIP kernel. 269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 270 const FunctionDecl *FD) { 271 if (FD->hasAttr<CUDAGlobalAttr>()) { 272 const FunctionType *FT = FTy->getAs<FunctionType>(); 273 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 274 FTy = FT->getCanonicalTypeUnqualified(); 275 } 276 } 277 278 /// Arrange the argument and result information for a declaration or 279 /// definition of the given C++ non-static member function. The 280 /// member function must be an ordinary function, i.e. not a 281 /// constructor or destructor. 282 const CGFunctionInfo & 283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 284 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 285 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 286 287 CanQualType FT = GetFormalType(MD).getAs<Type>(); 288 setCUDAKernelCallingConvention(FT, CGM, MD); 289 auto prototype = FT.getAs<FunctionProtoType>(); 290 291 if (MD->isInstance()) { 292 // The abstract case is perfectly fine. 293 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 294 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 295 } 296 297 return arrangeFreeFunctionType(prototype); 298 } 299 300 bool CodeGenTypes::inheritingCtorHasParams( 301 const InheritedConstructor &Inherited, CXXCtorType Type) { 302 // Parameters are unnecessary if we're constructing a base class subobject 303 // and the inherited constructor lives in a virtual base. 304 return Type == Ctor_Complete || 305 !Inherited.getShadowDecl()->constructsVirtualBase() || 306 !Target.getCXXABI().hasConstructorVariants(); 307 } 308 309 const CGFunctionInfo & 310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 311 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 312 313 SmallVector<CanQualType, 16> argTypes; 314 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 315 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 316 317 bool PassParams = true; 318 319 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 320 // A base class inheriting constructor doesn't get forwarded arguments 321 // needed to construct a virtual base (or base class thereof). 322 if (auto Inherited = CD->getInheritedConstructor()) 323 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 324 } 325 326 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 327 328 // Add the formal parameters. 329 if (PassParams) 330 appendParameterTypes(*this, argTypes, paramInfos, FTP); 331 332 CGCXXABI::AddedStructorArgCounts AddedArgs = 333 TheCXXABI.buildStructorSignature(GD, argTypes); 334 if (!paramInfos.empty()) { 335 // Note: prefix implies after the first param. 336 if (AddedArgs.Prefix) 337 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 338 FunctionProtoType::ExtParameterInfo{}); 339 if (AddedArgs.Suffix) 340 paramInfos.append(AddedArgs.Suffix, 341 FunctionProtoType::ExtParameterInfo{}); 342 } 343 344 RequiredArgs required = 345 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 346 : RequiredArgs::All); 347 348 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 349 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 350 ? argTypes.front() 351 : TheCXXABI.hasMostDerivedReturn(GD) 352 ? CGM.getContext().VoidPtrTy 353 : Context.VoidTy; 354 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 355 /*chainCall=*/false, argTypes, extInfo, 356 paramInfos, required); 357 } 358 359 static SmallVector<CanQualType, 16> 360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 361 SmallVector<CanQualType, 16> argTypes; 362 for (auto &arg : args) 363 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 364 return argTypes; 365 } 366 367 static SmallVector<CanQualType, 16> 368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 369 SmallVector<CanQualType, 16> argTypes; 370 for (auto &arg : args) 371 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 372 return argTypes; 373 } 374 375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 376 getExtParameterInfosForCall(const FunctionProtoType *proto, 377 unsigned prefixArgs, unsigned totalArgs) { 378 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 379 if (proto->hasExtParameterInfos()) { 380 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 381 } 382 return result; 383 } 384 385 /// Arrange a call to a C++ method, passing the given arguments. 386 /// 387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 388 /// parameter. 389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 390 /// args. 391 /// PassProtoArgs indicates whether `args` has args for the parameters in the 392 /// given CXXConstructorDecl. 393 const CGFunctionInfo & 394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 395 const CXXConstructorDecl *D, 396 CXXCtorType CtorKind, 397 unsigned ExtraPrefixArgs, 398 unsigned ExtraSuffixArgs, 399 bool PassProtoArgs) { 400 // FIXME: Kill copy. 401 SmallVector<CanQualType, 16> ArgTypes; 402 for (const auto &Arg : args) 403 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 404 405 // +1 for implicit this, which should always be args[0]. 406 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 407 408 CanQual<FunctionProtoType> FPT = GetFormalType(D); 409 RequiredArgs Required = PassProtoArgs 410 ? RequiredArgs::forPrototypePlus( 411 FPT, TotalPrefixArgs + ExtraSuffixArgs) 412 : RequiredArgs::All; 413 414 GlobalDecl GD(D, CtorKind); 415 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 416 ? ArgTypes.front() 417 : TheCXXABI.hasMostDerivedReturn(GD) 418 ? CGM.getContext().VoidPtrTy 419 : Context.VoidTy; 420 421 FunctionType::ExtInfo Info = FPT->getExtInfo(); 422 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 423 // If the prototype args are elided, we should only have ABI-specific args, 424 // which never have param info. 425 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 426 // ABI-specific suffix arguments are treated the same as variadic arguments. 427 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 428 ArgTypes.size()); 429 } 430 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 431 /*chainCall=*/false, ArgTypes, Info, 432 ParamInfos, Required); 433 } 434 435 /// Arrange the argument and result information for the declaration or 436 /// definition of the given function. 437 const CGFunctionInfo & 438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 439 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 440 if (MD->isInstance()) 441 return arrangeCXXMethodDeclaration(MD); 442 443 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 444 445 assert(isa<FunctionType>(FTy)); 446 setCUDAKernelCallingConvention(FTy, CGM, FD); 447 448 // When declaring a function without a prototype, always use a 449 // non-variadic type. 450 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 451 return arrangeLLVMFunctionInfo( 452 noProto->getReturnType(), /*instanceMethod=*/false, 453 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 454 } 455 456 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 457 } 458 459 /// Arrange the argument and result information for the declaration or 460 /// definition of an Objective-C method. 461 const CGFunctionInfo & 462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 463 // It happens that this is the same as a call with no optional 464 // arguments, except also using the formal 'self' type. 465 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 466 } 467 468 /// Arrange the argument and result information for the function type 469 /// through which to perform a send to the given Objective-C method, 470 /// using the given receiver type. The receiver type is not always 471 /// the 'self' type of the method or even an Objective-C pointer type. 472 /// This is *not* the right method for actually performing such a 473 /// message send, due to the possibility of optional arguments. 474 const CGFunctionInfo & 475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 476 QualType receiverType) { 477 SmallVector<CanQualType, 16> argTys; 478 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 479 argTys.push_back(Context.getCanonicalParamType(receiverType)); 480 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 481 // FIXME: Kill copy? 482 for (const auto *I : MD->parameters()) { 483 argTys.push_back(Context.getCanonicalParamType(I->getType())); 484 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 485 I->hasAttr<NoEscapeAttr>()); 486 extParamInfos.push_back(extParamInfo); 487 } 488 489 FunctionType::ExtInfo einfo; 490 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 491 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 492 493 if (getContext().getLangOpts().ObjCAutoRefCount && 494 MD->hasAttr<NSReturnsRetainedAttr>()) 495 einfo = einfo.withProducesResult(true); 496 497 RequiredArgs required = 498 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 499 500 return arrangeLLVMFunctionInfo( 501 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 502 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 503 } 504 505 const CGFunctionInfo & 506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 507 const CallArgList &args) { 508 auto argTypes = getArgTypesForCall(Context, args); 509 FunctionType::ExtInfo einfo; 510 511 return arrangeLLVMFunctionInfo( 512 GetReturnType(returnType), /*instanceMethod=*/false, 513 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 514 } 515 516 const CGFunctionInfo & 517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 518 // FIXME: Do we need to handle ObjCMethodDecl? 519 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 520 521 if (isa<CXXConstructorDecl>(GD.getDecl()) || 522 isa<CXXDestructorDecl>(GD.getDecl())) 523 return arrangeCXXStructorDeclaration(GD); 524 525 return arrangeFunctionDeclaration(FD); 526 } 527 528 /// Arrange a thunk that takes 'this' as the first parameter followed by 529 /// varargs. Return a void pointer, regardless of the actual return type. 530 /// The body of the thunk will end in a musttail call to a function of the 531 /// correct type, and the caller will bitcast the function to the correct 532 /// prototype. 533 const CGFunctionInfo & 534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 535 assert(MD->isVirtual() && "only methods have thunks"); 536 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 537 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 538 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 539 /*chainCall=*/false, ArgTys, 540 FTP->getExtInfo(), {}, RequiredArgs(1)); 541 } 542 543 const CGFunctionInfo & 544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 545 CXXCtorType CT) { 546 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 547 548 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 549 SmallVector<CanQualType, 2> ArgTys; 550 const CXXRecordDecl *RD = CD->getParent(); 551 ArgTys.push_back(DeriveThisType(RD, CD)); 552 if (CT == Ctor_CopyingClosure) 553 ArgTys.push_back(*FTP->param_type_begin()); 554 if (RD->getNumVBases() > 0) 555 ArgTys.push_back(Context.IntTy); 556 CallingConv CC = Context.getDefaultCallingConvention( 557 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 558 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 559 /*chainCall=*/false, ArgTys, 560 FunctionType::ExtInfo(CC), {}, 561 RequiredArgs::All); 562 } 563 564 /// Arrange a call as unto a free function, except possibly with an 565 /// additional number of formal parameters considered required. 566 static const CGFunctionInfo & 567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 568 CodeGenModule &CGM, 569 const CallArgList &args, 570 const FunctionType *fnType, 571 unsigned numExtraRequiredArgs, 572 bool chainCall) { 573 assert(args.size() >= numExtraRequiredArgs); 574 575 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 576 577 // In most cases, there are no optional arguments. 578 RequiredArgs required = RequiredArgs::All; 579 580 // If we have a variadic prototype, the required arguments are the 581 // extra prefix plus the arguments in the prototype. 582 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 583 if (proto->isVariadic()) 584 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 585 586 if (proto->hasExtParameterInfos()) 587 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 588 args.size()); 589 590 // If we don't have a prototype at all, but we're supposed to 591 // explicitly use the variadic convention for unprototyped calls, 592 // treat all of the arguments as required but preserve the nominal 593 // possibility of variadics. 594 } else if (CGM.getTargetCodeGenInfo() 595 .isNoProtoCallVariadic(args, 596 cast<FunctionNoProtoType>(fnType))) { 597 required = RequiredArgs(args.size()); 598 } 599 600 // FIXME: Kill copy. 601 SmallVector<CanQualType, 16> argTypes; 602 for (const auto &arg : args) 603 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 604 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 605 /*instanceMethod=*/false, chainCall, 606 argTypes, fnType->getExtInfo(), paramInfos, 607 required); 608 } 609 610 /// Figure out the rules for calling a function with the given formal 611 /// type using the given arguments. The arguments are necessary 612 /// because the function might be unprototyped, in which case it's 613 /// target-dependent in crazy ways. 614 const CGFunctionInfo & 615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 616 const FunctionType *fnType, 617 bool chainCall) { 618 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 619 chainCall ? 1 : 0, chainCall); 620 } 621 622 /// A block function is essentially a free function with an 623 /// extra implicit argument. 624 const CGFunctionInfo & 625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 626 const FunctionType *fnType) { 627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 628 /*chainCall=*/false); 629 } 630 631 const CGFunctionInfo & 632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 633 const FunctionArgList ¶ms) { 634 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 635 auto argTypes = getArgTypesForDeclaration(Context, params); 636 637 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 638 /*instanceMethod*/ false, /*chainCall*/ false, 639 argTypes, proto->getExtInfo(), paramInfos, 640 RequiredArgs::forPrototypePlus(proto, 1)); 641 } 642 643 const CGFunctionInfo & 644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 645 const CallArgList &args) { 646 // FIXME: Kill copy. 647 SmallVector<CanQualType, 16> argTypes; 648 for (const auto &Arg : args) 649 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 650 return arrangeLLVMFunctionInfo( 651 GetReturnType(resultType), /*instanceMethod=*/false, 652 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 653 /*paramInfos=*/ {}, RequiredArgs::All); 654 } 655 656 const CGFunctionInfo & 657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 658 const FunctionArgList &args) { 659 auto argTypes = getArgTypesForDeclaration(Context, args); 660 661 return arrangeLLVMFunctionInfo( 662 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 663 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 664 } 665 666 const CGFunctionInfo & 667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 668 ArrayRef<CanQualType> argTypes) { 669 return arrangeLLVMFunctionInfo( 670 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 671 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 672 } 673 674 /// Arrange a call to a C++ method, passing the given arguments. 675 /// 676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 677 /// does not count `this`. 678 const CGFunctionInfo & 679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 680 const FunctionProtoType *proto, 681 RequiredArgs required, 682 unsigned numPrefixArgs) { 683 assert(numPrefixArgs + 1 <= args.size() && 684 "Emitting a call with less args than the required prefix?"); 685 // Add one to account for `this`. It's a bit awkward here, but we don't count 686 // `this` in similar places elsewhere. 687 auto paramInfos = 688 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 689 690 // FIXME: Kill copy. 691 auto argTypes = getArgTypesForCall(Context, args); 692 693 FunctionType::ExtInfo info = proto->getExtInfo(); 694 return arrangeLLVMFunctionInfo( 695 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 696 /*chainCall=*/false, argTypes, info, paramInfos, required); 697 } 698 699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 700 return arrangeLLVMFunctionInfo( 701 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 702 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 703 } 704 705 const CGFunctionInfo & 706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 707 const CallArgList &args) { 708 assert(signature.arg_size() <= args.size()); 709 if (signature.arg_size() == args.size()) 710 return signature; 711 712 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 713 auto sigParamInfos = signature.getExtParameterInfos(); 714 if (!sigParamInfos.empty()) { 715 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 716 paramInfos.resize(args.size()); 717 } 718 719 auto argTypes = getArgTypesForCall(Context, args); 720 721 assert(signature.getRequiredArgs().allowsOptionalArgs()); 722 return arrangeLLVMFunctionInfo(signature.getReturnType(), 723 signature.isInstanceMethod(), 724 signature.isChainCall(), 725 argTypes, 726 signature.getExtInfo(), 727 paramInfos, 728 signature.getRequiredArgs()); 729 } 730 731 namespace clang { 732 namespace CodeGen { 733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 734 } 735 } 736 737 /// Arrange the argument and result information for an abstract value 738 /// of a given function type. This is the method which all of the 739 /// above functions ultimately defer to. 740 const CGFunctionInfo & 741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 742 bool instanceMethod, 743 bool chainCall, 744 ArrayRef<CanQualType> argTypes, 745 FunctionType::ExtInfo info, 746 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 747 RequiredArgs required) { 748 assert(llvm::all_of(argTypes, 749 [](CanQualType T) { return T.isCanonicalAsParam(); })); 750 751 // Lookup or create unique function info. 752 llvm::FoldingSetNodeID ID; 753 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 754 required, resultType, argTypes); 755 756 void *insertPos = nullptr; 757 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 758 if (FI) 759 return *FI; 760 761 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 762 763 // Construct the function info. We co-allocate the ArgInfos. 764 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 765 paramInfos, resultType, argTypes, required); 766 FunctionInfos.InsertNode(FI, insertPos); 767 768 bool inserted = FunctionsBeingProcessed.insert(FI).second; 769 (void)inserted; 770 assert(inserted && "Recursively being processed?"); 771 772 // Compute ABI information. 773 if (CC == llvm::CallingConv::SPIR_KERNEL) { 774 // Force target independent argument handling for the host visible 775 // kernel functions. 776 computeSPIRKernelABIInfo(CGM, *FI); 777 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 778 swiftcall::computeABIInfo(CGM, *FI); 779 } else { 780 getABIInfo().computeInfo(*FI); 781 } 782 783 // Loop over all of the computed argument and return value info. If any of 784 // them are direct or extend without a specified coerce type, specify the 785 // default now. 786 ABIArgInfo &retInfo = FI->getReturnInfo(); 787 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 788 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 789 790 for (auto &I : FI->arguments()) 791 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 792 I.info.setCoerceToType(ConvertType(I.type)); 793 794 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 795 assert(erased && "Not in set?"); 796 797 return *FI; 798 } 799 800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 801 bool instanceMethod, 802 bool chainCall, 803 const FunctionType::ExtInfo &info, 804 ArrayRef<ExtParameterInfo> paramInfos, 805 CanQualType resultType, 806 ArrayRef<CanQualType> argTypes, 807 RequiredArgs required) { 808 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 809 assert(!required.allowsOptionalArgs() || 810 required.getNumRequiredArgs() <= argTypes.size()); 811 812 void *buffer = 813 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 814 argTypes.size() + 1, paramInfos.size())); 815 816 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 817 FI->CallingConvention = llvmCC; 818 FI->EffectiveCallingConvention = llvmCC; 819 FI->ASTCallingConvention = info.getCC(); 820 FI->InstanceMethod = instanceMethod; 821 FI->ChainCall = chainCall; 822 FI->CmseNSCall = info.getCmseNSCall(); 823 FI->NoReturn = info.getNoReturn(); 824 FI->ReturnsRetained = info.getProducesResult(); 825 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 826 FI->NoCfCheck = info.getNoCfCheck(); 827 FI->Required = required; 828 FI->HasRegParm = info.getHasRegParm(); 829 FI->RegParm = info.getRegParm(); 830 FI->ArgStruct = nullptr; 831 FI->ArgStructAlign = 0; 832 FI->NumArgs = argTypes.size(); 833 FI->HasExtParameterInfos = !paramInfos.empty(); 834 FI->getArgsBuffer()[0].type = resultType; 835 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 836 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 837 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 838 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 839 return FI; 840 } 841 842 /***/ 843 844 namespace { 845 // ABIArgInfo::Expand implementation. 846 847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 848 struct TypeExpansion { 849 enum TypeExpansionKind { 850 // Elements of constant arrays are expanded recursively. 851 TEK_ConstantArray, 852 // Record fields are expanded recursively (but if record is a union, only 853 // the field with the largest size is expanded). 854 TEK_Record, 855 // For complex types, real and imaginary parts are expanded recursively. 856 TEK_Complex, 857 // All other types are not expandable. 858 TEK_None 859 }; 860 861 const TypeExpansionKind Kind; 862 863 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 864 virtual ~TypeExpansion() {} 865 }; 866 867 struct ConstantArrayExpansion : TypeExpansion { 868 QualType EltTy; 869 uint64_t NumElts; 870 871 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 872 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 873 static bool classof(const TypeExpansion *TE) { 874 return TE->Kind == TEK_ConstantArray; 875 } 876 }; 877 878 struct RecordExpansion : TypeExpansion { 879 SmallVector<const CXXBaseSpecifier *, 1> Bases; 880 881 SmallVector<const FieldDecl *, 1> Fields; 882 883 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 884 SmallVector<const FieldDecl *, 1> &&Fields) 885 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 886 Fields(std::move(Fields)) {} 887 static bool classof(const TypeExpansion *TE) { 888 return TE->Kind == TEK_Record; 889 } 890 }; 891 892 struct ComplexExpansion : TypeExpansion { 893 QualType EltTy; 894 895 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 896 static bool classof(const TypeExpansion *TE) { 897 return TE->Kind == TEK_Complex; 898 } 899 }; 900 901 struct NoExpansion : TypeExpansion { 902 NoExpansion() : TypeExpansion(TEK_None) {} 903 static bool classof(const TypeExpansion *TE) { 904 return TE->Kind == TEK_None; 905 } 906 }; 907 } // namespace 908 909 static std::unique_ptr<TypeExpansion> 910 getTypeExpansion(QualType Ty, const ASTContext &Context) { 911 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 912 return std::make_unique<ConstantArrayExpansion>( 913 AT->getElementType(), AT->getSize().getZExtValue()); 914 } 915 if (const RecordType *RT = Ty->getAs<RecordType>()) { 916 SmallVector<const CXXBaseSpecifier *, 1> Bases; 917 SmallVector<const FieldDecl *, 1> Fields; 918 const RecordDecl *RD = RT->getDecl(); 919 assert(!RD->hasFlexibleArrayMember() && 920 "Cannot expand structure with flexible array."); 921 if (RD->isUnion()) { 922 // Unions can be here only in degenerative cases - all the fields are same 923 // after flattening. Thus we have to use the "largest" field. 924 const FieldDecl *LargestFD = nullptr; 925 CharUnits UnionSize = CharUnits::Zero(); 926 927 for (const auto *FD : RD->fields()) { 928 if (FD->isZeroLengthBitField(Context)) 929 continue; 930 assert(!FD->isBitField() && 931 "Cannot expand structure with bit-field members."); 932 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 933 if (UnionSize < FieldSize) { 934 UnionSize = FieldSize; 935 LargestFD = FD; 936 } 937 } 938 if (LargestFD) 939 Fields.push_back(LargestFD); 940 } else { 941 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 942 assert(!CXXRD->isDynamicClass() && 943 "cannot expand vtable pointers in dynamic classes"); 944 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 945 Bases.push_back(&BS); 946 } 947 948 for (const auto *FD : RD->fields()) { 949 if (FD->isZeroLengthBitField(Context)) 950 continue; 951 assert(!FD->isBitField() && 952 "Cannot expand structure with bit-field members."); 953 Fields.push_back(FD); 954 } 955 } 956 return std::make_unique<RecordExpansion>(std::move(Bases), 957 std::move(Fields)); 958 } 959 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 960 return std::make_unique<ComplexExpansion>(CT->getElementType()); 961 } 962 return std::make_unique<NoExpansion>(); 963 } 964 965 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 966 auto Exp = getTypeExpansion(Ty, Context); 967 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 968 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 969 } 970 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 971 int Res = 0; 972 for (auto BS : RExp->Bases) 973 Res += getExpansionSize(BS->getType(), Context); 974 for (auto FD : RExp->Fields) 975 Res += getExpansionSize(FD->getType(), Context); 976 return Res; 977 } 978 if (isa<ComplexExpansion>(Exp.get())) 979 return 2; 980 assert(isa<NoExpansion>(Exp.get())); 981 return 1; 982 } 983 984 void 985 CodeGenTypes::getExpandedTypes(QualType Ty, 986 SmallVectorImpl<llvm::Type *>::iterator &TI) { 987 auto Exp = getTypeExpansion(Ty, Context); 988 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 989 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 990 getExpandedTypes(CAExp->EltTy, TI); 991 } 992 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 993 for (auto BS : RExp->Bases) 994 getExpandedTypes(BS->getType(), TI); 995 for (auto FD : RExp->Fields) 996 getExpandedTypes(FD->getType(), TI); 997 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 998 llvm::Type *EltTy = ConvertType(CExp->EltTy); 999 *TI++ = EltTy; 1000 *TI++ = EltTy; 1001 } else { 1002 assert(isa<NoExpansion>(Exp.get())); 1003 *TI++ = ConvertType(Ty); 1004 } 1005 } 1006 1007 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1008 ConstantArrayExpansion *CAE, 1009 Address BaseAddr, 1010 llvm::function_ref<void(Address)> Fn) { 1011 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1012 CharUnits EltAlign = 1013 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1014 1015 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1016 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1017 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1018 Fn(Address(EltAddr, EltAlign)); 1019 } 1020 } 1021 1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1023 llvm::Function::arg_iterator &AI) { 1024 assert(LV.isSimple() && 1025 "Unexpected non-simple lvalue during struct expansion."); 1026 1027 auto Exp = getTypeExpansion(Ty, getContext()); 1028 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1029 forConstantArrayExpansion( 1030 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1031 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1032 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1033 }); 1034 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1035 Address This = LV.getAddress(*this); 1036 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1037 // Perform a single step derived-to-base conversion. 1038 Address Base = 1039 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1040 /*NullCheckValue=*/false, SourceLocation()); 1041 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1042 1043 // Recurse onto bases. 1044 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1045 } 1046 for (auto FD : RExp->Fields) { 1047 // FIXME: What are the right qualifiers here? 1048 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1049 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1050 } 1051 } else if (isa<ComplexExpansion>(Exp.get())) { 1052 auto realValue = &*AI++; 1053 auto imagValue = &*AI++; 1054 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1055 } else { 1056 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1057 // primitive store. 1058 assert(isa<NoExpansion>(Exp.get())); 1059 if (LV.isBitField()) 1060 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1061 else 1062 EmitStoreOfScalar(&*AI++, LV); 1063 } 1064 } 1065 1066 void CodeGenFunction::ExpandTypeToArgs( 1067 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1068 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1069 auto Exp = getTypeExpansion(Ty, getContext()); 1070 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1071 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1072 : Arg.getKnownRValue().getAggregateAddress(); 1073 forConstantArrayExpansion( 1074 *this, CAExp, Addr, [&](Address EltAddr) { 1075 CallArg EltArg = CallArg( 1076 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1077 CAExp->EltTy); 1078 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1079 IRCallArgPos); 1080 }); 1081 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1082 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1083 : Arg.getKnownRValue().getAggregateAddress(); 1084 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1085 // Perform a single step derived-to-base conversion. 1086 Address Base = 1087 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1088 /*NullCheckValue=*/false, SourceLocation()); 1089 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1090 1091 // Recurse onto bases. 1092 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1093 IRCallArgPos); 1094 } 1095 1096 LValue LV = MakeAddrLValue(This, Ty); 1097 for (auto FD : RExp->Fields) { 1098 CallArg FldArg = 1099 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1100 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1101 IRCallArgPos); 1102 } 1103 } else if (isa<ComplexExpansion>(Exp.get())) { 1104 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1105 IRCallArgs[IRCallArgPos++] = CV.first; 1106 IRCallArgs[IRCallArgPos++] = CV.second; 1107 } else { 1108 assert(isa<NoExpansion>(Exp.get())); 1109 auto RV = Arg.getKnownRValue(); 1110 assert(RV.isScalar() && 1111 "Unexpected non-scalar rvalue during struct expansion."); 1112 1113 // Insert a bitcast as needed. 1114 llvm::Value *V = RV.getScalarVal(); 1115 if (IRCallArgPos < IRFuncTy->getNumParams() && 1116 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1117 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1118 1119 IRCallArgs[IRCallArgPos++] = V; 1120 } 1121 } 1122 1123 /// Create a temporary allocation for the purposes of coercion. 1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1125 CharUnits MinAlign, 1126 const Twine &Name = "tmp") { 1127 // Don't use an alignment that's worse than what LLVM would prefer. 1128 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1129 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1130 1131 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1132 } 1133 1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1135 /// accessing some number of bytes out of it, try to gep into the struct to get 1136 /// at its inner goodness. Dive as deep as possible without entering an element 1137 /// with an in-memory size smaller than DstSize. 1138 static Address 1139 EnterStructPointerForCoercedAccess(Address SrcPtr, 1140 llvm::StructType *SrcSTy, 1141 uint64_t DstSize, CodeGenFunction &CGF) { 1142 // We can't dive into a zero-element struct. 1143 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1144 1145 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1146 1147 // If the first elt is at least as large as what we're looking for, or if the 1148 // first element is the same size as the whole struct, we can enter it. The 1149 // comparison must be made on the store size and not the alloca size. Using 1150 // the alloca size may overstate the size of the load. 1151 uint64_t FirstEltSize = 1152 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1153 if (FirstEltSize < DstSize && 1154 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1155 return SrcPtr; 1156 1157 // GEP into the first element. 1158 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1159 1160 // If the first element is a struct, recurse. 1161 llvm::Type *SrcTy = SrcPtr.getElementType(); 1162 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1163 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1164 1165 return SrcPtr; 1166 } 1167 1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1169 /// are either integers or pointers. This does a truncation of the value if it 1170 /// is too large or a zero extension if it is too small. 1171 /// 1172 /// This behaves as if the value were coerced through memory, so on big-endian 1173 /// targets the high bits are preserved in a truncation, while little-endian 1174 /// targets preserve the low bits. 1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1176 llvm::Type *Ty, 1177 CodeGenFunction &CGF) { 1178 if (Val->getType() == Ty) 1179 return Val; 1180 1181 if (isa<llvm::PointerType>(Val->getType())) { 1182 // If this is Pointer->Pointer avoid conversion to and from int. 1183 if (isa<llvm::PointerType>(Ty)) 1184 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1185 1186 // Convert the pointer to an integer so we can play with its width. 1187 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1188 } 1189 1190 llvm::Type *DestIntTy = Ty; 1191 if (isa<llvm::PointerType>(DestIntTy)) 1192 DestIntTy = CGF.IntPtrTy; 1193 1194 if (Val->getType() != DestIntTy) { 1195 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1196 if (DL.isBigEndian()) { 1197 // Preserve the high bits on big-endian targets. 1198 // That is what memory coercion does. 1199 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1200 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1201 1202 if (SrcSize > DstSize) { 1203 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1204 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1205 } else { 1206 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1207 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1208 } 1209 } else { 1210 // Little-endian targets preserve the low bits. No shifts required. 1211 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1212 } 1213 } 1214 1215 if (isa<llvm::PointerType>(Ty)) 1216 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1217 return Val; 1218 } 1219 1220 1221 1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1223 /// a pointer to an object of type \arg Ty, known to be aligned to 1224 /// \arg SrcAlign bytes. 1225 /// 1226 /// This safely handles the case when the src type is smaller than the 1227 /// destination type; in this situation the values of bits which not 1228 /// present in the src are undefined. 1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1230 CodeGenFunction &CGF) { 1231 llvm::Type *SrcTy = Src.getElementType(); 1232 1233 // If SrcTy and Ty are the same, just do a load. 1234 if (SrcTy == Ty) 1235 return CGF.Builder.CreateLoad(Src); 1236 1237 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1238 1239 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1240 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1241 DstSize.getFixedSize(), CGF); 1242 SrcTy = Src.getElementType(); 1243 } 1244 1245 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1246 1247 // If the source and destination are integer or pointer types, just do an 1248 // extension or truncation to the desired type. 1249 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1250 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1251 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1252 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1253 } 1254 1255 // If load is legal, just bitcast the src pointer. 1256 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1257 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1258 // Generally SrcSize is never greater than DstSize, since this means we are 1259 // losing bits. However, this can happen in cases where the structure has 1260 // additional padding, for example due to a user specified alignment. 1261 // 1262 // FIXME: Assert that we aren't truncating non-padding bits when have access 1263 // to that information. 1264 Src = CGF.Builder.CreateBitCast(Src, 1265 Ty->getPointerTo(Src.getAddressSpace())); 1266 return CGF.Builder.CreateLoad(Src); 1267 } 1268 1269 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1270 // the types match, use the llvm.experimental.vector.insert intrinsic to 1271 // perform the conversion. 1272 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1273 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1274 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1275 auto *Load = CGF.Builder.CreateLoad(Src); 1276 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1277 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1278 return CGF.Builder.CreateInsertVector(ScalableDst, UndefVec, Load, Zero, 1279 "castScalableSve"); 1280 } 1281 } 1282 } 1283 1284 // Otherwise do coercion through memory. This is stupid, but simple. 1285 Address Tmp = 1286 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1287 CGF.Builder.CreateMemCpy( 1288 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1289 Src.getAlignment().getAsAlign(), 1290 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1291 return CGF.Builder.CreateLoad(Tmp); 1292 } 1293 1294 // Function to store a first-class aggregate into memory. We prefer to 1295 // store the elements rather than the aggregate to be more friendly to 1296 // fast-isel. 1297 // FIXME: Do we need to recurse here? 1298 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1299 bool DestIsVolatile) { 1300 // Prefer scalar stores to first-class aggregate stores. 1301 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1302 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1303 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1304 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1305 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1306 } 1307 } else { 1308 Builder.CreateStore(Val, Dest, DestIsVolatile); 1309 } 1310 } 1311 1312 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1313 /// where the source and destination may have different types. The 1314 /// destination is known to be aligned to \arg DstAlign bytes. 1315 /// 1316 /// This safely handles the case when the src type is larger than the 1317 /// destination type; the upper bits of the src will be lost. 1318 static void CreateCoercedStore(llvm::Value *Src, 1319 Address Dst, 1320 bool DstIsVolatile, 1321 CodeGenFunction &CGF) { 1322 llvm::Type *SrcTy = Src->getType(); 1323 llvm::Type *DstTy = Dst.getElementType(); 1324 if (SrcTy == DstTy) { 1325 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1326 return; 1327 } 1328 1329 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1330 1331 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1332 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1333 SrcSize.getFixedSize(), CGF); 1334 DstTy = Dst.getElementType(); 1335 } 1336 1337 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1338 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1339 if (SrcPtrTy && DstPtrTy && 1340 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1341 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1342 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1343 return; 1344 } 1345 1346 // If the source and destination are integer or pointer types, just do an 1347 // extension or truncation to the desired type. 1348 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1349 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1350 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1351 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1352 return; 1353 } 1354 1355 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1356 1357 // If store is legal, just bitcast the src pointer. 1358 if (isa<llvm::ScalableVectorType>(SrcTy) || 1359 isa<llvm::ScalableVectorType>(DstTy) || 1360 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1361 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1362 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1363 } else { 1364 // Otherwise do coercion through memory. This is stupid, but 1365 // simple. 1366 1367 // Generally SrcSize is never greater than DstSize, since this means we are 1368 // losing bits. However, this can happen in cases where the structure has 1369 // additional padding, for example due to a user specified alignment. 1370 // 1371 // FIXME: Assert that we aren't truncating non-padding bits when have access 1372 // to that information. 1373 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1374 CGF.Builder.CreateStore(Src, Tmp); 1375 CGF.Builder.CreateMemCpy( 1376 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1377 Tmp.getAlignment().getAsAlign(), 1378 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1379 } 1380 } 1381 1382 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1383 const ABIArgInfo &info) { 1384 if (unsigned offset = info.getDirectOffset()) { 1385 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1386 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1387 CharUnits::fromQuantity(offset)); 1388 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1389 } 1390 return addr; 1391 } 1392 1393 namespace { 1394 1395 /// Encapsulates information about the way function arguments from 1396 /// CGFunctionInfo should be passed to actual LLVM IR function. 1397 class ClangToLLVMArgMapping { 1398 static const unsigned InvalidIndex = ~0U; 1399 unsigned InallocaArgNo; 1400 unsigned SRetArgNo; 1401 unsigned TotalIRArgs; 1402 1403 /// Arguments of LLVM IR function corresponding to single Clang argument. 1404 struct IRArgs { 1405 unsigned PaddingArgIndex; 1406 // Argument is expanded to IR arguments at positions 1407 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1408 unsigned FirstArgIndex; 1409 unsigned NumberOfArgs; 1410 1411 IRArgs() 1412 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1413 NumberOfArgs(0) {} 1414 }; 1415 1416 SmallVector<IRArgs, 8> ArgInfo; 1417 1418 public: 1419 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1420 bool OnlyRequiredArgs = false) 1421 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1422 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1423 construct(Context, FI, OnlyRequiredArgs); 1424 } 1425 1426 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1427 unsigned getInallocaArgNo() const { 1428 assert(hasInallocaArg()); 1429 return InallocaArgNo; 1430 } 1431 1432 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1433 unsigned getSRetArgNo() const { 1434 assert(hasSRetArg()); 1435 return SRetArgNo; 1436 } 1437 1438 unsigned totalIRArgs() const { return TotalIRArgs; } 1439 1440 bool hasPaddingArg(unsigned ArgNo) const { 1441 assert(ArgNo < ArgInfo.size()); 1442 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1443 } 1444 unsigned getPaddingArgNo(unsigned ArgNo) const { 1445 assert(hasPaddingArg(ArgNo)); 1446 return ArgInfo[ArgNo].PaddingArgIndex; 1447 } 1448 1449 /// Returns index of first IR argument corresponding to ArgNo, and their 1450 /// quantity. 1451 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1452 assert(ArgNo < ArgInfo.size()); 1453 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1454 ArgInfo[ArgNo].NumberOfArgs); 1455 } 1456 1457 private: 1458 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1459 bool OnlyRequiredArgs); 1460 }; 1461 1462 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1463 const CGFunctionInfo &FI, 1464 bool OnlyRequiredArgs) { 1465 unsigned IRArgNo = 0; 1466 bool SwapThisWithSRet = false; 1467 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1468 1469 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1470 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1471 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1472 } 1473 1474 unsigned ArgNo = 0; 1475 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1476 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1477 ++I, ++ArgNo) { 1478 assert(I != FI.arg_end()); 1479 QualType ArgType = I->type; 1480 const ABIArgInfo &AI = I->info; 1481 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1482 auto &IRArgs = ArgInfo[ArgNo]; 1483 1484 if (AI.getPaddingType()) 1485 IRArgs.PaddingArgIndex = IRArgNo++; 1486 1487 switch (AI.getKind()) { 1488 case ABIArgInfo::Extend: 1489 case ABIArgInfo::Direct: { 1490 // FIXME: handle sseregparm someday... 1491 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1492 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1493 IRArgs.NumberOfArgs = STy->getNumElements(); 1494 } else { 1495 IRArgs.NumberOfArgs = 1; 1496 } 1497 break; 1498 } 1499 case ABIArgInfo::Indirect: 1500 case ABIArgInfo::IndirectAliased: 1501 IRArgs.NumberOfArgs = 1; 1502 break; 1503 case ABIArgInfo::Ignore: 1504 case ABIArgInfo::InAlloca: 1505 // ignore and inalloca doesn't have matching LLVM parameters. 1506 IRArgs.NumberOfArgs = 0; 1507 break; 1508 case ABIArgInfo::CoerceAndExpand: 1509 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1510 break; 1511 case ABIArgInfo::Expand: 1512 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1513 break; 1514 } 1515 1516 if (IRArgs.NumberOfArgs > 0) { 1517 IRArgs.FirstArgIndex = IRArgNo; 1518 IRArgNo += IRArgs.NumberOfArgs; 1519 } 1520 1521 // Skip over the sret parameter when it comes second. We already handled it 1522 // above. 1523 if (IRArgNo == 1 && SwapThisWithSRet) 1524 IRArgNo++; 1525 } 1526 assert(ArgNo == ArgInfo.size()); 1527 1528 if (FI.usesInAlloca()) 1529 InallocaArgNo = IRArgNo++; 1530 1531 TotalIRArgs = IRArgNo; 1532 } 1533 } // namespace 1534 1535 /***/ 1536 1537 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1538 const auto &RI = FI.getReturnInfo(); 1539 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1540 } 1541 1542 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1543 return ReturnTypeUsesSRet(FI) && 1544 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1545 } 1546 1547 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1548 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1549 switch (BT->getKind()) { 1550 default: 1551 return false; 1552 case BuiltinType::Float: 1553 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1554 case BuiltinType::Double: 1555 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1556 case BuiltinType::LongDouble: 1557 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1558 } 1559 } 1560 1561 return false; 1562 } 1563 1564 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1565 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1566 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1567 if (BT->getKind() == BuiltinType::LongDouble) 1568 return getTarget().useObjCFP2RetForComplexLongDouble(); 1569 } 1570 } 1571 1572 return false; 1573 } 1574 1575 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1576 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1577 return GetFunctionType(FI); 1578 } 1579 1580 llvm::FunctionType * 1581 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1582 1583 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1584 (void)Inserted; 1585 assert(Inserted && "Recursively being processed?"); 1586 1587 llvm::Type *resultType = nullptr; 1588 const ABIArgInfo &retAI = FI.getReturnInfo(); 1589 switch (retAI.getKind()) { 1590 case ABIArgInfo::Expand: 1591 case ABIArgInfo::IndirectAliased: 1592 llvm_unreachable("Invalid ABI kind for return argument"); 1593 1594 case ABIArgInfo::Extend: 1595 case ABIArgInfo::Direct: 1596 resultType = retAI.getCoerceToType(); 1597 break; 1598 1599 case ABIArgInfo::InAlloca: 1600 if (retAI.getInAllocaSRet()) { 1601 // sret things on win32 aren't void, they return the sret pointer. 1602 QualType ret = FI.getReturnType(); 1603 llvm::Type *ty = ConvertType(ret); 1604 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1605 resultType = llvm::PointerType::get(ty, addressSpace); 1606 } else { 1607 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1608 } 1609 break; 1610 1611 case ABIArgInfo::Indirect: 1612 case ABIArgInfo::Ignore: 1613 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1614 break; 1615 1616 case ABIArgInfo::CoerceAndExpand: 1617 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1618 break; 1619 } 1620 1621 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1622 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1623 1624 // Add type for sret argument. 1625 if (IRFunctionArgs.hasSRetArg()) { 1626 QualType Ret = FI.getReturnType(); 1627 llvm::Type *Ty = ConvertType(Ret); 1628 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1629 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1630 llvm::PointerType::get(Ty, AddressSpace); 1631 } 1632 1633 // Add type for inalloca argument. 1634 if (IRFunctionArgs.hasInallocaArg()) { 1635 auto ArgStruct = FI.getArgStruct(); 1636 assert(ArgStruct); 1637 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1638 } 1639 1640 // Add in all of the required arguments. 1641 unsigned ArgNo = 0; 1642 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1643 ie = it + FI.getNumRequiredArgs(); 1644 for (; it != ie; ++it, ++ArgNo) { 1645 const ABIArgInfo &ArgInfo = it->info; 1646 1647 // Insert a padding type to ensure proper alignment. 1648 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1649 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1650 ArgInfo.getPaddingType(); 1651 1652 unsigned FirstIRArg, NumIRArgs; 1653 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1654 1655 switch (ArgInfo.getKind()) { 1656 case ABIArgInfo::Ignore: 1657 case ABIArgInfo::InAlloca: 1658 assert(NumIRArgs == 0); 1659 break; 1660 1661 case ABIArgInfo::Indirect: { 1662 assert(NumIRArgs == 1); 1663 // indirect arguments are always on the stack, which is alloca addr space. 1664 llvm::Type *LTy = ConvertTypeForMem(it->type); 1665 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1666 CGM.getDataLayout().getAllocaAddrSpace()); 1667 break; 1668 } 1669 case ABIArgInfo::IndirectAliased: { 1670 assert(NumIRArgs == 1); 1671 llvm::Type *LTy = ConvertTypeForMem(it->type); 1672 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1673 break; 1674 } 1675 case ABIArgInfo::Extend: 1676 case ABIArgInfo::Direct: { 1677 // Fast-isel and the optimizer generally like scalar values better than 1678 // FCAs, so we flatten them if this is safe to do for this argument. 1679 llvm::Type *argType = ArgInfo.getCoerceToType(); 1680 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1681 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1682 assert(NumIRArgs == st->getNumElements()); 1683 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1684 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1685 } else { 1686 assert(NumIRArgs == 1); 1687 ArgTypes[FirstIRArg] = argType; 1688 } 1689 break; 1690 } 1691 1692 case ABIArgInfo::CoerceAndExpand: { 1693 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1694 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1695 *ArgTypesIter++ = EltTy; 1696 } 1697 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1698 break; 1699 } 1700 1701 case ABIArgInfo::Expand: 1702 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1703 getExpandedTypes(it->type, ArgTypesIter); 1704 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1705 break; 1706 } 1707 } 1708 1709 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1710 assert(Erased && "Not in set?"); 1711 1712 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1713 } 1714 1715 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1716 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1717 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1718 1719 if (!isFuncTypeConvertible(FPT)) 1720 return llvm::StructType::get(getLLVMContext()); 1721 1722 return GetFunctionType(GD); 1723 } 1724 1725 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1726 llvm::AttrBuilder &FuncAttrs, 1727 const FunctionProtoType *FPT) { 1728 if (!FPT) 1729 return; 1730 1731 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1732 FPT->isNothrow()) 1733 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1734 } 1735 1736 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1737 QualType ReturnType) { 1738 // We can't just discard the return value for a record type with a 1739 // complex destructor or a non-trivially copyable type. 1740 if (const RecordType *RT = 1741 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1742 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1743 return ClassDecl->hasTrivialDestructor(); 1744 } 1745 return ReturnType.isTriviallyCopyableType(Context); 1746 } 1747 1748 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1749 bool HasOptnone, 1750 bool AttrOnCallSite, 1751 llvm::AttrBuilder &FuncAttrs) { 1752 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1753 if (!HasOptnone) { 1754 if (CodeGenOpts.OptimizeSize) 1755 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1756 if (CodeGenOpts.OptimizeSize == 2) 1757 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1758 } 1759 1760 if (CodeGenOpts.DisableRedZone) 1761 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1762 if (CodeGenOpts.IndirectTlsSegRefs) 1763 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1764 if (CodeGenOpts.NoImplicitFloat) 1765 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1766 1767 if (AttrOnCallSite) { 1768 // Attributes that should go on the call site only. 1769 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1770 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1771 if (!CodeGenOpts.TrapFuncName.empty()) 1772 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1773 } else { 1774 StringRef FpKind; 1775 switch (CodeGenOpts.getFramePointer()) { 1776 case CodeGenOptions::FramePointerKind::None: 1777 FpKind = "none"; 1778 break; 1779 case CodeGenOptions::FramePointerKind::NonLeaf: 1780 FpKind = "non-leaf"; 1781 break; 1782 case CodeGenOptions::FramePointerKind::All: 1783 FpKind = "all"; 1784 break; 1785 } 1786 FuncAttrs.addAttribute("frame-pointer", FpKind); 1787 1788 if (CodeGenOpts.LessPreciseFPMAD) 1789 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1790 1791 if (CodeGenOpts.NullPointerIsValid) 1792 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1793 1794 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1795 FuncAttrs.addAttribute("denormal-fp-math", 1796 CodeGenOpts.FPDenormalMode.str()); 1797 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1798 FuncAttrs.addAttribute( 1799 "denormal-fp-math-f32", 1800 CodeGenOpts.FP32DenormalMode.str()); 1801 } 1802 1803 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1804 FuncAttrs.addAttribute("no-trapping-math", "true"); 1805 1806 // Strict (compliant) code is the default, so only add this attribute to 1807 // indicate that we are trying to workaround a problem case. 1808 if (!CodeGenOpts.StrictFloatCastOverflow) 1809 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1810 1811 // TODO: Are these all needed? 1812 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1813 if (LangOpts.NoHonorInfs) 1814 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1815 if (LangOpts.NoHonorNaNs) 1816 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1817 if (LangOpts.UnsafeFPMath) 1818 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1819 if (CodeGenOpts.SoftFloat) 1820 FuncAttrs.addAttribute("use-soft-float", "true"); 1821 FuncAttrs.addAttribute("stack-protector-buffer-size", 1822 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1823 if (LangOpts.NoSignedZero) 1824 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1825 1826 // TODO: Reciprocal estimate codegen options should apply to instructions? 1827 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1828 if (!Recips.empty()) 1829 FuncAttrs.addAttribute("reciprocal-estimates", 1830 llvm::join(Recips, ",")); 1831 1832 if (!CodeGenOpts.PreferVectorWidth.empty() && 1833 CodeGenOpts.PreferVectorWidth != "none") 1834 FuncAttrs.addAttribute("prefer-vector-width", 1835 CodeGenOpts.PreferVectorWidth); 1836 1837 if (CodeGenOpts.StackRealignment) 1838 FuncAttrs.addAttribute("stackrealign"); 1839 if (CodeGenOpts.Backchain) 1840 FuncAttrs.addAttribute("backchain"); 1841 if (CodeGenOpts.EnableSegmentedStacks) 1842 FuncAttrs.addAttribute("split-stack"); 1843 1844 if (CodeGenOpts.SpeculativeLoadHardening) 1845 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1846 } 1847 1848 if (getLangOpts().assumeFunctionsAreConvergent()) { 1849 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1850 // convergent (meaning, they may call an intrinsically convergent op, such 1851 // as __syncthreads() / barrier(), and so can't have certain optimizations 1852 // applied around them). LLVM will remove this attribute where it safely 1853 // can. 1854 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1855 } 1856 1857 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1858 // Exceptions aren't supported in CUDA device code. 1859 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1860 } 1861 1862 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1863 StringRef Var, Value; 1864 std::tie(Var, Value) = Attr.split('='); 1865 FuncAttrs.addAttribute(Var, Value); 1866 } 1867 } 1868 1869 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1870 llvm::AttrBuilder FuncAttrs; 1871 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1872 /* AttrOnCallSite = */ false, FuncAttrs); 1873 // TODO: call GetCPUAndFeaturesAttributes? 1874 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1875 } 1876 1877 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1878 llvm::AttrBuilder &attrs) { 1879 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1880 /*for call*/ false, attrs); 1881 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1882 } 1883 1884 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1885 const LangOptions &LangOpts, 1886 const NoBuiltinAttr *NBA = nullptr) { 1887 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1888 SmallString<32> AttributeName; 1889 AttributeName += "no-builtin-"; 1890 AttributeName += BuiltinName; 1891 FuncAttrs.addAttribute(AttributeName); 1892 }; 1893 1894 // First, handle the language options passed through -fno-builtin. 1895 if (LangOpts.NoBuiltin) { 1896 // -fno-builtin disables them all. 1897 FuncAttrs.addAttribute("no-builtins"); 1898 return; 1899 } 1900 1901 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1902 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1903 1904 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1905 // the source. 1906 if (!NBA) 1907 return; 1908 1909 // If there is a wildcard in the builtin names specified through the 1910 // attribute, disable them all. 1911 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1912 FuncAttrs.addAttribute("no-builtins"); 1913 return; 1914 } 1915 1916 // And last, add the rest of the builtin names. 1917 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1918 } 1919 1920 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1921 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1922 bool CheckCoerce = true) { 1923 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 1924 if (AI.getKind() == ABIArgInfo::Indirect) 1925 return true; 1926 if (AI.getKind() == ABIArgInfo::Extend) 1927 return true; 1928 if (!DL.typeSizeEqualsStoreSize(Ty)) 1929 // TODO: This will result in a modest amount of values not marked noundef 1930 // when they could be. We care about values that *invisibly* contain undef 1931 // bits from the perspective of LLVM IR. 1932 return false; 1933 if (CheckCoerce && AI.canHaveCoerceToType()) { 1934 llvm::Type *CoerceTy = AI.getCoerceToType(); 1935 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 1936 DL.getTypeSizeInBits(Ty))) 1937 // If we're coercing to a type with a greater size than the canonical one, 1938 // we're introducing new undef bits. 1939 // Coercing to a type of smaller or equal size is ok, as we know that 1940 // there's no internal padding (typeSizeEqualsStoreSize). 1941 return false; 1942 } 1943 if (QTy->isExtIntType()) 1944 return true; 1945 if (QTy->isReferenceType()) 1946 return true; 1947 if (QTy->isNullPtrType()) 1948 return false; 1949 if (QTy->isMemberPointerType()) 1950 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 1951 // now, never mark them. 1952 return false; 1953 if (QTy->isScalarType()) { 1954 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 1955 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 1956 return true; 1957 } 1958 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 1959 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 1960 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 1961 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 1962 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 1963 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 1964 1965 // TODO: Some structs may be `noundef`, in specific situations. 1966 return false; 1967 } 1968 1969 /// Construct the IR attribute list of a function or call. 1970 /// 1971 /// When adding an attribute, please consider where it should be handled: 1972 /// 1973 /// - getDefaultFunctionAttributes is for attributes that are essentially 1974 /// part of the global target configuration (but perhaps can be 1975 /// overridden on a per-function basis). Adding attributes there 1976 /// will cause them to also be set in frontends that build on Clang's 1977 /// target-configuration logic, as well as for code defined in library 1978 /// modules such as CUDA's libdevice. 1979 /// 1980 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1981 /// and adds declaration-specific, convention-specific, and 1982 /// frontend-specific logic. The last is of particular importance: 1983 /// attributes that restrict how the frontend generates code must be 1984 /// added here rather than getDefaultFunctionAttributes. 1985 /// 1986 void CodeGenModule::ConstructAttributeList(StringRef Name, 1987 const CGFunctionInfo &FI, 1988 CGCalleeInfo CalleeInfo, 1989 llvm::AttributeList &AttrList, 1990 unsigned &CallingConv, 1991 bool AttrOnCallSite, bool IsThunk) { 1992 llvm::AttrBuilder FuncAttrs; 1993 llvm::AttrBuilder RetAttrs; 1994 1995 // Collect function IR attributes from the CC lowering. 1996 // We'll collect the paramete and result attributes later. 1997 CallingConv = FI.getEffectiveCallingConvention(); 1998 if (FI.isNoReturn()) 1999 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2000 if (FI.isCmseNSCall()) 2001 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2002 2003 // Collect function IR attributes from the callee prototype if we have one. 2004 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2005 CalleeInfo.getCalleeFunctionProtoType()); 2006 2007 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2008 2009 bool HasOptnone = false; 2010 // The NoBuiltinAttr attached to the target FunctionDecl. 2011 const NoBuiltinAttr *NBA = nullptr; 2012 2013 // Collect function IR attributes based on declaration-specific 2014 // information. 2015 // FIXME: handle sseregparm someday... 2016 if (TargetDecl) { 2017 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2018 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2019 if (TargetDecl->hasAttr<NoThrowAttr>()) 2020 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2021 if (TargetDecl->hasAttr<NoReturnAttr>()) 2022 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2023 if (TargetDecl->hasAttr<ColdAttr>()) 2024 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2025 if (TargetDecl->hasAttr<HotAttr>()) 2026 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2027 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2028 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2029 if (TargetDecl->hasAttr<ConvergentAttr>()) 2030 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2031 2032 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2033 AddAttributesFromFunctionProtoType( 2034 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2035 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2036 // A sane operator new returns a non-aliasing pointer. 2037 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2038 if (getCodeGenOpts().AssumeSaneOperatorNew && 2039 (Kind == OO_New || Kind == OO_Array_New)) 2040 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2041 } 2042 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2043 const bool IsVirtualCall = MD && MD->isVirtual(); 2044 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2045 // virtual function. These attributes are not inherited by overloads. 2046 if (!(AttrOnCallSite && IsVirtualCall)) { 2047 if (Fn->isNoReturn()) 2048 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2049 NBA = Fn->getAttr<NoBuiltinAttr>(); 2050 } 2051 // Only place nomerge attribute on call sites, never functions. This 2052 // allows it to work on indirect virtual function calls. 2053 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2054 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2055 2056 // Add known guaranteed alignment for allocation functions. 2057 if (unsigned BuiltinID = Fn->getBuiltinID()) { 2058 switch (BuiltinID) { 2059 case Builtin::BIaligned_alloc: 2060 case Builtin::BIcalloc: 2061 case Builtin::BImalloc: 2062 case Builtin::BImemalign: 2063 case Builtin::BIrealloc: 2064 case Builtin::BIstrdup: 2065 case Builtin::BIstrndup: 2066 RetAttrs.addAlignmentAttr(Context.getTargetInfo().getNewAlign() / 2067 Context.getTargetInfo().getCharWidth()); 2068 break; 2069 default: 2070 break; 2071 } 2072 } 2073 } 2074 2075 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2076 if (TargetDecl->hasAttr<ConstAttr>()) { 2077 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2078 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2079 // gcc specifies that 'const' functions have greater restrictions than 2080 // 'pure' functions, so they also cannot have infinite loops. 2081 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2082 } else if (TargetDecl->hasAttr<PureAttr>()) { 2083 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2084 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2085 // gcc specifies that 'pure' functions cannot have infinite loops. 2086 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2087 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2088 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2089 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2090 } 2091 if (TargetDecl->hasAttr<RestrictAttr>()) 2092 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2093 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2094 !CodeGenOpts.NullPointerIsValid) 2095 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2096 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2097 FuncAttrs.addAttribute("no_caller_saved_registers"); 2098 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2099 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2100 if (TargetDecl->hasAttr<LeafAttr>()) 2101 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2102 2103 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2104 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2105 Optional<unsigned> NumElemsParam; 2106 if (AllocSize->getNumElemsParam().isValid()) 2107 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2108 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2109 NumElemsParam); 2110 } 2111 2112 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2113 if (getLangOpts().OpenCLVersion <= 120) { 2114 // OpenCL v1.2 Work groups are always uniform 2115 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2116 } else { 2117 // OpenCL v2.0 Work groups may be whether uniform or not. 2118 // '-cl-uniform-work-group-size' compile option gets a hint 2119 // to the compiler that the global work-size be a multiple of 2120 // the work-group size specified to clEnqueueNDRangeKernel 2121 // (i.e. work groups are uniform). 2122 FuncAttrs.addAttribute("uniform-work-group-size", 2123 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2124 } 2125 } 2126 2127 std::string AssumptionValueStr; 2128 for (AssumptionAttr *AssumptionA : 2129 TargetDecl->specific_attrs<AssumptionAttr>()) { 2130 std::string AS = AssumptionA->getAssumption().str(); 2131 if (!AS.empty() && !AssumptionValueStr.empty()) 2132 AssumptionValueStr += ","; 2133 AssumptionValueStr += AS; 2134 } 2135 2136 if (!AssumptionValueStr.empty()) 2137 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr); 2138 } 2139 2140 // Attach "no-builtins" attributes to: 2141 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2142 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2143 // The attributes can come from: 2144 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2145 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2146 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2147 2148 // Collect function IR attributes based on global settiings. 2149 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2150 2151 // Override some default IR attributes based on declaration-specific 2152 // information. 2153 if (TargetDecl) { 2154 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2155 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2156 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2157 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2158 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2159 FuncAttrs.removeAttribute("split-stack"); 2160 2161 // Add NonLazyBind attribute to function declarations when -fno-plt 2162 // is used. 2163 // FIXME: what if we just haven't processed the function definition 2164 // yet, or if it's an external definition like C99 inline? 2165 if (CodeGenOpts.NoPLT) { 2166 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2167 if (!Fn->isDefined() && !AttrOnCallSite) { 2168 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2169 } 2170 } 2171 } 2172 } 2173 2174 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2175 // functions with -funique-internal-linkage-names. 2176 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2177 if (isa<FunctionDecl>(TargetDecl)) { 2178 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2179 llvm::GlobalValue::InternalLinkage) 2180 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2181 "selected"); 2182 } 2183 } 2184 2185 // Collect non-call-site function IR attributes from declaration-specific 2186 // information. 2187 if (!AttrOnCallSite) { 2188 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2189 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2190 2191 // Whether tail calls are enabled. 2192 auto shouldDisableTailCalls = [&] { 2193 // Should this be honored in getDefaultFunctionAttributes? 2194 if (CodeGenOpts.DisableTailCalls) 2195 return true; 2196 2197 if (!TargetDecl) 2198 return false; 2199 2200 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2201 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2202 return true; 2203 2204 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2205 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2206 if (!BD->doesNotEscape()) 2207 return true; 2208 } 2209 2210 return false; 2211 }; 2212 if (shouldDisableTailCalls()) 2213 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2214 2215 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2216 // handles these separately to set them based on the global defaults. 2217 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2218 } 2219 2220 // Collect attributes from arguments and return values. 2221 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2222 2223 QualType RetTy = FI.getReturnType(); 2224 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2225 const llvm::DataLayout &DL = getDataLayout(); 2226 2227 // C++ explicitly makes returning undefined values UB. C's rule only applies 2228 // to used values, so we never mark them noundef for now. 2229 bool HasStrictReturn = getLangOpts().CPlusPlus; 2230 if (TargetDecl) { 2231 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2232 HasStrictReturn &= !FDecl->isExternC(); 2233 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2234 // Function pointer 2235 HasStrictReturn &= !VDecl->isExternC(); 2236 } 2237 2238 // We don't want to be too aggressive with the return checking, unless 2239 // it's explicit in the code opts or we're using an appropriate sanitizer. 2240 // Try to respect what the programmer intended. 2241 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2242 !MayDropFunctionReturn(getContext(), RetTy) || 2243 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2244 getLangOpts().Sanitize.has(SanitizerKind::Return); 2245 2246 // Determine if the return type could be partially undef 2247 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) { 2248 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2249 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2250 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2251 } 2252 2253 switch (RetAI.getKind()) { 2254 case ABIArgInfo::Extend: 2255 if (RetAI.isSignExt()) 2256 RetAttrs.addAttribute(llvm::Attribute::SExt); 2257 else 2258 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2259 LLVM_FALLTHROUGH; 2260 case ABIArgInfo::Direct: 2261 if (RetAI.getInReg()) 2262 RetAttrs.addAttribute(llvm::Attribute::InReg); 2263 break; 2264 case ABIArgInfo::Ignore: 2265 break; 2266 2267 case ABIArgInfo::InAlloca: 2268 case ABIArgInfo::Indirect: { 2269 // inalloca and sret disable readnone and readonly 2270 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2271 .removeAttribute(llvm::Attribute::ReadNone); 2272 break; 2273 } 2274 2275 case ABIArgInfo::CoerceAndExpand: 2276 break; 2277 2278 case ABIArgInfo::Expand: 2279 case ABIArgInfo::IndirectAliased: 2280 llvm_unreachable("Invalid ABI kind for return argument"); 2281 } 2282 2283 if (!IsThunk) { 2284 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2285 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2286 QualType PTy = RefTy->getPointeeType(); 2287 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2288 RetAttrs.addDereferenceableAttr( 2289 getMinimumObjectSize(PTy).getQuantity()); 2290 if (getContext().getTargetAddressSpace(PTy) == 0 && 2291 !CodeGenOpts.NullPointerIsValid) 2292 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2293 if (PTy->isObjectType()) { 2294 llvm::Align Alignment = 2295 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2296 RetAttrs.addAlignmentAttr(Alignment); 2297 } 2298 } 2299 } 2300 2301 bool hasUsedSRet = false; 2302 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2303 2304 // Attach attributes to sret. 2305 if (IRFunctionArgs.hasSRetArg()) { 2306 llvm::AttrBuilder SRETAttrs; 2307 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2308 hasUsedSRet = true; 2309 if (RetAI.getInReg()) 2310 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2311 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2312 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2313 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2314 } 2315 2316 // Attach attributes to inalloca argument. 2317 if (IRFunctionArgs.hasInallocaArg()) { 2318 llvm::AttrBuilder Attrs; 2319 Attrs.addInAllocaAttr(FI.getArgStruct()); 2320 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2321 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2322 } 2323 2324 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2325 // unless this is a thunk function. 2326 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2327 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2328 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2329 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2330 2331 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2332 2333 llvm::AttrBuilder Attrs; 2334 2335 QualType ThisTy = 2336 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2337 2338 if (!CodeGenOpts.NullPointerIsValid && 2339 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2340 Attrs.addAttribute(llvm::Attribute::NonNull); 2341 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2342 } else { 2343 // FIXME dereferenceable should be correct here, regardless of 2344 // NullPointerIsValid. However, dereferenceable currently does not always 2345 // respect NullPointerIsValid and may imply nonnull and break the program. 2346 // See https://reviews.llvm.org/D66618 for discussions. 2347 Attrs.addDereferenceableOrNullAttr( 2348 getMinimumObjectSize( 2349 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2350 .getQuantity()); 2351 } 2352 2353 llvm::Align Alignment = 2354 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2355 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2356 .getAsAlign(); 2357 Attrs.addAlignmentAttr(Alignment); 2358 2359 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2360 } 2361 2362 unsigned ArgNo = 0; 2363 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2364 E = FI.arg_end(); 2365 I != E; ++I, ++ArgNo) { 2366 QualType ParamType = I->type; 2367 const ABIArgInfo &AI = I->info; 2368 llvm::AttrBuilder Attrs; 2369 2370 // Add attribute for padding argument, if necessary. 2371 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2372 if (AI.getPaddingInReg()) { 2373 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2374 llvm::AttributeSet::get( 2375 getLLVMContext(), 2376 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2377 } 2378 } 2379 2380 // Decide whether the argument we're handling could be partially undef 2381 bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI); 2382 if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef) 2383 Attrs.addAttribute(llvm::Attribute::NoUndef); 2384 2385 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2386 // have the corresponding parameter variable. It doesn't make 2387 // sense to do it here because parameters are so messed up. 2388 switch (AI.getKind()) { 2389 case ABIArgInfo::Extend: 2390 if (AI.isSignExt()) 2391 Attrs.addAttribute(llvm::Attribute::SExt); 2392 else 2393 Attrs.addAttribute(llvm::Attribute::ZExt); 2394 LLVM_FALLTHROUGH; 2395 case ABIArgInfo::Direct: 2396 if (ArgNo == 0 && FI.isChainCall()) 2397 Attrs.addAttribute(llvm::Attribute::Nest); 2398 else if (AI.getInReg()) 2399 Attrs.addAttribute(llvm::Attribute::InReg); 2400 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2401 break; 2402 2403 case ABIArgInfo::Indirect: { 2404 if (AI.getInReg()) 2405 Attrs.addAttribute(llvm::Attribute::InReg); 2406 2407 if (AI.getIndirectByVal()) 2408 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2409 2410 auto *Decl = ParamType->getAsRecordDecl(); 2411 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2412 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2413 // When calling the function, the pointer passed in will be the only 2414 // reference to the underlying object. Mark it accordingly. 2415 Attrs.addAttribute(llvm::Attribute::NoAlias); 2416 2417 // TODO: We could add the byref attribute if not byval, but it would 2418 // require updating many testcases. 2419 2420 CharUnits Align = AI.getIndirectAlign(); 2421 2422 // In a byval argument, it is important that the required 2423 // alignment of the type is honored, as LLVM might be creating a 2424 // *new* stack object, and needs to know what alignment to give 2425 // it. (Sometimes it can deduce a sensible alignment on its own, 2426 // but not if clang decides it must emit a packed struct, or the 2427 // user specifies increased alignment requirements.) 2428 // 2429 // This is different from indirect *not* byval, where the object 2430 // exists already, and the align attribute is purely 2431 // informative. 2432 assert(!Align.isZero()); 2433 2434 // For now, only add this when we have a byval argument. 2435 // TODO: be less lazy about updating test cases. 2436 if (AI.getIndirectByVal()) 2437 Attrs.addAlignmentAttr(Align.getQuantity()); 2438 2439 // byval disables readnone and readonly. 2440 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2441 .removeAttribute(llvm::Attribute::ReadNone); 2442 2443 break; 2444 } 2445 case ABIArgInfo::IndirectAliased: { 2446 CharUnits Align = AI.getIndirectAlign(); 2447 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2448 Attrs.addAlignmentAttr(Align.getQuantity()); 2449 break; 2450 } 2451 case ABIArgInfo::Ignore: 2452 case ABIArgInfo::Expand: 2453 case ABIArgInfo::CoerceAndExpand: 2454 break; 2455 2456 case ABIArgInfo::InAlloca: 2457 // inalloca disables readnone and readonly. 2458 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2459 .removeAttribute(llvm::Attribute::ReadNone); 2460 continue; 2461 } 2462 2463 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2464 QualType PTy = RefTy->getPointeeType(); 2465 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2466 Attrs.addDereferenceableAttr( 2467 getMinimumObjectSize(PTy).getQuantity()); 2468 if (getContext().getTargetAddressSpace(PTy) == 0 && 2469 !CodeGenOpts.NullPointerIsValid) 2470 Attrs.addAttribute(llvm::Attribute::NonNull); 2471 if (PTy->isObjectType()) { 2472 llvm::Align Alignment = 2473 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2474 Attrs.addAlignmentAttr(Alignment); 2475 } 2476 } 2477 2478 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2479 case ParameterABI::Ordinary: 2480 break; 2481 2482 case ParameterABI::SwiftIndirectResult: { 2483 // Add 'sret' if we haven't already used it for something, but 2484 // only if the result is void. 2485 if (!hasUsedSRet && RetTy->isVoidType()) { 2486 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2487 hasUsedSRet = true; 2488 } 2489 2490 // Add 'noalias' in either case. 2491 Attrs.addAttribute(llvm::Attribute::NoAlias); 2492 2493 // Add 'dereferenceable' and 'alignment'. 2494 auto PTy = ParamType->getPointeeType(); 2495 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2496 auto info = getContext().getTypeInfoInChars(PTy); 2497 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2498 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2499 } 2500 break; 2501 } 2502 2503 case ParameterABI::SwiftErrorResult: 2504 Attrs.addAttribute(llvm::Attribute::SwiftError); 2505 break; 2506 2507 case ParameterABI::SwiftContext: 2508 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2509 break; 2510 2511 case ParameterABI::SwiftAsyncContext: 2512 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2513 break; 2514 } 2515 2516 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2517 Attrs.addAttribute(llvm::Attribute::NoCapture); 2518 2519 if (Attrs.hasAttributes()) { 2520 unsigned FirstIRArg, NumIRArgs; 2521 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2522 for (unsigned i = 0; i < NumIRArgs; i++) 2523 ArgAttrs[FirstIRArg + i] = 2524 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2525 } 2526 } 2527 assert(ArgNo == FI.arg_size()); 2528 2529 AttrList = llvm::AttributeList::get( 2530 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2531 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2532 } 2533 2534 /// An argument came in as a promoted argument; demote it back to its 2535 /// declared type. 2536 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2537 const VarDecl *var, 2538 llvm::Value *value) { 2539 llvm::Type *varType = CGF.ConvertType(var->getType()); 2540 2541 // This can happen with promotions that actually don't change the 2542 // underlying type, like the enum promotions. 2543 if (value->getType() == varType) return value; 2544 2545 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2546 && "unexpected promotion type"); 2547 2548 if (isa<llvm::IntegerType>(varType)) 2549 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2550 2551 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2552 } 2553 2554 /// Returns the attribute (either parameter attribute, or function 2555 /// attribute), which declares argument ArgNo to be non-null. 2556 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2557 QualType ArgType, unsigned ArgNo) { 2558 // FIXME: __attribute__((nonnull)) can also be applied to: 2559 // - references to pointers, where the pointee is known to be 2560 // nonnull (apparently a Clang extension) 2561 // - transparent unions containing pointers 2562 // In the former case, LLVM IR cannot represent the constraint. In 2563 // the latter case, we have no guarantee that the transparent union 2564 // is in fact passed as a pointer. 2565 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2566 return nullptr; 2567 // First, check attribute on parameter itself. 2568 if (PVD) { 2569 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2570 return ParmNNAttr; 2571 } 2572 // Check function attributes. 2573 if (!FD) 2574 return nullptr; 2575 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2576 if (NNAttr->isNonNull(ArgNo)) 2577 return NNAttr; 2578 } 2579 return nullptr; 2580 } 2581 2582 namespace { 2583 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2584 Address Temp; 2585 Address Arg; 2586 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2587 void Emit(CodeGenFunction &CGF, Flags flags) override { 2588 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2589 CGF.Builder.CreateStore(errorValue, Arg); 2590 } 2591 }; 2592 } 2593 2594 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2595 llvm::Function *Fn, 2596 const FunctionArgList &Args) { 2597 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2598 // Naked functions don't have prologues. 2599 return; 2600 2601 // If this is an implicit-return-zero function, go ahead and 2602 // initialize the return value. TODO: it might be nice to have 2603 // a more general mechanism for this that didn't require synthesized 2604 // return statements. 2605 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2606 if (FD->hasImplicitReturnZero()) { 2607 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2608 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2609 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2610 Builder.CreateStore(Zero, ReturnValue); 2611 } 2612 } 2613 2614 // FIXME: We no longer need the types from FunctionArgList; lift up and 2615 // simplify. 2616 2617 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2618 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2619 2620 // If we're using inalloca, all the memory arguments are GEPs off of the last 2621 // parameter, which is a pointer to the complete memory area. 2622 Address ArgStruct = Address::invalid(); 2623 if (IRFunctionArgs.hasInallocaArg()) { 2624 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2625 FI.getArgStructAlignment()); 2626 2627 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2628 } 2629 2630 // Name the struct return parameter. 2631 if (IRFunctionArgs.hasSRetArg()) { 2632 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2633 AI->setName("agg.result"); 2634 AI->addAttr(llvm::Attribute::NoAlias); 2635 } 2636 2637 // Track if we received the parameter as a pointer (indirect, byval, or 2638 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2639 // into a local alloca for us. 2640 SmallVector<ParamValue, 16> ArgVals; 2641 ArgVals.reserve(Args.size()); 2642 2643 // Create a pointer value for every parameter declaration. This usually 2644 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2645 // any cleanups or do anything that might unwind. We do that separately, so 2646 // we can push the cleanups in the correct order for the ABI. 2647 assert(FI.arg_size() == Args.size() && 2648 "Mismatch between function signature & arguments."); 2649 unsigned ArgNo = 0; 2650 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2651 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2652 i != e; ++i, ++info_it, ++ArgNo) { 2653 const VarDecl *Arg = *i; 2654 const ABIArgInfo &ArgI = info_it->info; 2655 2656 bool isPromoted = 2657 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2658 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2659 // the parameter is promoted. In this case we convert to 2660 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2661 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2662 assert(hasScalarEvaluationKind(Ty) == 2663 hasScalarEvaluationKind(Arg->getType())); 2664 2665 unsigned FirstIRArg, NumIRArgs; 2666 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2667 2668 switch (ArgI.getKind()) { 2669 case ABIArgInfo::InAlloca: { 2670 assert(NumIRArgs == 0); 2671 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2672 Address V = 2673 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2674 if (ArgI.getInAllocaIndirect()) 2675 V = Address(Builder.CreateLoad(V), 2676 getContext().getTypeAlignInChars(Ty)); 2677 ArgVals.push_back(ParamValue::forIndirect(V)); 2678 break; 2679 } 2680 2681 case ABIArgInfo::Indirect: 2682 case ABIArgInfo::IndirectAliased: { 2683 assert(NumIRArgs == 1); 2684 Address ParamAddr = 2685 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2686 2687 if (!hasScalarEvaluationKind(Ty)) { 2688 // Aggregates and complex variables are accessed by reference. All we 2689 // need to do is realign the value, if requested. Also, if the address 2690 // may be aliased, copy it to ensure that the parameter variable is 2691 // mutable and has a unique adress, as C requires. 2692 Address V = ParamAddr; 2693 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2694 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2695 2696 // Copy from the incoming argument pointer to the temporary with the 2697 // appropriate alignment. 2698 // 2699 // FIXME: We should have a common utility for generating an aggregate 2700 // copy. 2701 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2702 Builder.CreateMemCpy( 2703 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2704 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2705 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2706 V = AlignedTemp; 2707 } 2708 ArgVals.push_back(ParamValue::forIndirect(V)); 2709 } else { 2710 // Load scalar value from indirect argument. 2711 llvm::Value *V = 2712 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2713 2714 if (isPromoted) 2715 V = emitArgumentDemotion(*this, Arg, V); 2716 ArgVals.push_back(ParamValue::forDirect(V)); 2717 } 2718 break; 2719 } 2720 2721 case ABIArgInfo::Extend: 2722 case ABIArgInfo::Direct: { 2723 auto AI = Fn->getArg(FirstIRArg); 2724 llvm::Type *LTy = ConvertType(Arg->getType()); 2725 2726 // Prepare parameter attributes. So far, only attributes for pointer 2727 // parameters are prepared. See 2728 // http://llvm.org/docs/LangRef.html#paramattrs. 2729 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2730 ArgI.getCoerceToType()->isPointerTy()) { 2731 assert(NumIRArgs == 1); 2732 2733 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2734 // Set `nonnull` attribute if any. 2735 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2736 PVD->getFunctionScopeIndex()) && 2737 !CGM.getCodeGenOpts().NullPointerIsValid) 2738 AI->addAttr(llvm::Attribute::NonNull); 2739 2740 QualType OTy = PVD->getOriginalType(); 2741 if (const auto *ArrTy = 2742 getContext().getAsConstantArrayType(OTy)) { 2743 // A C99 array parameter declaration with the static keyword also 2744 // indicates dereferenceability, and if the size is constant we can 2745 // use the dereferenceable attribute (which requires the size in 2746 // bytes). 2747 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2748 QualType ETy = ArrTy->getElementType(); 2749 llvm::Align Alignment = 2750 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2751 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2752 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2753 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2754 ArrSize) { 2755 llvm::AttrBuilder Attrs; 2756 Attrs.addDereferenceableAttr( 2757 getContext().getTypeSizeInChars(ETy).getQuantity() * 2758 ArrSize); 2759 AI->addAttrs(Attrs); 2760 } else if (getContext().getTargetInfo().getNullPointerValue( 2761 ETy.getAddressSpace()) == 0 && 2762 !CGM.getCodeGenOpts().NullPointerIsValid) { 2763 AI->addAttr(llvm::Attribute::NonNull); 2764 } 2765 } 2766 } else if (const auto *ArrTy = 2767 getContext().getAsVariableArrayType(OTy)) { 2768 // For C99 VLAs with the static keyword, we don't know the size so 2769 // we can't use the dereferenceable attribute, but in addrspace(0) 2770 // we know that it must be nonnull. 2771 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2772 QualType ETy = ArrTy->getElementType(); 2773 llvm::Align Alignment = 2774 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2775 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2776 if (!getContext().getTargetAddressSpace(ETy) && 2777 !CGM.getCodeGenOpts().NullPointerIsValid) 2778 AI->addAttr(llvm::Attribute::NonNull); 2779 } 2780 } 2781 2782 // Set `align` attribute if any. 2783 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2784 if (!AVAttr) 2785 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2786 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2787 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2788 // If alignment-assumption sanitizer is enabled, we do *not* add 2789 // alignment attribute here, but emit normal alignment assumption, 2790 // so the UBSAN check could function. 2791 llvm::ConstantInt *AlignmentCI = 2792 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2793 unsigned AlignmentInt = 2794 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2795 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2796 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2797 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2798 llvm::Align(AlignmentInt))); 2799 } 2800 } 2801 } 2802 2803 // Set 'noalias' if an argument type has the `restrict` qualifier. 2804 if (Arg->getType().isRestrictQualified()) 2805 AI->addAttr(llvm::Attribute::NoAlias); 2806 } 2807 2808 // Prepare the argument value. If we have the trivial case, handle it 2809 // with no muss and fuss. 2810 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2811 ArgI.getCoerceToType() == ConvertType(Ty) && 2812 ArgI.getDirectOffset() == 0) { 2813 assert(NumIRArgs == 1); 2814 2815 // LLVM expects swifterror parameters to be used in very restricted 2816 // ways. Copy the value into a less-restricted temporary. 2817 llvm::Value *V = AI; 2818 if (FI.getExtParameterInfo(ArgNo).getABI() 2819 == ParameterABI::SwiftErrorResult) { 2820 QualType pointeeTy = Ty->getPointeeType(); 2821 assert(pointeeTy->isPointerType()); 2822 Address temp = 2823 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2824 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2825 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2826 Builder.CreateStore(incomingErrorValue, temp); 2827 V = temp.getPointer(); 2828 2829 // Push a cleanup to copy the value back at the end of the function. 2830 // The convention does not guarantee that the value will be written 2831 // back if the function exits with an unwind exception. 2832 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2833 } 2834 2835 // Ensure the argument is the correct type. 2836 if (V->getType() != ArgI.getCoerceToType()) 2837 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2838 2839 if (isPromoted) 2840 V = emitArgumentDemotion(*this, Arg, V); 2841 2842 // Because of merging of function types from multiple decls it is 2843 // possible for the type of an argument to not match the corresponding 2844 // type in the function type. Since we are codegening the callee 2845 // in here, add a cast to the argument type. 2846 llvm::Type *LTy = ConvertType(Arg->getType()); 2847 if (V->getType() != LTy) 2848 V = Builder.CreateBitCast(V, LTy); 2849 2850 ArgVals.push_back(ParamValue::forDirect(V)); 2851 break; 2852 } 2853 2854 // VLST arguments are coerced to VLATs at the function boundary for 2855 // ABI consistency. If this is a VLST that was coerced to 2856 // a VLAT at the function boundary and the types match up, use 2857 // llvm.experimental.vector.extract to convert back to the original 2858 // VLST. 2859 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2860 auto *Coerced = Fn->getArg(FirstIRArg); 2861 if (auto *VecTyFrom = 2862 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2863 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2864 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2865 2866 assert(NumIRArgs == 1); 2867 Coerced->setName(Arg->getName() + ".coerce"); 2868 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2869 VecTyTo, Coerced, Zero, "castFixedSve"))); 2870 break; 2871 } 2872 } 2873 } 2874 2875 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2876 Arg->getName()); 2877 2878 // Pointer to store into. 2879 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2880 2881 // Fast-isel and the optimizer generally like scalar values better than 2882 // FCAs, so we flatten them if this is safe to do for this argument. 2883 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2884 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2885 STy->getNumElements() > 1) { 2886 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2887 llvm::Type *DstTy = Ptr.getElementType(); 2888 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2889 2890 Address AddrToStoreInto = Address::invalid(); 2891 if (SrcSize <= DstSize) { 2892 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2893 } else { 2894 AddrToStoreInto = 2895 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2896 } 2897 2898 assert(STy->getNumElements() == NumIRArgs); 2899 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2900 auto AI = Fn->getArg(FirstIRArg + i); 2901 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2902 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2903 Builder.CreateStore(AI, EltPtr); 2904 } 2905 2906 if (SrcSize > DstSize) { 2907 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2908 } 2909 2910 } else { 2911 // Simple case, just do a coerced store of the argument into the alloca. 2912 assert(NumIRArgs == 1); 2913 auto AI = Fn->getArg(FirstIRArg); 2914 AI->setName(Arg->getName() + ".coerce"); 2915 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2916 } 2917 2918 // Match to what EmitParmDecl is expecting for this type. 2919 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2920 llvm::Value *V = 2921 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2922 if (isPromoted) 2923 V = emitArgumentDemotion(*this, Arg, V); 2924 ArgVals.push_back(ParamValue::forDirect(V)); 2925 } else { 2926 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2927 } 2928 break; 2929 } 2930 2931 case ABIArgInfo::CoerceAndExpand: { 2932 // Reconstruct into a temporary. 2933 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2934 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2935 2936 auto coercionType = ArgI.getCoerceAndExpandType(); 2937 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2938 2939 unsigned argIndex = FirstIRArg; 2940 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2941 llvm::Type *eltType = coercionType->getElementType(i); 2942 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2943 continue; 2944 2945 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2946 auto elt = Fn->getArg(argIndex++); 2947 Builder.CreateStore(elt, eltAddr); 2948 } 2949 assert(argIndex == FirstIRArg + NumIRArgs); 2950 break; 2951 } 2952 2953 case ABIArgInfo::Expand: { 2954 // If this structure was expanded into multiple arguments then 2955 // we need to create a temporary and reconstruct it from the 2956 // arguments. 2957 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2958 LValue LV = MakeAddrLValue(Alloca, Ty); 2959 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2960 2961 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2962 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2963 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2964 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2965 auto AI = Fn->getArg(FirstIRArg + i); 2966 AI->setName(Arg->getName() + "." + Twine(i)); 2967 } 2968 break; 2969 } 2970 2971 case ABIArgInfo::Ignore: 2972 assert(NumIRArgs == 0); 2973 // Initialize the local variable appropriately. 2974 if (!hasScalarEvaluationKind(Ty)) { 2975 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2976 } else { 2977 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2978 ArgVals.push_back(ParamValue::forDirect(U)); 2979 } 2980 break; 2981 } 2982 } 2983 2984 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2985 for (int I = Args.size() - 1; I >= 0; --I) 2986 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2987 } else { 2988 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2989 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2990 } 2991 } 2992 2993 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2994 while (insn->use_empty()) { 2995 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2996 if (!bitcast) return; 2997 2998 // This is "safe" because we would have used a ConstantExpr otherwise. 2999 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3000 bitcast->eraseFromParent(); 3001 } 3002 } 3003 3004 /// Try to emit a fused autorelease of a return result. 3005 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3006 llvm::Value *result) { 3007 // We must be immediately followed the cast. 3008 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3009 if (BB->empty()) return nullptr; 3010 if (&BB->back() != result) return nullptr; 3011 3012 llvm::Type *resultType = result->getType(); 3013 3014 // result is in a BasicBlock and is therefore an Instruction. 3015 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3016 3017 SmallVector<llvm::Instruction *, 4> InstsToKill; 3018 3019 // Look for: 3020 // %generator = bitcast %type1* %generator2 to %type2* 3021 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3022 // We would have emitted this as a constant if the operand weren't 3023 // an Instruction. 3024 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3025 3026 // Require the generator to be immediately followed by the cast. 3027 if (generator->getNextNode() != bitcast) 3028 return nullptr; 3029 3030 InstsToKill.push_back(bitcast); 3031 } 3032 3033 // Look for: 3034 // %generator = call i8* @objc_retain(i8* %originalResult) 3035 // or 3036 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3037 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3038 if (!call) return nullptr; 3039 3040 bool doRetainAutorelease; 3041 3042 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3043 doRetainAutorelease = true; 3044 } else if (call->getCalledOperand() == 3045 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3046 doRetainAutorelease = false; 3047 3048 // If we emitted an assembly marker for this call (and the 3049 // ARCEntrypoints field should have been set if so), go looking 3050 // for that call. If we can't find it, we can't do this 3051 // optimization. But it should always be the immediately previous 3052 // instruction, unless we needed bitcasts around the call. 3053 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3054 llvm::Instruction *prev = call->getPrevNode(); 3055 assert(prev); 3056 if (isa<llvm::BitCastInst>(prev)) { 3057 prev = prev->getPrevNode(); 3058 assert(prev); 3059 } 3060 assert(isa<llvm::CallInst>(prev)); 3061 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3062 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3063 InstsToKill.push_back(prev); 3064 } 3065 } else { 3066 return nullptr; 3067 } 3068 3069 result = call->getArgOperand(0); 3070 InstsToKill.push_back(call); 3071 3072 // Keep killing bitcasts, for sanity. Note that we no longer care 3073 // about precise ordering as long as there's exactly one use. 3074 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3075 if (!bitcast->hasOneUse()) break; 3076 InstsToKill.push_back(bitcast); 3077 result = bitcast->getOperand(0); 3078 } 3079 3080 // Delete all the unnecessary instructions, from latest to earliest. 3081 for (auto *I : InstsToKill) 3082 I->eraseFromParent(); 3083 3084 // Do the fused retain/autorelease if we were asked to. 3085 if (doRetainAutorelease) 3086 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3087 3088 // Cast back to the result type. 3089 return CGF.Builder.CreateBitCast(result, resultType); 3090 } 3091 3092 /// If this is a +1 of the value of an immutable 'self', remove it. 3093 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3094 llvm::Value *result) { 3095 // This is only applicable to a method with an immutable 'self'. 3096 const ObjCMethodDecl *method = 3097 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3098 if (!method) return nullptr; 3099 const VarDecl *self = method->getSelfDecl(); 3100 if (!self->getType().isConstQualified()) return nullptr; 3101 3102 // Look for a retain call. 3103 llvm::CallInst *retainCall = 3104 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3105 if (!retainCall || retainCall->getCalledOperand() != 3106 CGF.CGM.getObjCEntrypoints().objc_retain) 3107 return nullptr; 3108 3109 // Look for an ordinary load of 'self'. 3110 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3111 llvm::LoadInst *load = 3112 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3113 if (!load || load->isAtomic() || load->isVolatile() || 3114 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3115 return nullptr; 3116 3117 // Okay! Burn it all down. This relies for correctness on the 3118 // assumption that the retain is emitted as part of the return and 3119 // that thereafter everything is used "linearly". 3120 llvm::Type *resultType = result->getType(); 3121 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3122 assert(retainCall->use_empty()); 3123 retainCall->eraseFromParent(); 3124 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3125 3126 return CGF.Builder.CreateBitCast(load, resultType); 3127 } 3128 3129 /// Emit an ARC autorelease of the result of a function. 3130 /// 3131 /// \return the value to actually return from the function 3132 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3133 llvm::Value *result) { 3134 // If we're returning 'self', kill the initial retain. This is a 3135 // heuristic attempt to "encourage correctness" in the really unfortunate 3136 // case where we have a return of self during a dealloc and we desperately 3137 // need to avoid the possible autorelease. 3138 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3139 return self; 3140 3141 // At -O0, try to emit a fused retain/autorelease. 3142 if (CGF.shouldUseFusedARCCalls()) 3143 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3144 return fused; 3145 3146 return CGF.EmitARCAutoreleaseReturnValue(result); 3147 } 3148 3149 /// Heuristically search for a dominating store to the return-value slot. 3150 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3151 // Check if a User is a store which pointerOperand is the ReturnValue. 3152 // We are looking for stores to the ReturnValue, not for stores of the 3153 // ReturnValue to some other location. 3154 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3155 auto *SI = dyn_cast<llvm::StoreInst>(U); 3156 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 3157 return nullptr; 3158 // These aren't actually possible for non-coerced returns, and we 3159 // only care about non-coerced returns on this code path. 3160 assert(!SI->isAtomic() && !SI->isVolatile()); 3161 return SI; 3162 }; 3163 // If there are multiple uses of the return-value slot, just check 3164 // for something immediately preceding the IP. Sometimes this can 3165 // happen with how we generate implicit-returns; it can also happen 3166 // with noreturn cleanups. 3167 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3168 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3169 if (IP->empty()) return nullptr; 3170 llvm::Instruction *I = &IP->back(); 3171 3172 // Skip lifetime markers 3173 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 3174 IE = IP->rend(); 3175 II != IE; ++II) { 3176 if (llvm::IntrinsicInst *Intrinsic = 3177 dyn_cast<llvm::IntrinsicInst>(&*II)) { 3178 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 3179 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 3180 ++II; 3181 if (II == IE) 3182 break; 3183 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 3184 continue; 3185 } 3186 } 3187 I = &*II; 3188 break; 3189 } 3190 3191 return GetStoreIfValid(I); 3192 } 3193 3194 llvm::StoreInst *store = 3195 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3196 if (!store) return nullptr; 3197 3198 // Now do a first-and-dirty dominance check: just walk up the 3199 // single-predecessors chain from the current insertion point. 3200 llvm::BasicBlock *StoreBB = store->getParent(); 3201 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3202 while (IP != StoreBB) { 3203 if (!(IP = IP->getSinglePredecessor())) 3204 return nullptr; 3205 } 3206 3207 // Okay, the store's basic block dominates the insertion point; we 3208 // can do our thing. 3209 return store; 3210 } 3211 3212 // Helper functions for EmitCMSEClearRecord 3213 3214 // Set the bits corresponding to a field having width `BitWidth` and located at 3215 // offset `BitOffset` (from the least significant bit) within a storage unit of 3216 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3217 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3218 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3219 int BitWidth, int CharWidth) { 3220 assert(CharWidth <= 64); 3221 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3222 3223 int Pos = 0; 3224 if (BitOffset >= CharWidth) { 3225 Pos += BitOffset / CharWidth; 3226 BitOffset = BitOffset % CharWidth; 3227 } 3228 3229 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3230 if (BitOffset + BitWidth >= CharWidth) { 3231 Bits[Pos++] |= (Used << BitOffset) & Used; 3232 BitWidth -= CharWidth - BitOffset; 3233 BitOffset = 0; 3234 } 3235 3236 while (BitWidth >= CharWidth) { 3237 Bits[Pos++] = Used; 3238 BitWidth -= CharWidth; 3239 } 3240 3241 if (BitWidth > 0) 3242 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3243 } 3244 3245 // Set the bits corresponding to a field having width `BitWidth` and located at 3246 // offset `BitOffset` (from the least significant bit) within a storage unit of 3247 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3248 // `Bits` corresponds to one target byte. Use target endian layout. 3249 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3250 int StorageSize, int BitOffset, int BitWidth, 3251 int CharWidth, bool BigEndian) { 3252 3253 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3254 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3255 3256 if (BigEndian) 3257 std::reverse(TmpBits.begin(), TmpBits.end()); 3258 3259 for (uint64_t V : TmpBits) 3260 Bits[StorageOffset++] |= V; 3261 } 3262 3263 static void setUsedBits(CodeGenModule &, QualType, int, 3264 SmallVectorImpl<uint64_t> &); 3265 3266 // Set the bits in `Bits`, which correspond to the value representations of 3267 // the actual members of the record type `RTy`. Note that this function does 3268 // not handle base classes, virtual tables, etc, since they cannot happen in 3269 // CMSE function arguments or return. The bit mask corresponds to the target 3270 // memory layout, i.e. it's endian dependent. 3271 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3272 SmallVectorImpl<uint64_t> &Bits) { 3273 ASTContext &Context = CGM.getContext(); 3274 int CharWidth = Context.getCharWidth(); 3275 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3276 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3277 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3278 3279 int Idx = 0; 3280 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3281 const FieldDecl *F = *I; 3282 3283 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3284 F->getType()->isIncompleteArrayType()) 3285 continue; 3286 3287 if (F->isBitField()) { 3288 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3289 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3290 BFI.StorageSize / CharWidth, BFI.Offset, 3291 BFI.Size, CharWidth, 3292 CGM.getDataLayout().isBigEndian()); 3293 continue; 3294 } 3295 3296 setUsedBits(CGM, F->getType(), 3297 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3298 } 3299 } 3300 3301 // Set the bits in `Bits`, which correspond to the value representations of 3302 // the elements of an array type `ATy`. 3303 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3304 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3305 const ASTContext &Context = CGM.getContext(); 3306 3307 QualType ETy = Context.getBaseElementType(ATy); 3308 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3309 SmallVector<uint64_t, 4> TmpBits(Size); 3310 setUsedBits(CGM, ETy, 0, TmpBits); 3311 3312 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3313 auto Src = TmpBits.begin(); 3314 auto Dst = Bits.begin() + Offset + I * Size; 3315 for (int J = 0; J < Size; ++J) 3316 *Dst++ |= *Src++; 3317 } 3318 } 3319 3320 // Set the bits in `Bits`, which correspond to the value representations of 3321 // the type `QTy`. 3322 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3323 SmallVectorImpl<uint64_t> &Bits) { 3324 if (const auto *RTy = QTy->getAs<RecordType>()) 3325 return setUsedBits(CGM, RTy, Offset, Bits); 3326 3327 ASTContext &Context = CGM.getContext(); 3328 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3329 return setUsedBits(CGM, ATy, Offset, Bits); 3330 3331 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3332 if (Size <= 0) 3333 return; 3334 3335 std::fill_n(Bits.begin() + Offset, Size, 3336 (uint64_t(1) << Context.getCharWidth()) - 1); 3337 } 3338 3339 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3340 int Pos, int Size, int CharWidth, 3341 bool BigEndian) { 3342 assert(Size > 0); 3343 uint64_t Mask = 0; 3344 if (BigEndian) { 3345 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3346 ++P) 3347 Mask = (Mask << CharWidth) | *P; 3348 } else { 3349 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3350 do 3351 Mask = (Mask << CharWidth) | *--P; 3352 while (P != End); 3353 } 3354 return Mask; 3355 } 3356 3357 // Emit code to clear the bits in a record, which aren't a part of any user 3358 // declared member, when the record is a function return. 3359 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3360 llvm::IntegerType *ITy, 3361 QualType QTy) { 3362 assert(Src->getType() == ITy); 3363 assert(ITy->getScalarSizeInBits() <= 64); 3364 3365 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3366 int Size = DataLayout.getTypeStoreSize(ITy); 3367 SmallVector<uint64_t, 4> Bits(Size); 3368 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3369 3370 int CharWidth = CGM.getContext().getCharWidth(); 3371 uint64_t Mask = 3372 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3373 3374 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3375 } 3376 3377 // Emit code to clear the bits in a record, which aren't a part of any user 3378 // declared member, when the record is a function argument. 3379 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3380 llvm::ArrayType *ATy, 3381 QualType QTy) { 3382 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3383 int Size = DataLayout.getTypeStoreSize(ATy); 3384 SmallVector<uint64_t, 16> Bits(Size); 3385 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3386 3387 // Clear each element of the LLVM array. 3388 int CharWidth = CGM.getContext().getCharWidth(); 3389 int CharsPerElt = 3390 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3391 int MaskIndex = 0; 3392 llvm::Value *R = llvm::UndefValue::get(ATy); 3393 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3394 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3395 DataLayout.isBigEndian()); 3396 MaskIndex += CharsPerElt; 3397 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3398 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3399 R = Builder.CreateInsertValue(R, T1, I); 3400 } 3401 3402 return R; 3403 } 3404 3405 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3406 bool EmitRetDbgLoc, 3407 SourceLocation EndLoc) { 3408 if (FI.isNoReturn()) { 3409 // Noreturn functions don't return. 3410 EmitUnreachable(EndLoc); 3411 return; 3412 } 3413 3414 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3415 // Naked functions don't have epilogues. 3416 Builder.CreateUnreachable(); 3417 return; 3418 } 3419 3420 // Functions with no result always return void. 3421 if (!ReturnValue.isValid()) { 3422 Builder.CreateRetVoid(); 3423 return; 3424 } 3425 3426 llvm::DebugLoc RetDbgLoc; 3427 llvm::Value *RV = nullptr; 3428 QualType RetTy = FI.getReturnType(); 3429 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3430 3431 switch (RetAI.getKind()) { 3432 case ABIArgInfo::InAlloca: 3433 // Aggregrates get evaluated directly into the destination. Sometimes we 3434 // need to return the sret value in a register, though. 3435 assert(hasAggregateEvaluationKind(RetTy)); 3436 if (RetAI.getInAllocaSRet()) { 3437 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3438 --EI; 3439 llvm::Value *ArgStruct = &*EI; 3440 llvm::Value *SRet = Builder.CreateStructGEP( 3441 EI->getType()->getPointerElementType(), ArgStruct, 3442 RetAI.getInAllocaFieldIndex()); 3443 llvm::Type *Ty = 3444 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3445 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3446 } 3447 break; 3448 3449 case ABIArgInfo::Indirect: { 3450 auto AI = CurFn->arg_begin(); 3451 if (RetAI.isSRetAfterThis()) 3452 ++AI; 3453 switch (getEvaluationKind(RetTy)) { 3454 case TEK_Complex: { 3455 ComplexPairTy RT = 3456 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3457 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3458 /*isInit*/ true); 3459 break; 3460 } 3461 case TEK_Aggregate: 3462 // Do nothing; aggregrates get evaluated directly into the destination. 3463 break; 3464 case TEK_Scalar: 3465 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3466 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3467 /*isInit*/ true); 3468 break; 3469 } 3470 break; 3471 } 3472 3473 case ABIArgInfo::Extend: 3474 case ABIArgInfo::Direct: 3475 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3476 RetAI.getDirectOffset() == 0) { 3477 // The internal return value temp always will have pointer-to-return-type 3478 // type, just do a load. 3479 3480 // If there is a dominating store to ReturnValue, we can elide 3481 // the load, zap the store, and usually zap the alloca. 3482 if (llvm::StoreInst *SI = 3483 findDominatingStoreToReturnValue(*this)) { 3484 // Reuse the debug location from the store unless there is 3485 // cleanup code to be emitted between the store and return 3486 // instruction. 3487 if (EmitRetDbgLoc && !AutoreleaseResult) 3488 RetDbgLoc = SI->getDebugLoc(); 3489 // Get the stored value and nuke the now-dead store. 3490 RV = SI->getValueOperand(); 3491 SI->eraseFromParent(); 3492 3493 // Otherwise, we have to do a simple load. 3494 } else { 3495 RV = Builder.CreateLoad(ReturnValue); 3496 } 3497 } else { 3498 // If the value is offset in memory, apply the offset now. 3499 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3500 3501 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3502 } 3503 3504 // In ARC, end functions that return a retainable type with a call 3505 // to objc_autoreleaseReturnValue. 3506 if (AutoreleaseResult) { 3507 #ifndef NDEBUG 3508 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3509 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3510 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3511 // CurCodeDecl or BlockInfo. 3512 QualType RT; 3513 3514 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3515 RT = FD->getReturnType(); 3516 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3517 RT = MD->getReturnType(); 3518 else if (isa<BlockDecl>(CurCodeDecl)) 3519 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3520 else 3521 llvm_unreachable("Unexpected function/method type"); 3522 3523 assert(getLangOpts().ObjCAutoRefCount && 3524 !FI.isReturnsRetained() && 3525 RT->isObjCRetainableType()); 3526 #endif 3527 RV = emitAutoreleaseOfResult(*this, RV); 3528 } 3529 3530 break; 3531 3532 case ABIArgInfo::Ignore: 3533 break; 3534 3535 case ABIArgInfo::CoerceAndExpand: { 3536 auto coercionType = RetAI.getCoerceAndExpandType(); 3537 3538 // Load all of the coerced elements out into results. 3539 llvm::SmallVector<llvm::Value*, 4> results; 3540 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3541 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3542 auto coercedEltType = coercionType->getElementType(i); 3543 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3544 continue; 3545 3546 auto eltAddr = Builder.CreateStructGEP(addr, i); 3547 auto elt = Builder.CreateLoad(eltAddr); 3548 results.push_back(elt); 3549 } 3550 3551 // If we have one result, it's the single direct result type. 3552 if (results.size() == 1) { 3553 RV = results[0]; 3554 3555 // Otherwise, we need to make a first-class aggregate. 3556 } else { 3557 // Construct a return type that lacks padding elements. 3558 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3559 3560 RV = llvm::UndefValue::get(returnType); 3561 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3562 RV = Builder.CreateInsertValue(RV, results[i], i); 3563 } 3564 } 3565 break; 3566 } 3567 case ABIArgInfo::Expand: 3568 case ABIArgInfo::IndirectAliased: 3569 llvm_unreachable("Invalid ABI kind for return argument"); 3570 } 3571 3572 llvm::Instruction *Ret; 3573 if (RV) { 3574 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3575 // For certain return types, clear padding bits, as they may reveal 3576 // sensitive information. 3577 // Small struct/union types are passed as integers. 3578 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3579 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3580 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3581 } 3582 EmitReturnValueCheck(RV); 3583 Ret = Builder.CreateRet(RV); 3584 } else { 3585 Ret = Builder.CreateRetVoid(); 3586 } 3587 3588 if (RetDbgLoc) 3589 Ret->setDebugLoc(std::move(RetDbgLoc)); 3590 } 3591 3592 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3593 // A current decl may not be available when emitting vtable thunks. 3594 if (!CurCodeDecl) 3595 return; 3596 3597 // If the return block isn't reachable, neither is this check, so don't emit 3598 // it. 3599 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3600 return; 3601 3602 ReturnsNonNullAttr *RetNNAttr = nullptr; 3603 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3604 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3605 3606 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3607 return; 3608 3609 // Prefer the returns_nonnull attribute if it's present. 3610 SourceLocation AttrLoc; 3611 SanitizerMask CheckKind; 3612 SanitizerHandler Handler; 3613 if (RetNNAttr) { 3614 assert(!requiresReturnValueNullabilityCheck() && 3615 "Cannot check nullability and the nonnull attribute"); 3616 AttrLoc = RetNNAttr->getLocation(); 3617 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3618 Handler = SanitizerHandler::NonnullReturn; 3619 } else { 3620 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3621 if (auto *TSI = DD->getTypeSourceInfo()) 3622 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3623 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3624 CheckKind = SanitizerKind::NullabilityReturn; 3625 Handler = SanitizerHandler::NullabilityReturn; 3626 } 3627 3628 SanitizerScope SanScope(this); 3629 3630 // Make sure the "return" source location is valid. If we're checking a 3631 // nullability annotation, make sure the preconditions for the check are met. 3632 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3633 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3634 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3635 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3636 if (requiresReturnValueNullabilityCheck()) 3637 CanNullCheck = 3638 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3639 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3640 EmitBlock(Check); 3641 3642 // Now do the null check. 3643 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3644 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3645 llvm::Value *DynamicData[] = {SLocPtr}; 3646 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3647 3648 EmitBlock(NoCheck); 3649 3650 #ifndef NDEBUG 3651 // The return location should not be used after the check has been emitted. 3652 ReturnLocation = Address::invalid(); 3653 #endif 3654 } 3655 3656 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3657 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3658 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3659 } 3660 3661 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3662 QualType Ty) { 3663 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3664 // placeholders. 3665 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3666 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3667 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3668 3669 // FIXME: When we generate this IR in one pass, we shouldn't need 3670 // this win32-specific alignment hack. 3671 CharUnits Align = CharUnits::fromQuantity(4); 3672 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3673 3674 return AggValueSlot::forAddr(Address(Placeholder, Align), 3675 Ty.getQualifiers(), 3676 AggValueSlot::IsNotDestructed, 3677 AggValueSlot::DoesNotNeedGCBarriers, 3678 AggValueSlot::IsNotAliased, 3679 AggValueSlot::DoesNotOverlap); 3680 } 3681 3682 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3683 const VarDecl *param, 3684 SourceLocation loc) { 3685 // StartFunction converted the ABI-lowered parameter(s) into a 3686 // local alloca. We need to turn that into an r-value suitable 3687 // for EmitCall. 3688 Address local = GetAddrOfLocalVar(param); 3689 3690 QualType type = param->getType(); 3691 3692 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3693 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3694 } 3695 3696 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3697 // but the argument needs to be the original pointer. 3698 if (type->isReferenceType()) { 3699 args.add(RValue::get(Builder.CreateLoad(local)), type); 3700 3701 // In ARC, move out of consumed arguments so that the release cleanup 3702 // entered by StartFunction doesn't cause an over-release. This isn't 3703 // optimal -O0 code generation, but it should get cleaned up when 3704 // optimization is enabled. This also assumes that delegate calls are 3705 // performed exactly once for a set of arguments, but that should be safe. 3706 } else if (getLangOpts().ObjCAutoRefCount && 3707 param->hasAttr<NSConsumedAttr>() && 3708 type->isObjCRetainableType()) { 3709 llvm::Value *ptr = Builder.CreateLoad(local); 3710 auto null = 3711 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3712 Builder.CreateStore(null, local); 3713 args.add(RValue::get(ptr), type); 3714 3715 // For the most part, we just need to load the alloca, except that 3716 // aggregate r-values are actually pointers to temporaries. 3717 } else { 3718 args.add(convertTempToRValue(local, type, loc), type); 3719 } 3720 3721 // Deactivate the cleanup for the callee-destructed param that was pushed. 3722 if (type->isRecordType() && !CurFuncIsThunk && 3723 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3724 param->needsDestruction(getContext())) { 3725 EHScopeStack::stable_iterator cleanup = 3726 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3727 assert(cleanup.isValid() && 3728 "cleanup for callee-destructed param not recorded"); 3729 // This unreachable is a temporary marker which will be removed later. 3730 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3731 args.addArgCleanupDeactivation(cleanup, isActive); 3732 } 3733 } 3734 3735 static bool isProvablyNull(llvm::Value *addr) { 3736 return isa<llvm::ConstantPointerNull>(addr); 3737 } 3738 3739 /// Emit the actual writing-back of a writeback. 3740 static void emitWriteback(CodeGenFunction &CGF, 3741 const CallArgList::Writeback &writeback) { 3742 const LValue &srcLV = writeback.Source; 3743 Address srcAddr = srcLV.getAddress(CGF); 3744 assert(!isProvablyNull(srcAddr.getPointer()) && 3745 "shouldn't have writeback for provably null argument"); 3746 3747 llvm::BasicBlock *contBB = nullptr; 3748 3749 // If the argument wasn't provably non-null, we need to null check 3750 // before doing the store. 3751 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3752 CGF.CGM.getDataLayout()); 3753 if (!provablyNonNull) { 3754 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3755 contBB = CGF.createBasicBlock("icr.done"); 3756 3757 llvm::Value *isNull = 3758 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3759 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3760 CGF.EmitBlock(writebackBB); 3761 } 3762 3763 // Load the value to writeback. 3764 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3765 3766 // Cast it back, in case we're writing an id to a Foo* or something. 3767 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3768 "icr.writeback-cast"); 3769 3770 // Perform the writeback. 3771 3772 // If we have a "to use" value, it's something we need to emit a use 3773 // of. This has to be carefully threaded in: if it's done after the 3774 // release it's potentially undefined behavior (and the optimizer 3775 // will ignore it), and if it happens before the retain then the 3776 // optimizer could move the release there. 3777 if (writeback.ToUse) { 3778 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3779 3780 // Retain the new value. No need to block-copy here: the block's 3781 // being passed up the stack. 3782 value = CGF.EmitARCRetainNonBlock(value); 3783 3784 // Emit the intrinsic use here. 3785 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3786 3787 // Load the old value (primitively). 3788 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3789 3790 // Put the new value in place (primitively). 3791 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3792 3793 // Release the old value. 3794 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3795 3796 // Otherwise, we can just do a normal lvalue store. 3797 } else { 3798 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3799 } 3800 3801 // Jump to the continuation block. 3802 if (!provablyNonNull) 3803 CGF.EmitBlock(contBB); 3804 } 3805 3806 static void emitWritebacks(CodeGenFunction &CGF, 3807 const CallArgList &args) { 3808 for (const auto &I : args.writebacks()) 3809 emitWriteback(CGF, I); 3810 } 3811 3812 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3813 const CallArgList &CallArgs) { 3814 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3815 CallArgs.getCleanupsToDeactivate(); 3816 // Iterate in reverse to increase the likelihood of popping the cleanup. 3817 for (const auto &I : llvm::reverse(Cleanups)) { 3818 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3819 I.IsActiveIP->eraseFromParent(); 3820 } 3821 } 3822 3823 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3824 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3825 if (uop->getOpcode() == UO_AddrOf) 3826 return uop->getSubExpr(); 3827 return nullptr; 3828 } 3829 3830 /// Emit an argument that's being passed call-by-writeback. That is, 3831 /// we are passing the address of an __autoreleased temporary; it 3832 /// might be copy-initialized with the current value of the given 3833 /// address, but it will definitely be copied out of after the call. 3834 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3835 const ObjCIndirectCopyRestoreExpr *CRE) { 3836 LValue srcLV; 3837 3838 // Make an optimistic effort to emit the address as an l-value. 3839 // This can fail if the argument expression is more complicated. 3840 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3841 srcLV = CGF.EmitLValue(lvExpr); 3842 3843 // Otherwise, just emit it as a scalar. 3844 } else { 3845 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3846 3847 QualType srcAddrType = 3848 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3849 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3850 } 3851 Address srcAddr = srcLV.getAddress(CGF); 3852 3853 // The dest and src types don't necessarily match in LLVM terms 3854 // because of the crazy ObjC compatibility rules. 3855 3856 llvm::PointerType *destType = 3857 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3858 3859 // If the address is a constant null, just pass the appropriate null. 3860 if (isProvablyNull(srcAddr.getPointer())) { 3861 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3862 CRE->getType()); 3863 return; 3864 } 3865 3866 // Create the temporary. 3867 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3868 CGF.getPointerAlign(), 3869 "icr.temp"); 3870 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3871 // and that cleanup will be conditional if we can't prove that the l-value 3872 // isn't null, so we need to register a dominating point so that the cleanups 3873 // system will make valid IR. 3874 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3875 3876 // Zero-initialize it if we're not doing a copy-initialization. 3877 bool shouldCopy = CRE->shouldCopy(); 3878 if (!shouldCopy) { 3879 llvm::Value *null = 3880 llvm::ConstantPointerNull::get( 3881 cast<llvm::PointerType>(destType->getElementType())); 3882 CGF.Builder.CreateStore(null, temp); 3883 } 3884 3885 llvm::BasicBlock *contBB = nullptr; 3886 llvm::BasicBlock *originBB = nullptr; 3887 3888 // If the address is *not* known to be non-null, we need to switch. 3889 llvm::Value *finalArgument; 3890 3891 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3892 CGF.CGM.getDataLayout()); 3893 if (provablyNonNull) { 3894 finalArgument = temp.getPointer(); 3895 } else { 3896 llvm::Value *isNull = 3897 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3898 3899 finalArgument = CGF.Builder.CreateSelect(isNull, 3900 llvm::ConstantPointerNull::get(destType), 3901 temp.getPointer(), "icr.argument"); 3902 3903 // If we need to copy, then the load has to be conditional, which 3904 // means we need control flow. 3905 if (shouldCopy) { 3906 originBB = CGF.Builder.GetInsertBlock(); 3907 contBB = CGF.createBasicBlock("icr.cont"); 3908 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3909 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3910 CGF.EmitBlock(copyBB); 3911 condEval.begin(CGF); 3912 } 3913 } 3914 3915 llvm::Value *valueToUse = nullptr; 3916 3917 // Perform a copy if necessary. 3918 if (shouldCopy) { 3919 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3920 assert(srcRV.isScalar()); 3921 3922 llvm::Value *src = srcRV.getScalarVal(); 3923 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3924 "icr.cast"); 3925 3926 // Use an ordinary store, not a store-to-lvalue. 3927 CGF.Builder.CreateStore(src, temp); 3928 3929 // If optimization is enabled, and the value was held in a 3930 // __strong variable, we need to tell the optimizer that this 3931 // value has to stay alive until we're doing the store back. 3932 // This is because the temporary is effectively unretained, 3933 // and so otherwise we can violate the high-level semantics. 3934 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3935 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3936 valueToUse = src; 3937 } 3938 } 3939 3940 // Finish the control flow if we needed it. 3941 if (shouldCopy && !provablyNonNull) { 3942 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3943 CGF.EmitBlock(contBB); 3944 3945 // Make a phi for the value to intrinsically use. 3946 if (valueToUse) { 3947 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3948 "icr.to-use"); 3949 phiToUse->addIncoming(valueToUse, copyBB); 3950 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3951 originBB); 3952 valueToUse = phiToUse; 3953 } 3954 3955 condEval.end(CGF); 3956 } 3957 3958 args.addWriteback(srcLV, temp, valueToUse); 3959 args.add(RValue::get(finalArgument), CRE->getType()); 3960 } 3961 3962 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3963 assert(!StackBase); 3964 3965 // Save the stack. 3966 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3967 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3968 } 3969 3970 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3971 if (StackBase) { 3972 // Restore the stack after the call. 3973 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3974 CGF.Builder.CreateCall(F, StackBase); 3975 } 3976 } 3977 3978 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3979 SourceLocation ArgLoc, 3980 AbstractCallee AC, 3981 unsigned ParmNum) { 3982 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3983 SanOpts.has(SanitizerKind::NullabilityArg))) 3984 return; 3985 3986 // The param decl may be missing in a variadic function. 3987 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3988 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3989 3990 // Prefer the nonnull attribute if it's present. 3991 const NonNullAttr *NNAttr = nullptr; 3992 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3993 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3994 3995 bool CanCheckNullability = false; 3996 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3997 auto Nullability = PVD->getType()->getNullability(getContext()); 3998 CanCheckNullability = Nullability && 3999 *Nullability == NullabilityKind::NonNull && 4000 PVD->getTypeSourceInfo(); 4001 } 4002 4003 if (!NNAttr && !CanCheckNullability) 4004 return; 4005 4006 SourceLocation AttrLoc; 4007 SanitizerMask CheckKind; 4008 SanitizerHandler Handler; 4009 if (NNAttr) { 4010 AttrLoc = NNAttr->getLocation(); 4011 CheckKind = SanitizerKind::NonnullAttribute; 4012 Handler = SanitizerHandler::NonnullArg; 4013 } else { 4014 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4015 CheckKind = SanitizerKind::NullabilityArg; 4016 Handler = SanitizerHandler::NullabilityArg; 4017 } 4018 4019 SanitizerScope SanScope(this); 4020 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4021 llvm::Constant *StaticData[] = { 4022 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4023 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4024 }; 4025 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4026 } 4027 4028 // Check if the call is going to use the inalloca convention. This needs to 4029 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4030 // later, so we can't check it directly. 4031 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4032 ArrayRef<QualType> ArgTypes) { 4033 // The Swift calling conventions don't go through the target-specific 4034 // argument classification, they never use inalloca. 4035 // TODO: Consider limiting inalloca use to only calling conventions supported 4036 // by MSVC. 4037 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4038 return false; 4039 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4040 return false; 4041 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4042 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4043 }); 4044 } 4045 4046 #ifndef NDEBUG 4047 // Determine whether the given argument is an Objective-C method 4048 // that may have type parameters in its signature. 4049 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4050 const DeclContext *dc = method->getDeclContext(); 4051 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4052 return classDecl->getTypeParamListAsWritten(); 4053 } 4054 4055 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4056 return catDecl->getTypeParamList(); 4057 } 4058 4059 return false; 4060 } 4061 #endif 4062 4063 /// EmitCallArgs - Emit call arguments for a function. 4064 void CodeGenFunction::EmitCallArgs( 4065 CallArgList &Args, PrototypeWrapper Prototype, 4066 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4067 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4068 SmallVector<QualType, 16> ArgTypes; 4069 4070 assert((ParamsToSkip == 0 || Prototype.P) && 4071 "Can't skip parameters if type info is not provided"); 4072 4073 // This variable only captures *explicitly* written conventions, not those 4074 // applied by default via command line flags or target defaults, such as 4075 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4076 // require knowing if this is a C++ instance method or being able to see 4077 // unprototyped FunctionTypes. 4078 CallingConv ExplicitCC = CC_C; 4079 4080 // First, if a prototype was provided, use those argument types. 4081 bool IsVariadic = false; 4082 if (Prototype.P) { 4083 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4084 if (MD) { 4085 IsVariadic = MD->isVariadic(); 4086 ExplicitCC = getCallingConventionForDecl( 4087 MD, CGM.getTarget().getTriple().isOSWindows()); 4088 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4089 MD->param_type_end()); 4090 } else { 4091 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4092 IsVariadic = FPT->isVariadic(); 4093 ExplicitCC = FPT->getExtInfo().getCC(); 4094 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4095 FPT->param_type_end()); 4096 } 4097 4098 #ifndef NDEBUG 4099 // Check that the prototyped types match the argument expression types. 4100 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4101 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4102 for (QualType Ty : ArgTypes) { 4103 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4104 assert( 4105 (isGenericMethod || Ty->isVariablyModifiedType() || 4106 Ty.getNonReferenceType()->isObjCRetainableType() || 4107 getContext() 4108 .getCanonicalType(Ty.getNonReferenceType()) 4109 .getTypePtr() == 4110 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4111 "type mismatch in call argument!"); 4112 ++Arg; 4113 } 4114 4115 // Either we've emitted all the call args, or we have a call to variadic 4116 // function. 4117 assert((Arg == ArgRange.end() || IsVariadic) && 4118 "Extra arguments in non-variadic function!"); 4119 #endif 4120 } 4121 4122 // If we still have any arguments, emit them using the type of the argument. 4123 for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()), 4124 ArgRange.end())) 4125 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4126 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4127 4128 // We must evaluate arguments from right to left in the MS C++ ABI, 4129 // because arguments are destroyed left to right in the callee. As a special 4130 // case, there are certain language constructs that require left-to-right 4131 // evaluation, and in those cases we consider the evaluation order requirement 4132 // to trump the "destruction order is reverse construction order" guarantee. 4133 bool LeftToRight = 4134 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4135 ? Order == EvaluationOrder::ForceLeftToRight 4136 : Order != EvaluationOrder::ForceRightToLeft; 4137 4138 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4139 RValue EmittedArg) { 4140 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4141 return; 4142 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4143 if (PS == nullptr) 4144 return; 4145 4146 const auto &Context = getContext(); 4147 auto SizeTy = Context.getSizeType(); 4148 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4149 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4150 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4151 EmittedArg.getScalarVal(), 4152 PS->isDynamic()); 4153 Args.add(RValue::get(V), SizeTy); 4154 // If we're emitting args in reverse, be sure to do so with 4155 // pass_object_size, as well. 4156 if (!LeftToRight) 4157 std::swap(Args.back(), *(&Args.back() - 1)); 4158 }; 4159 4160 // Insert a stack save if we're going to need any inalloca args. 4161 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4162 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4163 "inalloca only supported on x86"); 4164 Args.allocateArgumentMemory(*this); 4165 } 4166 4167 // Evaluate each argument in the appropriate order. 4168 size_t CallArgsStart = Args.size(); 4169 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4170 unsigned Idx = LeftToRight ? I : E - I - 1; 4171 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4172 unsigned InitialArgSize = Args.size(); 4173 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4174 // the argument and parameter match or the objc method is parameterized. 4175 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4176 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4177 ArgTypes[Idx]) || 4178 (isa<ObjCMethodDecl>(AC.getDecl()) && 4179 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4180 "Argument and parameter types don't match"); 4181 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4182 // In particular, we depend on it being the last arg in Args, and the 4183 // objectsize bits depend on there only being one arg if !LeftToRight. 4184 assert(InitialArgSize + 1 == Args.size() && 4185 "The code below depends on only adding one arg per EmitCallArg"); 4186 (void)InitialArgSize; 4187 // Since pointer argument are never emitted as LValue, it is safe to emit 4188 // non-null argument check for r-value only. 4189 if (!Args.back().hasLValue()) { 4190 RValue RVArg = Args.back().getKnownRValue(); 4191 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4192 ParamsToSkip + Idx); 4193 // @llvm.objectsize should never have side-effects and shouldn't need 4194 // destruction/cleanups, so we can safely "emit" it after its arg, 4195 // regardless of right-to-leftness 4196 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4197 } 4198 } 4199 4200 if (!LeftToRight) { 4201 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4202 // IR function. 4203 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4204 } 4205 } 4206 4207 namespace { 4208 4209 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4210 DestroyUnpassedArg(Address Addr, QualType Ty) 4211 : Addr(Addr), Ty(Ty) {} 4212 4213 Address Addr; 4214 QualType Ty; 4215 4216 void Emit(CodeGenFunction &CGF, Flags flags) override { 4217 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4218 if (DtorKind == QualType::DK_cxx_destructor) { 4219 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4220 assert(!Dtor->isTrivial()); 4221 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4222 /*Delegating=*/false, Addr, Ty); 4223 } else { 4224 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4225 } 4226 } 4227 }; 4228 4229 struct DisableDebugLocationUpdates { 4230 CodeGenFunction &CGF; 4231 bool disabledDebugInfo; 4232 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4233 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4234 CGF.disableDebugInfo(); 4235 } 4236 ~DisableDebugLocationUpdates() { 4237 if (disabledDebugInfo) 4238 CGF.enableDebugInfo(); 4239 } 4240 }; 4241 4242 } // end anonymous namespace 4243 4244 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4245 if (!HasLV) 4246 return RV; 4247 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4248 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4249 LV.isVolatile()); 4250 IsUsed = true; 4251 return RValue::getAggregate(Copy.getAddress(CGF)); 4252 } 4253 4254 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4255 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4256 if (!HasLV && RV.isScalar()) 4257 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4258 else if (!HasLV && RV.isComplex()) 4259 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4260 else { 4261 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4262 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4263 // We assume that call args are never copied into subobjects. 4264 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4265 HasLV ? LV.isVolatileQualified() 4266 : RV.isVolatileQualified()); 4267 } 4268 IsUsed = true; 4269 } 4270 4271 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4272 QualType type) { 4273 DisableDebugLocationUpdates Dis(*this, E); 4274 if (const ObjCIndirectCopyRestoreExpr *CRE 4275 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4276 assert(getLangOpts().ObjCAutoRefCount); 4277 return emitWritebackArg(*this, args, CRE); 4278 } 4279 4280 assert(type->isReferenceType() == E->isGLValue() && 4281 "reference binding to unmaterialized r-value!"); 4282 4283 if (E->isGLValue()) { 4284 assert(E->getObjectKind() == OK_Ordinary); 4285 return args.add(EmitReferenceBindingToExpr(E), type); 4286 } 4287 4288 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4289 4290 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4291 // However, we still have to push an EH-only cleanup in case we unwind before 4292 // we make it to the call. 4293 if (type->isRecordType() && 4294 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4295 // If we're using inalloca, use the argument memory. Otherwise, use a 4296 // temporary. 4297 AggValueSlot Slot; 4298 if (args.isUsingInAlloca()) 4299 Slot = createPlaceholderSlot(*this, type); 4300 else 4301 Slot = CreateAggTemp(type, "agg.tmp"); 4302 4303 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4304 if (const auto *RD = type->getAsCXXRecordDecl()) 4305 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4306 else 4307 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4308 4309 if (DestroyedInCallee) 4310 Slot.setExternallyDestructed(); 4311 4312 EmitAggExpr(E, Slot); 4313 RValue RV = Slot.asRValue(); 4314 args.add(RV, type); 4315 4316 if (DestroyedInCallee && NeedsEHCleanup) { 4317 // Create a no-op GEP between the placeholder and the cleanup so we can 4318 // RAUW it successfully. It also serves as a marker of the first 4319 // instruction where the cleanup is active. 4320 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4321 type); 4322 // This unreachable is a temporary marker which will be removed later. 4323 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4324 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 4325 } 4326 return; 4327 } 4328 4329 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4330 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4331 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4332 assert(L.isSimple()); 4333 args.addUncopiedAggregate(L, type); 4334 return; 4335 } 4336 4337 args.add(EmitAnyExprToTemp(E), type); 4338 } 4339 4340 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4341 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4342 // implicitly widens null pointer constants that are arguments to varargs 4343 // functions to pointer-sized ints. 4344 if (!getTarget().getTriple().isOSWindows()) 4345 return Arg->getType(); 4346 4347 if (Arg->getType()->isIntegerType() && 4348 getContext().getTypeSize(Arg->getType()) < 4349 getContext().getTargetInfo().getPointerWidth(0) && 4350 Arg->isNullPointerConstant(getContext(), 4351 Expr::NPC_ValueDependentIsNotNull)) { 4352 return getContext().getIntPtrType(); 4353 } 4354 4355 return Arg->getType(); 4356 } 4357 4358 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4359 // optimizer it can aggressively ignore unwind edges. 4360 void 4361 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4362 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4363 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4364 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4365 CGM.getNoObjCARCExceptionsMetadata()); 4366 } 4367 4368 /// Emits a call to the given no-arguments nounwind runtime function. 4369 llvm::CallInst * 4370 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4371 const llvm::Twine &name) { 4372 return EmitNounwindRuntimeCall(callee, None, name); 4373 } 4374 4375 /// Emits a call to the given nounwind runtime function. 4376 llvm::CallInst * 4377 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4378 ArrayRef<llvm::Value *> args, 4379 const llvm::Twine &name) { 4380 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4381 call->setDoesNotThrow(); 4382 return call; 4383 } 4384 4385 /// Emits a simple call (never an invoke) to the given no-arguments 4386 /// runtime function. 4387 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4388 const llvm::Twine &name) { 4389 return EmitRuntimeCall(callee, None, name); 4390 } 4391 4392 // Calls which may throw must have operand bundles indicating which funclet 4393 // they are nested within. 4394 SmallVector<llvm::OperandBundleDef, 1> 4395 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4396 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4397 // There is no need for a funclet operand bundle if we aren't inside a 4398 // funclet. 4399 if (!CurrentFuncletPad) 4400 return BundleList; 4401 4402 // Skip intrinsics which cannot throw. 4403 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4404 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4405 return BundleList; 4406 4407 BundleList.emplace_back("funclet", CurrentFuncletPad); 4408 return BundleList; 4409 } 4410 4411 /// Emits a simple call (never an invoke) to the given runtime function. 4412 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4413 ArrayRef<llvm::Value *> args, 4414 const llvm::Twine &name) { 4415 llvm::CallInst *call = Builder.CreateCall( 4416 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4417 call->setCallingConv(getRuntimeCC()); 4418 return call; 4419 } 4420 4421 /// Emits a call or invoke to the given noreturn runtime function. 4422 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4423 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4424 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4425 getBundlesForFunclet(callee.getCallee()); 4426 4427 if (getInvokeDest()) { 4428 llvm::InvokeInst *invoke = 4429 Builder.CreateInvoke(callee, 4430 getUnreachableBlock(), 4431 getInvokeDest(), 4432 args, 4433 BundleList); 4434 invoke->setDoesNotReturn(); 4435 invoke->setCallingConv(getRuntimeCC()); 4436 } else { 4437 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4438 call->setDoesNotReturn(); 4439 call->setCallingConv(getRuntimeCC()); 4440 Builder.CreateUnreachable(); 4441 } 4442 } 4443 4444 /// Emits a call or invoke instruction to the given nullary runtime function. 4445 llvm::CallBase * 4446 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4447 const Twine &name) { 4448 return EmitRuntimeCallOrInvoke(callee, None, name); 4449 } 4450 4451 /// Emits a call or invoke instruction to the given runtime function. 4452 llvm::CallBase * 4453 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4454 ArrayRef<llvm::Value *> args, 4455 const Twine &name) { 4456 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4457 call->setCallingConv(getRuntimeCC()); 4458 return call; 4459 } 4460 4461 /// Emits a call or invoke instruction to the given function, depending 4462 /// on the current state of the EH stack. 4463 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4464 ArrayRef<llvm::Value *> Args, 4465 const Twine &Name) { 4466 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4467 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4468 getBundlesForFunclet(Callee.getCallee()); 4469 4470 llvm::CallBase *Inst; 4471 if (!InvokeDest) 4472 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4473 else { 4474 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4475 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4476 Name); 4477 EmitBlock(ContBB); 4478 } 4479 4480 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4481 // optimizer it can aggressively ignore unwind edges. 4482 if (CGM.getLangOpts().ObjCAutoRefCount) 4483 AddObjCARCExceptionMetadata(Inst); 4484 4485 return Inst; 4486 } 4487 4488 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4489 llvm::Value *New) { 4490 DeferredReplacements.push_back( 4491 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4492 } 4493 4494 namespace { 4495 4496 /// Specify given \p NewAlign as the alignment of return value attribute. If 4497 /// such attribute already exists, re-set it to the maximal one of two options. 4498 LLVM_NODISCARD llvm::AttributeList 4499 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4500 const llvm::AttributeList &Attrs, 4501 llvm::Align NewAlign) { 4502 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4503 if (CurAlign >= NewAlign) 4504 return Attrs; 4505 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4506 return Attrs 4507 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4508 llvm::Attribute::AttrKind::Alignment) 4509 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4510 } 4511 4512 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4513 protected: 4514 CodeGenFunction &CGF; 4515 4516 /// We do nothing if this is, or becomes, nullptr. 4517 const AlignedAttrTy *AA = nullptr; 4518 4519 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4520 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4521 4522 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4523 : CGF(CGF_) { 4524 if (!FuncDecl) 4525 return; 4526 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4527 } 4528 4529 public: 4530 /// If we can, materialize the alignment as an attribute on return value. 4531 LLVM_NODISCARD llvm::AttributeList 4532 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4533 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4534 return Attrs; 4535 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4536 if (!AlignmentCI) 4537 return Attrs; 4538 // We may legitimately have non-power-of-2 alignment here. 4539 // If so, this is UB land, emit it via `@llvm.assume` instead. 4540 if (!AlignmentCI->getValue().isPowerOf2()) 4541 return Attrs; 4542 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4543 CGF.getLLVMContext(), Attrs, 4544 llvm::Align( 4545 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4546 AA = nullptr; // We're done. Disallow doing anything else. 4547 return NewAttrs; 4548 } 4549 4550 /// Emit alignment assumption. 4551 /// This is a general fallback that we take if either there is an offset, 4552 /// or the alignment is variable or we are sanitizing for alignment. 4553 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4554 if (!AA) 4555 return; 4556 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4557 AA->getLocation(), Alignment, OffsetCI); 4558 AA = nullptr; // We're done. Disallow doing anything else. 4559 } 4560 }; 4561 4562 /// Helper data structure to emit `AssumeAlignedAttr`. 4563 class AssumeAlignedAttrEmitter final 4564 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4565 public: 4566 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4567 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4568 if (!AA) 4569 return; 4570 // It is guaranteed that the alignment/offset are constants. 4571 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4572 if (Expr *Offset = AA->getOffset()) { 4573 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4574 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4575 OffsetCI = nullptr; 4576 } 4577 } 4578 }; 4579 4580 /// Helper data structure to emit `AllocAlignAttr`. 4581 class AllocAlignAttrEmitter final 4582 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4583 public: 4584 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4585 const CallArgList &CallArgs) 4586 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4587 if (!AA) 4588 return; 4589 // Alignment may or may not be a constant, and that is okay. 4590 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4591 .getRValue(CGF) 4592 .getScalarVal(); 4593 } 4594 }; 4595 4596 } // namespace 4597 4598 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4599 const CGCallee &Callee, 4600 ReturnValueSlot ReturnValue, 4601 const CallArgList &CallArgs, 4602 llvm::CallBase **callOrInvoke, bool IsMustTail, 4603 SourceLocation Loc) { 4604 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4605 4606 assert(Callee.isOrdinary() || Callee.isVirtual()); 4607 4608 // Handle struct-return functions by passing a pointer to the 4609 // location that we would like to return into. 4610 QualType RetTy = CallInfo.getReturnType(); 4611 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4612 4613 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4614 4615 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4616 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4617 // We can only guarantee that a function is called from the correct 4618 // context/function based on the appropriate target attributes, 4619 // so only check in the case where we have both always_inline and target 4620 // since otherwise we could be making a conditional call after a check for 4621 // the proper cpu features (and it won't cause code generation issues due to 4622 // function based code generation). 4623 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4624 TargetDecl->hasAttr<TargetAttr>()) 4625 checkTargetFeatures(Loc, FD); 4626 4627 // Some architectures (such as x86-64) have the ABI changed based on 4628 // attribute-target/features. Give them a chance to diagnose. 4629 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4630 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4631 } 4632 4633 #ifndef NDEBUG 4634 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4635 // For an inalloca varargs function, we don't expect CallInfo to match the 4636 // function pointer's type, because the inalloca struct a will have extra 4637 // fields in it for the varargs parameters. Code later in this function 4638 // bitcasts the function pointer to the type derived from CallInfo. 4639 // 4640 // In other cases, we assert that the types match up (until pointers stop 4641 // having pointee types). 4642 llvm::Type *TypeFromVal; 4643 if (Callee.isVirtual()) 4644 TypeFromVal = Callee.getVirtualFunctionType(); 4645 else 4646 TypeFromVal = 4647 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4648 assert(IRFuncTy == TypeFromVal); 4649 } 4650 #endif 4651 4652 // 1. Set up the arguments. 4653 4654 // If we're using inalloca, insert the allocation after the stack save. 4655 // FIXME: Do this earlier rather than hacking it in here! 4656 Address ArgMemory = Address::invalid(); 4657 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4658 const llvm::DataLayout &DL = CGM.getDataLayout(); 4659 llvm::Instruction *IP = CallArgs.getStackBase(); 4660 llvm::AllocaInst *AI; 4661 if (IP) { 4662 IP = IP->getNextNode(); 4663 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4664 "argmem", IP); 4665 } else { 4666 AI = CreateTempAlloca(ArgStruct, "argmem"); 4667 } 4668 auto Align = CallInfo.getArgStructAlignment(); 4669 AI->setAlignment(Align.getAsAlign()); 4670 AI->setUsedWithInAlloca(true); 4671 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4672 ArgMemory = Address(AI, Align); 4673 } 4674 4675 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4676 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4677 4678 // If the call returns a temporary with struct return, create a temporary 4679 // alloca to hold the result, unless one is given to us. 4680 Address SRetPtr = Address::invalid(); 4681 Address SRetAlloca = Address::invalid(); 4682 llvm::Value *UnusedReturnSizePtr = nullptr; 4683 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4684 if (!ReturnValue.isNull()) { 4685 SRetPtr = ReturnValue.getValue(); 4686 } else { 4687 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4688 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4689 llvm::TypeSize size = 4690 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4691 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4692 } 4693 } 4694 if (IRFunctionArgs.hasSRetArg()) { 4695 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4696 } else if (RetAI.isInAlloca()) { 4697 Address Addr = 4698 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4699 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4700 } 4701 } 4702 4703 Address swiftErrorTemp = Address::invalid(); 4704 Address swiftErrorArg = Address::invalid(); 4705 4706 // When passing arguments using temporary allocas, we need to add the 4707 // appropriate lifetime markers. This vector keeps track of all the lifetime 4708 // markers that need to be ended right after the call. 4709 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4710 4711 // Translate all of the arguments as necessary to match the IR lowering. 4712 assert(CallInfo.arg_size() == CallArgs.size() && 4713 "Mismatch between function signature & arguments."); 4714 unsigned ArgNo = 0; 4715 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4716 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4717 I != E; ++I, ++info_it, ++ArgNo) { 4718 const ABIArgInfo &ArgInfo = info_it->info; 4719 4720 // Insert a padding argument to ensure proper alignment. 4721 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4722 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4723 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4724 4725 unsigned FirstIRArg, NumIRArgs; 4726 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4727 4728 switch (ArgInfo.getKind()) { 4729 case ABIArgInfo::InAlloca: { 4730 assert(NumIRArgs == 0); 4731 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4732 if (I->isAggregate()) { 4733 Address Addr = I->hasLValue() 4734 ? I->getKnownLValue().getAddress(*this) 4735 : I->getKnownRValue().getAggregateAddress(); 4736 llvm::Instruction *Placeholder = 4737 cast<llvm::Instruction>(Addr.getPointer()); 4738 4739 if (!ArgInfo.getInAllocaIndirect()) { 4740 // Replace the placeholder with the appropriate argument slot GEP. 4741 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4742 Builder.SetInsertPoint(Placeholder); 4743 Addr = Builder.CreateStructGEP(ArgMemory, 4744 ArgInfo.getInAllocaFieldIndex()); 4745 Builder.restoreIP(IP); 4746 } else { 4747 // For indirect things such as overaligned structs, replace the 4748 // placeholder with a regular aggregate temporary alloca. Store the 4749 // address of this alloca into the struct. 4750 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4751 Address ArgSlot = Builder.CreateStructGEP( 4752 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4753 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4754 } 4755 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4756 } else if (ArgInfo.getInAllocaIndirect()) { 4757 // Make a temporary alloca and store the address of it into the argument 4758 // struct. 4759 Address Addr = CreateMemTempWithoutCast( 4760 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4761 "indirect-arg-temp"); 4762 I->copyInto(*this, Addr); 4763 Address ArgSlot = 4764 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4765 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4766 } else { 4767 // Store the RValue into the argument struct. 4768 Address Addr = 4769 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4770 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4771 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4772 // There are some cases where a trivial bitcast is not avoidable. The 4773 // definition of a type later in a translation unit may change it's type 4774 // from {}* to (%struct.foo*)*. 4775 if (Addr.getType() != MemType) 4776 Addr = Builder.CreateBitCast(Addr, MemType); 4777 I->copyInto(*this, Addr); 4778 } 4779 break; 4780 } 4781 4782 case ABIArgInfo::Indirect: 4783 case ABIArgInfo::IndirectAliased: { 4784 assert(NumIRArgs == 1); 4785 if (!I->isAggregate()) { 4786 // Make a temporary alloca to pass the argument. 4787 Address Addr = CreateMemTempWithoutCast( 4788 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4789 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4790 4791 I->copyInto(*this, Addr); 4792 } else { 4793 // We want to avoid creating an unnecessary temporary+copy here; 4794 // however, we need one in three cases: 4795 // 1. If the argument is not byval, and we are required to copy the 4796 // source. (This case doesn't occur on any common architecture.) 4797 // 2. If the argument is byval, RV is not sufficiently aligned, and 4798 // we cannot force it to be sufficiently aligned. 4799 // 3. If the argument is byval, but RV is not located in default 4800 // or alloca address space. 4801 Address Addr = I->hasLValue() 4802 ? I->getKnownLValue().getAddress(*this) 4803 : I->getKnownRValue().getAggregateAddress(); 4804 llvm::Value *V = Addr.getPointer(); 4805 CharUnits Align = ArgInfo.getIndirectAlign(); 4806 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4807 4808 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4809 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4810 TD->getAllocaAddrSpace()) && 4811 "indirect argument must be in alloca address space"); 4812 4813 bool NeedCopy = false; 4814 4815 if (Addr.getAlignment() < Align && 4816 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4817 Align.getAsAlign()) { 4818 NeedCopy = true; 4819 } else if (I->hasLValue()) { 4820 auto LV = I->getKnownLValue(); 4821 auto AS = LV.getAddressSpace(); 4822 4823 if (!ArgInfo.getIndirectByVal() || 4824 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4825 NeedCopy = true; 4826 } 4827 if (!getLangOpts().OpenCL) { 4828 if ((ArgInfo.getIndirectByVal() && 4829 (AS != LangAS::Default && 4830 AS != CGM.getASTAllocaAddressSpace()))) { 4831 NeedCopy = true; 4832 } 4833 } 4834 // For OpenCL even if RV is located in default or alloca address space 4835 // we don't want to perform address space cast for it. 4836 else if ((ArgInfo.getIndirectByVal() && 4837 Addr.getType()->getAddressSpace() != IRFuncTy-> 4838 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4839 NeedCopy = true; 4840 } 4841 } 4842 4843 if (NeedCopy) { 4844 // Create an aligned temporary, and copy to it. 4845 Address AI = CreateMemTempWithoutCast( 4846 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4847 IRCallArgs[FirstIRArg] = AI.getPointer(); 4848 4849 // Emit lifetime markers for the temporary alloca. 4850 llvm::TypeSize ByvalTempElementSize = 4851 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4852 llvm::Value *LifetimeSize = 4853 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4854 4855 // Add cleanup code to emit the end lifetime marker after the call. 4856 if (LifetimeSize) // In case we disabled lifetime markers. 4857 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4858 4859 // Generate the copy. 4860 I->copyInto(*this, AI); 4861 } else { 4862 // Skip the extra memcpy call. 4863 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4864 CGM.getDataLayout().getAllocaAddrSpace()); 4865 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4866 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4867 true); 4868 } 4869 } 4870 break; 4871 } 4872 4873 case ABIArgInfo::Ignore: 4874 assert(NumIRArgs == 0); 4875 break; 4876 4877 case ABIArgInfo::Extend: 4878 case ABIArgInfo::Direct: { 4879 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4880 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4881 ArgInfo.getDirectOffset() == 0) { 4882 assert(NumIRArgs == 1); 4883 llvm::Value *V; 4884 if (!I->isAggregate()) 4885 V = I->getKnownRValue().getScalarVal(); 4886 else 4887 V = Builder.CreateLoad( 4888 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4889 : I->getKnownRValue().getAggregateAddress()); 4890 4891 // Implement swifterror by copying into a new swifterror argument. 4892 // We'll write back in the normal path out of the call. 4893 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4894 == ParameterABI::SwiftErrorResult) { 4895 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4896 4897 QualType pointeeTy = I->Ty->getPointeeType(); 4898 swiftErrorArg = 4899 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4900 4901 swiftErrorTemp = 4902 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4903 V = swiftErrorTemp.getPointer(); 4904 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4905 4906 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4907 Builder.CreateStore(errorValue, swiftErrorTemp); 4908 } 4909 4910 // We might have to widen integers, but we should never truncate. 4911 if (ArgInfo.getCoerceToType() != V->getType() && 4912 V->getType()->isIntegerTy()) 4913 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4914 4915 // If the argument doesn't match, perform a bitcast to coerce it. This 4916 // can happen due to trivial type mismatches. 4917 if (FirstIRArg < IRFuncTy->getNumParams() && 4918 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4919 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4920 4921 IRCallArgs[FirstIRArg] = V; 4922 break; 4923 } 4924 4925 // FIXME: Avoid the conversion through memory if possible. 4926 Address Src = Address::invalid(); 4927 if (!I->isAggregate()) { 4928 Src = CreateMemTemp(I->Ty, "coerce"); 4929 I->copyInto(*this, Src); 4930 } else { 4931 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4932 : I->getKnownRValue().getAggregateAddress(); 4933 } 4934 4935 // If the value is offset in memory, apply the offset now. 4936 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4937 4938 // Fast-isel and the optimizer generally like scalar values better than 4939 // FCAs, so we flatten them if this is safe to do for this argument. 4940 llvm::StructType *STy = 4941 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4942 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4943 llvm::Type *SrcTy = Src.getElementType(); 4944 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4945 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4946 4947 // If the source type is smaller than the destination type of the 4948 // coerce-to logic, copy the source value into a temp alloca the size 4949 // of the destination type to allow loading all of it. The bits past 4950 // the source value are left undef. 4951 if (SrcSize < DstSize) { 4952 Address TempAlloca 4953 = CreateTempAlloca(STy, Src.getAlignment(), 4954 Src.getName() + ".coerce"); 4955 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4956 Src = TempAlloca; 4957 } else { 4958 Src = Builder.CreateBitCast(Src, 4959 STy->getPointerTo(Src.getAddressSpace())); 4960 } 4961 4962 assert(NumIRArgs == STy->getNumElements()); 4963 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4964 Address EltPtr = Builder.CreateStructGEP(Src, i); 4965 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4966 IRCallArgs[FirstIRArg + i] = LI; 4967 } 4968 } else { 4969 // In the simple case, just pass the coerced loaded value. 4970 assert(NumIRArgs == 1); 4971 llvm::Value *Load = 4972 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4973 4974 if (CallInfo.isCmseNSCall()) { 4975 // For certain parameter types, clear padding bits, as they may reveal 4976 // sensitive information. 4977 // Small struct/union types are passed as integer arrays. 4978 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4979 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4980 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4981 } 4982 IRCallArgs[FirstIRArg] = Load; 4983 } 4984 4985 break; 4986 } 4987 4988 case ABIArgInfo::CoerceAndExpand: { 4989 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4990 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4991 4992 llvm::Value *tempSize = nullptr; 4993 Address addr = Address::invalid(); 4994 Address AllocaAddr = Address::invalid(); 4995 if (I->isAggregate()) { 4996 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4997 : I->getKnownRValue().getAggregateAddress(); 4998 4999 } else { 5000 RValue RV = I->getKnownRValue(); 5001 assert(RV.isScalar()); // complex should always just be direct 5002 5003 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5004 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5005 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5006 5007 // Materialize to a temporary. 5008 addr = CreateTempAlloca( 5009 RV.getScalarVal()->getType(), 5010 CharUnits::fromQuantity(std::max( 5011 (unsigned)layout->getAlignment().value(), scalarAlign)), 5012 "tmp", 5013 /*ArraySize=*/nullptr, &AllocaAddr); 5014 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5015 5016 Builder.CreateStore(RV.getScalarVal(), addr); 5017 } 5018 5019 addr = Builder.CreateElementBitCast(addr, coercionType); 5020 5021 unsigned IRArgPos = FirstIRArg; 5022 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5023 llvm::Type *eltType = coercionType->getElementType(i); 5024 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5025 Address eltAddr = Builder.CreateStructGEP(addr, i); 5026 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5027 IRCallArgs[IRArgPos++] = elt; 5028 } 5029 assert(IRArgPos == FirstIRArg + NumIRArgs); 5030 5031 if (tempSize) { 5032 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5033 } 5034 5035 break; 5036 } 5037 5038 case ABIArgInfo::Expand: { 5039 unsigned IRArgPos = FirstIRArg; 5040 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5041 assert(IRArgPos == FirstIRArg + NumIRArgs); 5042 break; 5043 } 5044 } 5045 } 5046 5047 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5048 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5049 5050 // If we're using inalloca, set up that argument. 5051 if (ArgMemory.isValid()) { 5052 llvm::Value *Arg = ArgMemory.getPointer(); 5053 if (CallInfo.isVariadic()) { 5054 // When passing non-POD arguments by value to variadic functions, we will 5055 // end up with a variadic prototype and an inalloca call site. In such 5056 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5057 // the callee. 5058 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5059 CalleePtr = 5060 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5061 } else { 5062 llvm::Type *LastParamTy = 5063 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5064 if (Arg->getType() != LastParamTy) { 5065 #ifndef NDEBUG 5066 // Assert that these structs have equivalent element types. 5067 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5068 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 5069 cast<llvm::PointerType>(LastParamTy)->getElementType()); 5070 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5071 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 5072 DE = DeclaredTy->element_end(), 5073 FI = FullTy->element_begin(); 5074 DI != DE; ++DI, ++FI) 5075 assert(*DI == *FI); 5076 #endif 5077 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5078 } 5079 } 5080 assert(IRFunctionArgs.hasInallocaArg()); 5081 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5082 } 5083 5084 // 2. Prepare the function pointer. 5085 5086 // If the callee is a bitcast of a non-variadic function to have a 5087 // variadic function pointer type, check to see if we can remove the 5088 // bitcast. This comes up with unprototyped functions. 5089 // 5090 // This makes the IR nicer, but more importantly it ensures that we 5091 // can inline the function at -O0 if it is marked always_inline. 5092 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5093 llvm::Value *Ptr) -> llvm::Function * { 5094 if (!CalleeFT->isVarArg()) 5095 return nullptr; 5096 5097 // Get underlying value if it's a bitcast 5098 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5099 if (CE->getOpcode() == llvm::Instruction::BitCast) 5100 Ptr = CE->getOperand(0); 5101 } 5102 5103 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5104 if (!OrigFn) 5105 return nullptr; 5106 5107 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5108 5109 // If the original type is variadic, or if any of the component types 5110 // disagree, we cannot remove the cast. 5111 if (OrigFT->isVarArg() || 5112 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5113 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5114 return nullptr; 5115 5116 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5117 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5118 return nullptr; 5119 5120 return OrigFn; 5121 }; 5122 5123 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5124 CalleePtr = OrigFn; 5125 IRFuncTy = OrigFn->getFunctionType(); 5126 } 5127 5128 // 3. Perform the actual call. 5129 5130 // Deactivate any cleanups that we're supposed to do immediately before 5131 // the call. 5132 if (!CallArgs.getCleanupsToDeactivate().empty()) 5133 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5134 5135 // Assert that the arguments we computed match up. The IR verifier 5136 // will catch this, but this is a common enough source of problems 5137 // during IRGen changes that it's way better for debugging to catch 5138 // it ourselves here. 5139 #ifndef NDEBUG 5140 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5141 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5142 // Inalloca argument can have different type. 5143 if (IRFunctionArgs.hasInallocaArg() && 5144 i == IRFunctionArgs.getInallocaArgNo()) 5145 continue; 5146 if (i < IRFuncTy->getNumParams()) 5147 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5148 } 5149 #endif 5150 5151 // Update the largest vector width if any arguments have vector types. 5152 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5153 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 5154 LargestVectorWidth = 5155 std::max((uint64_t)LargestVectorWidth, 5156 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5157 } 5158 5159 // Compute the calling convention and attributes. 5160 unsigned CallingConv; 5161 llvm::AttributeList Attrs; 5162 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5163 Callee.getAbstractInfo(), Attrs, CallingConv, 5164 /*AttrOnCallSite=*/true, 5165 /*IsThunk=*/false); 5166 5167 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5168 if (FD->hasAttr<StrictFPAttr>()) 5169 // All calls within a strictfp function are marked strictfp 5170 Attrs = 5171 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5172 llvm::Attribute::StrictFP); 5173 5174 // Add call-site nomerge attribute if exists. 5175 if (InNoMergeAttributedStmt) 5176 Attrs = 5177 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5178 llvm::Attribute::NoMerge); 5179 5180 // Apply some call-site-specific attributes. 5181 // TODO: work this into building the attribute set. 5182 5183 // Apply always_inline to all calls within flatten functions. 5184 // FIXME: should this really take priority over __try, below? 5185 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5186 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5187 Attrs = 5188 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5189 llvm::Attribute::AlwaysInline); 5190 } 5191 5192 // Disable inlining inside SEH __try blocks. 5193 if (isSEHTryScope()) { 5194 Attrs = 5195 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5196 llvm::Attribute::NoInline); 5197 } 5198 5199 // Decide whether to use a call or an invoke. 5200 bool CannotThrow; 5201 if (currentFunctionUsesSEHTry()) { 5202 // SEH cares about asynchronous exceptions, so everything can "throw." 5203 CannotThrow = false; 5204 } else if (isCleanupPadScope() && 5205 EHPersonality::get(*this).isMSVCXXPersonality()) { 5206 // The MSVC++ personality will implicitly terminate the program if an 5207 // exception is thrown during a cleanup outside of a try/catch. 5208 // We don't need to model anything in IR to get this behavior. 5209 CannotThrow = true; 5210 } else { 5211 // Otherwise, nounwind call sites will never throw. 5212 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 5213 5214 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5215 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5216 CannotThrow = true; 5217 } 5218 5219 // If we made a temporary, be sure to clean up after ourselves. Note that we 5220 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5221 // pop this cleanup later on. Being eager about this is OK, since this 5222 // temporary is 'invisible' outside of the callee. 5223 if (UnusedReturnSizePtr) 5224 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5225 UnusedReturnSizePtr); 5226 5227 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5228 5229 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5230 getBundlesForFunclet(CalleePtr); 5231 5232 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5233 if (FD->hasAttr<StrictFPAttr>()) 5234 // All calls within a strictfp function are marked strictfp 5235 Attrs = 5236 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5237 llvm::Attribute::StrictFP); 5238 5239 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5240 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5241 5242 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5243 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5244 5245 // Emit the actual call/invoke instruction. 5246 llvm::CallBase *CI; 5247 if (!InvokeDest) { 5248 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5249 } else { 5250 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5251 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5252 BundleList); 5253 EmitBlock(Cont); 5254 } 5255 if (callOrInvoke) 5256 *callOrInvoke = CI; 5257 5258 // If this is within a function that has the guard(nocf) attribute and is an 5259 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5260 // Control Flow Guard checks should not be added, even if the call is inlined. 5261 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5262 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5263 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5264 Attrs = Attrs.addAttribute( 5265 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 5266 } 5267 } 5268 5269 // Apply the attributes and calling convention. 5270 CI->setAttributes(Attrs); 5271 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5272 5273 // Apply various metadata. 5274 5275 if (!CI->getType()->isVoidTy()) 5276 CI->setName("call"); 5277 5278 // Update largest vector width from the return type. 5279 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5280 LargestVectorWidth = 5281 std::max((uint64_t)LargestVectorWidth, 5282 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5283 5284 // Insert instrumentation or attach profile metadata at indirect call sites. 5285 // For more details, see the comment before the definition of 5286 // IPVK_IndirectCallTarget in InstrProfData.inc. 5287 if (!CI->getCalledFunction()) 5288 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5289 CI, CalleePtr); 5290 5291 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5292 // optimizer it can aggressively ignore unwind edges. 5293 if (CGM.getLangOpts().ObjCAutoRefCount) 5294 AddObjCARCExceptionMetadata(CI); 5295 5296 // Set tail call kind if necessary. 5297 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5298 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5299 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5300 else if (IsMustTail) 5301 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5302 } 5303 5304 // Add metadata for calls to MSAllocator functions 5305 if (getDebugInfo() && TargetDecl && 5306 TargetDecl->hasAttr<MSAllocatorAttr>()) 5307 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5308 5309 // 4. Finish the call. 5310 5311 // If the call doesn't return, finish the basic block and clear the 5312 // insertion point; this allows the rest of IRGen to discard 5313 // unreachable code. 5314 if (CI->doesNotReturn()) { 5315 if (UnusedReturnSizePtr) 5316 PopCleanupBlock(); 5317 5318 // Strip away the noreturn attribute to better diagnose unreachable UB. 5319 if (SanOpts.has(SanitizerKind::Unreachable)) { 5320 // Also remove from function since CallBase::hasFnAttr additionally checks 5321 // attributes of the called function. 5322 if (auto *F = CI->getCalledFunction()) 5323 F->removeFnAttr(llvm::Attribute::NoReturn); 5324 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 5325 llvm::Attribute::NoReturn); 5326 5327 // Avoid incompatibility with ASan which relies on the `noreturn` 5328 // attribute to insert handler calls. 5329 if (SanOpts.hasOneOf(SanitizerKind::Address | 5330 SanitizerKind::KernelAddress)) { 5331 SanitizerScope SanScope(this); 5332 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5333 Builder.SetInsertPoint(CI); 5334 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5335 llvm::FunctionCallee Fn = 5336 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5337 EmitNounwindRuntimeCall(Fn); 5338 } 5339 } 5340 5341 EmitUnreachable(Loc); 5342 Builder.ClearInsertionPoint(); 5343 5344 // FIXME: For now, emit a dummy basic block because expr emitters in 5345 // generally are not ready to handle emitting expressions at unreachable 5346 // points. 5347 EnsureInsertPoint(); 5348 5349 // Return a reasonable RValue. 5350 return GetUndefRValue(RetTy); 5351 } 5352 5353 // If this is a musttail call, return immediately. We do not branch to the 5354 // epilogue in this case. 5355 if (IsMustTail) { 5356 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5357 ++it) { 5358 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5359 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5360 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5361 } 5362 if (CI->getType()->isVoidTy()) 5363 Builder.CreateRetVoid(); 5364 else 5365 Builder.CreateRet(CI); 5366 Builder.ClearInsertionPoint(); 5367 EnsureInsertPoint(); 5368 return GetUndefRValue(RetTy); 5369 } 5370 5371 // Perform the swifterror writeback. 5372 if (swiftErrorTemp.isValid()) { 5373 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5374 Builder.CreateStore(errorResult, swiftErrorArg); 5375 } 5376 5377 // Emit any call-associated writebacks immediately. Arguably this 5378 // should happen after any return-value munging. 5379 if (CallArgs.hasWritebacks()) 5380 emitWritebacks(*this, CallArgs); 5381 5382 // The stack cleanup for inalloca arguments has to run out of the normal 5383 // lexical order, so deactivate it and run it manually here. 5384 CallArgs.freeArgumentMemory(*this); 5385 5386 // Extract the return value. 5387 RValue Ret = [&] { 5388 switch (RetAI.getKind()) { 5389 case ABIArgInfo::CoerceAndExpand: { 5390 auto coercionType = RetAI.getCoerceAndExpandType(); 5391 5392 Address addr = SRetPtr; 5393 addr = Builder.CreateElementBitCast(addr, coercionType); 5394 5395 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5396 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5397 5398 unsigned unpaddedIndex = 0; 5399 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5400 llvm::Type *eltType = coercionType->getElementType(i); 5401 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5402 Address eltAddr = Builder.CreateStructGEP(addr, i); 5403 llvm::Value *elt = CI; 5404 if (requiresExtract) 5405 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5406 else 5407 assert(unpaddedIndex == 0); 5408 Builder.CreateStore(elt, eltAddr); 5409 } 5410 // FALLTHROUGH 5411 LLVM_FALLTHROUGH; 5412 } 5413 5414 case ABIArgInfo::InAlloca: 5415 case ABIArgInfo::Indirect: { 5416 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5417 if (UnusedReturnSizePtr) 5418 PopCleanupBlock(); 5419 return ret; 5420 } 5421 5422 case ABIArgInfo::Ignore: 5423 // If we are ignoring an argument that had a result, make sure to 5424 // construct the appropriate return value for our caller. 5425 return GetUndefRValue(RetTy); 5426 5427 case ABIArgInfo::Extend: 5428 case ABIArgInfo::Direct: { 5429 llvm::Type *RetIRTy = ConvertType(RetTy); 5430 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5431 switch (getEvaluationKind(RetTy)) { 5432 case TEK_Complex: { 5433 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5434 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5435 return RValue::getComplex(std::make_pair(Real, Imag)); 5436 } 5437 case TEK_Aggregate: { 5438 Address DestPtr = ReturnValue.getValue(); 5439 bool DestIsVolatile = ReturnValue.isVolatile(); 5440 5441 if (!DestPtr.isValid()) { 5442 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5443 DestIsVolatile = false; 5444 } 5445 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5446 return RValue::getAggregate(DestPtr); 5447 } 5448 case TEK_Scalar: { 5449 // If the argument doesn't match, perform a bitcast to coerce it. This 5450 // can happen due to trivial type mismatches. 5451 llvm::Value *V = CI; 5452 if (V->getType() != RetIRTy) 5453 V = Builder.CreateBitCast(V, RetIRTy); 5454 return RValue::get(V); 5455 } 5456 } 5457 llvm_unreachable("bad evaluation kind"); 5458 } 5459 5460 Address DestPtr = ReturnValue.getValue(); 5461 bool DestIsVolatile = ReturnValue.isVolatile(); 5462 5463 if (!DestPtr.isValid()) { 5464 DestPtr = CreateMemTemp(RetTy, "coerce"); 5465 DestIsVolatile = false; 5466 } 5467 5468 // If the value is offset in memory, apply the offset now. 5469 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5470 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5471 5472 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5473 } 5474 5475 case ABIArgInfo::Expand: 5476 case ABIArgInfo::IndirectAliased: 5477 llvm_unreachable("Invalid ABI kind for return argument"); 5478 } 5479 5480 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5481 } (); 5482 5483 // Emit the assume_aligned check on the return value. 5484 if (Ret.isScalar() && TargetDecl) { 5485 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5486 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5487 } 5488 5489 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5490 // we can't use the full cleanup mechanism. 5491 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5492 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5493 5494 if (!ReturnValue.isExternallyDestructed() && 5495 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5496 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5497 RetTy); 5498 5499 return Ret; 5500 } 5501 5502 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5503 if (isVirtual()) { 5504 const CallExpr *CE = getVirtualCallExpr(); 5505 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5506 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5507 CE ? CE->getBeginLoc() : SourceLocation()); 5508 } 5509 5510 return *this; 5511 } 5512 5513 /* VarArg handling */ 5514 5515 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5516 VAListAddr = VE->isMicrosoftABI() 5517 ? EmitMSVAListRef(VE->getSubExpr()) 5518 : EmitVAListRef(VE->getSubExpr()); 5519 QualType Ty = VE->getType(); 5520 if (VE->isMicrosoftABI()) 5521 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5522 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5523 } 5524