xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGCall.cpp (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign) {
1123   // Don't use an alignment that's worse than what LLVM would prefer.
1124   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1125   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1126 
1127   return CGF.CreateTempAlloca(Ty, Align);
1128 }
1129 
1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1131 /// accessing some number of bytes out of it, try to gep into the struct to get
1132 /// at its inner goodness.  Dive as deep as possible without entering an element
1133 /// with an in-memory size smaller than DstSize.
1134 static Address
1135 EnterStructPointerForCoercedAccess(Address SrcPtr,
1136                                    llvm::StructType *SrcSTy,
1137                                    uint64_t DstSize, CodeGenFunction &CGF) {
1138   // We can't dive into a zero-element struct.
1139   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1140 
1141   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1142 
1143   // If the first elt is at least as large as what we're looking for, or if the
1144   // first element is the same size as the whole struct, we can enter it. The
1145   // comparison must be made on the store size and not the alloca size. Using
1146   // the alloca size may overstate the size of the load.
1147   uint64_t FirstEltSize =
1148     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1149   if (FirstEltSize < DstSize &&
1150       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1151     return SrcPtr;
1152 
1153   // GEP into the first element.
1154   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1155 
1156   // If the first element is a struct, recurse.
1157   llvm::Type *SrcTy = SrcPtr.getElementType();
1158   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1159     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1160 
1161   return SrcPtr;
1162 }
1163 
1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1165 /// are either integers or pointers.  This does a truncation of the value if it
1166 /// is too large or a zero extension if it is too small.
1167 ///
1168 /// This behaves as if the value were coerced through memory, so on big-endian
1169 /// targets the high bits are preserved in a truncation, while little-endian
1170 /// targets preserve the low bits.
1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1172                                              llvm::Type *Ty,
1173                                              CodeGenFunction &CGF) {
1174   if (Val->getType() == Ty)
1175     return Val;
1176 
1177   if (isa<llvm::PointerType>(Val->getType())) {
1178     // If this is Pointer->Pointer avoid conversion to and from int.
1179     if (isa<llvm::PointerType>(Ty))
1180       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1181 
1182     // Convert the pointer to an integer so we can play with its width.
1183     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1184   }
1185 
1186   llvm::Type *DestIntTy = Ty;
1187   if (isa<llvm::PointerType>(DestIntTy))
1188     DestIntTy = CGF.IntPtrTy;
1189 
1190   if (Val->getType() != DestIntTy) {
1191     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1192     if (DL.isBigEndian()) {
1193       // Preserve the high bits on big-endian targets.
1194       // That is what memory coercion does.
1195       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1196       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1197 
1198       if (SrcSize > DstSize) {
1199         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1200         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1201       } else {
1202         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1203         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1204       }
1205     } else {
1206       // Little-endian targets preserve the low bits. No shifts required.
1207       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1208     }
1209   }
1210 
1211   if (isa<llvm::PointerType>(Ty))
1212     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1213   return Val;
1214 }
1215 
1216 
1217 
1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1219 /// a pointer to an object of type \arg Ty, known to be aligned to
1220 /// \arg SrcAlign bytes.
1221 ///
1222 /// This safely handles the case when the src type is smaller than the
1223 /// destination type; in this situation the values of bits which not
1224 /// present in the src are undefined.
1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1226                                       CodeGenFunction &CGF) {
1227   llvm::Type *SrcTy = Src.getElementType();
1228 
1229   // If SrcTy and Ty are the same, just do a load.
1230   if (SrcTy == Ty)
1231     return CGF.Builder.CreateLoad(Src);
1232 
1233   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1234 
1235   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1236     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1237     SrcTy = Src.getElementType();
1238   }
1239 
1240   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1241 
1242   // If the source and destination are integer or pointer types, just do an
1243   // extension or truncation to the desired type.
1244   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1245       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1246     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1247     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1248   }
1249 
1250   // If load is legal, just bitcast the src pointer.
1251   if (SrcSize >= DstSize) {
1252     // Generally SrcSize is never greater than DstSize, since this means we are
1253     // losing bits. However, this can happen in cases where the structure has
1254     // additional padding, for example due to a user specified alignment.
1255     //
1256     // FIXME: Assert that we aren't truncating non-padding bits when have access
1257     // to that information.
1258     Src = CGF.Builder.CreateBitCast(Src,
1259                                     Ty->getPointerTo(Src.getAddressSpace()));
1260     return CGF.Builder.CreateLoad(Src);
1261   }
1262 
1263   // Otherwise do coercion through memory. This is stupid, but simple.
1264   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1265   CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1266                            Src.getPointer(), Src.getAlignment().getAsAlign(),
1267                            llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize));
1268   return CGF.Builder.CreateLoad(Tmp);
1269 }
1270 
1271 // Function to store a first-class aggregate into memory.  We prefer to
1272 // store the elements rather than the aggregate to be more friendly to
1273 // fast-isel.
1274 // FIXME: Do we need to recurse here?
1275 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1276                                          bool DestIsVolatile) {
1277   // Prefer scalar stores to first-class aggregate stores.
1278   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1279     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1280       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1281       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1282       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1283     }
1284   } else {
1285     Builder.CreateStore(Val, Dest, DestIsVolatile);
1286   }
1287 }
1288 
1289 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1290 /// where the source and destination may have different types.  The
1291 /// destination is known to be aligned to \arg DstAlign bytes.
1292 ///
1293 /// This safely handles the case when the src type is larger than the
1294 /// destination type; the upper bits of the src will be lost.
1295 static void CreateCoercedStore(llvm::Value *Src,
1296                                Address Dst,
1297                                bool DstIsVolatile,
1298                                CodeGenFunction &CGF) {
1299   llvm::Type *SrcTy = Src->getType();
1300   llvm::Type *DstTy = Dst.getElementType();
1301   if (SrcTy == DstTy) {
1302     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1303     return;
1304   }
1305 
1306   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1307 
1308   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1309     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1310     DstTy = Dst.getElementType();
1311   }
1312 
1313   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1314   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1315   if (SrcPtrTy && DstPtrTy &&
1316       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1317     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1318     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1319     return;
1320   }
1321 
1322   // If the source and destination are integer or pointer types, just do an
1323   // extension or truncation to the desired type.
1324   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1325       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1326     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1327     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1328     return;
1329   }
1330 
1331   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1332 
1333   // If store is legal, just bitcast the src pointer.
1334   if (SrcSize <= DstSize) {
1335     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1336     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1337   } else {
1338     // Otherwise do coercion through memory. This is stupid, but
1339     // simple.
1340 
1341     // Generally SrcSize is never greater than DstSize, since this means we are
1342     // losing bits. However, this can happen in cases where the structure has
1343     // additional padding, for example due to a user specified alignment.
1344     //
1345     // FIXME: Assert that we aren't truncating non-padding bits when have access
1346     // to that information.
1347     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1348     CGF.Builder.CreateStore(Src, Tmp);
1349     CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(),
1350                              Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1351                              llvm::ConstantInt::get(CGF.IntPtrTy, DstSize));
1352   }
1353 }
1354 
1355 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1356                                    const ABIArgInfo &info) {
1357   if (unsigned offset = info.getDirectOffset()) {
1358     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1359     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1360                                              CharUnits::fromQuantity(offset));
1361     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1362   }
1363   return addr;
1364 }
1365 
1366 namespace {
1367 
1368 /// Encapsulates information about the way function arguments from
1369 /// CGFunctionInfo should be passed to actual LLVM IR function.
1370 class ClangToLLVMArgMapping {
1371   static const unsigned InvalidIndex = ~0U;
1372   unsigned InallocaArgNo;
1373   unsigned SRetArgNo;
1374   unsigned TotalIRArgs;
1375 
1376   /// Arguments of LLVM IR function corresponding to single Clang argument.
1377   struct IRArgs {
1378     unsigned PaddingArgIndex;
1379     // Argument is expanded to IR arguments at positions
1380     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1381     unsigned FirstArgIndex;
1382     unsigned NumberOfArgs;
1383 
1384     IRArgs()
1385         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1386           NumberOfArgs(0) {}
1387   };
1388 
1389   SmallVector<IRArgs, 8> ArgInfo;
1390 
1391 public:
1392   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1393                         bool OnlyRequiredArgs = false)
1394       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1395         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1396     construct(Context, FI, OnlyRequiredArgs);
1397   }
1398 
1399   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1400   unsigned getInallocaArgNo() const {
1401     assert(hasInallocaArg());
1402     return InallocaArgNo;
1403   }
1404 
1405   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1406   unsigned getSRetArgNo() const {
1407     assert(hasSRetArg());
1408     return SRetArgNo;
1409   }
1410 
1411   unsigned totalIRArgs() const { return TotalIRArgs; }
1412 
1413   bool hasPaddingArg(unsigned ArgNo) const {
1414     assert(ArgNo < ArgInfo.size());
1415     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1416   }
1417   unsigned getPaddingArgNo(unsigned ArgNo) const {
1418     assert(hasPaddingArg(ArgNo));
1419     return ArgInfo[ArgNo].PaddingArgIndex;
1420   }
1421 
1422   /// Returns index of first IR argument corresponding to ArgNo, and their
1423   /// quantity.
1424   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1425     assert(ArgNo < ArgInfo.size());
1426     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1427                           ArgInfo[ArgNo].NumberOfArgs);
1428   }
1429 
1430 private:
1431   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1432                  bool OnlyRequiredArgs);
1433 };
1434 
1435 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1436                                       const CGFunctionInfo &FI,
1437                                       bool OnlyRequiredArgs) {
1438   unsigned IRArgNo = 0;
1439   bool SwapThisWithSRet = false;
1440   const ABIArgInfo &RetAI = FI.getReturnInfo();
1441 
1442   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1443     SwapThisWithSRet = RetAI.isSRetAfterThis();
1444     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1445   }
1446 
1447   unsigned ArgNo = 0;
1448   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1449   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1450        ++I, ++ArgNo) {
1451     assert(I != FI.arg_end());
1452     QualType ArgType = I->type;
1453     const ABIArgInfo &AI = I->info;
1454     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1455     auto &IRArgs = ArgInfo[ArgNo];
1456 
1457     if (AI.getPaddingType())
1458       IRArgs.PaddingArgIndex = IRArgNo++;
1459 
1460     switch (AI.getKind()) {
1461     case ABIArgInfo::Extend:
1462     case ABIArgInfo::Direct: {
1463       // FIXME: handle sseregparm someday...
1464       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1465       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1466         IRArgs.NumberOfArgs = STy->getNumElements();
1467       } else {
1468         IRArgs.NumberOfArgs = 1;
1469       }
1470       break;
1471     }
1472     case ABIArgInfo::Indirect:
1473       IRArgs.NumberOfArgs = 1;
1474       break;
1475     case ABIArgInfo::Ignore:
1476     case ABIArgInfo::InAlloca:
1477       // ignore and inalloca doesn't have matching LLVM parameters.
1478       IRArgs.NumberOfArgs = 0;
1479       break;
1480     case ABIArgInfo::CoerceAndExpand:
1481       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1482       break;
1483     case ABIArgInfo::Expand:
1484       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1485       break;
1486     }
1487 
1488     if (IRArgs.NumberOfArgs > 0) {
1489       IRArgs.FirstArgIndex = IRArgNo;
1490       IRArgNo += IRArgs.NumberOfArgs;
1491     }
1492 
1493     // Skip over the sret parameter when it comes second.  We already handled it
1494     // above.
1495     if (IRArgNo == 1 && SwapThisWithSRet)
1496       IRArgNo++;
1497   }
1498   assert(ArgNo == ArgInfo.size());
1499 
1500   if (FI.usesInAlloca())
1501     InallocaArgNo = IRArgNo++;
1502 
1503   TotalIRArgs = IRArgNo;
1504 }
1505 }  // namespace
1506 
1507 /***/
1508 
1509 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1510   const auto &RI = FI.getReturnInfo();
1511   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1512 }
1513 
1514 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1515   return ReturnTypeUsesSRet(FI) &&
1516          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1517 }
1518 
1519 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1520   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1521     switch (BT->getKind()) {
1522     default:
1523       return false;
1524     case BuiltinType::Float:
1525       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1526     case BuiltinType::Double:
1527       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1528     case BuiltinType::LongDouble:
1529       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1530     }
1531   }
1532 
1533   return false;
1534 }
1535 
1536 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1537   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1538     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1539       if (BT->getKind() == BuiltinType::LongDouble)
1540         return getTarget().useObjCFP2RetForComplexLongDouble();
1541     }
1542   }
1543 
1544   return false;
1545 }
1546 
1547 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1548   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1549   return GetFunctionType(FI);
1550 }
1551 
1552 llvm::FunctionType *
1553 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1554 
1555   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1556   (void)Inserted;
1557   assert(Inserted && "Recursively being processed?");
1558 
1559   llvm::Type *resultType = nullptr;
1560   const ABIArgInfo &retAI = FI.getReturnInfo();
1561   switch (retAI.getKind()) {
1562   case ABIArgInfo::Expand:
1563     llvm_unreachable("Invalid ABI kind for return argument");
1564 
1565   case ABIArgInfo::Extend:
1566   case ABIArgInfo::Direct:
1567     resultType = retAI.getCoerceToType();
1568     break;
1569 
1570   case ABIArgInfo::InAlloca:
1571     if (retAI.getInAllocaSRet()) {
1572       // sret things on win32 aren't void, they return the sret pointer.
1573       QualType ret = FI.getReturnType();
1574       llvm::Type *ty = ConvertType(ret);
1575       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1576       resultType = llvm::PointerType::get(ty, addressSpace);
1577     } else {
1578       resultType = llvm::Type::getVoidTy(getLLVMContext());
1579     }
1580     break;
1581 
1582   case ABIArgInfo::Indirect:
1583   case ABIArgInfo::Ignore:
1584     resultType = llvm::Type::getVoidTy(getLLVMContext());
1585     break;
1586 
1587   case ABIArgInfo::CoerceAndExpand:
1588     resultType = retAI.getUnpaddedCoerceAndExpandType();
1589     break;
1590   }
1591 
1592   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1593   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1594 
1595   // Add type for sret argument.
1596   if (IRFunctionArgs.hasSRetArg()) {
1597     QualType Ret = FI.getReturnType();
1598     llvm::Type *Ty = ConvertType(Ret);
1599     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1600     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1601         llvm::PointerType::get(Ty, AddressSpace);
1602   }
1603 
1604   // Add type for inalloca argument.
1605   if (IRFunctionArgs.hasInallocaArg()) {
1606     auto ArgStruct = FI.getArgStruct();
1607     assert(ArgStruct);
1608     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1609   }
1610 
1611   // Add in all of the required arguments.
1612   unsigned ArgNo = 0;
1613   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1614                                      ie = it + FI.getNumRequiredArgs();
1615   for (; it != ie; ++it, ++ArgNo) {
1616     const ABIArgInfo &ArgInfo = it->info;
1617 
1618     // Insert a padding type to ensure proper alignment.
1619     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1620       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1621           ArgInfo.getPaddingType();
1622 
1623     unsigned FirstIRArg, NumIRArgs;
1624     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1625 
1626     switch (ArgInfo.getKind()) {
1627     case ABIArgInfo::Ignore:
1628     case ABIArgInfo::InAlloca:
1629       assert(NumIRArgs == 0);
1630       break;
1631 
1632     case ABIArgInfo::Indirect: {
1633       assert(NumIRArgs == 1);
1634       // indirect arguments are always on the stack, which is alloca addr space.
1635       llvm::Type *LTy = ConvertTypeForMem(it->type);
1636       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1637           CGM.getDataLayout().getAllocaAddrSpace());
1638       break;
1639     }
1640 
1641     case ABIArgInfo::Extend:
1642     case ABIArgInfo::Direct: {
1643       // Fast-isel and the optimizer generally like scalar values better than
1644       // FCAs, so we flatten them if this is safe to do for this argument.
1645       llvm::Type *argType = ArgInfo.getCoerceToType();
1646       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1647       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1648         assert(NumIRArgs == st->getNumElements());
1649         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1650           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1651       } else {
1652         assert(NumIRArgs == 1);
1653         ArgTypes[FirstIRArg] = argType;
1654       }
1655       break;
1656     }
1657 
1658     case ABIArgInfo::CoerceAndExpand: {
1659       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1660       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1661         *ArgTypesIter++ = EltTy;
1662       }
1663       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1664       break;
1665     }
1666 
1667     case ABIArgInfo::Expand:
1668       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1669       getExpandedTypes(it->type, ArgTypesIter);
1670       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1671       break;
1672     }
1673   }
1674 
1675   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1676   assert(Erased && "Not in set?");
1677 
1678   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1679 }
1680 
1681 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1682   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1683   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1684 
1685   if (!isFuncTypeConvertible(FPT))
1686     return llvm::StructType::get(getLLVMContext());
1687 
1688   return GetFunctionType(GD);
1689 }
1690 
1691 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1692                                                llvm::AttrBuilder &FuncAttrs,
1693                                                const FunctionProtoType *FPT) {
1694   if (!FPT)
1695     return;
1696 
1697   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1698       FPT->isNothrow())
1699     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1700 }
1701 
1702 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1703                                                  bool HasOptnone,
1704                                                  bool AttrOnCallSite,
1705                                                llvm::AttrBuilder &FuncAttrs) {
1706   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1707   if (!HasOptnone) {
1708     if (CodeGenOpts.OptimizeSize)
1709       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1710     if (CodeGenOpts.OptimizeSize == 2)
1711       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1712   }
1713 
1714   if (CodeGenOpts.DisableRedZone)
1715     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1716   if (CodeGenOpts.IndirectTlsSegRefs)
1717     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1718   if (CodeGenOpts.NoImplicitFloat)
1719     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1720 
1721   if (AttrOnCallSite) {
1722     // Attributes that should go on the call site only.
1723     if (!CodeGenOpts.SimplifyLibCalls ||
1724         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1725       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1726     if (!CodeGenOpts.TrapFuncName.empty())
1727       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1728   } else {
1729     StringRef FpKind;
1730     switch (CodeGenOpts.getFramePointer()) {
1731     case CodeGenOptions::FramePointerKind::None:
1732       FpKind = "none";
1733       break;
1734     case CodeGenOptions::FramePointerKind::NonLeaf:
1735       FpKind = "non-leaf";
1736       break;
1737     case CodeGenOptions::FramePointerKind::All:
1738       FpKind = "all";
1739       break;
1740     }
1741     FuncAttrs.addAttribute("frame-pointer", FpKind);
1742 
1743     FuncAttrs.addAttribute("less-precise-fpmad",
1744                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1745 
1746     if (CodeGenOpts.NullPointerIsValid)
1747       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1748 
1749     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1750       FuncAttrs.addAttribute("denormal-fp-math",
1751                              CodeGenOpts.FPDenormalMode.str());
1752     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1753       FuncAttrs.addAttribute(
1754           "denormal-fp-math-f32",
1755           CodeGenOpts.FP32DenormalMode.str());
1756     }
1757 
1758     FuncAttrs.addAttribute("no-trapping-math",
1759                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1760                                              LangOptions::FPE_Ignore));
1761 
1762     // Strict (compliant) code is the default, so only add this attribute to
1763     // indicate that we are trying to workaround a problem case.
1764     if (!CodeGenOpts.StrictFloatCastOverflow)
1765       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1766 
1767     // TODO: Are these all needed?
1768     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1769     FuncAttrs.addAttribute("no-infs-fp-math",
1770                            llvm::toStringRef(LangOpts.NoHonorInfs));
1771     FuncAttrs.addAttribute("no-nans-fp-math",
1772                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1773     FuncAttrs.addAttribute("unsafe-fp-math",
1774                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1775     FuncAttrs.addAttribute("use-soft-float",
1776                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1777     FuncAttrs.addAttribute("stack-protector-buffer-size",
1778                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1779     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1780                            llvm::toStringRef(LangOpts.NoSignedZero));
1781     FuncAttrs.addAttribute(
1782         "correctly-rounded-divide-sqrt-fp-math",
1783         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1784 
1785     // TODO: Reciprocal estimate codegen options should apply to instructions?
1786     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1787     if (!Recips.empty())
1788       FuncAttrs.addAttribute("reciprocal-estimates",
1789                              llvm::join(Recips, ","));
1790 
1791     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1792         CodeGenOpts.PreferVectorWidth != "none")
1793       FuncAttrs.addAttribute("prefer-vector-width",
1794                              CodeGenOpts.PreferVectorWidth);
1795 
1796     if (CodeGenOpts.StackRealignment)
1797       FuncAttrs.addAttribute("stackrealign");
1798     if (CodeGenOpts.Backchain)
1799       FuncAttrs.addAttribute("backchain");
1800     if (CodeGenOpts.EnableSegmentedStacks)
1801       FuncAttrs.addAttribute("split-stack");
1802 
1803     if (CodeGenOpts.SpeculativeLoadHardening)
1804       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1805   }
1806 
1807   if (getLangOpts().assumeFunctionsAreConvergent()) {
1808     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1809     // convergent (meaning, they may call an intrinsically convergent op, such
1810     // as __syncthreads() / barrier(), and so can't have certain optimizations
1811     // applied around them).  LLVM will remove this attribute where it safely
1812     // can.
1813     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1814   }
1815 
1816   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1817     // Exceptions aren't supported in CUDA device code.
1818     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1819   }
1820 
1821   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1822     StringRef Var, Value;
1823     std::tie(Var, Value) = Attr.split('=');
1824     FuncAttrs.addAttribute(Var, Value);
1825   }
1826 }
1827 
1828 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1829   llvm::AttrBuilder FuncAttrs;
1830   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1831                                /* AttrOnCallSite = */ false, FuncAttrs);
1832   // TODO: call GetCPUAndFeaturesAttributes?
1833   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1834 }
1835 
1836 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1837                                                    llvm::AttrBuilder &attrs) {
1838   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1839                                /*for call*/ false, attrs);
1840   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1841 }
1842 
1843 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1844                                    const LangOptions &LangOpts,
1845                                    const NoBuiltinAttr *NBA = nullptr) {
1846   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1847     SmallString<32> AttributeName;
1848     AttributeName += "no-builtin-";
1849     AttributeName += BuiltinName;
1850     FuncAttrs.addAttribute(AttributeName);
1851   };
1852 
1853   // First, handle the language options passed through -fno-builtin.
1854   if (LangOpts.NoBuiltin) {
1855     // -fno-builtin disables them all.
1856     FuncAttrs.addAttribute("no-builtins");
1857     return;
1858   }
1859 
1860   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1861   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1862 
1863   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1864   // the source.
1865   if (!NBA)
1866     return;
1867 
1868   // If there is a wildcard in the builtin names specified through the
1869   // attribute, disable them all.
1870   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1871     FuncAttrs.addAttribute("no-builtins");
1872     return;
1873   }
1874 
1875   // And last, add the rest of the builtin names.
1876   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1877 }
1878 
1879 /// Construct the IR attribute list of a function or call.
1880 ///
1881 /// When adding an attribute, please consider where it should be handled:
1882 ///
1883 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1884 ///     part of the global target configuration (but perhaps can be
1885 ///     overridden on a per-function basis).  Adding attributes there
1886 ///     will cause them to also be set in frontends that build on Clang's
1887 ///     target-configuration logic, as well as for code defined in library
1888 ///     modules such as CUDA's libdevice.
1889 ///
1890 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1891 ///     and adds declaration-specific, convention-specific, and
1892 ///     frontend-specific logic.  The last is of particular importance:
1893 ///     attributes that restrict how the frontend generates code must be
1894 ///     added here rather than getDefaultFunctionAttributes.
1895 ///
1896 void CodeGenModule::ConstructAttributeList(
1897     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1898     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1899   llvm::AttrBuilder FuncAttrs;
1900   llvm::AttrBuilder RetAttrs;
1901 
1902   // Collect function IR attributes from the CC lowering.
1903   // We'll collect the paramete and result attributes later.
1904   CallingConv = FI.getEffectiveCallingConvention();
1905   if (FI.isNoReturn())
1906     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1907   if (FI.isCmseNSCall())
1908     FuncAttrs.addAttribute("cmse_nonsecure_call");
1909 
1910   // Collect function IR attributes from the callee prototype if we have one.
1911   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1912                                      CalleeInfo.getCalleeFunctionProtoType());
1913 
1914   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1915 
1916   bool HasOptnone = false;
1917   // The NoBuiltinAttr attached to the target FunctionDecl.
1918   const NoBuiltinAttr *NBA = nullptr;
1919 
1920   // Collect function IR attributes based on declaration-specific
1921   // information.
1922   // FIXME: handle sseregparm someday...
1923   if (TargetDecl) {
1924     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1925       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1926     if (TargetDecl->hasAttr<NoThrowAttr>())
1927       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1928     if (TargetDecl->hasAttr<NoReturnAttr>())
1929       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1930     if (TargetDecl->hasAttr<ColdAttr>())
1931       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1932     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1933       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1934     if (TargetDecl->hasAttr<ConvergentAttr>())
1935       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1936 
1937     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1938       AddAttributesFromFunctionProtoType(
1939           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1940       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1941         // A sane operator new returns a non-aliasing pointer.
1942         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1943         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1944             (Kind == OO_New || Kind == OO_Array_New))
1945           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1946       }
1947       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1948       const bool IsVirtualCall = MD && MD->isVirtual();
1949       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1950       // virtual function. These attributes are not inherited by overloads.
1951       if (!(AttrOnCallSite && IsVirtualCall)) {
1952         if (Fn->isNoReturn())
1953           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1954         NBA = Fn->getAttr<NoBuiltinAttr>();
1955       }
1956     }
1957 
1958     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1959     if (TargetDecl->hasAttr<ConstAttr>()) {
1960       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1961       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1962     } else if (TargetDecl->hasAttr<PureAttr>()) {
1963       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1964       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1965     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1966       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1967       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1968     }
1969     if (TargetDecl->hasAttr<RestrictAttr>())
1970       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1971     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1972         !CodeGenOpts.NullPointerIsValid)
1973       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1974     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1975       FuncAttrs.addAttribute("no_caller_saved_registers");
1976     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1977       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1978 
1979     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1980     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1981       Optional<unsigned> NumElemsParam;
1982       if (AllocSize->getNumElemsParam().isValid())
1983         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1984       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1985                                  NumElemsParam);
1986     }
1987 
1988     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1989       if (getLangOpts().OpenCLVersion <= 120) {
1990         // OpenCL v1.2 Work groups are always uniform
1991         FuncAttrs.addAttribute("uniform-work-group-size", "true");
1992       } else {
1993         // OpenCL v2.0 Work groups may be whether uniform or not.
1994         // '-cl-uniform-work-group-size' compile option gets a hint
1995         // to the compiler that the global work-size be a multiple of
1996         // the work-group size specified to clEnqueueNDRangeKernel
1997         // (i.e. work groups are uniform).
1998         FuncAttrs.addAttribute("uniform-work-group-size",
1999                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2000       }
2001     }
2002   }
2003 
2004   // Attach "no-builtins" attributes to:
2005   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2006   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2007   // The attributes can come from:
2008   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2009   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2010   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2011 
2012   // Collect function IR attributes based on global settiings.
2013   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2014 
2015   // Override some default IR attributes based on declaration-specific
2016   // information.
2017   if (TargetDecl) {
2018     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2019       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2020     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2021       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2022     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2023       FuncAttrs.removeAttribute("split-stack");
2024 
2025     // Add NonLazyBind attribute to function declarations when -fno-plt
2026     // is used.
2027     // FIXME: what if we just haven't processed the function definition
2028     // yet, or if it's an external definition like C99 inline?
2029     if (CodeGenOpts.NoPLT) {
2030       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2031         if (!Fn->isDefined() && !AttrOnCallSite) {
2032           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2033         }
2034       }
2035     }
2036   }
2037 
2038   // Collect non-call-site function IR attributes from declaration-specific
2039   // information.
2040   if (!AttrOnCallSite) {
2041     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2042       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2043 
2044     // Whether tail calls are enabled.
2045     auto shouldDisableTailCalls = [&] {
2046       // Should this be honored in getDefaultFunctionAttributes?
2047       if (CodeGenOpts.DisableTailCalls)
2048         return true;
2049 
2050       if (!TargetDecl)
2051         return false;
2052 
2053       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2054           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2055         return true;
2056 
2057       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2058         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2059           if (!BD->doesNotEscape())
2060             return true;
2061       }
2062 
2063       return false;
2064     };
2065     FuncAttrs.addAttribute("disable-tail-calls",
2066                            llvm::toStringRef(shouldDisableTailCalls()));
2067 
2068     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2069     // handles these separately to set them based on the global defaults.
2070     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2071   }
2072 
2073   // Collect attributes from arguments and return values.
2074   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2075 
2076   QualType RetTy = FI.getReturnType();
2077   const ABIArgInfo &RetAI = FI.getReturnInfo();
2078   switch (RetAI.getKind()) {
2079   case ABIArgInfo::Extend:
2080     if (RetAI.isSignExt())
2081       RetAttrs.addAttribute(llvm::Attribute::SExt);
2082     else
2083       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2084     LLVM_FALLTHROUGH;
2085   case ABIArgInfo::Direct:
2086     if (RetAI.getInReg())
2087       RetAttrs.addAttribute(llvm::Attribute::InReg);
2088     break;
2089   case ABIArgInfo::Ignore:
2090     break;
2091 
2092   case ABIArgInfo::InAlloca:
2093   case ABIArgInfo::Indirect: {
2094     // inalloca and sret disable readnone and readonly
2095     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2096       .removeAttribute(llvm::Attribute::ReadNone);
2097     break;
2098   }
2099 
2100   case ABIArgInfo::CoerceAndExpand:
2101     break;
2102 
2103   case ABIArgInfo::Expand:
2104     llvm_unreachable("Invalid ABI kind for return argument");
2105   }
2106 
2107   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2108     QualType PTy = RefTy->getPointeeType();
2109     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2110       RetAttrs.addDereferenceableAttr(
2111           getMinimumObjectSize(PTy).getQuantity());
2112     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2113         !CodeGenOpts.NullPointerIsValid)
2114       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2115     if (PTy->isObjectType()) {
2116       llvm::Align Alignment =
2117           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2118       RetAttrs.addAlignmentAttr(Alignment);
2119     }
2120   }
2121 
2122   bool hasUsedSRet = false;
2123   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2124 
2125   // Attach attributes to sret.
2126   if (IRFunctionArgs.hasSRetArg()) {
2127     llvm::AttrBuilder SRETAttrs;
2128     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2129     hasUsedSRet = true;
2130     if (RetAI.getInReg())
2131       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2132     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2133     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2134         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2135   }
2136 
2137   // Attach attributes to inalloca argument.
2138   if (IRFunctionArgs.hasInallocaArg()) {
2139     llvm::AttrBuilder Attrs;
2140     Attrs.addAttribute(llvm::Attribute::InAlloca);
2141     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2142         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2143   }
2144 
2145   unsigned ArgNo = 0;
2146   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2147                                           E = FI.arg_end();
2148        I != E; ++I, ++ArgNo) {
2149     QualType ParamType = I->type;
2150     const ABIArgInfo &AI = I->info;
2151     llvm::AttrBuilder Attrs;
2152 
2153     // Add attribute for padding argument, if necessary.
2154     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2155       if (AI.getPaddingInReg()) {
2156         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2157             llvm::AttributeSet::get(
2158                 getLLVMContext(),
2159                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2160       }
2161     }
2162 
2163     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2164     // have the corresponding parameter variable.  It doesn't make
2165     // sense to do it here because parameters are so messed up.
2166     switch (AI.getKind()) {
2167     case ABIArgInfo::Extend:
2168       if (AI.isSignExt())
2169         Attrs.addAttribute(llvm::Attribute::SExt);
2170       else
2171         Attrs.addAttribute(llvm::Attribute::ZExt);
2172       LLVM_FALLTHROUGH;
2173     case ABIArgInfo::Direct:
2174       if (ArgNo == 0 && FI.isChainCall())
2175         Attrs.addAttribute(llvm::Attribute::Nest);
2176       else if (AI.getInReg())
2177         Attrs.addAttribute(llvm::Attribute::InReg);
2178       break;
2179 
2180     case ABIArgInfo::Indirect: {
2181       if (AI.getInReg())
2182         Attrs.addAttribute(llvm::Attribute::InReg);
2183 
2184       if (AI.getIndirectByVal())
2185         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2186 
2187       CharUnits Align = AI.getIndirectAlign();
2188 
2189       // In a byval argument, it is important that the required
2190       // alignment of the type is honored, as LLVM might be creating a
2191       // *new* stack object, and needs to know what alignment to give
2192       // it. (Sometimes it can deduce a sensible alignment on its own,
2193       // but not if clang decides it must emit a packed struct, or the
2194       // user specifies increased alignment requirements.)
2195       //
2196       // This is different from indirect *not* byval, where the object
2197       // exists already, and the align attribute is purely
2198       // informative.
2199       assert(!Align.isZero());
2200 
2201       // For now, only add this when we have a byval argument.
2202       // TODO: be less lazy about updating test cases.
2203       if (AI.getIndirectByVal())
2204         Attrs.addAlignmentAttr(Align.getQuantity());
2205 
2206       // byval disables readnone and readonly.
2207       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2208         .removeAttribute(llvm::Attribute::ReadNone);
2209       break;
2210     }
2211     case ABIArgInfo::Ignore:
2212     case ABIArgInfo::Expand:
2213     case ABIArgInfo::CoerceAndExpand:
2214       break;
2215 
2216     case ABIArgInfo::InAlloca:
2217       // inalloca disables readnone and readonly.
2218       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2219           .removeAttribute(llvm::Attribute::ReadNone);
2220       continue;
2221     }
2222 
2223     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2224       QualType PTy = RefTy->getPointeeType();
2225       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2226         Attrs.addDereferenceableAttr(
2227             getMinimumObjectSize(PTy).getQuantity());
2228       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2229           !CodeGenOpts.NullPointerIsValid)
2230         Attrs.addAttribute(llvm::Attribute::NonNull);
2231       if (PTy->isObjectType()) {
2232         llvm::Align Alignment =
2233             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2234         Attrs.addAlignmentAttr(Alignment);
2235       }
2236     }
2237 
2238     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2239     case ParameterABI::Ordinary:
2240       break;
2241 
2242     case ParameterABI::SwiftIndirectResult: {
2243       // Add 'sret' if we haven't already used it for something, but
2244       // only if the result is void.
2245       if (!hasUsedSRet && RetTy->isVoidType()) {
2246         Attrs.addAttribute(llvm::Attribute::StructRet);
2247         hasUsedSRet = true;
2248       }
2249 
2250       // Add 'noalias' in either case.
2251       Attrs.addAttribute(llvm::Attribute::NoAlias);
2252 
2253       // Add 'dereferenceable' and 'alignment'.
2254       auto PTy = ParamType->getPointeeType();
2255       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2256         auto info = getContext().getTypeInfoInChars(PTy);
2257         Attrs.addDereferenceableAttr(info.first.getQuantity());
2258         Attrs.addAlignmentAttr(info.second.getAsAlign());
2259       }
2260       break;
2261     }
2262 
2263     case ParameterABI::SwiftErrorResult:
2264       Attrs.addAttribute(llvm::Attribute::SwiftError);
2265       break;
2266 
2267     case ParameterABI::SwiftContext:
2268       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2269       break;
2270     }
2271 
2272     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2273       Attrs.addAttribute(llvm::Attribute::NoCapture);
2274 
2275     if (Attrs.hasAttributes()) {
2276       unsigned FirstIRArg, NumIRArgs;
2277       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2278       for (unsigned i = 0; i < NumIRArgs; i++)
2279         ArgAttrs[FirstIRArg + i] =
2280             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2281     }
2282   }
2283   assert(ArgNo == FI.arg_size());
2284 
2285   AttrList = llvm::AttributeList::get(
2286       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2287       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2288 }
2289 
2290 /// An argument came in as a promoted argument; demote it back to its
2291 /// declared type.
2292 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2293                                          const VarDecl *var,
2294                                          llvm::Value *value) {
2295   llvm::Type *varType = CGF.ConvertType(var->getType());
2296 
2297   // This can happen with promotions that actually don't change the
2298   // underlying type, like the enum promotions.
2299   if (value->getType() == varType) return value;
2300 
2301   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2302          && "unexpected promotion type");
2303 
2304   if (isa<llvm::IntegerType>(varType))
2305     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2306 
2307   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2308 }
2309 
2310 /// Returns the attribute (either parameter attribute, or function
2311 /// attribute), which declares argument ArgNo to be non-null.
2312 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2313                                          QualType ArgType, unsigned ArgNo) {
2314   // FIXME: __attribute__((nonnull)) can also be applied to:
2315   //   - references to pointers, where the pointee is known to be
2316   //     nonnull (apparently a Clang extension)
2317   //   - transparent unions containing pointers
2318   // In the former case, LLVM IR cannot represent the constraint. In
2319   // the latter case, we have no guarantee that the transparent union
2320   // is in fact passed as a pointer.
2321   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2322     return nullptr;
2323   // First, check attribute on parameter itself.
2324   if (PVD) {
2325     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2326       return ParmNNAttr;
2327   }
2328   // Check function attributes.
2329   if (!FD)
2330     return nullptr;
2331   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2332     if (NNAttr->isNonNull(ArgNo))
2333       return NNAttr;
2334   }
2335   return nullptr;
2336 }
2337 
2338 namespace {
2339   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2340     Address Temp;
2341     Address Arg;
2342     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2343     void Emit(CodeGenFunction &CGF, Flags flags) override {
2344       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2345       CGF.Builder.CreateStore(errorValue, Arg);
2346     }
2347   };
2348 }
2349 
2350 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2351                                          llvm::Function *Fn,
2352                                          const FunctionArgList &Args) {
2353   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2354     // Naked functions don't have prologues.
2355     return;
2356 
2357   // If this is an implicit-return-zero function, go ahead and
2358   // initialize the return value.  TODO: it might be nice to have
2359   // a more general mechanism for this that didn't require synthesized
2360   // return statements.
2361   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2362     if (FD->hasImplicitReturnZero()) {
2363       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2364       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2365       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2366       Builder.CreateStore(Zero, ReturnValue);
2367     }
2368   }
2369 
2370   // FIXME: We no longer need the types from FunctionArgList; lift up and
2371   // simplify.
2372 
2373   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2374   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2375 
2376   // If we're using inalloca, all the memory arguments are GEPs off of the last
2377   // parameter, which is a pointer to the complete memory area.
2378   Address ArgStruct = Address::invalid();
2379   if (IRFunctionArgs.hasInallocaArg()) {
2380     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2381                         FI.getArgStructAlignment());
2382 
2383     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2384   }
2385 
2386   // Name the struct return parameter.
2387   if (IRFunctionArgs.hasSRetArg()) {
2388     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2389     AI->setName("agg.result");
2390     AI->addAttr(llvm::Attribute::NoAlias);
2391   }
2392 
2393   // Track if we received the parameter as a pointer (indirect, byval, or
2394   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2395   // into a local alloca for us.
2396   SmallVector<ParamValue, 16> ArgVals;
2397   ArgVals.reserve(Args.size());
2398 
2399   // Create a pointer value for every parameter declaration.  This usually
2400   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2401   // any cleanups or do anything that might unwind.  We do that separately, so
2402   // we can push the cleanups in the correct order for the ABI.
2403   assert(FI.arg_size() == Args.size() &&
2404          "Mismatch between function signature & arguments.");
2405   unsigned ArgNo = 0;
2406   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2407   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2408        i != e; ++i, ++info_it, ++ArgNo) {
2409     const VarDecl *Arg = *i;
2410     const ABIArgInfo &ArgI = info_it->info;
2411 
2412     bool isPromoted =
2413       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2414     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2415     // the parameter is promoted. In this case we convert to
2416     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2417     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2418     assert(hasScalarEvaluationKind(Ty) ==
2419            hasScalarEvaluationKind(Arg->getType()));
2420 
2421     unsigned FirstIRArg, NumIRArgs;
2422     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2423 
2424     switch (ArgI.getKind()) {
2425     case ABIArgInfo::InAlloca: {
2426       assert(NumIRArgs == 0);
2427       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2428       Address V =
2429           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2430       if (ArgI.getInAllocaIndirect())
2431         V = Address(Builder.CreateLoad(V),
2432                     getContext().getTypeAlignInChars(Ty));
2433       ArgVals.push_back(ParamValue::forIndirect(V));
2434       break;
2435     }
2436 
2437     case ABIArgInfo::Indirect: {
2438       assert(NumIRArgs == 1);
2439       Address ParamAddr =
2440           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2441 
2442       if (!hasScalarEvaluationKind(Ty)) {
2443         // Aggregates and complex variables are accessed by reference.  All we
2444         // need to do is realign the value, if requested.
2445         Address V = ParamAddr;
2446         if (ArgI.getIndirectRealign()) {
2447           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2448 
2449           // Copy from the incoming argument pointer to the temporary with the
2450           // appropriate alignment.
2451           //
2452           // FIXME: We should have a common utility for generating an aggregate
2453           // copy.
2454           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2455           Builder.CreateMemCpy(
2456               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2457               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2458               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2459           V = AlignedTemp;
2460         }
2461         ArgVals.push_back(ParamValue::forIndirect(V));
2462       } else {
2463         // Load scalar value from indirect argument.
2464         llvm::Value *V =
2465             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2466 
2467         if (isPromoted)
2468           V = emitArgumentDemotion(*this, Arg, V);
2469         ArgVals.push_back(ParamValue::forDirect(V));
2470       }
2471       break;
2472     }
2473 
2474     case ABIArgInfo::Extend:
2475     case ABIArgInfo::Direct: {
2476       auto AI = Fn->getArg(FirstIRArg);
2477       llvm::Type *LTy = ConvertType(Arg->getType());
2478 
2479       // Prepare parameter attributes. So far, only attributes for pointer
2480       // parameters are prepared. See
2481       // http://llvm.org/docs/LangRef.html#paramattrs.
2482       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2483           ArgI.getCoerceToType()->isPointerTy()) {
2484         assert(NumIRArgs == 1);
2485 
2486         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2487           // Set `nonnull` attribute if any.
2488           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2489                              PVD->getFunctionScopeIndex()) &&
2490               !CGM.getCodeGenOpts().NullPointerIsValid)
2491             AI->addAttr(llvm::Attribute::NonNull);
2492 
2493           QualType OTy = PVD->getOriginalType();
2494           if (const auto *ArrTy =
2495               getContext().getAsConstantArrayType(OTy)) {
2496             // A C99 array parameter declaration with the static keyword also
2497             // indicates dereferenceability, and if the size is constant we can
2498             // use the dereferenceable attribute (which requires the size in
2499             // bytes).
2500             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2501               QualType ETy = ArrTy->getElementType();
2502               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2503               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2504                   ArrSize) {
2505                 llvm::AttrBuilder Attrs;
2506                 Attrs.addDereferenceableAttr(
2507                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2508                     ArrSize);
2509                 AI->addAttrs(Attrs);
2510               } else if (getContext().getTargetInfo().getNullPointerValue(
2511                              ETy.getAddressSpace()) == 0 &&
2512                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2513                 AI->addAttr(llvm::Attribute::NonNull);
2514               }
2515             }
2516           } else if (const auto *ArrTy =
2517                      getContext().getAsVariableArrayType(OTy)) {
2518             // For C99 VLAs with the static keyword, we don't know the size so
2519             // we can't use the dereferenceable attribute, but in addrspace(0)
2520             // we know that it must be nonnull.
2521             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2522                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2523                 !CGM.getCodeGenOpts().NullPointerIsValid)
2524               AI->addAttr(llvm::Attribute::NonNull);
2525           }
2526 
2527           // Set `align` attribute if any.
2528           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2529           if (!AVAttr)
2530             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2531               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2532           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2533             // If alignment-assumption sanitizer is enabled, we do *not* add
2534             // alignment attribute here, but emit normal alignment assumption,
2535             // so the UBSAN check could function.
2536             llvm::ConstantInt *AlignmentCI =
2537                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2538             unsigned AlignmentInt =
2539                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2540             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2541               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2542               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2543                   llvm::Align(AlignmentInt)));
2544             }
2545           }
2546         }
2547 
2548         // Set 'noalias' if an argument type has the `restrict` qualifier.
2549         if (Arg->getType().isRestrictQualified())
2550           AI->addAttr(llvm::Attribute::NoAlias);
2551       }
2552 
2553       // Prepare the argument value. If we have the trivial case, handle it
2554       // with no muss and fuss.
2555       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2556           ArgI.getCoerceToType() == ConvertType(Ty) &&
2557           ArgI.getDirectOffset() == 0) {
2558         assert(NumIRArgs == 1);
2559 
2560         // LLVM expects swifterror parameters to be used in very restricted
2561         // ways.  Copy the value into a less-restricted temporary.
2562         llvm::Value *V = AI;
2563         if (FI.getExtParameterInfo(ArgNo).getABI()
2564               == ParameterABI::SwiftErrorResult) {
2565           QualType pointeeTy = Ty->getPointeeType();
2566           assert(pointeeTy->isPointerType());
2567           Address temp =
2568             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2569           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2570           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2571           Builder.CreateStore(incomingErrorValue, temp);
2572           V = temp.getPointer();
2573 
2574           // Push a cleanup to copy the value back at the end of the function.
2575           // The convention does not guarantee that the value will be written
2576           // back if the function exits with an unwind exception.
2577           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2578         }
2579 
2580         // Ensure the argument is the correct type.
2581         if (V->getType() != ArgI.getCoerceToType())
2582           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2583 
2584         if (isPromoted)
2585           V = emitArgumentDemotion(*this, Arg, V);
2586 
2587         // Because of merging of function types from multiple decls it is
2588         // possible for the type of an argument to not match the corresponding
2589         // type in the function type. Since we are codegening the callee
2590         // in here, add a cast to the argument type.
2591         llvm::Type *LTy = ConvertType(Arg->getType());
2592         if (V->getType() != LTy)
2593           V = Builder.CreateBitCast(V, LTy);
2594 
2595         ArgVals.push_back(ParamValue::forDirect(V));
2596         break;
2597       }
2598 
2599       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2600                                      Arg->getName());
2601 
2602       // Pointer to store into.
2603       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2604 
2605       // Fast-isel and the optimizer generally like scalar values better than
2606       // FCAs, so we flatten them if this is safe to do for this argument.
2607       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2608       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2609           STy->getNumElements() > 1) {
2610         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2611         llvm::Type *DstTy = Ptr.getElementType();
2612         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2613 
2614         Address AddrToStoreInto = Address::invalid();
2615         if (SrcSize <= DstSize) {
2616           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2617         } else {
2618           AddrToStoreInto =
2619             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2620         }
2621 
2622         assert(STy->getNumElements() == NumIRArgs);
2623         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2624           auto AI = Fn->getArg(FirstIRArg + i);
2625           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2626           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2627           Builder.CreateStore(AI, EltPtr);
2628         }
2629 
2630         if (SrcSize > DstSize) {
2631           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2632         }
2633 
2634       } else {
2635         // Simple case, just do a coerced store of the argument into the alloca.
2636         assert(NumIRArgs == 1);
2637         auto AI = Fn->getArg(FirstIRArg);
2638         AI->setName(Arg->getName() + ".coerce");
2639         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2640       }
2641 
2642       // Match to what EmitParmDecl is expecting for this type.
2643       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2644         llvm::Value *V =
2645             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2646         if (isPromoted)
2647           V = emitArgumentDemotion(*this, Arg, V);
2648         ArgVals.push_back(ParamValue::forDirect(V));
2649       } else {
2650         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2651       }
2652       break;
2653     }
2654 
2655     case ABIArgInfo::CoerceAndExpand: {
2656       // Reconstruct into a temporary.
2657       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2658       ArgVals.push_back(ParamValue::forIndirect(alloca));
2659 
2660       auto coercionType = ArgI.getCoerceAndExpandType();
2661       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2662 
2663       unsigned argIndex = FirstIRArg;
2664       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2665         llvm::Type *eltType = coercionType->getElementType(i);
2666         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2667           continue;
2668 
2669         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2670         auto elt = Fn->getArg(argIndex++);
2671         Builder.CreateStore(elt, eltAddr);
2672       }
2673       assert(argIndex == FirstIRArg + NumIRArgs);
2674       break;
2675     }
2676 
2677     case ABIArgInfo::Expand: {
2678       // If this structure was expanded into multiple arguments then
2679       // we need to create a temporary and reconstruct it from the
2680       // arguments.
2681       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2682       LValue LV = MakeAddrLValue(Alloca, Ty);
2683       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2684 
2685       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2686       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2687       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2688       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2689         auto AI = Fn->getArg(FirstIRArg + i);
2690         AI->setName(Arg->getName() + "." + Twine(i));
2691       }
2692       break;
2693     }
2694 
2695     case ABIArgInfo::Ignore:
2696       assert(NumIRArgs == 0);
2697       // Initialize the local variable appropriately.
2698       if (!hasScalarEvaluationKind(Ty)) {
2699         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2700       } else {
2701         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2702         ArgVals.push_back(ParamValue::forDirect(U));
2703       }
2704       break;
2705     }
2706   }
2707 
2708   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2709     for (int I = Args.size() - 1; I >= 0; --I)
2710       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2711   } else {
2712     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2713       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2714   }
2715 }
2716 
2717 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2718   while (insn->use_empty()) {
2719     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2720     if (!bitcast) return;
2721 
2722     // This is "safe" because we would have used a ConstantExpr otherwise.
2723     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2724     bitcast->eraseFromParent();
2725   }
2726 }
2727 
2728 /// Try to emit a fused autorelease of a return result.
2729 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2730                                                     llvm::Value *result) {
2731   // We must be immediately followed the cast.
2732   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2733   if (BB->empty()) return nullptr;
2734   if (&BB->back() != result) return nullptr;
2735 
2736   llvm::Type *resultType = result->getType();
2737 
2738   // result is in a BasicBlock and is therefore an Instruction.
2739   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2740 
2741   SmallVector<llvm::Instruction *, 4> InstsToKill;
2742 
2743   // Look for:
2744   //  %generator = bitcast %type1* %generator2 to %type2*
2745   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2746     // We would have emitted this as a constant if the operand weren't
2747     // an Instruction.
2748     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2749 
2750     // Require the generator to be immediately followed by the cast.
2751     if (generator->getNextNode() != bitcast)
2752       return nullptr;
2753 
2754     InstsToKill.push_back(bitcast);
2755   }
2756 
2757   // Look for:
2758   //   %generator = call i8* @objc_retain(i8* %originalResult)
2759   // or
2760   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2761   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2762   if (!call) return nullptr;
2763 
2764   bool doRetainAutorelease;
2765 
2766   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2767     doRetainAutorelease = true;
2768   } else if (call->getCalledOperand() ==
2769              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2770     doRetainAutorelease = false;
2771 
2772     // If we emitted an assembly marker for this call (and the
2773     // ARCEntrypoints field should have been set if so), go looking
2774     // for that call.  If we can't find it, we can't do this
2775     // optimization.  But it should always be the immediately previous
2776     // instruction, unless we needed bitcasts around the call.
2777     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2778       llvm::Instruction *prev = call->getPrevNode();
2779       assert(prev);
2780       if (isa<llvm::BitCastInst>(prev)) {
2781         prev = prev->getPrevNode();
2782         assert(prev);
2783       }
2784       assert(isa<llvm::CallInst>(prev));
2785       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2786              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2787       InstsToKill.push_back(prev);
2788     }
2789   } else {
2790     return nullptr;
2791   }
2792 
2793   result = call->getArgOperand(0);
2794   InstsToKill.push_back(call);
2795 
2796   // Keep killing bitcasts, for sanity.  Note that we no longer care
2797   // about precise ordering as long as there's exactly one use.
2798   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2799     if (!bitcast->hasOneUse()) break;
2800     InstsToKill.push_back(bitcast);
2801     result = bitcast->getOperand(0);
2802   }
2803 
2804   // Delete all the unnecessary instructions, from latest to earliest.
2805   for (auto *I : InstsToKill)
2806     I->eraseFromParent();
2807 
2808   // Do the fused retain/autorelease if we were asked to.
2809   if (doRetainAutorelease)
2810     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2811 
2812   // Cast back to the result type.
2813   return CGF.Builder.CreateBitCast(result, resultType);
2814 }
2815 
2816 /// If this is a +1 of the value of an immutable 'self', remove it.
2817 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2818                                           llvm::Value *result) {
2819   // This is only applicable to a method with an immutable 'self'.
2820   const ObjCMethodDecl *method =
2821     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2822   if (!method) return nullptr;
2823   const VarDecl *self = method->getSelfDecl();
2824   if (!self->getType().isConstQualified()) return nullptr;
2825 
2826   // Look for a retain call.
2827   llvm::CallInst *retainCall =
2828     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2829   if (!retainCall || retainCall->getCalledOperand() !=
2830                          CGF.CGM.getObjCEntrypoints().objc_retain)
2831     return nullptr;
2832 
2833   // Look for an ordinary load of 'self'.
2834   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2835   llvm::LoadInst *load =
2836     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2837   if (!load || load->isAtomic() || load->isVolatile() ||
2838       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2839     return nullptr;
2840 
2841   // Okay!  Burn it all down.  This relies for correctness on the
2842   // assumption that the retain is emitted as part of the return and
2843   // that thereafter everything is used "linearly".
2844   llvm::Type *resultType = result->getType();
2845   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2846   assert(retainCall->use_empty());
2847   retainCall->eraseFromParent();
2848   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2849 
2850   return CGF.Builder.CreateBitCast(load, resultType);
2851 }
2852 
2853 /// Emit an ARC autorelease of the result of a function.
2854 ///
2855 /// \return the value to actually return from the function
2856 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2857                                             llvm::Value *result) {
2858   // If we're returning 'self', kill the initial retain.  This is a
2859   // heuristic attempt to "encourage correctness" in the really unfortunate
2860   // case where we have a return of self during a dealloc and we desperately
2861   // need to avoid the possible autorelease.
2862   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2863     return self;
2864 
2865   // At -O0, try to emit a fused retain/autorelease.
2866   if (CGF.shouldUseFusedARCCalls())
2867     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2868       return fused;
2869 
2870   return CGF.EmitARCAutoreleaseReturnValue(result);
2871 }
2872 
2873 /// Heuristically search for a dominating store to the return-value slot.
2874 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2875   // Check if a User is a store which pointerOperand is the ReturnValue.
2876   // We are looking for stores to the ReturnValue, not for stores of the
2877   // ReturnValue to some other location.
2878   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2879     auto *SI = dyn_cast<llvm::StoreInst>(U);
2880     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2881       return nullptr;
2882     // These aren't actually possible for non-coerced returns, and we
2883     // only care about non-coerced returns on this code path.
2884     assert(!SI->isAtomic() && !SI->isVolatile());
2885     return SI;
2886   };
2887   // If there are multiple uses of the return-value slot, just check
2888   // for something immediately preceding the IP.  Sometimes this can
2889   // happen with how we generate implicit-returns; it can also happen
2890   // with noreturn cleanups.
2891   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2892     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2893     if (IP->empty()) return nullptr;
2894     llvm::Instruction *I = &IP->back();
2895 
2896     // Skip lifetime markers
2897     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2898                                             IE = IP->rend();
2899          II != IE; ++II) {
2900       if (llvm::IntrinsicInst *Intrinsic =
2901               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2902         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2903           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2904           ++II;
2905           if (II == IE)
2906             break;
2907           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2908             continue;
2909         }
2910       }
2911       I = &*II;
2912       break;
2913     }
2914 
2915     return GetStoreIfValid(I);
2916   }
2917 
2918   llvm::StoreInst *store =
2919       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2920   if (!store) return nullptr;
2921 
2922   // Now do a first-and-dirty dominance check: just walk up the
2923   // single-predecessors chain from the current insertion point.
2924   llvm::BasicBlock *StoreBB = store->getParent();
2925   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2926   while (IP != StoreBB) {
2927     if (!(IP = IP->getSinglePredecessor()))
2928       return nullptr;
2929   }
2930 
2931   // Okay, the store's basic block dominates the insertion point; we
2932   // can do our thing.
2933   return store;
2934 }
2935 
2936 // Helper functions for EmitCMSEClearRecord
2937 
2938 // Set the bits corresponding to a field having width `BitWidth` and located at
2939 // offset `BitOffset` (from the least significant bit) within a storage unit of
2940 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2941 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2942 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2943                         int BitWidth, int CharWidth) {
2944   assert(CharWidth <= 64);
2945   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2946 
2947   int Pos = 0;
2948   if (BitOffset >= CharWidth) {
2949     Pos += BitOffset / CharWidth;
2950     BitOffset = BitOffset % CharWidth;
2951   }
2952 
2953   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2954   if (BitOffset + BitWidth >= CharWidth) {
2955     Bits[Pos++] |= (Used << BitOffset) & Used;
2956     BitWidth -= CharWidth - BitOffset;
2957     BitOffset = 0;
2958   }
2959 
2960   while (BitWidth >= CharWidth) {
2961     Bits[Pos++] = Used;
2962     BitWidth -= CharWidth;
2963   }
2964 
2965   if (BitWidth > 0)
2966     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
2967 }
2968 
2969 // Set the bits corresponding to a field having width `BitWidth` and located at
2970 // offset `BitOffset` (from the least significant bit) within a storage unit of
2971 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
2972 // `Bits` corresponds to one target byte. Use target endian layout.
2973 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
2974                         int StorageSize, int BitOffset, int BitWidth,
2975                         int CharWidth, bool BigEndian) {
2976 
2977   SmallVector<uint64_t, 8> TmpBits(StorageSize);
2978   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
2979 
2980   if (BigEndian)
2981     std::reverse(TmpBits.begin(), TmpBits.end());
2982 
2983   for (uint64_t V : TmpBits)
2984     Bits[StorageOffset++] |= V;
2985 }
2986 
2987 static void setUsedBits(CodeGenModule &, QualType, int,
2988                         SmallVectorImpl<uint64_t> &);
2989 
2990 // Set the bits in `Bits`, which correspond to the value representations of
2991 // the actual members of the record type `RTy`. Note that this function does
2992 // not handle base classes, virtual tables, etc, since they cannot happen in
2993 // CMSE function arguments or return. The bit mask corresponds to the target
2994 // memory layout, i.e. it's endian dependent.
2995 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
2996                         SmallVectorImpl<uint64_t> &Bits) {
2997   ASTContext &Context = CGM.getContext();
2998   int CharWidth = Context.getCharWidth();
2999   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3000   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3001   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3002 
3003   int Idx = 0;
3004   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3005     const FieldDecl *F = *I;
3006 
3007     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3008         F->getType()->isIncompleteArrayType())
3009       continue;
3010 
3011     if (F->isBitField()) {
3012       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3013       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3014                   BFI.StorageSize / CharWidth, BFI.Offset,
3015                   BFI.Size, CharWidth,
3016                   CGM.getDataLayout().isBigEndian());
3017       continue;
3018     }
3019 
3020     setUsedBits(CGM, F->getType(),
3021                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3022   }
3023 }
3024 
3025 // Set the bits in `Bits`, which correspond to the value representations of
3026 // the elements of an array type `ATy`.
3027 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3028                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3029   const ASTContext &Context = CGM.getContext();
3030 
3031   QualType ETy = Context.getBaseElementType(ATy);
3032   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3033   SmallVector<uint64_t, 4> TmpBits(Size);
3034   setUsedBits(CGM, ETy, 0, TmpBits);
3035 
3036   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3037     auto Src = TmpBits.begin();
3038     auto Dst = Bits.begin() + Offset + I * Size;
3039     for (int J = 0; J < Size; ++J)
3040       *Dst++ |= *Src++;
3041   }
3042 }
3043 
3044 // Set the bits in `Bits`, which correspond to the value representations of
3045 // the type `QTy`.
3046 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3047                         SmallVectorImpl<uint64_t> &Bits) {
3048   if (const auto *RTy = QTy->getAs<RecordType>())
3049     return setUsedBits(CGM, RTy, Offset, Bits);
3050 
3051   ASTContext &Context = CGM.getContext();
3052   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3053     return setUsedBits(CGM, ATy, Offset, Bits);
3054 
3055   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3056   if (Size <= 0)
3057     return;
3058 
3059   std::fill_n(Bits.begin() + Offset, Size,
3060               (uint64_t(1) << Context.getCharWidth()) - 1);
3061 }
3062 
3063 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3064                                    int Pos, int Size, int CharWidth,
3065                                    bool BigEndian) {
3066   assert(Size > 0);
3067   uint64_t Mask = 0;
3068   if (BigEndian) {
3069     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3070          ++P)
3071       Mask = (Mask << CharWidth) | *P;
3072   } else {
3073     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3074     do
3075       Mask = (Mask << CharWidth) | *--P;
3076     while (P != End);
3077   }
3078   return Mask;
3079 }
3080 
3081 // Emit code to clear the bits in a record, which aren't a part of any user
3082 // declared member, when the record is a function return.
3083 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3084                                                   llvm::IntegerType *ITy,
3085                                                   QualType QTy) {
3086   assert(Src->getType() == ITy);
3087   assert(ITy->getScalarSizeInBits() <= 64);
3088 
3089   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3090   int Size = DataLayout.getTypeStoreSize(ITy);
3091   SmallVector<uint64_t, 4> Bits(Size);
3092   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3093 
3094   int CharWidth = CGM.getContext().getCharWidth();
3095   uint64_t Mask =
3096       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3097 
3098   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3099 }
3100 
3101 // Emit code to clear the bits in a record, which aren't a part of any user
3102 // declared member, when the record is a function argument.
3103 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3104                                                   llvm::ArrayType *ATy,
3105                                                   QualType QTy) {
3106   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3107   int Size = DataLayout.getTypeStoreSize(ATy);
3108   SmallVector<uint64_t, 16> Bits(Size);
3109   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3110 
3111   // Clear each element of the LLVM array.
3112   int CharWidth = CGM.getContext().getCharWidth();
3113   int CharsPerElt =
3114       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3115   int MaskIndex = 0;
3116   llvm::Value *R = llvm::UndefValue::get(ATy);
3117   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3118     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3119                                        DataLayout.isBigEndian());
3120     MaskIndex += CharsPerElt;
3121     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3122     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3123     R = Builder.CreateInsertValue(R, T1, I);
3124   }
3125 
3126   return R;
3127 }
3128 
3129 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3130                                          bool EmitRetDbgLoc,
3131                                          SourceLocation EndLoc) {
3132   if (FI.isNoReturn()) {
3133     // Noreturn functions don't return.
3134     EmitUnreachable(EndLoc);
3135     return;
3136   }
3137 
3138   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3139     // Naked functions don't have epilogues.
3140     Builder.CreateUnreachable();
3141     return;
3142   }
3143 
3144   // Functions with no result always return void.
3145   if (!ReturnValue.isValid()) {
3146     Builder.CreateRetVoid();
3147     return;
3148   }
3149 
3150   llvm::DebugLoc RetDbgLoc;
3151   llvm::Value *RV = nullptr;
3152   QualType RetTy = FI.getReturnType();
3153   const ABIArgInfo &RetAI = FI.getReturnInfo();
3154 
3155   switch (RetAI.getKind()) {
3156   case ABIArgInfo::InAlloca:
3157     // Aggregrates get evaluated directly into the destination.  Sometimes we
3158     // need to return the sret value in a register, though.
3159     assert(hasAggregateEvaluationKind(RetTy));
3160     if (RetAI.getInAllocaSRet()) {
3161       llvm::Function::arg_iterator EI = CurFn->arg_end();
3162       --EI;
3163       llvm::Value *ArgStruct = &*EI;
3164       llvm::Value *SRet = Builder.CreateStructGEP(
3165           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3166       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3167     }
3168     break;
3169 
3170   case ABIArgInfo::Indirect: {
3171     auto AI = CurFn->arg_begin();
3172     if (RetAI.isSRetAfterThis())
3173       ++AI;
3174     switch (getEvaluationKind(RetTy)) {
3175     case TEK_Complex: {
3176       ComplexPairTy RT =
3177         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3178       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3179                          /*isInit*/ true);
3180       break;
3181     }
3182     case TEK_Aggregate:
3183       // Do nothing; aggregrates get evaluated directly into the destination.
3184       break;
3185     case TEK_Scalar:
3186       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3187                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3188                         /*isInit*/ true);
3189       break;
3190     }
3191     break;
3192   }
3193 
3194   case ABIArgInfo::Extend:
3195   case ABIArgInfo::Direct:
3196     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3197         RetAI.getDirectOffset() == 0) {
3198       // The internal return value temp always will have pointer-to-return-type
3199       // type, just do a load.
3200 
3201       // If there is a dominating store to ReturnValue, we can elide
3202       // the load, zap the store, and usually zap the alloca.
3203       if (llvm::StoreInst *SI =
3204               findDominatingStoreToReturnValue(*this)) {
3205         // Reuse the debug location from the store unless there is
3206         // cleanup code to be emitted between the store and return
3207         // instruction.
3208         if (EmitRetDbgLoc && !AutoreleaseResult)
3209           RetDbgLoc = SI->getDebugLoc();
3210         // Get the stored value and nuke the now-dead store.
3211         RV = SI->getValueOperand();
3212         SI->eraseFromParent();
3213 
3214       // Otherwise, we have to do a simple load.
3215       } else {
3216         RV = Builder.CreateLoad(ReturnValue);
3217       }
3218     } else {
3219       // If the value is offset in memory, apply the offset now.
3220       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3221 
3222       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3223     }
3224 
3225     // In ARC, end functions that return a retainable type with a call
3226     // to objc_autoreleaseReturnValue.
3227     if (AutoreleaseResult) {
3228 #ifndef NDEBUG
3229       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3230       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3231       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3232       // CurCodeDecl or BlockInfo.
3233       QualType RT;
3234 
3235       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3236         RT = FD->getReturnType();
3237       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3238         RT = MD->getReturnType();
3239       else if (isa<BlockDecl>(CurCodeDecl))
3240         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3241       else
3242         llvm_unreachable("Unexpected function/method type");
3243 
3244       assert(getLangOpts().ObjCAutoRefCount &&
3245              !FI.isReturnsRetained() &&
3246              RT->isObjCRetainableType());
3247 #endif
3248       RV = emitAutoreleaseOfResult(*this, RV);
3249     }
3250 
3251     break;
3252 
3253   case ABIArgInfo::Ignore:
3254     break;
3255 
3256   case ABIArgInfo::CoerceAndExpand: {
3257     auto coercionType = RetAI.getCoerceAndExpandType();
3258 
3259     // Load all of the coerced elements out into results.
3260     llvm::SmallVector<llvm::Value*, 4> results;
3261     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3262     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3263       auto coercedEltType = coercionType->getElementType(i);
3264       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3265         continue;
3266 
3267       auto eltAddr = Builder.CreateStructGEP(addr, i);
3268       auto elt = Builder.CreateLoad(eltAddr);
3269       results.push_back(elt);
3270     }
3271 
3272     // If we have one result, it's the single direct result type.
3273     if (results.size() == 1) {
3274       RV = results[0];
3275 
3276     // Otherwise, we need to make a first-class aggregate.
3277     } else {
3278       // Construct a return type that lacks padding elements.
3279       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3280 
3281       RV = llvm::UndefValue::get(returnType);
3282       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3283         RV = Builder.CreateInsertValue(RV, results[i], i);
3284       }
3285     }
3286     break;
3287   }
3288 
3289   case ABIArgInfo::Expand:
3290     llvm_unreachable("Invalid ABI kind for return argument");
3291   }
3292 
3293   llvm::Instruction *Ret;
3294   if (RV) {
3295     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3296       // For certain return types, clear padding bits, as they may reveal
3297       // sensitive information.
3298       // Small struct/union types are passed as integers.
3299       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3300       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3301         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3302     }
3303     EmitReturnValueCheck(RV);
3304     Ret = Builder.CreateRet(RV);
3305   } else {
3306     Ret = Builder.CreateRetVoid();
3307   }
3308 
3309   if (RetDbgLoc)
3310     Ret->setDebugLoc(std::move(RetDbgLoc));
3311 }
3312 
3313 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3314   // A current decl may not be available when emitting vtable thunks.
3315   if (!CurCodeDecl)
3316     return;
3317 
3318   // If the return block isn't reachable, neither is this check, so don't emit
3319   // it.
3320   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3321     return;
3322 
3323   ReturnsNonNullAttr *RetNNAttr = nullptr;
3324   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3325     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3326 
3327   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3328     return;
3329 
3330   // Prefer the returns_nonnull attribute if it's present.
3331   SourceLocation AttrLoc;
3332   SanitizerMask CheckKind;
3333   SanitizerHandler Handler;
3334   if (RetNNAttr) {
3335     assert(!requiresReturnValueNullabilityCheck() &&
3336            "Cannot check nullability and the nonnull attribute");
3337     AttrLoc = RetNNAttr->getLocation();
3338     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3339     Handler = SanitizerHandler::NonnullReturn;
3340   } else {
3341     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3342       if (auto *TSI = DD->getTypeSourceInfo())
3343         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3344           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3345     CheckKind = SanitizerKind::NullabilityReturn;
3346     Handler = SanitizerHandler::NullabilityReturn;
3347   }
3348 
3349   SanitizerScope SanScope(this);
3350 
3351   // Make sure the "return" source location is valid. If we're checking a
3352   // nullability annotation, make sure the preconditions for the check are met.
3353   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3354   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3355   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3356   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3357   if (requiresReturnValueNullabilityCheck())
3358     CanNullCheck =
3359         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3360   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3361   EmitBlock(Check);
3362 
3363   // Now do the null check.
3364   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3365   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3366   llvm::Value *DynamicData[] = {SLocPtr};
3367   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3368 
3369   EmitBlock(NoCheck);
3370 
3371 #ifndef NDEBUG
3372   // The return location should not be used after the check has been emitted.
3373   ReturnLocation = Address::invalid();
3374 #endif
3375 }
3376 
3377 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3378   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3379   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3380 }
3381 
3382 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3383                                           QualType Ty) {
3384   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3385   // placeholders.
3386   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3387   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3388   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3389 
3390   // FIXME: When we generate this IR in one pass, we shouldn't need
3391   // this win32-specific alignment hack.
3392   CharUnits Align = CharUnits::fromQuantity(4);
3393   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3394 
3395   return AggValueSlot::forAddr(Address(Placeholder, Align),
3396                                Ty.getQualifiers(),
3397                                AggValueSlot::IsNotDestructed,
3398                                AggValueSlot::DoesNotNeedGCBarriers,
3399                                AggValueSlot::IsNotAliased,
3400                                AggValueSlot::DoesNotOverlap);
3401 }
3402 
3403 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3404                                           const VarDecl *param,
3405                                           SourceLocation loc) {
3406   // StartFunction converted the ABI-lowered parameter(s) into a
3407   // local alloca.  We need to turn that into an r-value suitable
3408   // for EmitCall.
3409   Address local = GetAddrOfLocalVar(param);
3410 
3411   QualType type = param->getType();
3412 
3413   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3414     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3415   }
3416 
3417   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3418   // but the argument needs to be the original pointer.
3419   if (type->isReferenceType()) {
3420     args.add(RValue::get(Builder.CreateLoad(local)), type);
3421 
3422   // In ARC, move out of consumed arguments so that the release cleanup
3423   // entered by StartFunction doesn't cause an over-release.  This isn't
3424   // optimal -O0 code generation, but it should get cleaned up when
3425   // optimization is enabled.  This also assumes that delegate calls are
3426   // performed exactly once for a set of arguments, but that should be safe.
3427   } else if (getLangOpts().ObjCAutoRefCount &&
3428              param->hasAttr<NSConsumedAttr>() &&
3429              type->isObjCRetainableType()) {
3430     llvm::Value *ptr = Builder.CreateLoad(local);
3431     auto null =
3432       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3433     Builder.CreateStore(null, local);
3434     args.add(RValue::get(ptr), type);
3435 
3436   // For the most part, we just need to load the alloca, except that
3437   // aggregate r-values are actually pointers to temporaries.
3438   } else {
3439     args.add(convertTempToRValue(local, type, loc), type);
3440   }
3441 
3442   // Deactivate the cleanup for the callee-destructed param that was pushed.
3443   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3444       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3445       param->needsDestruction(getContext())) {
3446     EHScopeStack::stable_iterator cleanup =
3447         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3448     assert(cleanup.isValid() &&
3449            "cleanup for callee-destructed param not recorded");
3450     // This unreachable is a temporary marker which will be removed later.
3451     llvm::Instruction *isActive = Builder.CreateUnreachable();
3452     args.addArgCleanupDeactivation(cleanup, isActive);
3453   }
3454 }
3455 
3456 static bool isProvablyNull(llvm::Value *addr) {
3457   return isa<llvm::ConstantPointerNull>(addr);
3458 }
3459 
3460 /// Emit the actual writing-back of a writeback.
3461 static void emitWriteback(CodeGenFunction &CGF,
3462                           const CallArgList::Writeback &writeback) {
3463   const LValue &srcLV = writeback.Source;
3464   Address srcAddr = srcLV.getAddress(CGF);
3465   assert(!isProvablyNull(srcAddr.getPointer()) &&
3466          "shouldn't have writeback for provably null argument");
3467 
3468   llvm::BasicBlock *contBB = nullptr;
3469 
3470   // If the argument wasn't provably non-null, we need to null check
3471   // before doing the store.
3472   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3473                                               CGF.CGM.getDataLayout());
3474   if (!provablyNonNull) {
3475     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3476     contBB = CGF.createBasicBlock("icr.done");
3477 
3478     llvm::Value *isNull =
3479       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3480     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3481     CGF.EmitBlock(writebackBB);
3482   }
3483 
3484   // Load the value to writeback.
3485   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3486 
3487   // Cast it back, in case we're writing an id to a Foo* or something.
3488   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3489                                     "icr.writeback-cast");
3490 
3491   // Perform the writeback.
3492 
3493   // If we have a "to use" value, it's something we need to emit a use
3494   // of.  This has to be carefully threaded in: if it's done after the
3495   // release it's potentially undefined behavior (and the optimizer
3496   // will ignore it), and if it happens before the retain then the
3497   // optimizer could move the release there.
3498   if (writeback.ToUse) {
3499     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3500 
3501     // Retain the new value.  No need to block-copy here:  the block's
3502     // being passed up the stack.
3503     value = CGF.EmitARCRetainNonBlock(value);
3504 
3505     // Emit the intrinsic use here.
3506     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3507 
3508     // Load the old value (primitively).
3509     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3510 
3511     // Put the new value in place (primitively).
3512     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3513 
3514     // Release the old value.
3515     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3516 
3517   // Otherwise, we can just do a normal lvalue store.
3518   } else {
3519     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3520   }
3521 
3522   // Jump to the continuation block.
3523   if (!provablyNonNull)
3524     CGF.EmitBlock(contBB);
3525 }
3526 
3527 static void emitWritebacks(CodeGenFunction &CGF,
3528                            const CallArgList &args) {
3529   for (const auto &I : args.writebacks())
3530     emitWriteback(CGF, I);
3531 }
3532 
3533 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3534                                             const CallArgList &CallArgs) {
3535   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3536     CallArgs.getCleanupsToDeactivate();
3537   // Iterate in reverse to increase the likelihood of popping the cleanup.
3538   for (const auto &I : llvm::reverse(Cleanups)) {
3539     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3540     I.IsActiveIP->eraseFromParent();
3541   }
3542 }
3543 
3544 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3545   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3546     if (uop->getOpcode() == UO_AddrOf)
3547       return uop->getSubExpr();
3548   return nullptr;
3549 }
3550 
3551 /// Emit an argument that's being passed call-by-writeback.  That is,
3552 /// we are passing the address of an __autoreleased temporary; it
3553 /// might be copy-initialized with the current value of the given
3554 /// address, but it will definitely be copied out of after the call.
3555 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3556                              const ObjCIndirectCopyRestoreExpr *CRE) {
3557   LValue srcLV;
3558 
3559   // Make an optimistic effort to emit the address as an l-value.
3560   // This can fail if the argument expression is more complicated.
3561   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3562     srcLV = CGF.EmitLValue(lvExpr);
3563 
3564   // Otherwise, just emit it as a scalar.
3565   } else {
3566     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3567 
3568     QualType srcAddrType =
3569       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3570     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3571   }
3572   Address srcAddr = srcLV.getAddress(CGF);
3573 
3574   // The dest and src types don't necessarily match in LLVM terms
3575   // because of the crazy ObjC compatibility rules.
3576 
3577   llvm::PointerType *destType =
3578     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3579 
3580   // If the address is a constant null, just pass the appropriate null.
3581   if (isProvablyNull(srcAddr.getPointer())) {
3582     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3583              CRE->getType());
3584     return;
3585   }
3586 
3587   // Create the temporary.
3588   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3589                                       CGF.getPointerAlign(),
3590                                       "icr.temp");
3591   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3592   // and that cleanup will be conditional if we can't prove that the l-value
3593   // isn't null, so we need to register a dominating point so that the cleanups
3594   // system will make valid IR.
3595   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3596 
3597   // Zero-initialize it if we're not doing a copy-initialization.
3598   bool shouldCopy = CRE->shouldCopy();
3599   if (!shouldCopy) {
3600     llvm::Value *null =
3601       llvm::ConstantPointerNull::get(
3602         cast<llvm::PointerType>(destType->getElementType()));
3603     CGF.Builder.CreateStore(null, temp);
3604   }
3605 
3606   llvm::BasicBlock *contBB = nullptr;
3607   llvm::BasicBlock *originBB = nullptr;
3608 
3609   // If the address is *not* known to be non-null, we need to switch.
3610   llvm::Value *finalArgument;
3611 
3612   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3613                                               CGF.CGM.getDataLayout());
3614   if (provablyNonNull) {
3615     finalArgument = temp.getPointer();
3616   } else {
3617     llvm::Value *isNull =
3618       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3619 
3620     finalArgument = CGF.Builder.CreateSelect(isNull,
3621                                    llvm::ConstantPointerNull::get(destType),
3622                                              temp.getPointer(), "icr.argument");
3623 
3624     // If we need to copy, then the load has to be conditional, which
3625     // means we need control flow.
3626     if (shouldCopy) {
3627       originBB = CGF.Builder.GetInsertBlock();
3628       contBB = CGF.createBasicBlock("icr.cont");
3629       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3630       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3631       CGF.EmitBlock(copyBB);
3632       condEval.begin(CGF);
3633     }
3634   }
3635 
3636   llvm::Value *valueToUse = nullptr;
3637 
3638   // Perform a copy if necessary.
3639   if (shouldCopy) {
3640     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3641     assert(srcRV.isScalar());
3642 
3643     llvm::Value *src = srcRV.getScalarVal();
3644     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3645                                     "icr.cast");
3646 
3647     // Use an ordinary store, not a store-to-lvalue.
3648     CGF.Builder.CreateStore(src, temp);
3649 
3650     // If optimization is enabled, and the value was held in a
3651     // __strong variable, we need to tell the optimizer that this
3652     // value has to stay alive until we're doing the store back.
3653     // This is because the temporary is effectively unretained,
3654     // and so otherwise we can violate the high-level semantics.
3655     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3656         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3657       valueToUse = src;
3658     }
3659   }
3660 
3661   // Finish the control flow if we needed it.
3662   if (shouldCopy && !provablyNonNull) {
3663     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3664     CGF.EmitBlock(contBB);
3665 
3666     // Make a phi for the value to intrinsically use.
3667     if (valueToUse) {
3668       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3669                                                       "icr.to-use");
3670       phiToUse->addIncoming(valueToUse, copyBB);
3671       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3672                             originBB);
3673       valueToUse = phiToUse;
3674     }
3675 
3676     condEval.end(CGF);
3677   }
3678 
3679   args.addWriteback(srcLV, temp, valueToUse);
3680   args.add(RValue::get(finalArgument), CRE->getType());
3681 }
3682 
3683 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3684   assert(!StackBase);
3685 
3686   // Save the stack.
3687   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3688   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3689 }
3690 
3691 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3692   if (StackBase) {
3693     // Restore the stack after the call.
3694     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3695     CGF.Builder.CreateCall(F, StackBase);
3696   }
3697 }
3698 
3699 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3700                                           SourceLocation ArgLoc,
3701                                           AbstractCallee AC,
3702                                           unsigned ParmNum) {
3703   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3704                          SanOpts.has(SanitizerKind::NullabilityArg)))
3705     return;
3706 
3707   // The param decl may be missing in a variadic function.
3708   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3709   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3710 
3711   // Prefer the nonnull attribute if it's present.
3712   const NonNullAttr *NNAttr = nullptr;
3713   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3714     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3715 
3716   bool CanCheckNullability = false;
3717   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3718     auto Nullability = PVD->getType()->getNullability(getContext());
3719     CanCheckNullability = Nullability &&
3720                           *Nullability == NullabilityKind::NonNull &&
3721                           PVD->getTypeSourceInfo();
3722   }
3723 
3724   if (!NNAttr && !CanCheckNullability)
3725     return;
3726 
3727   SourceLocation AttrLoc;
3728   SanitizerMask CheckKind;
3729   SanitizerHandler Handler;
3730   if (NNAttr) {
3731     AttrLoc = NNAttr->getLocation();
3732     CheckKind = SanitizerKind::NonnullAttribute;
3733     Handler = SanitizerHandler::NonnullArg;
3734   } else {
3735     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3736     CheckKind = SanitizerKind::NullabilityArg;
3737     Handler = SanitizerHandler::NullabilityArg;
3738   }
3739 
3740   SanitizerScope SanScope(this);
3741   assert(RV.isScalar());
3742   llvm::Value *V = RV.getScalarVal();
3743   llvm::Value *Cond =
3744       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3745   llvm::Constant *StaticData[] = {
3746       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3747       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3748   };
3749   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3750 }
3751 
3752 void CodeGenFunction::EmitCallArgs(
3753     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3754     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3755     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3756   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3757 
3758   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3759   // because arguments are destroyed left to right in the callee. As a special
3760   // case, there are certain language constructs that require left-to-right
3761   // evaluation, and in those cases we consider the evaluation order requirement
3762   // to trump the "destruction order is reverse construction order" guarantee.
3763   bool LeftToRight =
3764       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3765           ? Order == EvaluationOrder::ForceLeftToRight
3766           : Order != EvaluationOrder::ForceRightToLeft;
3767 
3768   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3769                                          RValue EmittedArg) {
3770     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3771       return;
3772     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3773     if (PS == nullptr)
3774       return;
3775 
3776     const auto &Context = getContext();
3777     auto SizeTy = Context.getSizeType();
3778     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3779     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3780     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3781                                                      EmittedArg.getScalarVal(),
3782                                                      PS->isDynamic());
3783     Args.add(RValue::get(V), SizeTy);
3784     // If we're emitting args in reverse, be sure to do so with
3785     // pass_object_size, as well.
3786     if (!LeftToRight)
3787       std::swap(Args.back(), *(&Args.back() - 1));
3788   };
3789 
3790   // Insert a stack save if we're going to need any inalloca args.
3791   bool HasInAllocaArgs = false;
3792   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3793     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3794          I != E && !HasInAllocaArgs; ++I)
3795       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3796     if (HasInAllocaArgs) {
3797       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3798       Args.allocateArgumentMemory(*this);
3799     }
3800   }
3801 
3802   // Evaluate each argument in the appropriate order.
3803   size_t CallArgsStart = Args.size();
3804   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3805     unsigned Idx = LeftToRight ? I : E - I - 1;
3806     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3807     unsigned InitialArgSize = Args.size();
3808     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3809     // the argument and parameter match or the objc method is parameterized.
3810     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3811             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3812                                                 ArgTypes[Idx]) ||
3813             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3814              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3815            "Argument and parameter types don't match");
3816     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3817     // In particular, we depend on it being the last arg in Args, and the
3818     // objectsize bits depend on there only being one arg if !LeftToRight.
3819     assert(InitialArgSize + 1 == Args.size() &&
3820            "The code below depends on only adding one arg per EmitCallArg");
3821     (void)InitialArgSize;
3822     // Since pointer argument are never emitted as LValue, it is safe to emit
3823     // non-null argument check for r-value only.
3824     if (!Args.back().hasLValue()) {
3825       RValue RVArg = Args.back().getKnownRValue();
3826       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3827                           ParamsToSkip + Idx);
3828       // @llvm.objectsize should never have side-effects and shouldn't need
3829       // destruction/cleanups, so we can safely "emit" it after its arg,
3830       // regardless of right-to-leftness
3831       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3832     }
3833   }
3834 
3835   if (!LeftToRight) {
3836     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3837     // IR function.
3838     std::reverse(Args.begin() + CallArgsStart, Args.end());
3839   }
3840 }
3841 
3842 namespace {
3843 
3844 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3845   DestroyUnpassedArg(Address Addr, QualType Ty)
3846       : Addr(Addr), Ty(Ty) {}
3847 
3848   Address Addr;
3849   QualType Ty;
3850 
3851   void Emit(CodeGenFunction &CGF, Flags flags) override {
3852     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3853     if (DtorKind == QualType::DK_cxx_destructor) {
3854       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3855       assert(!Dtor->isTrivial());
3856       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3857                                 /*Delegating=*/false, Addr, Ty);
3858     } else {
3859       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3860     }
3861   }
3862 };
3863 
3864 struct DisableDebugLocationUpdates {
3865   CodeGenFunction &CGF;
3866   bool disabledDebugInfo;
3867   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3868     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3869       CGF.disableDebugInfo();
3870   }
3871   ~DisableDebugLocationUpdates() {
3872     if (disabledDebugInfo)
3873       CGF.enableDebugInfo();
3874   }
3875 };
3876 
3877 } // end anonymous namespace
3878 
3879 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3880   if (!HasLV)
3881     return RV;
3882   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3883   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3884                         LV.isVolatile());
3885   IsUsed = true;
3886   return RValue::getAggregate(Copy.getAddress(CGF));
3887 }
3888 
3889 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3890   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3891   if (!HasLV && RV.isScalar())
3892     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3893   else if (!HasLV && RV.isComplex())
3894     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3895   else {
3896     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3897     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3898     // We assume that call args are never copied into subobjects.
3899     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3900                           HasLV ? LV.isVolatileQualified()
3901                                 : RV.isVolatileQualified());
3902   }
3903   IsUsed = true;
3904 }
3905 
3906 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3907                                   QualType type) {
3908   DisableDebugLocationUpdates Dis(*this, E);
3909   if (const ObjCIndirectCopyRestoreExpr *CRE
3910         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3911     assert(getLangOpts().ObjCAutoRefCount);
3912     return emitWritebackArg(*this, args, CRE);
3913   }
3914 
3915   assert(type->isReferenceType() == E->isGLValue() &&
3916          "reference binding to unmaterialized r-value!");
3917 
3918   if (E->isGLValue()) {
3919     assert(E->getObjectKind() == OK_Ordinary);
3920     return args.add(EmitReferenceBindingToExpr(E), type);
3921   }
3922 
3923   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3924 
3925   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3926   // However, we still have to push an EH-only cleanup in case we unwind before
3927   // we make it to the call.
3928   if (HasAggregateEvalKind &&
3929       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3930     // If we're using inalloca, use the argument memory.  Otherwise, use a
3931     // temporary.
3932     AggValueSlot Slot;
3933     if (args.isUsingInAlloca())
3934       Slot = createPlaceholderSlot(*this, type);
3935     else
3936       Slot = CreateAggTemp(type, "agg.tmp");
3937 
3938     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3939     if (const auto *RD = type->getAsCXXRecordDecl())
3940       DestroyedInCallee = RD->hasNonTrivialDestructor();
3941     else
3942       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3943 
3944     if (DestroyedInCallee)
3945       Slot.setExternallyDestructed();
3946 
3947     EmitAggExpr(E, Slot);
3948     RValue RV = Slot.asRValue();
3949     args.add(RV, type);
3950 
3951     if (DestroyedInCallee && NeedsEHCleanup) {
3952       // Create a no-op GEP between the placeholder and the cleanup so we can
3953       // RAUW it successfully.  It also serves as a marker of the first
3954       // instruction where the cleanup is active.
3955       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3956                                               type);
3957       // This unreachable is a temporary marker which will be removed later.
3958       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3959       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3960     }
3961     return;
3962   }
3963 
3964   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3965       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3966     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3967     assert(L.isSimple());
3968     args.addUncopiedAggregate(L, type);
3969     return;
3970   }
3971 
3972   args.add(EmitAnyExprToTemp(E), type);
3973 }
3974 
3975 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3976   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3977   // implicitly widens null pointer constants that are arguments to varargs
3978   // functions to pointer-sized ints.
3979   if (!getTarget().getTriple().isOSWindows())
3980     return Arg->getType();
3981 
3982   if (Arg->getType()->isIntegerType() &&
3983       getContext().getTypeSize(Arg->getType()) <
3984           getContext().getTargetInfo().getPointerWidth(0) &&
3985       Arg->isNullPointerConstant(getContext(),
3986                                  Expr::NPC_ValueDependentIsNotNull)) {
3987     return getContext().getIntPtrType();
3988   }
3989 
3990   return Arg->getType();
3991 }
3992 
3993 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3994 // optimizer it can aggressively ignore unwind edges.
3995 void
3996 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3997   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3998       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3999     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4000                       CGM.getNoObjCARCExceptionsMetadata());
4001 }
4002 
4003 /// Emits a call to the given no-arguments nounwind runtime function.
4004 llvm::CallInst *
4005 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4006                                          const llvm::Twine &name) {
4007   return EmitNounwindRuntimeCall(callee, None, name);
4008 }
4009 
4010 /// Emits a call to the given nounwind runtime function.
4011 llvm::CallInst *
4012 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4013                                          ArrayRef<llvm::Value *> args,
4014                                          const llvm::Twine &name) {
4015   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4016   call->setDoesNotThrow();
4017   return call;
4018 }
4019 
4020 /// Emits a simple call (never an invoke) to the given no-arguments
4021 /// runtime function.
4022 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4023                                                  const llvm::Twine &name) {
4024   return EmitRuntimeCall(callee, None, name);
4025 }
4026 
4027 // Calls which may throw must have operand bundles indicating which funclet
4028 // they are nested within.
4029 SmallVector<llvm::OperandBundleDef, 1>
4030 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4031   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4032   // There is no need for a funclet operand bundle if we aren't inside a
4033   // funclet.
4034   if (!CurrentFuncletPad)
4035     return BundleList;
4036 
4037   // Skip intrinsics which cannot throw.
4038   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4039   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4040     return BundleList;
4041 
4042   BundleList.emplace_back("funclet", CurrentFuncletPad);
4043   return BundleList;
4044 }
4045 
4046 /// Emits a simple call (never an invoke) to the given runtime function.
4047 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4048                                                  ArrayRef<llvm::Value *> args,
4049                                                  const llvm::Twine &name) {
4050   llvm::CallInst *call = Builder.CreateCall(
4051       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4052   call->setCallingConv(getRuntimeCC());
4053   return call;
4054 }
4055 
4056 /// Emits a call or invoke to the given noreturn runtime function.
4057 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4058     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4059   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4060       getBundlesForFunclet(callee.getCallee());
4061 
4062   if (getInvokeDest()) {
4063     llvm::InvokeInst *invoke =
4064       Builder.CreateInvoke(callee,
4065                            getUnreachableBlock(),
4066                            getInvokeDest(),
4067                            args,
4068                            BundleList);
4069     invoke->setDoesNotReturn();
4070     invoke->setCallingConv(getRuntimeCC());
4071   } else {
4072     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4073     call->setDoesNotReturn();
4074     call->setCallingConv(getRuntimeCC());
4075     Builder.CreateUnreachable();
4076   }
4077 }
4078 
4079 /// Emits a call or invoke instruction to the given nullary runtime function.
4080 llvm::CallBase *
4081 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4082                                          const Twine &name) {
4083   return EmitRuntimeCallOrInvoke(callee, None, name);
4084 }
4085 
4086 /// Emits a call or invoke instruction to the given runtime function.
4087 llvm::CallBase *
4088 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4089                                          ArrayRef<llvm::Value *> args,
4090                                          const Twine &name) {
4091   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4092   call->setCallingConv(getRuntimeCC());
4093   return call;
4094 }
4095 
4096 /// Emits a call or invoke instruction to the given function, depending
4097 /// on the current state of the EH stack.
4098 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4099                                                   ArrayRef<llvm::Value *> Args,
4100                                                   const Twine &Name) {
4101   llvm::BasicBlock *InvokeDest = getInvokeDest();
4102   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4103       getBundlesForFunclet(Callee.getCallee());
4104 
4105   llvm::CallBase *Inst;
4106   if (!InvokeDest)
4107     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4108   else {
4109     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4110     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4111                                 Name);
4112     EmitBlock(ContBB);
4113   }
4114 
4115   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4116   // optimizer it can aggressively ignore unwind edges.
4117   if (CGM.getLangOpts().ObjCAutoRefCount)
4118     AddObjCARCExceptionMetadata(Inst);
4119 
4120   return Inst;
4121 }
4122 
4123 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4124                                                   llvm::Value *New) {
4125   DeferredReplacements.push_back(std::make_pair(Old, New));
4126 }
4127 
4128 namespace {
4129 
4130 /// Specify given \p NewAlign as the alignment of return value attribute. If
4131 /// such attribute already exists, re-set it to the maximal one of two options.
4132 LLVM_NODISCARD llvm::AttributeList
4133 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4134                                 const llvm::AttributeList &Attrs,
4135                                 llvm::Align NewAlign) {
4136   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4137   if (CurAlign >= NewAlign)
4138     return Attrs;
4139   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4140   return Attrs
4141       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4142                        llvm::Attribute::AttrKind::Alignment)
4143       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4144 }
4145 
4146 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4147 protected:
4148   CodeGenFunction &CGF;
4149 
4150   /// We do nothing if this is, or becomes, nullptr.
4151   const AlignedAttrTy *AA = nullptr;
4152 
4153   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4154   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4155 
4156   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4157       : CGF(CGF_) {
4158     if (!FuncDecl)
4159       return;
4160     AA = FuncDecl->getAttr<AlignedAttrTy>();
4161   }
4162 
4163 public:
4164   /// If we can, materialize the alignment as an attribute on return value.
4165   LLVM_NODISCARD llvm::AttributeList
4166   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4167     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4168       return Attrs;
4169     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4170     if (!AlignmentCI)
4171       return Attrs;
4172     // We may legitimately have non-power-of-2 alignment here.
4173     // If so, this is UB land, emit it via `@llvm.assume` instead.
4174     if (!AlignmentCI->getValue().isPowerOf2())
4175       return Attrs;
4176     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4177         CGF.getLLVMContext(), Attrs,
4178         llvm::Align(
4179             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4180     AA = nullptr; // We're done. Disallow doing anything else.
4181     return NewAttrs;
4182   }
4183 
4184   /// Emit alignment assumption.
4185   /// This is a general fallback that we take if either there is an offset,
4186   /// or the alignment is variable or we are sanitizing for alignment.
4187   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4188     if (!AA)
4189       return;
4190     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4191                                 AA->getLocation(), Alignment, OffsetCI);
4192     AA = nullptr; // We're done. Disallow doing anything else.
4193   }
4194 };
4195 
4196 /// Helper data structure to emit `AssumeAlignedAttr`.
4197 class AssumeAlignedAttrEmitter final
4198     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4199 public:
4200   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4201       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4202     if (!AA)
4203       return;
4204     // It is guaranteed that the alignment/offset are constants.
4205     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4206     if (Expr *Offset = AA->getOffset()) {
4207       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4208       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4209         OffsetCI = nullptr;
4210     }
4211   }
4212 };
4213 
4214 /// Helper data structure to emit `AllocAlignAttr`.
4215 class AllocAlignAttrEmitter final
4216     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4217 public:
4218   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4219                         const CallArgList &CallArgs)
4220       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4221     if (!AA)
4222       return;
4223     // Alignment may or may not be a constant, and that is okay.
4224     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4225                     .getRValue(CGF)
4226                     .getScalarVal();
4227   }
4228 };
4229 
4230 } // namespace
4231 
4232 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4233                                  const CGCallee &Callee,
4234                                  ReturnValueSlot ReturnValue,
4235                                  const CallArgList &CallArgs,
4236                                  llvm::CallBase **callOrInvoke,
4237                                  SourceLocation Loc) {
4238   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4239 
4240   assert(Callee.isOrdinary() || Callee.isVirtual());
4241 
4242   // Handle struct-return functions by passing a pointer to the
4243   // location that we would like to return into.
4244   QualType RetTy = CallInfo.getReturnType();
4245   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4246 
4247   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4248 
4249   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4250   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4251     // We can only guarantee that a function is called from the correct
4252     // context/function based on the appropriate target attributes,
4253     // so only check in the case where we have both always_inline and target
4254     // since otherwise we could be making a conditional call after a check for
4255     // the proper cpu features (and it won't cause code generation issues due to
4256     // function based code generation).
4257     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4258         TargetDecl->hasAttr<TargetAttr>())
4259       checkTargetFeatures(Loc, FD);
4260 
4261     // Some architectures (such as x86-64) have the ABI changed based on
4262     // attribute-target/features. Give them a chance to diagnose.
4263     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4264         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4265   }
4266 
4267 #ifndef NDEBUG
4268   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4269     // For an inalloca varargs function, we don't expect CallInfo to match the
4270     // function pointer's type, because the inalloca struct a will have extra
4271     // fields in it for the varargs parameters.  Code later in this function
4272     // bitcasts the function pointer to the type derived from CallInfo.
4273     //
4274     // In other cases, we assert that the types match up (until pointers stop
4275     // having pointee types).
4276     llvm::Type *TypeFromVal;
4277     if (Callee.isVirtual())
4278       TypeFromVal = Callee.getVirtualFunctionType();
4279     else
4280       TypeFromVal =
4281           Callee.getFunctionPointer()->getType()->getPointerElementType();
4282     assert(IRFuncTy == TypeFromVal);
4283   }
4284 #endif
4285 
4286   // 1. Set up the arguments.
4287 
4288   // If we're using inalloca, insert the allocation after the stack save.
4289   // FIXME: Do this earlier rather than hacking it in here!
4290   Address ArgMemory = Address::invalid();
4291   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4292     const llvm::DataLayout &DL = CGM.getDataLayout();
4293     llvm::Instruction *IP = CallArgs.getStackBase();
4294     llvm::AllocaInst *AI;
4295     if (IP) {
4296       IP = IP->getNextNode();
4297       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4298                                 "argmem", IP);
4299     } else {
4300       AI = CreateTempAlloca(ArgStruct, "argmem");
4301     }
4302     auto Align = CallInfo.getArgStructAlignment();
4303     AI->setAlignment(Align.getAsAlign());
4304     AI->setUsedWithInAlloca(true);
4305     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4306     ArgMemory = Address(AI, Align);
4307   }
4308 
4309   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4310   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4311 
4312   // If the call returns a temporary with struct return, create a temporary
4313   // alloca to hold the result, unless one is given to us.
4314   Address SRetPtr = Address::invalid();
4315   Address SRetAlloca = Address::invalid();
4316   llvm::Value *UnusedReturnSizePtr = nullptr;
4317   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4318     if (!ReturnValue.isNull()) {
4319       SRetPtr = ReturnValue.getValue();
4320     } else {
4321       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4322       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4323         uint64_t size =
4324             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4325         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4326       }
4327     }
4328     if (IRFunctionArgs.hasSRetArg()) {
4329       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4330     } else if (RetAI.isInAlloca()) {
4331       Address Addr =
4332           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4333       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4334     }
4335   }
4336 
4337   Address swiftErrorTemp = Address::invalid();
4338   Address swiftErrorArg = Address::invalid();
4339 
4340   // When passing arguments using temporary allocas, we need to add the
4341   // appropriate lifetime markers. This vector keeps track of all the lifetime
4342   // markers that need to be ended right after the call.
4343   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4344 
4345   // Translate all of the arguments as necessary to match the IR lowering.
4346   assert(CallInfo.arg_size() == CallArgs.size() &&
4347          "Mismatch between function signature & arguments.");
4348   unsigned ArgNo = 0;
4349   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4350   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4351        I != E; ++I, ++info_it, ++ArgNo) {
4352     const ABIArgInfo &ArgInfo = info_it->info;
4353 
4354     // Insert a padding argument to ensure proper alignment.
4355     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4356       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4357           llvm::UndefValue::get(ArgInfo.getPaddingType());
4358 
4359     unsigned FirstIRArg, NumIRArgs;
4360     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4361 
4362     switch (ArgInfo.getKind()) {
4363     case ABIArgInfo::InAlloca: {
4364       assert(NumIRArgs == 0);
4365       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4366       if (I->isAggregate()) {
4367         Address Addr = I->hasLValue()
4368                            ? I->getKnownLValue().getAddress(*this)
4369                            : I->getKnownRValue().getAggregateAddress();
4370         llvm::Instruction *Placeholder =
4371             cast<llvm::Instruction>(Addr.getPointer());
4372 
4373         if (!ArgInfo.getInAllocaIndirect()) {
4374           // Replace the placeholder with the appropriate argument slot GEP.
4375           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4376           Builder.SetInsertPoint(Placeholder);
4377           Addr = Builder.CreateStructGEP(ArgMemory,
4378                                          ArgInfo.getInAllocaFieldIndex());
4379           Builder.restoreIP(IP);
4380         } else {
4381           // For indirect things such as overaligned structs, replace the
4382           // placeholder with a regular aggregate temporary alloca. Store the
4383           // address of this alloca into the struct.
4384           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4385           Address ArgSlot = Builder.CreateStructGEP(
4386               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4387           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4388         }
4389         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4390       } else if (ArgInfo.getInAllocaIndirect()) {
4391         // Make a temporary alloca and store the address of it into the argument
4392         // struct.
4393         Address Addr = CreateMemTempWithoutCast(
4394             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4395             "indirect-arg-temp");
4396         I->copyInto(*this, Addr);
4397         Address ArgSlot =
4398             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4399         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4400       } else {
4401         // Store the RValue into the argument struct.
4402         Address Addr =
4403             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4404         unsigned AS = Addr.getType()->getPointerAddressSpace();
4405         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4406         // There are some cases where a trivial bitcast is not avoidable.  The
4407         // definition of a type later in a translation unit may change it's type
4408         // from {}* to (%struct.foo*)*.
4409         if (Addr.getType() != MemType)
4410           Addr = Builder.CreateBitCast(Addr, MemType);
4411         I->copyInto(*this, Addr);
4412       }
4413       break;
4414     }
4415 
4416     case ABIArgInfo::Indirect: {
4417       assert(NumIRArgs == 1);
4418       if (!I->isAggregate()) {
4419         // Make a temporary alloca to pass the argument.
4420         Address Addr = CreateMemTempWithoutCast(
4421             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4422         IRCallArgs[FirstIRArg] = Addr.getPointer();
4423 
4424         I->copyInto(*this, Addr);
4425       } else {
4426         // We want to avoid creating an unnecessary temporary+copy here;
4427         // however, we need one in three cases:
4428         // 1. If the argument is not byval, and we are required to copy the
4429         //    source.  (This case doesn't occur on any common architecture.)
4430         // 2. If the argument is byval, RV is not sufficiently aligned, and
4431         //    we cannot force it to be sufficiently aligned.
4432         // 3. If the argument is byval, but RV is not located in default
4433         //    or alloca address space.
4434         Address Addr = I->hasLValue()
4435                            ? I->getKnownLValue().getAddress(*this)
4436                            : I->getKnownRValue().getAggregateAddress();
4437         llvm::Value *V = Addr.getPointer();
4438         CharUnits Align = ArgInfo.getIndirectAlign();
4439         const llvm::DataLayout *TD = &CGM.getDataLayout();
4440 
4441         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4442                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4443                     TD->getAllocaAddrSpace()) &&
4444                "indirect argument must be in alloca address space");
4445 
4446         bool NeedCopy = false;
4447 
4448         if (Addr.getAlignment() < Align &&
4449             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4450                 Align.getAsAlign()) {
4451           NeedCopy = true;
4452         } else if (I->hasLValue()) {
4453           auto LV = I->getKnownLValue();
4454           auto AS = LV.getAddressSpace();
4455 
4456           if (!ArgInfo.getIndirectByVal() ||
4457               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4458             NeedCopy = true;
4459           }
4460           if (!getLangOpts().OpenCL) {
4461             if ((ArgInfo.getIndirectByVal() &&
4462                 (AS != LangAS::Default &&
4463                  AS != CGM.getASTAllocaAddressSpace()))) {
4464               NeedCopy = true;
4465             }
4466           }
4467           // For OpenCL even if RV is located in default or alloca address space
4468           // we don't want to perform address space cast for it.
4469           else if ((ArgInfo.getIndirectByVal() &&
4470                     Addr.getType()->getAddressSpace() != IRFuncTy->
4471                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4472             NeedCopy = true;
4473           }
4474         }
4475 
4476         if (NeedCopy) {
4477           // Create an aligned temporary, and copy to it.
4478           Address AI = CreateMemTempWithoutCast(
4479               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4480           IRCallArgs[FirstIRArg] = AI.getPointer();
4481 
4482           // Emit lifetime markers for the temporary alloca.
4483           uint64_t ByvalTempElementSize =
4484               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4485           llvm::Value *LifetimeSize =
4486               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4487 
4488           // Add cleanup code to emit the end lifetime marker after the call.
4489           if (LifetimeSize) // In case we disabled lifetime markers.
4490             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4491 
4492           // Generate the copy.
4493           I->copyInto(*this, AI);
4494         } else {
4495           // Skip the extra memcpy call.
4496           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4497               CGM.getDataLayout().getAllocaAddrSpace());
4498           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4499               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4500               true);
4501         }
4502       }
4503       break;
4504     }
4505 
4506     case ABIArgInfo::Ignore:
4507       assert(NumIRArgs == 0);
4508       break;
4509 
4510     case ABIArgInfo::Extend:
4511     case ABIArgInfo::Direct: {
4512       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4513           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4514           ArgInfo.getDirectOffset() == 0) {
4515         assert(NumIRArgs == 1);
4516         llvm::Value *V;
4517         if (!I->isAggregate())
4518           V = I->getKnownRValue().getScalarVal();
4519         else
4520           V = Builder.CreateLoad(
4521               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4522                              : I->getKnownRValue().getAggregateAddress());
4523 
4524         // Implement swifterror by copying into a new swifterror argument.
4525         // We'll write back in the normal path out of the call.
4526         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4527               == ParameterABI::SwiftErrorResult) {
4528           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4529 
4530           QualType pointeeTy = I->Ty->getPointeeType();
4531           swiftErrorArg =
4532             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4533 
4534           swiftErrorTemp =
4535             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4536           V = swiftErrorTemp.getPointer();
4537           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4538 
4539           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4540           Builder.CreateStore(errorValue, swiftErrorTemp);
4541         }
4542 
4543         // We might have to widen integers, but we should never truncate.
4544         if (ArgInfo.getCoerceToType() != V->getType() &&
4545             V->getType()->isIntegerTy())
4546           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4547 
4548         // If the argument doesn't match, perform a bitcast to coerce it.  This
4549         // can happen due to trivial type mismatches.
4550         if (FirstIRArg < IRFuncTy->getNumParams() &&
4551             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4552           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4553 
4554         IRCallArgs[FirstIRArg] = V;
4555         break;
4556       }
4557 
4558       // FIXME: Avoid the conversion through memory if possible.
4559       Address Src = Address::invalid();
4560       if (!I->isAggregate()) {
4561         Src = CreateMemTemp(I->Ty, "coerce");
4562         I->copyInto(*this, Src);
4563       } else {
4564         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4565                              : I->getKnownRValue().getAggregateAddress();
4566       }
4567 
4568       // If the value is offset in memory, apply the offset now.
4569       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4570 
4571       // Fast-isel and the optimizer generally like scalar values better than
4572       // FCAs, so we flatten them if this is safe to do for this argument.
4573       llvm::StructType *STy =
4574             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4575       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4576         llvm::Type *SrcTy = Src.getElementType();
4577         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4578         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4579 
4580         // If the source type is smaller than the destination type of the
4581         // coerce-to logic, copy the source value into a temp alloca the size
4582         // of the destination type to allow loading all of it. The bits past
4583         // the source value are left undef.
4584         if (SrcSize < DstSize) {
4585           Address TempAlloca
4586             = CreateTempAlloca(STy, Src.getAlignment(),
4587                                Src.getName() + ".coerce");
4588           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4589           Src = TempAlloca;
4590         } else {
4591           Src = Builder.CreateBitCast(Src,
4592                                       STy->getPointerTo(Src.getAddressSpace()));
4593         }
4594 
4595         assert(NumIRArgs == STy->getNumElements());
4596         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4597           Address EltPtr = Builder.CreateStructGEP(Src, i);
4598           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4599           IRCallArgs[FirstIRArg + i] = LI;
4600         }
4601       } else {
4602         // In the simple case, just pass the coerced loaded value.
4603         assert(NumIRArgs == 1);
4604         llvm::Value *Load =
4605             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4606 
4607         if (CallInfo.isCmseNSCall()) {
4608           // For certain parameter types, clear padding bits, as they may reveal
4609           // sensitive information.
4610           // Small struct/union types are passed as integer arrays.
4611           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4612           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4613             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4614         }
4615         IRCallArgs[FirstIRArg] = Load;
4616       }
4617 
4618       break;
4619     }
4620 
4621     case ABIArgInfo::CoerceAndExpand: {
4622       auto coercionType = ArgInfo.getCoerceAndExpandType();
4623       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4624 
4625       llvm::Value *tempSize = nullptr;
4626       Address addr = Address::invalid();
4627       Address AllocaAddr = Address::invalid();
4628       if (I->isAggregate()) {
4629         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4630                               : I->getKnownRValue().getAggregateAddress();
4631 
4632       } else {
4633         RValue RV = I->getKnownRValue();
4634         assert(RV.isScalar()); // complex should always just be direct
4635 
4636         llvm::Type *scalarType = RV.getScalarVal()->getType();
4637         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4638         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4639 
4640         // Materialize to a temporary.
4641         addr = CreateTempAlloca(
4642             RV.getScalarVal()->getType(),
4643             CharUnits::fromQuantity(std::max(
4644                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4645             "tmp",
4646             /*ArraySize=*/nullptr, &AllocaAddr);
4647         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4648 
4649         Builder.CreateStore(RV.getScalarVal(), addr);
4650       }
4651 
4652       addr = Builder.CreateElementBitCast(addr, coercionType);
4653 
4654       unsigned IRArgPos = FirstIRArg;
4655       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4656         llvm::Type *eltType = coercionType->getElementType(i);
4657         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4658         Address eltAddr = Builder.CreateStructGEP(addr, i);
4659         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4660         IRCallArgs[IRArgPos++] = elt;
4661       }
4662       assert(IRArgPos == FirstIRArg + NumIRArgs);
4663 
4664       if (tempSize) {
4665         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4666       }
4667 
4668       break;
4669     }
4670 
4671     case ABIArgInfo::Expand:
4672       unsigned IRArgPos = FirstIRArg;
4673       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4674       assert(IRArgPos == FirstIRArg + NumIRArgs);
4675       break;
4676     }
4677   }
4678 
4679   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4680   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4681 
4682   // If we're using inalloca, set up that argument.
4683   if (ArgMemory.isValid()) {
4684     llvm::Value *Arg = ArgMemory.getPointer();
4685     if (CallInfo.isVariadic()) {
4686       // When passing non-POD arguments by value to variadic functions, we will
4687       // end up with a variadic prototype and an inalloca call site.  In such
4688       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4689       // the callee.
4690       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4691       CalleePtr =
4692           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4693     } else {
4694       llvm::Type *LastParamTy =
4695           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4696       if (Arg->getType() != LastParamTy) {
4697 #ifndef NDEBUG
4698         // Assert that these structs have equivalent element types.
4699         llvm::StructType *FullTy = CallInfo.getArgStruct();
4700         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4701             cast<llvm::PointerType>(LastParamTy)->getElementType());
4702         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4703         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4704                                                 DE = DeclaredTy->element_end(),
4705                                                 FI = FullTy->element_begin();
4706              DI != DE; ++DI, ++FI)
4707           assert(*DI == *FI);
4708 #endif
4709         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4710       }
4711     }
4712     assert(IRFunctionArgs.hasInallocaArg());
4713     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4714   }
4715 
4716   // 2. Prepare the function pointer.
4717 
4718   // If the callee is a bitcast of a non-variadic function to have a
4719   // variadic function pointer type, check to see if we can remove the
4720   // bitcast.  This comes up with unprototyped functions.
4721   //
4722   // This makes the IR nicer, but more importantly it ensures that we
4723   // can inline the function at -O0 if it is marked always_inline.
4724   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4725                                    llvm::Value *Ptr) -> llvm::Function * {
4726     if (!CalleeFT->isVarArg())
4727       return nullptr;
4728 
4729     // Get underlying value if it's a bitcast
4730     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4731       if (CE->getOpcode() == llvm::Instruction::BitCast)
4732         Ptr = CE->getOperand(0);
4733     }
4734 
4735     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4736     if (!OrigFn)
4737       return nullptr;
4738 
4739     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4740 
4741     // If the original type is variadic, or if any of the component types
4742     // disagree, we cannot remove the cast.
4743     if (OrigFT->isVarArg() ||
4744         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4745         OrigFT->getReturnType() != CalleeFT->getReturnType())
4746       return nullptr;
4747 
4748     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4749       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4750         return nullptr;
4751 
4752     return OrigFn;
4753   };
4754 
4755   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4756     CalleePtr = OrigFn;
4757     IRFuncTy = OrigFn->getFunctionType();
4758   }
4759 
4760   // 3. Perform the actual call.
4761 
4762   // Deactivate any cleanups that we're supposed to do immediately before
4763   // the call.
4764   if (!CallArgs.getCleanupsToDeactivate().empty())
4765     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4766 
4767   // Assert that the arguments we computed match up.  The IR verifier
4768   // will catch this, but this is a common enough source of problems
4769   // during IRGen changes that it's way better for debugging to catch
4770   // it ourselves here.
4771 #ifndef NDEBUG
4772   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4773   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4774     // Inalloca argument can have different type.
4775     if (IRFunctionArgs.hasInallocaArg() &&
4776         i == IRFunctionArgs.getInallocaArgNo())
4777       continue;
4778     if (i < IRFuncTy->getNumParams())
4779       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4780   }
4781 #endif
4782 
4783   // Update the largest vector width if any arguments have vector types.
4784   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4785     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4786       LargestVectorWidth =
4787           std::max((uint64_t)LargestVectorWidth,
4788                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4789   }
4790 
4791   // Compute the calling convention and attributes.
4792   unsigned CallingConv;
4793   llvm::AttributeList Attrs;
4794   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4795                              Callee.getAbstractInfo(), Attrs, CallingConv,
4796                              /*AttrOnCallSite=*/true);
4797 
4798   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4799     if (FD->usesFPIntrin())
4800       // All calls within a strictfp function are marked strictfp
4801       Attrs =
4802         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4803                            llvm::Attribute::StrictFP);
4804 
4805   // Add call-site nomerge attribute if exists.
4806   if (InNoMergeAttributedStmt)
4807     Attrs =
4808       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4809                          llvm::Attribute::NoMerge);
4810 
4811   // Apply some call-site-specific attributes.
4812   // TODO: work this into building the attribute set.
4813 
4814   // Apply always_inline to all calls within flatten functions.
4815   // FIXME: should this really take priority over __try, below?
4816   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4817       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4818     Attrs =
4819         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4820                            llvm::Attribute::AlwaysInline);
4821   }
4822 
4823   // Disable inlining inside SEH __try blocks.
4824   if (isSEHTryScope()) {
4825     Attrs =
4826         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4827                            llvm::Attribute::NoInline);
4828   }
4829 
4830   // Decide whether to use a call or an invoke.
4831   bool CannotThrow;
4832   if (currentFunctionUsesSEHTry()) {
4833     // SEH cares about asynchronous exceptions, so everything can "throw."
4834     CannotThrow = false;
4835   } else if (isCleanupPadScope() &&
4836              EHPersonality::get(*this).isMSVCXXPersonality()) {
4837     // The MSVC++ personality will implicitly terminate the program if an
4838     // exception is thrown during a cleanup outside of a try/catch.
4839     // We don't need to model anything in IR to get this behavior.
4840     CannotThrow = true;
4841   } else {
4842     // Otherwise, nounwind call sites will never throw.
4843     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
4844   }
4845 
4846   // If we made a temporary, be sure to clean up after ourselves. Note that we
4847   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4848   // pop this cleanup later on. Being eager about this is OK, since this
4849   // temporary is 'invisible' outside of the callee.
4850   if (UnusedReturnSizePtr)
4851     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4852                                          UnusedReturnSizePtr);
4853 
4854   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4855 
4856   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4857       getBundlesForFunclet(CalleePtr);
4858 
4859   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4860     if (FD->usesFPIntrin())
4861       // All calls within a strictfp function are marked strictfp
4862       Attrs =
4863         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4864                            llvm::Attribute::StrictFP);
4865 
4866   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4867   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4868 
4869   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4870   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4871 
4872   // Emit the actual call/invoke instruction.
4873   llvm::CallBase *CI;
4874   if (!InvokeDest) {
4875     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4876   } else {
4877     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4878     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4879                               BundleList);
4880     EmitBlock(Cont);
4881   }
4882   if (callOrInvoke)
4883     *callOrInvoke = CI;
4884 
4885   // If this is within a function that has the guard(nocf) attribute and is an
4886   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4887   // Control Flow Guard checks should not be added, even if the call is inlined.
4888   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4889     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4890       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4891         Attrs = Attrs.addAttribute(
4892             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4893     }
4894   }
4895 
4896   // Apply the attributes and calling convention.
4897   CI->setAttributes(Attrs);
4898   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4899 
4900   // Apply various metadata.
4901 
4902   if (!CI->getType()->isVoidTy())
4903     CI->setName("call");
4904 
4905   // Update largest vector width from the return type.
4906   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4907     LargestVectorWidth =
4908         std::max((uint64_t)LargestVectorWidth,
4909                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4910 
4911   // Insert instrumentation or attach profile metadata at indirect call sites.
4912   // For more details, see the comment before the definition of
4913   // IPVK_IndirectCallTarget in InstrProfData.inc.
4914   if (!CI->getCalledFunction())
4915     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4916                      CI, CalleePtr);
4917 
4918   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4919   // optimizer it can aggressively ignore unwind edges.
4920   if (CGM.getLangOpts().ObjCAutoRefCount)
4921     AddObjCARCExceptionMetadata(CI);
4922 
4923   // Suppress tail calls if requested.
4924   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4925     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4926       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4927   }
4928 
4929   // Add metadata for calls to MSAllocator functions
4930   if (getDebugInfo() && TargetDecl &&
4931       TargetDecl->hasAttr<MSAllocatorAttr>())
4932     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
4933 
4934   // 4. Finish the call.
4935 
4936   // If the call doesn't return, finish the basic block and clear the
4937   // insertion point; this allows the rest of IRGen to discard
4938   // unreachable code.
4939   if (CI->doesNotReturn()) {
4940     if (UnusedReturnSizePtr)
4941       PopCleanupBlock();
4942 
4943     // Strip away the noreturn attribute to better diagnose unreachable UB.
4944     if (SanOpts.has(SanitizerKind::Unreachable)) {
4945       // Also remove from function since CallBase::hasFnAttr additionally checks
4946       // attributes of the called function.
4947       if (auto *F = CI->getCalledFunction())
4948         F->removeFnAttr(llvm::Attribute::NoReturn);
4949       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4950                           llvm::Attribute::NoReturn);
4951 
4952       // Avoid incompatibility with ASan which relies on the `noreturn`
4953       // attribute to insert handler calls.
4954       if (SanOpts.hasOneOf(SanitizerKind::Address |
4955                            SanitizerKind::KernelAddress)) {
4956         SanitizerScope SanScope(this);
4957         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4958         Builder.SetInsertPoint(CI);
4959         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4960         llvm::FunctionCallee Fn =
4961             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4962         EmitNounwindRuntimeCall(Fn);
4963       }
4964     }
4965 
4966     EmitUnreachable(Loc);
4967     Builder.ClearInsertionPoint();
4968 
4969     // FIXME: For now, emit a dummy basic block because expr emitters in
4970     // generally are not ready to handle emitting expressions at unreachable
4971     // points.
4972     EnsureInsertPoint();
4973 
4974     // Return a reasonable RValue.
4975     return GetUndefRValue(RetTy);
4976   }
4977 
4978   // Perform the swifterror writeback.
4979   if (swiftErrorTemp.isValid()) {
4980     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4981     Builder.CreateStore(errorResult, swiftErrorArg);
4982   }
4983 
4984   // Emit any call-associated writebacks immediately.  Arguably this
4985   // should happen after any return-value munging.
4986   if (CallArgs.hasWritebacks())
4987     emitWritebacks(*this, CallArgs);
4988 
4989   // The stack cleanup for inalloca arguments has to run out of the normal
4990   // lexical order, so deactivate it and run it manually here.
4991   CallArgs.freeArgumentMemory(*this);
4992 
4993   // Extract the return value.
4994   RValue Ret = [&] {
4995     switch (RetAI.getKind()) {
4996     case ABIArgInfo::CoerceAndExpand: {
4997       auto coercionType = RetAI.getCoerceAndExpandType();
4998 
4999       Address addr = SRetPtr;
5000       addr = Builder.CreateElementBitCast(addr, coercionType);
5001 
5002       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5003       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5004 
5005       unsigned unpaddedIndex = 0;
5006       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5007         llvm::Type *eltType = coercionType->getElementType(i);
5008         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5009         Address eltAddr = Builder.CreateStructGEP(addr, i);
5010         llvm::Value *elt = CI;
5011         if (requiresExtract)
5012           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5013         else
5014           assert(unpaddedIndex == 0);
5015         Builder.CreateStore(elt, eltAddr);
5016       }
5017       // FALLTHROUGH
5018       LLVM_FALLTHROUGH;
5019     }
5020 
5021     case ABIArgInfo::InAlloca:
5022     case ABIArgInfo::Indirect: {
5023       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5024       if (UnusedReturnSizePtr)
5025         PopCleanupBlock();
5026       return ret;
5027     }
5028 
5029     case ABIArgInfo::Ignore:
5030       // If we are ignoring an argument that had a result, make sure to
5031       // construct the appropriate return value for our caller.
5032       return GetUndefRValue(RetTy);
5033 
5034     case ABIArgInfo::Extend:
5035     case ABIArgInfo::Direct: {
5036       llvm::Type *RetIRTy = ConvertType(RetTy);
5037       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5038         switch (getEvaluationKind(RetTy)) {
5039         case TEK_Complex: {
5040           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5041           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5042           return RValue::getComplex(std::make_pair(Real, Imag));
5043         }
5044         case TEK_Aggregate: {
5045           Address DestPtr = ReturnValue.getValue();
5046           bool DestIsVolatile = ReturnValue.isVolatile();
5047 
5048           if (!DestPtr.isValid()) {
5049             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5050             DestIsVolatile = false;
5051           }
5052           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5053           return RValue::getAggregate(DestPtr);
5054         }
5055         case TEK_Scalar: {
5056           // If the argument doesn't match, perform a bitcast to coerce it.  This
5057           // can happen due to trivial type mismatches.
5058           llvm::Value *V = CI;
5059           if (V->getType() != RetIRTy)
5060             V = Builder.CreateBitCast(V, RetIRTy);
5061           return RValue::get(V);
5062         }
5063         }
5064         llvm_unreachable("bad evaluation kind");
5065       }
5066 
5067       Address DestPtr = ReturnValue.getValue();
5068       bool DestIsVolatile = ReturnValue.isVolatile();
5069 
5070       if (!DestPtr.isValid()) {
5071         DestPtr = CreateMemTemp(RetTy, "coerce");
5072         DestIsVolatile = false;
5073       }
5074 
5075       // If the value is offset in memory, apply the offset now.
5076       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5077       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5078 
5079       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5080     }
5081 
5082     case ABIArgInfo::Expand:
5083       llvm_unreachable("Invalid ABI kind for return argument");
5084     }
5085 
5086     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5087   } ();
5088 
5089   // Emit the assume_aligned check on the return value.
5090   if (Ret.isScalar() && TargetDecl) {
5091     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5092     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5093   }
5094 
5095   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5096   // we can't use the full cleanup mechanism.
5097   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5098     LifetimeEnd.Emit(*this, /*Flags=*/{});
5099 
5100   if (!ReturnValue.isExternallyDestructed() &&
5101       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5102     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5103                 RetTy);
5104 
5105   return Ret;
5106 }
5107 
5108 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5109   if (isVirtual()) {
5110     const CallExpr *CE = getVirtualCallExpr();
5111     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5112         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5113         CE ? CE->getBeginLoc() : SourceLocation());
5114   }
5115 
5116   return *this;
5117 }
5118 
5119 /* VarArg handling */
5120 
5121 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5122   VAListAddr = VE->isMicrosoftABI()
5123                  ? EmitMSVAListRef(VE->getSubExpr())
5124                  : EmitVAListRef(VE->getSubExpr());
5125   QualType Ty = VE->getType();
5126   if (VE->isMicrosoftABI())
5127     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5128   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5129 }
5130