1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "ABIInfoImpl.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <optional> 45 using namespace clang; 46 using namespace CodeGen; 47 48 /***/ 49 50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 51 switch (CC) { 52 default: return llvm::CallingConv::C; 53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 57 case CC_Win64: return llvm::CallingConv::Win64; 58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 62 // TODO: Add support for __pascal to LLVM. 63 case CC_X86Pascal: return llvm::CallingConv::C; 64 // TODO: Add support for __vectorcall to LLVM. 65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 73 case CC_Swift: return llvm::CallingConv::Swift; 74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 76 } 77 } 78 79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 80 /// qualification. Either or both of RD and MD may be null. A null RD indicates 81 /// that there is no meaningful 'this' type, and a null MD can occur when 82 /// calling a method pointer. 83 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 84 const CXXMethodDecl *MD) { 85 QualType RecTy; 86 if (RD) 87 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 88 else 89 RecTy = Context.VoidTy; 90 91 if (MD) 92 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 93 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 94 } 95 96 /// Returns the canonical formal type of the given C++ method. 97 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 98 return MD->getType()->getCanonicalTypeUnqualified() 99 .getAs<FunctionProtoType>(); 100 } 101 102 /// Returns the "extra-canonicalized" return type, which discards 103 /// qualifiers on the return type. Codegen doesn't care about them, 104 /// and it makes ABI code a little easier to be able to assume that 105 /// all parameter and return types are top-level unqualified. 106 static CanQualType GetReturnType(QualType RetTy) { 107 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 108 } 109 110 /// Arrange the argument and result information for a value of the given 111 /// unprototyped freestanding function type. 112 const CGFunctionInfo & 113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 114 // When translating an unprototyped function type, always use a 115 // variadic type. 116 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 117 FnInfoOpts::None, std::nullopt, 118 FTNP->getExtInfo(), {}, RequiredArgs(0)); 119 } 120 121 static void addExtParameterInfosForCall( 122 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 123 const FunctionProtoType *proto, 124 unsigned prefixArgs, 125 unsigned totalArgs) { 126 assert(proto->hasExtParameterInfos()); 127 assert(paramInfos.size() <= prefixArgs); 128 assert(proto->getNumParams() + prefixArgs <= totalArgs); 129 130 paramInfos.reserve(totalArgs); 131 132 // Add default infos for any prefix args that don't already have infos. 133 paramInfos.resize(prefixArgs); 134 135 // Add infos for the prototype. 136 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 137 paramInfos.push_back(ParamInfo); 138 // pass_object_size params have no parameter info. 139 if (ParamInfo.hasPassObjectSize()) 140 paramInfos.emplace_back(); 141 } 142 143 assert(paramInfos.size() <= totalArgs && 144 "Did we forget to insert pass_object_size args?"); 145 // Add default infos for the variadic and/or suffix arguments. 146 paramInfos.resize(totalArgs); 147 } 148 149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 151 static void appendParameterTypes(const CodeGenTypes &CGT, 152 SmallVectorImpl<CanQualType> &prefix, 153 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 154 CanQual<FunctionProtoType> FPT) { 155 // Fast path: don't touch param info if we don't need to. 156 if (!FPT->hasExtParameterInfos()) { 157 assert(paramInfos.empty() && 158 "We have paramInfos, but the prototype doesn't?"); 159 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 160 return; 161 } 162 163 unsigned PrefixSize = prefix.size(); 164 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 165 // parameters; the only thing that can change this is the presence of 166 // pass_object_size. So, we preallocate for the common case. 167 prefix.reserve(prefix.size() + FPT->getNumParams()); 168 169 auto ExtInfos = FPT->getExtParameterInfos(); 170 assert(ExtInfos.size() == FPT->getNumParams()); 171 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 172 prefix.push_back(FPT->getParamType(I)); 173 if (ExtInfos[I].hasPassObjectSize()) 174 prefix.push_back(CGT.getContext().getSizeType()); 175 } 176 177 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 178 prefix.size()); 179 } 180 181 /// Arrange the LLVM function layout for a value of the given function 182 /// type, on top of any implicit parameters already stored. 183 static const CGFunctionInfo & 184 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 185 SmallVectorImpl<CanQualType> &prefix, 186 CanQual<FunctionProtoType> FTP) { 187 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 188 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 189 // FIXME: Kill copy. 190 appendParameterTypes(CGT, prefix, paramInfos, FTP); 191 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 192 193 FnInfoOpts opts = 194 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 195 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 196 FTP->getExtInfo(), paramInfos, Required); 197 } 198 199 /// Arrange the argument and result information for a value of the 200 /// given freestanding function type. 201 const CGFunctionInfo & 202 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 203 SmallVector<CanQualType, 16> argTypes; 204 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 205 FTP); 206 } 207 208 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 209 bool IsWindows) { 210 // Set the appropriate calling convention for the Function. 211 if (D->hasAttr<StdCallAttr>()) 212 return CC_X86StdCall; 213 214 if (D->hasAttr<FastCallAttr>()) 215 return CC_X86FastCall; 216 217 if (D->hasAttr<RegCallAttr>()) 218 return CC_X86RegCall; 219 220 if (D->hasAttr<ThisCallAttr>()) 221 return CC_X86ThisCall; 222 223 if (D->hasAttr<VectorCallAttr>()) 224 return CC_X86VectorCall; 225 226 if (D->hasAttr<PascalAttr>()) 227 return CC_X86Pascal; 228 229 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 230 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 231 232 if (D->hasAttr<AArch64VectorPcsAttr>()) 233 return CC_AArch64VectorCall; 234 235 if (D->hasAttr<AArch64SVEPcsAttr>()) 236 return CC_AArch64SVEPCS; 237 238 if (D->hasAttr<AMDGPUKernelCallAttr>()) 239 return CC_AMDGPUKernelCall; 240 241 if (D->hasAttr<IntelOclBiccAttr>()) 242 return CC_IntelOclBicc; 243 244 if (D->hasAttr<MSABIAttr>()) 245 return IsWindows ? CC_C : CC_Win64; 246 247 if (D->hasAttr<SysVABIAttr>()) 248 return IsWindows ? CC_X86_64SysV : CC_C; 249 250 if (D->hasAttr<PreserveMostAttr>()) 251 return CC_PreserveMost; 252 253 if (D->hasAttr<PreserveAllAttr>()) 254 return CC_PreserveAll; 255 256 if (D->hasAttr<M68kRTDAttr>()) 257 return CC_M68kRTD; 258 259 return CC_C; 260 } 261 262 /// Arrange the argument and result information for a call to an 263 /// unknown C++ non-static member function of the given abstract type. 264 /// (A null RD means we don't have any meaningful "this" argument type, 265 /// so fall back to a generic pointer type). 266 /// The member function must be an ordinary function, i.e. not a 267 /// constructor or destructor. 268 const CGFunctionInfo & 269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 270 const FunctionProtoType *FTP, 271 const CXXMethodDecl *MD) { 272 SmallVector<CanQualType, 16> argTypes; 273 274 // Add the 'this' pointer. 275 argTypes.push_back(DeriveThisType(RD, MD)); 276 277 return ::arrangeLLVMFunctionInfo( 278 *this, /*instanceMethod=*/true, argTypes, 279 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 280 } 281 282 /// Set calling convention for CUDA/HIP kernel. 283 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 284 const FunctionDecl *FD) { 285 if (FD->hasAttr<CUDAGlobalAttr>()) { 286 const FunctionType *FT = FTy->getAs<FunctionType>(); 287 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 288 FTy = FT->getCanonicalTypeUnqualified(); 289 } 290 } 291 292 /// Arrange the argument and result information for a declaration or 293 /// definition of the given C++ non-static member function. The 294 /// member function must be an ordinary function, i.e. not a 295 /// constructor or destructor. 296 const CGFunctionInfo & 297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 298 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 299 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 300 301 CanQualType FT = GetFormalType(MD).getAs<Type>(); 302 setCUDAKernelCallingConvention(FT, CGM, MD); 303 auto prototype = FT.getAs<FunctionProtoType>(); 304 305 if (MD->isImplicitObjectMemberFunction()) { 306 // The abstract case is perfectly fine. 307 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 308 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 309 } 310 311 return arrangeFreeFunctionType(prototype); 312 } 313 314 bool CodeGenTypes::inheritingCtorHasParams( 315 const InheritedConstructor &Inherited, CXXCtorType Type) { 316 // Parameters are unnecessary if we're constructing a base class subobject 317 // and the inherited constructor lives in a virtual base. 318 return Type == Ctor_Complete || 319 !Inherited.getShadowDecl()->constructsVirtualBase() || 320 !Target.getCXXABI().hasConstructorVariants(); 321 } 322 323 const CGFunctionInfo & 324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 325 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 326 327 SmallVector<CanQualType, 16> argTypes; 328 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 329 330 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD); 331 argTypes.push_back(DeriveThisType(ThisType, MD)); 332 333 bool PassParams = true; 334 335 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 336 // A base class inheriting constructor doesn't get forwarded arguments 337 // needed to construct a virtual base (or base class thereof). 338 if (auto Inherited = CD->getInheritedConstructor()) 339 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 340 } 341 342 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 343 344 // Add the formal parameters. 345 if (PassParams) 346 appendParameterTypes(*this, argTypes, paramInfos, FTP); 347 348 CGCXXABI::AddedStructorArgCounts AddedArgs = 349 TheCXXABI.buildStructorSignature(GD, argTypes); 350 if (!paramInfos.empty()) { 351 // Note: prefix implies after the first param. 352 if (AddedArgs.Prefix) 353 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 354 FunctionProtoType::ExtParameterInfo{}); 355 if (AddedArgs.Suffix) 356 paramInfos.append(AddedArgs.Suffix, 357 FunctionProtoType::ExtParameterInfo{}); 358 } 359 360 RequiredArgs required = 361 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 362 : RequiredArgs::All); 363 364 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 365 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 366 ? argTypes.front() 367 : TheCXXABI.hasMostDerivedReturn(GD) 368 ? CGM.getContext().VoidPtrTy 369 : Context.VoidTy; 370 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 371 argTypes, extInfo, paramInfos, required); 372 } 373 374 static SmallVector<CanQualType, 16> 375 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 376 SmallVector<CanQualType, 16> argTypes; 377 for (auto &arg : args) 378 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 379 return argTypes; 380 } 381 382 static SmallVector<CanQualType, 16> 383 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 384 SmallVector<CanQualType, 16> argTypes; 385 for (auto &arg : args) 386 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 387 return argTypes; 388 } 389 390 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 391 getExtParameterInfosForCall(const FunctionProtoType *proto, 392 unsigned prefixArgs, unsigned totalArgs) { 393 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 394 if (proto->hasExtParameterInfos()) { 395 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 396 } 397 return result; 398 } 399 400 /// Arrange a call to a C++ method, passing the given arguments. 401 /// 402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 403 /// parameter. 404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 405 /// args. 406 /// PassProtoArgs indicates whether `args` has args for the parameters in the 407 /// given CXXConstructorDecl. 408 const CGFunctionInfo & 409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 410 const CXXConstructorDecl *D, 411 CXXCtorType CtorKind, 412 unsigned ExtraPrefixArgs, 413 unsigned ExtraSuffixArgs, 414 bool PassProtoArgs) { 415 // FIXME: Kill copy. 416 SmallVector<CanQualType, 16> ArgTypes; 417 for (const auto &Arg : args) 418 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 419 420 // +1 for implicit this, which should always be args[0]. 421 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 422 423 CanQual<FunctionProtoType> FPT = GetFormalType(D); 424 RequiredArgs Required = PassProtoArgs 425 ? RequiredArgs::forPrototypePlus( 426 FPT, TotalPrefixArgs + ExtraSuffixArgs) 427 : RequiredArgs::All; 428 429 GlobalDecl GD(D, CtorKind); 430 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 431 ? ArgTypes.front() 432 : TheCXXABI.hasMostDerivedReturn(GD) 433 ? CGM.getContext().VoidPtrTy 434 : Context.VoidTy; 435 436 FunctionType::ExtInfo Info = FPT->getExtInfo(); 437 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 438 // If the prototype args are elided, we should only have ABI-specific args, 439 // which never have param info. 440 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 441 // ABI-specific suffix arguments are treated the same as variadic arguments. 442 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 443 ArgTypes.size()); 444 } 445 446 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 447 ArgTypes, Info, ParamInfos, Required); 448 } 449 450 /// Arrange the argument and result information for the declaration or 451 /// definition of the given function. 452 const CGFunctionInfo & 453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 454 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 455 if (MD->isImplicitObjectMemberFunction()) 456 return arrangeCXXMethodDeclaration(MD); 457 458 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 459 460 assert(isa<FunctionType>(FTy)); 461 setCUDAKernelCallingConvention(FTy, CGM, FD); 462 463 // When declaring a function without a prototype, always use a 464 // non-variadic type. 465 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 466 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 467 std::nullopt, noProto->getExtInfo(), {}, 468 RequiredArgs::All); 469 } 470 471 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 472 } 473 474 /// Arrange the argument and result information for the declaration or 475 /// definition of an Objective-C method. 476 const CGFunctionInfo & 477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 478 // It happens that this is the same as a call with no optional 479 // arguments, except also using the formal 'self' type. 480 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 481 } 482 483 /// Arrange the argument and result information for the function type 484 /// through which to perform a send to the given Objective-C method, 485 /// using the given receiver type. The receiver type is not always 486 /// the 'self' type of the method or even an Objective-C pointer type. 487 /// This is *not* the right method for actually performing such a 488 /// message send, due to the possibility of optional arguments. 489 const CGFunctionInfo & 490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 491 QualType receiverType) { 492 SmallVector<CanQualType, 16> argTys; 493 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 494 MD->isDirectMethod() ? 1 : 2); 495 argTys.push_back(Context.getCanonicalParamType(receiverType)); 496 if (!MD->isDirectMethod()) 497 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 498 // FIXME: Kill copy? 499 for (const auto *I : MD->parameters()) { 500 argTys.push_back(Context.getCanonicalParamType(I->getType())); 501 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 502 I->hasAttr<NoEscapeAttr>()); 503 extParamInfos.push_back(extParamInfo); 504 } 505 506 FunctionType::ExtInfo einfo; 507 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 508 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 509 510 if (getContext().getLangOpts().ObjCAutoRefCount && 511 MD->hasAttr<NSReturnsRetainedAttr>()) 512 einfo = einfo.withProducesResult(true); 513 514 RequiredArgs required = 515 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 516 517 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 518 FnInfoOpts::None, argTys, einfo, extParamInfos, 519 required); 520 } 521 522 const CGFunctionInfo & 523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 524 const CallArgList &args) { 525 auto argTypes = getArgTypesForCall(Context, args); 526 FunctionType::ExtInfo einfo; 527 528 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 529 argTypes, einfo, {}, RequiredArgs::All); 530 } 531 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 534 // FIXME: Do we need to handle ObjCMethodDecl? 535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 536 537 if (isa<CXXConstructorDecl>(GD.getDecl()) || 538 isa<CXXDestructorDecl>(GD.getDecl())) 539 return arrangeCXXStructorDeclaration(GD); 540 541 return arrangeFunctionDeclaration(FD); 542 } 543 544 /// Arrange a thunk that takes 'this' as the first parameter followed by 545 /// varargs. Return a void pointer, regardless of the actual return type. 546 /// The body of the thunk will end in a musttail call to a function of the 547 /// correct type, and the caller will bitcast the function to the correct 548 /// prototype. 549 const CGFunctionInfo & 550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 551 assert(MD->isVirtual() && "only methods have thunks"); 552 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 553 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 554 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 555 FTP->getExtInfo(), {}, RequiredArgs(1)); 556 } 557 558 const CGFunctionInfo & 559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 560 CXXCtorType CT) { 561 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 562 563 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 564 SmallVector<CanQualType, 2> ArgTys; 565 const CXXRecordDecl *RD = CD->getParent(); 566 ArgTys.push_back(DeriveThisType(RD, CD)); 567 if (CT == Ctor_CopyingClosure) 568 ArgTys.push_back(*FTP->param_type_begin()); 569 if (RD->getNumVBases() > 0) 570 ArgTys.push_back(Context.IntTy); 571 CallingConv CC = Context.getDefaultCallingConvention( 572 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 573 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 574 ArgTys, FunctionType::ExtInfo(CC), {}, 575 RequiredArgs::All); 576 } 577 578 /// Arrange a call as unto a free function, except possibly with an 579 /// additional number of formal parameters considered required. 580 static const CGFunctionInfo & 581 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 582 CodeGenModule &CGM, 583 const CallArgList &args, 584 const FunctionType *fnType, 585 unsigned numExtraRequiredArgs, 586 bool chainCall) { 587 assert(args.size() >= numExtraRequiredArgs); 588 589 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 590 591 // In most cases, there are no optional arguments. 592 RequiredArgs required = RequiredArgs::All; 593 594 // If we have a variadic prototype, the required arguments are the 595 // extra prefix plus the arguments in the prototype. 596 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 597 if (proto->isVariadic()) 598 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 599 600 if (proto->hasExtParameterInfos()) 601 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 602 args.size()); 603 604 // If we don't have a prototype at all, but we're supposed to 605 // explicitly use the variadic convention for unprototyped calls, 606 // treat all of the arguments as required but preserve the nominal 607 // possibility of variadics. 608 } else if (CGM.getTargetCodeGenInfo() 609 .isNoProtoCallVariadic(args, 610 cast<FunctionNoProtoType>(fnType))) { 611 required = RequiredArgs(args.size()); 612 } 613 614 // FIXME: Kill copy. 615 SmallVector<CanQualType, 16> argTypes; 616 for (const auto &arg : args) 617 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 618 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 619 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 620 opts, argTypes, fnType->getExtInfo(), 621 paramInfos, required); 622 } 623 624 /// Figure out the rules for calling a function with the given formal 625 /// type using the given arguments. The arguments are necessary 626 /// because the function might be unprototyped, in which case it's 627 /// target-dependent in crazy ways. 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 630 const FunctionType *fnType, 631 bool chainCall) { 632 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 633 chainCall ? 1 : 0, chainCall); 634 } 635 636 /// A block function is essentially a free function with an 637 /// extra implicit argument. 638 const CGFunctionInfo & 639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 640 const FunctionType *fnType) { 641 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 642 /*chainCall=*/false); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 647 const FunctionArgList ¶ms) { 648 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 649 auto argTypes = getArgTypesForDeclaration(Context, params); 650 651 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 652 FnInfoOpts::None, argTypes, 653 proto->getExtInfo(), paramInfos, 654 RequiredArgs::forPrototypePlus(proto, 1)); 655 } 656 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 659 const CallArgList &args) { 660 // FIXME: Kill copy. 661 SmallVector<CanQualType, 16> argTypes; 662 for (const auto &Arg : args) 663 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 664 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 665 argTypes, FunctionType::ExtInfo(), 666 /*paramInfos=*/{}, RequiredArgs::All); 667 } 668 669 const CGFunctionInfo & 670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 671 const FunctionArgList &args) { 672 auto argTypes = getArgTypesForDeclaration(Context, args); 673 674 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 675 argTypes, FunctionType::ExtInfo(), {}, 676 RequiredArgs::All); 677 } 678 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 681 ArrayRef<CanQualType> argTypes) { 682 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 683 FunctionType::ExtInfo(), {}, 684 RequiredArgs::All); 685 } 686 687 /// Arrange a call to a C++ method, passing the given arguments. 688 /// 689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 690 /// does not count `this`. 691 const CGFunctionInfo & 692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 693 const FunctionProtoType *proto, 694 RequiredArgs required, 695 unsigned numPrefixArgs) { 696 assert(numPrefixArgs + 1 <= args.size() && 697 "Emitting a call with less args than the required prefix?"); 698 // Add one to account for `this`. It's a bit awkward here, but we don't count 699 // `this` in similar places elsewhere. 700 auto paramInfos = 701 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 702 703 // FIXME: Kill copy. 704 auto argTypes = getArgTypesForCall(Context, args); 705 706 FunctionType::ExtInfo info = proto->getExtInfo(); 707 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 708 FnInfoOpts::IsInstanceMethod, argTypes, info, 709 paramInfos, required); 710 } 711 712 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 713 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, 714 std::nullopt, FunctionType::ExtInfo(), {}, 715 RequiredArgs::All); 716 } 717 718 const CGFunctionInfo & 719 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 720 const CallArgList &args) { 721 assert(signature.arg_size() <= args.size()); 722 if (signature.arg_size() == args.size()) 723 return signature; 724 725 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 726 auto sigParamInfos = signature.getExtParameterInfos(); 727 if (!sigParamInfos.empty()) { 728 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 729 paramInfos.resize(args.size()); 730 } 731 732 auto argTypes = getArgTypesForCall(Context, args); 733 734 assert(signature.getRequiredArgs().allowsOptionalArgs()); 735 FnInfoOpts opts = FnInfoOpts::None; 736 if (signature.isInstanceMethod()) 737 opts |= FnInfoOpts::IsInstanceMethod; 738 if (signature.isChainCall()) 739 opts |= FnInfoOpts::IsChainCall; 740 if (signature.isDelegateCall()) 741 opts |= FnInfoOpts::IsDelegateCall; 742 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 743 signature.getExtInfo(), paramInfos, 744 signature.getRequiredArgs()); 745 } 746 747 namespace clang { 748 namespace CodeGen { 749 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 750 } 751 } 752 753 /// Arrange the argument and result information for an abstract value 754 /// of a given function type. This is the method which all of the 755 /// above functions ultimately defer to. 756 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 757 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 758 FunctionType::ExtInfo info, 759 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 760 RequiredArgs required) { 761 assert(llvm::all_of(argTypes, 762 [](CanQualType T) { return T.isCanonicalAsParam(); })); 763 764 // Lookup or create unique function info. 765 llvm::FoldingSetNodeID ID; 766 bool isInstanceMethod = 767 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 768 bool isChainCall = 769 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 770 bool isDelegateCall = 771 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 772 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 773 info, paramInfos, required, resultType, argTypes); 774 775 void *insertPos = nullptr; 776 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 777 if (FI) 778 return *FI; 779 780 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 781 782 // Construct the function info. We co-allocate the ArgInfos. 783 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 784 info, paramInfos, resultType, argTypes, required); 785 FunctionInfos.InsertNode(FI, insertPos); 786 787 bool inserted = FunctionsBeingProcessed.insert(FI).second; 788 (void)inserted; 789 assert(inserted && "Recursively being processed?"); 790 791 // Compute ABI information. 792 if (CC == llvm::CallingConv::SPIR_KERNEL) { 793 // Force target independent argument handling for the host visible 794 // kernel functions. 795 computeSPIRKernelABIInfo(CGM, *FI); 796 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 797 swiftcall::computeABIInfo(CGM, *FI); 798 } else { 799 getABIInfo().computeInfo(*FI); 800 } 801 802 // Loop over all of the computed argument and return value info. If any of 803 // them are direct or extend without a specified coerce type, specify the 804 // default now. 805 ABIArgInfo &retInfo = FI->getReturnInfo(); 806 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 807 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 808 809 for (auto &I : FI->arguments()) 810 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 811 I.info.setCoerceToType(ConvertType(I.type)); 812 813 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 814 assert(erased && "Not in set?"); 815 816 return *FI; 817 } 818 819 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 820 bool chainCall, bool delegateCall, 821 const FunctionType::ExtInfo &info, 822 ArrayRef<ExtParameterInfo> paramInfos, 823 CanQualType resultType, 824 ArrayRef<CanQualType> argTypes, 825 RequiredArgs required) { 826 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 827 assert(!required.allowsOptionalArgs() || 828 required.getNumRequiredArgs() <= argTypes.size()); 829 830 void *buffer = 831 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 832 argTypes.size() + 1, paramInfos.size())); 833 834 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 835 FI->CallingConvention = llvmCC; 836 FI->EffectiveCallingConvention = llvmCC; 837 FI->ASTCallingConvention = info.getCC(); 838 FI->InstanceMethod = instanceMethod; 839 FI->ChainCall = chainCall; 840 FI->DelegateCall = delegateCall; 841 FI->CmseNSCall = info.getCmseNSCall(); 842 FI->NoReturn = info.getNoReturn(); 843 FI->ReturnsRetained = info.getProducesResult(); 844 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 845 FI->NoCfCheck = info.getNoCfCheck(); 846 FI->Required = required; 847 FI->HasRegParm = info.getHasRegParm(); 848 FI->RegParm = info.getRegParm(); 849 FI->ArgStruct = nullptr; 850 FI->ArgStructAlign = 0; 851 FI->NumArgs = argTypes.size(); 852 FI->HasExtParameterInfos = !paramInfos.empty(); 853 FI->getArgsBuffer()[0].type = resultType; 854 FI->MaxVectorWidth = 0; 855 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 856 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 857 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 858 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 859 return FI; 860 } 861 862 /***/ 863 864 namespace { 865 // ABIArgInfo::Expand implementation. 866 867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 868 struct TypeExpansion { 869 enum TypeExpansionKind { 870 // Elements of constant arrays are expanded recursively. 871 TEK_ConstantArray, 872 // Record fields are expanded recursively (but if record is a union, only 873 // the field with the largest size is expanded). 874 TEK_Record, 875 // For complex types, real and imaginary parts are expanded recursively. 876 TEK_Complex, 877 // All other types are not expandable. 878 TEK_None 879 }; 880 881 const TypeExpansionKind Kind; 882 883 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 884 virtual ~TypeExpansion() {} 885 }; 886 887 struct ConstantArrayExpansion : TypeExpansion { 888 QualType EltTy; 889 uint64_t NumElts; 890 891 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 892 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_ConstantArray; 895 } 896 }; 897 898 struct RecordExpansion : TypeExpansion { 899 SmallVector<const CXXBaseSpecifier *, 1> Bases; 900 901 SmallVector<const FieldDecl *, 1> Fields; 902 903 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 904 SmallVector<const FieldDecl *, 1> &&Fields) 905 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 906 Fields(std::move(Fields)) {} 907 static bool classof(const TypeExpansion *TE) { 908 return TE->Kind == TEK_Record; 909 } 910 }; 911 912 struct ComplexExpansion : TypeExpansion { 913 QualType EltTy; 914 915 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 916 static bool classof(const TypeExpansion *TE) { 917 return TE->Kind == TEK_Complex; 918 } 919 }; 920 921 struct NoExpansion : TypeExpansion { 922 NoExpansion() : TypeExpansion(TEK_None) {} 923 static bool classof(const TypeExpansion *TE) { 924 return TE->Kind == TEK_None; 925 } 926 }; 927 } // namespace 928 929 static std::unique_ptr<TypeExpansion> 930 getTypeExpansion(QualType Ty, const ASTContext &Context) { 931 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 932 return std::make_unique<ConstantArrayExpansion>( 933 AT->getElementType(), AT->getSize().getZExtValue()); 934 } 935 if (const RecordType *RT = Ty->getAs<RecordType>()) { 936 SmallVector<const CXXBaseSpecifier *, 1> Bases; 937 SmallVector<const FieldDecl *, 1> Fields; 938 const RecordDecl *RD = RT->getDecl(); 939 assert(!RD->hasFlexibleArrayMember() && 940 "Cannot expand structure with flexible array."); 941 if (RD->isUnion()) { 942 // Unions can be here only in degenerative cases - all the fields are same 943 // after flattening. Thus we have to use the "largest" field. 944 const FieldDecl *LargestFD = nullptr; 945 CharUnits UnionSize = CharUnits::Zero(); 946 947 for (const auto *FD : RD->fields()) { 948 if (FD->isZeroLengthBitField(Context)) 949 continue; 950 assert(!FD->isBitField() && 951 "Cannot expand structure with bit-field members."); 952 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 953 if (UnionSize < FieldSize) { 954 UnionSize = FieldSize; 955 LargestFD = FD; 956 } 957 } 958 if (LargestFD) 959 Fields.push_back(LargestFD); 960 } else { 961 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 962 assert(!CXXRD->isDynamicClass() && 963 "cannot expand vtable pointers in dynamic classes"); 964 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 965 } 966 967 for (const auto *FD : RD->fields()) { 968 if (FD->isZeroLengthBitField(Context)) 969 continue; 970 assert(!FD->isBitField() && 971 "Cannot expand structure with bit-field members."); 972 Fields.push_back(FD); 973 } 974 } 975 return std::make_unique<RecordExpansion>(std::move(Bases), 976 std::move(Fields)); 977 } 978 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 979 return std::make_unique<ComplexExpansion>(CT->getElementType()); 980 } 981 return std::make_unique<NoExpansion>(); 982 } 983 984 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 985 auto Exp = getTypeExpansion(Ty, Context); 986 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 987 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 988 } 989 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 int Res = 0; 991 for (auto BS : RExp->Bases) 992 Res += getExpansionSize(BS->getType(), Context); 993 for (auto FD : RExp->Fields) 994 Res += getExpansionSize(FD->getType(), Context); 995 return Res; 996 } 997 if (isa<ComplexExpansion>(Exp.get())) 998 return 2; 999 assert(isa<NoExpansion>(Exp.get())); 1000 return 1; 1001 } 1002 1003 void 1004 CodeGenTypes::getExpandedTypes(QualType Ty, 1005 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1006 auto Exp = getTypeExpansion(Ty, Context); 1007 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1008 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1009 getExpandedTypes(CAExp->EltTy, TI); 1010 } 1011 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1012 for (auto BS : RExp->Bases) 1013 getExpandedTypes(BS->getType(), TI); 1014 for (auto FD : RExp->Fields) 1015 getExpandedTypes(FD->getType(), TI); 1016 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1017 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1018 *TI++ = EltTy; 1019 *TI++ = EltTy; 1020 } else { 1021 assert(isa<NoExpansion>(Exp.get())); 1022 *TI++ = ConvertType(Ty); 1023 } 1024 } 1025 1026 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1027 ConstantArrayExpansion *CAE, 1028 Address BaseAddr, 1029 llvm::function_ref<void(Address)> Fn) { 1030 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1031 CharUnits EltAlign = 1032 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1033 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy); 1034 1035 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1036 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1037 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1038 Fn(Address(EltAddr, EltTy, EltAlign)); 1039 } 1040 } 1041 1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1043 llvm::Function::arg_iterator &AI) { 1044 assert(LV.isSimple() && 1045 "Unexpected non-simple lvalue during struct expansion."); 1046 1047 auto Exp = getTypeExpansion(Ty, getContext()); 1048 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1049 forConstantArrayExpansion( 1050 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1051 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1052 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1053 }); 1054 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1055 Address This = LV.getAddress(*this); 1056 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1057 // Perform a single step derived-to-base conversion. 1058 Address Base = 1059 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1060 /*NullCheckValue=*/false, SourceLocation()); 1061 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1062 1063 // Recurse onto bases. 1064 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1065 } 1066 for (auto FD : RExp->Fields) { 1067 // FIXME: What are the right qualifiers here? 1068 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1069 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1070 } 1071 } else if (isa<ComplexExpansion>(Exp.get())) { 1072 auto realValue = &*AI++; 1073 auto imagValue = &*AI++; 1074 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1075 } else { 1076 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1077 // primitive store. 1078 assert(isa<NoExpansion>(Exp.get())); 1079 llvm::Value *Arg = &*AI++; 1080 if (LV.isBitField()) { 1081 EmitStoreThroughLValue(RValue::get(Arg), LV); 1082 } else { 1083 // TODO: currently there are some places are inconsistent in what LLVM 1084 // pointer type they use (see D118744). Once clang uses opaque pointers 1085 // all LLVM pointer types will be the same and we can remove this check. 1086 if (Arg->getType()->isPointerTy()) { 1087 Address Addr = LV.getAddress(*this); 1088 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1089 } 1090 EmitStoreOfScalar(Arg, LV); 1091 } 1092 } 1093 } 1094 1095 void CodeGenFunction::ExpandTypeToArgs( 1096 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1097 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1098 auto Exp = getTypeExpansion(Ty, getContext()); 1099 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1100 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1101 : Arg.getKnownRValue().getAggregateAddress(); 1102 forConstantArrayExpansion( 1103 *this, CAExp, Addr, [&](Address EltAddr) { 1104 CallArg EltArg = CallArg( 1105 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1106 CAExp->EltTy); 1107 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1108 IRCallArgPos); 1109 }); 1110 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1111 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1112 : Arg.getKnownRValue().getAggregateAddress(); 1113 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1114 // Perform a single step derived-to-base conversion. 1115 Address Base = 1116 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1117 /*NullCheckValue=*/false, SourceLocation()); 1118 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1119 1120 // Recurse onto bases. 1121 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1122 IRCallArgPos); 1123 } 1124 1125 LValue LV = MakeAddrLValue(This, Ty); 1126 for (auto FD : RExp->Fields) { 1127 CallArg FldArg = 1128 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1129 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1130 IRCallArgPos); 1131 } 1132 } else if (isa<ComplexExpansion>(Exp.get())) { 1133 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1134 IRCallArgs[IRCallArgPos++] = CV.first; 1135 IRCallArgs[IRCallArgPos++] = CV.second; 1136 } else { 1137 assert(isa<NoExpansion>(Exp.get())); 1138 auto RV = Arg.getKnownRValue(); 1139 assert(RV.isScalar() && 1140 "Unexpected non-scalar rvalue during struct expansion."); 1141 1142 // Insert a bitcast as needed. 1143 llvm::Value *V = RV.getScalarVal(); 1144 if (IRCallArgPos < IRFuncTy->getNumParams() && 1145 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1146 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1147 1148 IRCallArgs[IRCallArgPos++] = V; 1149 } 1150 } 1151 1152 /// Create a temporary allocation for the purposes of coercion. 1153 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1154 CharUnits MinAlign, 1155 const Twine &Name = "tmp") { 1156 // Don't use an alignment that's worse than what LLVM would prefer. 1157 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1158 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1159 1160 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1161 } 1162 1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1164 /// accessing some number of bytes out of it, try to gep into the struct to get 1165 /// at its inner goodness. Dive as deep as possible without entering an element 1166 /// with an in-memory size smaller than DstSize. 1167 static Address 1168 EnterStructPointerForCoercedAccess(Address SrcPtr, 1169 llvm::StructType *SrcSTy, 1170 uint64_t DstSize, CodeGenFunction &CGF) { 1171 // We can't dive into a zero-element struct. 1172 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1173 1174 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1175 1176 // If the first elt is at least as large as what we're looking for, or if the 1177 // first element is the same size as the whole struct, we can enter it. The 1178 // comparison must be made on the store size and not the alloca size. Using 1179 // the alloca size may overstate the size of the load. 1180 uint64_t FirstEltSize = 1181 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1182 if (FirstEltSize < DstSize && 1183 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1184 return SrcPtr; 1185 1186 // GEP into the first element. 1187 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1188 1189 // If the first element is a struct, recurse. 1190 llvm::Type *SrcTy = SrcPtr.getElementType(); 1191 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1192 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1193 1194 return SrcPtr; 1195 } 1196 1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1198 /// are either integers or pointers. This does a truncation of the value if it 1199 /// is too large or a zero extension if it is too small. 1200 /// 1201 /// This behaves as if the value were coerced through memory, so on big-endian 1202 /// targets the high bits are preserved in a truncation, while little-endian 1203 /// targets preserve the low bits. 1204 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1205 llvm::Type *Ty, 1206 CodeGenFunction &CGF) { 1207 if (Val->getType() == Ty) 1208 return Val; 1209 1210 if (isa<llvm::PointerType>(Val->getType())) { 1211 // If this is Pointer->Pointer avoid conversion to and from int. 1212 if (isa<llvm::PointerType>(Ty)) 1213 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1214 1215 // Convert the pointer to an integer so we can play with its width. 1216 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1217 } 1218 1219 llvm::Type *DestIntTy = Ty; 1220 if (isa<llvm::PointerType>(DestIntTy)) 1221 DestIntTy = CGF.IntPtrTy; 1222 1223 if (Val->getType() != DestIntTy) { 1224 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1225 if (DL.isBigEndian()) { 1226 // Preserve the high bits on big-endian targets. 1227 // That is what memory coercion does. 1228 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1229 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1230 1231 if (SrcSize > DstSize) { 1232 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1233 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1234 } else { 1235 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1236 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1237 } 1238 } else { 1239 // Little-endian targets preserve the low bits. No shifts required. 1240 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1241 } 1242 } 1243 1244 if (isa<llvm::PointerType>(Ty)) 1245 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1246 return Val; 1247 } 1248 1249 1250 1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1252 /// a pointer to an object of type \arg Ty, known to be aligned to 1253 /// \arg SrcAlign bytes. 1254 /// 1255 /// This safely handles the case when the src type is smaller than the 1256 /// destination type; in this situation the values of bits which not 1257 /// present in the src are undefined. 1258 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1259 CodeGenFunction &CGF) { 1260 llvm::Type *SrcTy = Src.getElementType(); 1261 1262 // If SrcTy and Ty are the same, just do a load. 1263 if (SrcTy == Ty) 1264 return CGF.Builder.CreateLoad(Src); 1265 1266 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1267 1268 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1269 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1270 DstSize.getFixedValue(), CGF); 1271 SrcTy = Src.getElementType(); 1272 } 1273 1274 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1275 1276 // If the source and destination are integer or pointer types, just do an 1277 // extension or truncation to the desired type. 1278 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1279 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1280 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1281 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1282 } 1283 1284 // If load is legal, just bitcast the src pointer. 1285 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1286 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1287 // Generally SrcSize is never greater than DstSize, since this means we are 1288 // losing bits. However, this can happen in cases where the structure has 1289 // additional padding, for example due to a user specified alignment. 1290 // 1291 // FIXME: Assert that we aren't truncating non-padding bits when have access 1292 // to that information. 1293 Src = Src.withElementType(Ty); 1294 return CGF.Builder.CreateLoad(Src); 1295 } 1296 1297 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1298 // the types match, use the llvm.vector.insert intrinsic to perform the 1299 // conversion. 1300 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1301 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1302 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1303 // vector, use a vector insert and bitcast the result. 1304 bool NeedsBitcast = false; 1305 auto PredType = 1306 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1307 llvm::Type *OrigType = Ty; 1308 if (ScalableDst == PredType && 1309 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1310 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1311 NeedsBitcast = true; 1312 } 1313 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1314 auto *Load = CGF.Builder.CreateLoad(Src); 1315 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1316 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1317 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1318 ScalableDst, UndefVec, Load, Zero, "cast.scalable"); 1319 if (NeedsBitcast) 1320 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1321 return Result; 1322 } 1323 } 1324 } 1325 1326 // Otherwise do coercion through memory. This is stupid, but simple. 1327 Address Tmp = 1328 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1329 CGF.Builder.CreateMemCpy( 1330 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1331 Src.getAlignment().getAsAlign(), 1332 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1333 return CGF.Builder.CreateLoad(Tmp); 1334 } 1335 1336 // Function to store a first-class aggregate into memory. We prefer to 1337 // store the elements rather than the aggregate to be more friendly to 1338 // fast-isel. 1339 // FIXME: Do we need to recurse here? 1340 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1341 bool DestIsVolatile) { 1342 // Prefer scalar stores to first-class aggregate stores. 1343 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1344 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1345 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1346 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1347 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1348 } 1349 } else { 1350 Builder.CreateStore(Val, Dest, DestIsVolatile); 1351 } 1352 } 1353 1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1355 /// where the source and destination may have different types. The 1356 /// destination is known to be aligned to \arg DstAlign bytes. 1357 /// 1358 /// This safely handles the case when the src type is larger than the 1359 /// destination type; the upper bits of the src will be lost. 1360 static void CreateCoercedStore(llvm::Value *Src, 1361 Address Dst, 1362 bool DstIsVolatile, 1363 CodeGenFunction &CGF) { 1364 llvm::Type *SrcTy = Src->getType(); 1365 llvm::Type *DstTy = Dst.getElementType(); 1366 if (SrcTy == DstTy) { 1367 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1368 return; 1369 } 1370 1371 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1372 1373 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1374 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1375 SrcSize.getFixedValue(), CGF); 1376 DstTy = Dst.getElementType(); 1377 } 1378 1379 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1380 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1381 if (SrcPtrTy && DstPtrTy && 1382 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1383 Src = CGF.Builder.CreateAddrSpaceCast(Src, DstTy); 1384 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1385 return; 1386 } 1387 1388 // If the source and destination are integer or pointer types, just do an 1389 // extension or truncation to the desired type. 1390 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1391 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1392 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1393 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1394 return; 1395 } 1396 1397 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1398 1399 // If store is legal, just bitcast the src pointer. 1400 if (isa<llvm::ScalableVectorType>(SrcTy) || 1401 isa<llvm::ScalableVectorType>(DstTy) || 1402 SrcSize.getFixedValue() <= DstSize.getFixedValue()) { 1403 Dst = Dst.withElementType(SrcTy); 1404 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1405 } else { 1406 // Otherwise do coercion through memory. This is stupid, but 1407 // simple. 1408 1409 // Generally SrcSize is never greater than DstSize, since this means we are 1410 // losing bits. However, this can happen in cases where the structure has 1411 // additional padding, for example due to a user specified alignment. 1412 // 1413 // FIXME: Assert that we aren't truncating non-padding bits when have access 1414 // to that information. 1415 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1416 CGF.Builder.CreateStore(Src, Tmp); 1417 CGF.Builder.CreateMemCpy( 1418 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1419 Tmp.getAlignment().getAsAlign(), 1420 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue())); 1421 } 1422 } 1423 1424 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1425 const ABIArgInfo &info) { 1426 if (unsigned offset = info.getDirectOffset()) { 1427 addr = addr.withElementType(CGF.Int8Ty); 1428 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1429 CharUnits::fromQuantity(offset)); 1430 addr = addr.withElementType(info.getCoerceToType()); 1431 } 1432 return addr; 1433 } 1434 1435 namespace { 1436 1437 /// Encapsulates information about the way function arguments from 1438 /// CGFunctionInfo should be passed to actual LLVM IR function. 1439 class ClangToLLVMArgMapping { 1440 static const unsigned InvalidIndex = ~0U; 1441 unsigned InallocaArgNo; 1442 unsigned SRetArgNo; 1443 unsigned TotalIRArgs; 1444 1445 /// Arguments of LLVM IR function corresponding to single Clang argument. 1446 struct IRArgs { 1447 unsigned PaddingArgIndex; 1448 // Argument is expanded to IR arguments at positions 1449 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1450 unsigned FirstArgIndex; 1451 unsigned NumberOfArgs; 1452 1453 IRArgs() 1454 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1455 NumberOfArgs(0) {} 1456 }; 1457 1458 SmallVector<IRArgs, 8> ArgInfo; 1459 1460 public: 1461 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1462 bool OnlyRequiredArgs = false) 1463 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1464 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1465 construct(Context, FI, OnlyRequiredArgs); 1466 } 1467 1468 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1469 unsigned getInallocaArgNo() const { 1470 assert(hasInallocaArg()); 1471 return InallocaArgNo; 1472 } 1473 1474 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1475 unsigned getSRetArgNo() const { 1476 assert(hasSRetArg()); 1477 return SRetArgNo; 1478 } 1479 1480 unsigned totalIRArgs() const { return TotalIRArgs; } 1481 1482 bool hasPaddingArg(unsigned ArgNo) const { 1483 assert(ArgNo < ArgInfo.size()); 1484 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1485 } 1486 unsigned getPaddingArgNo(unsigned ArgNo) const { 1487 assert(hasPaddingArg(ArgNo)); 1488 return ArgInfo[ArgNo].PaddingArgIndex; 1489 } 1490 1491 /// Returns index of first IR argument corresponding to ArgNo, and their 1492 /// quantity. 1493 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1494 assert(ArgNo < ArgInfo.size()); 1495 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1496 ArgInfo[ArgNo].NumberOfArgs); 1497 } 1498 1499 private: 1500 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1501 bool OnlyRequiredArgs); 1502 }; 1503 1504 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1505 const CGFunctionInfo &FI, 1506 bool OnlyRequiredArgs) { 1507 unsigned IRArgNo = 0; 1508 bool SwapThisWithSRet = false; 1509 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1510 1511 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1512 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1513 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1514 } 1515 1516 unsigned ArgNo = 0; 1517 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1518 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1519 ++I, ++ArgNo) { 1520 assert(I != FI.arg_end()); 1521 QualType ArgType = I->type; 1522 const ABIArgInfo &AI = I->info; 1523 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1524 auto &IRArgs = ArgInfo[ArgNo]; 1525 1526 if (AI.getPaddingType()) 1527 IRArgs.PaddingArgIndex = IRArgNo++; 1528 1529 switch (AI.getKind()) { 1530 case ABIArgInfo::Extend: 1531 case ABIArgInfo::Direct: { 1532 // FIXME: handle sseregparm someday... 1533 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1534 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1535 IRArgs.NumberOfArgs = STy->getNumElements(); 1536 } else { 1537 IRArgs.NumberOfArgs = 1; 1538 } 1539 break; 1540 } 1541 case ABIArgInfo::Indirect: 1542 case ABIArgInfo::IndirectAliased: 1543 IRArgs.NumberOfArgs = 1; 1544 break; 1545 case ABIArgInfo::Ignore: 1546 case ABIArgInfo::InAlloca: 1547 // ignore and inalloca doesn't have matching LLVM parameters. 1548 IRArgs.NumberOfArgs = 0; 1549 break; 1550 case ABIArgInfo::CoerceAndExpand: 1551 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1552 break; 1553 case ABIArgInfo::Expand: 1554 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1555 break; 1556 } 1557 1558 if (IRArgs.NumberOfArgs > 0) { 1559 IRArgs.FirstArgIndex = IRArgNo; 1560 IRArgNo += IRArgs.NumberOfArgs; 1561 } 1562 1563 // Skip over the sret parameter when it comes second. We already handled it 1564 // above. 1565 if (IRArgNo == 1 && SwapThisWithSRet) 1566 IRArgNo++; 1567 } 1568 assert(ArgNo == ArgInfo.size()); 1569 1570 if (FI.usesInAlloca()) 1571 InallocaArgNo = IRArgNo++; 1572 1573 TotalIRArgs = IRArgNo; 1574 } 1575 } // namespace 1576 1577 /***/ 1578 1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1580 const auto &RI = FI.getReturnInfo(); 1581 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1582 } 1583 1584 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { 1585 const auto &RI = FI.getReturnInfo(); 1586 return RI.getInReg(); 1587 } 1588 1589 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1590 return ReturnTypeUsesSRet(FI) && 1591 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1592 } 1593 1594 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1595 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1596 switch (BT->getKind()) { 1597 default: 1598 return false; 1599 case BuiltinType::Float: 1600 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1601 case BuiltinType::Double: 1602 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1603 case BuiltinType::LongDouble: 1604 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1605 } 1606 } 1607 1608 return false; 1609 } 1610 1611 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1612 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1613 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1614 if (BT->getKind() == BuiltinType::LongDouble) 1615 return getTarget().useObjCFP2RetForComplexLongDouble(); 1616 } 1617 } 1618 1619 return false; 1620 } 1621 1622 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1623 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1624 return GetFunctionType(FI); 1625 } 1626 1627 llvm::FunctionType * 1628 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1629 1630 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1631 (void)Inserted; 1632 assert(Inserted && "Recursively being processed?"); 1633 1634 llvm::Type *resultType = nullptr; 1635 const ABIArgInfo &retAI = FI.getReturnInfo(); 1636 switch (retAI.getKind()) { 1637 case ABIArgInfo::Expand: 1638 case ABIArgInfo::IndirectAliased: 1639 llvm_unreachable("Invalid ABI kind for return argument"); 1640 1641 case ABIArgInfo::Extend: 1642 case ABIArgInfo::Direct: 1643 resultType = retAI.getCoerceToType(); 1644 break; 1645 1646 case ABIArgInfo::InAlloca: 1647 if (retAI.getInAllocaSRet()) { 1648 // sret things on win32 aren't void, they return the sret pointer. 1649 QualType ret = FI.getReturnType(); 1650 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1651 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 1652 } else { 1653 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1654 } 1655 break; 1656 1657 case ABIArgInfo::Indirect: 1658 case ABIArgInfo::Ignore: 1659 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1660 break; 1661 1662 case ABIArgInfo::CoerceAndExpand: 1663 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1664 break; 1665 } 1666 1667 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1668 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1669 1670 // Add type for sret argument. 1671 if (IRFunctionArgs.hasSRetArg()) { 1672 QualType Ret = FI.getReturnType(); 1673 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1674 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1675 llvm::PointerType::get(getLLVMContext(), AddressSpace); 1676 } 1677 1678 // Add type for inalloca argument. 1679 if (IRFunctionArgs.hasInallocaArg()) 1680 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 1681 llvm::PointerType::getUnqual(getLLVMContext()); 1682 1683 // Add in all of the required arguments. 1684 unsigned ArgNo = 0; 1685 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1686 ie = it + FI.getNumRequiredArgs(); 1687 for (; it != ie; ++it, ++ArgNo) { 1688 const ABIArgInfo &ArgInfo = it->info; 1689 1690 // Insert a padding type to ensure proper alignment. 1691 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1692 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1693 ArgInfo.getPaddingType(); 1694 1695 unsigned FirstIRArg, NumIRArgs; 1696 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1697 1698 switch (ArgInfo.getKind()) { 1699 case ABIArgInfo::Ignore: 1700 case ABIArgInfo::InAlloca: 1701 assert(NumIRArgs == 0); 1702 break; 1703 1704 case ABIArgInfo::Indirect: 1705 assert(NumIRArgs == 1); 1706 // indirect arguments are always on the stack, which is alloca addr space. 1707 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1708 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 1709 break; 1710 case ABIArgInfo::IndirectAliased: 1711 assert(NumIRArgs == 1); 1712 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1713 getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1714 break; 1715 case ABIArgInfo::Extend: 1716 case ABIArgInfo::Direct: { 1717 // Fast-isel and the optimizer generally like scalar values better than 1718 // FCAs, so we flatten them if this is safe to do for this argument. 1719 llvm::Type *argType = ArgInfo.getCoerceToType(); 1720 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1721 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1722 assert(NumIRArgs == st->getNumElements()); 1723 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1724 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1725 } else { 1726 assert(NumIRArgs == 1); 1727 ArgTypes[FirstIRArg] = argType; 1728 } 1729 break; 1730 } 1731 1732 case ABIArgInfo::CoerceAndExpand: { 1733 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1734 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1735 *ArgTypesIter++ = EltTy; 1736 } 1737 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1738 break; 1739 } 1740 1741 case ABIArgInfo::Expand: 1742 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1743 getExpandedTypes(it->type, ArgTypesIter); 1744 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1745 break; 1746 } 1747 } 1748 1749 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1750 assert(Erased && "Not in set?"); 1751 1752 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1753 } 1754 1755 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1756 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1757 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1758 1759 if (!isFuncTypeConvertible(FPT)) 1760 return llvm::StructType::get(getLLVMContext()); 1761 1762 return GetFunctionType(GD); 1763 } 1764 1765 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1766 llvm::AttrBuilder &FuncAttrs, 1767 const FunctionProtoType *FPT) { 1768 if (!FPT) 1769 return; 1770 1771 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1772 FPT->isNothrow()) 1773 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1774 1775 unsigned SMEBits = FPT->getAArch64SMEAttributes(); 1776 if (SMEBits & FunctionType::SME_PStateSMEnabledMask) 1777 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 1778 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) 1779 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 1780 1781 // ZA 1782 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out || 1783 FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut) 1784 FuncAttrs.addAttribute("aarch64_pstate_za_shared"); 1785 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves || 1786 FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) { 1787 FuncAttrs.addAttribute("aarch64_pstate_za_shared"); 1788 FuncAttrs.addAttribute("aarch64_pstate_za_preserved"); 1789 } 1790 1791 // ZT0 1792 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves) 1793 FuncAttrs.addAttribute("aarch64_preserves_zt0"); 1794 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In) 1795 FuncAttrs.addAttribute("aarch64_in_zt0"); 1796 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out) 1797 FuncAttrs.addAttribute("aarch64_out_zt0"); 1798 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut) 1799 FuncAttrs.addAttribute("aarch64_inout_zt0"); 1800 } 1801 1802 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1803 const Decl *Callee) { 1804 if (!Callee) 1805 return; 1806 1807 SmallVector<StringRef, 4> Attrs; 1808 1809 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1810 AA->getAssumption().split(Attrs, ","); 1811 1812 if (!Attrs.empty()) 1813 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1814 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1815 } 1816 1817 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1818 QualType ReturnType) const { 1819 // We can't just discard the return value for a record type with a 1820 // complex destructor or a non-trivially copyable type. 1821 if (const RecordType *RT = 1822 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1823 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1824 return ClassDecl->hasTrivialDestructor(); 1825 } 1826 return ReturnType.isTriviallyCopyableType(Context); 1827 } 1828 1829 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1830 const Decl *TargetDecl) { 1831 // As-is msan can not tolerate noundef mismatch between caller and 1832 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1833 // into C++. Such mismatches lead to confusing false reports. To avoid 1834 // expensive workaround on msan we enforce initialization event in uncommon 1835 // cases where it's allowed. 1836 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1837 return true; 1838 // C++ explicitly makes returning undefined values UB. C's rule only applies 1839 // to used values, so we never mark them noundef for now. 1840 if (!Module.getLangOpts().CPlusPlus) 1841 return false; 1842 if (TargetDecl) { 1843 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1844 if (FDecl->isExternC()) 1845 return false; 1846 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1847 // Function pointer. 1848 if (VDecl->isExternC()) 1849 return false; 1850 } 1851 } 1852 1853 // We don't want to be too aggressive with the return checking, unless 1854 // it's explicit in the code opts or we're using an appropriate sanitizer. 1855 // Try to respect what the programmer intended. 1856 return Module.getCodeGenOpts().StrictReturn || 1857 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1858 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1859 } 1860 1861 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 1862 /// requested denormal behavior, accounting for the overriding behavior of the 1863 /// -f32 case. 1864 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 1865 llvm::DenormalMode FP32DenormalMode, 1866 llvm::AttrBuilder &FuncAttrs) { 1867 if (FPDenormalMode != llvm::DenormalMode::getDefault()) 1868 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 1869 1870 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 1871 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 1872 } 1873 1874 /// Add default attributes to a function, which have merge semantics under 1875 /// -mlink-builtin-bitcode and should not simply overwrite any existing 1876 /// attributes in the linked library. 1877 static void 1878 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 1879 llvm::AttrBuilder &FuncAttrs) { 1880 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 1881 FuncAttrs); 1882 } 1883 1884 static void getTrivialDefaultFunctionAttributes( 1885 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 1886 const LangOptions &LangOpts, bool AttrOnCallSite, 1887 llvm::AttrBuilder &FuncAttrs) { 1888 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1889 if (!HasOptnone) { 1890 if (CodeGenOpts.OptimizeSize) 1891 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1892 if (CodeGenOpts.OptimizeSize == 2) 1893 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1894 } 1895 1896 if (CodeGenOpts.DisableRedZone) 1897 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1898 if (CodeGenOpts.IndirectTlsSegRefs) 1899 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1900 if (CodeGenOpts.NoImplicitFloat) 1901 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1902 1903 if (AttrOnCallSite) { 1904 // Attributes that should go on the call site only. 1905 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1906 // the -fno-builtin-foo list. 1907 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1908 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1909 if (!CodeGenOpts.TrapFuncName.empty()) 1910 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1911 } else { 1912 switch (CodeGenOpts.getFramePointer()) { 1913 case CodeGenOptions::FramePointerKind::None: 1914 // This is the default behavior. 1915 break; 1916 case CodeGenOptions::FramePointerKind::NonLeaf: 1917 case CodeGenOptions::FramePointerKind::All: 1918 FuncAttrs.addAttribute("frame-pointer", 1919 CodeGenOptions::getFramePointerKindName( 1920 CodeGenOpts.getFramePointer())); 1921 } 1922 1923 if (CodeGenOpts.LessPreciseFPMAD) 1924 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1925 1926 if (CodeGenOpts.NullPointerIsValid) 1927 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1928 1929 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1930 FuncAttrs.addAttribute("no-trapping-math", "true"); 1931 1932 // TODO: Are these all needed? 1933 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1934 if (LangOpts.NoHonorInfs) 1935 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1936 if (LangOpts.NoHonorNaNs) 1937 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1938 if (LangOpts.ApproxFunc) 1939 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1940 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1941 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1942 (LangOpts.getDefaultFPContractMode() == 1943 LangOptions::FPModeKind::FPM_Fast || 1944 LangOpts.getDefaultFPContractMode() == 1945 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1946 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1947 if (CodeGenOpts.SoftFloat) 1948 FuncAttrs.addAttribute("use-soft-float", "true"); 1949 FuncAttrs.addAttribute("stack-protector-buffer-size", 1950 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1951 if (LangOpts.NoSignedZero) 1952 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1953 1954 // TODO: Reciprocal estimate codegen options should apply to instructions? 1955 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1956 if (!Recips.empty()) 1957 FuncAttrs.addAttribute("reciprocal-estimates", 1958 llvm::join(Recips, ",")); 1959 1960 if (!CodeGenOpts.PreferVectorWidth.empty() && 1961 CodeGenOpts.PreferVectorWidth != "none") 1962 FuncAttrs.addAttribute("prefer-vector-width", 1963 CodeGenOpts.PreferVectorWidth); 1964 1965 if (CodeGenOpts.StackRealignment) 1966 FuncAttrs.addAttribute("stackrealign"); 1967 if (CodeGenOpts.Backchain) 1968 FuncAttrs.addAttribute("backchain"); 1969 if (CodeGenOpts.EnableSegmentedStacks) 1970 FuncAttrs.addAttribute("split-stack"); 1971 1972 if (CodeGenOpts.SpeculativeLoadHardening) 1973 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1974 1975 // Add zero-call-used-regs attribute. 1976 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1977 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1978 FuncAttrs.removeAttribute("zero-call-used-regs"); 1979 break; 1980 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1981 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1982 break; 1983 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1984 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1985 break; 1986 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1987 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1988 break; 1989 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1990 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1991 break; 1992 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1993 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1994 break; 1995 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1996 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1997 break; 1998 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1999 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 2000 break; 2001 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 2002 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 2003 break; 2004 } 2005 } 2006 2007 if (LangOpts.assumeFunctionsAreConvergent()) { 2008 // Conservatively, mark all functions and calls in CUDA and OpenCL as 2009 // convergent (meaning, they may call an intrinsically convergent op, such 2010 // as __syncthreads() / barrier(), and so can't have certain optimizations 2011 // applied around them). LLVM will remove this attribute where it safely 2012 // can. 2013 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2014 } 2015 2016 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 2017 // OpenMP offload. AFAIK, neither of them support exceptions in device code. 2018 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 2019 LangOpts.SYCLIsDevice) { 2020 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2021 } 2022 2023 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 2024 StringRef Var, Value; 2025 std::tie(Var, Value) = Attr.split('='); 2026 FuncAttrs.addAttribute(Var, Value); 2027 } 2028 } 2029 2030 /// Merges `target-features` from \TargetOpts and \F, and sets the result in 2031 /// \FuncAttr 2032 /// * features from \F are always kept 2033 /// * a feature from \TargetOpts is kept if itself and its opposite are absent 2034 /// from \F 2035 static void 2036 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 2037 const llvm::Function &F, 2038 const TargetOptions &TargetOpts) { 2039 auto FFeatures = F.getFnAttribute("target-features"); 2040 2041 llvm::StringSet<> MergedNames; 2042 SmallVector<StringRef> MergedFeatures; 2043 MergedFeatures.reserve(TargetOpts.Features.size()); 2044 2045 auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 2046 for (StringRef Feature : FeatureRange) { 2047 if (Feature.empty()) 2048 continue; 2049 assert(Feature[0] == '+' || Feature[0] == '-'); 2050 StringRef Name = Feature.drop_front(1); 2051 bool Merged = !MergedNames.insert(Name).second; 2052 if (!Merged) 2053 MergedFeatures.push_back(Feature); 2054 } 2055 }; 2056 2057 if (FFeatures.isValid()) 2058 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 2059 AddUnmergedFeatures(TargetOpts.Features); 2060 2061 if (!MergedFeatures.empty()) { 2062 llvm::sort(MergedFeatures); 2063 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 2064 } 2065 } 2066 2067 void CodeGen::mergeDefaultFunctionDefinitionAttributes( 2068 llvm::Function &F, const CodeGenOptions &CodeGenOpts, 2069 const LangOptions &LangOpts, const TargetOptions &TargetOpts, 2070 bool WillInternalize) { 2071 2072 llvm::AttrBuilder FuncAttrs(F.getContext()); 2073 // Here we only extract the options that are relevant compared to the version 2074 // from GetCPUAndFeaturesAttributes. 2075 if (!TargetOpts.CPU.empty()) 2076 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 2077 if (!TargetOpts.TuneCPU.empty()) 2078 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 2079 2080 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 2081 CodeGenOpts, LangOpts, 2082 /*AttrOnCallSite=*/false, FuncAttrs); 2083 2084 if (!WillInternalize && F.isInterposable()) { 2085 // Do not promote "dynamic" denormal-fp-math to this translation unit's 2086 // setting for weak functions that won't be internalized. The user has no 2087 // real control for how builtin bitcode is linked, so we shouldn't assume 2088 // later copies will use a consistent mode. 2089 F.addFnAttrs(FuncAttrs); 2090 return; 2091 } 2092 2093 llvm::AttributeMask AttrsToRemove; 2094 2095 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 2096 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 2097 llvm::DenormalMode Merged = 2098 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 2099 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 2100 2101 if (DenormModeToMergeF32.isValid()) { 2102 MergedF32 = 2103 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 2104 } 2105 2106 if (Merged == llvm::DenormalMode::getDefault()) { 2107 AttrsToRemove.addAttribute("denormal-fp-math"); 2108 } else if (Merged != DenormModeToMerge) { 2109 // Overwrite existing attribute 2110 FuncAttrs.addAttribute("denormal-fp-math", 2111 CodeGenOpts.FPDenormalMode.str()); 2112 } 2113 2114 if (MergedF32 == llvm::DenormalMode::getDefault()) { 2115 AttrsToRemove.addAttribute("denormal-fp-math-f32"); 2116 } else if (MergedF32 != DenormModeToMergeF32) { 2117 // Overwrite existing attribute 2118 FuncAttrs.addAttribute("denormal-fp-math-f32", 2119 CodeGenOpts.FP32DenormalMode.str()); 2120 } 2121 2122 F.removeFnAttrs(AttrsToRemove); 2123 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 2124 2125 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 2126 2127 F.addFnAttrs(FuncAttrs); 2128 } 2129 2130 void CodeGenModule::getTrivialDefaultFunctionAttributes( 2131 StringRef Name, bool HasOptnone, bool AttrOnCallSite, 2132 llvm::AttrBuilder &FuncAttrs) { 2133 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 2134 getLangOpts(), AttrOnCallSite, 2135 FuncAttrs); 2136 } 2137 2138 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 2139 bool HasOptnone, 2140 bool AttrOnCallSite, 2141 llvm::AttrBuilder &FuncAttrs) { 2142 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 2143 FuncAttrs); 2144 // If we're just getting the default, get the default values for mergeable 2145 // attributes. 2146 if (!AttrOnCallSite) 2147 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 2148 } 2149 2150 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 2151 llvm::AttrBuilder &attrs) { 2152 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2153 /*for call*/ false, attrs); 2154 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2155 } 2156 2157 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2158 const LangOptions &LangOpts, 2159 const NoBuiltinAttr *NBA = nullptr) { 2160 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2161 SmallString<32> AttributeName; 2162 AttributeName += "no-builtin-"; 2163 AttributeName += BuiltinName; 2164 FuncAttrs.addAttribute(AttributeName); 2165 }; 2166 2167 // First, handle the language options passed through -fno-builtin. 2168 if (LangOpts.NoBuiltin) { 2169 // -fno-builtin disables them all. 2170 FuncAttrs.addAttribute("no-builtins"); 2171 return; 2172 } 2173 2174 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2175 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2176 2177 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2178 // the source. 2179 if (!NBA) 2180 return; 2181 2182 // If there is a wildcard in the builtin names specified through the 2183 // attribute, disable them all. 2184 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2185 FuncAttrs.addAttribute("no-builtins"); 2186 return; 2187 } 2188 2189 // And last, add the rest of the builtin names. 2190 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2191 } 2192 2193 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2194 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2195 bool CheckCoerce = true) { 2196 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2197 if (AI.getKind() == ABIArgInfo::Indirect || 2198 AI.getKind() == ABIArgInfo::IndirectAliased) 2199 return true; 2200 if (AI.getKind() == ABIArgInfo::Extend) 2201 return true; 2202 if (!DL.typeSizeEqualsStoreSize(Ty)) 2203 // TODO: This will result in a modest amount of values not marked noundef 2204 // when they could be. We care about values that *invisibly* contain undef 2205 // bits from the perspective of LLVM IR. 2206 return false; 2207 if (CheckCoerce && AI.canHaveCoerceToType()) { 2208 llvm::Type *CoerceTy = AI.getCoerceToType(); 2209 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2210 DL.getTypeSizeInBits(Ty))) 2211 // If we're coercing to a type with a greater size than the canonical one, 2212 // we're introducing new undef bits. 2213 // Coercing to a type of smaller or equal size is ok, as we know that 2214 // there's no internal padding (typeSizeEqualsStoreSize). 2215 return false; 2216 } 2217 if (QTy->isBitIntType()) 2218 return true; 2219 if (QTy->isReferenceType()) 2220 return true; 2221 if (QTy->isNullPtrType()) 2222 return false; 2223 if (QTy->isMemberPointerType()) 2224 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2225 // now, never mark them. 2226 return false; 2227 if (QTy->isScalarType()) { 2228 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2229 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2230 return true; 2231 } 2232 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2233 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2234 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2235 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2236 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2237 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2238 2239 // TODO: Some structs may be `noundef`, in specific situations. 2240 return false; 2241 } 2242 2243 /// Check if the argument of a function has maybe_undef attribute. 2244 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2245 unsigned NumRequiredArgs, unsigned ArgNo) { 2246 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2247 if (!FD) 2248 return false; 2249 2250 // Assume variadic arguments do not have maybe_undef attribute. 2251 if (ArgNo >= NumRequiredArgs) 2252 return false; 2253 2254 // Check if argument has maybe_undef attribute. 2255 if (ArgNo < FD->getNumParams()) { 2256 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2257 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2258 return true; 2259 } 2260 2261 return false; 2262 } 2263 2264 /// Test if it's legal to apply nofpclass for the given parameter type and it's 2265 /// lowered IR type. 2266 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 2267 bool IsReturn) { 2268 // Should only apply to FP types in the source, not ABI promoted. 2269 if (!ParamType->hasFloatingRepresentation()) 2270 return false; 2271 2272 // The promoted-to IR type also needs to support nofpclass. 2273 llvm::Type *IRTy = AI.getCoerceToType(); 2274 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 2275 return true; 2276 2277 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 2278 return !IsReturn && AI.getCanBeFlattened() && 2279 llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 2280 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 2281 }); 2282 } 2283 2284 return false; 2285 } 2286 2287 /// Return the nofpclass mask that can be applied to floating-point parameters. 2288 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 2289 llvm::FPClassTest Mask = llvm::fcNone; 2290 if (LangOpts.NoHonorInfs) 2291 Mask |= llvm::fcInf; 2292 if (LangOpts.NoHonorNaNs) 2293 Mask |= llvm::fcNan; 2294 return Mask; 2295 } 2296 2297 void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 2298 CGCalleeInfo CalleeInfo, 2299 llvm::AttributeList &Attrs) { 2300 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 2301 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 2302 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 2303 getLLVMContext(), llvm::MemoryEffects::writeOnly()); 2304 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 2305 } 2306 } 2307 2308 /// Construct the IR attribute list of a function or call. 2309 /// 2310 /// When adding an attribute, please consider where it should be handled: 2311 /// 2312 /// - getDefaultFunctionAttributes is for attributes that are essentially 2313 /// part of the global target configuration (but perhaps can be 2314 /// overridden on a per-function basis). Adding attributes there 2315 /// will cause them to also be set in frontends that build on Clang's 2316 /// target-configuration logic, as well as for code defined in library 2317 /// modules such as CUDA's libdevice. 2318 /// 2319 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2320 /// and adds declaration-specific, convention-specific, and 2321 /// frontend-specific logic. The last is of particular importance: 2322 /// attributes that restrict how the frontend generates code must be 2323 /// added here rather than getDefaultFunctionAttributes. 2324 /// 2325 void CodeGenModule::ConstructAttributeList(StringRef Name, 2326 const CGFunctionInfo &FI, 2327 CGCalleeInfo CalleeInfo, 2328 llvm::AttributeList &AttrList, 2329 unsigned &CallingConv, 2330 bool AttrOnCallSite, bool IsThunk) { 2331 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2332 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2333 2334 // Collect function IR attributes from the CC lowering. 2335 // We'll collect the paramete and result attributes later. 2336 CallingConv = FI.getEffectiveCallingConvention(); 2337 if (FI.isNoReturn()) 2338 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2339 if (FI.isCmseNSCall()) 2340 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2341 2342 // Collect function IR attributes from the callee prototype if we have one. 2343 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2344 CalleeInfo.getCalleeFunctionProtoType()); 2345 2346 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2347 2348 // Attach assumption attributes to the declaration. If this is a call 2349 // site, attach assumptions from the caller to the call as well. 2350 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2351 2352 bool HasOptnone = false; 2353 // The NoBuiltinAttr attached to the target FunctionDecl. 2354 const NoBuiltinAttr *NBA = nullptr; 2355 2356 // Some ABIs may result in additional accesses to arguments that may 2357 // otherwise not be present. 2358 auto AddPotentialArgAccess = [&]() { 2359 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2360 if (A.isValid()) 2361 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2362 llvm::MemoryEffects::argMemOnly()); 2363 }; 2364 2365 // Collect function IR attributes based on declaration-specific 2366 // information. 2367 // FIXME: handle sseregparm someday... 2368 if (TargetDecl) { 2369 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2370 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2371 if (TargetDecl->hasAttr<NoThrowAttr>()) 2372 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2373 if (TargetDecl->hasAttr<NoReturnAttr>()) 2374 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2375 if (TargetDecl->hasAttr<ColdAttr>()) 2376 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2377 if (TargetDecl->hasAttr<HotAttr>()) 2378 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2379 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2380 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2381 if (TargetDecl->hasAttr<ConvergentAttr>()) 2382 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2383 2384 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2385 AddAttributesFromFunctionProtoType( 2386 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2387 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2388 // A sane operator new returns a non-aliasing pointer. 2389 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2390 if (getCodeGenOpts().AssumeSaneOperatorNew && 2391 (Kind == OO_New || Kind == OO_Array_New)) 2392 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2393 } 2394 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2395 const bool IsVirtualCall = MD && MD->isVirtual(); 2396 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2397 // virtual function. These attributes are not inherited by overloads. 2398 if (!(AttrOnCallSite && IsVirtualCall)) { 2399 if (Fn->isNoReturn()) 2400 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2401 NBA = Fn->getAttr<NoBuiltinAttr>(); 2402 } 2403 } 2404 2405 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2406 // Only place nomerge attribute on call sites, never functions. This 2407 // allows it to work on indirect virtual function calls. 2408 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2409 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2410 } 2411 2412 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2413 if (TargetDecl->hasAttr<ConstAttr>()) { 2414 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2415 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2416 // gcc specifies that 'const' functions have greater restrictions than 2417 // 'pure' functions, so they also cannot have infinite loops. 2418 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2419 } else if (TargetDecl->hasAttr<PureAttr>()) { 2420 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2421 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2422 // gcc specifies that 'pure' functions cannot have infinite loops. 2423 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2424 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2425 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 2426 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2427 } 2428 if (TargetDecl->hasAttr<RestrictAttr>()) 2429 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2430 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2431 !CodeGenOpts.NullPointerIsValid) 2432 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2433 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2434 FuncAttrs.addAttribute("no_caller_saved_registers"); 2435 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2436 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2437 if (TargetDecl->hasAttr<LeafAttr>()) 2438 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2439 2440 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2441 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2442 std::optional<unsigned> NumElemsParam; 2443 if (AllocSize->getNumElemsParam().isValid()) 2444 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2445 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2446 NumElemsParam); 2447 } 2448 2449 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2450 if (getLangOpts().OpenCLVersion <= 120) { 2451 // OpenCL v1.2 Work groups are always uniform 2452 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2453 } else { 2454 // OpenCL v2.0 Work groups may be whether uniform or not. 2455 // '-cl-uniform-work-group-size' compile option gets a hint 2456 // to the compiler that the global work-size be a multiple of 2457 // the work-group size specified to clEnqueueNDRangeKernel 2458 // (i.e. work groups are uniform). 2459 FuncAttrs.addAttribute( 2460 "uniform-work-group-size", 2461 llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 2462 } 2463 } 2464 2465 if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 2466 getLangOpts().OffloadUniformBlock) 2467 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2468 2469 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 2470 FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 2471 } 2472 2473 // Attach "no-builtins" attributes to: 2474 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2475 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2476 // The attributes can come from: 2477 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2478 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2479 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2480 2481 // Collect function IR attributes based on global settiings. 2482 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2483 2484 // Override some default IR attributes based on declaration-specific 2485 // information. 2486 if (TargetDecl) { 2487 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2488 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2489 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2490 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2491 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2492 FuncAttrs.removeAttribute("split-stack"); 2493 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2494 // A function "__attribute__((...))" overrides the command-line flag. 2495 auto Kind = 2496 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2497 FuncAttrs.removeAttribute("zero-call-used-regs"); 2498 FuncAttrs.addAttribute( 2499 "zero-call-used-regs", 2500 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2501 } 2502 2503 // Add NonLazyBind attribute to function declarations when -fno-plt 2504 // is used. 2505 // FIXME: what if we just haven't processed the function definition 2506 // yet, or if it's an external definition like C99 inline? 2507 if (CodeGenOpts.NoPLT) { 2508 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2509 if (!Fn->isDefined() && !AttrOnCallSite) { 2510 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2511 } 2512 } 2513 } 2514 } 2515 2516 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2517 // functions with -funique-internal-linkage-names. 2518 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2519 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2520 if (!FD->isExternallyVisible()) 2521 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2522 "selected"); 2523 } 2524 } 2525 2526 // Collect non-call-site function IR attributes from declaration-specific 2527 // information. 2528 if (!AttrOnCallSite) { 2529 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2530 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2531 2532 // Whether tail calls are enabled. 2533 auto shouldDisableTailCalls = [&] { 2534 // Should this be honored in getDefaultFunctionAttributes? 2535 if (CodeGenOpts.DisableTailCalls) 2536 return true; 2537 2538 if (!TargetDecl) 2539 return false; 2540 2541 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2542 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2543 return true; 2544 2545 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2546 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2547 if (!BD->doesNotEscape()) 2548 return true; 2549 } 2550 2551 return false; 2552 }; 2553 if (shouldDisableTailCalls()) 2554 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2555 2556 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2557 // handles these separately to set them based on the global defaults. 2558 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2559 } 2560 2561 // Collect attributes from arguments and return values. 2562 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2563 2564 QualType RetTy = FI.getReturnType(); 2565 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2566 const llvm::DataLayout &DL = getDataLayout(); 2567 2568 // Determine if the return type could be partially undef 2569 if (CodeGenOpts.EnableNoundefAttrs && 2570 HasStrictReturn(*this, RetTy, TargetDecl)) { 2571 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2572 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2573 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2574 } 2575 2576 switch (RetAI.getKind()) { 2577 case ABIArgInfo::Extend: 2578 if (RetAI.isSignExt()) 2579 RetAttrs.addAttribute(llvm::Attribute::SExt); 2580 else 2581 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2582 [[fallthrough]]; 2583 case ABIArgInfo::Direct: 2584 if (RetAI.getInReg()) 2585 RetAttrs.addAttribute(llvm::Attribute::InReg); 2586 2587 if (canApplyNoFPClass(RetAI, RetTy, true)) 2588 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2589 2590 break; 2591 case ABIArgInfo::Ignore: 2592 break; 2593 2594 case ABIArgInfo::InAlloca: 2595 case ABIArgInfo::Indirect: { 2596 // inalloca and sret disable readnone and readonly 2597 AddPotentialArgAccess(); 2598 break; 2599 } 2600 2601 case ABIArgInfo::CoerceAndExpand: 2602 break; 2603 2604 case ABIArgInfo::Expand: 2605 case ABIArgInfo::IndirectAliased: 2606 llvm_unreachable("Invalid ABI kind for return argument"); 2607 } 2608 2609 if (!IsThunk) { 2610 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2611 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2612 QualType PTy = RefTy->getPointeeType(); 2613 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2614 RetAttrs.addDereferenceableAttr( 2615 getMinimumObjectSize(PTy).getQuantity()); 2616 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2617 !CodeGenOpts.NullPointerIsValid) 2618 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2619 if (PTy->isObjectType()) { 2620 llvm::Align Alignment = 2621 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2622 RetAttrs.addAlignmentAttr(Alignment); 2623 } 2624 } 2625 } 2626 2627 bool hasUsedSRet = false; 2628 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2629 2630 // Attach attributes to sret. 2631 if (IRFunctionArgs.hasSRetArg()) { 2632 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2633 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2634 SRETAttrs.addAttribute(llvm::Attribute::Writable); 2635 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 2636 hasUsedSRet = true; 2637 if (RetAI.getInReg()) 2638 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2639 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2640 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2641 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2642 } 2643 2644 // Attach attributes to inalloca argument. 2645 if (IRFunctionArgs.hasInallocaArg()) { 2646 llvm::AttrBuilder Attrs(getLLVMContext()); 2647 Attrs.addInAllocaAttr(FI.getArgStruct()); 2648 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2649 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2650 } 2651 2652 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2653 // unless this is a thunk function. 2654 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2655 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2656 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2657 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2658 2659 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2660 2661 llvm::AttrBuilder Attrs(getLLVMContext()); 2662 2663 QualType ThisTy = 2664 FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2665 2666 if (!CodeGenOpts.NullPointerIsValid && 2667 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2668 Attrs.addAttribute(llvm::Attribute::NonNull); 2669 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2670 } else { 2671 // FIXME dereferenceable should be correct here, regardless of 2672 // NullPointerIsValid. However, dereferenceable currently does not always 2673 // respect NullPointerIsValid and may imply nonnull and break the program. 2674 // See https://reviews.llvm.org/D66618 for discussions. 2675 Attrs.addDereferenceableOrNullAttr( 2676 getMinimumObjectSize( 2677 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2678 .getQuantity()); 2679 } 2680 2681 llvm::Align Alignment = 2682 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2683 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2684 .getAsAlign(); 2685 Attrs.addAlignmentAttr(Alignment); 2686 2687 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2688 } 2689 2690 unsigned ArgNo = 0; 2691 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2692 E = FI.arg_end(); 2693 I != E; ++I, ++ArgNo) { 2694 QualType ParamType = I->type; 2695 const ABIArgInfo &AI = I->info; 2696 llvm::AttrBuilder Attrs(getLLVMContext()); 2697 2698 // Add attribute for padding argument, if necessary. 2699 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2700 if (AI.getPaddingInReg()) { 2701 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2702 llvm::AttributeSet::get( 2703 getLLVMContext(), 2704 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2705 } 2706 } 2707 2708 // Decide whether the argument we're handling could be partially undef 2709 if (CodeGenOpts.EnableNoundefAttrs && 2710 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2711 Attrs.addAttribute(llvm::Attribute::NoUndef); 2712 } 2713 2714 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2715 // have the corresponding parameter variable. It doesn't make 2716 // sense to do it here because parameters are so messed up. 2717 switch (AI.getKind()) { 2718 case ABIArgInfo::Extend: 2719 if (AI.isSignExt()) 2720 Attrs.addAttribute(llvm::Attribute::SExt); 2721 else 2722 Attrs.addAttribute(llvm::Attribute::ZExt); 2723 [[fallthrough]]; 2724 case ABIArgInfo::Direct: 2725 if (ArgNo == 0 && FI.isChainCall()) 2726 Attrs.addAttribute(llvm::Attribute::Nest); 2727 else if (AI.getInReg()) 2728 Attrs.addAttribute(llvm::Attribute::InReg); 2729 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2730 2731 if (canApplyNoFPClass(AI, ParamType, false)) 2732 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2733 break; 2734 case ABIArgInfo::Indirect: { 2735 if (AI.getInReg()) 2736 Attrs.addAttribute(llvm::Attribute::InReg); 2737 2738 if (AI.getIndirectByVal()) 2739 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2740 2741 auto *Decl = ParamType->getAsRecordDecl(); 2742 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2743 Decl->getArgPassingRestrictions() == 2744 RecordArgPassingKind::CanPassInRegs) 2745 // When calling the function, the pointer passed in will be the only 2746 // reference to the underlying object. Mark it accordingly. 2747 Attrs.addAttribute(llvm::Attribute::NoAlias); 2748 2749 // TODO: We could add the byref attribute if not byval, but it would 2750 // require updating many testcases. 2751 2752 CharUnits Align = AI.getIndirectAlign(); 2753 2754 // In a byval argument, it is important that the required 2755 // alignment of the type is honored, as LLVM might be creating a 2756 // *new* stack object, and needs to know what alignment to give 2757 // it. (Sometimes it can deduce a sensible alignment on its own, 2758 // but not if clang decides it must emit a packed struct, or the 2759 // user specifies increased alignment requirements.) 2760 // 2761 // This is different from indirect *not* byval, where the object 2762 // exists already, and the align attribute is purely 2763 // informative. 2764 assert(!Align.isZero()); 2765 2766 // For now, only add this when we have a byval argument. 2767 // TODO: be less lazy about updating test cases. 2768 if (AI.getIndirectByVal()) 2769 Attrs.addAlignmentAttr(Align.getQuantity()); 2770 2771 // byval disables readnone and readonly. 2772 AddPotentialArgAccess(); 2773 break; 2774 } 2775 case ABIArgInfo::IndirectAliased: { 2776 CharUnits Align = AI.getIndirectAlign(); 2777 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2778 Attrs.addAlignmentAttr(Align.getQuantity()); 2779 break; 2780 } 2781 case ABIArgInfo::Ignore: 2782 case ABIArgInfo::Expand: 2783 case ABIArgInfo::CoerceAndExpand: 2784 break; 2785 2786 case ABIArgInfo::InAlloca: 2787 // inalloca disables readnone and readonly. 2788 AddPotentialArgAccess(); 2789 continue; 2790 } 2791 2792 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2793 QualType PTy = RefTy->getPointeeType(); 2794 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2795 Attrs.addDereferenceableAttr( 2796 getMinimumObjectSize(PTy).getQuantity()); 2797 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2798 !CodeGenOpts.NullPointerIsValid) 2799 Attrs.addAttribute(llvm::Attribute::NonNull); 2800 if (PTy->isObjectType()) { 2801 llvm::Align Alignment = 2802 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2803 Attrs.addAlignmentAttr(Alignment); 2804 } 2805 } 2806 2807 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2808 // > For arguments to a __kernel function declared to be a pointer to a 2809 // > data type, the OpenCL compiler can assume that the pointee is always 2810 // > appropriately aligned as required by the data type. 2811 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2812 ParamType->isPointerType()) { 2813 QualType PTy = ParamType->getPointeeType(); 2814 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2815 llvm::Align Alignment = 2816 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2817 Attrs.addAlignmentAttr(Alignment); 2818 } 2819 } 2820 2821 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2822 case ParameterABI::Ordinary: 2823 break; 2824 2825 case ParameterABI::SwiftIndirectResult: { 2826 // Add 'sret' if we haven't already used it for something, but 2827 // only if the result is void. 2828 if (!hasUsedSRet && RetTy->isVoidType()) { 2829 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2830 hasUsedSRet = true; 2831 } 2832 2833 // Add 'noalias' in either case. 2834 Attrs.addAttribute(llvm::Attribute::NoAlias); 2835 2836 // Add 'dereferenceable' and 'alignment'. 2837 auto PTy = ParamType->getPointeeType(); 2838 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2839 auto info = getContext().getTypeInfoInChars(PTy); 2840 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2841 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2842 } 2843 break; 2844 } 2845 2846 case ParameterABI::SwiftErrorResult: 2847 Attrs.addAttribute(llvm::Attribute::SwiftError); 2848 break; 2849 2850 case ParameterABI::SwiftContext: 2851 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2852 break; 2853 2854 case ParameterABI::SwiftAsyncContext: 2855 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2856 break; 2857 } 2858 2859 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2860 Attrs.addAttribute(llvm::Attribute::NoCapture); 2861 2862 if (Attrs.hasAttributes()) { 2863 unsigned FirstIRArg, NumIRArgs; 2864 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2865 for (unsigned i = 0; i < NumIRArgs; i++) 2866 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2867 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2868 } 2869 } 2870 assert(ArgNo == FI.arg_size()); 2871 2872 AttrList = llvm::AttributeList::get( 2873 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2874 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2875 } 2876 2877 /// An argument came in as a promoted argument; demote it back to its 2878 /// declared type. 2879 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2880 const VarDecl *var, 2881 llvm::Value *value) { 2882 llvm::Type *varType = CGF.ConvertType(var->getType()); 2883 2884 // This can happen with promotions that actually don't change the 2885 // underlying type, like the enum promotions. 2886 if (value->getType() == varType) return value; 2887 2888 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2889 && "unexpected promotion type"); 2890 2891 if (isa<llvm::IntegerType>(varType)) 2892 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2893 2894 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2895 } 2896 2897 /// Returns the attribute (either parameter attribute, or function 2898 /// attribute), which declares argument ArgNo to be non-null. 2899 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2900 QualType ArgType, unsigned ArgNo) { 2901 // FIXME: __attribute__((nonnull)) can also be applied to: 2902 // - references to pointers, where the pointee is known to be 2903 // nonnull (apparently a Clang extension) 2904 // - transparent unions containing pointers 2905 // In the former case, LLVM IR cannot represent the constraint. In 2906 // the latter case, we have no guarantee that the transparent union 2907 // is in fact passed as a pointer. 2908 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2909 return nullptr; 2910 // First, check attribute on parameter itself. 2911 if (PVD) { 2912 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2913 return ParmNNAttr; 2914 } 2915 // Check function attributes. 2916 if (!FD) 2917 return nullptr; 2918 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2919 if (NNAttr->isNonNull(ArgNo)) 2920 return NNAttr; 2921 } 2922 return nullptr; 2923 } 2924 2925 namespace { 2926 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2927 Address Temp; 2928 Address Arg; 2929 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2930 void Emit(CodeGenFunction &CGF, Flags flags) override { 2931 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2932 CGF.Builder.CreateStore(errorValue, Arg); 2933 } 2934 }; 2935 } 2936 2937 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2938 llvm::Function *Fn, 2939 const FunctionArgList &Args) { 2940 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2941 // Naked functions don't have prologues. 2942 return; 2943 2944 // If this is an implicit-return-zero function, go ahead and 2945 // initialize the return value. TODO: it might be nice to have 2946 // a more general mechanism for this that didn't require synthesized 2947 // return statements. 2948 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2949 if (FD->hasImplicitReturnZero()) { 2950 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2951 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2952 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2953 Builder.CreateStore(Zero, ReturnValue); 2954 } 2955 } 2956 2957 // FIXME: We no longer need the types from FunctionArgList; lift up and 2958 // simplify. 2959 2960 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2961 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2962 2963 // If we're using inalloca, all the memory arguments are GEPs off of the last 2964 // parameter, which is a pointer to the complete memory area. 2965 Address ArgStruct = Address::invalid(); 2966 if (IRFunctionArgs.hasInallocaArg()) 2967 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2968 FI.getArgStruct(), FI.getArgStructAlignment()); 2969 2970 // Name the struct return parameter. 2971 if (IRFunctionArgs.hasSRetArg()) { 2972 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2973 AI->setName("agg.result"); 2974 AI->addAttr(llvm::Attribute::NoAlias); 2975 } 2976 2977 // Track if we received the parameter as a pointer (indirect, byval, or 2978 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2979 // into a local alloca for us. 2980 SmallVector<ParamValue, 16> ArgVals; 2981 ArgVals.reserve(Args.size()); 2982 2983 // Create a pointer value for every parameter declaration. This usually 2984 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2985 // any cleanups or do anything that might unwind. We do that separately, so 2986 // we can push the cleanups in the correct order for the ABI. 2987 assert(FI.arg_size() == Args.size() && 2988 "Mismatch between function signature & arguments."); 2989 unsigned ArgNo = 0; 2990 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2991 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2992 i != e; ++i, ++info_it, ++ArgNo) { 2993 const VarDecl *Arg = *i; 2994 const ABIArgInfo &ArgI = info_it->info; 2995 2996 bool isPromoted = 2997 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2998 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2999 // the parameter is promoted. In this case we convert to 3000 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 3001 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 3002 assert(hasScalarEvaluationKind(Ty) == 3003 hasScalarEvaluationKind(Arg->getType())); 3004 3005 unsigned FirstIRArg, NumIRArgs; 3006 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3007 3008 switch (ArgI.getKind()) { 3009 case ABIArgInfo::InAlloca: { 3010 assert(NumIRArgs == 0); 3011 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 3012 Address V = 3013 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 3014 if (ArgI.getInAllocaIndirect()) 3015 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 3016 getContext().getTypeAlignInChars(Ty)); 3017 ArgVals.push_back(ParamValue::forIndirect(V)); 3018 break; 3019 } 3020 3021 case ABIArgInfo::Indirect: 3022 case ABIArgInfo::IndirectAliased: { 3023 assert(NumIRArgs == 1); 3024 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 3025 ArgI.getIndirectAlign(), KnownNonNull); 3026 3027 if (!hasScalarEvaluationKind(Ty)) { 3028 // Aggregates and complex variables are accessed by reference. All we 3029 // need to do is realign the value, if requested. Also, if the address 3030 // may be aliased, copy it to ensure that the parameter variable is 3031 // mutable and has a unique adress, as C requires. 3032 Address V = ParamAddr; 3033 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 3034 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 3035 3036 // Copy from the incoming argument pointer to the temporary with the 3037 // appropriate alignment. 3038 // 3039 // FIXME: We should have a common utility for generating an aggregate 3040 // copy. 3041 CharUnits Size = getContext().getTypeSizeInChars(Ty); 3042 Builder.CreateMemCpy( 3043 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 3044 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 3045 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 3046 V = AlignedTemp; 3047 } 3048 ArgVals.push_back(ParamValue::forIndirect(V)); 3049 } else { 3050 // Load scalar value from indirect argument. 3051 llvm::Value *V = 3052 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 3053 3054 if (isPromoted) 3055 V = emitArgumentDemotion(*this, Arg, V); 3056 ArgVals.push_back(ParamValue::forDirect(V)); 3057 } 3058 break; 3059 } 3060 3061 case ABIArgInfo::Extend: 3062 case ABIArgInfo::Direct: { 3063 auto AI = Fn->getArg(FirstIRArg); 3064 llvm::Type *LTy = ConvertType(Arg->getType()); 3065 3066 // Prepare parameter attributes. So far, only attributes for pointer 3067 // parameters are prepared. See 3068 // http://llvm.org/docs/LangRef.html#paramattrs. 3069 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 3070 ArgI.getCoerceToType()->isPointerTy()) { 3071 assert(NumIRArgs == 1); 3072 3073 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 3074 // Set `nonnull` attribute if any. 3075 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 3076 PVD->getFunctionScopeIndex()) && 3077 !CGM.getCodeGenOpts().NullPointerIsValid) 3078 AI->addAttr(llvm::Attribute::NonNull); 3079 3080 QualType OTy = PVD->getOriginalType(); 3081 if (const auto *ArrTy = 3082 getContext().getAsConstantArrayType(OTy)) { 3083 // A C99 array parameter declaration with the static keyword also 3084 // indicates dereferenceability, and if the size is constant we can 3085 // use the dereferenceable attribute (which requires the size in 3086 // bytes). 3087 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3088 QualType ETy = ArrTy->getElementType(); 3089 llvm::Align Alignment = 3090 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3091 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3092 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 3093 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 3094 ArrSize) { 3095 llvm::AttrBuilder Attrs(getLLVMContext()); 3096 Attrs.addDereferenceableAttr( 3097 getContext().getTypeSizeInChars(ETy).getQuantity() * 3098 ArrSize); 3099 AI->addAttrs(Attrs); 3100 } else if (getContext().getTargetInfo().getNullPointerValue( 3101 ETy.getAddressSpace()) == 0 && 3102 !CGM.getCodeGenOpts().NullPointerIsValid) { 3103 AI->addAttr(llvm::Attribute::NonNull); 3104 } 3105 } 3106 } else if (const auto *ArrTy = 3107 getContext().getAsVariableArrayType(OTy)) { 3108 // For C99 VLAs with the static keyword, we don't know the size so 3109 // we can't use the dereferenceable attribute, but in addrspace(0) 3110 // we know that it must be nonnull. 3111 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3112 QualType ETy = ArrTy->getElementType(); 3113 llvm::Align Alignment = 3114 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3115 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3116 if (!getTypes().getTargetAddressSpace(ETy) && 3117 !CGM.getCodeGenOpts().NullPointerIsValid) 3118 AI->addAttr(llvm::Attribute::NonNull); 3119 } 3120 } 3121 3122 // Set `align` attribute if any. 3123 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 3124 if (!AVAttr) 3125 if (const auto *TOTy = OTy->getAs<TypedefType>()) 3126 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 3127 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 3128 // If alignment-assumption sanitizer is enabled, we do *not* add 3129 // alignment attribute here, but emit normal alignment assumption, 3130 // so the UBSAN check could function. 3131 llvm::ConstantInt *AlignmentCI = 3132 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3133 uint64_t AlignmentInt = 3134 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 3135 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 3136 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 3137 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 3138 llvm::Align(AlignmentInt))); 3139 } 3140 } 3141 } 3142 3143 // Set 'noalias' if an argument type has the `restrict` qualifier. 3144 if (Arg->getType().isRestrictQualified()) 3145 AI->addAttr(llvm::Attribute::NoAlias); 3146 } 3147 3148 // Prepare the argument value. If we have the trivial case, handle it 3149 // with no muss and fuss. 3150 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 3151 ArgI.getCoerceToType() == ConvertType(Ty) && 3152 ArgI.getDirectOffset() == 0) { 3153 assert(NumIRArgs == 1); 3154 3155 // LLVM expects swifterror parameters to be used in very restricted 3156 // ways. Copy the value into a less-restricted temporary. 3157 llvm::Value *V = AI; 3158 if (FI.getExtParameterInfo(ArgNo).getABI() 3159 == ParameterABI::SwiftErrorResult) { 3160 QualType pointeeTy = Ty->getPointeeType(); 3161 assert(pointeeTy->isPointerType()); 3162 Address temp = 3163 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3164 Address arg(V, ConvertTypeForMem(pointeeTy), 3165 getContext().getTypeAlignInChars(pointeeTy)); 3166 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 3167 Builder.CreateStore(incomingErrorValue, temp); 3168 V = temp.getPointer(); 3169 3170 // Push a cleanup to copy the value back at the end of the function. 3171 // The convention does not guarantee that the value will be written 3172 // back if the function exits with an unwind exception. 3173 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 3174 } 3175 3176 // Ensure the argument is the correct type. 3177 if (V->getType() != ArgI.getCoerceToType()) 3178 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 3179 3180 if (isPromoted) 3181 V = emitArgumentDemotion(*this, Arg, V); 3182 3183 // Because of merging of function types from multiple decls it is 3184 // possible for the type of an argument to not match the corresponding 3185 // type in the function type. Since we are codegening the callee 3186 // in here, add a cast to the argument type. 3187 llvm::Type *LTy = ConvertType(Arg->getType()); 3188 if (V->getType() != LTy) 3189 V = Builder.CreateBitCast(V, LTy); 3190 3191 ArgVals.push_back(ParamValue::forDirect(V)); 3192 break; 3193 } 3194 3195 // VLST arguments are coerced to VLATs at the function boundary for 3196 // ABI consistency. If this is a VLST that was coerced to 3197 // a VLAT at the function boundary and the types match up, use 3198 // llvm.vector.extract to convert back to the original VLST. 3199 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3200 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 3201 if (auto *VecTyFrom = 3202 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 3203 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 3204 // vector, bitcast the source and use a vector extract. 3205 auto PredType = 3206 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 3207 if (VecTyFrom == PredType && 3208 VecTyTo->getElementType() == Builder.getInt8Ty()) { 3209 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 3210 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 3211 } 3212 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 3213 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 3214 3215 assert(NumIRArgs == 1); 3216 Coerced->setName(Arg->getName() + ".coerce"); 3217 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 3218 VecTyTo, Coerced, Zero, "cast.fixed"))); 3219 break; 3220 } 3221 } 3222 } 3223 3224 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3225 Arg->getName()); 3226 3227 // Pointer to store into. 3228 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3229 3230 // Fast-isel and the optimizer generally like scalar values better than 3231 // FCAs, so we flatten them if this is safe to do for this argument. 3232 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3233 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3234 STy->getNumElements() > 1) { 3235 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 3236 llvm::TypeSize PtrElementSize = 3237 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 3238 if (StructSize.isScalable()) { 3239 assert(STy->containsHomogeneousScalableVectorTypes() && 3240 "ABI only supports structure with homogeneous scalable vector " 3241 "type"); 3242 assert(StructSize == PtrElementSize && 3243 "Only allow non-fractional movement of structure with" 3244 "homogeneous scalable vector type"); 3245 assert(STy->getNumElements() == NumIRArgs); 3246 3247 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 3248 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3249 auto *AI = Fn->getArg(FirstIRArg + i); 3250 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3251 LoadedStructValue = 3252 Builder.CreateInsertValue(LoadedStructValue, AI, i); 3253 } 3254 3255 Builder.CreateStore(LoadedStructValue, Ptr); 3256 } else { 3257 uint64_t SrcSize = StructSize.getFixedValue(); 3258 uint64_t DstSize = PtrElementSize.getFixedValue(); 3259 3260 Address AddrToStoreInto = Address::invalid(); 3261 if (SrcSize <= DstSize) { 3262 AddrToStoreInto = Ptr.withElementType(STy); 3263 } else { 3264 AddrToStoreInto = 3265 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3266 } 3267 3268 assert(STy->getNumElements() == NumIRArgs); 3269 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3270 auto AI = Fn->getArg(FirstIRArg + i); 3271 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3272 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3273 Builder.CreateStore(AI, EltPtr); 3274 } 3275 3276 if (SrcSize > DstSize) { 3277 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3278 } 3279 } 3280 } else { 3281 // Simple case, just do a coerced store of the argument into the alloca. 3282 assert(NumIRArgs == 1); 3283 auto AI = Fn->getArg(FirstIRArg); 3284 AI->setName(Arg->getName() + ".coerce"); 3285 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 3286 } 3287 3288 // Match to what EmitParmDecl is expecting for this type. 3289 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3290 llvm::Value *V = 3291 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3292 if (isPromoted) 3293 V = emitArgumentDemotion(*this, Arg, V); 3294 ArgVals.push_back(ParamValue::forDirect(V)); 3295 } else { 3296 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3297 } 3298 break; 3299 } 3300 3301 case ABIArgInfo::CoerceAndExpand: { 3302 // Reconstruct into a temporary. 3303 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3304 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3305 3306 auto coercionType = ArgI.getCoerceAndExpandType(); 3307 alloca = alloca.withElementType(coercionType); 3308 3309 unsigned argIndex = FirstIRArg; 3310 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3311 llvm::Type *eltType = coercionType->getElementType(i); 3312 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3313 continue; 3314 3315 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3316 auto elt = Fn->getArg(argIndex++); 3317 Builder.CreateStore(elt, eltAddr); 3318 } 3319 assert(argIndex == FirstIRArg + NumIRArgs); 3320 break; 3321 } 3322 3323 case ABIArgInfo::Expand: { 3324 // If this structure was expanded into multiple arguments then 3325 // we need to create a temporary and reconstruct it from the 3326 // arguments. 3327 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3328 LValue LV = MakeAddrLValue(Alloca, Ty); 3329 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3330 3331 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3332 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3333 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3334 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3335 auto AI = Fn->getArg(FirstIRArg + i); 3336 AI->setName(Arg->getName() + "." + Twine(i)); 3337 } 3338 break; 3339 } 3340 3341 case ABIArgInfo::Ignore: 3342 assert(NumIRArgs == 0); 3343 // Initialize the local variable appropriately. 3344 if (!hasScalarEvaluationKind(Ty)) { 3345 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3346 } else { 3347 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3348 ArgVals.push_back(ParamValue::forDirect(U)); 3349 } 3350 break; 3351 } 3352 } 3353 3354 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3355 for (int I = Args.size() - 1; I >= 0; --I) 3356 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3357 } else { 3358 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3359 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3360 } 3361 } 3362 3363 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3364 while (insn->use_empty()) { 3365 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3366 if (!bitcast) return; 3367 3368 // This is "safe" because we would have used a ConstantExpr otherwise. 3369 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3370 bitcast->eraseFromParent(); 3371 } 3372 } 3373 3374 /// Try to emit a fused autorelease of a return result. 3375 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3376 llvm::Value *result) { 3377 // We must be immediately followed the cast. 3378 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3379 if (BB->empty()) return nullptr; 3380 if (&BB->back() != result) return nullptr; 3381 3382 llvm::Type *resultType = result->getType(); 3383 3384 // result is in a BasicBlock and is therefore an Instruction. 3385 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3386 3387 SmallVector<llvm::Instruction *, 4> InstsToKill; 3388 3389 // Look for: 3390 // %generator = bitcast %type1* %generator2 to %type2* 3391 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3392 // We would have emitted this as a constant if the operand weren't 3393 // an Instruction. 3394 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3395 3396 // Require the generator to be immediately followed by the cast. 3397 if (generator->getNextNode() != bitcast) 3398 return nullptr; 3399 3400 InstsToKill.push_back(bitcast); 3401 } 3402 3403 // Look for: 3404 // %generator = call i8* @objc_retain(i8* %originalResult) 3405 // or 3406 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3407 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3408 if (!call) return nullptr; 3409 3410 bool doRetainAutorelease; 3411 3412 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3413 doRetainAutorelease = true; 3414 } else if (call->getCalledOperand() == 3415 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3416 doRetainAutorelease = false; 3417 3418 // If we emitted an assembly marker for this call (and the 3419 // ARCEntrypoints field should have been set if so), go looking 3420 // for that call. If we can't find it, we can't do this 3421 // optimization. But it should always be the immediately previous 3422 // instruction, unless we needed bitcasts around the call. 3423 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3424 llvm::Instruction *prev = call->getPrevNode(); 3425 assert(prev); 3426 if (isa<llvm::BitCastInst>(prev)) { 3427 prev = prev->getPrevNode(); 3428 assert(prev); 3429 } 3430 assert(isa<llvm::CallInst>(prev)); 3431 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3432 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3433 InstsToKill.push_back(prev); 3434 } 3435 } else { 3436 return nullptr; 3437 } 3438 3439 result = call->getArgOperand(0); 3440 InstsToKill.push_back(call); 3441 3442 // Keep killing bitcasts, for sanity. Note that we no longer care 3443 // about precise ordering as long as there's exactly one use. 3444 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3445 if (!bitcast->hasOneUse()) break; 3446 InstsToKill.push_back(bitcast); 3447 result = bitcast->getOperand(0); 3448 } 3449 3450 // Delete all the unnecessary instructions, from latest to earliest. 3451 for (auto *I : InstsToKill) 3452 I->eraseFromParent(); 3453 3454 // Do the fused retain/autorelease if we were asked to. 3455 if (doRetainAutorelease) 3456 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3457 3458 // Cast back to the result type. 3459 return CGF.Builder.CreateBitCast(result, resultType); 3460 } 3461 3462 /// If this is a +1 of the value of an immutable 'self', remove it. 3463 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3464 llvm::Value *result) { 3465 // This is only applicable to a method with an immutable 'self'. 3466 const ObjCMethodDecl *method = 3467 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3468 if (!method) return nullptr; 3469 const VarDecl *self = method->getSelfDecl(); 3470 if (!self->getType().isConstQualified()) return nullptr; 3471 3472 // Look for a retain call. Note: stripPointerCasts looks through returned arg 3473 // functions, which would cause us to miss the retain. 3474 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 3475 if (!retainCall || retainCall->getCalledOperand() != 3476 CGF.CGM.getObjCEntrypoints().objc_retain) 3477 return nullptr; 3478 3479 // Look for an ordinary load of 'self'. 3480 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3481 llvm::LoadInst *load = 3482 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3483 if (!load || load->isAtomic() || load->isVolatile() || 3484 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3485 return nullptr; 3486 3487 // Okay! Burn it all down. This relies for correctness on the 3488 // assumption that the retain is emitted as part of the return and 3489 // that thereafter everything is used "linearly". 3490 llvm::Type *resultType = result->getType(); 3491 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3492 assert(retainCall->use_empty()); 3493 retainCall->eraseFromParent(); 3494 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3495 3496 return CGF.Builder.CreateBitCast(load, resultType); 3497 } 3498 3499 /// Emit an ARC autorelease of the result of a function. 3500 /// 3501 /// \return the value to actually return from the function 3502 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3503 llvm::Value *result) { 3504 // If we're returning 'self', kill the initial retain. This is a 3505 // heuristic attempt to "encourage correctness" in the really unfortunate 3506 // case where we have a return of self during a dealloc and we desperately 3507 // need to avoid the possible autorelease. 3508 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3509 return self; 3510 3511 // At -O0, try to emit a fused retain/autorelease. 3512 if (CGF.shouldUseFusedARCCalls()) 3513 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3514 return fused; 3515 3516 return CGF.EmitARCAutoreleaseReturnValue(result); 3517 } 3518 3519 /// Heuristically search for a dominating store to the return-value slot. 3520 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3521 // Check if a User is a store which pointerOperand is the ReturnValue. 3522 // We are looking for stores to the ReturnValue, not for stores of the 3523 // ReturnValue to some other location. 3524 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3525 auto *SI = dyn_cast<llvm::StoreInst>(U); 3526 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() || 3527 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3528 return nullptr; 3529 // These aren't actually possible for non-coerced returns, and we 3530 // only care about non-coerced returns on this code path. 3531 // All memory instructions inside __try block are volatile. 3532 assert(!SI->isAtomic() && 3533 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 3534 return SI; 3535 }; 3536 // If there are multiple uses of the return-value slot, just check 3537 // for something immediately preceding the IP. Sometimes this can 3538 // happen with how we generate implicit-returns; it can also happen 3539 // with noreturn cleanups. 3540 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3541 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3542 if (IP->empty()) return nullptr; 3543 3544 // Look at directly preceding instruction, skipping bitcasts and lifetime 3545 // markers. 3546 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3547 if (isa<llvm::BitCastInst>(&I)) 3548 continue; 3549 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3550 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3551 continue; 3552 3553 return GetStoreIfValid(&I); 3554 } 3555 return nullptr; 3556 } 3557 3558 llvm::StoreInst *store = 3559 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3560 if (!store) return nullptr; 3561 3562 // Now do a first-and-dirty dominance check: just walk up the 3563 // single-predecessors chain from the current insertion point. 3564 llvm::BasicBlock *StoreBB = store->getParent(); 3565 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3566 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 3567 while (IP != StoreBB) { 3568 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 3569 return nullptr; 3570 } 3571 3572 // Okay, the store's basic block dominates the insertion point; we 3573 // can do our thing. 3574 return store; 3575 } 3576 3577 // Helper functions for EmitCMSEClearRecord 3578 3579 // Set the bits corresponding to a field having width `BitWidth` and located at 3580 // offset `BitOffset` (from the least significant bit) within a storage unit of 3581 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3582 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3583 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3584 int BitWidth, int CharWidth) { 3585 assert(CharWidth <= 64); 3586 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3587 3588 int Pos = 0; 3589 if (BitOffset >= CharWidth) { 3590 Pos += BitOffset / CharWidth; 3591 BitOffset = BitOffset % CharWidth; 3592 } 3593 3594 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3595 if (BitOffset + BitWidth >= CharWidth) { 3596 Bits[Pos++] |= (Used << BitOffset) & Used; 3597 BitWidth -= CharWidth - BitOffset; 3598 BitOffset = 0; 3599 } 3600 3601 while (BitWidth >= CharWidth) { 3602 Bits[Pos++] = Used; 3603 BitWidth -= CharWidth; 3604 } 3605 3606 if (BitWidth > 0) 3607 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3608 } 3609 3610 // Set the bits corresponding to a field having width `BitWidth` and located at 3611 // offset `BitOffset` (from the least significant bit) within a storage unit of 3612 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3613 // `Bits` corresponds to one target byte. Use target endian layout. 3614 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3615 int StorageSize, int BitOffset, int BitWidth, 3616 int CharWidth, bool BigEndian) { 3617 3618 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3619 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3620 3621 if (BigEndian) 3622 std::reverse(TmpBits.begin(), TmpBits.end()); 3623 3624 for (uint64_t V : TmpBits) 3625 Bits[StorageOffset++] |= V; 3626 } 3627 3628 static void setUsedBits(CodeGenModule &, QualType, int, 3629 SmallVectorImpl<uint64_t> &); 3630 3631 // Set the bits in `Bits`, which correspond to the value representations of 3632 // the actual members of the record type `RTy`. Note that this function does 3633 // not handle base classes, virtual tables, etc, since they cannot happen in 3634 // CMSE function arguments or return. The bit mask corresponds to the target 3635 // memory layout, i.e. it's endian dependent. 3636 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3637 SmallVectorImpl<uint64_t> &Bits) { 3638 ASTContext &Context = CGM.getContext(); 3639 int CharWidth = Context.getCharWidth(); 3640 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3641 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3642 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3643 3644 int Idx = 0; 3645 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3646 const FieldDecl *F = *I; 3647 3648 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3649 F->getType()->isIncompleteArrayType()) 3650 continue; 3651 3652 if (F->isBitField()) { 3653 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3654 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3655 BFI.StorageSize / CharWidth, BFI.Offset, 3656 BFI.Size, CharWidth, 3657 CGM.getDataLayout().isBigEndian()); 3658 continue; 3659 } 3660 3661 setUsedBits(CGM, F->getType(), 3662 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3663 } 3664 } 3665 3666 // Set the bits in `Bits`, which correspond to the value representations of 3667 // the elements of an array type `ATy`. 3668 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3669 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3670 const ASTContext &Context = CGM.getContext(); 3671 3672 QualType ETy = Context.getBaseElementType(ATy); 3673 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3674 SmallVector<uint64_t, 4> TmpBits(Size); 3675 setUsedBits(CGM, ETy, 0, TmpBits); 3676 3677 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3678 auto Src = TmpBits.begin(); 3679 auto Dst = Bits.begin() + Offset + I * Size; 3680 for (int J = 0; J < Size; ++J) 3681 *Dst++ |= *Src++; 3682 } 3683 } 3684 3685 // Set the bits in `Bits`, which correspond to the value representations of 3686 // the type `QTy`. 3687 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3688 SmallVectorImpl<uint64_t> &Bits) { 3689 if (const auto *RTy = QTy->getAs<RecordType>()) 3690 return setUsedBits(CGM, RTy, Offset, Bits); 3691 3692 ASTContext &Context = CGM.getContext(); 3693 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3694 return setUsedBits(CGM, ATy, Offset, Bits); 3695 3696 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3697 if (Size <= 0) 3698 return; 3699 3700 std::fill_n(Bits.begin() + Offset, Size, 3701 (uint64_t(1) << Context.getCharWidth()) - 1); 3702 } 3703 3704 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3705 int Pos, int Size, int CharWidth, 3706 bool BigEndian) { 3707 assert(Size > 0); 3708 uint64_t Mask = 0; 3709 if (BigEndian) { 3710 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3711 ++P) 3712 Mask = (Mask << CharWidth) | *P; 3713 } else { 3714 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3715 do 3716 Mask = (Mask << CharWidth) | *--P; 3717 while (P != End); 3718 } 3719 return Mask; 3720 } 3721 3722 // Emit code to clear the bits in a record, which aren't a part of any user 3723 // declared member, when the record is a function return. 3724 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3725 llvm::IntegerType *ITy, 3726 QualType QTy) { 3727 assert(Src->getType() == ITy); 3728 assert(ITy->getScalarSizeInBits() <= 64); 3729 3730 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3731 int Size = DataLayout.getTypeStoreSize(ITy); 3732 SmallVector<uint64_t, 4> Bits(Size); 3733 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3734 3735 int CharWidth = CGM.getContext().getCharWidth(); 3736 uint64_t Mask = 3737 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3738 3739 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3740 } 3741 3742 // Emit code to clear the bits in a record, which aren't a part of any user 3743 // declared member, when the record is a function argument. 3744 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3745 llvm::ArrayType *ATy, 3746 QualType QTy) { 3747 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3748 int Size = DataLayout.getTypeStoreSize(ATy); 3749 SmallVector<uint64_t, 16> Bits(Size); 3750 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3751 3752 // Clear each element of the LLVM array. 3753 int CharWidth = CGM.getContext().getCharWidth(); 3754 int CharsPerElt = 3755 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3756 int MaskIndex = 0; 3757 llvm::Value *R = llvm::PoisonValue::get(ATy); 3758 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3759 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3760 DataLayout.isBigEndian()); 3761 MaskIndex += CharsPerElt; 3762 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3763 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3764 R = Builder.CreateInsertValue(R, T1, I); 3765 } 3766 3767 return R; 3768 } 3769 3770 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3771 bool EmitRetDbgLoc, 3772 SourceLocation EndLoc) { 3773 if (FI.isNoReturn()) { 3774 // Noreturn functions don't return. 3775 EmitUnreachable(EndLoc); 3776 return; 3777 } 3778 3779 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3780 // Naked functions don't have epilogues. 3781 Builder.CreateUnreachable(); 3782 return; 3783 } 3784 3785 // Functions with no result always return void. 3786 if (!ReturnValue.isValid()) { 3787 Builder.CreateRetVoid(); 3788 return; 3789 } 3790 3791 llvm::DebugLoc RetDbgLoc; 3792 llvm::Value *RV = nullptr; 3793 QualType RetTy = FI.getReturnType(); 3794 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3795 3796 switch (RetAI.getKind()) { 3797 case ABIArgInfo::InAlloca: 3798 // Aggregates get evaluated directly into the destination. Sometimes we 3799 // need to return the sret value in a register, though. 3800 assert(hasAggregateEvaluationKind(RetTy)); 3801 if (RetAI.getInAllocaSRet()) { 3802 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3803 --EI; 3804 llvm::Value *ArgStruct = &*EI; 3805 llvm::Value *SRet = Builder.CreateStructGEP( 3806 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3807 llvm::Type *Ty = 3808 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3809 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3810 } 3811 break; 3812 3813 case ABIArgInfo::Indirect: { 3814 auto AI = CurFn->arg_begin(); 3815 if (RetAI.isSRetAfterThis()) 3816 ++AI; 3817 switch (getEvaluationKind(RetTy)) { 3818 case TEK_Complex: { 3819 ComplexPairTy RT = 3820 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3821 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3822 /*isInit*/ true); 3823 break; 3824 } 3825 case TEK_Aggregate: 3826 // Do nothing; aggregates get evaluated directly into the destination. 3827 break; 3828 case TEK_Scalar: { 3829 LValueBaseInfo BaseInfo; 3830 TBAAAccessInfo TBAAInfo; 3831 CharUnits Alignment = 3832 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3833 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3834 LValue ArgVal = 3835 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3836 EmitStoreOfScalar( 3837 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3838 break; 3839 } 3840 } 3841 break; 3842 } 3843 3844 case ABIArgInfo::Extend: 3845 case ABIArgInfo::Direct: 3846 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3847 RetAI.getDirectOffset() == 0) { 3848 // The internal return value temp always will have pointer-to-return-type 3849 // type, just do a load. 3850 3851 // If there is a dominating store to ReturnValue, we can elide 3852 // the load, zap the store, and usually zap the alloca. 3853 if (llvm::StoreInst *SI = 3854 findDominatingStoreToReturnValue(*this)) { 3855 // Reuse the debug location from the store unless there is 3856 // cleanup code to be emitted between the store and return 3857 // instruction. 3858 if (EmitRetDbgLoc && !AutoreleaseResult) 3859 RetDbgLoc = SI->getDebugLoc(); 3860 // Get the stored value and nuke the now-dead store. 3861 RV = SI->getValueOperand(); 3862 SI->eraseFromParent(); 3863 3864 // Otherwise, we have to do a simple load. 3865 } else { 3866 RV = Builder.CreateLoad(ReturnValue); 3867 } 3868 } else { 3869 // If the value is offset in memory, apply the offset now. 3870 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3871 3872 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3873 } 3874 3875 // In ARC, end functions that return a retainable type with a call 3876 // to objc_autoreleaseReturnValue. 3877 if (AutoreleaseResult) { 3878 #ifndef NDEBUG 3879 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3880 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3881 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3882 // CurCodeDecl or BlockInfo. 3883 QualType RT; 3884 3885 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3886 RT = FD->getReturnType(); 3887 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3888 RT = MD->getReturnType(); 3889 else if (isa<BlockDecl>(CurCodeDecl)) 3890 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3891 else 3892 llvm_unreachable("Unexpected function/method type"); 3893 3894 assert(getLangOpts().ObjCAutoRefCount && 3895 !FI.isReturnsRetained() && 3896 RT->isObjCRetainableType()); 3897 #endif 3898 RV = emitAutoreleaseOfResult(*this, RV); 3899 } 3900 3901 break; 3902 3903 case ABIArgInfo::Ignore: 3904 break; 3905 3906 case ABIArgInfo::CoerceAndExpand: { 3907 auto coercionType = RetAI.getCoerceAndExpandType(); 3908 3909 // Load all of the coerced elements out into results. 3910 llvm::SmallVector<llvm::Value*, 4> results; 3911 Address addr = ReturnValue.withElementType(coercionType); 3912 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3913 auto coercedEltType = coercionType->getElementType(i); 3914 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3915 continue; 3916 3917 auto eltAddr = Builder.CreateStructGEP(addr, i); 3918 auto elt = Builder.CreateLoad(eltAddr); 3919 results.push_back(elt); 3920 } 3921 3922 // If we have one result, it's the single direct result type. 3923 if (results.size() == 1) { 3924 RV = results[0]; 3925 3926 // Otherwise, we need to make a first-class aggregate. 3927 } else { 3928 // Construct a return type that lacks padding elements. 3929 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3930 3931 RV = llvm::PoisonValue::get(returnType); 3932 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3933 RV = Builder.CreateInsertValue(RV, results[i], i); 3934 } 3935 } 3936 break; 3937 } 3938 case ABIArgInfo::Expand: 3939 case ABIArgInfo::IndirectAliased: 3940 llvm_unreachable("Invalid ABI kind for return argument"); 3941 } 3942 3943 llvm::Instruction *Ret; 3944 if (RV) { 3945 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3946 // For certain return types, clear padding bits, as they may reveal 3947 // sensitive information. 3948 // Small struct/union types are passed as integers. 3949 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3950 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3951 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3952 } 3953 EmitReturnValueCheck(RV); 3954 Ret = Builder.CreateRet(RV); 3955 } else { 3956 Ret = Builder.CreateRetVoid(); 3957 } 3958 3959 if (RetDbgLoc) 3960 Ret->setDebugLoc(std::move(RetDbgLoc)); 3961 } 3962 3963 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3964 // A current decl may not be available when emitting vtable thunks. 3965 if (!CurCodeDecl) 3966 return; 3967 3968 // If the return block isn't reachable, neither is this check, so don't emit 3969 // it. 3970 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3971 return; 3972 3973 ReturnsNonNullAttr *RetNNAttr = nullptr; 3974 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3975 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3976 3977 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3978 return; 3979 3980 // Prefer the returns_nonnull attribute if it's present. 3981 SourceLocation AttrLoc; 3982 SanitizerMask CheckKind; 3983 SanitizerHandler Handler; 3984 if (RetNNAttr) { 3985 assert(!requiresReturnValueNullabilityCheck() && 3986 "Cannot check nullability and the nonnull attribute"); 3987 AttrLoc = RetNNAttr->getLocation(); 3988 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3989 Handler = SanitizerHandler::NonnullReturn; 3990 } else { 3991 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3992 if (auto *TSI = DD->getTypeSourceInfo()) 3993 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3994 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3995 CheckKind = SanitizerKind::NullabilityReturn; 3996 Handler = SanitizerHandler::NullabilityReturn; 3997 } 3998 3999 SanitizerScope SanScope(this); 4000 4001 // Make sure the "return" source location is valid. If we're checking a 4002 // nullability annotation, make sure the preconditions for the check are met. 4003 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 4004 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 4005 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 4006 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 4007 if (requiresReturnValueNullabilityCheck()) 4008 CanNullCheck = 4009 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 4010 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 4011 EmitBlock(Check); 4012 4013 // Now do the null check. 4014 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 4015 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 4016 llvm::Value *DynamicData[] = {SLocPtr}; 4017 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 4018 4019 EmitBlock(NoCheck); 4020 4021 #ifndef NDEBUG 4022 // The return location should not be used after the check has been emitted. 4023 ReturnLocation = Address::invalid(); 4024 #endif 4025 } 4026 4027 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 4028 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 4029 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 4030 } 4031 4032 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 4033 QualType Ty) { 4034 // FIXME: Generate IR in one pass, rather than going back and fixing up these 4035 // placeholders. 4036 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 4037 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 4038 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 4039 4040 // FIXME: When we generate this IR in one pass, we shouldn't need 4041 // this win32-specific alignment hack. 4042 CharUnits Align = CharUnits::fromQuantity(4); 4043 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 4044 4045 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 4046 Ty.getQualifiers(), 4047 AggValueSlot::IsNotDestructed, 4048 AggValueSlot::DoesNotNeedGCBarriers, 4049 AggValueSlot::IsNotAliased, 4050 AggValueSlot::DoesNotOverlap); 4051 } 4052 4053 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 4054 const VarDecl *param, 4055 SourceLocation loc) { 4056 // StartFunction converted the ABI-lowered parameter(s) into a 4057 // local alloca. We need to turn that into an r-value suitable 4058 // for EmitCall. 4059 Address local = GetAddrOfLocalVar(param); 4060 4061 QualType type = param->getType(); 4062 4063 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 4064 // but the argument needs to be the original pointer. 4065 if (type->isReferenceType()) { 4066 args.add(RValue::get(Builder.CreateLoad(local)), type); 4067 4068 // In ARC, move out of consumed arguments so that the release cleanup 4069 // entered by StartFunction doesn't cause an over-release. This isn't 4070 // optimal -O0 code generation, but it should get cleaned up when 4071 // optimization is enabled. This also assumes that delegate calls are 4072 // performed exactly once for a set of arguments, but that should be safe. 4073 } else if (getLangOpts().ObjCAutoRefCount && 4074 param->hasAttr<NSConsumedAttr>() && 4075 type->isObjCRetainableType()) { 4076 llvm::Value *ptr = Builder.CreateLoad(local); 4077 auto null = 4078 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 4079 Builder.CreateStore(null, local); 4080 args.add(RValue::get(ptr), type); 4081 4082 // For the most part, we just need to load the alloca, except that 4083 // aggregate r-values are actually pointers to temporaries. 4084 } else { 4085 args.add(convertTempToRValue(local, type, loc), type); 4086 } 4087 4088 // Deactivate the cleanup for the callee-destructed param that was pushed. 4089 if (type->isRecordType() && !CurFuncIsThunk && 4090 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4091 param->needsDestruction(getContext())) { 4092 EHScopeStack::stable_iterator cleanup = 4093 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 4094 assert(cleanup.isValid() && 4095 "cleanup for callee-destructed param not recorded"); 4096 // This unreachable is a temporary marker which will be removed later. 4097 llvm::Instruction *isActive = Builder.CreateUnreachable(); 4098 args.addArgCleanupDeactivation(cleanup, isActive); 4099 } 4100 } 4101 4102 static bool isProvablyNull(llvm::Value *addr) { 4103 return isa<llvm::ConstantPointerNull>(addr); 4104 } 4105 4106 /// Emit the actual writing-back of a writeback. 4107 static void emitWriteback(CodeGenFunction &CGF, 4108 const CallArgList::Writeback &writeback) { 4109 const LValue &srcLV = writeback.Source; 4110 Address srcAddr = srcLV.getAddress(CGF); 4111 assert(!isProvablyNull(srcAddr.getPointer()) && 4112 "shouldn't have writeback for provably null argument"); 4113 4114 llvm::BasicBlock *contBB = nullptr; 4115 4116 // If the argument wasn't provably non-null, we need to null check 4117 // before doing the store. 4118 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 4119 CGF.CGM.getDataLayout()); 4120 if (!provablyNonNull) { 4121 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 4122 contBB = CGF.createBasicBlock("icr.done"); 4123 4124 llvm::Value *isNull = 4125 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 4126 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 4127 CGF.EmitBlock(writebackBB); 4128 } 4129 4130 // Load the value to writeback. 4131 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 4132 4133 // Cast it back, in case we're writing an id to a Foo* or something. 4134 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 4135 "icr.writeback-cast"); 4136 4137 // Perform the writeback. 4138 4139 // If we have a "to use" value, it's something we need to emit a use 4140 // of. This has to be carefully threaded in: if it's done after the 4141 // release it's potentially undefined behavior (and the optimizer 4142 // will ignore it), and if it happens before the retain then the 4143 // optimizer could move the release there. 4144 if (writeback.ToUse) { 4145 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 4146 4147 // Retain the new value. No need to block-copy here: the block's 4148 // being passed up the stack. 4149 value = CGF.EmitARCRetainNonBlock(value); 4150 4151 // Emit the intrinsic use here. 4152 CGF.EmitARCIntrinsicUse(writeback.ToUse); 4153 4154 // Load the old value (primitively). 4155 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 4156 4157 // Put the new value in place (primitively). 4158 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 4159 4160 // Release the old value. 4161 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 4162 4163 // Otherwise, we can just do a normal lvalue store. 4164 } else { 4165 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 4166 } 4167 4168 // Jump to the continuation block. 4169 if (!provablyNonNull) 4170 CGF.EmitBlock(contBB); 4171 } 4172 4173 static void emitWritebacks(CodeGenFunction &CGF, 4174 const CallArgList &args) { 4175 for (const auto &I : args.writebacks()) 4176 emitWriteback(CGF, I); 4177 } 4178 4179 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 4180 const CallArgList &CallArgs) { 4181 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 4182 CallArgs.getCleanupsToDeactivate(); 4183 // Iterate in reverse to increase the likelihood of popping the cleanup. 4184 for (const auto &I : llvm::reverse(Cleanups)) { 4185 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 4186 I.IsActiveIP->eraseFromParent(); 4187 } 4188 } 4189 4190 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 4191 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 4192 if (uop->getOpcode() == UO_AddrOf) 4193 return uop->getSubExpr(); 4194 return nullptr; 4195 } 4196 4197 /// Emit an argument that's being passed call-by-writeback. That is, 4198 /// we are passing the address of an __autoreleased temporary; it 4199 /// might be copy-initialized with the current value of the given 4200 /// address, but it will definitely be copied out of after the call. 4201 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 4202 const ObjCIndirectCopyRestoreExpr *CRE) { 4203 LValue srcLV; 4204 4205 // Make an optimistic effort to emit the address as an l-value. 4206 // This can fail if the argument expression is more complicated. 4207 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 4208 srcLV = CGF.EmitLValue(lvExpr); 4209 4210 // Otherwise, just emit it as a scalar. 4211 } else { 4212 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 4213 4214 QualType srcAddrType = 4215 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 4216 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 4217 } 4218 Address srcAddr = srcLV.getAddress(CGF); 4219 4220 // The dest and src types don't necessarily match in LLVM terms 4221 // because of the crazy ObjC compatibility rules. 4222 4223 llvm::PointerType *destType = 4224 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 4225 llvm::Type *destElemType = 4226 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 4227 4228 // If the address is a constant null, just pass the appropriate null. 4229 if (isProvablyNull(srcAddr.getPointer())) { 4230 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 4231 CRE->getType()); 4232 return; 4233 } 4234 4235 // Create the temporary. 4236 Address temp = 4237 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4238 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4239 // and that cleanup will be conditional if we can't prove that the l-value 4240 // isn't null, so we need to register a dominating point so that the cleanups 4241 // system will make valid IR. 4242 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4243 4244 // Zero-initialize it if we're not doing a copy-initialization. 4245 bool shouldCopy = CRE->shouldCopy(); 4246 if (!shouldCopy) { 4247 llvm::Value *null = 4248 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4249 CGF.Builder.CreateStore(null, temp); 4250 } 4251 4252 llvm::BasicBlock *contBB = nullptr; 4253 llvm::BasicBlock *originBB = nullptr; 4254 4255 // If the address is *not* known to be non-null, we need to switch. 4256 llvm::Value *finalArgument; 4257 4258 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 4259 CGF.CGM.getDataLayout()); 4260 if (provablyNonNull) { 4261 finalArgument = temp.getPointer(); 4262 } else { 4263 llvm::Value *isNull = 4264 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 4265 4266 finalArgument = CGF.Builder.CreateSelect(isNull, 4267 llvm::ConstantPointerNull::get(destType), 4268 temp.getPointer(), "icr.argument"); 4269 4270 // If we need to copy, then the load has to be conditional, which 4271 // means we need control flow. 4272 if (shouldCopy) { 4273 originBB = CGF.Builder.GetInsertBlock(); 4274 contBB = CGF.createBasicBlock("icr.cont"); 4275 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4276 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4277 CGF.EmitBlock(copyBB); 4278 condEval.begin(CGF); 4279 } 4280 } 4281 4282 llvm::Value *valueToUse = nullptr; 4283 4284 // Perform a copy if necessary. 4285 if (shouldCopy) { 4286 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4287 assert(srcRV.isScalar()); 4288 4289 llvm::Value *src = srcRV.getScalarVal(); 4290 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4291 4292 // Use an ordinary store, not a store-to-lvalue. 4293 CGF.Builder.CreateStore(src, temp); 4294 4295 // If optimization is enabled, and the value was held in a 4296 // __strong variable, we need to tell the optimizer that this 4297 // value has to stay alive until we're doing the store back. 4298 // This is because the temporary is effectively unretained, 4299 // and so otherwise we can violate the high-level semantics. 4300 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4301 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4302 valueToUse = src; 4303 } 4304 } 4305 4306 // Finish the control flow if we needed it. 4307 if (shouldCopy && !provablyNonNull) { 4308 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4309 CGF.EmitBlock(contBB); 4310 4311 // Make a phi for the value to intrinsically use. 4312 if (valueToUse) { 4313 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4314 "icr.to-use"); 4315 phiToUse->addIncoming(valueToUse, copyBB); 4316 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4317 originBB); 4318 valueToUse = phiToUse; 4319 } 4320 4321 condEval.end(CGF); 4322 } 4323 4324 args.addWriteback(srcLV, temp, valueToUse); 4325 args.add(RValue::get(finalArgument), CRE->getType()); 4326 } 4327 4328 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4329 assert(!StackBase); 4330 4331 // Save the stack. 4332 StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 4333 } 4334 4335 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4336 if (StackBase) { 4337 // Restore the stack after the call. 4338 CGF.Builder.CreateStackRestore(StackBase); 4339 } 4340 } 4341 4342 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4343 SourceLocation ArgLoc, 4344 AbstractCallee AC, 4345 unsigned ParmNum) { 4346 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4347 SanOpts.has(SanitizerKind::NullabilityArg))) 4348 return; 4349 4350 // The param decl may be missing in a variadic function. 4351 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4352 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4353 4354 // Prefer the nonnull attribute if it's present. 4355 const NonNullAttr *NNAttr = nullptr; 4356 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4357 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4358 4359 bool CanCheckNullability = false; 4360 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4361 auto Nullability = PVD->getType()->getNullability(); 4362 CanCheckNullability = Nullability && 4363 *Nullability == NullabilityKind::NonNull && 4364 PVD->getTypeSourceInfo(); 4365 } 4366 4367 if (!NNAttr && !CanCheckNullability) 4368 return; 4369 4370 SourceLocation AttrLoc; 4371 SanitizerMask CheckKind; 4372 SanitizerHandler Handler; 4373 if (NNAttr) { 4374 AttrLoc = NNAttr->getLocation(); 4375 CheckKind = SanitizerKind::NonnullAttribute; 4376 Handler = SanitizerHandler::NonnullArg; 4377 } else { 4378 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4379 CheckKind = SanitizerKind::NullabilityArg; 4380 Handler = SanitizerHandler::NullabilityArg; 4381 } 4382 4383 SanitizerScope SanScope(this); 4384 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4385 llvm::Constant *StaticData[] = { 4386 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4387 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4388 }; 4389 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 4390 } 4391 4392 // Check if the call is going to use the inalloca convention. This needs to 4393 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4394 // later, so we can't check it directly. 4395 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4396 ArrayRef<QualType> ArgTypes) { 4397 // The Swift calling conventions don't go through the target-specific 4398 // argument classification, they never use inalloca. 4399 // TODO: Consider limiting inalloca use to only calling conventions supported 4400 // by MSVC. 4401 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4402 return false; 4403 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4404 return false; 4405 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4406 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4407 }); 4408 } 4409 4410 #ifndef NDEBUG 4411 // Determine whether the given argument is an Objective-C method 4412 // that may have type parameters in its signature. 4413 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4414 const DeclContext *dc = method->getDeclContext(); 4415 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4416 return classDecl->getTypeParamListAsWritten(); 4417 } 4418 4419 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4420 return catDecl->getTypeParamList(); 4421 } 4422 4423 return false; 4424 } 4425 #endif 4426 4427 /// EmitCallArgs - Emit call arguments for a function. 4428 void CodeGenFunction::EmitCallArgs( 4429 CallArgList &Args, PrototypeWrapper Prototype, 4430 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4431 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4432 SmallVector<QualType, 16> ArgTypes; 4433 4434 assert((ParamsToSkip == 0 || Prototype.P) && 4435 "Can't skip parameters if type info is not provided"); 4436 4437 // This variable only captures *explicitly* written conventions, not those 4438 // applied by default via command line flags or target defaults, such as 4439 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4440 // require knowing if this is a C++ instance method or being able to see 4441 // unprototyped FunctionTypes. 4442 CallingConv ExplicitCC = CC_C; 4443 4444 // First, if a prototype was provided, use those argument types. 4445 bool IsVariadic = false; 4446 if (Prototype.P) { 4447 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4448 if (MD) { 4449 IsVariadic = MD->isVariadic(); 4450 ExplicitCC = getCallingConventionForDecl( 4451 MD, CGM.getTarget().getTriple().isOSWindows()); 4452 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4453 MD->param_type_end()); 4454 } else { 4455 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4456 IsVariadic = FPT->isVariadic(); 4457 ExplicitCC = FPT->getExtInfo().getCC(); 4458 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4459 FPT->param_type_end()); 4460 } 4461 4462 #ifndef NDEBUG 4463 // Check that the prototyped types match the argument expression types. 4464 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4465 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4466 for (QualType Ty : ArgTypes) { 4467 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4468 assert( 4469 (isGenericMethod || Ty->isVariablyModifiedType() || 4470 Ty.getNonReferenceType()->isObjCRetainableType() || 4471 getContext() 4472 .getCanonicalType(Ty.getNonReferenceType()) 4473 .getTypePtr() == 4474 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4475 "type mismatch in call argument!"); 4476 ++Arg; 4477 } 4478 4479 // Either we've emitted all the call args, or we have a call to variadic 4480 // function. 4481 assert((Arg == ArgRange.end() || IsVariadic) && 4482 "Extra arguments in non-variadic function!"); 4483 #endif 4484 } 4485 4486 // If we still have any arguments, emit them using the type of the argument. 4487 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4488 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4489 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4490 4491 // We must evaluate arguments from right to left in the MS C++ ABI, 4492 // because arguments are destroyed left to right in the callee. As a special 4493 // case, there are certain language constructs that require left-to-right 4494 // evaluation, and in those cases we consider the evaluation order requirement 4495 // to trump the "destruction order is reverse construction order" guarantee. 4496 bool LeftToRight = 4497 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4498 ? Order == EvaluationOrder::ForceLeftToRight 4499 : Order != EvaluationOrder::ForceRightToLeft; 4500 4501 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4502 RValue EmittedArg) { 4503 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4504 return; 4505 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4506 if (PS == nullptr) 4507 return; 4508 4509 const auto &Context = getContext(); 4510 auto SizeTy = Context.getSizeType(); 4511 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4512 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4513 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4514 EmittedArg.getScalarVal(), 4515 PS->isDynamic()); 4516 Args.add(RValue::get(V), SizeTy); 4517 // If we're emitting args in reverse, be sure to do so with 4518 // pass_object_size, as well. 4519 if (!LeftToRight) 4520 std::swap(Args.back(), *(&Args.back() - 1)); 4521 }; 4522 4523 // Insert a stack save if we're going to need any inalloca args. 4524 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4525 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4526 "inalloca only supported on x86"); 4527 Args.allocateArgumentMemory(*this); 4528 } 4529 4530 // Evaluate each argument in the appropriate order. 4531 size_t CallArgsStart = Args.size(); 4532 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4533 unsigned Idx = LeftToRight ? I : E - I - 1; 4534 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4535 unsigned InitialArgSize = Args.size(); 4536 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4537 // the argument and parameter match or the objc method is parameterized. 4538 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4539 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4540 ArgTypes[Idx]) || 4541 (isa<ObjCMethodDecl>(AC.getDecl()) && 4542 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4543 "Argument and parameter types don't match"); 4544 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4545 // In particular, we depend on it being the last arg in Args, and the 4546 // objectsize bits depend on there only being one arg if !LeftToRight. 4547 assert(InitialArgSize + 1 == Args.size() && 4548 "The code below depends on only adding one arg per EmitCallArg"); 4549 (void)InitialArgSize; 4550 // Since pointer argument are never emitted as LValue, it is safe to emit 4551 // non-null argument check for r-value only. 4552 if (!Args.back().hasLValue()) { 4553 RValue RVArg = Args.back().getKnownRValue(); 4554 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4555 ParamsToSkip + Idx); 4556 // @llvm.objectsize should never have side-effects and shouldn't need 4557 // destruction/cleanups, so we can safely "emit" it after its arg, 4558 // regardless of right-to-leftness 4559 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4560 } 4561 } 4562 4563 if (!LeftToRight) { 4564 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4565 // IR function. 4566 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4567 } 4568 } 4569 4570 namespace { 4571 4572 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4573 DestroyUnpassedArg(Address Addr, QualType Ty) 4574 : Addr(Addr), Ty(Ty) {} 4575 4576 Address Addr; 4577 QualType Ty; 4578 4579 void Emit(CodeGenFunction &CGF, Flags flags) override { 4580 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4581 if (DtorKind == QualType::DK_cxx_destructor) { 4582 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4583 assert(!Dtor->isTrivial()); 4584 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4585 /*Delegating=*/false, Addr, Ty); 4586 } else { 4587 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4588 } 4589 } 4590 }; 4591 4592 struct DisableDebugLocationUpdates { 4593 CodeGenFunction &CGF; 4594 bool disabledDebugInfo; 4595 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4596 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4597 CGF.disableDebugInfo(); 4598 } 4599 ~DisableDebugLocationUpdates() { 4600 if (disabledDebugInfo) 4601 CGF.enableDebugInfo(); 4602 } 4603 }; 4604 4605 } // end anonymous namespace 4606 4607 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4608 if (!HasLV) 4609 return RV; 4610 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4611 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4612 LV.isVolatile()); 4613 IsUsed = true; 4614 return RValue::getAggregate(Copy.getAddress(CGF)); 4615 } 4616 4617 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4618 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4619 if (!HasLV && RV.isScalar()) 4620 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4621 else if (!HasLV && RV.isComplex()) 4622 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4623 else { 4624 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4625 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4626 // We assume that call args are never copied into subobjects. 4627 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4628 HasLV ? LV.isVolatileQualified() 4629 : RV.isVolatileQualified()); 4630 } 4631 IsUsed = true; 4632 } 4633 4634 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4635 QualType type) { 4636 DisableDebugLocationUpdates Dis(*this, E); 4637 if (const ObjCIndirectCopyRestoreExpr *CRE 4638 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4639 assert(getLangOpts().ObjCAutoRefCount); 4640 return emitWritebackArg(*this, args, CRE); 4641 } 4642 4643 assert(type->isReferenceType() == E->isGLValue() && 4644 "reference binding to unmaterialized r-value!"); 4645 4646 if (E->isGLValue()) { 4647 assert(E->getObjectKind() == OK_Ordinary); 4648 return args.add(EmitReferenceBindingToExpr(E), type); 4649 } 4650 4651 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4652 4653 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4654 // However, we still have to push an EH-only cleanup in case we unwind before 4655 // we make it to the call. 4656 if (type->isRecordType() && 4657 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4658 // If we're using inalloca, use the argument memory. Otherwise, use a 4659 // temporary. 4660 AggValueSlot Slot = args.isUsingInAlloca() 4661 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4662 4663 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4664 if (const auto *RD = type->getAsCXXRecordDecl()) 4665 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4666 else 4667 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4668 4669 if (DestroyedInCallee) 4670 Slot.setExternallyDestructed(); 4671 4672 EmitAggExpr(E, Slot); 4673 RValue RV = Slot.asRValue(); 4674 args.add(RV, type); 4675 4676 if (DestroyedInCallee && NeedsEHCleanup) { 4677 // Create a no-op GEP between the placeholder and the cleanup so we can 4678 // RAUW it successfully. It also serves as a marker of the first 4679 // instruction where the cleanup is active. 4680 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4681 type); 4682 // This unreachable is a temporary marker which will be removed later. 4683 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4684 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4685 } 4686 return; 4687 } 4688 4689 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4690 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4691 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4692 assert(L.isSimple()); 4693 args.addUncopiedAggregate(L, type); 4694 return; 4695 } 4696 4697 args.add(EmitAnyExprToTemp(E), type); 4698 } 4699 4700 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4701 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4702 // implicitly widens null pointer constants that are arguments to varargs 4703 // functions to pointer-sized ints. 4704 if (!getTarget().getTriple().isOSWindows()) 4705 return Arg->getType(); 4706 4707 if (Arg->getType()->isIntegerType() && 4708 getContext().getTypeSize(Arg->getType()) < 4709 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4710 Arg->isNullPointerConstant(getContext(), 4711 Expr::NPC_ValueDependentIsNotNull)) { 4712 return getContext().getIntPtrType(); 4713 } 4714 4715 return Arg->getType(); 4716 } 4717 4718 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4719 // optimizer it can aggressively ignore unwind edges. 4720 void 4721 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4722 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4723 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4724 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4725 CGM.getNoObjCARCExceptionsMetadata()); 4726 } 4727 4728 /// Emits a call to the given no-arguments nounwind runtime function. 4729 llvm::CallInst * 4730 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4731 const llvm::Twine &name) { 4732 return EmitNounwindRuntimeCall(callee, std::nullopt, name); 4733 } 4734 4735 /// Emits a call to the given nounwind runtime function. 4736 llvm::CallInst * 4737 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4738 ArrayRef<llvm::Value *> args, 4739 const llvm::Twine &name) { 4740 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4741 call->setDoesNotThrow(); 4742 return call; 4743 } 4744 4745 /// Emits a simple call (never an invoke) to the given no-arguments 4746 /// runtime function. 4747 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4748 const llvm::Twine &name) { 4749 return EmitRuntimeCall(callee, std::nullopt, name); 4750 } 4751 4752 // Calls which may throw must have operand bundles indicating which funclet 4753 // they are nested within. 4754 SmallVector<llvm::OperandBundleDef, 1> 4755 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4756 // There is no need for a funclet operand bundle if we aren't inside a 4757 // funclet. 4758 if (!CurrentFuncletPad) 4759 return (SmallVector<llvm::OperandBundleDef, 1>()); 4760 4761 // Skip intrinsics which cannot throw (as long as they don't lower into 4762 // regular function calls in the course of IR transformations). 4763 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4764 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4765 auto IID = CalleeFn->getIntrinsicID(); 4766 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4767 return (SmallVector<llvm::OperandBundleDef, 1>()); 4768 } 4769 } 4770 4771 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4772 BundleList.emplace_back("funclet", CurrentFuncletPad); 4773 return BundleList; 4774 } 4775 4776 /// Emits a simple call (never an invoke) to the given runtime function. 4777 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4778 ArrayRef<llvm::Value *> args, 4779 const llvm::Twine &name) { 4780 llvm::CallInst *call = Builder.CreateCall( 4781 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4782 call->setCallingConv(getRuntimeCC()); 4783 return call; 4784 } 4785 4786 /// Emits a call or invoke to the given noreturn runtime function. 4787 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4788 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4789 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4790 getBundlesForFunclet(callee.getCallee()); 4791 4792 if (getInvokeDest()) { 4793 llvm::InvokeInst *invoke = 4794 Builder.CreateInvoke(callee, 4795 getUnreachableBlock(), 4796 getInvokeDest(), 4797 args, 4798 BundleList); 4799 invoke->setDoesNotReturn(); 4800 invoke->setCallingConv(getRuntimeCC()); 4801 } else { 4802 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4803 call->setDoesNotReturn(); 4804 call->setCallingConv(getRuntimeCC()); 4805 Builder.CreateUnreachable(); 4806 } 4807 } 4808 4809 /// Emits a call or invoke instruction to the given nullary runtime function. 4810 llvm::CallBase * 4811 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4812 const Twine &name) { 4813 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 4814 } 4815 4816 /// Emits a call or invoke instruction to the given runtime function. 4817 llvm::CallBase * 4818 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4819 ArrayRef<llvm::Value *> args, 4820 const Twine &name) { 4821 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4822 call->setCallingConv(getRuntimeCC()); 4823 return call; 4824 } 4825 4826 /// Emits a call or invoke instruction to the given function, depending 4827 /// on the current state of the EH stack. 4828 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4829 ArrayRef<llvm::Value *> Args, 4830 const Twine &Name) { 4831 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4832 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4833 getBundlesForFunclet(Callee.getCallee()); 4834 4835 llvm::CallBase *Inst; 4836 if (!InvokeDest) 4837 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4838 else { 4839 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4840 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4841 Name); 4842 EmitBlock(ContBB); 4843 } 4844 4845 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4846 // optimizer it can aggressively ignore unwind edges. 4847 if (CGM.getLangOpts().ObjCAutoRefCount) 4848 AddObjCARCExceptionMetadata(Inst); 4849 4850 return Inst; 4851 } 4852 4853 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4854 llvm::Value *New) { 4855 DeferredReplacements.push_back( 4856 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4857 } 4858 4859 namespace { 4860 4861 /// Specify given \p NewAlign as the alignment of return value attribute. If 4862 /// such attribute already exists, re-set it to the maximal one of two options. 4863 [[nodiscard]] llvm::AttributeList 4864 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4865 const llvm::AttributeList &Attrs, 4866 llvm::Align NewAlign) { 4867 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4868 if (CurAlign >= NewAlign) 4869 return Attrs; 4870 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4871 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4872 .addRetAttribute(Ctx, AlignAttr); 4873 } 4874 4875 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4876 protected: 4877 CodeGenFunction &CGF; 4878 4879 /// We do nothing if this is, or becomes, nullptr. 4880 const AlignedAttrTy *AA = nullptr; 4881 4882 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4883 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4884 4885 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4886 : CGF(CGF_) { 4887 if (!FuncDecl) 4888 return; 4889 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4890 } 4891 4892 public: 4893 /// If we can, materialize the alignment as an attribute on return value. 4894 [[nodiscard]] llvm::AttributeList 4895 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4896 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4897 return Attrs; 4898 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4899 if (!AlignmentCI) 4900 return Attrs; 4901 // We may legitimately have non-power-of-2 alignment here. 4902 // If so, this is UB land, emit it via `@llvm.assume` instead. 4903 if (!AlignmentCI->getValue().isPowerOf2()) 4904 return Attrs; 4905 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4906 CGF.getLLVMContext(), Attrs, 4907 llvm::Align( 4908 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4909 AA = nullptr; // We're done. Disallow doing anything else. 4910 return NewAttrs; 4911 } 4912 4913 /// Emit alignment assumption. 4914 /// This is a general fallback that we take if either there is an offset, 4915 /// or the alignment is variable or we are sanitizing for alignment. 4916 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4917 if (!AA) 4918 return; 4919 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4920 AA->getLocation(), Alignment, OffsetCI); 4921 AA = nullptr; // We're done. Disallow doing anything else. 4922 } 4923 }; 4924 4925 /// Helper data structure to emit `AssumeAlignedAttr`. 4926 class AssumeAlignedAttrEmitter final 4927 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4928 public: 4929 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4930 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4931 if (!AA) 4932 return; 4933 // It is guaranteed that the alignment/offset are constants. 4934 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4935 if (Expr *Offset = AA->getOffset()) { 4936 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4937 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4938 OffsetCI = nullptr; 4939 } 4940 } 4941 }; 4942 4943 /// Helper data structure to emit `AllocAlignAttr`. 4944 class AllocAlignAttrEmitter final 4945 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4946 public: 4947 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4948 const CallArgList &CallArgs) 4949 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4950 if (!AA) 4951 return; 4952 // Alignment may or may not be a constant, and that is okay. 4953 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4954 .getRValue(CGF) 4955 .getScalarVal(); 4956 } 4957 }; 4958 4959 } // namespace 4960 4961 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4962 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 4963 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 4964 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 4965 return getMaxVectorWidth(AT->getElementType()); 4966 4967 unsigned MaxVectorWidth = 0; 4968 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 4969 for (auto *I : ST->elements()) 4970 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 4971 return MaxVectorWidth; 4972 } 4973 4974 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4975 const CGCallee &Callee, 4976 ReturnValueSlot ReturnValue, 4977 const CallArgList &CallArgs, 4978 llvm::CallBase **callOrInvoke, bool IsMustTail, 4979 SourceLocation Loc) { 4980 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4981 4982 assert(Callee.isOrdinary() || Callee.isVirtual()); 4983 4984 // Handle struct-return functions by passing a pointer to the 4985 // location that we would like to return into. 4986 QualType RetTy = CallInfo.getReturnType(); 4987 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4988 4989 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4990 4991 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4992 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4993 // We can only guarantee that a function is called from the correct 4994 // context/function based on the appropriate target attributes, 4995 // so only check in the case where we have both always_inline and target 4996 // since otherwise we could be making a conditional call after a check for 4997 // the proper cpu features (and it won't cause code generation issues due to 4998 // function based code generation). 4999 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 5000 (TargetDecl->hasAttr<TargetAttr>() || 5001 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 5002 checkTargetFeatures(Loc, FD); 5003 5004 // Some architectures (such as x86-64) have the ABI changed based on 5005 // attribute-target/features. Give them a chance to diagnose. 5006 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 5007 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 5008 } 5009 5010 // 1. Set up the arguments. 5011 5012 // If we're using inalloca, insert the allocation after the stack save. 5013 // FIXME: Do this earlier rather than hacking it in here! 5014 Address ArgMemory = Address::invalid(); 5015 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 5016 const llvm::DataLayout &DL = CGM.getDataLayout(); 5017 llvm::Instruction *IP = CallArgs.getStackBase(); 5018 llvm::AllocaInst *AI; 5019 if (IP) { 5020 IP = IP->getNextNode(); 5021 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 5022 "argmem", IP); 5023 } else { 5024 AI = CreateTempAlloca(ArgStruct, "argmem"); 5025 } 5026 auto Align = CallInfo.getArgStructAlignment(); 5027 AI->setAlignment(Align.getAsAlign()); 5028 AI->setUsedWithInAlloca(true); 5029 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 5030 ArgMemory = Address(AI, ArgStruct, Align); 5031 } 5032 5033 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 5034 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 5035 5036 // If the call returns a temporary with struct return, create a temporary 5037 // alloca to hold the result, unless one is given to us. 5038 Address SRetPtr = Address::invalid(); 5039 Address SRetAlloca = Address::invalid(); 5040 llvm::Value *UnusedReturnSizePtr = nullptr; 5041 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 5042 if (!ReturnValue.isNull()) { 5043 SRetPtr = ReturnValue.getValue(); 5044 } else { 5045 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 5046 if (HaveInsertPoint() && ReturnValue.isUnused()) { 5047 llvm::TypeSize size = 5048 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 5049 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 5050 } 5051 } 5052 if (IRFunctionArgs.hasSRetArg()) { 5053 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 5054 } else if (RetAI.isInAlloca()) { 5055 Address Addr = 5056 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 5057 Builder.CreateStore(SRetPtr.getPointer(), Addr); 5058 } 5059 } 5060 5061 Address swiftErrorTemp = Address::invalid(); 5062 Address swiftErrorArg = Address::invalid(); 5063 5064 // When passing arguments using temporary allocas, we need to add the 5065 // appropriate lifetime markers. This vector keeps track of all the lifetime 5066 // markers that need to be ended right after the call. 5067 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5068 5069 // Translate all of the arguments as necessary to match the IR lowering. 5070 assert(CallInfo.arg_size() == CallArgs.size() && 5071 "Mismatch between function signature & arguments."); 5072 unsigned ArgNo = 0; 5073 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 5074 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 5075 I != E; ++I, ++info_it, ++ArgNo) { 5076 const ABIArgInfo &ArgInfo = info_it->info; 5077 5078 // Insert a padding argument to ensure proper alignment. 5079 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 5080 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 5081 llvm::UndefValue::get(ArgInfo.getPaddingType()); 5082 5083 unsigned FirstIRArg, NumIRArgs; 5084 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 5085 5086 bool ArgHasMaybeUndefAttr = 5087 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5088 5089 switch (ArgInfo.getKind()) { 5090 case ABIArgInfo::InAlloca: { 5091 assert(NumIRArgs == 0); 5092 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 5093 if (I->isAggregate()) { 5094 Address Addr = I->hasLValue() 5095 ? I->getKnownLValue().getAddress(*this) 5096 : I->getKnownRValue().getAggregateAddress(); 5097 llvm::Instruction *Placeholder = 5098 cast<llvm::Instruction>(Addr.getPointer()); 5099 5100 if (!ArgInfo.getInAllocaIndirect()) { 5101 // Replace the placeholder with the appropriate argument slot GEP. 5102 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 5103 Builder.SetInsertPoint(Placeholder); 5104 Addr = Builder.CreateStructGEP(ArgMemory, 5105 ArgInfo.getInAllocaFieldIndex()); 5106 Builder.restoreIP(IP); 5107 } else { 5108 // For indirect things such as overaligned structs, replace the 5109 // placeholder with a regular aggregate temporary alloca. Store the 5110 // address of this alloca into the struct. 5111 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 5112 Address ArgSlot = Builder.CreateStructGEP( 5113 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5114 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5115 } 5116 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 5117 } else if (ArgInfo.getInAllocaIndirect()) { 5118 // Make a temporary alloca and store the address of it into the argument 5119 // struct. 5120 Address Addr = CreateMemTempWithoutCast( 5121 I->Ty, getContext().getTypeAlignInChars(I->Ty), 5122 "indirect-arg-temp"); 5123 I->copyInto(*this, Addr); 5124 Address ArgSlot = 5125 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5126 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5127 } else { 5128 // Store the RValue into the argument struct. 5129 Address Addr = 5130 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5131 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 5132 I->copyInto(*this, Addr); 5133 } 5134 break; 5135 } 5136 5137 case ABIArgInfo::Indirect: 5138 case ABIArgInfo::IndirectAliased: { 5139 assert(NumIRArgs == 1); 5140 if (!I->isAggregate()) { 5141 // Make a temporary alloca to pass the argument. 5142 Address Addr = CreateMemTempWithoutCast( 5143 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 5144 5145 llvm::Value *Val = Addr.getPointer(); 5146 if (ArgHasMaybeUndefAttr) 5147 Val = Builder.CreateFreeze(Addr.getPointer()); 5148 IRCallArgs[FirstIRArg] = Val; 5149 5150 I->copyInto(*this, Addr); 5151 } else { 5152 // We want to avoid creating an unnecessary temporary+copy here; 5153 // however, we need one in three cases: 5154 // 1. If the argument is not byval, and we are required to copy the 5155 // source. (This case doesn't occur on any common architecture.) 5156 // 2. If the argument is byval, RV is not sufficiently aligned, and 5157 // we cannot force it to be sufficiently aligned. 5158 // 3. If the argument is byval, but RV is not located in default 5159 // or alloca address space. 5160 Address Addr = I->hasLValue() 5161 ? I->getKnownLValue().getAddress(*this) 5162 : I->getKnownRValue().getAggregateAddress(); 5163 llvm::Value *V = Addr.getPointer(); 5164 CharUnits Align = ArgInfo.getIndirectAlign(); 5165 const llvm::DataLayout *TD = &CGM.getDataLayout(); 5166 5167 assert((FirstIRArg >= IRFuncTy->getNumParams() || 5168 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 5169 TD->getAllocaAddrSpace()) && 5170 "indirect argument must be in alloca address space"); 5171 5172 bool NeedCopy = false; 5173 if (Addr.getAlignment() < Align && 5174 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 5175 Align.getAsAlign()) { 5176 NeedCopy = true; 5177 } else if (I->hasLValue()) { 5178 auto LV = I->getKnownLValue(); 5179 auto AS = LV.getAddressSpace(); 5180 5181 bool isByValOrRef = 5182 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 5183 5184 if (!isByValOrRef || 5185 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 5186 NeedCopy = true; 5187 } 5188 if (!getLangOpts().OpenCL) { 5189 if ((isByValOrRef && 5190 (AS != LangAS::Default && 5191 AS != CGM.getASTAllocaAddressSpace()))) { 5192 NeedCopy = true; 5193 } 5194 } 5195 // For OpenCL even if RV is located in default or alloca address space 5196 // we don't want to perform address space cast for it. 5197 else if ((isByValOrRef && 5198 Addr.getType()->getAddressSpace() != IRFuncTy-> 5199 getParamType(FirstIRArg)->getPointerAddressSpace())) { 5200 NeedCopy = true; 5201 } 5202 } 5203 5204 if (NeedCopy) { 5205 // Create an aligned temporary, and copy to it. 5206 Address AI = CreateMemTempWithoutCast( 5207 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 5208 llvm::Value *Val = AI.getPointer(); 5209 if (ArgHasMaybeUndefAttr) 5210 Val = Builder.CreateFreeze(AI.getPointer()); 5211 IRCallArgs[FirstIRArg] = Val; 5212 5213 // Emit lifetime markers for the temporary alloca. 5214 llvm::TypeSize ByvalTempElementSize = 5215 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5216 llvm::Value *LifetimeSize = 5217 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5218 5219 // Add cleanup code to emit the end lifetime marker after the call. 5220 if (LifetimeSize) // In case we disabled lifetime markers. 5221 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5222 5223 // Generate the copy. 5224 I->copyInto(*this, AI); 5225 } else { 5226 // Skip the extra memcpy call. 5227 auto *T = llvm::PointerType::get( 5228 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 5229 5230 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5231 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5232 true); 5233 if (ArgHasMaybeUndefAttr) 5234 Val = Builder.CreateFreeze(Val); 5235 IRCallArgs[FirstIRArg] = Val; 5236 } 5237 } 5238 break; 5239 } 5240 5241 case ABIArgInfo::Ignore: 5242 assert(NumIRArgs == 0); 5243 break; 5244 5245 case ABIArgInfo::Extend: 5246 case ABIArgInfo::Direct: { 5247 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5248 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5249 ArgInfo.getDirectOffset() == 0) { 5250 assert(NumIRArgs == 1); 5251 llvm::Value *V; 5252 if (!I->isAggregate()) 5253 V = I->getKnownRValue().getScalarVal(); 5254 else 5255 V = Builder.CreateLoad( 5256 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5257 : I->getKnownRValue().getAggregateAddress()); 5258 5259 // Implement swifterror by copying into a new swifterror argument. 5260 // We'll write back in the normal path out of the call. 5261 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5262 == ParameterABI::SwiftErrorResult) { 5263 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5264 5265 QualType pointeeTy = I->Ty->getPointeeType(); 5266 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy), 5267 getContext().getTypeAlignInChars(pointeeTy)); 5268 5269 swiftErrorTemp = 5270 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5271 V = swiftErrorTemp.getPointer(); 5272 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5273 5274 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5275 Builder.CreateStore(errorValue, swiftErrorTemp); 5276 } 5277 5278 // We might have to widen integers, but we should never truncate. 5279 if (ArgInfo.getCoerceToType() != V->getType() && 5280 V->getType()->isIntegerTy()) 5281 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5282 5283 // If the argument doesn't match, perform a bitcast to coerce it. This 5284 // can happen due to trivial type mismatches. 5285 if (FirstIRArg < IRFuncTy->getNumParams() && 5286 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5287 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5288 5289 if (ArgHasMaybeUndefAttr) 5290 V = Builder.CreateFreeze(V); 5291 IRCallArgs[FirstIRArg] = V; 5292 break; 5293 } 5294 5295 // FIXME: Avoid the conversion through memory if possible. 5296 Address Src = Address::invalid(); 5297 if (!I->isAggregate()) { 5298 Src = CreateMemTemp(I->Ty, "coerce"); 5299 I->copyInto(*this, Src); 5300 } else { 5301 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5302 : I->getKnownRValue().getAggregateAddress(); 5303 } 5304 5305 // If the value is offset in memory, apply the offset now. 5306 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5307 5308 // Fast-isel and the optimizer generally like scalar values better than 5309 // FCAs, so we flatten them if this is safe to do for this argument. 5310 llvm::StructType *STy = 5311 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5312 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5313 llvm::Type *SrcTy = Src.getElementType(); 5314 llvm::TypeSize SrcTypeSize = 5315 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5316 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 5317 if (SrcTypeSize.isScalable()) { 5318 assert(STy->containsHomogeneousScalableVectorTypes() && 5319 "ABI only supports structure with homogeneous scalable vector " 5320 "type"); 5321 assert(SrcTypeSize == DstTypeSize && 5322 "Only allow non-fractional movement of structure with " 5323 "homogeneous scalable vector type"); 5324 assert(NumIRArgs == STy->getNumElements()); 5325 5326 llvm::Value *StoredStructValue = 5327 Builder.CreateLoad(Src, Src.getName() + ".tuple"); 5328 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5329 llvm::Value *Extract = Builder.CreateExtractValue( 5330 StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 5331 IRCallArgs[FirstIRArg + i] = Extract; 5332 } 5333 } else { 5334 uint64_t SrcSize = SrcTypeSize.getFixedValue(); 5335 uint64_t DstSize = DstTypeSize.getFixedValue(); 5336 5337 // If the source type is smaller than the destination type of the 5338 // coerce-to logic, copy the source value into a temp alloca the size 5339 // of the destination type to allow loading all of it. The bits past 5340 // the source value are left undef. 5341 if (SrcSize < DstSize) { 5342 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 5343 Src.getName() + ".coerce"); 5344 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5345 Src = TempAlloca; 5346 } else { 5347 Src = Src.withElementType(STy); 5348 } 5349 5350 assert(NumIRArgs == STy->getNumElements()); 5351 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5352 Address EltPtr = Builder.CreateStructGEP(Src, i); 5353 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5354 if (ArgHasMaybeUndefAttr) 5355 LI = Builder.CreateFreeze(LI); 5356 IRCallArgs[FirstIRArg + i] = LI; 5357 } 5358 } 5359 } else { 5360 // In the simple case, just pass the coerced loaded value. 5361 assert(NumIRArgs == 1); 5362 llvm::Value *Load = 5363 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5364 5365 if (CallInfo.isCmseNSCall()) { 5366 // For certain parameter types, clear padding bits, as they may reveal 5367 // sensitive information. 5368 // Small struct/union types are passed as integer arrays. 5369 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5370 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5371 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5372 } 5373 5374 if (ArgHasMaybeUndefAttr) 5375 Load = Builder.CreateFreeze(Load); 5376 IRCallArgs[FirstIRArg] = Load; 5377 } 5378 5379 break; 5380 } 5381 5382 case ABIArgInfo::CoerceAndExpand: { 5383 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5384 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5385 5386 llvm::Value *tempSize = nullptr; 5387 Address addr = Address::invalid(); 5388 Address AllocaAddr = Address::invalid(); 5389 if (I->isAggregate()) { 5390 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5391 : I->getKnownRValue().getAggregateAddress(); 5392 5393 } else { 5394 RValue RV = I->getKnownRValue(); 5395 assert(RV.isScalar()); // complex should always just be direct 5396 5397 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5398 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5399 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5400 5401 // Materialize to a temporary. 5402 addr = CreateTempAlloca( 5403 RV.getScalarVal()->getType(), 5404 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5405 "tmp", 5406 /*ArraySize=*/nullptr, &AllocaAddr); 5407 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5408 5409 Builder.CreateStore(RV.getScalarVal(), addr); 5410 } 5411 5412 addr = addr.withElementType(coercionType); 5413 5414 unsigned IRArgPos = FirstIRArg; 5415 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5416 llvm::Type *eltType = coercionType->getElementType(i); 5417 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5418 Address eltAddr = Builder.CreateStructGEP(addr, i); 5419 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5420 if (ArgHasMaybeUndefAttr) 5421 elt = Builder.CreateFreeze(elt); 5422 IRCallArgs[IRArgPos++] = elt; 5423 } 5424 assert(IRArgPos == FirstIRArg + NumIRArgs); 5425 5426 if (tempSize) { 5427 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5428 } 5429 5430 break; 5431 } 5432 5433 case ABIArgInfo::Expand: { 5434 unsigned IRArgPos = FirstIRArg; 5435 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5436 assert(IRArgPos == FirstIRArg + NumIRArgs); 5437 break; 5438 } 5439 } 5440 } 5441 5442 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5443 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5444 5445 // If we're using inalloca, set up that argument. 5446 if (ArgMemory.isValid()) { 5447 llvm::Value *Arg = ArgMemory.getPointer(); 5448 assert(IRFunctionArgs.hasInallocaArg()); 5449 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5450 } 5451 5452 // 2. Prepare the function pointer. 5453 5454 // If the callee is a bitcast of a non-variadic function to have a 5455 // variadic function pointer type, check to see if we can remove the 5456 // bitcast. This comes up with unprototyped functions. 5457 // 5458 // This makes the IR nicer, but more importantly it ensures that we 5459 // can inline the function at -O0 if it is marked always_inline. 5460 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5461 llvm::Value *Ptr) -> llvm::Function * { 5462 if (!CalleeFT->isVarArg()) 5463 return nullptr; 5464 5465 // Get underlying value if it's a bitcast 5466 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5467 if (CE->getOpcode() == llvm::Instruction::BitCast) 5468 Ptr = CE->getOperand(0); 5469 } 5470 5471 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5472 if (!OrigFn) 5473 return nullptr; 5474 5475 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5476 5477 // If the original type is variadic, or if any of the component types 5478 // disagree, we cannot remove the cast. 5479 if (OrigFT->isVarArg() || 5480 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5481 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5482 return nullptr; 5483 5484 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5485 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5486 return nullptr; 5487 5488 return OrigFn; 5489 }; 5490 5491 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5492 CalleePtr = OrigFn; 5493 IRFuncTy = OrigFn->getFunctionType(); 5494 } 5495 5496 // 3. Perform the actual call. 5497 5498 // Deactivate any cleanups that we're supposed to do immediately before 5499 // the call. 5500 if (!CallArgs.getCleanupsToDeactivate().empty()) 5501 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5502 5503 // Assert that the arguments we computed match up. The IR verifier 5504 // will catch this, but this is a common enough source of problems 5505 // during IRGen changes that it's way better for debugging to catch 5506 // it ourselves here. 5507 #ifndef NDEBUG 5508 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5509 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5510 // Inalloca argument can have different type. 5511 if (IRFunctionArgs.hasInallocaArg() && 5512 i == IRFunctionArgs.getInallocaArgNo()) 5513 continue; 5514 if (i < IRFuncTy->getNumParams()) 5515 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5516 } 5517 #endif 5518 5519 // Update the largest vector width if any arguments have vector types. 5520 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5521 LargestVectorWidth = std::max(LargestVectorWidth, 5522 getMaxVectorWidth(IRCallArgs[i]->getType())); 5523 5524 // Compute the calling convention and attributes. 5525 unsigned CallingConv; 5526 llvm::AttributeList Attrs; 5527 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5528 Callee.getAbstractInfo(), Attrs, CallingConv, 5529 /*AttrOnCallSite=*/true, 5530 /*IsThunk=*/false); 5531 5532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5533 if (FD->hasAttr<StrictFPAttr>()) 5534 // All calls within a strictfp function are marked strictfp 5535 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5536 5537 // If -ffast-math is enabled and the function is guarded by an 5538 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 5539 // library call instead of the intrinsic. 5540 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 5541 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 5542 Attrs); 5543 } 5544 // Add call-site nomerge attribute if exists. 5545 if (InNoMergeAttributedStmt) 5546 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5547 5548 // Add call-site noinline attribute if exists. 5549 if (InNoInlineAttributedStmt) 5550 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5551 5552 // Add call-site always_inline attribute if exists. 5553 if (InAlwaysInlineAttributedStmt) 5554 Attrs = 5555 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5556 5557 // Apply some call-site-specific attributes. 5558 // TODO: work this into building the attribute set. 5559 5560 // Apply always_inline to all calls within flatten functions. 5561 // FIXME: should this really take priority over __try, below? 5562 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5563 !InNoInlineAttributedStmt && 5564 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5565 Attrs = 5566 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5567 } 5568 5569 // Disable inlining inside SEH __try blocks. 5570 if (isSEHTryScope()) { 5571 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5572 } 5573 5574 // Decide whether to use a call or an invoke. 5575 bool CannotThrow; 5576 if (currentFunctionUsesSEHTry()) { 5577 // SEH cares about asynchronous exceptions, so everything can "throw." 5578 CannotThrow = false; 5579 } else if (isCleanupPadScope() && 5580 EHPersonality::get(*this).isMSVCXXPersonality()) { 5581 // The MSVC++ personality will implicitly terminate the program if an 5582 // exception is thrown during a cleanup outside of a try/catch. 5583 // We don't need to model anything in IR to get this behavior. 5584 CannotThrow = true; 5585 } else { 5586 // Otherwise, nounwind call sites will never throw. 5587 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5588 5589 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5590 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5591 CannotThrow = true; 5592 } 5593 5594 // If we made a temporary, be sure to clean up after ourselves. Note that we 5595 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5596 // pop this cleanup later on. Being eager about this is OK, since this 5597 // temporary is 'invisible' outside of the callee. 5598 if (UnusedReturnSizePtr) 5599 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5600 UnusedReturnSizePtr); 5601 5602 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5603 5604 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5605 getBundlesForFunclet(CalleePtr); 5606 5607 if (SanOpts.has(SanitizerKind::KCFI) && 5608 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5609 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5610 5611 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5612 if (FD->hasAttr<StrictFPAttr>()) 5613 // All calls within a strictfp function are marked strictfp 5614 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5615 5616 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5617 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5618 5619 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5620 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5621 5622 // Emit the actual call/invoke instruction. 5623 llvm::CallBase *CI; 5624 if (!InvokeDest) { 5625 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5626 } else { 5627 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5628 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5629 BundleList); 5630 EmitBlock(Cont); 5631 } 5632 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 5633 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 5634 SetSqrtFPAccuracy(CI); 5635 } 5636 if (callOrInvoke) 5637 *callOrInvoke = CI; 5638 5639 // If this is within a function that has the guard(nocf) attribute and is an 5640 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5641 // Control Flow Guard checks should not be added, even if the call is inlined. 5642 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5643 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5644 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5645 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5646 } 5647 } 5648 5649 // Apply the attributes and calling convention. 5650 CI->setAttributes(Attrs); 5651 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5652 5653 // Apply various metadata. 5654 5655 if (!CI->getType()->isVoidTy()) 5656 CI->setName("call"); 5657 5658 // Update largest vector width from the return type. 5659 LargestVectorWidth = 5660 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5661 5662 // Insert instrumentation or attach profile metadata at indirect call sites. 5663 // For more details, see the comment before the definition of 5664 // IPVK_IndirectCallTarget in InstrProfData.inc. 5665 if (!CI->getCalledFunction()) 5666 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5667 CI, CalleePtr); 5668 5669 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5670 // optimizer it can aggressively ignore unwind edges. 5671 if (CGM.getLangOpts().ObjCAutoRefCount) 5672 AddObjCARCExceptionMetadata(CI); 5673 5674 // Set tail call kind if necessary. 5675 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5676 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5677 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5678 else if (IsMustTail) 5679 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5680 } 5681 5682 // Add metadata for calls to MSAllocator functions 5683 if (getDebugInfo() && TargetDecl && 5684 TargetDecl->hasAttr<MSAllocatorAttr>()) 5685 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5686 5687 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5688 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5689 llvm::ConstantInt *Line = 5690 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5691 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5692 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5693 CI->setMetadata("srcloc", MDT); 5694 } 5695 5696 // 4. Finish the call. 5697 5698 // If the call doesn't return, finish the basic block and clear the 5699 // insertion point; this allows the rest of IRGen to discard 5700 // unreachable code. 5701 if (CI->doesNotReturn()) { 5702 if (UnusedReturnSizePtr) 5703 PopCleanupBlock(); 5704 5705 // Strip away the noreturn attribute to better diagnose unreachable UB. 5706 if (SanOpts.has(SanitizerKind::Unreachable)) { 5707 // Also remove from function since CallBase::hasFnAttr additionally checks 5708 // attributes of the called function. 5709 if (auto *F = CI->getCalledFunction()) 5710 F->removeFnAttr(llvm::Attribute::NoReturn); 5711 CI->removeFnAttr(llvm::Attribute::NoReturn); 5712 5713 // Avoid incompatibility with ASan which relies on the `noreturn` 5714 // attribute to insert handler calls. 5715 if (SanOpts.hasOneOf(SanitizerKind::Address | 5716 SanitizerKind::KernelAddress)) { 5717 SanitizerScope SanScope(this); 5718 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5719 Builder.SetInsertPoint(CI); 5720 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5721 llvm::FunctionCallee Fn = 5722 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5723 EmitNounwindRuntimeCall(Fn); 5724 } 5725 } 5726 5727 EmitUnreachable(Loc); 5728 Builder.ClearInsertionPoint(); 5729 5730 // FIXME: For now, emit a dummy basic block because expr emitters in 5731 // generally are not ready to handle emitting expressions at unreachable 5732 // points. 5733 EnsureInsertPoint(); 5734 5735 // Return a reasonable RValue. 5736 return GetUndefRValue(RetTy); 5737 } 5738 5739 // If this is a musttail call, return immediately. We do not branch to the 5740 // epilogue in this case. 5741 if (IsMustTail) { 5742 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5743 ++it) { 5744 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5745 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5746 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5747 } 5748 if (CI->getType()->isVoidTy()) 5749 Builder.CreateRetVoid(); 5750 else 5751 Builder.CreateRet(CI); 5752 Builder.ClearInsertionPoint(); 5753 EnsureInsertPoint(); 5754 return GetUndefRValue(RetTy); 5755 } 5756 5757 // Perform the swifterror writeback. 5758 if (swiftErrorTemp.isValid()) { 5759 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5760 Builder.CreateStore(errorResult, swiftErrorArg); 5761 } 5762 5763 // Emit any call-associated writebacks immediately. Arguably this 5764 // should happen after any return-value munging. 5765 if (CallArgs.hasWritebacks()) 5766 emitWritebacks(*this, CallArgs); 5767 5768 // The stack cleanup for inalloca arguments has to run out of the normal 5769 // lexical order, so deactivate it and run it manually here. 5770 CallArgs.freeArgumentMemory(*this); 5771 5772 // Extract the return value. 5773 RValue Ret = [&] { 5774 switch (RetAI.getKind()) { 5775 case ABIArgInfo::CoerceAndExpand: { 5776 auto coercionType = RetAI.getCoerceAndExpandType(); 5777 5778 Address addr = SRetPtr.withElementType(coercionType); 5779 5780 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5781 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5782 5783 unsigned unpaddedIndex = 0; 5784 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5785 llvm::Type *eltType = coercionType->getElementType(i); 5786 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5787 Address eltAddr = Builder.CreateStructGEP(addr, i); 5788 llvm::Value *elt = CI; 5789 if (requiresExtract) 5790 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5791 else 5792 assert(unpaddedIndex == 0); 5793 Builder.CreateStore(elt, eltAddr); 5794 } 5795 [[fallthrough]]; 5796 } 5797 5798 case ABIArgInfo::InAlloca: 5799 case ABIArgInfo::Indirect: { 5800 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5801 if (UnusedReturnSizePtr) 5802 PopCleanupBlock(); 5803 return ret; 5804 } 5805 5806 case ABIArgInfo::Ignore: 5807 // If we are ignoring an argument that had a result, make sure to 5808 // construct the appropriate return value for our caller. 5809 return GetUndefRValue(RetTy); 5810 5811 case ABIArgInfo::Extend: 5812 case ABIArgInfo::Direct: { 5813 llvm::Type *RetIRTy = ConvertType(RetTy); 5814 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5815 switch (getEvaluationKind(RetTy)) { 5816 case TEK_Complex: { 5817 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5818 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5819 return RValue::getComplex(std::make_pair(Real, Imag)); 5820 } 5821 case TEK_Aggregate: { 5822 Address DestPtr = ReturnValue.getValue(); 5823 bool DestIsVolatile = ReturnValue.isVolatile(); 5824 5825 if (!DestPtr.isValid()) { 5826 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5827 DestIsVolatile = false; 5828 } 5829 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5830 return RValue::getAggregate(DestPtr); 5831 } 5832 case TEK_Scalar: { 5833 // If the argument doesn't match, perform a bitcast to coerce it. This 5834 // can happen due to trivial type mismatches. 5835 llvm::Value *V = CI; 5836 if (V->getType() != RetIRTy) 5837 V = Builder.CreateBitCast(V, RetIRTy); 5838 return RValue::get(V); 5839 } 5840 } 5841 llvm_unreachable("bad evaluation kind"); 5842 } 5843 5844 // If coercing a fixed vector from a scalable vector for ABI 5845 // compatibility, and the types match, use the llvm.vector.extract 5846 // intrinsic to perform the conversion. 5847 if (auto *FixedDst = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 5848 llvm::Value *V = CI; 5849 if (auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(V->getType())) { 5850 if (FixedDst->getElementType() == ScalableSrc->getElementType()) { 5851 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 5852 V = Builder.CreateExtractVector(FixedDst, V, Zero, "cast.fixed"); 5853 return RValue::get(V); 5854 } 5855 } 5856 } 5857 5858 Address DestPtr = ReturnValue.getValue(); 5859 bool DestIsVolatile = ReturnValue.isVolatile(); 5860 5861 if (!DestPtr.isValid()) { 5862 DestPtr = CreateMemTemp(RetTy, "coerce"); 5863 DestIsVolatile = false; 5864 } 5865 5866 // An empty record can overlap other data (if declared with 5867 // no_unique_address); omit the store for such types - as there is no 5868 // actual data to store. 5869 if (!isEmptyRecord(getContext(), RetTy, true)) { 5870 // If the value is offset in memory, apply the offset now. 5871 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5872 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5873 } 5874 5875 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5876 } 5877 5878 case ABIArgInfo::Expand: 5879 case ABIArgInfo::IndirectAliased: 5880 llvm_unreachable("Invalid ABI kind for return argument"); 5881 } 5882 5883 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5884 } (); 5885 5886 // Emit the assume_aligned check on the return value. 5887 if (Ret.isScalar() && TargetDecl) { 5888 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5889 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5890 } 5891 5892 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5893 // we can't use the full cleanup mechanism. 5894 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5895 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5896 5897 if (!ReturnValue.isExternallyDestructed() && 5898 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5899 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5900 RetTy); 5901 5902 return Ret; 5903 } 5904 5905 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5906 if (isVirtual()) { 5907 const CallExpr *CE = getVirtualCallExpr(); 5908 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5909 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5910 CE ? CE->getBeginLoc() : SourceLocation()); 5911 } 5912 5913 return *this; 5914 } 5915 5916 /* VarArg handling */ 5917 5918 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5919 VAListAddr = VE->isMicrosoftABI() 5920 ? EmitMSVAListRef(VE->getSubExpr()) 5921 : EmitVAListRef(VE->getSubExpr()); 5922 QualType Ty = VE->getType(); 5923 if (VE->isMicrosoftABI()) 5924 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5925 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5926 } 5927