1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. Either or both of RD and MD may be null. A null RD indicates 73 /// that there is no meaningful 'this' type, and a null MD can occur when 74 /// calling a method pointer. 75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 76 const CXXMethodDecl *MD) { 77 QualType RecTy; 78 if (RD) 79 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 80 else 81 RecTy = Context.VoidTy; 82 83 if (MD) 84 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 85 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 86 } 87 88 /// Returns the canonical formal type of the given C++ method. 89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 90 return MD->getType()->getCanonicalTypeUnqualified() 91 .getAs<FunctionProtoType>(); 92 } 93 94 /// Returns the "extra-canonicalized" return type, which discards 95 /// qualifiers on the return type. Codegen doesn't care about them, 96 /// and it makes ABI code a little easier to be able to assume that 97 /// all parameter and return types are top-level unqualified. 98 static CanQualType GetReturnType(QualType RetTy) { 99 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 100 } 101 102 /// Arrange the argument and result information for a value of the given 103 /// unprototyped freestanding function type. 104 const CGFunctionInfo & 105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 106 // When translating an unprototyped function type, always use a 107 // variadic type. 108 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 109 /*instanceMethod=*/false, 110 /*chainCall=*/false, None, 111 FTNP->getExtInfo(), {}, RequiredArgs(0)); 112 } 113 114 static void addExtParameterInfosForCall( 115 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 116 const FunctionProtoType *proto, 117 unsigned prefixArgs, 118 unsigned totalArgs) { 119 assert(proto->hasExtParameterInfos()); 120 assert(paramInfos.size() <= prefixArgs); 121 assert(proto->getNumParams() + prefixArgs <= totalArgs); 122 123 paramInfos.reserve(totalArgs); 124 125 // Add default infos for any prefix args that don't already have infos. 126 paramInfos.resize(prefixArgs); 127 128 // Add infos for the prototype. 129 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 130 paramInfos.push_back(ParamInfo); 131 // pass_object_size params have no parameter info. 132 if (ParamInfo.hasPassObjectSize()) 133 paramInfos.emplace_back(); 134 } 135 136 assert(paramInfos.size() <= totalArgs && 137 "Did we forget to insert pass_object_size args?"); 138 // Add default infos for the variadic and/or suffix arguments. 139 paramInfos.resize(totalArgs); 140 } 141 142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 144 static void appendParameterTypes(const CodeGenTypes &CGT, 145 SmallVectorImpl<CanQualType> &prefix, 146 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 147 CanQual<FunctionProtoType> FPT) { 148 // Fast path: don't touch param info if we don't need to. 149 if (!FPT->hasExtParameterInfos()) { 150 assert(paramInfos.empty() && 151 "We have paramInfos, but the prototype doesn't?"); 152 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 153 return; 154 } 155 156 unsigned PrefixSize = prefix.size(); 157 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 158 // parameters; the only thing that can change this is the presence of 159 // pass_object_size. So, we preallocate for the common case. 160 prefix.reserve(prefix.size() + FPT->getNumParams()); 161 162 auto ExtInfos = FPT->getExtParameterInfos(); 163 assert(ExtInfos.size() == FPT->getNumParams()); 164 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 165 prefix.push_back(FPT->getParamType(I)); 166 if (ExtInfos[I].hasPassObjectSize()) 167 prefix.push_back(CGT.getContext().getSizeType()); 168 } 169 170 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 171 prefix.size()); 172 } 173 174 /// Arrange the LLVM function layout for a value of the given function 175 /// type, on top of any implicit parameters already stored. 176 static const CGFunctionInfo & 177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 178 SmallVectorImpl<CanQualType> &prefix, 179 CanQual<FunctionProtoType> FTP) { 180 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 181 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 182 // FIXME: Kill copy. 183 appendParameterTypes(CGT, prefix, paramInfos, FTP); 184 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 185 186 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 187 /*chainCall=*/false, prefix, 188 FTP->getExtInfo(), paramInfos, 189 Required); 190 } 191 192 /// Arrange the argument and result information for a value of the 193 /// given freestanding function type. 194 const CGFunctionInfo & 195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 196 SmallVector<CanQualType, 16> argTypes; 197 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 198 FTP); 199 } 200 201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 202 // Set the appropriate calling convention for the Function. 203 if (D->hasAttr<StdCallAttr>()) 204 return CC_X86StdCall; 205 206 if (D->hasAttr<FastCallAttr>()) 207 return CC_X86FastCall; 208 209 if (D->hasAttr<RegCallAttr>()) 210 return CC_X86RegCall; 211 212 if (D->hasAttr<ThisCallAttr>()) 213 return CC_X86ThisCall; 214 215 if (D->hasAttr<VectorCallAttr>()) 216 return CC_X86VectorCall; 217 218 if (D->hasAttr<PascalAttr>()) 219 return CC_X86Pascal; 220 221 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 222 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 223 224 if (D->hasAttr<AArch64VectorPcsAttr>()) 225 return CC_AArch64VectorCall; 226 227 if (D->hasAttr<IntelOclBiccAttr>()) 228 return CC_IntelOclBicc; 229 230 if (D->hasAttr<MSABIAttr>()) 231 return IsWindows ? CC_C : CC_Win64; 232 233 if (D->hasAttr<SysVABIAttr>()) 234 return IsWindows ? CC_X86_64SysV : CC_C; 235 236 if (D->hasAttr<PreserveMostAttr>()) 237 return CC_PreserveMost; 238 239 if (D->hasAttr<PreserveAllAttr>()) 240 return CC_PreserveAll; 241 242 return CC_C; 243 } 244 245 /// Arrange the argument and result information for a call to an 246 /// unknown C++ non-static member function of the given abstract type. 247 /// (A null RD means we don't have any meaningful "this" argument type, 248 /// so fall back to a generic pointer type). 249 /// The member function must be an ordinary function, i.e. not a 250 /// constructor or destructor. 251 const CGFunctionInfo & 252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 253 const FunctionProtoType *FTP, 254 const CXXMethodDecl *MD) { 255 SmallVector<CanQualType, 16> argTypes; 256 257 // Add the 'this' pointer. 258 argTypes.push_back(DeriveThisType(RD, MD)); 259 260 return ::arrangeLLVMFunctionInfo( 261 *this, true, argTypes, 262 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 263 } 264 265 /// Set calling convention for CUDA/HIP kernel. 266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 267 const FunctionDecl *FD) { 268 if (FD->hasAttr<CUDAGlobalAttr>()) { 269 const FunctionType *FT = FTy->getAs<FunctionType>(); 270 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 271 FTy = FT->getCanonicalTypeUnqualified(); 272 } 273 } 274 275 /// Arrange the argument and result information for a declaration or 276 /// definition of the given C++ non-static member function. The 277 /// member function must be an ordinary function, i.e. not a 278 /// constructor or destructor. 279 const CGFunctionInfo & 280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 281 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 282 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 283 284 CanQualType FT = GetFormalType(MD).getAs<Type>(); 285 setCUDAKernelCallingConvention(FT, CGM, MD); 286 auto prototype = FT.getAs<FunctionProtoType>(); 287 288 if (MD->isInstance()) { 289 // The abstract case is perfectly fine. 290 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 291 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 292 } 293 294 return arrangeFreeFunctionType(prototype); 295 } 296 297 bool CodeGenTypes::inheritingCtorHasParams( 298 const InheritedConstructor &Inherited, CXXCtorType Type) { 299 // Parameters are unnecessary if we're constructing a base class subobject 300 // and the inherited constructor lives in a virtual base. 301 return Type == Ctor_Complete || 302 !Inherited.getShadowDecl()->constructsVirtualBase() || 303 !Target.getCXXABI().hasConstructorVariants(); 304 } 305 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 308 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 309 310 SmallVector<CanQualType, 16> argTypes; 311 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 312 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 313 314 bool PassParams = true; 315 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 321 } 322 323 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 324 325 // Add the formal parameters. 326 if (PassParams) 327 appendParameterTypes(*this, argTypes, paramInfos, FTP); 328 329 CGCXXABI::AddedStructorArgCounts AddedArgs = 330 TheCXXABI.buildStructorSignature(GD, argTypes); 331 if (!paramInfos.empty()) { 332 // Note: prefix implies after the first param. 333 if (AddedArgs.Prefix) 334 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 335 FunctionProtoType::ExtParameterInfo{}); 336 if (AddedArgs.Suffix) 337 paramInfos.append(AddedArgs.Suffix, 338 FunctionProtoType::ExtParameterInfo{}); 339 } 340 341 RequiredArgs required = 342 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 343 : RequiredArgs::All); 344 345 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 346 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 347 ? argTypes.front() 348 : TheCXXABI.hasMostDerivedReturn(GD) 349 ? CGM.getContext().VoidPtrTy 350 : Context.VoidTy; 351 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 352 /*chainCall=*/false, argTypes, extInfo, 353 paramInfos, required); 354 } 355 356 static SmallVector<CanQualType, 16> 357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 358 SmallVector<CanQualType, 16> argTypes; 359 for (auto &arg : args) 360 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 361 return argTypes; 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 369 return argTypes; 370 } 371 372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 373 getExtParameterInfosForCall(const FunctionProtoType *proto, 374 unsigned prefixArgs, unsigned totalArgs) { 375 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 376 if (proto->hasExtParameterInfos()) { 377 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 378 } 379 return result; 380 } 381 382 /// Arrange a call to a C++ method, passing the given arguments. 383 /// 384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 385 /// parameter. 386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 387 /// args. 388 /// PassProtoArgs indicates whether `args` has args for the parameters in the 389 /// given CXXConstructorDecl. 390 const CGFunctionInfo & 391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 392 const CXXConstructorDecl *D, 393 CXXCtorType CtorKind, 394 unsigned ExtraPrefixArgs, 395 unsigned ExtraSuffixArgs, 396 bool PassProtoArgs) { 397 // FIXME: Kill copy. 398 SmallVector<CanQualType, 16> ArgTypes; 399 for (const auto &Arg : args) 400 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 401 402 // +1 for implicit this, which should always be args[0]. 403 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 404 405 CanQual<FunctionProtoType> FPT = GetFormalType(D); 406 RequiredArgs Required = PassProtoArgs 407 ? RequiredArgs::forPrototypePlus( 408 FPT, TotalPrefixArgs + ExtraSuffixArgs) 409 : RequiredArgs::All; 410 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (isa<CXXConstructorDecl>(GD.getDecl()) || 519 isa<CXXDestructorDecl>(GD.getDecl())) 520 return arrangeCXXStructorDeclaration(GD); 521 522 return arrangeFunctionDeclaration(FD); 523 } 524 525 /// Arrange a thunk that takes 'this' as the first parameter followed by 526 /// varargs. Return a void pointer, regardless of the actual return type. 527 /// The body of the thunk will end in a musttail call to a function of the 528 /// correct type, and the caller will bitcast the function to the correct 529 /// prototype. 530 const CGFunctionInfo & 531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 532 assert(MD->isVirtual() && "only methods have thunks"); 533 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 534 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 535 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 536 /*chainCall=*/false, ArgTys, 537 FTP->getExtInfo(), {}, RequiredArgs(1)); 538 } 539 540 const CGFunctionInfo & 541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 542 CXXCtorType CT) { 543 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 544 545 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 546 SmallVector<CanQualType, 2> ArgTys; 547 const CXXRecordDecl *RD = CD->getParent(); 548 ArgTys.push_back(DeriveThisType(RD, CD)); 549 if (CT == Ctor_CopyingClosure) 550 ArgTys.push_back(*FTP->param_type_begin()); 551 if (RD->getNumVBases() > 0) 552 ArgTys.push_back(Context.IntTy); 553 CallingConv CC = Context.getDefaultCallingConvention( 554 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 555 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 556 /*chainCall=*/false, ArgTys, 557 FunctionType::ExtInfo(CC), {}, 558 RequiredArgs::All); 559 } 560 561 /// Arrange a call as unto a free function, except possibly with an 562 /// additional number of formal parameters considered required. 563 static const CGFunctionInfo & 564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 565 CodeGenModule &CGM, 566 const CallArgList &args, 567 const FunctionType *fnType, 568 unsigned numExtraRequiredArgs, 569 bool chainCall) { 570 assert(args.size() >= numExtraRequiredArgs); 571 572 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 573 574 // In most cases, there are no optional arguments. 575 RequiredArgs required = RequiredArgs::All; 576 577 // If we have a variadic prototype, the required arguments are the 578 // extra prefix plus the arguments in the prototype. 579 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 580 if (proto->isVariadic()) 581 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 582 583 if (proto->hasExtParameterInfos()) 584 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 585 args.size()); 586 587 // If we don't have a prototype at all, but we're supposed to 588 // explicitly use the variadic convention for unprototyped calls, 589 // treat all of the arguments as required but preserve the nominal 590 // possibility of variadics. 591 } else if (CGM.getTargetCodeGenInfo() 592 .isNoProtoCallVariadic(args, 593 cast<FunctionNoProtoType>(fnType))) { 594 required = RequiredArgs(args.size()); 595 } 596 597 // FIXME: Kill copy. 598 SmallVector<CanQualType, 16> argTypes; 599 for (const auto &arg : args) 600 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 601 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 602 /*instanceMethod=*/false, chainCall, 603 argTypes, fnType->getExtInfo(), paramInfos, 604 required); 605 } 606 607 /// Figure out the rules for calling a function with the given formal 608 /// type using the given arguments. The arguments are necessary 609 /// because the function might be unprototyped, in which case it's 610 /// target-dependent in crazy ways. 611 const CGFunctionInfo & 612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 613 const FunctionType *fnType, 614 bool chainCall) { 615 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 616 chainCall ? 1 : 0, chainCall); 617 } 618 619 /// A block function is essentially a free function with an 620 /// extra implicit argument. 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 623 const FunctionType *fnType) { 624 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 625 /*chainCall=*/false); 626 } 627 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 630 const FunctionArgList ¶ms) { 631 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 632 auto argTypes = getArgTypesForDeclaration(Context, params); 633 634 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 635 /*instanceMethod*/ false, /*chainCall*/ false, 636 argTypes, proto->getExtInfo(), paramInfos, 637 RequiredArgs::forPrototypePlus(proto, 1)); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 642 const CallArgList &args) { 643 // FIXME: Kill copy. 644 SmallVector<CanQualType, 16> argTypes; 645 for (const auto &Arg : args) 646 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 647 return arrangeLLVMFunctionInfo( 648 GetReturnType(resultType), /*instanceMethod=*/false, 649 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 650 /*paramInfos=*/ {}, RequiredArgs::All); 651 } 652 653 const CGFunctionInfo & 654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 655 const FunctionArgList &args) { 656 auto argTypes = getArgTypesForDeclaration(Context, args); 657 658 return arrangeLLVMFunctionInfo( 659 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 660 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 661 } 662 663 const CGFunctionInfo & 664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 665 ArrayRef<CanQualType> argTypes) { 666 return arrangeLLVMFunctionInfo( 667 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 /// Arrange a call to a C++ method, passing the given arguments. 672 /// 673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 674 /// does not count `this`. 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 677 const FunctionProtoType *proto, 678 RequiredArgs required, 679 unsigned numPrefixArgs) { 680 assert(numPrefixArgs + 1 <= args.size() && 681 "Emitting a call with less args than the required prefix?"); 682 // Add one to account for `this`. It's a bit awkward here, but we don't count 683 // `this` in similar places elsewhere. 684 auto paramInfos = 685 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 686 687 // FIXME: Kill copy. 688 auto argTypes = getArgTypesForCall(Context, args); 689 690 FunctionType::ExtInfo info = proto->getExtInfo(); 691 return arrangeLLVMFunctionInfo( 692 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 693 /*chainCall=*/false, argTypes, info, paramInfos, required); 694 } 695 696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 697 return arrangeLLVMFunctionInfo( 698 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 699 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 700 } 701 702 const CGFunctionInfo & 703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 704 const CallArgList &args) { 705 assert(signature.arg_size() <= args.size()); 706 if (signature.arg_size() == args.size()) 707 return signature; 708 709 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 710 auto sigParamInfos = signature.getExtParameterInfos(); 711 if (!sigParamInfos.empty()) { 712 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 713 paramInfos.resize(args.size()); 714 } 715 716 auto argTypes = getArgTypesForCall(Context, args); 717 718 assert(signature.getRequiredArgs().allowsOptionalArgs()); 719 return arrangeLLVMFunctionInfo(signature.getReturnType(), 720 signature.isInstanceMethod(), 721 signature.isChainCall(), 722 argTypes, 723 signature.getExtInfo(), 724 paramInfos, 725 signature.getRequiredArgs()); 726 } 727 728 namespace clang { 729 namespace CodeGen { 730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 731 } 732 } 733 734 /// Arrange the argument and result information for an abstract value 735 /// of a given function type. This is the method which all of the 736 /// above functions ultimately defer to. 737 const CGFunctionInfo & 738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 739 bool instanceMethod, 740 bool chainCall, 741 ArrayRef<CanQualType> argTypes, 742 FunctionType::ExtInfo info, 743 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 744 RequiredArgs required) { 745 assert(llvm::all_of(argTypes, 746 [](CanQualType T) { return T.isCanonicalAsParam(); })); 747 748 // Lookup or create unique function info. 749 llvm::FoldingSetNodeID ID; 750 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 751 required, resultType, argTypes); 752 753 void *insertPos = nullptr; 754 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 755 if (FI) 756 return *FI; 757 758 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 759 760 // Construct the function info. We co-allocate the ArgInfos. 761 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 762 paramInfos, resultType, argTypes, required); 763 FunctionInfos.InsertNode(FI, insertPos); 764 765 bool inserted = FunctionsBeingProcessed.insert(FI).second; 766 (void)inserted; 767 assert(inserted && "Recursively being processed?"); 768 769 // Compute ABI information. 770 if (CC == llvm::CallingConv::SPIR_KERNEL) { 771 // Force target independent argument handling for the host visible 772 // kernel functions. 773 computeSPIRKernelABIInfo(CGM, *FI); 774 } else if (info.getCC() == CC_Swift) { 775 swiftcall::computeABIInfo(CGM, *FI); 776 } else { 777 getABIInfo().computeInfo(*FI); 778 } 779 780 // Loop over all of the computed argument and return value info. If any of 781 // them are direct or extend without a specified coerce type, specify the 782 // default now. 783 ABIArgInfo &retInfo = FI->getReturnInfo(); 784 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 785 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 786 787 for (auto &I : FI->arguments()) 788 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 789 I.info.setCoerceToType(ConvertType(I.type)); 790 791 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 792 assert(erased && "Not in set?"); 793 794 return *FI; 795 } 796 797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 798 bool instanceMethod, 799 bool chainCall, 800 const FunctionType::ExtInfo &info, 801 ArrayRef<ExtParameterInfo> paramInfos, 802 CanQualType resultType, 803 ArrayRef<CanQualType> argTypes, 804 RequiredArgs required) { 805 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 806 assert(!required.allowsOptionalArgs() || 807 required.getNumRequiredArgs() <= argTypes.size()); 808 809 void *buffer = 810 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 811 argTypes.size() + 1, paramInfos.size())); 812 813 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 814 FI->CallingConvention = llvmCC; 815 FI->EffectiveCallingConvention = llvmCC; 816 FI->ASTCallingConvention = info.getCC(); 817 FI->InstanceMethod = instanceMethod; 818 FI->ChainCall = chainCall; 819 FI->CmseNSCall = info.getCmseNSCall(); 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return std::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return std::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return std::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return std::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1020 llvm::Function::arg_iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion( 1027 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(*this); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = &*AI++; 1050 auto imagValue = &*AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1054 // primitive store. 1055 assert(isa<NoExpansion>(Exp.get())); 1056 if (LV.isBitField()) 1057 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1058 else 1059 EmitStoreOfScalar(&*AI++, LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign) { 1123 // Don't use an alignment that's worse than what LLVM would prefer. 1124 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1125 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1126 1127 return CGF.CreateTempAlloca(Ty, Align); 1128 } 1129 1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1131 /// accessing some number of bytes out of it, try to gep into the struct to get 1132 /// at its inner goodness. Dive as deep as possible without entering an element 1133 /// with an in-memory size smaller than DstSize. 1134 static Address 1135 EnterStructPointerForCoercedAccess(Address SrcPtr, 1136 llvm::StructType *SrcSTy, 1137 uint64_t DstSize, CodeGenFunction &CGF) { 1138 // We can't dive into a zero-element struct. 1139 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1140 1141 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1142 1143 // If the first elt is at least as large as what we're looking for, or if the 1144 // first element is the same size as the whole struct, we can enter it. The 1145 // comparison must be made on the store size and not the alloca size. Using 1146 // the alloca size may overstate the size of the load. 1147 uint64_t FirstEltSize = 1148 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1149 if (FirstEltSize < DstSize && 1150 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1151 return SrcPtr; 1152 1153 // GEP into the first element. 1154 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1155 1156 // If the first element is a struct, recurse. 1157 llvm::Type *SrcTy = SrcPtr.getElementType(); 1158 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1159 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1160 1161 return SrcPtr; 1162 } 1163 1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1165 /// are either integers or pointers. This does a truncation of the value if it 1166 /// is too large or a zero extension if it is too small. 1167 /// 1168 /// This behaves as if the value were coerced through memory, so on big-endian 1169 /// targets the high bits are preserved in a truncation, while little-endian 1170 /// targets preserve the low bits. 1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1172 llvm::Type *Ty, 1173 CodeGenFunction &CGF) { 1174 if (Val->getType() == Ty) 1175 return Val; 1176 1177 if (isa<llvm::PointerType>(Val->getType())) { 1178 // If this is Pointer->Pointer avoid conversion to and from int. 1179 if (isa<llvm::PointerType>(Ty)) 1180 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1181 1182 // Convert the pointer to an integer so we can play with its width. 1183 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1184 } 1185 1186 llvm::Type *DestIntTy = Ty; 1187 if (isa<llvm::PointerType>(DestIntTy)) 1188 DestIntTy = CGF.IntPtrTy; 1189 1190 if (Val->getType() != DestIntTy) { 1191 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1192 if (DL.isBigEndian()) { 1193 // Preserve the high bits on big-endian targets. 1194 // That is what memory coercion does. 1195 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1196 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1197 1198 if (SrcSize > DstSize) { 1199 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1200 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1201 } else { 1202 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1203 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1204 } 1205 } else { 1206 // Little-endian targets preserve the low bits. No shifts required. 1207 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1208 } 1209 } 1210 1211 if (isa<llvm::PointerType>(Ty)) 1212 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1213 return Val; 1214 } 1215 1216 1217 1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1219 /// a pointer to an object of type \arg Ty, known to be aligned to 1220 /// \arg SrcAlign bytes. 1221 /// 1222 /// This safely handles the case when the src type is smaller than the 1223 /// destination type; in this situation the values of bits which not 1224 /// present in the src are undefined. 1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1226 CodeGenFunction &CGF) { 1227 llvm::Type *SrcTy = Src.getElementType(); 1228 1229 // If SrcTy and Ty are the same, just do a load. 1230 if (SrcTy == Ty) 1231 return CGF.Builder.CreateLoad(Src); 1232 1233 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1234 1235 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1236 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1237 SrcTy = Src.getElementType(); 1238 } 1239 1240 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1241 1242 // If the source and destination are integer or pointer types, just do an 1243 // extension or truncation to the desired type. 1244 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1245 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1246 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1247 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1248 } 1249 1250 // If load is legal, just bitcast the src pointer. 1251 if (SrcSize >= DstSize) { 1252 // Generally SrcSize is never greater than DstSize, since this means we are 1253 // losing bits. However, this can happen in cases where the structure has 1254 // additional padding, for example due to a user specified alignment. 1255 // 1256 // FIXME: Assert that we aren't truncating non-padding bits when have access 1257 // to that information. 1258 Src = CGF.Builder.CreateBitCast(Src, 1259 Ty->getPointerTo(Src.getAddressSpace())); 1260 return CGF.Builder.CreateLoad(Src); 1261 } 1262 1263 // Otherwise do coercion through memory. This is stupid, but simple. 1264 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1265 CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1266 Src.getPointer(), Src.getAlignment().getAsAlign(), 1267 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize)); 1268 return CGF.Builder.CreateLoad(Tmp); 1269 } 1270 1271 // Function to store a first-class aggregate into memory. We prefer to 1272 // store the elements rather than the aggregate to be more friendly to 1273 // fast-isel. 1274 // FIXME: Do we need to recurse here? 1275 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1276 bool DestIsVolatile) { 1277 // Prefer scalar stores to first-class aggregate stores. 1278 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1279 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1280 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1281 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1282 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1283 } 1284 } else { 1285 Builder.CreateStore(Val, Dest, DestIsVolatile); 1286 } 1287 } 1288 1289 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1290 /// where the source and destination may have different types. The 1291 /// destination is known to be aligned to \arg DstAlign bytes. 1292 /// 1293 /// This safely handles the case when the src type is larger than the 1294 /// destination type; the upper bits of the src will be lost. 1295 static void CreateCoercedStore(llvm::Value *Src, 1296 Address Dst, 1297 bool DstIsVolatile, 1298 CodeGenFunction &CGF) { 1299 llvm::Type *SrcTy = Src->getType(); 1300 llvm::Type *DstTy = Dst.getElementType(); 1301 if (SrcTy == DstTy) { 1302 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1303 return; 1304 } 1305 1306 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1307 1308 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1309 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1310 DstTy = Dst.getElementType(); 1311 } 1312 1313 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1314 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1315 if (SrcPtrTy && DstPtrTy && 1316 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1317 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1318 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1319 return; 1320 } 1321 1322 // If the source and destination are integer or pointer types, just do an 1323 // extension or truncation to the desired type. 1324 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1325 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1326 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1327 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1328 return; 1329 } 1330 1331 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1332 1333 // If store is legal, just bitcast the src pointer. 1334 if (SrcSize <= DstSize) { 1335 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1336 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1337 } else { 1338 // Otherwise do coercion through memory. This is stupid, but 1339 // simple. 1340 1341 // Generally SrcSize is never greater than DstSize, since this means we are 1342 // losing bits. However, this can happen in cases where the structure has 1343 // additional padding, for example due to a user specified alignment. 1344 // 1345 // FIXME: Assert that we aren't truncating non-padding bits when have access 1346 // to that information. 1347 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1348 CGF.Builder.CreateStore(Src, Tmp); 1349 CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(), 1350 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1351 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize)); 1352 } 1353 } 1354 1355 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1356 const ABIArgInfo &info) { 1357 if (unsigned offset = info.getDirectOffset()) { 1358 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1359 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1360 CharUnits::fromQuantity(offset)); 1361 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1362 } 1363 return addr; 1364 } 1365 1366 namespace { 1367 1368 /// Encapsulates information about the way function arguments from 1369 /// CGFunctionInfo should be passed to actual LLVM IR function. 1370 class ClangToLLVMArgMapping { 1371 static const unsigned InvalidIndex = ~0U; 1372 unsigned InallocaArgNo; 1373 unsigned SRetArgNo; 1374 unsigned TotalIRArgs; 1375 1376 /// Arguments of LLVM IR function corresponding to single Clang argument. 1377 struct IRArgs { 1378 unsigned PaddingArgIndex; 1379 // Argument is expanded to IR arguments at positions 1380 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1381 unsigned FirstArgIndex; 1382 unsigned NumberOfArgs; 1383 1384 IRArgs() 1385 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1386 NumberOfArgs(0) {} 1387 }; 1388 1389 SmallVector<IRArgs, 8> ArgInfo; 1390 1391 public: 1392 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1393 bool OnlyRequiredArgs = false) 1394 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1395 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1396 construct(Context, FI, OnlyRequiredArgs); 1397 } 1398 1399 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1400 unsigned getInallocaArgNo() const { 1401 assert(hasInallocaArg()); 1402 return InallocaArgNo; 1403 } 1404 1405 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1406 unsigned getSRetArgNo() const { 1407 assert(hasSRetArg()); 1408 return SRetArgNo; 1409 } 1410 1411 unsigned totalIRArgs() const { return TotalIRArgs; } 1412 1413 bool hasPaddingArg(unsigned ArgNo) const { 1414 assert(ArgNo < ArgInfo.size()); 1415 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1416 } 1417 unsigned getPaddingArgNo(unsigned ArgNo) const { 1418 assert(hasPaddingArg(ArgNo)); 1419 return ArgInfo[ArgNo].PaddingArgIndex; 1420 } 1421 1422 /// Returns index of first IR argument corresponding to ArgNo, and their 1423 /// quantity. 1424 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1425 assert(ArgNo < ArgInfo.size()); 1426 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1427 ArgInfo[ArgNo].NumberOfArgs); 1428 } 1429 1430 private: 1431 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1432 bool OnlyRequiredArgs); 1433 }; 1434 1435 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1436 const CGFunctionInfo &FI, 1437 bool OnlyRequiredArgs) { 1438 unsigned IRArgNo = 0; 1439 bool SwapThisWithSRet = false; 1440 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1441 1442 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1443 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1444 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1445 } 1446 1447 unsigned ArgNo = 0; 1448 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1449 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1450 ++I, ++ArgNo) { 1451 assert(I != FI.arg_end()); 1452 QualType ArgType = I->type; 1453 const ABIArgInfo &AI = I->info; 1454 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1455 auto &IRArgs = ArgInfo[ArgNo]; 1456 1457 if (AI.getPaddingType()) 1458 IRArgs.PaddingArgIndex = IRArgNo++; 1459 1460 switch (AI.getKind()) { 1461 case ABIArgInfo::Extend: 1462 case ABIArgInfo::Direct: { 1463 // FIXME: handle sseregparm someday... 1464 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1465 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1466 IRArgs.NumberOfArgs = STy->getNumElements(); 1467 } else { 1468 IRArgs.NumberOfArgs = 1; 1469 } 1470 break; 1471 } 1472 case ABIArgInfo::Indirect: 1473 IRArgs.NumberOfArgs = 1; 1474 break; 1475 case ABIArgInfo::Ignore: 1476 case ABIArgInfo::InAlloca: 1477 // ignore and inalloca doesn't have matching LLVM parameters. 1478 IRArgs.NumberOfArgs = 0; 1479 break; 1480 case ABIArgInfo::CoerceAndExpand: 1481 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1482 break; 1483 case ABIArgInfo::Expand: 1484 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1485 break; 1486 } 1487 1488 if (IRArgs.NumberOfArgs > 0) { 1489 IRArgs.FirstArgIndex = IRArgNo; 1490 IRArgNo += IRArgs.NumberOfArgs; 1491 } 1492 1493 // Skip over the sret parameter when it comes second. We already handled it 1494 // above. 1495 if (IRArgNo == 1 && SwapThisWithSRet) 1496 IRArgNo++; 1497 } 1498 assert(ArgNo == ArgInfo.size()); 1499 1500 if (FI.usesInAlloca()) 1501 InallocaArgNo = IRArgNo++; 1502 1503 TotalIRArgs = IRArgNo; 1504 } 1505 } // namespace 1506 1507 /***/ 1508 1509 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1510 const auto &RI = FI.getReturnInfo(); 1511 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1512 } 1513 1514 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1515 return ReturnTypeUsesSRet(FI) && 1516 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1517 } 1518 1519 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1520 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1521 switch (BT->getKind()) { 1522 default: 1523 return false; 1524 case BuiltinType::Float: 1525 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1526 case BuiltinType::Double: 1527 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1528 case BuiltinType::LongDouble: 1529 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1530 } 1531 } 1532 1533 return false; 1534 } 1535 1536 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1537 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1538 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1539 if (BT->getKind() == BuiltinType::LongDouble) 1540 return getTarget().useObjCFP2RetForComplexLongDouble(); 1541 } 1542 } 1543 1544 return false; 1545 } 1546 1547 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1548 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1549 return GetFunctionType(FI); 1550 } 1551 1552 llvm::FunctionType * 1553 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1554 1555 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1556 (void)Inserted; 1557 assert(Inserted && "Recursively being processed?"); 1558 1559 llvm::Type *resultType = nullptr; 1560 const ABIArgInfo &retAI = FI.getReturnInfo(); 1561 switch (retAI.getKind()) { 1562 case ABIArgInfo::Expand: 1563 llvm_unreachable("Invalid ABI kind for return argument"); 1564 1565 case ABIArgInfo::Extend: 1566 case ABIArgInfo::Direct: 1567 resultType = retAI.getCoerceToType(); 1568 break; 1569 1570 case ABIArgInfo::InAlloca: 1571 if (retAI.getInAllocaSRet()) { 1572 // sret things on win32 aren't void, they return the sret pointer. 1573 QualType ret = FI.getReturnType(); 1574 llvm::Type *ty = ConvertType(ret); 1575 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1576 resultType = llvm::PointerType::get(ty, addressSpace); 1577 } else { 1578 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1579 } 1580 break; 1581 1582 case ABIArgInfo::Indirect: 1583 case ABIArgInfo::Ignore: 1584 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1585 break; 1586 1587 case ABIArgInfo::CoerceAndExpand: 1588 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1589 break; 1590 } 1591 1592 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1593 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1594 1595 // Add type for sret argument. 1596 if (IRFunctionArgs.hasSRetArg()) { 1597 QualType Ret = FI.getReturnType(); 1598 llvm::Type *Ty = ConvertType(Ret); 1599 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1600 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1601 llvm::PointerType::get(Ty, AddressSpace); 1602 } 1603 1604 // Add type for inalloca argument. 1605 if (IRFunctionArgs.hasInallocaArg()) { 1606 auto ArgStruct = FI.getArgStruct(); 1607 assert(ArgStruct); 1608 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1609 } 1610 1611 // Add in all of the required arguments. 1612 unsigned ArgNo = 0; 1613 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1614 ie = it + FI.getNumRequiredArgs(); 1615 for (; it != ie; ++it, ++ArgNo) { 1616 const ABIArgInfo &ArgInfo = it->info; 1617 1618 // Insert a padding type to ensure proper alignment. 1619 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1620 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1621 ArgInfo.getPaddingType(); 1622 1623 unsigned FirstIRArg, NumIRArgs; 1624 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1625 1626 switch (ArgInfo.getKind()) { 1627 case ABIArgInfo::Ignore: 1628 case ABIArgInfo::InAlloca: 1629 assert(NumIRArgs == 0); 1630 break; 1631 1632 case ABIArgInfo::Indirect: { 1633 assert(NumIRArgs == 1); 1634 // indirect arguments are always on the stack, which is alloca addr space. 1635 llvm::Type *LTy = ConvertTypeForMem(it->type); 1636 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1637 CGM.getDataLayout().getAllocaAddrSpace()); 1638 break; 1639 } 1640 1641 case ABIArgInfo::Extend: 1642 case ABIArgInfo::Direct: { 1643 // Fast-isel and the optimizer generally like scalar values better than 1644 // FCAs, so we flatten them if this is safe to do for this argument. 1645 llvm::Type *argType = ArgInfo.getCoerceToType(); 1646 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1647 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1648 assert(NumIRArgs == st->getNumElements()); 1649 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1650 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1651 } else { 1652 assert(NumIRArgs == 1); 1653 ArgTypes[FirstIRArg] = argType; 1654 } 1655 break; 1656 } 1657 1658 case ABIArgInfo::CoerceAndExpand: { 1659 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1660 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1661 *ArgTypesIter++ = EltTy; 1662 } 1663 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1664 break; 1665 } 1666 1667 case ABIArgInfo::Expand: 1668 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1669 getExpandedTypes(it->type, ArgTypesIter); 1670 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1671 break; 1672 } 1673 } 1674 1675 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1676 assert(Erased && "Not in set?"); 1677 1678 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1679 } 1680 1681 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1682 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1683 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1684 1685 if (!isFuncTypeConvertible(FPT)) 1686 return llvm::StructType::get(getLLVMContext()); 1687 1688 return GetFunctionType(GD); 1689 } 1690 1691 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1692 llvm::AttrBuilder &FuncAttrs, 1693 const FunctionProtoType *FPT) { 1694 if (!FPT) 1695 return; 1696 1697 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1698 FPT->isNothrow()) 1699 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1700 } 1701 1702 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1703 bool HasOptnone, 1704 bool AttrOnCallSite, 1705 llvm::AttrBuilder &FuncAttrs) { 1706 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1707 if (!HasOptnone) { 1708 if (CodeGenOpts.OptimizeSize) 1709 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1710 if (CodeGenOpts.OptimizeSize == 2) 1711 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1712 } 1713 1714 if (CodeGenOpts.DisableRedZone) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1716 if (CodeGenOpts.IndirectTlsSegRefs) 1717 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1718 if (CodeGenOpts.NoImplicitFloat) 1719 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1720 1721 if (AttrOnCallSite) { 1722 // Attributes that should go on the call site only. 1723 if (!CodeGenOpts.SimplifyLibCalls || 1724 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1725 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1726 if (!CodeGenOpts.TrapFuncName.empty()) 1727 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1728 } else { 1729 StringRef FpKind; 1730 switch (CodeGenOpts.getFramePointer()) { 1731 case CodeGenOptions::FramePointerKind::None: 1732 FpKind = "none"; 1733 break; 1734 case CodeGenOptions::FramePointerKind::NonLeaf: 1735 FpKind = "non-leaf"; 1736 break; 1737 case CodeGenOptions::FramePointerKind::All: 1738 FpKind = "all"; 1739 break; 1740 } 1741 FuncAttrs.addAttribute("frame-pointer", FpKind); 1742 1743 FuncAttrs.addAttribute("less-precise-fpmad", 1744 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1745 1746 if (CodeGenOpts.NullPointerIsValid) 1747 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1748 1749 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1750 FuncAttrs.addAttribute("denormal-fp-math", 1751 CodeGenOpts.FPDenormalMode.str()); 1752 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1753 FuncAttrs.addAttribute( 1754 "denormal-fp-math-f32", 1755 CodeGenOpts.FP32DenormalMode.str()); 1756 } 1757 1758 FuncAttrs.addAttribute("no-trapping-math", 1759 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1760 LangOptions::FPE_Ignore)); 1761 1762 // Strict (compliant) code is the default, so only add this attribute to 1763 // indicate that we are trying to workaround a problem case. 1764 if (!CodeGenOpts.StrictFloatCastOverflow) 1765 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1766 1767 // TODO: Are these all needed? 1768 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1769 FuncAttrs.addAttribute("no-infs-fp-math", 1770 llvm::toStringRef(LangOpts.NoHonorInfs)); 1771 FuncAttrs.addAttribute("no-nans-fp-math", 1772 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1773 FuncAttrs.addAttribute("unsafe-fp-math", 1774 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1775 FuncAttrs.addAttribute("use-soft-float", 1776 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1777 FuncAttrs.addAttribute("stack-protector-buffer-size", 1778 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1779 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1780 llvm::toStringRef(LangOpts.NoSignedZero)); 1781 FuncAttrs.addAttribute( 1782 "correctly-rounded-divide-sqrt-fp-math", 1783 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1784 1785 // TODO: Reciprocal estimate codegen options should apply to instructions? 1786 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1787 if (!Recips.empty()) 1788 FuncAttrs.addAttribute("reciprocal-estimates", 1789 llvm::join(Recips, ",")); 1790 1791 if (!CodeGenOpts.PreferVectorWidth.empty() && 1792 CodeGenOpts.PreferVectorWidth != "none") 1793 FuncAttrs.addAttribute("prefer-vector-width", 1794 CodeGenOpts.PreferVectorWidth); 1795 1796 if (CodeGenOpts.StackRealignment) 1797 FuncAttrs.addAttribute("stackrealign"); 1798 if (CodeGenOpts.Backchain) 1799 FuncAttrs.addAttribute("backchain"); 1800 if (CodeGenOpts.EnableSegmentedStacks) 1801 FuncAttrs.addAttribute("split-stack"); 1802 1803 if (CodeGenOpts.SpeculativeLoadHardening) 1804 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1805 } 1806 1807 if (getLangOpts().assumeFunctionsAreConvergent()) { 1808 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1809 // convergent (meaning, they may call an intrinsically convergent op, such 1810 // as __syncthreads() / barrier(), and so can't have certain optimizations 1811 // applied around them). LLVM will remove this attribute where it safely 1812 // can. 1813 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1814 } 1815 1816 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1817 // Exceptions aren't supported in CUDA device code. 1818 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1819 } 1820 1821 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1822 StringRef Var, Value; 1823 std::tie(Var, Value) = Attr.split('='); 1824 FuncAttrs.addAttribute(Var, Value); 1825 } 1826 } 1827 1828 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1829 llvm::AttrBuilder FuncAttrs; 1830 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1831 /* AttrOnCallSite = */ false, FuncAttrs); 1832 // TODO: call GetCPUAndFeaturesAttributes? 1833 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1834 } 1835 1836 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1837 llvm::AttrBuilder &attrs) { 1838 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1839 /*for call*/ false, attrs); 1840 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1841 } 1842 1843 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1844 const LangOptions &LangOpts, 1845 const NoBuiltinAttr *NBA = nullptr) { 1846 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1847 SmallString<32> AttributeName; 1848 AttributeName += "no-builtin-"; 1849 AttributeName += BuiltinName; 1850 FuncAttrs.addAttribute(AttributeName); 1851 }; 1852 1853 // First, handle the language options passed through -fno-builtin. 1854 if (LangOpts.NoBuiltin) { 1855 // -fno-builtin disables them all. 1856 FuncAttrs.addAttribute("no-builtins"); 1857 return; 1858 } 1859 1860 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1861 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1862 1863 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1864 // the source. 1865 if (!NBA) 1866 return; 1867 1868 // If there is a wildcard in the builtin names specified through the 1869 // attribute, disable them all. 1870 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1871 FuncAttrs.addAttribute("no-builtins"); 1872 return; 1873 } 1874 1875 // And last, add the rest of the builtin names. 1876 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1877 } 1878 1879 /// Construct the IR attribute list of a function or call. 1880 /// 1881 /// When adding an attribute, please consider where it should be handled: 1882 /// 1883 /// - getDefaultFunctionAttributes is for attributes that are essentially 1884 /// part of the global target configuration (but perhaps can be 1885 /// overridden on a per-function basis). Adding attributes there 1886 /// will cause them to also be set in frontends that build on Clang's 1887 /// target-configuration logic, as well as for code defined in library 1888 /// modules such as CUDA's libdevice. 1889 /// 1890 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1891 /// and adds declaration-specific, convention-specific, and 1892 /// frontend-specific logic. The last is of particular importance: 1893 /// attributes that restrict how the frontend generates code must be 1894 /// added here rather than getDefaultFunctionAttributes. 1895 /// 1896 void CodeGenModule::ConstructAttributeList( 1897 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1898 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1899 llvm::AttrBuilder FuncAttrs; 1900 llvm::AttrBuilder RetAttrs; 1901 1902 // Collect function IR attributes from the CC lowering. 1903 // We'll collect the paramete and result attributes later. 1904 CallingConv = FI.getEffectiveCallingConvention(); 1905 if (FI.isNoReturn()) 1906 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1907 if (FI.isCmseNSCall()) 1908 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1909 1910 // Collect function IR attributes from the callee prototype if we have one. 1911 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1912 CalleeInfo.getCalleeFunctionProtoType()); 1913 1914 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1915 1916 bool HasOptnone = false; 1917 // The NoBuiltinAttr attached to the target FunctionDecl. 1918 const NoBuiltinAttr *NBA = nullptr; 1919 1920 // Collect function IR attributes based on declaration-specific 1921 // information. 1922 // FIXME: handle sseregparm someday... 1923 if (TargetDecl) { 1924 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1925 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1926 if (TargetDecl->hasAttr<NoThrowAttr>()) 1927 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1928 if (TargetDecl->hasAttr<NoReturnAttr>()) 1929 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1930 if (TargetDecl->hasAttr<ColdAttr>()) 1931 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1932 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1933 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1934 if (TargetDecl->hasAttr<ConvergentAttr>()) 1935 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1936 1937 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1938 AddAttributesFromFunctionProtoType( 1939 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1940 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1941 // A sane operator new returns a non-aliasing pointer. 1942 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1943 if (getCodeGenOpts().AssumeSaneOperatorNew && 1944 (Kind == OO_New || Kind == OO_Array_New)) 1945 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1946 } 1947 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1948 const bool IsVirtualCall = MD && MD->isVirtual(); 1949 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1950 // virtual function. These attributes are not inherited by overloads. 1951 if (!(AttrOnCallSite && IsVirtualCall)) { 1952 if (Fn->isNoReturn()) 1953 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1954 NBA = Fn->getAttr<NoBuiltinAttr>(); 1955 } 1956 } 1957 1958 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1959 if (TargetDecl->hasAttr<ConstAttr>()) { 1960 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1961 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1962 } else if (TargetDecl->hasAttr<PureAttr>()) { 1963 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1964 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1965 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1966 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1967 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1968 } 1969 if (TargetDecl->hasAttr<RestrictAttr>()) 1970 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1971 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1972 !CodeGenOpts.NullPointerIsValid) 1973 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1974 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1975 FuncAttrs.addAttribute("no_caller_saved_registers"); 1976 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1977 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1978 1979 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1980 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1981 Optional<unsigned> NumElemsParam; 1982 if (AllocSize->getNumElemsParam().isValid()) 1983 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1984 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1985 NumElemsParam); 1986 } 1987 1988 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1989 if (getLangOpts().OpenCLVersion <= 120) { 1990 // OpenCL v1.2 Work groups are always uniform 1991 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1992 } else { 1993 // OpenCL v2.0 Work groups may be whether uniform or not. 1994 // '-cl-uniform-work-group-size' compile option gets a hint 1995 // to the compiler that the global work-size be a multiple of 1996 // the work-group size specified to clEnqueueNDRangeKernel 1997 // (i.e. work groups are uniform). 1998 FuncAttrs.addAttribute("uniform-work-group-size", 1999 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2000 } 2001 } 2002 } 2003 2004 // Attach "no-builtins" attributes to: 2005 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2006 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2007 // The attributes can come from: 2008 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2009 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2010 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2011 2012 // Collect function IR attributes based on global settiings. 2013 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2014 2015 // Override some default IR attributes based on declaration-specific 2016 // information. 2017 if (TargetDecl) { 2018 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2019 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2020 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2021 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2022 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2023 FuncAttrs.removeAttribute("split-stack"); 2024 2025 // Add NonLazyBind attribute to function declarations when -fno-plt 2026 // is used. 2027 // FIXME: what if we just haven't processed the function definition 2028 // yet, or if it's an external definition like C99 inline? 2029 if (CodeGenOpts.NoPLT) { 2030 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2031 if (!Fn->isDefined() && !AttrOnCallSite) { 2032 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2033 } 2034 } 2035 } 2036 } 2037 2038 // Collect non-call-site function IR attributes from declaration-specific 2039 // information. 2040 if (!AttrOnCallSite) { 2041 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2042 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2043 2044 // Whether tail calls are enabled. 2045 auto shouldDisableTailCalls = [&] { 2046 // Should this be honored in getDefaultFunctionAttributes? 2047 if (CodeGenOpts.DisableTailCalls) 2048 return true; 2049 2050 if (!TargetDecl) 2051 return false; 2052 2053 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2054 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2055 return true; 2056 2057 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2058 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2059 if (!BD->doesNotEscape()) 2060 return true; 2061 } 2062 2063 return false; 2064 }; 2065 FuncAttrs.addAttribute("disable-tail-calls", 2066 llvm::toStringRef(shouldDisableTailCalls())); 2067 2068 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2069 // handles these separately to set them based on the global defaults. 2070 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2071 } 2072 2073 // Collect attributes from arguments and return values. 2074 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2075 2076 QualType RetTy = FI.getReturnType(); 2077 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2078 switch (RetAI.getKind()) { 2079 case ABIArgInfo::Extend: 2080 if (RetAI.isSignExt()) 2081 RetAttrs.addAttribute(llvm::Attribute::SExt); 2082 else 2083 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2084 LLVM_FALLTHROUGH; 2085 case ABIArgInfo::Direct: 2086 if (RetAI.getInReg()) 2087 RetAttrs.addAttribute(llvm::Attribute::InReg); 2088 break; 2089 case ABIArgInfo::Ignore: 2090 break; 2091 2092 case ABIArgInfo::InAlloca: 2093 case ABIArgInfo::Indirect: { 2094 // inalloca and sret disable readnone and readonly 2095 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2096 .removeAttribute(llvm::Attribute::ReadNone); 2097 break; 2098 } 2099 2100 case ABIArgInfo::CoerceAndExpand: 2101 break; 2102 2103 case ABIArgInfo::Expand: 2104 llvm_unreachable("Invalid ABI kind for return argument"); 2105 } 2106 2107 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2108 QualType PTy = RefTy->getPointeeType(); 2109 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2110 RetAttrs.addDereferenceableAttr( 2111 getMinimumObjectSize(PTy).getQuantity()); 2112 if (getContext().getTargetAddressSpace(PTy) == 0 && 2113 !CodeGenOpts.NullPointerIsValid) 2114 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2115 if (PTy->isObjectType()) { 2116 llvm::Align Alignment = 2117 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2118 RetAttrs.addAlignmentAttr(Alignment); 2119 } 2120 } 2121 2122 bool hasUsedSRet = false; 2123 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2124 2125 // Attach attributes to sret. 2126 if (IRFunctionArgs.hasSRetArg()) { 2127 llvm::AttrBuilder SRETAttrs; 2128 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2129 hasUsedSRet = true; 2130 if (RetAI.getInReg()) 2131 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2132 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2133 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2134 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2135 } 2136 2137 // Attach attributes to inalloca argument. 2138 if (IRFunctionArgs.hasInallocaArg()) { 2139 llvm::AttrBuilder Attrs; 2140 Attrs.addAttribute(llvm::Attribute::InAlloca); 2141 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2142 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2143 } 2144 2145 unsigned ArgNo = 0; 2146 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2147 E = FI.arg_end(); 2148 I != E; ++I, ++ArgNo) { 2149 QualType ParamType = I->type; 2150 const ABIArgInfo &AI = I->info; 2151 llvm::AttrBuilder Attrs; 2152 2153 // Add attribute for padding argument, if necessary. 2154 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2155 if (AI.getPaddingInReg()) { 2156 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2157 llvm::AttributeSet::get( 2158 getLLVMContext(), 2159 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2160 } 2161 } 2162 2163 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2164 // have the corresponding parameter variable. It doesn't make 2165 // sense to do it here because parameters are so messed up. 2166 switch (AI.getKind()) { 2167 case ABIArgInfo::Extend: 2168 if (AI.isSignExt()) 2169 Attrs.addAttribute(llvm::Attribute::SExt); 2170 else 2171 Attrs.addAttribute(llvm::Attribute::ZExt); 2172 LLVM_FALLTHROUGH; 2173 case ABIArgInfo::Direct: 2174 if (ArgNo == 0 && FI.isChainCall()) 2175 Attrs.addAttribute(llvm::Attribute::Nest); 2176 else if (AI.getInReg()) 2177 Attrs.addAttribute(llvm::Attribute::InReg); 2178 break; 2179 2180 case ABIArgInfo::Indirect: { 2181 if (AI.getInReg()) 2182 Attrs.addAttribute(llvm::Attribute::InReg); 2183 2184 if (AI.getIndirectByVal()) 2185 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2186 2187 CharUnits Align = AI.getIndirectAlign(); 2188 2189 // In a byval argument, it is important that the required 2190 // alignment of the type is honored, as LLVM might be creating a 2191 // *new* stack object, and needs to know what alignment to give 2192 // it. (Sometimes it can deduce a sensible alignment on its own, 2193 // but not if clang decides it must emit a packed struct, or the 2194 // user specifies increased alignment requirements.) 2195 // 2196 // This is different from indirect *not* byval, where the object 2197 // exists already, and the align attribute is purely 2198 // informative. 2199 assert(!Align.isZero()); 2200 2201 // For now, only add this when we have a byval argument. 2202 // TODO: be less lazy about updating test cases. 2203 if (AI.getIndirectByVal()) 2204 Attrs.addAlignmentAttr(Align.getQuantity()); 2205 2206 // byval disables readnone and readonly. 2207 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2208 .removeAttribute(llvm::Attribute::ReadNone); 2209 break; 2210 } 2211 case ABIArgInfo::Ignore: 2212 case ABIArgInfo::Expand: 2213 case ABIArgInfo::CoerceAndExpand: 2214 break; 2215 2216 case ABIArgInfo::InAlloca: 2217 // inalloca disables readnone and readonly. 2218 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2219 .removeAttribute(llvm::Attribute::ReadNone); 2220 continue; 2221 } 2222 2223 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2224 QualType PTy = RefTy->getPointeeType(); 2225 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2226 Attrs.addDereferenceableAttr( 2227 getMinimumObjectSize(PTy).getQuantity()); 2228 if (getContext().getTargetAddressSpace(PTy) == 0 && 2229 !CodeGenOpts.NullPointerIsValid) 2230 Attrs.addAttribute(llvm::Attribute::NonNull); 2231 if (PTy->isObjectType()) { 2232 llvm::Align Alignment = 2233 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2234 Attrs.addAlignmentAttr(Alignment); 2235 } 2236 } 2237 2238 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2239 case ParameterABI::Ordinary: 2240 break; 2241 2242 case ParameterABI::SwiftIndirectResult: { 2243 // Add 'sret' if we haven't already used it for something, but 2244 // only if the result is void. 2245 if (!hasUsedSRet && RetTy->isVoidType()) { 2246 Attrs.addAttribute(llvm::Attribute::StructRet); 2247 hasUsedSRet = true; 2248 } 2249 2250 // Add 'noalias' in either case. 2251 Attrs.addAttribute(llvm::Attribute::NoAlias); 2252 2253 // Add 'dereferenceable' and 'alignment'. 2254 auto PTy = ParamType->getPointeeType(); 2255 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2256 auto info = getContext().getTypeInfoInChars(PTy); 2257 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2258 Attrs.addAlignmentAttr(info.second.getAsAlign()); 2259 } 2260 break; 2261 } 2262 2263 case ParameterABI::SwiftErrorResult: 2264 Attrs.addAttribute(llvm::Attribute::SwiftError); 2265 break; 2266 2267 case ParameterABI::SwiftContext: 2268 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2269 break; 2270 } 2271 2272 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2273 Attrs.addAttribute(llvm::Attribute::NoCapture); 2274 2275 if (Attrs.hasAttributes()) { 2276 unsigned FirstIRArg, NumIRArgs; 2277 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2278 for (unsigned i = 0; i < NumIRArgs; i++) 2279 ArgAttrs[FirstIRArg + i] = 2280 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2281 } 2282 } 2283 assert(ArgNo == FI.arg_size()); 2284 2285 AttrList = llvm::AttributeList::get( 2286 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2287 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2288 } 2289 2290 /// An argument came in as a promoted argument; demote it back to its 2291 /// declared type. 2292 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2293 const VarDecl *var, 2294 llvm::Value *value) { 2295 llvm::Type *varType = CGF.ConvertType(var->getType()); 2296 2297 // This can happen with promotions that actually don't change the 2298 // underlying type, like the enum promotions. 2299 if (value->getType() == varType) return value; 2300 2301 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2302 && "unexpected promotion type"); 2303 2304 if (isa<llvm::IntegerType>(varType)) 2305 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2306 2307 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2308 } 2309 2310 /// Returns the attribute (either parameter attribute, or function 2311 /// attribute), which declares argument ArgNo to be non-null. 2312 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2313 QualType ArgType, unsigned ArgNo) { 2314 // FIXME: __attribute__((nonnull)) can also be applied to: 2315 // - references to pointers, where the pointee is known to be 2316 // nonnull (apparently a Clang extension) 2317 // - transparent unions containing pointers 2318 // In the former case, LLVM IR cannot represent the constraint. In 2319 // the latter case, we have no guarantee that the transparent union 2320 // is in fact passed as a pointer. 2321 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2322 return nullptr; 2323 // First, check attribute on parameter itself. 2324 if (PVD) { 2325 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2326 return ParmNNAttr; 2327 } 2328 // Check function attributes. 2329 if (!FD) 2330 return nullptr; 2331 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2332 if (NNAttr->isNonNull(ArgNo)) 2333 return NNAttr; 2334 } 2335 return nullptr; 2336 } 2337 2338 namespace { 2339 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2340 Address Temp; 2341 Address Arg; 2342 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2343 void Emit(CodeGenFunction &CGF, Flags flags) override { 2344 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2345 CGF.Builder.CreateStore(errorValue, Arg); 2346 } 2347 }; 2348 } 2349 2350 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2351 llvm::Function *Fn, 2352 const FunctionArgList &Args) { 2353 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2354 // Naked functions don't have prologues. 2355 return; 2356 2357 // If this is an implicit-return-zero function, go ahead and 2358 // initialize the return value. TODO: it might be nice to have 2359 // a more general mechanism for this that didn't require synthesized 2360 // return statements. 2361 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2362 if (FD->hasImplicitReturnZero()) { 2363 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2364 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2365 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2366 Builder.CreateStore(Zero, ReturnValue); 2367 } 2368 } 2369 2370 // FIXME: We no longer need the types from FunctionArgList; lift up and 2371 // simplify. 2372 2373 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2374 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2375 2376 // If we're using inalloca, all the memory arguments are GEPs off of the last 2377 // parameter, which is a pointer to the complete memory area. 2378 Address ArgStruct = Address::invalid(); 2379 if (IRFunctionArgs.hasInallocaArg()) { 2380 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2381 FI.getArgStructAlignment()); 2382 2383 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2384 } 2385 2386 // Name the struct return parameter. 2387 if (IRFunctionArgs.hasSRetArg()) { 2388 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2389 AI->setName("agg.result"); 2390 AI->addAttr(llvm::Attribute::NoAlias); 2391 } 2392 2393 // Track if we received the parameter as a pointer (indirect, byval, or 2394 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2395 // into a local alloca for us. 2396 SmallVector<ParamValue, 16> ArgVals; 2397 ArgVals.reserve(Args.size()); 2398 2399 // Create a pointer value for every parameter declaration. This usually 2400 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2401 // any cleanups or do anything that might unwind. We do that separately, so 2402 // we can push the cleanups in the correct order for the ABI. 2403 assert(FI.arg_size() == Args.size() && 2404 "Mismatch between function signature & arguments."); 2405 unsigned ArgNo = 0; 2406 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2407 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2408 i != e; ++i, ++info_it, ++ArgNo) { 2409 const VarDecl *Arg = *i; 2410 const ABIArgInfo &ArgI = info_it->info; 2411 2412 bool isPromoted = 2413 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2414 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2415 // the parameter is promoted. In this case we convert to 2416 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2417 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2418 assert(hasScalarEvaluationKind(Ty) == 2419 hasScalarEvaluationKind(Arg->getType())); 2420 2421 unsigned FirstIRArg, NumIRArgs; 2422 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2423 2424 switch (ArgI.getKind()) { 2425 case ABIArgInfo::InAlloca: { 2426 assert(NumIRArgs == 0); 2427 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2428 Address V = 2429 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2430 if (ArgI.getInAllocaIndirect()) 2431 V = Address(Builder.CreateLoad(V), 2432 getContext().getTypeAlignInChars(Ty)); 2433 ArgVals.push_back(ParamValue::forIndirect(V)); 2434 break; 2435 } 2436 2437 case ABIArgInfo::Indirect: { 2438 assert(NumIRArgs == 1); 2439 Address ParamAddr = 2440 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2441 2442 if (!hasScalarEvaluationKind(Ty)) { 2443 // Aggregates and complex variables are accessed by reference. All we 2444 // need to do is realign the value, if requested. 2445 Address V = ParamAddr; 2446 if (ArgI.getIndirectRealign()) { 2447 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2448 2449 // Copy from the incoming argument pointer to the temporary with the 2450 // appropriate alignment. 2451 // 2452 // FIXME: We should have a common utility for generating an aggregate 2453 // copy. 2454 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2455 Builder.CreateMemCpy( 2456 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2457 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2458 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2459 V = AlignedTemp; 2460 } 2461 ArgVals.push_back(ParamValue::forIndirect(V)); 2462 } else { 2463 // Load scalar value from indirect argument. 2464 llvm::Value *V = 2465 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2466 2467 if (isPromoted) 2468 V = emitArgumentDemotion(*this, Arg, V); 2469 ArgVals.push_back(ParamValue::forDirect(V)); 2470 } 2471 break; 2472 } 2473 2474 case ABIArgInfo::Extend: 2475 case ABIArgInfo::Direct: { 2476 auto AI = Fn->getArg(FirstIRArg); 2477 llvm::Type *LTy = ConvertType(Arg->getType()); 2478 2479 // Prepare parameter attributes. So far, only attributes for pointer 2480 // parameters are prepared. See 2481 // http://llvm.org/docs/LangRef.html#paramattrs. 2482 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2483 ArgI.getCoerceToType()->isPointerTy()) { 2484 assert(NumIRArgs == 1); 2485 2486 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2487 // Set `nonnull` attribute if any. 2488 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2489 PVD->getFunctionScopeIndex()) && 2490 !CGM.getCodeGenOpts().NullPointerIsValid) 2491 AI->addAttr(llvm::Attribute::NonNull); 2492 2493 QualType OTy = PVD->getOriginalType(); 2494 if (const auto *ArrTy = 2495 getContext().getAsConstantArrayType(OTy)) { 2496 // A C99 array parameter declaration with the static keyword also 2497 // indicates dereferenceability, and if the size is constant we can 2498 // use the dereferenceable attribute (which requires the size in 2499 // bytes). 2500 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2501 QualType ETy = ArrTy->getElementType(); 2502 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2503 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2504 ArrSize) { 2505 llvm::AttrBuilder Attrs; 2506 Attrs.addDereferenceableAttr( 2507 getContext().getTypeSizeInChars(ETy).getQuantity() * 2508 ArrSize); 2509 AI->addAttrs(Attrs); 2510 } else if (getContext().getTargetInfo().getNullPointerValue( 2511 ETy.getAddressSpace()) == 0 && 2512 !CGM.getCodeGenOpts().NullPointerIsValid) { 2513 AI->addAttr(llvm::Attribute::NonNull); 2514 } 2515 } 2516 } else if (const auto *ArrTy = 2517 getContext().getAsVariableArrayType(OTy)) { 2518 // For C99 VLAs with the static keyword, we don't know the size so 2519 // we can't use the dereferenceable attribute, but in addrspace(0) 2520 // we know that it must be nonnull. 2521 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2522 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2523 !CGM.getCodeGenOpts().NullPointerIsValid) 2524 AI->addAttr(llvm::Attribute::NonNull); 2525 } 2526 2527 // Set `align` attribute if any. 2528 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2529 if (!AVAttr) 2530 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2531 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2532 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2533 // If alignment-assumption sanitizer is enabled, we do *not* add 2534 // alignment attribute here, but emit normal alignment assumption, 2535 // so the UBSAN check could function. 2536 llvm::ConstantInt *AlignmentCI = 2537 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2538 unsigned AlignmentInt = 2539 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2540 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2541 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2542 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2543 llvm::Align(AlignmentInt))); 2544 } 2545 } 2546 } 2547 2548 // Set 'noalias' if an argument type has the `restrict` qualifier. 2549 if (Arg->getType().isRestrictQualified()) 2550 AI->addAttr(llvm::Attribute::NoAlias); 2551 } 2552 2553 // Prepare the argument value. If we have the trivial case, handle it 2554 // with no muss and fuss. 2555 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2556 ArgI.getCoerceToType() == ConvertType(Ty) && 2557 ArgI.getDirectOffset() == 0) { 2558 assert(NumIRArgs == 1); 2559 2560 // LLVM expects swifterror parameters to be used in very restricted 2561 // ways. Copy the value into a less-restricted temporary. 2562 llvm::Value *V = AI; 2563 if (FI.getExtParameterInfo(ArgNo).getABI() 2564 == ParameterABI::SwiftErrorResult) { 2565 QualType pointeeTy = Ty->getPointeeType(); 2566 assert(pointeeTy->isPointerType()); 2567 Address temp = 2568 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2569 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2570 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2571 Builder.CreateStore(incomingErrorValue, temp); 2572 V = temp.getPointer(); 2573 2574 // Push a cleanup to copy the value back at the end of the function. 2575 // The convention does not guarantee that the value will be written 2576 // back if the function exits with an unwind exception. 2577 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2578 } 2579 2580 // Ensure the argument is the correct type. 2581 if (V->getType() != ArgI.getCoerceToType()) 2582 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2583 2584 if (isPromoted) 2585 V = emitArgumentDemotion(*this, Arg, V); 2586 2587 // Because of merging of function types from multiple decls it is 2588 // possible for the type of an argument to not match the corresponding 2589 // type in the function type. Since we are codegening the callee 2590 // in here, add a cast to the argument type. 2591 llvm::Type *LTy = ConvertType(Arg->getType()); 2592 if (V->getType() != LTy) 2593 V = Builder.CreateBitCast(V, LTy); 2594 2595 ArgVals.push_back(ParamValue::forDirect(V)); 2596 break; 2597 } 2598 2599 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2600 Arg->getName()); 2601 2602 // Pointer to store into. 2603 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2604 2605 // Fast-isel and the optimizer generally like scalar values better than 2606 // FCAs, so we flatten them if this is safe to do for this argument. 2607 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2608 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2609 STy->getNumElements() > 1) { 2610 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2611 llvm::Type *DstTy = Ptr.getElementType(); 2612 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2613 2614 Address AddrToStoreInto = Address::invalid(); 2615 if (SrcSize <= DstSize) { 2616 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2617 } else { 2618 AddrToStoreInto = 2619 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2620 } 2621 2622 assert(STy->getNumElements() == NumIRArgs); 2623 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2624 auto AI = Fn->getArg(FirstIRArg + i); 2625 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2626 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2627 Builder.CreateStore(AI, EltPtr); 2628 } 2629 2630 if (SrcSize > DstSize) { 2631 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2632 } 2633 2634 } else { 2635 // Simple case, just do a coerced store of the argument into the alloca. 2636 assert(NumIRArgs == 1); 2637 auto AI = Fn->getArg(FirstIRArg); 2638 AI->setName(Arg->getName() + ".coerce"); 2639 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2640 } 2641 2642 // Match to what EmitParmDecl is expecting for this type. 2643 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2644 llvm::Value *V = 2645 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2646 if (isPromoted) 2647 V = emitArgumentDemotion(*this, Arg, V); 2648 ArgVals.push_back(ParamValue::forDirect(V)); 2649 } else { 2650 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2651 } 2652 break; 2653 } 2654 2655 case ABIArgInfo::CoerceAndExpand: { 2656 // Reconstruct into a temporary. 2657 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2658 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2659 2660 auto coercionType = ArgI.getCoerceAndExpandType(); 2661 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2662 2663 unsigned argIndex = FirstIRArg; 2664 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2665 llvm::Type *eltType = coercionType->getElementType(i); 2666 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2667 continue; 2668 2669 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2670 auto elt = Fn->getArg(argIndex++); 2671 Builder.CreateStore(elt, eltAddr); 2672 } 2673 assert(argIndex == FirstIRArg + NumIRArgs); 2674 break; 2675 } 2676 2677 case ABIArgInfo::Expand: { 2678 // If this structure was expanded into multiple arguments then 2679 // we need to create a temporary and reconstruct it from the 2680 // arguments. 2681 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2682 LValue LV = MakeAddrLValue(Alloca, Ty); 2683 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2684 2685 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2686 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2687 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2688 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2689 auto AI = Fn->getArg(FirstIRArg + i); 2690 AI->setName(Arg->getName() + "." + Twine(i)); 2691 } 2692 break; 2693 } 2694 2695 case ABIArgInfo::Ignore: 2696 assert(NumIRArgs == 0); 2697 // Initialize the local variable appropriately. 2698 if (!hasScalarEvaluationKind(Ty)) { 2699 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2700 } else { 2701 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2702 ArgVals.push_back(ParamValue::forDirect(U)); 2703 } 2704 break; 2705 } 2706 } 2707 2708 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2709 for (int I = Args.size() - 1; I >= 0; --I) 2710 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2711 } else { 2712 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2713 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2714 } 2715 } 2716 2717 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2718 while (insn->use_empty()) { 2719 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2720 if (!bitcast) return; 2721 2722 // This is "safe" because we would have used a ConstantExpr otherwise. 2723 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2724 bitcast->eraseFromParent(); 2725 } 2726 } 2727 2728 /// Try to emit a fused autorelease of a return result. 2729 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2730 llvm::Value *result) { 2731 // We must be immediately followed the cast. 2732 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2733 if (BB->empty()) return nullptr; 2734 if (&BB->back() != result) return nullptr; 2735 2736 llvm::Type *resultType = result->getType(); 2737 2738 // result is in a BasicBlock and is therefore an Instruction. 2739 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2740 2741 SmallVector<llvm::Instruction *, 4> InstsToKill; 2742 2743 // Look for: 2744 // %generator = bitcast %type1* %generator2 to %type2* 2745 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2746 // We would have emitted this as a constant if the operand weren't 2747 // an Instruction. 2748 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2749 2750 // Require the generator to be immediately followed by the cast. 2751 if (generator->getNextNode() != bitcast) 2752 return nullptr; 2753 2754 InstsToKill.push_back(bitcast); 2755 } 2756 2757 // Look for: 2758 // %generator = call i8* @objc_retain(i8* %originalResult) 2759 // or 2760 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2761 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2762 if (!call) return nullptr; 2763 2764 bool doRetainAutorelease; 2765 2766 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2767 doRetainAutorelease = true; 2768 } else if (call->getCalledOperand() == 2769 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2770 doRetainAutorelease = false; 2771 2772 // If we emitted an assembly marker for this call (and the 2773 // ARCEntrypoints field should have been set if so), go looking 2774 // for that call. If we can't find it, we can't do this 2775 // optimization. But it should always be the immediately previous 2776 // instruction, unless we needed bitcasts around the call. 2777 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2778 llvm::Instruction *prev = call->getPrevNode(); 2779 assert(prev); 2780 if (isa<llvm::BitCastInst>(prev)) { 2781 prev = prev->getPrevNode(); 2782 assert(prev); 2783 } 2784 assert(isa<llvm::CallInst>(prev)); 2785 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2786 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2787 InstsToKill.push_back(prev); 2788 } 2789 } else { 2790 return nullptr; 2791 } 2792 2793 result = call->getArgOperand(0); 2794 InstsToKill.push_back(call); 2795 2796 // Keep killing bitcasts, for sanity. Note that we no longer care 2797 // about precise ordering as long as there's exactly one use. 2798 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2799 if (!bitcast->hasOneUse()) break; 2800 InstsToKill.push_back(bitcast); 2801 result = bitcast->getOperand(0); 2802 } 2803 2804 // Delete all the unnecessary instructions, from latest to earliest. 2805 for (auto *I : InstsToKill) 2806 I->eraseFromParent(); 2807 2808 // Do the fused retain/autorelease if we were asked to. 2809 if (doRetainAutorelease) 2810 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2811 2812 // Cast back to the result type. 2813 return CGF.Builder.CreateBitCast(result, resultType); 2814 } 2815 2816 /// If this is a +1 of the value of an immutable 'self', remove it. 2817 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2818 llvm::Value *result) { 2819 // This is only applicable to a method with an immutable 'self'. 2820 const ObjCMethodDecl *method = 2821 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2822 if (!method) return nullptr; 2823 const VarDecl *self = method->getSelfDecl(); 2824 if (!self->getType().isConstQualified()) return nullptr; 2825 2826 // Look for a retain call. 2827 llvm::CallInst *retainCall = 2828 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2829 if (!retainCall || retainCall->getCalledOperand() != 2830 CGF.CGM.getObjCEntrypoints().objc_retain) 2831 return nullptr; 2832 2833 // Look for an ordinary load of 'self'. 2834 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2835 llvm::LoadInst *load = 2836 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2837 if (!load || load->isAtomic() || load->isVolatile() || 2838 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2839 return nullptr; 2840 2841 // Okay! Burn it all down. This relies for correctness on the 2842 // assumption that the retain is emitted as part of the return and 2843 // that thereafter everything is used "linearly". 2844 llvm::Type *resultType = result->getType(); 2845 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2846 assert(retainCall->use_empty()); 2847 retainCall->eraseFromParent(); 2848 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2849 2850 return CGF.Builder.CreateBitCast(load, resultType); 2851 } 2852 2853 /// Emit an ARC autorelease of the result of a function. 2854 /// 2855 /// \return the value to actually return from the function 2856 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2857 llvm::Value *result) { 2858 // If we're returning 'self', kill the initial retain. This is a 2859 // heuristic attempt to "encourage correctness" in the really unfortunate 2860 // case where we have a return of self during a dealloc and we desperately 2861 // need to avoid the possible autorelease. 2862 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2863 return self; 2864 2865 // At -O0, try to emit a fused retain/autorelease. 2866 if (CGF.shouldUseFusedARCCalls()) 2867 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2868 return fused; 2869 2870 return CGF.EmitARCAutoreleaseReturnValue(result); 2871 } 2872 2873 /// Heuristically search for a dominating store to the return-value slot. 2874 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2875 // Check if a User is a store which pointerOperand is the ReturnValue. 2876 // We are looking for stores to the ReturnValue, not for stores of the 2877 // ReturnValue to some other location. 2878 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2879 auto *SI = dyn_cast<llvm::StoreInst>(U); 2880 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2881 return nullptr; 2882 // These aren't actually possible for non-coerced returns, and we 2883 // only care about non-coerced returns on this code path. 2884 assert(!SI->isAtomic() && !SI->isVolatile()); 2885 return SI; 2886 }; 2887 // If there are multiple uses of the return-value slot, just check 2888 // for something immediately preceding the IP. Sometimes this can 2889 // happen with how we generate implicit-returns; it can also happen 2890 // with noreturn cleanups. 2891 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2892 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2893 if (IP->empty()) return nullptr; 2894 llvm::Instruction *I = &IP->back(); 2895 2896 // Skip lifetime markers 2897 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2898 IE = IP->rend(); 2899 II != IE; ++II) { 2900 if (llvm::IntrinsicInst *Intrinsic = 2901 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2902 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2903 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2904 ++II; 2905 if (II == IE) 2906 break; 2907 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2908 continue; 2909 } 2910 } 2911 I = &*II; 2912 break; 2913 } 2914 2915 return GetStoreIfValid(I); 2916 } 2917 2918 llvm::StoreInst *store = 2919 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2920 if (!store) return nullptr; 2921 2922 // Now do a first-and-dirty dominance check: just walk up the 2923 // single-predecessors chain from the current insertion point. 2924 llvm::BasicBlock *StoreBB = store->getParent(); 2925 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2926 while (IP != StoreBB) { 2927 if (!(IP = IP->getSinglePredecessor())) 2928 return nullptr; 2929 } 2930 2931 // Okay, the store's basic block dominates the insertion point; we 2932 // can do our thing. 2933 return store; 2934 } 2935 2936 // Helper functions for EmitCMSEClearRecord 2937 2938 // Set the bits corresponding to a field having width `BitWidth` and located at 2939 // offset `BitOffset` (from the least significant bit) within a storage unit of 2940 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 2941 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 2942 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 2943 int BitWidth, int CharWidth) { 2944 assert(CharWidth <= 64); 2945 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 2946 2947 int Pos = 0; 2948 if (BitOffset >= CharWidth) { 2949 Pos += BitOffset / CharWidth; 2950 BitOffset = BitOffset % CharWidth; 2951 } 2952 2953 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 2954 if (BitOffset + BitWidth >= CharWidth) { 2955 Bits[Pos++] |= (Used << BitOffset) & Used; 2956 BitWidth -= CharWidth - BitOffset; 2957 BitOffset = 0; 2958 } 2959 2960 while (BitWidth >= CharWidth) { 2961 Bits[Pos++] = Used; 2962 BitWidth -= CharWidth; 2963 } 2964 2965 if (BitWidth > 0) 2966 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 2967 } 2968 2969 // Set the bits corresponding to a field having width `BitWidth` and located at 2970 // offset `BitOffset` (from the least significant bit) within a storage unit of 2971 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 2972 // `Bits` corresponds to one target byte. Use target endian layout. 2973 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 2974 int StorageSize, int BitOffset, int BitWidth, 2975 int CharWidth, bool BigEndian) { 2976 2977 SmallVector<uint64_t, 8> TmpBits(StorageSize); 2978 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 2979 2980 if (BigEndian) 2981 std::reverse(TmpBits.begin(), TmpBits.end()); 2982 2983 for (uint64_t V : TmpBits) 2984 Bits[StorageOffset++] |= V; 2985 } 2986 2987 static void setUsedBits(CodeGenModule &, QualType, int, 2988 SmallVectorImpl<uint64_t> &); 2989 2990 // Set the bits in `Bits`, which correspond to the value representations of 2991 // the actual members of the record type `RTy`. Note that this function does 2992 // not handle base classes, virtual tables, etc, since they cannot happen in 2993 // CMSE function arguments or return. The bit mask corresponds to the target 2994 // memory layout, i.e. it's endian dependent. 2995 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 2996 SmallVectorImpl<uint64_t> &Bits) { 2997 ASTContext &Context = CGM.getContext(); 2998 int CharWidth = Context.getCharWidth(); 2999 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3000 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3001 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3002 3003 int Idx = 0; 3004 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3005 const FieldDecl *F = *I; 3006 3007 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3008 F->getType()->isIncompleteArrayType()) 3009 continue; 3010 3011 if (F->isBitField()) { 3012 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3013 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3014 BFI.StorageSize / CharWidth, BFI.Offset, 3015 BFI.Size, CharWidth, 3016 CGM.getDataLayout().isBigEndian()); 3017 continue; 3018 } 3019 3020 setUsedBits(CGM, F->getType(), 3021 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3022 } 3023 } 3024 3025 // Set the bits in `Bits`, which correspond to the value representations of 3026 // the elements of an array type `ATy`. 3027 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3028 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3029 const ASTContext &Context = CGM.getContext(); 3030 3031 QualType ETy = Context.getBaseElementType(ATy); 3032 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3033 SmallVector<uint64_t, 4> TmpBits(Size); 3034 setUsedBits(CGM, ETy, 0, TmpBits); 3035 3036 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3037 auto Src = TmpBits.begin(); 3038 auto Dst = Bits.begin() + Offset + I * Size; 3039 for (int J = 0; J < Size; ++J) 3040 *Dst++ |= *Src++; 3041 } 3042 } 3043 3044 // Set the bits in `Bits`, which correspond to the value representations of 3045 // the type `QTy`. 3046 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3047 SmallVectorImpl<uint64_t> &Bits) { 3048 if (const auto *RTy = QTy->getAs<RecordType>()) 3049 return setUsedBits(CGM, RTy, Offset, Bits); 3050 3051 ASTContext &Context = CGM.getContext(); 3052 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3053 return setUsedBits(CGM, ATy, Offset, Bits); 3054 3055 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3056 if (Size <= 0) 3057 return; 3058 3059 std::fill_n(Bits.begin() + Offset, Size, 3060 (uint64_t(1) << Context.getCharWidth()) - 1); 3061 } 3062 3063 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3064 int Pos, int Size, int CharWidth, 3065 bool BigEndian) { 3066 assert(Size > 0); 3067 uint64_t Mask = 0; 3068 if (BigEndian) { 3069 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3070 ++P) 3071 Mask = (Mask << CharWidth) | *P; 3072 } else { 3073 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3074 do 3075 Mask = (Mask << CharWidth) | *--P; 3076 while (P != End); 3077 } 3078 return Mask; 3079 } 3080 3081 // Emit code to clear the bits in a record, which aren't a part of any user 3082 // declared member, when the record is a function return. 3083 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3084 llvm::IntegerType *ITy, 3085 QualType QTy) { 3086 assert(Src->getType() == ITy); 3087 assert(ITy->getScalarSizeInBits() <= 64); 3088 3089 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3090 int Size = DataLayout.getTypeStoreSize(ITy); 3091 SmallVector<uint64_t, 4> Bits(Size); 3092 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3093 3094 int CharWidth = CGM.getContext().getCharWidth(); 3095 uint64_t Mask = 3096 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3097 3098 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3099 } 3100 3101 // Emit code to clear the bits in a record, which aren't a part of any user 3102 // declared member, when the record is a function argument. 3103 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3104 llvm::ArrayType *ATy, 3105 QualType QTy) { 3106 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3107 int Size = DataLayout.getTypeStoreSize(ATy); 3108 SmallVector<uint64_t, 16> Bits(Size); 3109 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3110 3111 // Clear each element of the LLVM array. 3112 int CharWidth = CGM.getContext().getCharWidth(); 3113 int CharsPerElt = 3114 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3115 int MaskIndex = 0; 3116 llvm::Value *R = llvm::UndefValue::get(ATy); 3117 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3118 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3119 DataLayout.isBigEndian()); 3120 MaskIndex += CharsPerElt; 3121 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3122 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3123 R = Builder.CreateInsertValue(R, T1, I); 3124 } 3125 3126 return R; 3127 } 3128 3129 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3130 bool EmitRetDbgLoc, 3131 SourceLocation EndLoc) { 3132 if (FI.isNoReturn()) { 3133 // Noreturn functions don't return. 3134 EmitUnreachable(EndLoc); 3135 return; 3136 } 3137 3138 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3139 // Naked functions don't have epilogues. 3140 Builder.CreateUnreachable(); 3141 return; 3142 } 3143 3144 // Functions with no result always return void. 3145 if (!ReturnValue.isValid()) { 3146 Builder.CreateRetVoid(); 3147 return; 3148 } 3149 3150 llvm::DebugLoc RetDbgLoc; 3151 llvm::Value *RV = nullptr; 3152 QualType RetTy = FI.getReturnType(); 3153 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3154 3155 switch (RetAI.getKind()) { 3156 case ABIArgInfo::InAlloca: 3157 // Aggregrates get evaluated directly into the destination. Sometimes we 3158 // need to return the sret value in a register, though. 3159 assert(hasAggregateEvaluationKind(RetTy)); 3160 if (RetAI.getInAllocaSRet()) { 3161 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3162 --EI; 3163 llvm::Value *ArgStruct = &*EI; 3164 llvm::Value *SRet = Builder.CreateStructGEP( 3165 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3166 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3167 } 3168 break; 3169 3170 case ABIArgInfo::Indirect: { 3171 auto AI = CurFn->arg_begin(); 3172 if (RetAI.isSRetAfterThis()) 3173 ++AI; 3174 switch (getEvaluationKind(RetTy)) { 3175 case TEK_Complex: { 3176 ComplexPairTy RT = 3177 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3178 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3179 /*isInit*/ true); 3180 break; 3181 } 3182 case TEK_Aggregate: 3183 // Do nothing; aggregrates get evaluated directly into the destination. 3184 break; 3185 case TEK_Scalar: 3186 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3187 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3188 /*isInit*/ true); 3189 break; 3190 } 3191 break; 3192 } 3193 3194 case ABIArgInfo::Extend: 3195 case ABIArgInfo::Direct: 3196 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3197 RetAI.getDirectOffset() == 0) { 3198 // The internal return value temp always will have pointer-to-return-type 3199 // type, just do a load. 3200 3201 // If there is a dominating store to ReturnValue, we can elide 3202 // the load, zap the store, and usually zap the alloca. 3203 if (llvm::StoreInst *SI = 3204 findDominatingStoreToReturnValue(*this)) { 3205 // Reuse the debug location from the store unless there is 3206 // cleanup code to be emitted between the store and return 3207 // instruction. 3208 if (EmitRetDbgLoc && !AutoreleaseResult) 3209 RetDbgLoc = SI->getDebugLoc(); 3210 // Get the stored value and nuke the now-dead store. 3211 RV = SI->getValueOperand(); 3212 SI->eraseFromParent(); 3213 3214 // Otherwise, we have to do a simple load. 3215 } else { 3216 RV = Builder.CreateLoad(ReturnValue); 3217 } 3218 } else { 3219 // If the value is offset in memory, apply the offset now. 3220 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3221 3222 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3223 } 3224 3225 // In ARC, end functions that return a retainable type with a call 3226 // to objc_autoreleaseReturnValue. 3227 if (AutoreleaseResult) { 3228 #ifndef NDEBUG 3229 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3230 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3231 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3232 // CurCodeDecl or BlockInfo. 3233 QualType RT; 3234 3235 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3236 RT = FD->getReturnType(); 3237 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3238 RT = MD->getReturnType(); 3239 else if (isa<BlockDecl>(CurCodeDecl)) 3240 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3241 else 3242 llvm_unreachable("Unexpected function/method type"); 3243 3244 assert(getLangOpts().ObjCAutoRefCount && 3245 !FI.isReturnsRetained() && 3246 RT->isObjCRetainableType()); 3247 #endif 3248 RV = emitAutoreleaseOfResult(*this, RV); 3249 } 3250 3251 break; 3252 3253 case ABIArgInfo::Ignore: 3254 break; 3255 3256 case ABIArgInfo::CoerceAndExpand: { 3257 auto coercionType = RetAI.getCoerceAndExpandType(); 3258 3259 // Load all of the coerced elements out into results. 3260 llvm::SmallVector<llvm::Value*, 4> results; 3261 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3262 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3263 auto coercedEltType = coercionType->getElementType(i); 3264 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3265 continue; 3266 3267 auto eltAddr = Builder.CreateStructGEP(addr, i); 3268 auto elt = Builder.CreateLoad(eltAddr); 3269 results.push_back(elt); 3270 } 3271 3272 // If we have one result, it's the single direct result type. 3273 if (results.size() == 1) { 3274 RV = results[0]; 3275 3276 // Otherwise, we need to make a first-class aggregate. 3277 } else { 3278 // Construct a return type that lacks padding elements. 3279 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3280 3281 RV = llvm::UndefValue::get(returnType); 3282 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3283 RV = Builder.CreateInsertValue(RV, results[i], i); 3284 } 3285 } 3286 break; 3287 } 3288 3289 case ABIArgInfo::Expand: 3290 llvm_unreachable("Invalid ABI kind for return argument"); 3291 } 3292 3293 llvm::Instruction *Ret; 3294 if (RV) { 3295 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3296 // For certain return types, clear padding bits, as they may reveal 3297 // sensitive information. 3298 // Small struct/union types are passed as integers. 3299 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3300 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3301 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3302 } 3303 EmitReturnValueCheck(RV); 3304 Ret = Builder.CreateRet(RV); 3305 } else { 3306 Ret = Builder.CreateRetVoid(); 3307 } 3308 3309 if (RetDbgLoc) 3310 Ret->setDebugLoc(std::move(RetDbgLoc)); 3311 } 3312 3313 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3314 // A current decl may not be available when emitting vtable thunks. 3315 if (!CurCodeDecl) 3316 return; 3317 3318 // If the return block isn't reachable, neither is this check, so don't emit 3319 // it. 3320 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3321 return; 3322 3323 ReturnsNonNullAttr *RetNNAttr = nullptr; 3324 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3325 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3326 3327 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3328 return; 3329 3330 // Prefer the returns_nonnull attribute if it's present. 3331 SourceLocation AttrLoc; 3332 SanitizerMask CheckKind; 3333 SanitizerHandler Handler; 3334 if (RetNNAttr) { 3335 assert(!requiresReturnValueNullabilityCheck() && 3336 "Cannot check nullability and the nonnull attribute"); 3337 AttrLoc = RetNNAttr->getLocation(); 3338 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3339 Handler = SanitizerHandler::NonnullReturn; 3340 } else { 3341 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3342 if (auto *TSI = DD->getTypeSourceInfo()) 3343 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3344 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3345 CheckKind = SanitizerKind::NullabilityReturn; 3346 Handler = SanitizerHandler::NullabilityReturn; 3347 } 3348 3349 SanitizerScope SanScope(this); 3350 3351 // Make sure the "return" source location is valid. If we're checking a 3352 // nullability annotation, make sure the preconditions for the check are met. 3353 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3354 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3355 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3356 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3357 if (requiresReturnValueNullabilityCheck()) 3358 CanNullCheck = 3359 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3360 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3361 EmitBlock(Check); 3362 3363 // Now do the null check. 3364 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3365 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3366 llvm::Value *DynamicData[] = {SLocPtr}; 3367 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3368 3369 EmitBlock(NoCheck); 3370 3371 #ifndef NDEBUG 3372 // The return location should not be used after the check has been emitted. 3373 ReturnLocation = Address::invalid(); 3374 #endif 3375 } 3376 3377 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3378 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3379 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3380 } 3381 3382 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3383 QualType Ty) { 3384 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3385 // placeholders. 3386 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3387 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3388 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3389 3390 // FIXME: When we generate this IR in one pass, we shouldn't need 3391 // this win32-specific alignment hack. 3392 CharUnits Align = CharUnits::fromQuantity(4); 3393 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3394 3395 return AggValueSlot::forAddr(Address(Placeholder, Align), 3396 Ty.getQualifiers(), 3397 AggValueSlot::IsNotDestructed, 3398 AggValueSlot::DoesNotNeedGCBarriers, 3399 AggValueSlot::IsNotAliased, 3400 AggValueSlot::DoesNotOverlap); 3401 } 3402 3403 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3404 const VarDecl *param, 3405 SourceLocation loc) { 3406 // StartFunction converted the ABI-lowered parameter(s) into a 3407 // local alloca. We need to turn that into an r-value suitable 3408 // for EmitCall. 3409 Address local = GetAddrOfLocalVar(param); 3410 3411 QualType type = param->getType(); 3412 3413 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3414 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3415 } 3416 3417 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3418 // but the argument needs to be the original pointer. 3419 if (type->isReferenceType()) { 3420 args.add(RValue::get(Builder.CreateLoad(local)), type); 3421 3422 // In ARC, move out of consumed arguments so that the release cleanup 3423 // entered by StartFunction doesn't cause an over-release. This isn't 3424 // optimal -O0 code generation, but it should get cleaned up when 3425 // optimization is enabled. This also assumes that delegate calls are 3426 // performed exactly once for a set of arguments, but that should be safe. 3427 } else if (getLangOpts().ObjCAutoRefCount && 3428 param->hasAttr<NSConsumedAttr>() && 3429 type->isObjCRetainableType()) { 3430 llvm::Value *ptr = Builder.CreateLoad(local); 3431 auto null = 3432 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3433 Builder.CreateStore(null, local); 3434 args.add(RValue::get(ptr), type); 3435 3436 // For the most part, we just need to load the alloca, except that 3437 // aggregate r-values are actually pointers to temporaries. 3438 } else { 3439 args.add(convertTempToRValue(local, type, loc), type); 3440 } 3441 3442 // Deactivate the cleanup for the callee-destructed param that was pushed. 3443 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3444 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3445 param->needsDestruction(getContext())) { 3446 EHScopeStack::stable_iterator cleanup = 3447 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3448 assert(cleanup.isValid() && 3449 "cleanup for callee-destructed param not recorded"); 3450 // This unreachable is a temporary marker which will be removed later. 3451 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3452 args.addArgCleanupDeactivation(cleanup, isActive); 3453 } 3454 } 3455 3456 static bool isProvablyNull(llvm::Value *addr) { 3457 return isa<llvm::ConstantPointerNull>(addr); 3458 } 3459 3460 /// Emit the actual writing-back of a writeback. 3461 static void emitWriteback(CodeGenFunction &CGF, 3462 const CallArgList::Writeback &writeback) { 3463 const LValue &srcLV = writeback.Source; 3464 Address srcAddr = srcLV.getAddress(CGF); 3465 assert(!isProvablyNull(srcAddr.getPointer()) && 3466 "shouldn't have writeback for provably null argument"); 3467 3468 llvm::BasicBlock *contBB = nullptr; 3469 3470 // If the argument wasn't provably non-null, we need to null check 3471 // before doing the store. 3472 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3473 CGF.CGM.getDataLayout()); 3474 if (!provablyNonNull) { 3475 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3476 contBB = CGF.createBasicBlock("icr.done"); 3477 3478 llvm::Value *isNull = 3479 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3480 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3481 CGF.EmitBlock(writebackBB); 3482 } 3483 3484 // Load the value to writeback. 3485 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3486 3487 // Cast it back, in case we're writing an id to a Foo* or something. 3488 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3489 "icr.writeback-cast"); 3490 3491 // Perform the writeback. 3492 3493 // If we have a "to use" value, it's something we need to emit a use 3494 // of. This has to be carefully threaded in: if it's done after the 3495 // release it's potentially undefined behavior (and the optimizer 3496 // will ignore it), and if it happens before the retain then the 3497 // optimizer could move the release there. 3498 if (writeback.ToUse) { 3499 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3500 3501 // Retain the new value. No need to block-copy here: the block's 3502 // being passed up the stack. 3503 value = CGF.EmitARCRetainNonBlock(value); 3504 3505 // Emit the intrinsic use here. 3506 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3507 3508 // Load the old value (primitively). 3509 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3510 3511 // Put the new value in place (primitively). 3512 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3513 3514 // Release the old value. 3515 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3516 3517 // Otherwise, we can just do a normal lvalue store. 3518 } else { 3519 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3520 } 3521 3522 // Jump to the continuation block. 3523 if (!provablyNonNull) 3524 CGF.EmitBlock(contBB); 3525 } 3526 3527 static void emitWritebacks(CodeGenFunction &CGF, 3528 const CallArgList &args) { 3529 for (const auto &I : args.writebacks()) 3530 emitWriteback(CGF, I); 3531 } 3532 3533 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3534 const CallArgList &CallArgs) { 3535 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3536 CallArgs.getCleanupsToDeactivate(); 3537 // Iterate in reverse to increase the likelihood of popping the cleanup. 3538 for (const auto &I : llvm::reverse(Cleanups)) { 3539 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3540 I.IsActiveIP->eraseFromParent(); 3541 } 3542 } 3543 3544 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3545 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3546 if (uop->getOpcode() == UO_AddrOf) 3547 return uop->getSubExpr(); 3548 return nullptr; 3549 } 3550 3551 /// Emit an argument that's being passed call-by-writeback. That is, 3552 /// we are passing the address of an __autoreleased temporary; it 3553 /// might be copy-initialized with the current value of the given 3554 /// address, but it will definitely be copied out of after the call. 3555 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3556 const ObjCIndirectCopyRestoreExpr *CRE) { 3557 LValue srcLV; 3558 3559 // Make an optimistic effort to emit the address as an l-value. 3560 // This can fail if the argument expression is more complicated. 3561 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3562 srcLV = CGF.EmitLValue(lvExpr); 3563 3564 // Otherwise, just emit it as a scalar. 3565 } else { 3566 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3567 3568 QualType srcAddrType = 3569 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3570 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3571 } 3572 Address srcAddr = srcLV.getAddress(CGF); 3573 3574 // The dest and src types don't necessarily match in LLVM terms 3575 // because of the crazy ObjC compatibility rules. 3576 3577 llvm::PointerType *destType = 3578 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3579 3580 // If the address is a constant null, just pass the appropriate null. 3581 if (isProvablyNull(srcAddr.getPointer())) { 3582 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3583 CRE->getType()); 3584 return; 3585 } 3586 3587 // Create the temporary. 3588 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3589 CGF.getPointerAlign(), 3590 "icr.temp"); 3591 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3592 // and that cleanup will be conditional if we can't prove that the l-value 3593 // isn't null, so we need to register a dominating point so that the cleanups 3594 // system will make valid IR. 3595 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3596 3597 // Zero-initialize it if we're not doing a copy-initialization. 3598 bool shouldCopy = CRE->shouldCopy(); 3599 if (!shouldCopy) { 3600 llvm::Value *null = 3601 llvm::ConstantPointerNull::get( 3602 cast<llvm::PointerType>(destType->getElementType())); 3603 CGF.Builder.CreateStore(null, temp); 3604 } 3605 3606 llvm::BasicBlock *contBB = nullptr; 3607 llvm::BasicBlock *originBB = nullptr; 3608 3609 // If the address is *not* known to be non-null, we need to switch. 3610 llvm::Value *finalArgument; 3611 3612 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3613 CGF.CGM.getDataLayout()); 3614 if (provablyNonNull) { 3615 finalArgument = temp.getPointer(); 3616 } else { 3617 llvm::Value *isNull = 3618 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3619 3620 finalArgument = CGF.Builder.CreateSelect(isNull, 3621 llvm::ConstantPointerNull::get(destType), 3622 temp.getPointer(), "icr.argument"); 3623 3624 // If we need to copy, then the load has to be conditional, which 3625 // means we need control flow. 3626 if (shouldCopy) { 3627 originBB = CGF.Builder.GetInsertBlock(); 3628 contBB = CGF.createBasicBlock("icr.cont"); 3629 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3630 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3631 CGF.EmitBlock(copyBB); 3632 condEval.begin(CGF); 3633 } 3634 } 3635 3636 llvm::Value *valueToUse = nullptr; 3637 3638 // Perform a copy if necessary. 3639 if (shouldCopy) { 3640 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3641 assert(srcRV.isScalar()); 3642 3643 llvm::Value *src = srcRV.getScalarVal(); 3644 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3645 "icr.cast"); 3646 3647 // Use an ordinary store, not a store-to-lvalue. 3648 CGF.Builder.CreateStore(src, temp); 3649 3650 // If optimization is enabled, and the value was held in a 3651 // __strong variable, we need to tell the optimizer that this 3652 // value has to stay alive until we're doing the store back. 3653 // This is because the temporary is effectively unretained, 3654 // and so otherwise we can violate the high-level semantics. 3655 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3656 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3657 valueToUse = src; 3658 } 3659 } 3660 3661 // Finish the control flow if we needed it. 3662 if (shouldCopy && !provablyNonNull) { 3663 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3664 CGF.EmitBlock(contBB); 3665 3666 // Make a phi for the value to intrinsically use. 3667 if (valueToUse) { 3668 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3669 "icr.to-use"); 3670 phiToUse->addIncoming(valueToUse, copyBB); 3671 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3672 originBB); 3673 valueToUse = phiToUse; 3674 } 3675 3676 condEval.end(CGF); 3677 } 3678 3679 args.addWriteback(srcLV, temp, valueToUse); 3680 args.add(RValue::get(finalArgument), CRE->getType()); 3681 } 3682 3683 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3684 assert(!StackBase); 3685 3686 // Save the stack. 3687 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3688 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3689 } 3690 3691 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3692 if (StackBase) { 3693 // Restore the stack after the call. 3694 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3695 CGF.Builder.CreateCall(F, StackBase); 3696 } 3697 } 3698 3699 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3700 SourceLocation ArgLoc, 3701 AbstractCallee AC, 3702 unsigned ParmNum) { 3703 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3704 SanOpts.has(SanitizerKind::NullabilityArg))) 3705 return; 3706 3707 // The param decl may be missing in a variadic function. 3708 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3709 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3710 3711 // Prefer the nonnull attribute if it's present. 3712 const NonNullAttr *NNAttr = nullptr; 3713 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3714 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3715 3716 bool CanCheckNullability = false; 3717 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3718 auto Nullability = PVD->getType()->getNullability(getContext()); 3719 CanCheckNullability = Nullability && 3720 *Nullability == NullabilityKind::NonNull && 3721 PVD->getTypeSourceInfo(); 3722 } 3723 3724 if (!NNAttr && !CanCheckNullability) 3725 return; 3726 3727 SourceLocation AttrLoc; 3728 SanitizerMask CheckKind; 3729 SanitizerHandler Handler; 3730 if (NNAttr) { 3731 AttrLoc = NNAttr->getLocation(); 3732 CheckKind = SanitizerKind::NonnullAttribute; 3733 Handler = SanitizerHandler::NonnullArg; 3734 } else { 3735 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3736 CheckKind = SanitizerKind::NullabilityArg; 3737 Handler = SanitizerHandler::NullabilityArg; 3738 } 3739 3740 SanitizerScope SanScope(this); 3741 assert(RV.isScalar()); 3742 llvm::Value *V = RV.getScalarVal(); 3743 llvm::Value *Cond = 3744 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3745 llvm::Constant *StaticData[] = { 3746 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3747 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3748 }; 3749 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3750 } 3751 3752 void CodeGenFunction::EmitCallArgs( 3753 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3754 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3755 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3756 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3757 3758 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3759 // because arguments are destroyed left to right in the callee. As a special 3760 // case, there are certain language constructs that require left-to-right 3761 // evaluation, and in those cases we consider the evaluation order requirement 3762 // to trump the "destruction order is reverse construction order" guarantee. 3763 bool LeftToRight = 3764 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3765 ? Order == EvaluationOrder::ForceLeftToRight 3766 : Order != EvaluationOrder::ForceRightToLeft; 3767 3768 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3769 RValue EmittedArg) { 3770 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3771 return; 3772 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3773 if (PS == nullptr) 3774 return; 3775 3776 const auto &Context = getContext(); 3777 auto SizeTy = Context.getSizeType(); 3778 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3779 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3780 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3781 EmittedArg.getScalarVal(), 3782 PS->isDynamic()); 3783 Args.add(RValue::get(V), SizeTy); 3784 // If we're emitting args in reverse, be sure to do so with 3785 // pass_object_size, as well. 3786 if (!LeftToRight) 3787 std::swap(Args.back(), *(&Args.back() - 1)); 3788 }; 3789 3790 // Insert a stack save if we're going to need any inalloca args. 3791 bool HasInAllocaArgs = false; 3792 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3793 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3794 I != E && !HasInAllocaArgs; ++I) 3795 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3796 if (HasInAllocaArgs) { 3797 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3798 Args.allocateArgumentMemory(*this); 3799 } 3800 } 3801 3802 // Evaluate each argument in the appropriate order. 3803 size_t CallArgsStart = Args.size(); 3804 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3805 unsigned Idx = LeftToRight ? I : E - I - 1; 3806 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3807 unsigned InitialArgSize = Args.size(); 3808 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3809 // the argument and parameter match or the objc method is parameterized. 3810 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3811 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3812 ArgTypes[Idx]) || 3813 (isa<ObjCMethodDecl>(AC.getDecl()) && 3814 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3815 "Argument and parameter types don't match"); 3816 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3817 // In particular, we depend on it being the last arg in Args, and the 3818 // objectsize bits depend on there only being one arg if !LeftToRight. 3819 assert(InitialArgSize + 1 == Args.size() && 3820 "The code below depends on only adding one arg per EmitCallArg"); 3821 (void)InitialArgSize; 3822 // Since pointer argument are never emitted as LValue, it is safe to emit 3823 // non-null argument check for r-value only. 3824 if (!Args.back().hasLValue()) { 3825 RValue RVArg = Args.back().getKnownRValue(); 3826 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3827 ParamsToSkip + Idx); 3828 // @llvm.objectsize should never have side-effects and shouldn't need 3829 // destruction/cleanups, so we can safely "emit" it after its arg, 3830 // regardless of right-to-leftness 3831 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3832 } 3833 } 3834 3835 if (!LeftToRight) { 3836 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3837 // IR function. 3838 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3839 } 3840 } 3841 3842 namespace { 3843 3844 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3845 DestroyUnpassedArg(Address Addr, QualType Ty) 3846 : Addr(Addr), Ty(Ty) {} 3847 3848 Address Addr; 3849 QualType Ty; 3850 3851 void Emit(CodeGenFunction &CGF, Flags flags) override { 3852 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3853 if (DtorKind == QualType::DK_cxx_destructor) { 3854 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3855 assert(!Dtor->isTrivial()); 3856 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3857 /*Delegating=*/false, Addr, Ty); 3858 } else { 3859 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3860 } 3861 } 3862 }; 3863 3864 struct DisableDebugLocationUpdates { 3865 CodeGenFunction &CGF; 3866 bool disabledDebugInfo; 3867 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3868 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3869 CGF.disableDebugInfo(); 3870 } 3871 ~DisableDebugLocationUpdates() { 3872 if (disabledDebugInfo) 3873 CGF.enableDebugInfo(); 3874 } 3875 }; 3876 3877 } // end anonymous namespace 3878 3879 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3880 if (!HasLV) 3881 return RV; 3882 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3883 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3884 LV.isVolatile()); 3885 IsUsed = true; 3886 return RValue::getAggregate(Copy.getAddress(CGF)); 3887 } 3888 3889 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3890 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3891 if (!HasLV && RV.isScalar()) 3892 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3893 else if (!HasLV && RV.isComplex()) 3894 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3895 else { 3896 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3897 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3898 // We assume that call args are never copied into subobjects. 3899 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3900 HasLV ? LV.isVolatileQualified() 3901 : RV.isVolatileQualified()); 3902 } 3903 IsUsed = true; 3904 } 3905 3906 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3907 QualType type) { 3908 DisableDebugLocationUpdates Dis(*this, E); 3909 if (const ObjCIndirectCopyRestoreExpr *CRE 3910 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3911 assert(getLangOpts().ObjCAutoRefCount); 3912 return emitWritebackArg(*this, args, CRE); 3913 } 3914 3915 assert(type->isReferenceType() == E->isGLValue() && 3916 "reference binding to unmaterialized r-value!"); 3917 3918 if (E->isGLValue()) { 3919 assert(E->getObjectKind() == OK_Ordinary); 3920 return args.add(EmitReferenceBindingToExpr(E), type); 3921 } 3922 3923 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3924 3925 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3926 // However, we still have to push an EH-only cleanup in case we unwind before 3927 // we make it to the call. 3928 if (HasAggregateEvalKind && 3929 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3930 // If we're using inalloca, use the argument memory. Otherwise, use a 3931 // temporary. 3932 AggValueSlot Slot; 3933 if (args.isUsingInAlloca()) 3934 Slot = createPlaceholderSlot(*this, type); 3935 else 3936 Slot = CreateAggTemp(type, "agg.tmp"); 3937 3938 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3939 if (const auto *RD = type->getAsCXXRecordDecl()) 3940 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3941 else 3942 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3943 3944 if (DestroyedInCallee) 3945 Slot.setExternallyDestructed(); 3946 3947 EmitAggExpr(E, Slot); 3948 RValue RV = Slot.asRValue(); 3949 args.add(RV, type); 3950 3951 if (DestroyedInCallee && NeedsEHCleanup) { 3952 // Create a no-op GEP between the placeholder and the cleanup so we can 3953 // RAUW it successfully. It also serves as a marker of the first 3954 // instruction where the cleanup is active. 3955 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3956 type); 3957 // This unreachable is a temporary marker which will be removed later. 3958 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3959 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3960 } 3961 return; 3962 } 3963 3964 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3965 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3966 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3967 assert(L.isSimple()); 3968 args.addUncopiedAggregate(L, type); 3969 return; 3970 } 3971 3972 args.add(EmitAnyExprToTemp(E), type); 3973 } 3974 3975 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3976 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3977 // implicitly widens null pointer constants that are arguments to varargs 3978 // functions to pointer-sized ints. 3979 if (!getTarget().getTriple().isOSWindows()) 3980 return Arg->getType(); 3981 3982 if (Arg->getType()->isIntegerType() && 3983 getContext().getTypeSize(Arg->getType()) < 3984 getContext().getTargetInfo().getPointerWidth(0) && 3985 Arg->isNullPointerConstant(getContext(), 3986 Expr::NPC_ValueDependentIsNotNull)) { 3987 return getContext().getIntPtrType(); 3988 } 3989 3990 return Arg->getType(); 3991 } 3992 3993 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3994 // optimizer it can aggressively ignore unwind edges. 3995 void 3996 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3997 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3998 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3999 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4000 CGM.getNoObjCARCExceptionsMetadata()); 4001 } 4002 4003 /// Emits a call to the given no-arguments nounwind runtime function. 4004 llvm::CallInst * 4005 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4006 const llvm::Twine &name) { 4007 return EmitNounwindRuntimeCall(callee, None, name); 4008 } 4009 4010 /// Emits a call to the given nounwind runtime function. 4011 llvm::CallInst * 4012 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4013 ArrayRef<llvm::Value *> args, 4014 const llvm::Twine &name) { 4015 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4016 call->setDoesNotThrow(); 4017 return call; 4018 } 4019 4020 /// Emits a simple call (never an invoke) to the given no-arguments 4021 /// runtime function. 4022 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4023 const llvm::Twine &name) { 4024 return EmitRuntimeCall(callee, None, name); 4025 } 4026 4027 // Calls which may throw must have operand bundles indicating which funclet 4028 // they are nested within. 4029 SmallVector<llvm::OperandBundleDef, 1> 4030 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4031 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4032 // There is no need for a funclet operand bundle if we aren't inside a 4033 // funclet. 4034 if (!CurrentFuncletPad) 4035 return BundleList; 4036 4037 // Skip intrinsics which cannot throw. 4038 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4039 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4040 return BundleList; 4041 4042 BundleList.emplace_back("funclet", CurrentFuncletPad); 4043 return BundleList; 4044 } 4045 4046 /// Emits a simple call (never an invoke) to the given runtime function. 4047 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4048 ArrayRef<llvm::Value *> args, 4049 const llvm::Twine &name) { 4050 llvm::CallInst *call = Builder.CreateCall( 4051 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4052 call->setCallingConv(getRuntimeCC()); 4053 return call; 4054 } 4055 4056 /// Emits a call or invoke to the given noreturn runtime function. 4057 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4058 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4059 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4060 getBundlesForFunclet(callee.getCallee()); 4061 4062 if (getInvokeDest()) { 4063 llvm::InvokeInst *invoke = 4064 Builder.CreateInvoke(callee, 4065 getUnreachableBlock(), 4066 getInvokeDest(), 4067 args, 4068 BundleList); 4069 invoke->setDoesNotReturn(); 4070 invoke->setCallingConv(getRuntimeCC()); 4071 } else { 4072 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4073 call->setDoesNotReturn(); 4074 call->setCallingConv(getRuntimeCC()); 4075 Builder.CreateUnreachable(); 4076 } 4077 } 4078 4079 /// Emits a call or invoke instruction to the given nullary runtime function. 4080 llvm::CallBase * 4081 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4082 const Twine &name) { 4083 return EmitRuntimeCallOrInvoke(callee, None, name); 4084 } 4085 4086 /// Emits a call or invoke instruction to the given runtime function. 4087 llvm::CallBase * 4088 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4089 ArrayRef<llvm::Value *> args, 4090 const Twine &name) { 4091 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4092 call->setCallingConv(getRuntimeCC()); 4093 return call; 4094 } 4095 4096 /// Emits a call or invoke instruction to the given function, depending 4097 /// on the current state of the EH stack. 4098 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4099 ArrayRef<llvm::Value *> Args, 4100 const Twine &Name) { 4101 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4102 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4103 getBundlesForFunclet(Callee.getCallee()); 4104 4105 llvm::CallBase *Inst; 4106 if (!InvokeDest) 4107 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4108 else { 4109 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4110 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4111 Name); 4112 EmitBlock(ContBB); 4113 } 4114 4115 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4116 // optimizer it can aggressively ignore unwind edges. 4117 if (CGM.getLangOpts().ObjCAutoRefCount) 4118 AddObjCARCExceptionMetadata(Inst); 4119 4120 return Inst; 4121 } 4122 4123 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4124 llvm::Value *New) { 4125 DeferredReplacements.push_back(std::make_pair(Old, New)); 4126 } 4127 4128 namespace { 4129 4130 /// Specify given \p NewAlign as the alignment of return value attribute. If 4131 /// such attribute already exists, re-set it to the maximal one of two options. 4132 LLVM_NODISCARD llvm::AttributeList 4133 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4134 const llvm::AttributeList &Attrs, 4135 llvm::Align NewAlign) { 4136 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4137 if (CurAlign >= NewAlign) 4138 return Attrs; 4139 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4140 return Attrs 4141 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4142 llvm::Attribute::AttrKind::Alignment) 4143 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4144 } 4145 4146 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4147 protected: 4148 CodeGenFunction &CGF; 4149 4150 /// We do nothing if this is, or becomes, nullptr. 4151 const AlignedAttrTy *AA = nullptr; 4152 4153 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4154 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4155 4156 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4157 : CGF(CGF_) { 4158 if (!FuncDecl) 4159 return; 4160 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4161 } 4162 4163 public: 4164 /// If we can, materialize the alignment as an attribute on return value. 4165 LLVM_NODISCARD llvm::AttributeList 4166 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4167 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4168 return Attrs; 4169 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4170 if (!AlignmentCI) 4171 return Attrs; 4172 // We may legitimately have non-power-of-2 alignment here. 4173 // If so, this is UB land, emit it via `@llvm.assume` instead. 4174 if (!AlignmentCI->getValue().isPowerOf2()) 4175 return Attrs; 4176 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4177 CGF.getLLVMContext(), Attrs, 4178 llvm::Align( 4179 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4180 AA = nullptr; // We're done. Disallow doing anything else. 4181 return NewAttrs; 4182 } 4183 4184 /// Emit alignment assumption. 4185 /// This is a general fallback that we take if either there is an offset, 4186 /// or the alignment is variable or we are sanitizing for alignment. 4187 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4188 if (!AA) 4189 return; 4190 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4191 AA->getLocation(), Alignment, OffsetCI); 4192 AA = nullptr; // We're done. Disallow doing anything else. 4193 } 4194 }; 4195 4196 /// Helper data structure to emit `AssumeAlignedAttr`. 4197 class AssumeAlignedAttrEmitter final 4198 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4199 public: 4200 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4201 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4202 if (!AA) 4203 return; 4204 // It is guaranteed that the alignment/offset are constants. 4205 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4206 if (Expr *Offset = AA->getOffset()) { 4207 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4208 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4209 OffsetCI = nullptr; 4210 } 4211 } 4212 }; 4213 4214 /// Helper data structure to emit `AllocAlignAttr`. 4215 class AllocAlignAttrEmitter final 4216 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4217 public: 4218 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4219 const CallArgList &CallArgs) 4220 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4221 if (!AA) 4222 return; 4223 // Alignment may or may not be a constant, and that is okay. 4224 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4225 .getRValue(CGF) 4226 .getScalarVal(); 4227 } 4228 }; 4229 4230 } // namespace 4231 4232 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4233 const CGCallee &Callee, 4234 ReturnValueSlot ReturnValue, 4235 const CallArgList &CallArgs, 4236 llvm::CallBase **callOrInvoke, 4237 SourceLocation Loc) { 4238 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4239 4240 assert(Callee.isOrdinary() || Callee.isVirtual()); 4241 4242 // Handle struct-return functions by passing a pointer to the 4243 // location that we would like to return into. 4244 QualType RetTy = CallInfo.getReturnType(); 4245 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4246 4247 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4248 4249 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4250 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4251 // We can only guarantee that a function is called from the correct 4252 // context/function based on the appropriate target attributes, 4253 // so only check in the case where we have both always_inline and target 4254 // since otherwise we could be making a conditional call after a check for 4255 // the proper cpu features (and it won't cause code generation issues due to 4256 // function based code generation). 4257 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4258 TargetDecl->hasAttr<TargetAttr>()) 4259 checkTargetFeatures(Loc, FD); 4260 4261 // Some architectures (such as x86-64) have the ABI changed based on 4262 // attribute-target/features. Give them a chance to diagnose. 4263 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4264 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4265 } 4266 4267 #ifndef NDEBUG 4268 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4269 // For an inalloca varargs function, we don't expect CallInfo to match the 4270 // function pointer's type, because the inalloca struct a will have extra 4271 // fields in it for the varargs parameters. Code later in this function 4272 // bitcasts the function pointer to the type derived from CallInfo. 4273 // 4274 // In other cases, we assert that the types match up (until pointers stop 4275 // having pointee types). 4276 llvm::Type *TypeFromVal; 4277 if (Callee.isVirtual()) 4278 TypeFromVal = Callee.getVirtualFunctionType(); 4279 else 4280 TypeFromVal = 4281 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4282 assert(IRFuncTy == TypeFromVal); 4283 } 4284 #endif 4285 4286 // 1. Set up the arguments. 4287 4288 // If we're using inalloca, insert the allocation after the stack save. 4289 // FIXME: Do this earlier rather than hacking it in here! 4290 Address ArgMemory = Address::invalid(); 4291 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4292 const llvm::DataLayout &DL = CGM.getDataLayout(); 4293 llvm::Instruction *IP = CallArgs.getStackBase(); 4294 llvm::AllocaInst *AI; 4295 if (IP) { 4296 IP = IP->getNextNode(); 4297 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4298 "argmem", IP); 4299 } else { 4300 AI = CreateTempAlloca(ArgStruct, "argmem"); 4301 } 4302 auto Align = CallInfo.getArgStructAlignment(); 4303 AI->setAlignment(Align.getAsAlign()); 4304 AI->setUsedWithInAlloca(true); 4305 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4306 ArgMemory = Address(AI, Align); 4307 } 4308 4309 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4310 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4311 4312 // If the call returns a temporary with struct return, create a temporary 4313 // alloca to hold the result, unless one is given to us. 4314 Address SRetPtr = Address::invalid(); 4315 Address SRetAlloca = Address::invalid(); 4316 llvm::Value *UnusedReturnSizePtr = nullptr; 4317 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4318 if (!ReturnValue.isNull()) { 4319 SRetPtr = ReturnValue.getValue(); 4320 } else { 4321 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4322 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4323 uint64_t size = 4324 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4325 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4326 } 4327 } 4328 if (IRFunctionArgs.hasSRetArg()) { 4329 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4330 } else if (RetAI.isInAlloca()) { 4331 Address Addr = 4332 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4333 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4334 } 4335 } 4336 4337 Address swiftErrorTemp = Address::invalid(); 4338 Address swiftErrorArg = Address::invalid(); 4339 4340 // When passing arguments using temporary allocas, we need to add the 4341 // appropriate lifetime markers. This vector keeps track of all the lifetime 4342 // markers that need to be ended right after the call. 4343 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4344 4345 // Translate all of the arguments as necessary to match the IR lowering. 4346 assert(CallInfo.arg_size() == CallArgs.size() && 4347 "Mismatch between function signature & arguments."); 4348 unsigned ArgNo = 0; 4349 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4350 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4351 I != E; ++I, ++info_it, ++ArgNo) { 4352 const ABIArgInfo &ArgInfo = info_it->info; 4353 4354 // Insert a padding argument to ensure proper alignment. 4355 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4356 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4357 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4358 4359 unsigned FirstIRArg, NumIRArgs; 4360 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4361 4362 switch (ArgInfo.getKind()) { 4363 case ABIArgInfo::InAlloca: { 4364 assert(NumIRArgs == 0); 4365 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4366 if (I->isAggregate()) { 4367 Address Addr = I->hasLValue() 4368 ? I->getKnownLValue().getAddress(*this) 4369 : I->getKnownRValue().getAggregateAddress(); 4370 llvm::Instruction *Placeholder = 4371 cast<llvm::Instruction>(Addr.getPointer()); 4372 4373 if (!ArgInfo.getInAllocaIndirect()) { 4374 // Replace the placeholder with the appropriate argument slot GEP. 4375 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4376 Builder.SetInsertPoint(Placeholder); 4377 Addr = Builder.CreateStructGEP(ArgMemory, 4378 ArgInfo.getInAllocaFieldIndex()); 4379 Builder.restoreIP(IP); 4380 } else { 4381 // For indirect things such as overaligned structs, replace the 4382 // placeholder with a regular aggregate temporary alloca. Store the 4383 // address of this alloca into the struct. 4384 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4385 Address ArgSlot = Builder.CreateStructGEP( 4386 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4387 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4388 } 4389 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4390 } else if (ArgInfo.getInAllocaIndirect()) { 4391 // Make a temporary alloca and store the address of it into the argument 4392 // struct. 4393 Address Addr = CreateMemTempWithoutCast( 4394 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4395 "indirect-arg-temp"); 4396 I->copyInto(*this, Addr); 4397 Address ArgSlot = 4398 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4399 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4400 } else { 4401 // Store the RValue into the argument struct. 4402 Address Addr = 4403 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4404 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4405 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4406 // There are some cases where a trivial bitcast is not avoidable. The 4407 // definition of a type later in a translation unit may change it's type 4408 // from {}* to (%struct.foo*)*. 4409 if (Addr.getType() != MemType) 4410 Addr = Builder.CreateBitCast(Addr, MemType); 4411 I->copyInto(*this, Addr); 4412 } 4413 break; 4414 } 4415 4416 case ABIArgInfo::Indirect: { 4417 assert(NumIRArgs == 1); 4418 if (!I->isAggregate()) { 4419 // Make a temporary alloca to pass the argument. 4420 Address Addr = CreateMemTempWithoutCast( 4421 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4422 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4423 4424 I->copyInto(*this, Addr); 4425 } else { 4426 // We want to avoid creating an unnecessary temporary+copy here; 4427 // however, we need one in three cases: 4428 // 1. If the argument is not byval, and we are required to copy the 4429 // source. (This case doesn't occur on any common architecture.) 4430 // 2. If the argument is byval, RV is not sufficiently aligned, and 4431 // we cannot force it to be sufficiently aligned. 4432 // 3. If the argument is byval, but RV is not located in default 4433 // or alloca address space. 4434 Address Addr = I->hasLValue() 4435 ? I->getKnownLValue().getAddress(*this) 4436 : I->getKnownRValue().getAggregateAddress(); 4437 llvm::Value *V = Addr.getPointer(); 4438 CharUnits Align = ArgInfo.getIndirectAlign(); 4439 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4440 4441 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4442 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4443 TD->getAllocaAddrSpace()) && 4444 "indirect argument must be in alloca address space"); 4445 4446 bool NeedCopy = false; 4447 4448 if (Addr.getAlignment() < Align && 4449 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4450 Align.getAsAlign()) { 4451 NeedCopy = true; 4452 } else if (I->hasLValue()) { 4453 auto LV = I->getKnownLValue(); 4454 auto AS = LV.getAddressSpace(); 4455 4456 if (!ArgInfo.getIndirectByVal() || 4457 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4458 NeedCopy = true; 4459 } 4460 if (!getLangOpts().OpenCL) { 4461 if ((ArgInfo.getIndirectByVal() && 4462 (AS != LangAS::Default && 4463 AS != CGM.getASTAllocaAddressSpace()))) { 4464 NeedCopy = true; 4465 } 4466 } 4467 // For OpenCL even if RV is located in default or alloca address space 4468 // we don't want to perform address space cast for it. 4469 else if ((ArgInfo.getIndirectByVal() && 4470 Addr.getType()->getAddressSpace() != IRFuncTy-> 4471 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4472 NeedCopy = true; 4473 } 4474 } 4475 4476 if (NeedCopy) { 4477 // Create an aligned temporary, and copy to it. 4478 Address AI = CreateMemTempWithoutCast( 4479 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4480 IRCallArgs[FirstIRArg] = AI.getPointer(); 4481 4482 // Emit lifetime markers for the temporary alloca. 4483 uint64_t ByvalTempElementSize = 4484 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4485 llvm::Value *LifetimeSize = 4486 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4487 4488 // Add cleanup code to emit the end lifetime marker after the call. 4489 if (LifetimeSize) // In case we disabled lifetime markers. 4490 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4491 4492 // Generate the copy. 4493 I->copyInto(*this, AI); 4494 } else { 4495 // Skip the extra memcpy call. 4496 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4497 CGM.getDataLayout().getAllocaAddrSpace()); 4498 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4499 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4500 true); 4501 } 4502 } 4503 break; 4504 } 4505 4506 case ABIArgInfo::Ignore: 4507 assert(NumIRArgs == 0); 4508 break; 4509 4510 case ABIArgInfo::Extend: 4511 case ABIArgInfo::Direct: { 4512 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4513 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4514 ArgInfo.getDirectOffset() == 0) { 4515 assert(NumIRArgs == 1); 4516 llvm::Value *V; 4517 if (!I->isAggregate()) 4518 V = I->getKnownRValue().getScalarVal(); 4519 else 4520 V = Builder.CreateLoad( 4521 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4522 : I->getKnownRValue().getAggregateAddress()); 4523 4524 // Implement swifterror by copying into a new swifterror argument. 4525 // We'll write back in the normal path out of the call. 4526 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4527 == ParameterABI::SwiftErrorResult) { 4528 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4529 4530 QualType pointeeTy = I->Ty->getPointeeType(); 4531 swiftErrorArg = 4532 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4533 4534 swiftErrorTemp = 4535 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4536 V = swiftErrorTemp.getPointer(); 4537 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4538 4539 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4540 Builder.CreateStore(errorValue, swiftErrorTemp); 4541 } 4542 4543 // We might have to widen integers, but we should never truncate. 4544 if (ArgInfo.getCoerceToType() != V->getType() && 4545 V->getType()->isIntegerTy()) 4546 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4547 4548 // If the argument doesn't match, perform a bitcast to coerce it. This 4549 // can happen due to trivial type mismatches. 4550 if (FirstIRArg < IRFuncTy->getNumParams() && 4551 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4552 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4553 4554 IRCallArgs[FirstIRArg] = V; 4555 break; 4556 } 4557 4558 // FIXME: Avoid the conversion through memory if possible. 4559 Address Src = Address::invalid(); 4560 if (!I->isAggregate()) { 4561 Src = CreateMemTemp(I->Ty, "coerce"); 4562 I->copyInto(*this, Src); 4563 } else { 4564 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4565 : I->getKnownRValue().getAggregateAddress(); 4566 } 4567 4568 // If the value is offset in memory, apply the offset now. 4569 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4570 4571 // Fast-isel and the optimizer generally like scalar values better than 4572 // FCAs, so we flatten them if this is safe to do for this argument. 4573 llvm::StructType *STy = 4574 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4575 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4576 llvm::Type *SrcTy = Src.getElementType(); 4577 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4578 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4579 4580 // If the source type is smaller than the destination type of the 4581 // coerce-to logic, copy the source value into a temp alloca the size 4582 // of the destination type to allow loading all of it. The bits past 4583 // the source value are left undef. 4584 if (SrcSize < DstSize) { 4585 Address TempAlloca 4586 = CreateTempAlloca(STy, Src.getAlignment(), 4587 Src.getName() + ".coerce"); 4588 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4589 Src = TempAlloca; 4590 } else { 4591 Src = Builder.CreateBitCast(Src, 4592 STy->getPointerTo(Src.getAddressSpace())); 4593 } 4594 4595 assert(NumIRArgs == STy->getNumElements()); 4596 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4597 Address EltPtr = Builder.CreateStructGEP(Src, i); 4598 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4599 IRCallArgs[FirstIRArg + i] = LI; 4600 } 4601 } else { 4602 // In the simple case, just pass the coerced loaded value. 4603 assert(NumIRArgs == 1); 4604 llvm::Value *Load = 4605 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4606 4607 if (CallInfo.isCmseNSCall()) { 4608 // For certain parameter types, clear padding bits, as they may reveal 4609 // sensitive information. 4610 // Small struct/union types are passed as integer arrays. 4611 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4612 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4613 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4614 } 4615 IRCallArgs[FirstIRArg] = Load; 4616 } 4617 4618 break; 4619 } 4620 4621 case ABIArgInfo::CoerceAndExpand: { 4622 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4623 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4624 4625 llvm::Value *tempSize = nullptr; 4626 Address addr = Address::invalid(); 4627 Address AllocaAddr = Address::invalid(); 4628 if (I->isAggregate()) { 4629 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4630 : I->getKnownRValue().getAggregateAddress(); 4631 4632 } else { 4633 RValue RV = I->getKnownRValue(); 4634 assert(RV.isScalar()); // complex should always just be direct 4635 4636 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4637 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4638 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4639 4640 // Materialize to a temporary. 4641 addr = CreateTempAlloca( 4642 RV.getScalarVal()->getType(), 4643 CharUnits::fromQuantity(std::max( 4644 (unsigned)layout->getAlignment().value(), scalarAlign)), 4645 "tmp", 4646 /*ArraySize=*/nullptr, &AllocaAddr); 4647 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4648 4649 Builder.CreateStore(RV.getScalarVal(), addr); 4650 } 4651 4652 addr = Builder.CreateElementBitCast(addr, coercionType); 4653 4654 unsigned IRArgPos = FirstIRArg; 4655 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4656 llvm::Type *eltType = coercionType->getElementType(i); 4657 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4658 Address eltAddr = Builder.CreateStructGEP(addr, i); 4659 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4660 IRCallArgs[IRArgPos++] = elt; 4661 } 4662 assert(IRArgPos == FirstIRArg + NumIRArgs); 4663 4664 if (tempSize) { 4665 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4666 } 4667 4668 break; 4669 } 4670 4671 case ABIArgInfo::Expand: 4672 unsigned IRArgPos = FirstIRArg; 4673 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4674 assert(IRArgPos == FirstIRArg + NumIRArgs); 4675 break; 4676 } 4677 } 4678 4679 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4680 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4681 4682 // If we're using inalloca, set up that argument. 4683 if (ArgMemory.isValid()) { 4684 llvm::Value *Arg = ArgMemory.getPointer(); 4685 if (CallInfo.isVariadic()) { 4686 // When passing non-POD arguments by value to variadic functions, we will 4687 // end up with a variadic prototype and an inalloca call site. In such 4688 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4689 // the callee. 4690 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4691 CalleePtr = 4692 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4693 } else { 4694 llvm::Type *LastParamTy = 4695 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4696 if (Arg->getType() != LastParamTy) { 4697 #ifndef NDEBUG 4698 // Assert that these structs have equivalent element types. 4699 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4700 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4701 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4702 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4703 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4704 DE = DeclaredTy->element_end(), 4705 FI = FullTy->element_begin(); 4706 DI != DE; ++DI, ++FI) 4707 assert(*DI == *FI); 4708 #endif 4709 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4710 } 4711 } 4712 assert(IRFunctionArgs.hasInallocaArg()); 4713 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4714 } 4715 4716 // 2. Prepare the function pointer. 4717 4718 // If the callee is a bitcast of a non-variadic function to have a 4719 // variadic function pointer type, check to see if we can remove the 4720 // bitcast. This comes up with unprototyped functions. 4721 // 4722 // This makes the IR nicer, but more importantly it ensures that we 4723 // can inline the function at -O0 if it is marked always_inline. 4724 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4725 llvm::Value *Ptr) -> llvm::Function * { 4726 if (!CalleeFT->isVarArg()) 4727 return nullptr; 4728 4729 // Get underlying value if it's a bitcast 4730 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4731 if (CE->getOpcode() == llvm::Instruction::BitCast) 4732 Ptr = CE->getOperand(0); 4733 } 4734 4735 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4736 if (!OrigFn) 4737 return nullptr; 4738 4739 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4740 4741 // If the original type is variadic, or if any of the component types 4742 // disagree, we cannot remove the cast. 4743 if (OrigFT->isVarArg() || 4744 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4745 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4746 return nullptr; 4747 4748 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4749 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4750 return nullptr; 4751 4752 return OrigFn; 4753 }; 4754 4755 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4756 CalleePtr = OrigFn; 4757 IRFuncTy = OrigFn->getFunctionType(); 4758 } 4759 4760 // 3. Perform the actual call. 4761 4762 // Deactivate any cleanups that we're supposed to do immediately before 4763 // the call. 4764 if (!CallArgs.getCleanupsToDeactivate().empty()) 4765 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4766 4767 // Assert that the arguments we computed match up. The IR verifier 4768 // will catch this, but this is a common enough source of problems 4769 // during IRGen changes that it's way better for debugging to catch 4770 // it ourselves here. 4771 #ifndef NDEBUG 4772 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4773 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4774 // Inalloca argument can have different type. 4775 if (IRFunctionArgs.hasInallocaArg() && 4776 i == IRFunctionArgs.getInallocaArgNo()) 4777 continue; 4778 if (i < IRFuncTy->getNumParams()) 4779 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4780 } 4781 #endif 4782 4783 // Update the largest vector width if any arguments have vector types. 4784 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4785 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4786 LargestVectorWidth = 4787 std::max((uint64_t)LargestVectorWidth, 4788 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4789 } 4790 4791 // Compute the calling convention and attributes. 4792 unsigned CallingConv; 4793 llvm::AttributeList Attrs; 4794 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4795 Callee.getAbstractInfo(), Attrs, CallingConv, 4796 /*AttrOnCallSite=*/true); 4797 4798 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4799 if (FD->usesFPIntrin()) 4800 // All calls within a strictfp function are marked strictfp 4801 Attrs = 4802 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4803 llvm::Attribute::StrictFP); 4804 4805 // Add call-site nomerge attribute if exists. 4806 if (InNoMergeAttributedStmt) 4807 Attrs = 4808 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4809 llvm::Attribute::NoMerge); 4810 4811 // Apply some call-site-specific attributes. 4812 // TODO: work this into building the attribute set. 4813 4814 // Apply always_inline to all calls within flatten functions. 4815 // FIXME: should this really take priority over __try, below? 4816 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4817 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4818 Attrs = 4819 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4820 llvm::Attribute::AlwaysInline); 4821 } 4822 4823 // Disable inlining inside SEH __try blocks. 4824 if (isSEHTryScope()) { 4825 Attrs = 4826 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4827 llvm::Attribute::NoInline); 4828 } 4829 4830 // Decide whether to use a call or an invoke. 4831 bool CannotThrow; 4832 if (currentFunctionUsesSEHTry()) { 4833 // SEH cares about asynchronous exceptions, so everything can "throw." 4834 CannotThrow = false; 4835 } else if (isCleanupPadScope() && 4836 EHPersonality::get(*this).isMSVCXXPersonality()) { 4837 // The MSVC++ personality will implicitly terminate the program if an 4838 // exception is thrown during a cleanup outside of a try/catch. 4839 // We don't need to model anything in IR to get this behavior. 4840 CannotThrow = true; 4841 } else { 4842 // Otherwise, nounwind call sites will never throw. 4843 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 4844 } 4845 4846 // If we made a temporary, be sure to clean up after ourselves. Note that we 4847 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4848 // pop this cleanup later on. Being eager about this is OK, since this 4849 // temporary is 'invisible' outside of the callee. 4850 if (UnusedReturnSizePtr) 4851 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4852 UnusedReturnSizePtr); 4853 4854 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4855 4856 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4857 getBundlesForFunclet(CalleePtr); 4858 4859 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4860 if (FD->usesFPIntrin()) 4861 // All calls within a strictfp function are marked strictfp 4862 Attrs = 4863 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4864 llvm::Attribute::StrictFP); 4865 4866 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4867 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4868 4869 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4870 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4871 4872 // Emit the actual call/invoke instruction. 4873 llvm::CallBase *CI; 4874 if (!InvokeDest) { 4875 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4876 } else { 4877 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4878 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4879 BundleList); 4880 EmitBlock(Cont); 4881 } 4882 if (callOrInvoke) 4883 *callOrInvoke = CI; 4884 4885 // If this is within a function that has the guard(nocf) attribute and is an 4886 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4887 // Control Flow Guard checks should not be added, even if the call is inlined. 4888 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4889 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4890 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4891 Attrs = Attrs.addAttribute( 4892 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4893 } 4894 } 4895 4896 // Apply the attributes and calling convention. 4897 CI->setAttributes(Attrs); 4898 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4899 4900 // Apply various metadata. 4901 4902 if (!CI->getType()->isVoidTy()) 4903 CI->setName("call"); 4904 4905 // Update largest vector width from the return type. 4906 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4907 LargestVectorWidth = 4908 std::max((uint64_t)LargestVectorWidth, 4909 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4910 4911 // Insert instrumentation or attach profile metadata at indirect call sites. 4912 // For more details, see the comment before the definition of 4913 // IPVK_IndirectCallTarget in InstrProfData.inc. 4914 if (!CI->getCalledFunction()) 4915 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4916 CI, CalleePtr); 4917 4918 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4919 // optimizer it can aggressively ignore unwind edges. 4920 if (CGM.getLangOpts().ObjCAutoRefCount) 4921 AddObjCARCExceptionMetadata(CI); 4922 4923 // Suppress tail calls if requested. 4924 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4925 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4926 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4927 } 4928 4929 // Add metadata for calls to MSAllocator functions 4930 if (getDebugInfo() && TargetDecl && 4931 TargetDecl->hasAttr<MSAllocatorAttr>()) 4932 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 4933 4934 // 4. Finish the call. 4935 4936 // If the call doesn't return, finish the basic block and clear the 4937 // insertion point; this allows the rest of IRGen to discard 4938 // unreachable code. 4939 if (CI->doesNotReturn()) { 4940 if (UnusedReturnSizePtr) 4941 PopCleanupBlock(); 4942 4943 // Strip away the noreturn attribute to better diagnose unreachable UB. 4944 if (SanOpts.has(SanitizerKind::Unreachable)) { 4945 // Also remove from function since CallBase::hasFnAttr additionally checks 4946 // attributes of the called function. 4947 if (auto *F = CI->getCalledFunction()) 4948 F->removeFnAttr(llvm::Attribute::NoReturn); 4949 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4950 llvm::Attribute::NoReturn); 4951 4952 // Avoid incompatibility with ASan which relies on the `noreturn` 4953 // attribute to insert handler calls. 4954 if (SanOpts.hasOneOf(SanitizerKind::Address | 4955 SanitizerKind::KernelAddress)) { 4956 SanitizerScope SanScope(this); 4957 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4958 Builder.SetInsertPoint(CI); 4959 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4960 llvm::FunctionCallee Fn = 4961 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4962 EmitNounwindRuntimeCall(Fn); 4963 } 4964 } 4965 4966 EmitUnreachable(Loc); 4967 Builder.ClearInsertionPoint(); 4968 4969 // FIXME: For now, emit a dummy basic block because expr emitters in 4970 // generally are not ready to handle emitting expressions at unreachable 4971 // points. 4972 EnsureInsertPoint(); 4973 4974 // Return a reasonable RValue. 4975 return GetUndefRValue(RetTy); 4976 } 4977 4978 // Perform the swifterror writeback. 4979 if (swiftErrorTemp.isValid()) { 4980 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4981 Builder.CreateStore(errorResult, swiftErrorArg); 4982 } 4983 4984 // Emit any call-associated writebacks immediately. Arguably this 4985 // should happen after any return-value munging. 4986 if (CallArgs.hasWritebacks()) 4987 emitWritebacks(*this, CallArgs); 4988 4989 // The stack cleanup for inalloca arguments has to run out of the normal 4990 // lexical order, so deactivate it and run it manually here. 4991 CallArgs.freeArgumentMemory(*this); 4992 4993 // Extract the return value. 4994 RValue Ret = [&] { 4995 switch (RetAI.getKind()) { 4996 case ABIArgInfo::CoerceAndExpand: { 4997 auto coercionType = RetAI.getCoerceAndExpandType(); 4998 4999 Address addr = SRetPtr; 5000 addr = Builder.CreateElementBitCast(addr, coercionType); 5001 5002 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5003 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5004 5005 unsigned unpaddedIndex = 0; 5006 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5007 llvm::Type *eltType = coercionType->getElementType(i); 5008 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5009 Address eltAddr = Builder.CreateStructGEP(addr, i); 5010 llvm::Value *elt = CI; 5011 if (requiresExtract) 5012 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5013 else 5014 assert(unpaddedIndex == 0); 5015 Builder.CreateStore(elt, eltAddr); 5016 } 5017 // FALLTHROUGH 5018 LLVM_FALLTHROUGH; 5019 } 5020 5021 case ABIArgInfo::InAlloca: 5022 case ABIArgInfo::Indirect: { 5023 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5024 if (UnusedReturnSizePtr) 5025 PopCleanupBlock(); 5026 return ret; 5027 } 5028 5029 case ABIArgInfo::Ignore: 5030 // If we are ignoring an argument that had a result, make sure to 5031 // construct the appropriate return value for our caller. 5032 return GetUndefRValue(RetTy); 5033 5034 case ABIArgInfo::Extend: 5035 case ABIArgInfo::Direct: { 5036 llvm::Type *RetIRTy = ConvertType(RetTy); 5037 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5038 switch (getEvaluationKind(RetTy)) { 5039 case TEK_Complex: { 5040 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5041 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5042 return RValue::getComplex(std::make_pair(Real, Imag)); 5043 } 5044 case TEK_Aggregate: { 5045 Address DestPtr = ReturnValue.getValue(); 5046 bool DestIsVolatile = ReturnValue.isVolatile(); 5047 5048 if (!DestPtr.isValid()) { 5049 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5050 DestIsVolatile = false; 5051 } 5052 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5053 return RValue::getAggregate(DestPtr); 5054 } 5055 case TEK_Scalar: { 5056 // If the argument doesn't match, perform a bitcast to coerce it. This 5057 // can happen due to trivial type mismatches. 5058 llvm::Value *V = CI; 5059 if (V->getType() != RetIRTy) 5060 V = Builder.CreateBitCast(V, RetIRTy); 5061 return RValue::get(V); 5062 } 5063 } 5064 llvm_unreachable("bad evaluation kind"); 5065 } 5066 5067 Address DestPtr = ReturnValue.getValue(); 5068 bool DestIsVolatile = ReturnValue.isVolatile(); 5069 5070 if (!DestPtr.isValid()) { 5071 DestPtr = CreateMemTemp(RetTy, "coerce"); 5072 DestIsVolatile = false; 5073 } 5074 5075 // If the value is offset in memory, apply the offset now. 5076 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5077 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5078 5079 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5080 } 5081 5082 case ABIArgInfo::Expand: 5083 llvm_unreachable("Invalid ABI kind for return argument"); 5084 } 5085 5086 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5087 } (); 5088 5089 // Emit the assume_aligned check on the return value. 5090 if (Ret.isScalar() && TargetDecl) { 5091 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5092 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5093 } 5094 5095 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5096 // we can't use the full cleanup mechanism. 5097 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5098 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5099 5100 if (!ReturnValue.isExternallyDestructed() && 5101 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5102 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5103 RetTy); 5104 5105 return Ret; 5106 } 5107 5108 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5109 if (isVirtual()) { 5110 const CallExpr *CE = getVirtualCallExpr(); 5111 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5112 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5113 CE ? CE->getBeginLoc() : SourceLocation()); 5114 } 5115 5116 return *this; 5117 } 5118 5119 /* VarArg handling */ 5120 5121 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5122 VAListAddr = VE->isMicrosoftABI() 5123 ? EmitMSVAListRef(VE->getSubExpr()) 5124 : EmitVAListRef(VE->getSubExpr()); 5125 QualType Ty = VE->getType(); 5126 if (VE->isMicrosoftABI()) 5127 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5128 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5129 } 5130