1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "clang/CodeGen/SwiftCallingConv.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /***/ 44 45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 46 switch (CC) { 47 default: return llvm::CallingConv::C; 48 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 49 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 50 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 51 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 52 case CC_Win64: return llvm::CallingConv::Win64; 53 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 54 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 55 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 56 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 57 // TODO: Add support for __pascal to LLVM. 58 case CC_X86Pascal: return llvm::CallingConv::C; 59 // TODO: Add support for __vectorcall to LLVM. 60 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 61 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 71 /// qualification. Either or both of RD and MD may be null. A null RD indicates 72 /// that there is no meaningful 'this' type, and a null MD can occur when 73 /// calling a method pointer. 74 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 75 const CXXMethodDecl *MD) { 76 QualType RecTy; 77 if (RD) 78 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 79 else 80 RecTy = Context.VoidTy; 81 82 if (MD) 83 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 84 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 85 } 86 87 /// Returns the canonical formal type of the given C++ method. 88 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 89 return MD->getType()->getCanonicalTypeUnqualified() 90 .getAs<FunctionProtoType>(); 91 } 92 93 /// Returns the "extra-canonicalized" return type, which discards 94 /// qualifiers on the return type. Codegen doesn't care about them, 95 /// and it makes ABI code a little easier to be able to assume that 96 /// all parameter and return types are top-level unqualified. 97 static CanQualType GetReturnType(QualType RetTy) { 98 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 99 } 100 101 /// Arrange the argument and result information for a value of the given 102 /// unprototyped freestanding function type. 103 const CGFunctionInfo & 104 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 105 // When translating an unprototyped function type, always use a 106 // variadic type. 107 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 108 /*instanceMethod=*/false, 109 /*chainCall=*/false, None, 110 FTNP->getExtInfo(), {}, RequiredArgs(0)); 111 } 112 113 static void addExtParameterInfosForCall( 114 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 115 const FunctionProtoType *proto, 116 unsigned prefixArgs, 117 unsigned totalArgs) { 118 assert(proto->hasExtParameterInfos()); 119 assert(paramInfos.size() <= prefixArgs); 120 assert(proto->getNumParams() + prefixArgs <= totalArgs); 121 122 paramInfos.reserve(totalArgs); 123 124 // Add default infos for any prefix args that don't already have infos. 125 paramInfos.resize(prefixArgs); 126 127 // Add infos for the prototype. 128 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 129 paramInfos.push_back(ParamInfo); 130 // pass_object_size params have no parameter info. 131 if (ParamInfo.hasPassObjectSize()) 132 paramInfos.emplace_back(); 133 } 134 135 assert(paramInfos.size() <= totalArgs && 136 "Did we forget to insert pass_object_size args?"); 137 // Add default infos for the variadic and/or suffix arguments. 138 paramInfos.resize(totalArgs); 139 } 140 141 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 142 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 143 static void appendParameterTypes(const CodeGenTypes &CGT, 144 SmallVectorImpl<CanQualType> &prefix, 145 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 146 CanQual<FunctionProtoType> FPT) { 147 // Fast path: don't touch param info if we don't need to. 148 if (!FPT->hasExtParameterInfos()) { 149 assert(paramInfos.empty() && 150 "We have paramInfos, but the prototype doesn't?"); 151 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 152 return; 153 } 154 155 unsigned PrefixSize = prefix.size(); 156 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 157 // parameters; the only thing that can change this is the presence of 158 // pass_object_size. So, we preallocate for the common case. 159 prefix.reserve(prefix.size() + FPT->getNumParams()); 160 161 auto ExtInfos = FPT->getExtParameterInfos(); 162 assert(ExtInfos.size() == FPT->getNumParams()); 163 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 164 prefix.push_back(FPT->getParamType(I)); 165 if (ExtInfos[I].hasPassObjectSize()) 166 prefix.push_back(CGT.getContext().getSizeType()); 167 } 168 169 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 170 prefix.size()); 171 } 172 173 /// Arrange the LLVM function layout for a value of the given function 174 /// type, on top of any implicit parameters already stored. 175 static const CGFunctionInfo & 176 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 177 SmallVectorImpl<CanQualType> &prefix, 178 CanQual<FunctionProtoType> FTP) { 179 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 180 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 181 // FIXME: Kill copy. 182 appendParameterTypes(CGT, prefix, paramInfos, FTP); 183 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 184 185 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 186 /*chainCall=*/false, prefix, 187 FTP->getExtInfo(), paramInfos, 188 Required); 189 } 190 191 /// Arrange the argument and result information for a value of the 192 /// given freestanding function type. 193 const CGFunctionInfo & 194 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 195 SmallVector<CanQualType, 16> argTypes; 196 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 197 FTP); 198 } 199 200 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 201 // Set the appropriate calling convention for the Function. 202 if (D->hasAttr<StdCallAttr>()) 203 return CC_X86StdCall; 204 205 if (D->hasAttr<FastCallAttr>()) 206 return CC_X86FastCall; 207 208 if (D->hasAttr<RegCallAttr>()) 209 return CC_X86RegCall; 210 211 if (D->hasAttr<ThisCallAttr>()) 212 return CC_X86ThisCall; 213 214 if (D->hasAttr<VectorCallAttr>()) 215 return CC_X86VectorCall; 216 217 if (D->hasAttr<PascalAttr>()) 218 return CC_X86Pascal; 219 220 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 221 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 222 223 if (D->hasAttr<AArch64VectorPcsAttr>()) 224 return CC_AArch64VectorCall; 225 226 if (D->hasAttr<IntelOclBiccAttr>()) 227 return CC_IntelOclBicc; 228 229 if (D->hasAttr<MSABIAttr>()) 230 return IsWindows ? CC_C : CC_Win64; 231 232 if (D->hasAttr<SysVABIAttr>()) 233 return IsWindows ? CC_X86_64SysV : CC_C; 234 235 if (D->hasAttr<PreserveMostAttr>()) 236 return CC_PreserveMost; 237 238 if (D->hasAttr<PreserveAllAttr>()) 239 return CC_PreserveAll; 240 241 return CC_C; 242 } 243 244 /// Arrange the argument and result information for a call to an 245 /// unknown C++ non-static member function of the given abstract type. 246 /// (A null RD means we don't have any meaningful "this" argument type, 247 /// so fall back to a generic pointer type). 248 /// The member function must be an ordinary function, i.e. not a 249 /// constructor or destructor. 250 const CGFunctionInfo & 251 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 252 const FunctionProtoType *FTP, 253 const CXXMethodDecl *MD) { 254 SmallVector<CanQualType, 16> argTypes; 255 256 // Add the 'this' pointer. 257 argTypes.push_back(DeriveThisType(RD, MD)); 258 259 return ::arrangeLLVMFunctionInfo( 260 *this, true, argTypes, 261 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 262 } 263 264 /// Set calling convention for CUDA/HIP kernel. 265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 266 const FunctionDecl *FD) { 267 if (FD->hasAttr<CUDAGlobalAttr>()) { 268 const FunctionType *FT = FTy->getAs<FunctionType>(); 269 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 270 FTy = FT->getCanonicalTypeUnqualified(); 271 } 272 } 273 274 /// Arrange the argument and result information for a declaration or 275 /// definition of the given C++ non-static member function. The 276 /// member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 280 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 281 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 282 283 CanQualType FT = GetFormalType(MD).getAs<Type>(); 284 setCUDAKernelCallingConvention(FT, CGM, MD); 285 auto prototype = FT.getAs<FunctionProtoType>(); 286 287 if (MD->isInstance()) { 288 // The abstract case is perfectly fine. 289 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 290 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 291 } 292 293 return arrangeFreeFunctionType(prototype); 294 } 295 296 bool CodeGenTypes::inheritingCtorHasParams( 297 const InheritedConstructor &Inherited, CXXCtorType Type) { 298 // Parameters are unnecessary if we're constructing a base class subobject 299 // and the inherited constructor lives in a virtual base. 300 return Type == Ctor_Complete || 301 !Inherited.getShadowDecl()->constructsVirtualBase() || 302 !Target.getCXXABI().hasConstructorVariants(); 303 } 304 305 const CGFunctionInfo & 306 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 307 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 308 309 SmallVector<CanQualType, 16> argTypes; 310 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 311 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 312 313 bool PassParams = true; 314 315 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 316 // A base class inheriting constructor doesn't get forwarded arguments 317 // needed to construct a virtual base (or base class thereof). 318 if (auto Inherited = CD->getInheritedConstructor()) 319 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 320 } 321 322 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 323 324 // Add the formal parameters. 325 if (PassParams) 326 appendParameterTypes(*this, argTypes, paramInfos, FTP); 327 328 CGCXXABI::AddedStructorArgs AddedArgs = 329 TheCXXABI.buildStructorSignature(GD, argTypes); 330 if (!paramInfos.empty()) { 331 // Note: prefix implies after the first param. 332 if (AddedArgs.Prefix) 333 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 334 FunctionProtoType::ExtParameterInfo{}); 335 if (AddedArgs.Suffix) 336 paramInfos.append(AddedArgs.Suffix, 337 FunctionProtoType::ExtParameterInfo{}); 338 } 339 340 RequiredArgs required = 341 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 342 : RequiredArgs::All); 343 344 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 345 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 346 ? argTypes.front() 347 : TheCXXABI.hasMostDerivedReturn(GD) 348 ? CGM.getContext().VoidPtrTy 349 : Context.VoidTy; 350 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 351 /*chainCall=*/false, argTypes, extInfo, 352 paramInfos, required); 353 } 354 355 static SmallVector<CanQualType, 16> 356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 357 SmallVector<CanQualType, 16> argTypes; 358 for (auto &arg : args) 359 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 360 return argTypes; 361 } 362 363 static SmallVector<CanQualType, 16> 364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 365 SmallVector<CanQualType, 16> argTypes; 366 for (auto &arg : args) 367 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 368 return argTypes; 369 } 370 371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 372 getExtParameterInfosForCall(const FunctionProtoType *proto, 373 unsigned prefixArgs, unsigned totalArgs) { 374 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 375 if (proto->hasExtParameterInfos()) { 376 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 377 } 378 return result; 379 } 380 381 /// Arrange a call to a C++ method, passing the given arguments. 382 /// 383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 384 /// parameter. 385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 386 /// args. 387 /// PassProtoArgs indicates whether `args` has args for the parameters in the 388 /// given CXXConstructorDecl. 389 const CGFunctionInfo & 390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 391 const CXXConstructorDecl *D, 392 CXXCtorType CtorKind, 393 unsigned ExtraPrefixArgs, 394 unsigned ExtraSuffixArgs, 395 bool PassProtoArgs) { 396 // FIXME: Kill copy. 397 SmallVector<CanQualType, 16> ArgTypes; 398 for (const auto &Arg : args) 399 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 400 401 // +1 for implicit this, which should always be args[0]. 402 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 403 404 CanQual<FunctionProtoType> FPT = GetFormalType(D); 405 RequiredArgs Required = PassProtoArgs 406 ? RequiredArgs::forPrototypePlus( 407 FPT, TotalPrefixArgs + ExtraSuffixArgs) 408 : RequiredArgs::All; 409 410 GlobalDecl GD(D, CtorKind); 411 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 412 ? ArgTypes.front() 413 : TheCXXABI.hasMostDerivedReturn(GD) 414 ? CGM.getContext().VoidPtrTy 415 : Context.VoidTy; 416 417 FunctionType::ExtInfo Info = FPT->getExtInfo(); 418 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 419 // If the prototype args are elided, we should only have ABI-specific args, 420 // which never have param info. 421 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 422 // ABI-specific suffix arguments are treated the same as variadic arguments. 423 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 424 ArgTypes.size()); 425 } 426 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 427 /*chainCall=*/false, ArgTypes, Info, 428 ParamInfos, Required); 429 } 430 431 /// Arrange the argument and result information for the declaration or 432 /// definition of the given function. 433 const CGFunctionInfo & 434 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 435 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 436 if (MD->isInstance()) 437 return arrangeCXXMethodDeclaration(MD); 438 439 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 440 441 assert(isa<FunctionType>(FTy)); 442 setCUDAKernelCallingConvention(FTy, CGM, FD); 443 444 // When declaring a function without a prototype, always use a 445 // non-variadic type. 446 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 447 return arrangeLLVMFunctionInfo( 448 noProto->getReturnType(), /*instanceMethod=*/false, 449 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 450 } 451 452 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 453 } 454 455 /// Arrange the argument and result information for the declaration or 456 /// definition of an Objective-C method. 457 const CGFunctionInfo & 458 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 459 // It happens that this is the same as a call with no optional 460 // arguments, except also using the formal 'self' type. 461 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 462 } 463 464 /// Arrange the argument and result information for the function type 465 /// through which to perform a send to the given Objective-C method, 466 /// using the given receiver type. The receiver type is not always 467 /// the 'self' type of the method or even an Objective-C pointer type. 468 /// This is *not* the right method for actually performing such a 469 /// message send, due to the possibility of optional arguments. 470 const CGFunctionInfo & 471 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 472 QualType receiverType) { 473 SmallVector<CanQualType, 16> argTys; 474 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 475 argTys.push_back(Context.getCanonicalParamType(receiverType)); 476 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 477 // FIXME: Kill copy? 478 for (const auto *I : MD->parameters()) { 479 argTys.push_back(Context.getCanonicalParamType(I->getType())); 480 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 481 I->hasAttr<NoEscapeAttr>()); 482 extParamInfos.push_back(extParamInfo); 483 } 484 485 FunctionType::ExtInfo einfo; 486 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 487 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 488 489 if (getContext().getLangOpts().ObjCAutoRefCount && 490 MD->hasAttr<NSReturnsRetainedAttr>()) 491 einfo = einfo.withProducesResult(true); 492 493 RequiredArgs required = 494 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 495 496 return arrangeLLVMFunctionInfo( 497 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 498 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 499 } 500 501 const CGFunctionInfo & 502 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 503 const CallArgList &args) { 504 auto argTypes = getArgTypesForCall(Context, args); 505 FunctionType::ExtInfo einfo; 506 507 return arrangeLLVMFunctionInfo( 508 GetReturnType(returnType), /*instanceMethod=*/false, 509 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 510 } 511 512 const CGFunctionInfo & 513 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 514 // FIXME: Do we need to handle ObjCMethodDecl? 515 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 516 517 if (isa<CXXConstructorDecl>(GD.getDecl()) || 518 isa<CXXDestructorDecl>(GD.getDecl())) 519 return arrangeCXXStructorDeclaration(GD); 520 521 return arrangeFunctionDeclaration(FD); 522 } 523 524 /// Arrange a thunk that takes 'this' as the first parameter followed by 525 /// varargs. Return a void pointer, regardless of the actual return type. 526 /// The body of the thunk will end in a musttail call to a function of the 527 /// correct type, and the caller will bitcast the function to the correct 528 /// prototype. 529 const CGFunctionInfo & 530 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 531 assert(MD->isVirtual() && "only methods have thunks"); 532 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 533 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 534 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 535 /*chainCall=*/false, ArgTys, 536 FTP->getExtInfo(), {}, RequiredArgs(1)); 537 } 538 539 const CGFunctionInfo & 540 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 541 CXXCtorType CT) { 542 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 543 544 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 545 SmallVector<CanQualType, 2> ArgTys; 546 const CXXRecordDecl *RD = CD->getParent(); 547 ArgTys.push_back(DeriveThisType(RD, CD)); 548 if (CT == Ctor_CopyingClosure) 549 ArgTys.push_back(*FTP->param_type_begin()); 550 if (RD->getNumVBases() > 0) 551 ArgTys.push_back(Context.IntTy); 552 CallingConv CC = Context.getDefaultCallingConvention( 553 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 554 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 555 /*chainCall=*/false, ArgTys, 556 FunctionType::ExtInfo(CC), {}, 557 RequiredArgs::All); 558 } 559 560 /// Arrange a call as unto a free function, except possibly with an 561 /// additional number of formal parameters considered required. 562 static const CGFunctionInfo & 563 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 564 CodeGenModule &CGM, 565 const CallArgList &args, 566 const FunctionType *fnType, 567 unsigned numExtraRequiredArgs, 568 bool chainCall) { 569 assert(args.size() >= numExtraRequiredArgs); 570 571 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 572 573 // In most cases, there are no optional arguments. 574 RequiredArgs required = RequiredArgs::All; 575 576 // If we have a variadic prototype, the required arguments are the 577 // extra prefix plus the arguments in the prototype. 578 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 579 if (proto->isVariadic()) 580 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 581 582 if (proto->hasExtParameterInfos()) 583 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 584 args.size()); 585 586 // If we don't have a prototype at all, but we're supposed to 587 // explicitly use the variadic convention for unprototyped calls, 588 // treat all of the arguments as required but preserve the nominal 589 // possibility of variadics. 590 } else if (CGM.getTargetCodeGenInfo() 591 .isNoProtoCallVariadic(args, 592 cast<FunctionNoProtoType>(fnType))) { 593 required = RequiredArgs(args.size()); 594 } 595 596 // FIXME: Kill copy. 597 SmallVector<CanQualType, 16> argTypes; 598 for (const auto &arg : args) 599 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 600 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 601 /*instanceMethod=*/false, chainCall, 602 argTypes, fnType->getExtInfo(), paramInfos, 603 required); 604 } 605 606 /// Figure out the rules for calling a function with the given formal 607 /// type using the given arguments. The arguments are necessary 608 /// because the function might be unprototyped, in which case it's 609 /// target-dependent in crazy ways. 610 const CGFunctionInfo & 611 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 612 const FunctionType *fnType, 613 bool chainCall) { 614 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 615 chainCall ? 1 : 0, chainCall); 616 } 617 618 /// A block function is essentially a free function with an 619 /// extra implicit argument. 620 const CGFunctionInfo & 621 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 622 const FunctionType *fnType) { 623 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 624 /*chainCall=*/false); 625 } 626 627 const CGFunctionInfo & 628 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 629 const FunctionArgList ¶ms) { 630 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 631 auto argTypes = getArgTypesForDeclaration(Context, params); 632 633 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 634 /*instanceMethod*/ false, /*chainCall*/ false, 635 argTypes, proto->getExtInfo(), paramInfos, 636 RequiredArgs::forPrototypePlus(proto, 1)); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 641 const CallArgList &args) { 642 // FIXME: Kill copy. 643 SmallVector<CanQualType, 16> argTypes; 644 for (const auto &Arg : args) 645 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 646 return arrangeLLVMFunctionInfo( 647 GetReturnType(resultType), /*instanceMethod=*/false, 648 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 649 /*paramInfos=*/ {}, RequiredArgs::All); 650 } 651 652 const CGFunctionInfo & 653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 654 const FunctionArgList &args) { 655 auto argTypes = getArgTypesForDeclaration(Context, args); 656 657 return arrangeLLVMFunctionInfo( 658 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 659 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 660 } 661 662 const CGFunctionInfo & 663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 664 ArrayRef<CanQualType> argTypes) { 665 return arrangeLLVMFunctionInfo( 666 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 667 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 668 } 669 670 /// Arrange a call to a C++ method, passing the given arguments. 671 /// 672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 673 /// does not count `this`. 674 const CGFunctionInfo & 675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 676 const FunctionProtoType *proto, 677 RequiredArgs required, 678 unsigned numPrefixArgs) { 679 assert(numPrefixArgs + 1 <= args.size() && 680 "Emitting a call with less args than the required prefix?"); 681 // Add one to account for `this`. It's a bit awkward here, but we don't count 682 // `this` in similar places elsewhere. 683 auto paramInfos = 684 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 685 686 // FIXME: Kill copy. 687 auto argTypes = getArgTypesForCall(Context, args); 688 689 FunctionType::ExtInfo info = proto->getExtInfo(); 690 return arrangeLLVMFunctionInfo( 691 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 692 /*chainCall=*/false, argTypes, info, paramInfos, required); 693 } 694 695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 696 return arrangeLLVMFunctionInfo( 697 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 698 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 699 } 700 701 const CGFunctionInfo & 702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 703 const CallArgList &args) { 704 assert(signature.arg_size() <= args.size()); 705 if (signature.arg_size() == args.size()) 706 return signature; 707 708 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 709 auto sigParamInfos = signature.getExtParameterInfos(); 710 if (!sigParamInfos.empty()) { 711 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 712 paramInfos.resize(args.size()); 713 } 714 715 auto argTypes = getArgTypesForCall(Context, args); 716 717 assert(signature.getRequiredArgs().allowsOptionalArgs()); 718 return arrangeLLVMFunctionInfo(signature.getReturnType(), 719 signature.isInstanceMethod(), 720 signature.isChainCall(), 721 argTypes, 722 signature.getExtInfo(), 723 paramInfos, 724 signature.getRequiredArgs()); 725 } 726 727 namespace clang { 728 namespace CodeGen { 729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 730 } 731 } 732 733 /// Arrange the argument and result information for an abstract value 734 /// of a given function type. This is the method which all of the 735 /// above functions ultimately defer to. 736 const CGFunctionInfo & 737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 738 bool instanceMethod, 739 bool chainCall, 740 ArrayRef<CanQualType> argTypes, 741 FunctionType::ExtInfo info, 742 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 743 RequiredArgs required) { 744 assert(llvm::all_of(argTypes, 745 [](CanQualType T) { return T.isCanonicalAsParam(); })); 746 747 // Lookup or create unique function info. 748 llvm::FoldingSetNodeID ID; 749 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 750 required, resultType, argTypes); 751 752 void *insertPos = nullptr; 753 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 754 if (FI) 755 return *FI; 756 757 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 758 759 // Construct the function info. We co-allocate the ArgInfos. 760 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 761 paramInfos, resultType, argTypes, required); 762 FunctionInfos.InsertNode(FI, insertPos); 763 764 bool inserted = FunctionsBeingProcessed.insert(FI).second; 765 (void)inserted; 766 assert(inserted && "Recursively being processed?"); 767 768 // Compute ABI information. 769 if (CC == llvm::CallingConv::SPIR_KERNEL) { 770 // Force target independent argument handling for the host visible 771 // kernel functions. 772 computeSPIRKernelABIInfo(CGM, *FI); 773 } else if (info.getCC() == CC_Swift) { 774 swiftcall::computeABIInfo(CGM, *FI); 775 } else { 776 getABIInfo().computeInfo(*FI); 777 } 778 779 // Loop over all of the computed argument and return value info. If any of 780 // them are direct or extend without a specified coerce type, specify the 781 // default now. 782 ABIArgInfo &retInfo = FI->getReturnInfo(); 783 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 784 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 785 786 for (auto &I : FI->arguments()) 787 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 788 I.info.setCoerceToType(ConvertType(I.type)); 789 790 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 791 assert(erased && "Not in set?"); 792 793 return *FI; 794 } 795 796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 797 bool instanceMethod, 798 bool chainCall, 799 const FunctionType::ExtInfo &info, 800 ArrayRef<ExtParameterInfo> paramInfos, 801 CanQualType resultType, 802 ArrayRef<CanQualType> argTypes, 803 RequiredArgs required) { 804 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 805 assert(!required.allowsOptionalArgs() || 806 required.getNumRequiredArgs() <= argTypes.size()); 807 808 void *buffer = 809 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 810 argTypes.size() + 1, paramInfos.size())); 811 812 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 813 FI->CallingConvention = llvmCC; 814 FI->EffectiveCallingConvention = llvmCC; 815 FI->ASTCallingConvention = info.getCC(); 816 FI->InstanceMethod = instanceMethod; 817 FI->ChainCall = chainCall; 818 FI->NoReturn = info.getNoReturn(); 819 FI->ReturnsRetained = info.getProducesResult(); 820 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 821 FI->NoCfCheck = info.getNoCfCheck(); 822 FI->Required = required; 823 FI->HasRegParm = info.getHasRegParm(); 824 FI->RegParm = info.getRegParm(); 825 FI->ArgStruct = nullptr; 826 FI->ArgStructAlign = 0; 827 FI->NumArgs = argTypes.size(); 828 FI->HasExtParameterInfos = !paramInfos.empty(); 829 FI->getArgsBuffer()[0].type = resultType; 830 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 831 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 832 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 833 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 834 return FI; 835 } 836 837 /***/ 838 839 namespace { 840 // ABIArgInfo::Expand implementation. 841 842 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 843 struct TypeExpansion { 844 enum TypeExpansionKind { 845 // Elements of constant arrays are expanded recursively. 846 TEK_ConstantArray, 847 // Record fields are expanded recursively (but if record is a union, only 848 // the field with the largest size is expanded). 849 TEK_Record, 850 // For complex types, real and imaginary parts are expanded recursively. 851 TEK_Complex, 852 // All other types are not expandable. 853 TEK_None 854 }; 855 856 const TypeExpansionKind Kind; 857 858 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 859 virtual ~TypeExpansion() {} 860 }; 861 862 struct ConstantArrayExpansion : TypeExpansion { 863 QualType EltTy; 864 uint64_t NumElts; 865 866 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 867 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 868 static bool classof(const TypeExpansion *TE) { 869 return TE->Kind == TEK_ConstantArray; 870 } 871 }; 872 873 struct RecordExpansion : TypeExpansion { 874 SmallVector<const CXXBaseSpecifier *, 1> Bases; 875 876 SmallVector<const FieldDecl *, 1> Fields; 877 878 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 879 SmallVector<const FieldDecl *, 1> &&Fields) 880 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 881 Fields(std::move(Fields)) {} 882 static bool classof(const TypeExpansion *TE) { 883 return TE->Kind == TEK_Record; 884 } 885 }; 886 887 struct ComplexExpansion : TypeExpansion { 888 QualType EltTy; 889 890 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 891 static bool classof(const TypeExpansion *TE) { 892 return TE->Kind == TEK_Complex; 893 } 894 }; 895 896 struct NoExpansion : TypeExpansion { 897 NoExpansion() : TypeExpansion(TEK_None) {} 898 static bool classof(const TypeExpansion *TE) { 899 return TE->Kind == TEK_None; 900 } 901 }; 902 } // namespace 903 904 static std::unique_ptr<TypeExpansion> 905 getTypeExpansion(QualType Ty, const ASTContext &Context) { 906 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 907 return std::make_unique<ConstantArrayExpansion>( 908 AT->getElementType(), AT->getSize().getZExtValue()); 909 } 910 if (const RecordType *RT = Ty->getAs<RecordType>()) { 911 SmallVector<const CXXBaseSpecifier *, 1> Bases; 912 SmallVector<const FieldDecl *, 1> Fields; 913 const RecordDecl *RD = RT->getDecl(); 914 assert(!RD->hasFlexibleArrayMember() && 915 "Cannot expand structure with flexible array."); 916 if (RD->isUnion()) { 917 // Unions can be here only in degenerative cases - all the fields are same 918 // after flattening. Thus we have to use the "largest" field. 919 const FieldDecl *LargestFD = nullptr; 920 CharUnits UnionSize = CharUnits::Zero(); 921 922 for (const auto *FD : RD->fields()) { 923 if (FD->isZeroLengthBitField(Context)) 924 continue; 925 assert(!FD->isBitField() && 926 "Cannot expand structure with bit-field members."); 927 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 928 if (UnionSize < FieldSize) { 929 UnionSize = FieldSize; 930 LargestFD = FD; 931 } 932 } 933 if (LargestFD) 934 Fields.push_back(LargestFD); 935 } else { 936 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 937 assert(!CXXRD->isDynamicClass() && 938 "cannot expand vtable pointers in dynamic classes"); 939 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 940 Bases.push_back(&BS); 941 } 942 943 for (const auto *FD : RD->fields()) { 944 if (FD->isZeroLengthBitField(Context)) 945 continue; 946 assert(!FD->isBitField() && 947 "Cannot expand structure with bit-field members."); 948 Fields.push_back(FD); 949 } 950 } 951 return std::make_unique<RecordExpansion>(std::move(Bases), 952 std::move(Fields)); 953 } 954 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 955 return std::make_unique<ComplexExpansion>(CT->getElementType()); 956 } 957 return std::make_unique<NoExpansion>(); 958 } 959 960 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 961 auto Exp = getTypeExpansion(Ty, Context); 962 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 963 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 964 } 965 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 966 int Res = 0; 967 for (auto BS : RExp->Bases) 968 Res += getExpansionSize(BS->getType(), Context); 969 for (auto FD : RExp->Fields) 970 Res += getExpansionSize(FD->getType(), Context); 971 return Res; 972 } 973 if (isa<ComplexExpansion>(Exp.get())) 974 return 2; 975 assert(isa<NoExpansion>(Exp.get())); 976 return 1; 977 } 978 979 void 980 CodeGenTypes::getExpandedTypes(QualType Ty, 981 SmallVectorImpl<llvm::Type *>::iterator &TI) { 982 auto Exp = getTypeExpansion(Ty, Context); 983 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 984 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 985 getExpandedTypes(CAExp->EltTy, TI); 986 } 987 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 988 for (auto BS : RExp->Bases) 989 getExpandedTypes(BS->getType(), TI); 990 for (auto FD : RExp->Fields) 991 getExpandedTypes(FD->getType(), TI); 992 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 993 llvm::Type *EltTy = ConvertType(CExp->EltTy); 994 *TI++ = EltTy; 995 *TI++ = EltTy; 996 } else { 997 assert(isa<NoExpansion>(Exp.get())); 998 *TI++ = ConvertType(Ty); 999 } 1000 } 1001 1002 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1003 ConstantArrayExpansion *CAE, 1004 Address BaseAddr, 1005 llvm::function_ref<void(Address)> Fn) { 1006 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1007 CharUnits EltAlign = 1008 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1009 1010 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1011 llvm::Value *EltAddr = 1012 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1013 Fn(Address(EltAddr, EltAlign)); 1014 } 1015 } 1016 1017 void CodeGenFunction::ExpandTypeFromArgs( 1018 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1019 assert(LV.isSimple() && 1020 "Unexpected non-simple lvalue during struct expansion."); 1021 1022 auto Exp = getTypeExpansion(Ty, getContext()); 1023 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1024 forConstantArrayExpansion( 1025 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1026 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1027 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1028 }); 1029 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1030 Address This = LV.getAddress(*this); 1031 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1032 // Perform a single step derived-to-base conversion. 1033 Address Base = 1034 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1035 /*NullCheckValue=*/false, SourceLocation()); 1036 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1037 1038 // Recurse onto bases. 1039 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1040 } 1041 for (auto FD : RExp->Fields) { 1042 // FIXME: What are the right qualifiers here? 1043 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1044 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1045 } 1046 } else if (isa<ComplexExpansion>(Exp.get())) { 1047 auto realValue = *AI++; 1048 auto imagValue = *AI++; 1049 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1050 } else { 1051 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1052 // primitive store. 1053 assert(isa<NoExpansion>(Exp.get())); 1054 if (LV.isBitField()) 1055 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1056 else 1057 EmitStoreOfScalar(*AI++, LV); 1058 } 1059 } 1060 1061 void CodeGenFunction::ExpandTypeToArgs( 1062 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1063 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1064 auto Exp = getTypeExpansion(Ty, getContext()); 1065 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1066 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1067 : Arg.getKnownRValue().getAggregateAddress(); 1068 forConstantArrayExpansion( 1069 *this, CAExp, Addr, [&](Address EltAddr) { 1070 CallArg EltArg = CallArg( 1071 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1072 CAExp->EltTy); 1073 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1074 IRCallArgPos); 1075 }); 1076 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1077 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1078 : Arg.getKnownRValue().getAggregateAddress(); 1079 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1080 // Perform a single step derived-to-base conversion. 1081 Address Base = 1082 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1083 /*NullCheckValue=*/false, SourceLocation()); 1084 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1085 1086 // Recurse onto bases. 1087 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1088 IRCallArgPos); 1089 } 1090 1091 LValue LV = MakeAddrLValue(This, Ty); 1092 for (auto FD : RExp->Fields) { 1093 CallArg FldArg = 1094 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1095 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1096 IRCallArgPos); 1097 } 1098 } else if (isa<ComplexExpansion>(Exp.get())) { 1099 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1100 IRCallArgs[IRCallArgPos++] = CV.first; 1101 IRCallArgs[IRCallArgPos++] = CV.second; 1102 } else { 1103 assert(isa<NoExpansion>(Exp.get())); 1104 auto RV = Arg.getKnownRValue(); 1105 assert(RV.isScalar() && 1106 "Unexpected non-scalar rvalue during struct expansion."); 1107 1108 // Insert a bitcast as needed. 1109 llvm::Value *V = RV.getScalarVal(); 1110 if (IRCallArgPos < IRFuncTy->getNumParams() && 1111 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1112 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1113 1114 IRCallArgs[IRCallArgPos++] = V; 1115 } 1116 } 1117 1118 /// Create a temporary allocation for the purposes of coercion. 1119 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1120 CharUnits MinAlign) { 1121 // Don't use an alignment that's worse than what LLVM would prefer. 1122 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1123 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1124 1125 return CGF.CreateTempAlloca(Ty, Align); 1126 } 1127 1128 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1129 /// accessing some number of bytes out of it, try to gep into the struct to get 1130 /// at its inner goodness. Dive as deep as possible without entering an element 1131 /// with an in-memory size smaller than DstSize. 1132 static Address 1133 EnterStructPointerForCoercedAccess(Address SrcPtr, 1134 llvm::StructType *SrcSTy, 1135 uint64_t DstSize, CodeGenFunction &CGF) { 1136 // We can't dive into a zero-element struct. 1137 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1138 1139 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1140 1141 // If the first elt is at least as large as what we're looking for, or if the 1142 // first element is the same size as the whole struct, we can enter it. The 1143 // comparison must be made on the store size and not the alloca size. Using 1144 // the alloca size may overstate the size of the load. 1145 uint64_t FirstEltSize = 1146 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1147 if (FirstEltSize < DstSize && 1148 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1149 return SrcPtr; 1150 1151 // GEP into the first element. 1152 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1153 1154 // If the first element is a struct, recurse. 1155 llvm::Type *SrcTy = SrcPtr.getElementType(); 1156 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1157 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1158 1159 return SrcPtr; 1160 } 1161 1162 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1163 /// are either integers or pointers. This does a truncation of the value if it 1164 /// is too large or a zero extension if it is too small. 1165 /// 1166 /// This behaves as if the value were coerced through memory, so on big-endian 1167 /// targets the high bits are preserved in a truncation, while little-endian 1168 /// targets preserve the low bits. 1169 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1170 llvm::Type *Ty, 1171 CodeGenFunction &CGF) { 1172 if (Val->getType() == Ty) 1173 return Val; 1174 1175 if (isa<llvm::PointerType>(Val->getType())) { 1176 // If this is Pointer->Pointer avoid conversion to and from int. 1177 if (isa<llvm::PointerType>(Ty)) 1178 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1179 1180 // Convert the pointer to an integer so we can play with its width. 1181 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1182 } 1183 1184 llvm::Type *DestIntTy = Ty; 1185 if (isa<llvm::PointerType>(DestIntTy)) 1186 DestIntTy = CGF.IntPtrTy; 1187 1188 if (Val->getType() != DestIntTy) { 1189 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1190 if (DL.isBigEndian()) { 1191 // Preserve the high bits on big-endian targets. 1192 // That is what memory coercion does. 1193 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1194 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1195 1196 if (SrcSize > DstSize) { 1197 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1198 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1199 } else { 1200 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1201 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1202 } 1203 } else { 1204 // Little-endian targets preserve the low bits. No shifts required. 1205 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1206 } 1207 } 1208 1209 if (isa<llvm::PointerType>(Ty)) 1210 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1211 return Val; 1212 } 1213 1214 1215 1216 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1217 /// a pointer to an object of type \arg Ty, known to be aligned to 1218 /// \arg SrcAlign bytes. 1219 /// 1220 /// This safely handles the case when the src type is smaller than the 1221 /// destination type; in this situation the values of bits which not 1222 /// present in the src are undefined. 1223 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1224 CodeGenFunction &CGF) { 1225 llvm::Type *SrcTy = Src.getElementType(); 1226 1227 // If SrcTy and Ty are the same, just do a load. 1228 if (SrcTy == Ty) 1229 return CGF.Builder.CreateLoad(Src); 1230 1231 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1232 1233 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1234 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1235 SrcTy = Src.getType()->getElementType(); 1236 } 1237 1238 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1239 1240 // If the source and destination are integer or pointer types, just do an 1241 // extension or truncation to the desired type. 1242 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1243 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1244 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1245 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1246 } 1247 1248 // If load is legal, just bitcast the src pointer. 1249 if (SrcSize >= DstSize) { 1250 // Generally SrcSize is never greater than DstSize, since this means we are 1251 // losing bits. However, this can happen in cases where the structure has 1252 // additional padding, for example due to a user specified alignment. 1253 // 1254 // FIXME: Assert that we aren't truncating non-padding bits when have access 1255 // to that information. 1256 Src = CGF.Builder.CreateBitCast(Src, 1257 Ty->getPointerTo(Src.getAddressSpace())); 1258 return CGF.Builder.CreateLoad(Src); 1259 } 1260 1261 // Otherwise do coercion through memory. This is stupid, but simple. 1262 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1263 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1264 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1265 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1266 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1267 false); 1268 return CGF.Builder.CreateLoad(Tmp); 1269 } 1270 1271 // Function to store a first-class aggregate into memory. We prefer to 1272 // store the elements rather than the aggregate to be more friendly to 1273 // fast-isel. 1274 // FIXME: Do we need to recurse here? 1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1276 Address Dest, bool DestIsVolatile) { 1277 // Prefer scalar stores to first-class aggregate stores. 1278 if (llvm::StructType *STy = 1279 dyn_cast<llvm::StructType>(Val->getType())) { 1280 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1281 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); 1282 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1283 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1284 } 1285 } else { 1286 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1287 } 1288 } 1289 1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1291 /// where the source and destination may have different types. The 1292 /// destination is known to be aligned to \arg DstAlign bytes. 1293 /// 1294 /// This safely handles the case when the src type is larger than the 1295 /// destination type; the upper bits of the src will be lost. 1296 static void CreateCoercedStore(llvm::Value *Src, 1297 Address Dst, 1298 bool DstIsVolatile, 1299 CodeGenFunction &CGF) { 1300 llvm::Type *SrcTy = Src->getType(); 1301 llvm::Type *DstTy = Dst.getType()->getElementType(); 1302 if (SrcTy == DstTy) { 1303 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1304 return; 1305 } 1306 1307 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1308 1309 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1310 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1311 DstTy = Dst.getType()->getElementType(); 1312 } 1313 1314 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1315 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1316 if (SrcPtrTy && DstPtrTy && 1317 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1318 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1319 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1320 return; 1321 } 1322 1323 // If the source and destination are integer or pointer types, just do an 1324 // extension or truncation to the desired type. 1325 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1326 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1327 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1328 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1329 return; 1330 } 1331 1332 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1333 1334 // If store is legal, just bitcast the src pointer. 1335 if (SrcSize <= DstSize) { 1336 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1337 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1338 } else { 1339 // Otherwise do coercion through memory. This is stupid, but 1340 // simple. 1341 1342 // Generally SrcSize is never greater than DstSize, since this means we are 1343 // losing bits. However, this can happen in cases where the structure has 1344 // additional padding, for example due to a user specified alignment. 1345 // 1346 // FIXME: Assert that we aren't truncating non-padding bits when have access 1347 // to that information. 1348 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1349 CGF.Builder.CreateStore(Src, Tmp); 1350 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1351 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1352 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1353 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1354 false); 1355 } 1356 } 1357 1358 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1359 const ABIArgInfo &info) { 1360 if (unsigned offset = info.getDirectOffset()) { 1361 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1362 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1363 CharUnits::fromQuantity(offset)); 1364 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1365 } 1366 return addr; 1367 } 1368 1369 namespace { 1370 1371 /// Encapsulates information about the way function arguments from 1372 /// CGFunctionInfo should be passed to actual LLVM IR function. 1373 class ClangToLLVMArgMapping { 1374 static const unsigned InvalidIndex = ~0U; 1375 unsigned InallocaArgNo; 1376 unsigned SRetArgNo; 1377 unsigned TotalIRArgs; 1378 1379 /// Arguments of LLVM IR function corresponding to single Clang argument. 1380 struct IRArgs { 1381 unsigned PaddingArgIndex; 1382 // Argument is expanded to IR arguments at positions 1383 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1384 unsigned FirstArgIndex; 1385 unsigned NumberOfArgs; 1386 1387 IRArgs() 1388 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1389 NumberOfArgs(0) {} 1390 }; 1391 1392 SmallVector<IRArgs, 8> ArgInfo; 1393 1394 public: 1395 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1396 bool OnlyRequiredArgs = false) 1397 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1398 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1399 construct(Context, FI, OnlyRequiredArgs); 1400 } 1401 1402 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1403 unsigned getInallocaArgNo() const { 1404 assert(hasInallocaArg()); 1405 return InallocaArgNo; 1406 } 1407 1408 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1409 unsigned getSRetArgNo() const { 1410 assert(hasSRetArg()); 1411 return SRetArgNo; 1412 } 1413 1414 unsigned totalIRArgs() const { return TotalIRArgs; } 1415 1416 bool hasPaddingArg(unsigned ArgNo) const { 1417 assert(ArgNo < ArgInfo.size()); 1418 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1419 } 1420 unsigned getPaddingArgNo(unsigned ArgNo) const { 1421 assert(hasPaddingArg(ArgNo)); 1422 return ArgInfo[ArgNo].PaddingArgIndex; 1423 } 1424 1425 /// Returns index of first IR argument corresponding to ArgNo, and their 1426 /// quantity. 1427 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1428 assert(ArgNo < ArgInfo.size()); 1429 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1430 ArgInfo[ArgNo].NumberOfArgs); 1431 } 1432 1433 private: 1434 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1435 bool OnlyRequiredArgs); 1436 }; 1437 1438 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1439 const CGFunctionInfo &FI, 1440 bool OnlyRequiredArgs) { 1441 unsigned IRArgNo = 0; 1442 bool SwapThisWithSRet = false; 1443 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1444 1445 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1446 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1447 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1448 } 1449 1450 unsigned ArgNo = 0; 1451 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1452 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1453 ++I, ++ArgNo) { 1454 assert(I != FI.arg_end()); 1455 QualType ArgType = I->type; 1456 const ABIArgInfo &AI = I->info; 1457 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1458 auto &IRArgs = ArgInfo[ArgNo]; 1459 1460 if (AI.getPaddingType()) 1461 IRArgs.PaddingArgIndex = IRArgNo++; 1462 1463 switch (AI.getKind()) { 1464 case ABIArgInfo::Extend: 1465 case ABIArgInfo::Direct: { 1466 // FIXME: handle sseregparm someday... 1467 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1468 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1469 IRArgs.NumberOfArgs = STy->getNumElements(); 1470 } else { 1471 IRArgs.NumberOfArgs = 1; 1472 } 1473 break; 1474 } 1475 case ABIArgInfo::Indirect: 1476 IRArgs.NumberOfArgs = 1; 1477 break; 1478 case ABIArgInfo::Ignore: 1479 case ABIArgInfo::InAlloca: 1480 // ignore and inalloca doesn't have matching LLVM parameters. 1481 IRArgs.NumberOfArgs = 0; 1482 break; 1483 case ABIArgInfo::CoerceAndExpand: 1484 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1485 break; 1486 case ABIArgInfo::Expand: 1487 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1488 break; 1489 } 1490 1491 if (IRArgs.NumberOfArgs > 0) { 1492 IRArgs.FirstArgIndex = IRArgNo; 1493 IRArgNo += IRArgs.NumberOfArgs; 1494 } 1495 1496 // Skip over the sret parameter when it comes second. We already handled it 1497 // above. 1498 if (IRArgNo == 1 && SwapThisWithSRet) 1499 IRArgNo++; 1500 } 1501 assert(ArgNo == ArgInfo.size()); 1502 1503 if (FI.usesInAlloca()) 1504 InallocaArgNo = IRArgNo++; 1505 1506 TotalIRArgs = IRArgNo; 1507 } 1508 } // namespace 1509 1510 /***/ 1511 1512 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1513 const auto &RI = FI.getReturnInfo(); 1514 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1515 } 1516 1517 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1518 return ReturnTypeUsesSRet(FI) && 1519 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1520 } 1521 1522 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1523 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1524 switch (BT->getKind()) { 1525 default: 1526 return false; 1527 case BuiltinType::Float: 1528 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1529 case BuiltinType::Double: 1530 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1531 case BuiltinType::LongDouble: 1532 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1540 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1541 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1542 if (BT->getKind() == BuiltinType::LongDouble) 1543 return getTarget().useObjCFP2RetForComplexLongDouble(); 1544 } 1545 } 1546 1547 return false; 1548 } 1549 1550 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1551 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1552 return GetFunctionType(FI); 1553 } 1554 1555 llvm::FunctionType * 1556 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1557 1558 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1559 (void)Inserted; 1560 assert(Inserted && "Recursively being processed?"); 1561 1562 llvm::Type *resultType = nullptr; 1563 const ABIArgInfo &retAI = FI.getReturnInfo(); 1564 switch (retAI.getKind()) { 1565 case ABIArgInfo::Expand: 1566 llvm_unreachable("Invalid ABI kind for return argument"); 1567 1568 case ABIArgInfo::Extend: 1569 case ABIArgInfo::Direct: 1570 resultType = retAI.getCoerceToType(); 1571 break; 1572 1573 case ABIArgInfo::InAlloca: 1574 if (retAI.getInAllocaSRet()) { 1575 // sret things on win32 aren't void, they return the sret pointer. 1576 QualType ret = FI.getReturnType(); 1577 llvm::Type *ty = ConvertType(ret); 1578 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1579 resultType = llvm::PointerType::get(ty, addressSpace); 1580 } else { 1581 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1582 } 1583 break; 1584 1585 case ABIArgInfo::Indirect: 1586 case ABIArgInfo::Ignore: 1587 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1588 break; 1589 1590 case ABIArgInfo::CoerceAndExpand: 1591 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1592 break; 1593 } 1594 1595 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1596 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1597 1598 // Add type for sret argument. 1599 if (IRFunctionArgs.hasSRetArg()) { 1600 QualType Ret = FI.getReturnType(); 1601 llvm::Type *Ty = ConvertType(Ret); 1602 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1603 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1604 llvm::PointerType::get(Ty, AddressSpace); 1605 } 1606 1607 // Add type for inalloca argument. 1608 if (IRFunctionArgs.hasInallocaArg()) { 1609 auto ArgStruct = FI.getArgStruct(); 1610 assert(ArgStruct); 1611 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1612 } 1613 1614 // Add in all of the required arguments. 1615 unsigned ArgNo = 0; 1616 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1617 ie = it + FI.getNumRequiredArgs(); 1618 for (; it != ie; ++it, ++ArgNo) { 1619 const ABIArgInfo &ArgInfo = it->info; 1620 1621 // Insert a padding type to ensure proper alignment. 1622 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1623 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1624 ArgInfo.getPaddingType(); 1625 1626 unsigned FirstIRArg, NumIRArgs; 1627 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1628 1629 switch (ArgInfo.getKind()) { 1630 case ABIArgInfo::Ignore: 1631 case ABIArgInfo::InAlloca: 1632 assert(NumIRArgs == 0); 1633 break; 1634 1635 case ABIArgInfo::Indirect: { 1636 assert(NumIRArgs == 1); 1637 // indirect arguments are always on the stack, which is alloca addr space. 1638 llvm::Type *LTy = ConvertTypeForMem(it->type); 1639 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1640 CGM.getDataLayout().getAllocaAddrSpace()); 1641 break; 1642 } 1643 1644 case ABIArgInfo::Extend: 1645 case ABIArgInfo::Direct: { 1646 // Fast-isel and the optimizer generally like scalar values better than 1647 // FCAs, so we flatten them if this is safe to do for this argument. 1648 llvm::Type *argType = ArgInfo.getCoerceToType(); 1649 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1650 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1651 assert(NumIRArgs == st->getNumElements()); 1652 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1653 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1654 } else { 1655 assert(NumIRArgs == 1); 1656 ArgTypes[FirstIRArg] = argType; 1657 } 1658 break; 1659 } 1660 1661 case ABIArgInfo::CoerceAndExpand: { 1662 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1663 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1664 *ArgTypesIter++ = EltTy; 1665 } 1666 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1667 break; 1668 } 1669 1670 case ABIArgInfo::Expand: 1671 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1672 getExpandedTypes(it->type, ArgTypesIter); 1673 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1674 break; 1675 } 1676 } 1677 1678 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1679 assert(Erased && "Not in set?"); 1680 1681 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1682 } 1683 1684 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1685 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1686 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1687 1688 if (!isFuncTypeConvertible(FPT)) 1689 return llvm::StructType::get(getLLVMContext()); 1690 1691 return GetFunctionType(GD); 1692 } 1693 1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1695 llvm::AttrBuilder &FuncAttrs, 1696 const FunctionProtoType *FPT) { 1697 if (!FPT) 1698 return; 1699 1700 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1701 FPT->isNothrow()) 1702 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1703 } 1704 1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1706 bool AttrOnCallSite, 1707 llvm::AttrBuilder &FuncAttrs) { 1708 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1709 if (!HasOptnone) { 1710 if (CodeGenOpts.OptimizeSize) 1711 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1712 if (CodeGenOpts.OptimizeSize == 2) 1713 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1714 } 1715 1716 if (CodeGenOpts.DisableRedZone) 1717 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1718 if (CodeGenOpts.IndirectTlsSegRefs) 1719 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1720 if (CodeGenOpts.NoImplicitFloat) 1721 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1722 1723 if (AttrOnCallSite) { 1724 // Attributes that should go on the call site only. 1725 if (!CodeGenOpts.SimplifyLibCalls || 1726 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1727 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1728 if (!CodeGenOpts.TrapFuncName.empty()) 1729 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1730 } else { 1731 StringRef FpKind; 1732 switch (CodeGenOpts.getFramePointer()) { 1733 case CodeGenOptions::FramePointerKind::None: 1734 FpKind = "none"; 1735 break; 1736 case CodeGenOptions::FramePointerKind::NonLeaf: 1737 FpKind = "non-leaf"; 1738 break; 1739 case CodeGenOptions::FramePointerKind::All: 1740 FpKind = "all"; 1741 break; 1742 } 1743 FuncAttrs.addAttribute("frame-pointer", FpKind); 1744 1745 FuncAttrs.addAttribute("less-precise-fpmad", 1746 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1747 1748 if (CodeGenOpts.NullPointerIsValid) 1749 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1750 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::Invalid) 1751 FuncAttrs.addAttribute("denormal-fp-math", 1752 llvm::denormalModeName(CodeGenOpts.FPDenormalMode)); 1753 1754 FuncAttrs.addAttribute("no-trapping-math", 1755 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1756 1757 // Strict (compliant) code is the default, so only add this attribute to 1758 // indicate that we are trying to workaround a problem case. 1759 if (!CodeGenOpts.StrictFloatCastOverflow) 1760 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1761 1762 // TODO: Are these all needed? 1763 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1764 FuncAttrs.addAttribute("no-infs-fp-math", 1765 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1766 FuncAttrs.addAttribute("no-nans-fp-math", 1767 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1768 FuncAttrs.addAttribute("unsafe-fp-math", 1769 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1770 FuncAttrs.addAttribute("use-soft-float", 1771 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1772 FuncAttrs.addAttribute("stack-protector-buffer-size", 1773 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1774 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1775 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1776 FuncAttrs.addAttribute( 1777 "correctly-rounded-divide-sqrt-fp-math", 1778 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1779 1780 if (getLangOpts().OpenCL) 1781 FuncAttrs.addAttribute("denorms-are-zero", 1782 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1783 1784 // TODO: Reciprocal estimate codegen options should apply to instructions? 1785 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1786 if (!Recips.empty()) 1787 FuncAttrs.addAttribute("reciprocal-estimates", 1788 llvm::join(Recips, ",")); 1789 1790 if (!CodeGenOpts.PreferVectorWidth.empty() && 1791 CodeGenOpts.PreferVectorWidth != "none") 1792 FuncAttrs.addAttribute("prefer-vector-width", 1793 CodeGenOpts.PreferVectorWidth); 1794 1795 if (CodeGenOpts.StackRealignment) 1796 FuncAttrs.addAttribute("stackrealign"); 1797 if (CodeGenOpts.Backchain) 1798 FuncAttrs.addAttribute("backchain"); 1799 1800 if (CodeGenOpts.SpeculativeLoadHardening) 1801 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1802 } 1803 1804 if (getLangOpts().assumeFunctionsAreConvergent()) { 1805 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1806 // convergent (meaning, they may call an intrinsically convergent op, such 1807 // as __syncthreads() / barrier(), and so can't have certain optimizations 1808 // applied around them). LLVM will remove this attribute where it safely 1809 // can. 1810 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1811 } 1812 1813 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1814 // Exceptions aren't supported in CUDA device code. 1815 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1816 1817 // Respect -fcuda-flush-denormals-to-zero. 1818 if (CodeGenOpts.FlushDenorm) 1819 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1820 } 1821 1822 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1823 StringRef Var, Value; 1824 std::tie(Var, Value) = Attr.split('='); 1825 FuncAttrs.addAttribute(Var, Value); 1826 } 1827 } 1828 1829 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1830 llvm::AttrBuilder FuncAttrs; 1831 ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(), 1832 /* AttrOnCallSite = */ false, FuncAttrs); 1833 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1834 } 1835 1836 void CodeGenModule::ConstructAttributeList( 1837 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1838 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1839 llvm::AttrBuilder FuncAttrs; 1840 llvm::AttrBuilder RetAttrs; 1841 1842 CallingConv = FI.getEffectiveCallingConvention(); 1843 if (FI.isNoReturn()) 1844 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1845 1846 // If we have information about the function prototype, we can learn 1847 // attributes from there. 1848 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1849 CalleeInfo.getCalleeFunctionProtoType()); 1850 1851 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1852 1853 bool HasOptnone = false; 1854 // FIXME: handle sseregparm someday... 1855 if (TargetDecl) { 1856 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1857 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1858 if (TargetDecl->hasAttr<NoThrowAttr>()) 1859 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1860 if (TargetDecl->hasAttr<NoReturnAttr>()) 1861 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1862 if (TargetDecl->hasAttr<ColdAttr>()) 1863 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1864 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1865 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1866 if (TargetDecl->hasAttr<ConvergentAttr>()) 1867 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1868 1869 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1870 AddAttributesFromFunctionProtoType( 1871 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1872 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1873 const bool IsVirtualCall = MD && MD->isVirtual(); 1874 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1875 // virtual function. These attributes are not inherited by overloads. 1876 if (!(AttrOnCallSite && IsVirtualCall)) { 1877 if (Fn->isNoReturn()) 1878 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1879 1880 const auto *NBA = Fn->getAttr<NoBuiltinAttr>(); 1881 bool HasWildcard = NBA && llvm::is_contained(NBA->builtinNames(), "*"); 1882 if (getLangOpts().NoBuiltin || HasWildcard) 1883 FuncAttrs.addAttribute("no-builtins"); 1884 else { 1885 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1886 SmallString<32> AttributeName; 1887 AttributeName += "no-builtin-"; 1888 AttributeName += BuiltinName; 1889 FuncAttrs.addAttribute(AttributeName); 1890 }; 1891 llvm::for_each(getLangOpts().NoBuiltinFuncs, AddNoBuiltinAttr); 1892 if (NBA) 1893 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1894 } 1895 } 1896 } 1897 1898 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1899 if (TargetDecl->hasAttr<ConstAttr>()) { 1900 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1901 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1902 } else if (TargetDecl->hasAttr<PureAttr>()) { 1903 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1904 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1905 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1906 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1907 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1908 } 1909 if (TargetDecl->hasAttr<RestrictAttr>()) 1910 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1911 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1912 !CodeGenOpts.NullPointerIsValid) 1913 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1914 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1915 FuncAttrs.addAttribute("no_caller_saved_registers"); 1916 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1917 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1918 1919 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1920 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1921 Optional<unsigned> NumElemsParam; 1922 if (AllocSize->getNumElemsParam().isValid()) 1923 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1924 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1925 NumElemsParam); 1926 } 1927 } 1928 1929 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1930 1931 // This must run after constructing the default function attribute list 1932 // to ensure that the speculative load hardening attribute is removed 1933 // in the case where the -mspeculative-load-hardening flag was passed. 1934 if (TargetDecl) { 1935 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1936 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1937 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1938 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1939 } 1940 1941 if (CodeGenOpts.EnableSegmentedStacks && 1942 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1943 FuncAttrs.addAttribute("split-stack"); 1944 1945 // Add NonLazyBind attribute to function declarations when -fno-plt 1946 // is used. 1947 if (TargetDecl && CodeGenOpts.NoPLT) { 1948 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1949 if (!Fn->isDefined() && !AttrOnCallSite) { 1950 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1951 } 1952 } 1953 } 1954 1955 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1956 if (getLangOpts().OpenCLVersion <= 120) { 1957 // OpenCL v1.2 Work groups are always uniform 1958 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1959 } else { 1960 // OpenCL v2.0 Work groups may be whether uniform or not. 1961 // '-cl-uniform-work-group-size' compile option gets a hint 1962 // to the compiler that the global work-size be a multiple of 1963 // the work-group size specified to clEnqueueNDRangeKernel 1964 // (i.e. work groups are uniform). 1965 FuncAttrs.addAttribute("uniform-work-group-size", 1966 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1967 } 1968 } 1969 1970 if (!AttrOnCallSite) { 1971 bool DisableTailCalls = false; 1972 1973 if (CodeGenOpts.DisableTailCalls) 1974 DisableTailCalls = true; 1975 else if (TargetDecl) { 1976 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1977 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1978 DisableTailCalls = true; 1979 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1980 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1981 if (!BD->doesNotEscape()) 1982 DisableTailCalls = true; 1983 } 1984 } 1985 1986 FuncAttrs.addAttribute("disable-tail-calls", 1987 llvm::toStringRef(DisableTailCalls)); 1988 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1989 } 1990 1991 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1992 1993 QualType RetTy = FI.getReturnType(); 1994 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1995 switch (RetAI.getKind()) { 1996 case ABIArgInfo::Extend: 1997 if (RetAI.isSignExt()) 1998 RetAttrs.addAttribute(llvm::Attribute::SExt); 1999 else 2000 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2001 LLVM_FALLTHROUGH; 2002 case ABIArgInfo::Direct: 2003 if (RetAI.getInReg()) 2004 RetAttrs.addAttribute(llvm::Attribute::InReg); 2005 break; 2006 case ABIArgInfo::Ignore: 2007 break; 2008 2009 case ABIArgInfo::InAlloca: 2010 case ABIArgInfo::Indirect: { 2011 // inalloca and sret disable readnone and readonly 2012 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2013 .removeAttribute(llvm::Attribute::ReadNone); 2014 break; 2015 } 2016 2017 case ABIArgInfo::CoerceAndExpand: 2018 break; 2019 2020 case ABIArgInfo::Expand: 2021 llvm_unreachable("Invalid ABI kind for return argument"); 2022 } 2023 2024 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2025 QualType PTy = RefTy->getPointeeType(); 2026 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2027 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2028 .getQuantity()); 2029 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2030 !CodeGenOpts.NullPointerIsValid) 2031 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2032 } 2033 2034 bool hasUsedSRet = false; 2035 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2036 2037 // Attach attributes to sret. 2038 if (IRFunctionArgs.hasSRetArg()) { 2039 llvm::AttrBuilder SRETAttrs; 2040 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2041 hasUsedSRet = true; 2042 if (RetAI.getInReg()) 2043 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2044 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2045 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2046 } 2047 2048 // Attach attributes to inalloca argument. 2049 if (IRFunctionArgs.hasInallocaArg()) { 2050 llvm::AttrBuilder Attrs; 2051 Attrs.addAttribute(llvm::Attribute::InAlloca); 2052 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2053 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2054 } 2055 2056 unsigned ArgNo = 0; 2057 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2058 E = FI.arg_end(); 2059 I != E; ++I, ++ArgNo) { 2060 QualType ParamType = I->type; 2061 const ABIArgInfo &AI = I->info; 2062 llvm::AttrBuilder Attrs; 2063 2064 // Add attribute for padding argument, if necessary. 2065 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2066 if (AI.getPaddingInReg()) { 2067 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2068 llvm::AttributeSet::get( 2069 getLLVMContext(), 2070 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2071 } 2072 } 2073 2074 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2075 // have the corresponding parameter variable. It doesn't make 2076 // sense to do it here because parameters are so messed up. 2077 switch (AI.getKind()) { 2078 case ABIArgInfo::Extend: 2079 if (AI.isSignExt()) 2080 Attrs.addAttribute(llvm::Attribute::SExt); 2081 else 2082 Attrs.addAttribute(llvm::Attribute::ZExt); 2083 LLVM_FALLTHROUGH; 2084 case ABIArgInfo::Direct: 2085 if (ArgNo == 0 && FI.isChainCall()) 2086 Attrs.addAttribute(llvm::Attribute::Nest); 2087 else if (AI.getInReg()) 2088 Attrs.addAttribute(llvm::Attribute::InReg); 2089 break; 2090 2091 case ABIArgInfo::Indirect: { 2092 if (AI.getInReg()) 2093 Attrs.addAttribute(llvm::Attribute::InReg); 2094 2095 if (AI.getIndirectByVal()) 2096 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2097 2098 CharUnits Align = AI.getIndirectAlign(); 2099 2100 // In a byval argument, it is important that the required 2101 // alignment of the type is honored, as LLVM might be creating a 2102 // *new* stack object, and needs to know what alignment to give 2103 // it. (Sometimes it can deduce a sensible alignment on its own, 2104 // but not if clang decides it must emit a packed struct, or the 2105 // user specifies increased alignment requirements.) 2106 // 2107 // This is different from indirect *not* byval, where the object 2108 // exists already, and the align attribute is purely 2109 // informative. 2110 assert(!Align.isZero()); 2111 2112 // For now, only add this when we have a byval argument. 2113 // TODO: be less lazy about updating test cases. 2114 if (AI.getIndirectByVal()) 2115 Attrs.addAlignmentAttr(Align.getQuantity()); 2116 2117 // byval disables readnone and readonly. 2118 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2119 .removeAttribute(llvm::Attribute::ReadNone); 2120 break; 2121 } 2122 case ABIArgInfo::Ignore: 2123 case ABIArgInfo::Expand: 2124 case ABIArgInfo::CoerceAndExpand: 2125 break; 2126 2127 case ABIArgInfo::InAlloca: 2128 // inalloca disables readnone and readonly. 2129 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2130 .removeAttribute(llvm::Attribute::ReadNone); 2131 continue; 2132 } 2133 2134 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2135 QualType PTy = RefTy->getPointeeType(); 2136 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2137 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2138 .getQuantity()); 2139 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2140 !CodeGenOpts.NullPointerIsValid) 2141 Attrs.addAttribute(llvm::Attribute::NonNull); 2142 } 2143 2144 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2145 case ParameterABI::Ordinary: 2146 break; 2147 2148 case ParameterABI::SwiftIndirectResult: { 2149 // Add 'sret' if we haven't already used it for something, but 2150 // only if the result is void. 2151 if (!hasUsedSRet && RetTy->isVoidType()) { 2152 Attrs.addAttribute(llvm::Attribute::StructRet); 2153 hasUsedSRet = true; 2154 } 2155 2156 // Add 'noalias' in either case. 2157 Attrs.addAttribute(llvm::Attribute::NoAlias); 2158 2159 // Add 'dereferenceable' and 'alignment'. 2160 auto PTy = ParamType->getPointeeType(); 2161 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2162 auto info = getContext().getTypeInfoInChars(PTy); 2163 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2164 Attrs.addAttribute(llvm::Attribute::getWithAlignment( 2165 getLLVMContext(), info.second.getAsAlign())); 2166 } 2167 break; 2168 } 2169 2170 case ParameterABI::SwiftErrorResult: 2171 Attrs.addAttribute(llvm::Attribute::SwiftError); 2172 break; 2173 2174 case ParameterABI::SwiftContext: 2175 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2176 break; 2177 } 2178 2179 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2180 Attrs.addAttribute(llvm::Attribute::NoCapture); 2181 2182 if (Attrs.hasAttributes()) { 2183 unsigned FirstIRArg, NumIRArgs; 2184 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2185 for (unsigned i = 0; i < NumIRArgs; i++) 2186 ArgAttrs[FirstIRArg + i] = 2187 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2188 } 2189 } 2190 assert(ArgNo == FI.arg_size()); 2191 2192 AttrList = llvm::AttributeList::get( 2193 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2194 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2195 } 2196 2197 /// An argument came in as a promoted argument; demote it back to its 2198 /// declared type. 2199 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2200 const VarDecl *var, 2201 llvm::Value *value) { 2202 llvm::Type *varType = CGF.ConvertType(var->getType()); 2203 2204 // This can happen with promotions that actually don't change the 2205 // underlying type, like the enum promotions. 2206 if (value->getType() == varType) return value; 2207 2208 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2209 && "unexpected promotion type"); 2210 2211 if (isa<llvm::IntegerType>(varType)) 2212 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2213 2214 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2215 } 2216 2217 /// Returns the attribute (either parameter attribute, or function 2218 /// attribute), which declares argument ArgNo to be non-null. 2219 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2220 QualType ArgType, unsigned ArgNo) { 2221 // FIXME: __attribute__((nonnull)) can also be applied to: 2222 // - references to pointers, where the pointee is known to be 2223 // nonnull (apparently a Clang extension) 2224 // - transparent unions containing pointers 2225 // In the former case, LLVM IR cannot represent the constraint. In 2226 // the latter case, we have no guarantee that the transparent union 2227 // is in fact passed as a pointer. 2228 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2229 return nullptr; 2230 // First, check attribute on parameter itself. 2231 if (PVD) { 2232 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2233 return ParmNNAttr; 2234 } 2235 // Check function attributes. 2236 if (!FD) 2237 return nullptr; 2238 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2239 if (NNAttr->isNonNull(ArgNo)) 2240 return NNAttr; 2241 } 2242 return nullptr; 2243 } 2244 2245 namespace { 2246 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2247 Address Temp; 2248 Address Arg; 2249 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2250 void Emit(CodeGenFunction &CGF, Flags flags) override { 2251 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2252 CGF.Builder.CreateStore(errorValue, Arg); 2253 } 2254 }; 2255 } 2256 2257 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2258 llvm::Function *Fn, 2259 const FunctionArgList &Args) { 2260 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2261 // Naked functions don't have prologues. 2262 return; 2263 2264 // If this is an implicit-return-zero function, go ahead and 2265 // initialize the return value. TODO: it might be nice to have 2266 // a more general mechanism for this that didn't require synthesized 2267 // return statements. 2268 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2269 if (FD->hasImplicitReturnZero()) { 2270 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2271 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2272 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2273 Builder.CreateStore(Zero, ReturnValue); 2274 } 2275 } 2276 2277 // FIXME: We no longer need the types from FunctionArgList; lift up and 2278 // simplify. 2279 2280 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2281 // Flattened function arguments. 2282 SmallVector<llvm::Value *, 16> FnArgs; 2283 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2284 for (auto &Arg : Fn->args()) { 2285 FnArgs.push_back(&Arg); 2286 } 2287 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2288 2289 // If we're using inalloca, all the memory arguments are GEPs off of the last 2290 // parameter, which is a pointer to the complete memory area. 2291 Address ArgStruct = Address::invalid(); 2292 if (IRFunctionArgs.hasInallocaArg()) { 2293 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2294 FI.getArgStructAlignment()); 2295 2296 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2297 } 2298 2299 // Name the struct return parameter. 2300 if (IRFunctionArgs.hasSRetArg()) { 2301 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2302 AI->setName("agg.result"); 2303 AI->addAttr(llvm::Attribute::NoAlias); 2304 } 2305 2306 // Track if we received the parameter as a pointer (indirect, byval, or 2307 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2308 // into a local alloca for us. 2309 SmallVector<ParamValue, 16> ArgVals; 2310 ArgVals.reserve(Args.size()); 2311 2312 // Create a pointer value for every parameter declaration. This usually 2313 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2314 // any cleanups or do anything that might unwind. We do that separately, so 2315 // we can push the cleanups in the correct order for the ABI. 2316 assert(FI.arg_size() == Args.size() && 2317 "Mismatch between function signature & arguments."); 2318 unsigned ArgNo = 0; 2319 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2320 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2321 i != e; ++i, ++info_it, ++ArgNo) { 2322 const VarDecl *Arg = *i; 2323 const ABIArgInfo &ArgI = info_it->info; 2324 2325 bool isPromoted = 2326 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2327 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2328 // the parameter is promoted. In this case we convert to 2329 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2330 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2331 assert(hasScalarEvaluationKind(Ty) == 2332 hasScalarEvaluationKind(Arg->getType())); 2333 2334 unsigned FirstIRArg, NumIRArgs; 2335 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2336 2337 switch (ArgI.getKind()) { 2338 case ABIArgInfo::InAlloca: { 2339 assert(NumIRArgs == 0); 2340 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2341 Address V = 2342 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2343 ArgVals.push_back(ParamValue::forIndirect(V)); 2344 break; 2345 } 2346 2347 case ABIArgInfo::Indirect: { 2348 assert(NumIRArgs == 1); 2349 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2350 2351 if (!hasScalarEvaluationKind(Ty)) { 2352 // Aggregates and complex variables are accessed by reference. All we 2353 // need to do is realign the value, if requested. 2354 Address V = ParamAddr; 2355 if (ArgI.getIndirectRealign()) { 2356 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2357 2358 // Copy from the incoming argument pointer to the temporary with the 2359 // appropriate alignment. 2360 // 2361 // FIXME: We should have a common utility for generating an aggregate 2362 // copy. 2363 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2364 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2365 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2366 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2367 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2368 V = AlignedTemp; 2369 } 2370 ArgVals.push_back(ParamValue::forIndirect(V)); 2371 } else { 2372 // Load scalar value from indirect argument. 2373 llvm::Value *V = 2374 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2375 2376 if (isPromoted) 2377 V = emitArgumentDemotion(*this, Arg, V); 2378 ArgVals.push_back(ParamValue::forDirect(V)); 2379 } 2380 break; 2381 } 2382 2383 case ABIArgInfo::Extend: 2384 case ABIArgInfo::Direct: { 2385 2386 // If we have the trivial case, handle it with no muss and fuss. 2387 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2388 ArgI.getCoerceToType() == ConvertType(Ty) && 2389 ArgI.getDirectOffset() == 0) { 2390 assert(NumIRArgs == 1); 2391 llvm::Value *V = FnArgs[FirstIRArg]; 2392 auto AI = cast<llvm::Argument>(V); 2393 2394 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2395 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2396 PVD->getFunctionScopeIndex()) && 2397 !CGM.getCodeGenOpts().NullPointerIsValid) 2398 AI->addAttr(llvm::Attribute::NonNull); 2399 2400 QualType OTy = PVD->getOriginalType(); 2401 if (const auto *ArrTy = 2402 getContext().getAsConstantArrayType(OTy)) { 2403 // A C99 array parameter declaration with the static keyword also 2404 // indicates dereferenceability, and if the size is constant we can 2405 // use the dereferenceable attribute (which requires the size in 2406 // bytes). 2407 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2408 QualType ETy = ArrTy->getElementType(); 2409 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2410 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2411 ArrSize) { 2412 llvm::AttrBuilder Attrs; 2413 Attrs.addDereferenceableAttr( 2414 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2415 AI->addAttrs(Attrs); 2416 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2417 !CGM.getCodeGenOpts().NullPointerIsValid) { 2418 AI->addAttr(llvm::Attribute::NonNull); 2419 } 2420 } 2421 } else if (const auto *ArrTy = 2422 getContext().getAsVariableArrayType(OTy)) { 2423 // For C99 VLAs with the static keyword, we don't know the size so 2424 // we can't use the dereferenceable attribute, but in addrspace(0) 2425 // we know that it must be nonnull. 2426 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2427 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2428 !CGM.getCodeGenOpts().NullPointerIsValid) 2429 AI->addAttr(llvm::Attribute::NonNull); 2430 } 2431 2432 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2433 if (!AVAttr) 2434 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2435 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2436 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2437 // If alignment-assumption sanitizer is enabled, we do *not* add 2438 // alignment attribute here, but emit normal alignment assumption, 2439 // so the UBSAN check could function. 2440 llvm::Value *AlignmentValue = 2441 EmitScalarExpr(AVAttr->getAlignment()); 2442 llvm::ConstantInt *AlignmentCI = 2443 cast<llvm::ConstantInt>(AlignmentValue); 2444 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2445 +llvm::Value::MaximumAlignment); 2446 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2447 } 2448 } 2449 2450 if (Arg->getType().isRestrictQualified()) 2451 AI->addAttr(llvm::Attribute::NoAlias); 2452 2453 // LLVM expects swifterror parameters to be used in very restricted 2454 // ways. Copy the value into a less-restricted temporary. 2455 if (FI.getExtParameterInfo(ArgNo).getABI() 2456 == ParameterABI::SwiftErrorResult) { 2457 QualType pointeeTy = Ty->getPointeeType(); 2458 assert(pointeeTy->isPointerType()); 2459 Address temp = 2460 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2461 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2462 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2463 Builder.CreateStore(incomingErrorValue, temp); 2464 V = temp.getPointer(); 2465 2466 // Push a cleanup to copy the value back at the end of the function. 2467 // The convention does not guarantee that the value will be written 2468 // back if the function exits with an unwind exception. 2469 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2470 } 2471 2472 // Ensure the argument is the correct type. 2473 if (V->getType() != ArgI.getCoerceToType()) 2474 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2475 2476 if (isPromoted) 2477 V = emitArgumentDemotion(*this, Arg, V); 2478 2479 // Because of merging of function types from multiple decls it is 2480 // possible for the type of an argument to not match the corresponding 2481 // type in the function type. Since we are codegening the callee 2482 // in here, add a cast to the argument type. 2483 llvm::Type *LTy = ConvertType(Arg->getType()); 2484 if (V->getType() != LTy) 2485 V = Builder.CreateBitCast(V, LTy); 2486 2487 ArgVals.push_back(ParamValue::forDirect(V)); 2488 break; 2489 } 2490 2491 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2492 Arg->getName()); 2493 2494 // Pointer to store into. 2495 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2496 2497 // Fast-isel and the optimizer generally like scalar values better than 2498 // FCAs, so we flatten them if this is safe to do for this argument. 2499 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2500 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2501 STy->getNumElements() > 1) { 2502 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2503 llvm::Type *DstTy = Ptr.getElementType(); 2504 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2505 2506 Address AddrToStoreInto = Address::invalid(); 2507 if (SrcSize <= DstSize) { 2508 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2509 } else { 2510 AddrToStoreInto = 2511 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2512 } 2513 2514 assert(STy->getNumElements() == NumIRArgs); 2515 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2516 auto AI = FnArgs[FirstIRArg + i]; 2517 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2518 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2519 Builder.CreateStore(AI, EltPtr); 2520 } 2521 2522 if (SrcSize > DstSize) { 2523 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2524 } 2525 2526 } else { 2527 // Simple case, just do a coerced store of the argument into the alloca. 2528 assert(NumIRArgs == 1); 2529 auto AI = FnArgs[FirstIRArg]; 2530 AI->setName(Arg->getName() + ".coerce"); 2531 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2532 } 2533 2534 // Match to what EmitParmDecl is expecting for this type. 2535 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2536 llvm::Value *V = 2537 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2538 if (isPromoted) 2539 V = emitArgumentDemotion(*this, Arg, V); 2540 ArgVals.push_back(ParamValue::forDirect(V)); 2541 } else { 2542 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2543 } 2544 break; 2545 } 2546 2547 case ABIArgInfo::CoerceAndExpand: { 2548 // Reconstruct into a temporary. 2549 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2550 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2551 2552 auto coercionType = ArgI.getCoerceAndExpandType(); 2553 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2554 2555 unsigned argIndex = FirstIRArg; 2556 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2557 llvm::Type *eltType = coercionType->getElementType(i); 2558 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2559 continue; 2560 2561 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2562 auto elt = FnArgs[argIndex++]; 2563 Builder.CreateStore(elt, eltAddr); 2564 } 2565 assert(argIndex == FirstIRArg + NumIRArgs); 2566 break; 2567 } 2568 2569 case ABIArgInfo::Expand: { 2570 // If this structure was expanded into multiple arguments then 2571 // we need to create a temporary and reconstruct it from the 2572 // arguments. 2573 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2574 LValue LV = MakeAddrLValue(Alloca, Ty); 2575 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2576 2577 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2578 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2579 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2580 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2581 auto AI = FnArgs[FirstIRArg + i]; 2582 AI->setName(Arg->getName() + "." + Twine(i)); 2583 } 2584 break; 2585 } 2586 2587 case ABIArgInfo::Ignore: 2588 assert(NumIRArgs == 0); 2589 // Initialize the local variable appropriately. 2590 if (!hasScalarEvaluationKind(Ty)) { 2591 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2592 } else { 2593 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2594 ArgVals.push_back(ParamValue::forDirect(U)); 2595 } 2596 break; 2597 } 2598 } 2599 2600 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2601 for (int I = Args.size() - 1; I >= 0; --I) 2602 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2603 } else { 2604 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2605 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2606 } 2607 } 2608 2609 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2610 while (insn->use_empty()) { 2611 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2612 if (!bitcast) return; 2613 2614 // This is "safe" because we would have used a ConstantExpr otherwise. 2615 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2616 bitcast->eraseFromParent(); 2617 } 2618 } 2619 2620 /// Try to emit a fused autorelease of a return result. 2621 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2622 llvm::Value *result) { 2623 // We must be immediately followed the cast. 2624 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2625 if (BB->empty()) return nullptr; 2626 if (&BB->back() != result) return nullptr; 2627 2628 llvm::Type *resultType = result->getType(); 2629 2630 // result is in a BasicBlock and is therefore an Instruction. 2631 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2632 2633 SmallVector<llvm::Instruction *, 4> InstsToKill; 2634 2635 // Look for: 2636 // %generator = bitcast %type1* %generator2 to %type2* 2637 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2638 // We would have emitted this as a constant if the operand weren't 2639 // an Instruction. 2640 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2641 2642 // Require the generator to be immediately followed by the cast. 2643 if (generator->getNextNode() != bitcast) 2644 return nullptr; 2645 2646 InstsToKill.push_back(bitcast); 2647 } 2648 2649 // Look for: 2650 // %generator = call i8* @objc_retain(i8* %originalResult) 2651 // or 2652 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2653 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2654 if (!call) return nullptr; 2655 2656 bool doRetainAutorelease; 2657 2658 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2659 doRetainAutorelease = true; 2660 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2661 .objc_retainAutoreleasedReturnValue) { 2662 doRetainAutorelease = false; 2663 2664 // If we emitted an assembly marker for this call (and the 2665 // ARCEntrypoints field should have been set if so), go looking 2666 // for that call. If we can't find it, we can't do this 2667 // optimization. But it should always be the immediately previous 2668 // instruction, unless we needed bitcasts around the call. 2669 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2670 llvm::Instruction *prev = call->getPrevNode(); 2671 assert(prev); 2672 if (isa<llvm::BitCastInst>(prev)) { 2673 prev = prev->getPrevNode(); 2674 assert(prev); 2675 } 2676 assert(isa<llvm::CallInst>(prev)); 2677 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2678 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2679 InstsToKill.push_back(prev); 2680 } 2681 } else { 2682 return nullptr; 2683 } 2684 2685 result = call->getArgOperand(0); 2686 InstsToKill.push_back(call); 2687 2688 // Keep killing bitcasts, for sanity. Note that we no longer care 2689 // about precise ordering as long as there's exactly one use. 2690 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2691 if (!bitcast->hasOneUse()) break; 2692 InstsToKill.push_back(bitcast); 2693 result = bitcast->getOperand(0); 2694 } 2695 2696 // Delete all the unnecessary instructions, from latest to earliest. 2697 for (auto *I : InstsToKill) 2698 I->eraseFromParent(); 2699 2700 // Do the fused retain/autorelease if we were asked to. 2701 if (doRetainAutorelease) 2702 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2703 2704 // Cast back to the result type. 2705 return CGF.Builder.CreateBitCast(result, resultType); 2706 } 2707 2708 /// If this is a +1 of the value of an immutable 'self', remove it. 2709 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2710 llvm::Value *result) { 2711 // This is only applicable to a method with an immutable 'self'. 2712 const ObjCMethodDecl *method = 2713 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2714 if (!method) return nullptr; 2715 const VarDecl *self = method->getSelfDecl(); 2716 if (!self->getType().isConstQualified()) return nullptr; 2717 2718 // Look for a retain call. 2719 llvm::CallInst *retainCall = 2720 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2721 if (!retainCall || 2722 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2723 return nullptr; 2724 2725 // Look for an ordinary load of 'self'. 2726 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2727 llvm::LoadInst *load = 2728 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2729 if (!load || load->isAtomic() || load->isVolatile() || 2730 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2731 return nullptr; 2732 2733 // Okay! Burn it all down. This relies for correctness on the 2734 // assumption that the retain is emitted as part of the return and 2735 // that thereafter everything is used "linearly". 2736 llvm::Type *resultType = result->getType(); 2737 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2738 assert(retainCall->use_empty()); 2739 retainCall->eraseFromParent(); 2740 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2741 2742 return CGF.Builder.CreateBitCast(load, resultType); 2743 } 2744 2745 /// Emit an ARC autorelease of the result of a function. 2746 /// 2747 /// \return the value to actually return from the function 2748 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2749 llvm::Value *result) { 2750 // If we're returning 'self', kill the initial retain. This is a 2751 // heuristic attempt to "encourage correctness" in the really unfortunate 2752 // case where we have a return of self during a dealloc and we desperately 2753 // need to avoid the possible autorelease. 2754 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2755 return self; 2756 2757 // At -O0, try to emit a fused retain/autorelease. 2758 if (CGF.shouldUseFusedARCCalls()) 2759 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2760 return fused; 2761 2762 return CGF.EmitARCAutoreleaseReturnValue(result); 2763 } 2764 2765 /// Heuristically search for a dominating store to the return-value slot. 2766 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2767 // Check if a User is a store which pointerOperand is the ReturnValue. 2768 // We are looking for stores to the ReturnValue, not for stores of the 2769 // ReturnValue to some other location. 2770 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2771 auto *SI = dyn_cast<llvm::StoreInst>(U); 2772 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2773 return nullptr; 2774 // These aren't actually possible for non-coerced returns, and we 2775 // only care about non-coerced returns on this code path. 2776 assert(!SI->isAtomic() && !SI->isVolatile()); 2777 return SI; 2778 }; 2779 // If there are multiple uses of the return-value slot, just check 2780 // for something immediately preceding the IP. Sometimes this can 2781 // happen with how we generate implicit-returns; it can also happen 2782 // with noreturn cleanups. 2783 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2784 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2785 if (IP->empty()) return nullptr; 2786 llvm::Instruction *I = &IP->back(); 2787 2788 // Skip lifetime markers 2789 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2790 IE = IP->rend(); 2791 II != IE; ++II) { 2792 if (llvm::IntrinsicInst *Intrinsic = 2793 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2794 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2795 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2796 ++II; 2797 if (II == IE) 2798 break; 2799 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2800 continue; 2801 } 2802 } 2803 I = &*II; 2804 break; 2805 } 2806 2807 return GetStoreIfValid(I); 2808 } 2809 2810 llvm::StoreInst *store = 2811 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2812 if (!store) return nullptr; 2813 2814 // Now do a first-and-dirty dominance check: just walk up the 2815 // single-predecessors chain from the current insertion point. 2816 llvm::BasicBlock *StoreBB = store->getParent(); 2817 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2818 while (IP != StoreBB) { 2819 if (!(IP = IP->getSinglePredecessor())) 2820 return nullptr; 2821 } 2822 2823 // Okay, the store's basic block dominates the insertion point; we 2824 // can do our thing. 2825 return store; 2826 } 2827 2828 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2829 bool EmitRetDbgLoc, 2830 SourceLocation EndLoc) { 2831 if (FI.isNoReturn()) { 2832 // Noreturn functions don't return. 2833 EmitUnreachable(EndLoc); 2834 return; 2835 } 2836 2837 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2838 // Naked functions don't have epilogues. 2839 Builder.CreateUnreachable(); 2840 return; 2841 } 2842 2843 // Functions with no result always return void. 2844 if (!ReturnValue.isValid()) { 2845 Builder.CreateRetVoid(); 2846 return; 2847 } 2848 2849 llvm::DebugLoc RetDbgLoc; 2850 llvm::Value *RV = nullptr; 2851 QualType RetTy = FI.getReturnType(); 2852 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2853 2854 switch (RetAI.getKind()) { 2855 case ABIArgInfo::InAlloca: 2856 // Aggregrates get evaluated directly into the destination. Sometimes we 2857 // need to return the sret value in a register, though. 2858 assert(hasAggregateEvaluationKind(RetTy)); 2859 if (RetAI.getInAllocaSRet()) { 2860 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2861 --EI; 2862 llvm::Value *ArgStruct = &*EI; 2863 llvm::Value *SRet = Builder.CreateStructGEP( 2864 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2865 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2866 } 2867 break; 2868 2869 case ABIArgInfo::Indirect: { 2870 auto AI = CurFn->arg_begin(); 2871 if (RetAI.isSRetAfterThis()) 2872 ++AI; 2873 switch (getEvaluationKind(RetTy)) { 2874 case TEK_Complex: { 2875 ComplexPairTy RT = 2876 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2877 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2878 /*isInit*/ true); 2879 break; 2880 } 2881 case TEK_Aggregate: 2882 // Do nothing; aggregrates get evaluated directly into the destination. 2883 break; 2884 case TEK_Scalar: 2885 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2886 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2887 /*isInit*/ true); 2888 break; 2889 } 2890 break; 2891 } 2892 2893 case ABIArgInfo::Extend: 2894 case ABIArgInfo::Direct: 2895 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2896 RetAI.getDirectOffset() == 0) { 2897 // The internal return value temp always will have pointer-to-return-type 2898 // type, just do a load. 2899 2900 // If there is a dominating store to ReturnValue, we can elide 2901 // the load, zap the store, and usually zap the alloca. 2902 if (llvm::StoreInst *SI = 2903 findDominatingStoreToReturnValue(*this)) { 2904 // Reuse the debug location from the store unless there is 2905 // cleanup code to be emitted between the store and return 2906 // instruction. 2907 if (EmitRetDbgLoc && !AutoreleaseResult) 2908 RetDbgLoc = SI->getDebugLoc(); 2909 // Get the stored value and nuke the now-dead store. 2910 RV = SI->getValueOperand(); 2911 SI->eraseFromParent(); 2912 2913 // Otherwise, we have to do a simple load. 2914 } else { 2915 RV = Builder.CreateLoad(ReturnValue); 2916 } 2917 } else { 2918 // If the value is offset in memory, apply the offset now. 2919 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2920 2921 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2922 } 2923 2924 // In ARC, end functions that return a retainable type with a call 2925 // to objc_autoreleaseReturnValue. 2926 if (AutoreleaseResult) { 2927 #ifndef NDEBUG 2928 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2929 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2930 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2931 // CurCodeDecl or BlockInfo. 2932 QualType RT; 2933 2934 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2935 RT = FD->getReturnType(); 2936 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2937 RT = MD->getReturnType(); 2938 else if (isa<BlockDecl>(CurCodeDecl)) 2939 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2940 else 2941 llvm_unreachable("Unexpected function/method type"); 2942 2943 assert(getLangOpts().ObjCAutoRefCount && 2944 !FI.isReturnsRetained() && 2945 RT->isObjCRetainableType()); 2946 #endif 2947 RV = emitAutoreleaseOfResult(*this, RV); 2948 } 2949 2950 break; 2951 2952 case ABIArgInfo::Ignore: 2953 break; 2954 2955 case ABIArgInfo::CoerceAndExpand: { 2956 auto coercionType = RetAI.getCoerceAndExpandType(); 2957 2958 // Load all of the coerced elements out into results. 2959 llvm::SmallVector<llvm::Value*, 4> results; 2960 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2961 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2962 auto coercedEltType = coercionType->getElementType(i); 2963 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2964 continue; 2965 2966 auto eltAddr = Builder.CreateStructGEP(addr, i); 2967 auto elt = Builder.CreateLoad(eltAddr); 2968 results.push_back(elt); 2969 } 2970 2971 // If we have one result, it's the single direct result type. 2972 if (results.size() == 1) { 2973 RV = results[0]; 2974 2975 // Otherwise, we need to make a first-class aggregate. 2976 } else { 2977 // Construct a return type that lacks padding elements. 2978 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2979 2980 RV = llvm::UndefValue::get(returnType); 2981 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2982 RV = Builder.CreateInsertValue(RV, results[i], i); 2983 } 2984 } 2985 break; 2986 } 2987 2988 case ABIArgInfo::Expand: 2989 llvm_unreachable("Invalid ABI kind for return argument"); 2990 } 2991 2992 llvm::Instruction *Ret; 2993 if (RV) { 2994 EmitReturnValueCheck(RV); 2995 Ret = Builder.CreateRet(RV); 2996 } else { 2997 Ret = Builder.CreateRetVoid(); 2998 } 2999 3000 if (RetDbgLoc) 3001 Ret->setDebugLoc(std::move(RetDbgLoc)); 3002 } 3003 3004 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3005 // A current decl may not be available when emitting vtable thunks. 3006 if (!CurCodeDecl) 3007 return; 3008 3009 ReturnsNonNullAttr *RetNNAttr = nullptr; 3010 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3011 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3012 3013 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3014 return; 3015 3016 // Prefer the returns_nonnull attribute if it's present. 3017 SourceLocation AttrLoc; 3018 SanitizerMask CheckKind; 3019 SanitizerHandler Handler; 3020 if (RetNNAttr) { 3021 assert(!requiresReturnValueNullabilityCheck() && 3022 "Cannot check nullability and the nonnull attribute"); 3023 AttrLoc = RetNNAttr->getLocation(); 3024 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3025 Handler = SanitizerHandler::NonnullReturn; 3026 } else { 3027 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3028 if (auto *TSI = DD->getTypeSourceInfo()) 3029 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3030 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3031 CheckKind = SanitizerKind::NullabilityReturn; 3032 Handler = SanitizerHandler::NullabilityReturn; 3033 } 3034 3035 SanitizerScope SanScope(this); 3036 3037 // Make sure the "return" source location is valid. If we're checking a 3038 // nullability annotation, make sure the preconditions for the check are met. 3039 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3040 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3041 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3042 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3043 if (requiresReturnValueNullabilityCheck()) 3044 CanNullCheck = 3045 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3046 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3047 EmitBlock(Check); 3048 3049 // Now do the null check. 3050 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3051 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3052 llvm::Value *DynamicData[] = {SLocPtr}; 3053 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3054 3055 EmitBlock(NoCheck); 3056 3057 #ifndef NDEBUG 3058 // The return location should not be used after the check has been emitted. 3059 ReturnLocation = Address::invalid(); 3060 #endif 3061 } 3062 3063 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3064 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3065 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3066 } 3067 3068 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3069 QualType Ty) { 3070 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3071 // placeholders. 3072 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3073 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3074 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3075 3076 // FIXME: When we generate this IR in one pass, we shouldn't need 3077 // this win32-specific alignment hack. 3078 CharUnits Align = CharUnits::fromQuantity(4); 3079 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3080 3081 return AggValueSlot::forAddr(Address(Placeholder, Align), 3082 Ty.getQualifiers(), 3083 AggValueSlot::IsNotDestructed, 3084 AggValueSlot::DoesNotNeedGCBarriers, 3085 AggValueSlot::IsNotAliased, 3086 AggValueSlot::DoesNotOverlap); 3087 } 3088 3089 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3090 const VarDecl *param, 3091 SourceLocation loc) { 3092 // StartFunction converted the ABI-lowered parameter(s) into a 3093 // local alloca. We need to turn that into an r-value suitable 3094 // for EmitCall. 3095 Address local = GetAddrOfLocalVar(param); 3096 3097 QualType type = param->getType(); 3098 3099 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3100 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3101 } 3102 3103 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3104 // but the argument needs to be the original pointer. 3105 if (type->isReferenceType()) { 3106 args.add(RValue::get(Builder.CreateLoad(local)), type); 3107 3108 // In ARC, move out of consumed arguments so that the release cleanup 3109 // entered by StartFunction doesn't cause an over-release. This isn't 3110 // optimal -O0 code generation, but it should get cleaned up when 3111 // optimization is enabled. This also assumes that delegate calls are 3112 // performed exactly once for a set of arguments, but that should be safe. 3113 } else if (getLangOpts().ObjCAutoRefCount && 3114 param->hasAttr<NSConsumedAttr>() && 3115 type->isObjCRetainableType()) { 3116 llvm::Value *ptr = Builder.CreateLoad(local); 3117 auto null = 3118 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3119 Builder.CreateStore(null, local); 3120 args.add(RValue::get(ptr), type); 3121 3122 // For the most part, we just need to load the alloca, except that 3123 // aggregate r-values are actually pointers to temporaries. 3124 } else { 3125 args.add(convertTempToRValue(local, type, loc), type); 3126 } 3127 3128 // Deactivate the cleanup for the callee-destructed param that was pushed. 3129 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3130 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3131 param->needsDestruction(getContext())) { 3132 EHScopeStack::stable_iterator cleanup = 3133 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3134 assert(cleanup.isValid() && 3135 "cleanup for callee-destructed param not recorded"); 3136 // This unreachable is a temporary marker which will be removed later. 3137 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3138 args.addArgCleanupDeactivation(cleanup, isActive); 3139 } 3140 } 3141 3142 static bool isProvablyNull(llvm::Value *addr) { 3143 return isa<llvm::ConstantPointerNull>(addr); 3144 } 3145 3146 /// Emit the actual writing-back of a writeback. 3147 static void emitWriteback(CodeGenFunction &CGF, 3148 const CallArgList::Writeback &writeback) { 3149 const LValue &srcLV = writeback.Source; 3150 Address srcAddr = srcLV.getAddress(CGF); 3151 assert(!isProvablyNull(srcAddr.getPointer()) && 3152 "shouldn't have writeback for provably null argument"); 3153 3154 llvm::BasicBlock *contBB = nullptr; 3155 3156 // If the argument wasn't provably non-null, we need to null check 3157 // before doing the store. 3158 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3159 CGF.CGM.getDataLayout()); 3160 if (!provablyNonNull) { 3161 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3162 contBB = CGF.createBasicBlock("icr.done"); 3163 3164 llvm::Value *isNull = 3165 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3166 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3167 CGF.EmitBlock(writebackBB); 3168 } 3169 3170 // Load the value to writeback. 3171 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3172 3173 // Cast it back, in case we're writing an id to a Foo* or something. 3174 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3175 "icr.writeback-cast"); 3176 3177 // Perform the writeback. 3178 3179 // If we have a "to use" value, it's something we need to emit a use 3180 // of. This has to be carefully threaded in: if it's done after the 3181 // release it's potentially undefined behavior (and the optimizer 3182 // will ignore it), and if it happens before the retain then the 3183 // optimizer could move the release there. 3184 if (writeback.ToUse) { 3185 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3186 3187 // Retain the new value. No need to block-copy here: the block's 3188 // being passed up the stack. 3189 value = CGF.EmitARCRetainNonBlock(value); 3190 3191 // Emit the intrinsic use here. 3192 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3193 3194 // Load the old value (primitively). 3195 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3196 3197 // Put the new value in place (primitively). 3198 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3199 3200 // Release the old value. 3201 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3202 3203 // Otherwise, we can just do a normal lvalue store. 3204 } else { 3205 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3206 } 3207 3208 // Jump to the continuation block. 3209 if (!provablyNonNull) 3210 CGF.EmitBlock(contBB); 3211 } 3212 3213 static void emitWritebacks(CodeGenFunction &CGF, 3214 const CallArgList &args) { 3215 for (const auto &I : args.writebacks()) 3216 emitWriteback(CGF, I); 3217 } 3218 3219 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3220 const CallArgList &CallArgs) { 3221 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3222 CallArgs.getCleanupsToDeactivate(); 3223 // Iterate in reverse to increase the likelihood of popping the cleanup. 3224 for (const auto &I : llvm::reverse(Cleanups)) { 3225 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3226 I.IsActiveIP->eraseFromParent(); 3227 } 3228 } 3229 3230 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3231 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3232 if (uop->getOpcode() == UO_AddrOf) 3233 return uop->getSubExpr(); 3234 return nullptr; 3235 } 3236 3237 /// Emit an argument that's being passed call-by-writeback. That is, 3238 /// we are passing the address of an __autoreleased temporary; it 3239 /// might be copy-initialized with the current value of the given 3240 /// address, but it will definitely be copied out of after the call. 3241 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3242 const ObjCIndirectCopyRestoreExpr *CRE) { 3243 LValue srcLV; 3244 3245 // Make an optimistic effort to emit the address as an l-value. 3246 // This can fail if the argument expression is more complicated. 3247 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3248 srcLV = CGF.EmitLValue(lvExpr); 3249 3250 // Otherwise, just emit it as a scalar. 3251 } else { 3252 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3253 3254 QualType srcAddrType = 3255 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3256 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3257 } 3258 Address srcAddr = srcLV.getAddress(CGF); 3259 3260 // The dest and src types don't necessarily match in LLVM terms 3261 // because of the crazy ObjC compatibility rules. 3262 3263 llvm::PointerType *destType = 3264 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3265 3266 // If the address is a constant null, just pass the appropriate null. 3267 if (isProvablyNull(srcAddr.getPointer())) { 3268 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3269 CRE->getType()); 3270 return; 3271 } 3272 3273 // Create the temporary. 3274 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3275 CGF.getPointerAlign(), 3276 "icr.temp"); 3277 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3278 // and that cleanup will be conditional if we can't prove that the l-value 3279 // isn't null, so we need to register a dominating point so that the cleanups 3280 // system will make valid IR. 3281 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3282 3283 // Zero-initialize it if we're not doing a copy-initialization. 3284 bool shouldCopy = CRE->shouldCopy(); 3285 if (!shouldCopy) { 3286 llvm::Value *null = 3287 llvm::ConstantPointerNull::get( 3288 cast<llvm::PointerType>(destType->getElementType())); 3289 CGF.Builder.CreateStore(null, temp); 3290 } 3291 3292 llvm::BasicBlock *contBB = nullptr; 3293 llvm::BasicBlock *originBB = nullptr; 3294 3295 // If the address is *not* known to be non-null, we need to switch. 3296 llvm::Value *finalArgument; 3297 3298 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3299 CGF.CGM.getDataLayout()); 3300 if (provablyNonNull) { 3301 finalArgument = temp.getPointer(); 3302 } else { 3303 llvm::Value *isNull = 3304 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3305 3306 finalArgument = CGF.Builder.CreateSelect(isNull, 3307 llvm::ConstantPointerNull::get(destType), 3308 temp.getPointer(), "icr.argument"); 3309 3310 // If we need to copy, then the load has to be conditional, which 3311 // means we need control flow. 3312 if (shouldCopy) { 3313 originBB = CGF.Builder.GetInsertBlock(); 3314 contBB = CGF.createBasicBlock("icr.cont"); 3315 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3316 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3317 CGF.EmitBlock(copyBB); 3318 condEval.begin(CGF); 3319 } 3320 } 3321 3322 llvm::Value *valueToUse = nullptr; 3323 3324 // Perform a copy if necessary. 3325 if (shouldCopy) { 3326 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3327 assert(srcRV.isScalar()); 3328 3329 llvm::Value *src = srcRV.getScalarVal(); 3330 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3331 "icr.cast"); 3332 3333 // Use an ordinary store, not a store-to-lvalue. 3334 CGF.Builder.CreateStore(src, temp); 3335 3336 // If optimization is enabled, and the value was held in a 3337 // __strong variable, we need to tell the optimizer that this 3338 // value has to stay alive until we're doing the store back. 3339 // This is because the temporary is effectively unretained, 3340 // and so otherwise we can violate the high-level semantics. 3341 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3342 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3343 valueToUse = src; 3344 } 3345 } 3346 3347 // Finish the control flow if we needed it. 3348 if (shouldCopy && !provablyNonNull) { 3349 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3350 CGF.EmitBlock(contBB); 3351 3352 // Make a phi for the value to intrinsically use. 3353 if (valueToUse) { 3354 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3355 "icr.to-use"); 3356 phiToUse->addIncoming(valueToUse, copyBB); 3357 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3358 originBB); 3359 valueToUse = phiToUse; 3360 } 3361 3362 condEval.end(CGF); 3363 } 3364 3365 args.addWriteback(srcLV, temp, valueToUse); 3366 args.add(RValue::get(finalArgument), CRE->getType()); 3367 } 3368 3369 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3370 assert(!StackBase); 3371 3372 // Save the stack. 3373 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3374 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3375 } 3376 3377 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3378 if (StackBase) { 3379 // Restore the stack after the call. 3380 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3381 CGF.Builder.CreateCall(F, StackBase); 3382 } 3383 } 3384 3385 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3386 SourceLocation ArgLoc, 3387 AbstractCallee AC, 3388 unsigned ParmNum) { 3389 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3390 SanOpts.has(SanitizerKind::NullabilityArg))) 3391 return; 3392 3393 // The param decl may be missing in a variadic function. 3394 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3395 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3396 3397 // Prefer the nonnull attribute if it's present. 3398 const NonNullAttr *NNAttr = nullptr; 3399 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3400 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3401 3402 bool CanCheckNullability = false; 3403 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3404 auto Nullability = PVD->getType()->getNullability(getContext()); 3405 CanCheckNullability = Nullability && 3406 *Nullability == NullabilityKind::NonNull && 3407 PVD->getTypeSourceInfo(); 3408 } 3409 3410 if (!NNAttr && !CanCheckNullability) 3411 return; 3412 3413 SourceLocation AttrLoc; 3414 SanitizerMask CheckKind; 3415 SanitizerHandler Handler; 3416 if (NNAttr) { 3417 AttrLoc = NNAttr->getLocation(); 3418 CheckKind = SanitizerKind::NonnullAttribute; 3419 Handler = SanitizerHandler::NonnullArg; 3420 } else { 3421 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3422 CheckKind = SanitizerKind::NullabilityArg; 3423 Handler = SanitizerHandler::NullabilityArg; 3424 } 3425 3426 SanitizerScope SanScope(this); 3427 assert(RV.isScalar()); 3428 llvm::Value *V = RV.getScalarVal(); 3429 llvm::Value *Cond = 3430 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3431 llvm::Constant *StaticData[] = { 3432 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3433 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3434 }; 3435 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3436 } 3437 3438 void CodeGenFunction::EmitCallArgs( 3439 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3440 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3441 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3442 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3443 3444 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3445 // because arguments are destroyed left to right in the callee. As a special 3446 // case, there are certain language constructs that require left-to-right 3447 // evaluation, and in those cases we consider the evaluation order requirement 3448 // to trump the "destruction order is reverse construction order" guarantee. 3449 bool LeftToRight = 3450 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3451 ? Order == EvaluationOrder::ForceLeftToRight 3452 : Order != EvaluationOrder::ForceRightToLeft; 3453 3454 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3455 RValue EmittedArg) { 3456 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3457 return; 3458 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3459 if (PS == nullptr) 3460 return; 3461 3462 const auto &Context = getContext(); 3463 auto SizeTy = Context.getSizeType(); 3464 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3465 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3466 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3467 EmittedArg.getScalarVal(), 3468 PS->isDynamic()); 3469 Args.add(RValue::get(V), SizeTy); 3470 // If we're emitting args in reverse, be sure to do so with 3471 // pass_object_size, as well. 3472 if (!LeftToRight) 3473 std::swap(Args.back(), *(&Args.back() - 1)); 3474 }; 3475 3476 // Insert a stack save if we're going to need any inalloca args. 3477 bool HasInAllocaArgs = false; 3478 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3479 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3480 I != E && !HasInAllocaArgs; ++I) 3481 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3482 if (HasInAllocaArgs) { 3483 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3484 Args.allocateArgumentMemory(*this); 3485 } 3486 } 3487 3488 // Evaluate each argument in the appropriate order. 3489 size_t CallArgsStart = Args.size(); 3490 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3491 unsigned Idx = LeftToRight ? I : E - I - 1; 3492 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3493 unsigned InitialArgSize = Args.size(); 3494 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3495 // the argument and parameter match or the objc method is parameterized. 3496 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3497 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3498 ArgTypes[Idx]) || 3499 (isa<ObjCMethodDecl>(AC.getDecl()) && 3500 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3501 "Argument and parameter types don't match"); 3502 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3503 // In particular, we depend on it being the last arg in Args, and the 3504 // objectsize bits depend on there only being one arg if !LeftToRight. 3505 assert(InitialArgSize + 1 == Args.size() && 3506 "The code below depends on only adding one arg per EmitCallArg"); 3507 (void)InitialArgSize; 3508 // Since pointer argument are never emitted as LValue, it is safe to emit 3509 // non-null argument check for r-value only. 3510 if (!Args.back().hasLValue()) { 3511 RValue RVArg = Args.back().getKnownRValue(); 3512 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3513 ParamsToSkip + Idx); 3514 // @llvm.objectsize should never have side-effects and shouldn't need 3515 // destruction/cleanups, so we can safely "emit" it after its arg, 3516 // regardless of right-to-leftness 3517 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3518 } 3519 } 3520 3521 if (!LeftToRight) { 3522 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3523 // IR function. 3524 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3525 } 3526 } 3527 3528 namespace { 3529 3530 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3531 DestroyUnpassedArg(Address Addr, QualType Ty) 3532 : Addr(Addr), Ty(Ty) {} 3533 3534 Address Addr; 3535 QualType Ty; 3536 3537 void Emit(CodeGenFunction &CGF, Flags flags) override { 3538 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3539 if (DtorKind == QualType::DK_cxx_destructor) { 3540 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3541 assert(!Dtor->isTrivial()); 3542 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3543 /*Delegating=*/false, Addr, Ty); 3544 } else { 3545 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3546 } 3547 } 3548 }; 3549 3550 struct DisableDebugLocationUpdates { 3551 CodeGenFunction &CGF; 3552 bool disabledDebugInfo; 3553 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3554 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3555 CGF.disableDebugInfo(); 3556 } 3557 ~DisableDebugLocationUpdates() { 3558 if (disabledDebugInfo) 3559 CGF.enableDebugInfo(); 3560 } 3561 }; 3562 3563 } // end anonymous namespace 3564 3565 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3566 if (!HasLV) 3567 return RV; 3568 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3569 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3570 LV.isVolatile()); 3571 IsUsed = true; 3572 return RValue::getAggregate(Copy.getAddress(CGF)); 3573 } 3574 3575 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3576 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3577 if (!HasLV && RV.isScalar()) 3578 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3579 else if (!HasLV && RV.isComplex()) 3580 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3581 else { 3582 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3583 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3584 // We assume that call args are never copied into subobjects. 3585 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3586 HasLV ? LV.isVolatileQualified() 3587 : RV.isVolatileQualified()); 3588 } 3589 IsUsed = true; 3590 } 3591 3592 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3593 QualType type) { 3594 DisableDebugLocationUpdates Dis(*this, E); 3595 if (const ObjCIndirectCopyRestoreExpr *CRE 3596 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3597 assert(getLangOpts().ObjCAutoRefCount); 3598 return emitWritebackArg(*this, args, CRE); 3599 } 3600 3601 assert(type->isReferenceType() == E->isGLValue() && 3602 "reference binding to unmaterialized r-value!"); 3603 3604 if (E->isGLValue()) { 3605 assert(E->getObjectKind() == OK_Ordinary); 3606 return args.add(EmitReferenceBindingToExpr(E), type); 3607 } 3608 3609 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3610 3611 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3612 // However, we still have to push an EH-only cleanup in case we unwind before 3613 // we make it to the call. 3614 if (HasAggregateEvalKind && 3615 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3616 // If we're using inalloca, use the argument memory. Otherwise, use a 3617 // temporary. 3618 AggValueSlot Slot; 3619 if (args.isUsingInAlloca()) 3620 Slot = createPlaceholderSlot(*this, type); 3621 else 3622 Slot = CreateAggTemp(type, "agg.tmp"); 3623 3624 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3625 if (const auto *RD = type->getAsCXXRecordDecl()) 3626 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3627 else 3628 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3629 3630 if (DestroyedInCallee) 3631 Slot.setExternallyDestructed(); 3632 3633 EmitAggExpr(E, Slot); 3634 RValue RV = Slot.asRValue(); 3635 args.add(RV, type); 3636 3637 if (DestroyedInCallee && NeedsEHCleanup) { 3638 // Create a no-op GEP between the placeholder and the cleanup so we can 3639 // RAUW it successfully. It also serves as a marker of the first 3640 // instruction where the cleanup is active. 3641 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3642 type); 3643 // This unreachable is a temporary marker which will be removed later. 3644 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3645 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3646 } 3647 return; 3648 } 3649 3650 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3651 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3652 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3653 assert(L.isSimple()); 3654 args.addUncopiedAggregate(L, type); 3655 return; 3656 } 3657 3658 args.add(EmitAnyExprToTemp(E), type); 3659 } 3660 3661 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3662 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3663 // implicitly widens null pointer constants that are arguments to varargs 3664 // functions to pointer-sized ints. 3665 if (!getTarget().getTriple().isOSWindows()) 3666 return Arg->getType(); 3667 3668 if (Arg->getType()->isIntegerType() && 3669 getContext().getTypeSize(Arg->getType()) < 3670 getContext().getTargetInfo().getPointerWidth(0) && 3671 Arg->isNullPointerConstant(getContext(), 3672 Expr::NPC_ValueDependentIsNotNull)) { 3673 return getContext().getIntPtrType(); 3674 } 3675 3676 return Arg->getType(); 3677 } 3678 3679 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3680 // optimizer it can aggressively ignore unwind edges. 3681 void 3682 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3683 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3684 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3685 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3686 CGM.getNoObjCARCExceptionsMetadata()); 3687 } 3688 3689 /// Emits a call to the given no-arguments nounwind runtime function. 3690 llvm::CallInst * 3691 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3692 const llvm::Twine &name) { 3693 return EmitNounwindRuntimeCall(callee, None, name); 3694 } 3695 3696 /// Emits a call to the given nounwind runtime function. 3697 llvm::CallInst * 3698 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3699 ArrayRef<llvm::Value *> args, 3700 const llvm::Twine &name) { 3701 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3702 call->setDoesNotThrow(); 3703 return call; 3704 } 3705 3706 /// Emits a simple call (never an invoke) to the given no-arguments 3707 /// runtime function. 3708 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3709 const llvm::Twine &name) { 3710 return EmitRuntimeCall(callee, None, name); 3711 } 3712 3713 // Calls which may throw must have operand bundles indicating which funclet 3714 // they are nested within. 3715 SmallVector<llvm::OperandBundleDef, 1> 3716 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3717 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3718 // There is no need for a funclet operand bundle if we aren't inside a 3719 // funclet. 3720 if (!CurrentFuncletPad) 3721 return BundleList; 3722 3723 // Skip intrinsics which cannot throw. 3724 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3725 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3726 return BundleList; 3727 3728 BundleList.emplace_back("funclet", CurrentFuncletPad); 3729 return BundleList; 3730 } 3731 3732 /// Emits a simple call (never an invoke) to the given runtime function. 3733 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3734 ArrayRef<llvm::Value *> args, 3735 const llvm::Twine &name) { 3736 llvm::CallInst *call = Builder.CreateCall( 3737 callee, args, getBundlesForFunclet(callee.getCallee()), name); 3738 call->setCallingConv(getRuntimeCC()); 3739 return call; 3740 } 3741 3742 /// Emits a call or invoke to the given noreturn runtime function. 3743 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 3744 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 3745 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3746 getBundlesForFunclet(callee.getCallee()); 3747 3748 if (getInvokeDest()) { 3749 llvm::InvokeInst *invoke = 3750 Builder.CreateInvoke(callee, 3751 getUnreachableBlock(), 3752 getInvokeDest(), 3753 args, 3754 BundleList); 3755 invoke->setDoesNotReturn(); 3756 invoke->setCallingConv(getRuntimeCC()); 3757 } else { 3758 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3759 call->setDoesNotReturn(); 3760 call->setCallingConv(getRuntimeCC()); 3761 Builder.CreateUnreachable(); 3762 } 3763 } 3764 3765 /// Emits a call or invoke instruction to the given nullary runtime function. 3766 llvm::CallBase * 3767 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3768 const Twine &name) { 3769 return EmitRuntimeCallOrInvoke(callee, None, name); 3770 } 3771 3772 /// Emits a call or invoke instruction to the given runtime function. 3773 llvm::CallBase * 3774 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3775 ArrayRef<llvm::Value *> args, 3776 const Twine &name) { 3777 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 3778 call->setCallingConv(getRuntimeCC()); 3779 return call; 3780 } 3781 3782 /// Emits a call or invoke instruction to the given function, depending 3783 /// on the current state of the EH stack. 3784 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 3785 ArrayRef<llvm::Value *> Args, 3786 const Twine &Name) { 3787 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3788 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3789 getBundlesForFunclet(Callee.getCallee()); 3790 3791 llvm::CallBase *Inst; 3792 if (!InvokeDest) 3793 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3794 else { 3795 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3796 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3797 Name); 3798 EmitBlock(ContBB); 3799 } 3800 3801 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3802 // optimizer it can aggressively ignore unwind edges. 3803 if (CGM.getLangOpts().ObjCAutoRefCount) 3804 AddObjCARCExceptionMetadata(Inst); 3805 3806 return Inst; 3807 } 3808 3809 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3810 llvm::Value *New) { 3811 DeferredReplacements.push_back(std::make_pair(Old, New)); 3812 } 3813 3814 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3815 const CGCallee &Callee, 3816 ReturnValueSlot ReturnValue, 3817 const CallArgList &CallArgs, 3818 llvm::CallBase **callOrInvoke, 3819 SourceLocation Loc) { 3820 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3821 3822 assert(Callee.isOrdinary() || Callee.isVirtual()); 3823 3824 // Handle struct-return functions by passing a pointer to the 3825 // location that we would like to return into. 3826 QualType RetTy = CallInfo.getReturnType(); 3827 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3828 3829 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 3830 3831 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 3832 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 3833 // We can only guarantee that a function is called from the correct 3834 // context/function based on the appropriate target attributes, 3835 // so only check in the case where we have both always_inline and target 3836 // since otherwise we could be making a conditional call after a check for 3837 // the proper cpu features (and it won't cause code generation issues due to 3838 // function based code generation). 3839 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 3840 TargetDecl->hasAttr<TargetAttr>()) 3841 checkTargetFeatures(Loc, FD); 3842 3843 #ifndef NDEBUG 3844 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 3845 // For an inalloca varargs function, we don't expect CallInfo to match the 3846 // function pointer's type, because the inalloca struct a will have extra 3847 // fields in it for the varargs parameters. Code later in this function 3848 // bitcasts the function pointer to the type derived from CallInfo. 3849 // 3850 // In other cases, we assert that the types match up (until pointers stop 3851 // having pointee types). 3852 llvm::Type *TypeFromVal; 3853 if (Callee.isVirtual()) 3854 TypeFromVal = Callee.getVirtualFunctionType(); 3855 else 3856 TypeFromVal = 3857 Callee.getFunctionPointer()->getType()->getPointerElementType(); 3858 assert(IRFuncTy == TypeFromVal); 3859 } 3860 #endif 3861 3862 // 1. Set up the arguments. 3863 3864 // If we're using inalloca, insert the allocation after the stack save. 3865 // FIXME: Do this earlier rather than hacking it in here! 3866 Address ArgMemory = Address::invalid(); 3867 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3868 const llvm::DataLayout &DL = CGM.getDataLayout(); 3869 llvm::Instruction *IP = CallArgs.getStackBase(); 3870 llvm::AllocaInst *AI; 3871 if (IP) { 3872 IP = IP->getNextNode(); 3873 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3874 "argmem", IP); 3875 } else { 3876 AI = CreateTempAlloca(ArgStruct, "argmem"); 3877 } 3878 auto Align = CallInfo.getArgStructAlignment(); 3879 AI->setAlignment(Align.getAsAlign()); 3880 AI->setUsedWithInAlloca(true); 3881 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3882 ArgMemory = Address(AI, Align); 3883 } 3884 3885 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3886 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3887 3888 // If the call returns a temporary with struct return, create a temporary 3889 // alloca to hold the result, unless one is given to us. 3890 Address SRetPtr = Address::invalid(); 3891 Address SRetAlloca = Address::invalid(); 3892 llvm::Value *UnusedReturnSizePtr = nullptr; 3893 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3894 if (!ReturnValue.isNull()) { 3895 SRetPtr = ReturnValue.getValue(); 3896 } else { 3897 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3898 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3899 uint64_t size = 3900 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3901 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3902 } 3903 } 3904 if (IRFunctionArgs.hasSRetArg()) { 3905 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3906 } else if (RetAI.isInAlloca()) { 3907 Address Addr = 3908 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 3909 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3910 } 3911 } 3912 3913 Address swiftErrorTemp = Address::invalid(); 3914 Address swiftErrorArg = Address::invalid(); 3915 3916 // When passing arguments using temporary allocas, we need to add the 3917 // appropriate lifetime markers. This vector keeps track of all the lifetime 3918 // markers that need to be ended right after the call. 3919 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 3920 3921 // Translate all of the arguments as necessary to match the IR lowering. 3922 assert(CallInfo.arg_size() == CallArgs.size() && 3923 "Mismatch between function signature & arguments."); 3924 unsigned ArgNo = 0; 3925 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3926 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3927 I != E; ++I, ++info_it, ++ArgNo) { 3928 const ABIArgInfo &ArgInfo = info_it->info; 3929 3930 // Insert a padding argument to ensure proper alignment. 3931 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3932 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3933 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3934 3935 unsigned FirstIRArg, NumIRArgs; 3936 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3937 3938 switch (ArgInfo.getKind()) { 3939 case ABIArgInfo::InAlloca: { 3940 assert(NumIRArgs == 0); 3941 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3942 if (I->isAggregate()) { 3943 // Replace the placeholder with the appropriate argument slot GEP. 3944 Address Addr = I->hasLValue() 3945 ? I->getKnownLValue().getAddress(*this) 3946 : I->getKnownRValue().getAggregateAddress(); 3947 llvm::Instruction *Placeholder = 3948 cast<llvm::Instruction>(Addr.getPointer()); 3949 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3950 Builder.SetInsertPoint(Placeholder); 3951 Addr = 3952 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3953 Builder.restoreIP(IP); 3954 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3955 } else { 3956 // Store the RValue into the argument struct. 3957 Address Addr = 3958 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3959 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3960 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3961 // There are some cases where a trivial bitcast is not avoidable. The 3962 // definition of a type later in a translation unit may change it's type 3963 // from {}* to (%struct.foo*)*. 3964 if (Addr.getType() != MemType) 3965 Addr = Builder.CreateBitCast(Addr, MemType); 3966 I->copyInto(*this, Addr); 3967 } 3968 break; 3969 } 3970 3971 case ABIArgInfo::Indirect: { 3972 assert(NumIRArgs == 1); 3973 if (!I->isAggregate()) { 3974 // Make a temporary alloca to pass the argument. 3975 Address Addr = CreateMemTempWithoutCast( 3976 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3977 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3978 3979 I->copyInto(*this, Addr); 3980 } else { 3981 // We want to avoid creating an unnecessary temporary+copy here; 3982 // however, we need one in three cases: 3983 // 1. If the argument is not byval, and we are required to copy the 3984 // source. (This case doesn't occur on any common architecture.) 3985 // 2. If the argument is byval, RV is not sufficiently aligned, and 3986 // we cannot force it to be sufficiently aligned. 3987 // 3. If the argument is byval, but RV is not located in default 3988 // or alloca address space. 3989 Address Addr = I->hasLValue() 3990 ? I->getKnownLValue().getAddress(*this) 3991 : I->getKnownRValue().getAggregateAddress(); 3992 llvm::Value *V = Addr.getPointer(); 3993 CharUnits Align = ArgInfo.getIndirectAlign(); 3994 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3995 3996 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3997 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3998 TD->getAllocaAddrSpace()) && 3999 "indirect argument must be in alloca address space"); 4000 4001 bool NeedCopy = false; 4002 4003 if (Addr.getAlignment() < Align && 4004 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 4005 Align.getQuantity()) { 4006 NeedCopy = true; 4007 } else if (I->hasLValue()) { 4008 auto LV = I->getKnownLValue(); 4009 auto AS = LV.getAddressSpace(); 4010 4011 if (!ArgInfo.getIndirectByVal() || 4012 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4013 NeedCopy = true; 4014 } 4015 if (!getLangOpts().OpenCL) { 4016 if ((ArgInfo.getIndirectByVal() && 4017 (AS != LangAS::Default && 4018 AS != CGM.getASTAllocaAddressSpace()))) { 4019 NeedCopy = true; 4020 } 4021 } 4022 // For OpenCL even if RV is located in default or alloca address space 4023 // we don't want to perform address space cast for it. 4024 else if ((ArgInfo.getIndirectByVal() && 4025 Addr.getType()->getAddressSpace() != IRFuncTy-> 4026 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4027 NeedCopy = true; 4028 } 4029 } 4030 4031 if (NeedCopy) { 4032 // Create an aligned temporary, and copy to it. 4033 Address AI = CreateMemTempWithoutCast( 4034 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4035 IRCallArgs[FirstIRArg] = AI.getPointer(); 4036 4037 // Emit lifetime markers for the temporary alloca. 4038 uint64_t ByvalTempElementSize = 4039 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4040 llvm::Value *LifetimeSize = 4041 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4042 4043 // Add cleanup code to emit the end lifetime marker after the call. 4044 if (LifetimeSize) // In case we disabled lifetime markers. 4045 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4046 4047 // Generate the copy. 4048 I->copyInto(*this, AI); 4049 } else { 4050 // Skip the extra memcpy call. 4051 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4052 CGM.getDataLayout().getAllocaAddrSpace()); 4053 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4054 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4055 true); 4056 } 4057 } 4058 break; 4059 } 4060 4061 case ABIArgInfo::Ignore: 4062 assert(NumIRArgs == 0); 4063 break; 4064 4065 case ABIArgInfo::Extend: 4066 case ABIArgInfo::Direct: { 4067 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4068 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4069 ArgInfo.getDirectOffset() == 0) { 4070 assert(NumIRArgs == 1); 4071 llvm::Value *V; 4072 if (!I->isAggregate()) 4073 V = I->getKnownRValue().getScalarVal(); 4074 else 4075 V = Builder.CreateLoad( 4076 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4077 : I->getKnownRValue().getAggregateAddress()); 4078 4079 // Implement swifterror by copying into a new swifterror argument. 4080 // We'll write back in the normal path out of the call. 4081 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4082 == ParameterABI::SwiftErrorResult) { 4083 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4084 4085 QualType pointeeTy = I->Ty->getPointeeType(); 4086 swiftErrorArg = 4087 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4088 4089 swiftErrorTemp = 4090 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4091 V = swiftErrorTemp.getPointer(); 4092 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4093 4094 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4095 Builder.CreateStore(errorValue, swiftErrorTemp); 4096 } 4097 4098 // We might have to widen integers, but we should never truncate. 4099 if (ArgInfo.getCoerceToType() != V->getType() && 4100 V->getType()->isIntegerTy()) 4101 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4102 4103 // If the argument doesn't match, perform a bitcast to coerce it. This 4104 // can happen due to trivial type mismatches. 4105 if (FirstIRArg < IRFuncTy->getNumParams() && 4106 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4107 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4108 4109 IRCallArgs[FirstIRArg] = V; 4110 break; 4111 } 4112 4113 // FIXME: Avoid the conversion through memory if possible. 4114 Address Src = Address::invalid(); 4115 if (!I->isAggregate()) { 4116 Src = CreateMemTemp(I->Ty, "coerce"); 4117 I->copyInto(*this, Src); 4118 } else { 4119 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4120 : I->getKnownRValue().getAggregateAddress(); 4121 } 4122 4123 // If the value is offset in memory, apply the offset now. 4124 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4125 4126 // Fast-isel and the optimizer generally like scalar values better than 4127 // FCAs, so we flatten them if this is safe to do for this argument. 4128 llvm::StructType *STy = 4129 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4130 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4131 llvm::Type *SrcTy = Src.getType()->getElementType(); 4132 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4133 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4134 4135 // If the source type is smaller than the destination type of the 4136 // coerce-to logic, copy the source value into a temp alloca the size 4137 // of the destination type to allow loading all of it. The bits past 4138 // the source value are left undef. 4139 if (SrcSize < DstSize) { 4140 Address TempAlloca 4141 = CreateTempAlloca(STy, Src.getAlignment(), 4142 Src.getName() + ".coerce"); 4143 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4144 Src = TempAlloca; 4145 } else { 4146 Src = Builder.CreateBitCast(Src, 4147 STy->getPointerTo(Src.getAddressSpace())); 4148 } 4149 4150 assert(NumIRArgs == STy->getNumElements()); 4151 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4152 Address EltPtr = Builder.CreateStructGEP(Src, i); 4153 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4154 IRCallArgs[FirstIRArg + i] = LI; 4155 } 4156 } else { 4157 // In the simple case, just pass the coerced loaded value. 4158 assert(NumIRArgs == 1); 4159 IRCallArgs[FirstIRArg] = 4160 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4161 } 4162 4163 break; 4164 } 4165 4166 case ABIArgInfo::CoerceAndExpand: { 4167 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4168 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4169 4170 llvm::Value *tempSize = nullptr; 4171 Address addr = Address::invalid(); 4172 Address AllocaAddr = Address::invalid(); 4173 if (I->isAggregate()) { 4174 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4175 : I->getKnownRValue().getAggregateAddress(); 4176 4177 } else { 4178 RValue RV = I->getKnownRValue(); 4179 assert(RV.isScalar()); // complex should always just be direct 4180 4181 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4182 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4183 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4184 4185 // Materialize to a temporary. 4186 addr = CreateTempAlloca( 4187 RV.getScalarVal()->getType(), 4188 CharUnits::fromQuantity(std::max( 4189 (unsigned)layout->getAlignment().value(), scalarAlign)), 4190 "tmp", 4191 /*ArraySize=*/nullptr, &AllocaAddr); 4192 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4193 4194 Builder.CreateStore(RV.getScalarVal(), addr); 4195 } 4196 4197 addr = Builder.CreateElementBitCast(addr, coercionType); 4198 4199 unsigned IRArgPos = FirstIRArg; 4200 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4201 llvm::Type *eltType = coercionType->getElementType(i); 4202 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4203 Address eltAddr = Builder.CreateStructGEP(addr, i); 4204 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4205 IRCallArgs[IRArgPos++] = elt; 4206 } 4207 assert(IRArgPos == FirstIRArg + NumIRArgs); 4208 4209 if (tempSize) { 4210 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4211 } 4212 4213 break; 4214 } 4215 4216 case ABIArgInfo::Expand: 4217 unsigned IRArgPos = FirstIRArg; 4218 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4219 assert(IRArgPos == FirstIRArg + NumIRArgs); 4220 break; 4221 } 4222 } 4223 4224 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4225 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4226 4227 // If we're using inalloca, set up that argument. 4228 if (ArgMemory.isValid()) { 4229 llvm::Value *Arg = ArgMemory.getPointer(); 4230 if (CallInfo.isVariadic()) { 4231 // When passing non-POD arguments by value to variadic functions, we will 4232 // end up with a variadic prototype and an inalloca call site. In such 4233 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4234 // the callee. 4235 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4236 CalleePtr = 4237 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4238 } else { 4239 llvm::Type *LastParamTy = 4240 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4241 if (Arg->getType() != LastParamTy) { 4242 #ifndef NDEBUG 4243 // Assert that these structs have equivalent element types. 4244 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4245 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4246 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4247 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4248 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4249 DE = DeclaredTy->element_end(), 4250 FI = FullTy->element_begin(); 4251 DI != DE; ++DI, ++FI) 4252 assert(*DI == *FI); 4253 #endif 4254 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4255 } 4256 } 4257 assert(IRFunctionArgs.hasInallocaArg()); 4258 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4259 } 4260 4261 // 2. Prepare the function pointer. 4262 4263 // If the callee is a bitcast of a non-variadic function to have a 4264 // variadic function pointer type, check to see if we can remove the 4265 // bitcast. This comes up with unprototyped functions. 4266 // 4267 // This makes the IR nicer, but more importantly it ensures that we 4268 // can inline the function at -O0 if it is marked always_inline. 4269 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4270 llvm::Value *Ptr) -> llvm::Function * { 4271 if (!CalleeFT->isVarArg()) 4272 return nullptr; 4273 4274 // Get underlying value if it's a bitcast 4275 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4276 if (CE->getOpcode() == llvm::Instruction::BitCast) 4277 Ptr = CE->getOperand(0); 4278 } 4279 4280 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4281 if (!OrigFn) 4282 return nullptr; 4283 4284 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4285 4286 // If the original type is variadic, or if any of the component types 4287 // disagree, we cannot remove the cast. 4288 if (OrigFT->isVarArg() || 4289 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4290 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4291 return nullptr; 4292 4293 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4294 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4295 return nullptr; 4296 4297 return OrigFn; 4298 }; 4299 4300 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4301 CalleePtr = OrigFn; 4302 IRFuncTy = OrigFn->getFunctionType(); 4303 } 4304 4305 // 3. Perform the actual call. 4306 4307 // Deactivate any cleanups that we're supposed to do immediately before 4308 // the call. 4309 if (!CallArgs.getCleanupsToDeactivate().empty()) 4310 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4311 4312 // Assert that the arguments we computed match up. The IR verifier 4313 // will catch this, but this is a common enough source of problems 4314 // during IRGen changes that it's way better for debugging to catch 4315 // it ourselves here. 4316 #ifndef NDEBUG 4317 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4318 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4319 // Inalloca argument can have different type. 4320 if (IRFunctionArgs.hasInallocaArg() && 4321 i == IRFunctionArgs.getInallocaArgNo()) 4322 continue; 4323 if (i < IRFuncTy->getNumParams()) 4324 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4325 } 4326 #endif 4327 4328 // Update the largest vector width if any arguments have vector types. 4329 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4330 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4331 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4332 VT->getPrimitiveSizeInBits().getFixedSize()); 4333 } 4334 4335 // Compute the calling convention and attributes. 4336 unsigned CallingConv; 4337 llvm::AttributeList Attrs; 4338 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4339 Callee.getAbstractInfo(), Attrs, CallingConv, 4340 /*AttrOnCallSite=*/true); 4341 4342 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4343 if (FD->usesFPIntrin()) 4344 // All calls within a strictfp function are marked strictfp 4345 Attrs = 4346 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4347 llvm::Attribute::StrictFP); 4348 4349 // Apply some call-site-specific attributes. 4350 // TODO: work this into building the attribute set. 4351 4352 // Apply always_inline to all calls within flatten functions. 4353 // FIXME: should this really take priority over __try, below? 4354 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4355 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4356 Attrs = 4357 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4358 llvm::Attribute::AlwaysInline); 4359 } 4360 4361 // Disable inlining inside SEH __try blocks. 4362 if (isSEHTryScope()) { 4363 Attrs = 4364 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4365 llvm::Attribute::NoInline); 4366 } 4367 4368 // Decide whether to use a call or an invoke. 4369 bool CannotThrow; 4370 if (currentFunctionUsesSEHTry()) { 4371 // SEH cares about asynchronous exceptions, so everything can "throw." 4372 CannotThrow = false; 4373 } else if (isCleanupPadScope() && 4374 EHPersonality::get(*this).isMSVCXXPersonality()) { 4375 // The MSVC++ personality will implicitly terminate the program if an 4376 // exception is thrown during a cleanup outside of a try/catch. 4377 // We don't need to model anything in IR to get this behavior. 4378 CannotThrow = true; 4379 } else { 4380 // Otherwise, nounwind call sites will never throw. 4381 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4382 llvm::Attribute::NoUnwind); 4383 } 4384 4385 // If we made a temporary, be sure to clean up after ourselves. Note that we 4386 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4387 // pop this cleanup later on. Being eager about this is OK, since this 4388 // temporary is 'invisible' outside of the callee. 4389 if (UnusedReturnSizePtr) 4390 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4391 UnusedReturnSizePtr); 4392 4393 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4394 4395 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4396 getBundlesForFunclet(CalleePtr); 4397 4398 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4399 if (FD->usesFPIntrin()) 4400 // All calls within a strictfp function are marked strictfp 4401 Attrs = 4402 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4403 llvm::Attribute::StrictFP); 4404 4405 // Emit the actual call/invoke instruction. 4406 llvm::CallBase *CI; 4407 if (!InvokeDest) { 4408 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4409 } else { 4410 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4411 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4412 BundleList); 4413 EmitBlock(Cont); 4414 } 4415 if (callOrInvoke) 4416 *callOrInvoke = CI; 4417 4418 // If this is within a function that has the guard(nocf) attribute and is an 4419 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4420 // Control Flow Guard checks should not be added, even if the call is inlined. 4421 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4422 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4423 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4424 Attrs = Attrs.addAttribute( 4425 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4426 } 4427 } 4428 4429 // Apply the attributes and calling convention. 4430 CI->setAttributes(Attrs); 4431 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4432 4433 // Apply various metadata. 4434 4435 if (!CI->getType()->isVoidTy()) 4436 CI->setName("call"); 4437 4438 // Update largest vector width from the return type. 4439 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4440 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4441 VT->getPrimitiveSizeInBits().getFixedSize()); 4442 4443 // Insert instrumentation or attach profile metadata at indirect call sites. 4444 // For more details, see the comment before the definition of 4445 // IPVK_IndirectCallTarget in InstrProfData.inc. 4446 if (!CI->getCalledFunction()) 4447 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4448 CI, CalleePtr); 4449 4450 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4451 // optimizer it can aggressively ignore unwind edges. 4452 if (CGM.getLangOpts().ObjCAutoRefCount) 4453 AddObjCARCExceptionMetadata(CI); 4454 4455 // Suppress tail calls if requested. 4456 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4457 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4458 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4459 } 4460 4461 // Add metadata for calls to MSAllocator functions 4462 if (getDebugInfo() && TargetDecl && 4463 TargetDecl->hasAttr<MSAllocatorAttr>()) 4464 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc); 4465 4466 // 4. Finish the call. 4467 4468 // If the call doesn't return, finish the basic block and clear the 4469 // insertion point; this allows the rest of IRGen to discard 4470 // unreachable code. 4471 if (CI->doesNotReturn()) { 4472 if (UnusedReturnSizePtr) 4473 PopCleanupBlock(); 4474 4475 // Strip away the noreturn attribute to better diagnose unreachable UB. 4476 if (SanOpts.has(SanitizerKind::Unreachable)) { 4477 // Also remove from function since CallBase::hasFnAttr additionally checks 4478 // attributes of the called function. 4479 if (auto *F = CI->getCalledFunction()) 4480 F->removeFnAttr(llvm::Attribute::NoReturn); 4481 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4482 llvm::Attribute::NoReturn); 4483 4484 // Avoid incompatibility with ASan which relies on the `noreturn` 4485 // attribute to insert handler calls. 4486 if (SanOpts.hasOneOf(SanitizerKind::Address | 4487 SanitizerKind::KernelAddress)) { 4488 SanitizerScope SanScope(this); 4489 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4490 Builder.SetInsertPoint(CI); 4491 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4492 llvm::FunctionCallee Fn = 4493 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4494 EmitNounwindRuntimeCall(Fn); 4495 } 4496 } 4497 4498 EmitUnreachable(Loc); 4499 Builder.ClearInsertionPoint(); 4500 4501 // FIXME: For now, emit a dummy basic block because expr emitters in 4502 // generally are not ready to handle emitting expressions at unreachable 4503 // points. 4504 EnsureInsertPoint(); 4505 4506 // Return a reasonable RValue. 4507 return GetUndefRValue(RetTy); 4508 } 4509 4510 // Perform the swifterror writeback. 4511 if (swiftErrorTemp.isValid()) { 4512 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4513 Builder.CreateStore(errorResult, swiftErrorArg); 4514 } 4515 4516 // Emit any call-associated writebacks immediately. Arguably this 4517 // should happen after any return-value munging. 4518 if (CallArgs.hasWritebacks()) 4519 emitWritebacks(*this, CallArgs); 4520 4521 // The stack cleanup for inalloca arguments has to run out of the normal 4522 // lexical order, so deactivate it and run it manually here. 4523 CallArgs.freeArgumentMemory(*this); 4524 4525 // Extract the return value. 4526 RValue Ret = [&] { 4527 switch (RetAI.getKind()) { 4528 case ABIArgInfo::CoerceAndExpand: { 4529 auto coercionType = RetAI.getCoerceAndExpandType(); 4530 4531 Address addr = SRetPtr; 4532 addr = Builder.CreateElementBitCast(addr, coercionType); 4533 4534 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4535 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4536 4537 unsigned unpaddedIndex = 0; 4538 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4539 llvm::Type *eltType = coercionType->getElementType(i); 4540 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4541 Address eltAddr = Builder.CreateStructGEP(addr, i); 4542 llvm::Value *elt = CI; 4543 if (requiresExtract) 4544 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4545 else 4546 assert(unpaddedIndex == 0); 4547 Builder.CreateStore(elt, eltAddr); 4548 } 4549 // FALLTHROUGH 4550 LLVM_FALLTHROUGH; 4551 } 4552 4553 case ABIArgInfo::InAlloca: 4554 case ABIArgInfo::Indirect: { 4555 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4556 if (UnusedReturnSizePtr) 4557 PopCleanupBlock(); 4558 return ret; 4559 } 4560 4561 case ABIArgInfo::Ignore: 4562 // If we are ignoring an argument that had a result, make sure to 4563 // construct the appropriate return value for our caller. 4564 return GetUndefRValue(RetTy); 4565 4566 case ABIArgInfo::Extend: 4567 case ABIArgInfo::Direct: { 4568 llvm::Type *RetIRTy = ConvertType(RetTy); 4569 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4570 switch (getEvaluationKind(RetTy)) { 4571 case TEK_Complex: { 4572 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4573 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4574 return RValue::getComplex(std::make_pair(Real, Imag)); 4575 } 4576 case TEK_Aggregate: { 4577 Address DestPtr = ReturnValue.getValue(); 4578 bool DestIsVolatile = ReturnValue.isVolatile(); 4579 4580 if (!DestPtr.isValid()) { 4581 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4582 DestIsVolatile = false; 4583 } 4584 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4585 return RValue::getAggregate(DestPtr); 4586 } 4587 case TEK_Scalar: { 4588 // If the argument doesn't match, perform a bitcast to coerce it. This 4589 // can happen due to trivial type mismatches. 4590 llvm::Value *V = CI; 4591 if (V->getType() != RetIRTy) 4592 V = Builder.CreateBitCast(V, RetIRTy); 4593 return RValue::get(V); 4594 } 4595 } 4596 llvm_unreachable("bad evaluation kind"); 4597 } 4598 4599 Address DestPtr = ReturnValue.getValue(); 4600 bool DestIsVolatile = ReturnValue.isVolatile(); 4601 4602 if (!DestPtr.isValid()) { 4603 DestPtr = CreateMemTemp(RetTy, "coerce"); 4604 DestIsVolatile = false; 4605 } 4606 4607 // If the value is offset in memory, apply the offset now. 4608 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4609 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4610 4611 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4612 } 4613 4614 case ABIArgInfo::Expand: 4615 llvm_unreachable("Invalid ABI kind for return argument"); 4616 } 4617 4618 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4619 } (); 4620 4621 // Emit the assume_aligned check on the return value. 4622 if (Ret.isScalar() && TargetDecl) { 4623 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4624 llvm::Value *OffsetValue = nullptr; 4625 if (const auto *Offset = AA->getOffset()) 4626 OffsetValue = EmitScalarExpr(Offset); 4627 4628 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4629 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4630 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4631 AlignmentCI, OffsetValue); 4632 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4633 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] 4634 .getRValue(*this) 4635 .getScalarVal(); 4636 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4637 AlignmentVal); 4638 } 4639 } 4640 4641 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 4642 // we can't use the full cleanup mechanism. 4643 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 4644 LifetimeEnd.Emit(*this, /*Flags=*/{}); 4645 4646 return Ret; 4647 } 4648 4649 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4650 if (isVirtual()) { 4651 const CallExpr *CE = getVirtualCallExpr(); 4652 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4653 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 4654 CE ? CE->getBeginLoc() : SourceLocation()); 4655 } 4656 4657 return *this; 4658 } 4659 4660 /* VarArg handling */ 4661 4662 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4663 VAListAddr = VE->isMicrosoftABI() 4664 ? EmitMSVAListRef(VE->getSubExpr()) 4665 : EmitVAListRef(VE->getSubExpr()); 4666 QualType Ty = VE->getType(); 4667 if (VE->isMicrosoftABI()) 4668 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4669 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4670 } 4671