1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "ABIInfoImpl.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <optional> 45 using namespace clang; 46 using namespace CodeGen; 47 48 /***/ 49 50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 51 switch (CC) { 52 default: return llvm::CallingConv::C; 53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 57 case CC_Win64: return llvm::CallingConv::Win64; 58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 62 // TODO: Add support for __pascal to LLVM. 63 case CC_X86Pascal: return llvm::CallingConv::C; 64 // TODO: Add support for __vectorcall to LLVM. 65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 73 case CC_Swift: return llvm::CallingConv::Swift; 74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 76 case CC_PreserveNone: return llvm::CallingConv::PreserveNone; 77 // clang-format off 78 case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall; 79 // clang-format on 80 } 81 } 82 83 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 84 /// qualification. Either or both of RD and MD may be null. A null RD indicates 85 /// that there is no meaningful 'this' type, and a null MD can occur when 86 /// calling a method pointer. 87 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 88 const CXXMethodDecl *MD) { 89 QualType RecTy; 90 if (RD) 91 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 92 else 93 RecTy = Context.VoidTy; 94 95 if (MD) 96 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 97 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 98 } 99 100 /// Returns the canonical formal type of the given C++ method. 101 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 102 return MD->getType()->getCanonicalTypeUnqualified() 103 .getAs<FunctionProtoType>(); 104 } 105 106 /// Returns the "extra-canonicalized" return type, which discards 107 /// qualifiers on the return type. Codegen doesn't care about them, 108 /// and it makes ABI code a little easier to be able to assume that 109 /// all parameter and return types are top-level unqualified. 110 static CanQualType GetReturnType(QualType RetTy) { 111 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 112 } 113 114 /// Arrange the argument and result information for a value of the given 115 /// unprototyped freestanding function type. 116 const CGFunctionInfo & 117 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 118 // When translating an unprototyped function type, always use a 119 // variadic type. 120 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 121 FnInfoOpts::None, std::nullopt, 122 FTNP->getExtInfo(), {}, RequiredArgs(0)); 123 } 124 125 static void addExtParameterInfosForCall( 126 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 127 const FunctionProtoType *proto, 128 unsigned prefixArgs, 129 unsigned totalArgs) { 130 assert(proto->hasExtParameterInfos()); 131 assert(paramInfos.size() <= prefixArgs); 132 assert(proto->getNumParams() + prefixArgs <= totalArgs); 133 134 paramInfos.reserve(totalArgs); 135 136 // Add default infos for any prefix args that don't already have infos. 137 paramInfos.resize(prefixArgs); 138 139 // Add infos for the prototype. 140 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 141 paramInfos.push_back(ParamInfo); 142 // pass_object_size params have no parameter info. 143 if (ParamInfo.hasPassObjectSize()) 144 paramInfos.emplace_back(); 145 } 146 147 assert(paramInfos.size() <= totalArgs && 148 "Did we forget to insert pass_object_size args?"); 149 // Add default infos for the variadic and/or suffix arguments. 150 paramInfos.resize(totalArgs); 151 } 152 153 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 154 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 155 static void appendParameterTypes(const CodeGenTypes &CGT, 156 SmallVectorImpl<CanQualType> &prefix, 157 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 158 CanQual<FunctionProtoType> FPT) { 159 // Fast path: don't touch param info if we don't need to. 160 if (!FPT->hasExtParameterInfos()) { 161 assert(paramInfos.empty() && 162 "We have paramInfos, but the prototype doesn't?"); 163 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 164 return; 165 } 166 167 unsigned PrefixSize = prefix.size(); 168 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 169 // parameters; the only thing that can change this is the presence of 170 // pass_object_size. So, we preallocate for the common case. 171 prefix.reserve(prefix.size() + FPT->getNumParams()); 172 173 auto ExtInfos = FPT->getExtParameterInfos(); 174 assert(ExtInfos.size() == FPT->getNumParams()); 175 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 176 prefix.push_back(FPT->getParamType(I)); 177 if (ExtInfos[I].hasPassObjectSize()) 178 prefix.push_back(CGT.getContext().getSizeType()); 179 } 180 181 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 182 prefix.size()); 183 } 184 185 /// Arrange the LLVM function layout for a value of the given function 186 /// type, on top of any implicit parameters already stored. 187 static const CGFunctionInfo & 188 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 189 SmallVectorImpl<CanQualType> &prefix, 190 CanQual<FunctionProtoType> FTP) { 191 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 192 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 193 // FIXME: Kill copy. 194 appendParameterTypes(CGT, prefix, paramInfos, FTP); 195 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 196 197 FnInfoOpts opts = 198 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 199 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 200 FTP->getExtInfo(), paramInfos, Required); 201 } 202 203 /// Arrange the argument and result information for a value of the 204 /// given freestanding function type. 205 const CGFunctionInfo & 206 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 207 SmallVector<CanQualType, 16> argTypes; 208 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 209 FTP); 210 } 211 212 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 213 bool IsWindows) { 214 // Set the appropriate calling convention for the Function. 215 if (D->hasAttr<StdCallAttr>()) 216 return CC_X86StdCall; 217 218 if (D->hasAttr<FastCallAttr>()) 219 return CC_X86FastCall; 220 221 if (D->hasAttr<RegCallAttr>()) 222 return CC_X86RegCall; 223 224 if (D->hasAttr<ThisCallAttr>()) 225 return CC_X86ThisCall; 226 227 if (D->hasAttr<VectorCallAttr>()) 228 return CC_X86VectorCall; 229 230 if (D->hasAttr<PascalAttr>()) 231 return CC_X86Pascal; 232 233 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 234 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 235 236 if (D->hasAttr<AArch64VectorPcsAttr>()) 237 return CC_AArch64VectorCall; 238 239 if (D->hasAttr<AArch64SVEPcsAttr>()) 240 return CC_AArch64SVEPCS; 241 242 if (D->hasAttr<AMDGPUKernelCallAttr>()) 243 return CC_AMDGPUKernelCall; 244 245 if (D->hasAttr<IntelOclBiccAttr>()) 246 return CC_IntelOclBicc; 247 248 if (D->hasAttr<MSABIAttr>()) 249 return IsWindows ? CC_C : CC_Win64; 250 251 if (D->hasAttr<SysVABIAttr>()) 252 return IsWindows ? CC_X86_64SysV : CC_C; 253 254 if (D->hasAttr<PreserveMostAttr>()) 255 return CC_PreserveMost; 256 257 if (D->hasAttr<PreserveAllAttr>()) 258 return CC_PreserveAll; 259 260 if (D->hasAttr<M68kRTDAttr>()) 261 return CC_M68kRTD; 262 263 if (D->hasAttr<PreserveNoneAttr>()) 264 return CC_PreserveNone; 265 266 if (D->hasAttr<RISCVVectorCCAttr>()) 267 return CC_RISCVVectorCall; 268 269 return CC_C; 270 } 271 272 /// Arrange the argument and result information for a call to an 273 /// unknown C++ non-static member function of the given abstract type. 274 /// (A null RD means we don't have any meaningful "this" argument type, 275 /// so fall back to a generic pointer type). 276 /// The member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 280 const FunctionProtoType *FTP, 281 const CXXMethodDecl *MD) { 282 SmallVector<CanQualType, 16> argTypes; 283 284 // Add the 'this' pointer. 285 argTypes.push_back(DeriveThisType(RD, MD)); 286 287 return ::arrangeLLVMFunctionInfo( 288 *this, /*instanceMethod=*/true, argTypes, 289 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 290 } 291 292 /// Set calling convention for CUDA/HIP kernel. 293 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 294 const FunctionDecl *FD) { 295 if (FD->hasAttr<CUDAGlobalAttr>()) { 296 const FunctionType *FT = FTy->getAs<FunctionType>(); 297 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 298 FTy = FT->getCanonicalTypeUnqualified(); 299 } 300 } 301 302 /// Arrange the argument and result information for a declaration or 303 /// definition of the given C++ non-static member function. The 304 /// member function must be an ordinary function, i.e. not a 305 /// constructor or destructor. 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 308 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 309 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 310 311 CanQualType FT = GetFormalType(MD).getAs<Type>(); 312 setCUDAKernelCallingConvention(FT, CGM, MD); 313 auto prototype = FT.getAs<FunctionProtoType>(); 314 315 if (MD->isImplicitObjectMemberFunction()) { 316 // The abstract case is perfectly fine. 317 const CXXRecordDecl *ThisType = 318 getCXXABI().getThisArgumentTypeForMethod(MD); 319 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 320 } 321 322 return arrangeFreeFunctionType(prototype); 323 } 324 325 bool CodeGenTypes::inheritingCtorHasParams( 326 const InheritedConstructor &Inherited, CXXCtorType Type) { 327 // Parameters are unnecessary if we're constructing a base class subobject 328 // and the inherited constructor lives in a virtual base. 329 return Type == Ctor_Complete || 330 !Inherited.getShadowDecl()->constructsVirtualBase() || 331 !Target.getCXXABI().hasConstructorVariants(); 332 } 333 334 const CGFunctionInfo & 335 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 336 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 337 338 SmallVector<CanQualType, 16> argTypes; 339 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 340 341 const CXXRecordDecl *ThisType = getCXXABI().getThisArgumentTypeForMethod(GD); 342 argTypes.push_back(DeriveThisType(ThisType, MD)); 343 344 bool PassParams = true; 345 346 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 347 // A base class inheriting constructor doesn't get forwarded arguments 348 // needed to construct a virtual base (or base class thereof). 349 if (auto Inherited = CD->getInheritedConstructor()) 350 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 351 } 352 353 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 354 355 // Add the formal parameters. 356 if (PassParams) 357 appendParameterTypes(*this, argTypes, paramInfos, FTP); 358 359 CGCXXABI::AddedStructorArgCounts AddedArgs = 360 getCXXABI().buildStructorSignature(GD, argTypes); 361 if (!paramInfos.empty()) { 362 // Note: prefix implies after the first param. 363 if (AddedArgs.Prefix) 364 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 365 FunctionProtoType::ExtParameterInfo{}); 366 if (AddedArgs.Suffix) 367 paramInfos.append(AddedArgs.Suffix, 368 FunctionProtoType::ExtParameterInfo{}); 369 } 370 371 RequiredArgs required = 372 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 373 : RequiredArgs::All); 374 375 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 376 CanQualType resultType = getCXXABI().HasThisReturn(GD) ? argTypes.front() 377 : getCXXABI().hasMostDerivedReturn(GD) 378 ? CGM.getContext().VoidPtrTy 379 : Context.VoidTy; 380 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 381 argTypes, extInfo, paramInfos, required); 382 } 383 384 static SmallVector<CanQualType, 16> 385 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 386 SmallVector<CanQualType, 16> argTypes; 387 for (auto &arg : args) 388 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 389 return argTypes; 390 } 391 392 static SmallVector<CanQualType, 16> 393 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 394 SmallVector<CanQualType, 16> argTypes; 395 for (auto &arg : args) 396 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 397 return argTypes; 398 } 399 400 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 401 getExtParameterInfosForCall(const FunctionProtoType *proto, 402 unsigned prefixArgs, unsigned totalArgs) { 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 404 if (proto->hasExtParameterInfos()) { 405 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 406 } 407 return result; 408 } 409 410 /// Arrange a call to a C++ method, passing the given arguments. 411 /// 412 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 413 /// parameter. 414 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 415 /// args. 416 /// PassProtoArgs indicates whether `args` has args for the parameters in the 417 /// given CXXConstructorDecl. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 420 const CXXConstructorDecl *D, 421 CXXCtorType CtorKind, 422 unsigned ExtraPrefixArgs, 423 unsigned ExtraSuffixArgs, 424 bool PassProtoArgs) { 425 // FIXME: Kill copy. 426 SmallVector<CanQualType, 16> ArgTypes; 427 for (const auto &Arg : args) 428 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 429 430 // +1 for implicit this, which should always be args[0]. 431 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 432 433 CanQual<FunctionProtoType> FPT = GetFormalType(D); 434 RequiredArgs Required = PassProtoArgs 435 ? RequiredArgs::forPrototypePlus( 436 FPT, TotalPrefixArgs + ExtraSuffixArgs) 437 : RequiredArgs::All; 438 439 GlobalDecl GD(D, CtorKind); 440 CanQualType ResultType = getCXXABI().HasThisReturn(GD) ? ArgTypes.front() 441 : getCXXABI().hasMostDerivedReturn(GD) 442 ? CGM.getContext().VoidPtrTy 443 : Context.VoidTy; 444 445 FunctionType::ExtInfo Info = FPT->getExtInfo(); 446 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 447 // If the prototype args are elided, we should only have ABI-specific args, 448 // which never have param info. 449 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 450 // ABI-specific suffix arguments are treated the same as variadic arguments. 451 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 452 ArgTypes.size()); 453 } 454 455 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 456 ArgTypes, Info, ParamInfos, Required); 457 } 458 459 /// Arrange the argument and result information for the declaration or 460 /// definition of the given function. 461 const CGFunctionInfo & 462 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 463 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 464 if (MD->isImplicitObjectMemberFunction()) 465 return arrangeCXXMethodDeclaration(MD); 466 467 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 468 469 assert(isa<FunctionType>(FTy)); 470 setCUDAKernelCallingConvention(FTy, CGM, FD); 471 472 // When declaring a function without a prototype, always use a 473 // non-variadic type. 474 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 475 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 476 std::nullopt, noProto->getExtInfo(), {}, 477 RequiredArgs::All); 478 } 479 480 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 481 } 482 483 /// Arrange the argument and result information for the declaration or 484 /// definition of an Objective-C method. 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 487 // It happens that this is the same as a call with no optional 488 // arguments, except also using the formal 'self' type. 489 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 490 } 491 492 /// Arrange the argument and result information for the function type 493 /// through which to perform a send to the given Objective-C method, 494 /// using the given receiver type. The receiver type is not always 495 /// the 'self' type of the method or even an Objective-C pointer type. 496 /// This is *not* the right method for actually performing such a 497 /// message send, due to the possibility of optional arguments. 498 const CGFunctionInfo & 499 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 500 QualType receiverType) { 501 SmallVector<CanQualType, 16> argTys; 502 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 503 MD->isDirectMethod() ? 1 : 2); 504 argTys.push_back(Context.getCanonicalParamType(receiverType)); 505 if (!MD->isDirectMethod()) 506 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 507 // FIXME: Kill copy? 508 for (const auto *I : MD->parameters()) { 509 argTys.push_back(Context.getCanonicalParamType(I->getType())); 510 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 511 I->hasAttr<NoEscapeAttr>()); 512 extParamInfos.push_back(extParamInfo); 513 } 514 515 FunctionType::ExtInfo einfo; 516 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 517 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 518 519 if (getContext().getLangOpts().ObjCAutoRefCount && 520 MD->hasAttr<NSReturnsRetainedAttr>()) 521 einfo = einfo.withProducesResult(true); 522 523 RequiredArgs required = 524 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 525 526 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 527 FnInfoOpts::None, argTys, einfo, extParamInfos, 528 required); 529 } 530 531 const CGFunctionInfo & 532 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 533 const CallArgList &args) { 534 auto argTypes = getArgTypesForCall(Context, args); 535 FunctionType::ExtInfo einfo; 536 537 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 538 argTypes, einfo, {}, RequiredArgs::All); 539 } 540 541 const CGFunctionInfo & 542 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 543 // FIXME: Do we need to handle ObjCMethodDecl? 544 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 545 546 if (isa<CXXConstructorDecl>(GD.getDecl()) || 547 isa<CXXDestructorDecl>(GD.getDecl())) 548 return arrangeCXXStructorDeclaration(GD); 549 550 return arrangeFunctionDeclaration(FD); 551 } 552 553 /// Arrange a thunk that takes 'this' as the first parameter followed by 554 /// varargs. Return a void pointer, regardless of the actual return type. 555 /// The body of the thunk will end in a musttail call to a function of the 556 /// correct type, and the caller will bitcast the function to the correct 557 /// prototype. 558 const CGFunctionInfo & 559 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 560 assert(MD->isVirtual() && "only methods have thunks"); 561 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 562 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 563 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 564 FTP->getExtInfo(), {}, RequiredArgs(1)); 565 } 566 567 const CGFunctionInfo & 568 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 569 CXXCtorType CT) { 570 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 571 572 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 573 SmallVector<CanQualType, 2> ArgTys; 574 const CXXRecordDecl *RD = CD->getParent(); 575 ArgTys.push_back(DeriveThisType(RD, CD)); 576 if (CT == Ctor_CopyingClosure) 577 ArgTys.push_back(*FTP->param_type_begin()); 578 if (RD->getNumVBases() > 0) 579 ArgTys.push_back(Context.IntTy); 580 CallingConv CC = Context.getDefaultCallingConvention( 581 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 582 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 583 ArgTys, FunctionType::ExtInfo(CC), {}, 584 RequiredArgs::All); 585 } 586 587 /// Arrange a call as unto a free function, except possibly with an 588 /// additional number of formal parameters considered required. 589 static const CGFunctionInfo & 590 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 591 CodeGenModule &CGM, 592 const CallArgList &args, 593 const FunctionType *fnType, 594 unsigned numExtraRequiredArgs, 595 bool chainCall) { 596 assert(args.size() >= numExtraRequiredArgs); 597 598 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 599 600 // In most cases, there are no optional arguments. 601 RequiredArgs required = RequiredArgs::All; 602 603 // If we have a variadic prototype, the required arguments are the 604 // extra prefix plus the arguments in the prototype. 605 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 606 if (proto->isVariadic()) 607 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 608 609 if (proto->hasExtParameterInfos()) 610 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 611 args.size()); 612 613 // If we don't have a prototype at all, but we're supposed to 614 // explicitly use the variadic convention for unprototyped calls, 615 // treat all of the arguments as required but preserve the nominal 616 // possibility of variadics. 617 } else if (CGM.getTargetCodeGenInfo() 618 .isNoProtoCallVariadic(args, 619 cast<FunctionNoProtoType>(fnType))) { 620 required = RequiredArgs(args.size()); 621 } 622 623 // FIXME: Kill copy. 624 SmallVector<CanQualType, 16> argTypes; 625 for (const auto &arg : args) 626 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 627 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 628 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 629 opts, argTypes, fnType->getExtInfo(), 630 paramInfos, required); 631 } 632 633 /// Figure out the rules for calling a function with the given formal 634 /// type using the given arguments. The arguments are necessary 635 /// because the function might be unprototyped, in which case it's 636 /// target-dependent in crazy ways. 637 const CGFunctionInfo & 638 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 639 const FunctionType *fnType, 640 bool chainCall) { 641 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 642 chainCall ? 1 : 0, chainCall); 643 } 644 645 /// A block function is essentially a free function with an 646 /// extra implicit argument. 647 const CGFunctionInfo & 648 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 649 const FunctionType *fnType) { 650 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 651 /*chainCall=*/false); 652 } 653 654 const CGFunctionInfo & 655 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 656 const FunctionArgList ¶ms) { 657 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 658 auto argTypes = getArgTypesForDeclaration(Context, params); 659 660 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 661 FnInfoOpts::None, argTypes, 662 proto->getExtInfo(), paramInfos, 663 RequiredArgs::forPrototypePlus(proto, 1)); 664 } 665 666 const CGFunctionInfo & 667 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 668 const CallArgList &args) { 669 // FIXME: Kill copy. 670 SmallVector<CanQualType, 16> argTypes; 671 for (const auto &Arg : args) 672 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 673 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 674 argTypes, FunctionType::ExtInfo(), 675 /*paramInfos=*/{}, RequiredArgs::All); 676 } 677 678 const CGFunctionInfo & 679 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 680 const FunctionArgList &args) { 681 auto argTypes = getArgTypesForDeclaration(Context, args); 682 683 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 684 argTypes, FunctionType::ExtInfo(), {}, 685 RequiredArgs::All); 686 } 687 688 const CGFunctionInfo & 689 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 690 ArrayRef<CanQualType> argTypes) { 691 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 692 FunctionType::ExtInfo(), {}, 693 RequiredArgs::All); 694 } 695 696 /// Arrange a call to a C++ method, passing the given arguments. 697 /// 698 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 699 /// does not count `this`. 700 const CGFunctionInfo & 701 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 702 const FunctionProtoType *proto, 703 RequiredArgs required, 704 unsigned numPrefixArgs) { 705 assert(numPrefixArgs + 1 <= args.size() && 706 "Emitting a call with less args than the required prefix?"); 707 // Add one to account for `this`. It's a bit awkward here, but we don't count 708 // `this` in similar places elsewhere. 709 auto paramInfos = 710 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 711 712 // FIXME: Kill copy. 713 auto argTypes = getArgTypesForCall(Context, args); 714 715 FunctionType::ExtInfo info = proto->getExtInfo(); 716 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 717 FnInfoOpts::IsInstanceMethod, argTypes, info, 718 paramInfos, required); 719 } 720 721 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 722 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, 723 std::nullopt, FunctionType::ExtInfo(), {}, 724 RequiredArgs::All); 725 } 726 727 const CGFunctionInfo & 728 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 729 const CallArgList &args) { 730 assert(signature.arg_size() <= args.size()); 731 if (signature.arg_size() == args.size()) 732 return signature; 733 734 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 735 auto sigParamInfos = signature.getExtParameterInfos(); 736 if (!sigParamInfos.empty()) { 737 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 738 paramInfos.resize(args.size()); 739 } 740 741 auto argTypes = getArgTypesForCall(Context, args); 742 743 assert(signature.getRequiredArgs().allowsOptionalArgs()); 744 FnInfoOpts opts = FnInfoOpts::None; 745 if (signature.isInstanceMethod()) 746 opts |= FnInfoOpts::IsInstanceMethod; 747 if (signature.isChainCall()) 748 opts |= FnInfoOpts::IsChainCall; 749 if (signature.isDelegateCall()) 750 opts |= FnInfoOpts::IsDelegateCall; 751 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 752 signature.getExtInfo(), paramInfos, 753 signature.getRequiredArgs()); 754 } 755 756 namespace clang { 757 namespace CodeGen { 758 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 759 } 760 } 761 762 /// Arrange the argument and result information for an abstract value 763 /// of a given function type. This is the method which all of the 764 /// above functions ultimately defer to. 765 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 766 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 767 FunctionType::ExtInfo info, 768 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 769 RequiredArgs required) { 770 assert(llvm::all_of(argTypes, 771 [](CanQualType T) { return T.isCanonicalAsParam(); })); 772 773 // Lookup or create unique function info. 774 llvm::FoldingSetNodeID ID; 775 bool isInstanceMethod = 776 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 777 bool isChainCall = 778 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 779 bool isDelegateCall = 780 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 781 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 782 info, paramInfos, required, resultType, argTypes); 783 784 void *insertPos = nullptr; 785 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 786 if (FI) 787 return *FI; 788 789 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 790 791 // Construct the function info. We co-allocate the ArgInfos. 792 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 793 info, paramInfos, resultType, argTypes, required); 794 FunctionInfos.InsertNode(FI, insertPos); 795 796 bool inserted = FunctionsBeingProcessed.insert(FI).second; 797 (void)inserted; 798 assert(inserted && "Recursively being processed?"); 799 800 // Compute ABI information. 801 if (CC == llvm::CallingConv::SPIR_KERNEL) { 802 // Force target independent argument handling for the host visible 803 // kernel functions. 804 computeSPIRKernelABIInfo(CGM, *FI); 805 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 806 swiftcall::computeABIInfo(CGM, *FI); 807 } else { 808 CGM.getABIInfo().computeInfo(*FI); 809 } 810 811 // Loop over all of the computed argument and return value info. If any of 812 // them are direct or extend without a specified coerce type, specify the 813 // default now. 814 ABIArgInfo &retInfo = FI->getReturnInfo(); 815 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 816 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 817 818 for (auto &I : FI->arguments()) 819 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 820 I.info.setCoerceToType(ConvertType(I.type)); 821 822 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 823 assert(erased && "Not in set?"); 824 825 return *FI; 826 } 827 828 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 829 bool chainCall, bool delegateCall, 830 const FunctionType::ExtInfo &info, 831 ArrayRef<ExtParameterInfo> paramInfos, 832 CanQualType resultType, 833 ArrayRef<CanQualType> argTypes, 834 RequiredArgs required) { 835 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 836 assert(!required.allowsOptionalArgs() || 837 required.getNumRequiredArgs() <= argTypes.size()); 838 839 void *buffer = 840 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 841 argTypes.size() + 1, paramInfos.size())); 842 843 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 844 FI->CallingConvention = llvmCC; 845 FI->EffectiveCallingConvention = llvmCC; 846 FI->ASTCallingConvention = info.getCC(); 847 FI->InstanceMethod = instanceMethod; 848 FI->ChainCall = chainCall; 849 FI->DelegateCall = delegateCall; 850 FI->CmseNSCall = info.getCmseNSCall(); 851 FI->NoReturn = info.getNoReturn(); 852 FI->ReturnsRetained = info.getProducesResult(); 853 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 854 FI->NoCfCheck = info.getNoCfCheck(); 855 FI->Required = required; 856 FI->HasRegParm = info.getHasRegParm(); 857 FI->RegParm = info.getRegParm(); 858 FI->ArgStruct = nullptr; 859 FI->ArgStructAlign = 0; 860 FI->NumArgs = argTypes.size(); 861 FI->HasExtParameterInfos = !paramInfos.empty(); 862 FI->getArgsBuffer()[0].type = resultType; 863 FI->MaxVectorWidth = 0; 864 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 865 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 866 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 867 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 868 return FI; 869 } 870 871 /***/ 872 873 namespace { 874 // ABIArgInfo::Expand implementation. 875 876 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 877 struct TypeExpansion { 878 enum TypeExpansionKind { 879 // Elements of constant arrays are expanded recursively. 880 TEK_ConstantArray, 881 // Record fields are expanded recursively (but if record is a union, only 882 // the field with the largest size is expanded). 883 TEK_Record, 884 // For complex types, real and imaginary parts are expanded recursively. 885 TEK_Complex, 886 // All other types are not expandable. 887 TEK_None 888 }; 889 890 const TypeExpansionKind Kind; 891 892 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 893 virtual ~TypeExpansion() {} 894 }; 895 896 struct ConstantArrayExpansion : TypeExpansion { 897 QualType EltTy; 898 uint64_t NumElts; 899 900 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 901 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 902 static bool classof(const TypeExpansion *TE) { 903 return TE->Kind == TEK_ConstantArray; 904 } 905 }; 906 907 struct RecordExpansion : TypeExpansion { 908 SmallVector<const CXXBaseSpecifier *, 1> Bases; 909 910 SmallVector<const FieldDecl *, 1> Fields; 911 912 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 913 SmallVector<const FieldDecl *, 1> &&Fields) 914 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 915 Fields(std::move(Fields)) {} 916 static bool classof(const TypeExpansion *TE) { 917 return TE->Kind == TEK_Record; 918 } 919 }; 920 921 struct ComplexExpansion : TypeExpansion { 922 QualType EltTy; 923 924 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 925 static bool classof(const TypeExpansion *TE) { 926 return TE->Kind == TEK_Complex; 927 } 928 }; 929 930 struct NoExpansion : TypeExpansion { 931 NoExpansion() : TypeExpansion(TEK_None) {} 932 static bool classof(const TypeExpansion *TE) { 933 return TE->Kind == TEK_None; 934 } 935 }; 936 } // namespace 937 938 static std::unique_ptr<TypeExpansion> 939 getTypeExpansion(QualType Ty, const ASTContext &Context) { 940 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 941 return std::make_unique<ConstantArrayExpansion>(AT->getElementType(), 942 AT->getZExtSize()); 943 } 944 if (const RecordType *RT = Ty->getAs<RecordType>()) { 945 SmallVector<const CXXBaseSpecifier *, 1> Bases; 946 SmallVector<const FieldDecl *, 1> Fields; 947 const RecordDecl *RD = RT->getDecl(); 948 assert(!RD->hasFlexibleArrayMember() && 949 "Cannot expand structure with flexible array."); 950 if (RD->isUnion()) { 951 // Unions can be here only in degenerative cases - all the fields are same 952 // after flattening. Thus we have to use the "largest" field. 953 const FieldDecl *LargestFD = nullptr; 954 CharUnits UnionSize = CharUnits::Zero(); 955 956 for (const auto *FD : RD->fields()) { 957 if (FD->isZeroLengthBitField(Context)) 958 continue; 959 assert(!FD->isBitField() && 960 "Cannot expand structure with bit-field members."); 961 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 962 if (UnionSize < FieldSize) { 963 UnionSize = FieldSize; 964 LargestFD = FD; 965 } 966 } 967 if (LargestFD) 968 Fields.push_back(LargestFD); 969 } else { 970 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 971 assert(!CXXRD->isDynamicClass() && 972 "cannot expand vtable pointers in dynamic classes"); 973 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 974 } 975 976 for (const auto *FD : RD->fields()) { 977 if (FD->isZeroLengthBitField(Context)) 978 continue; 979 assert(!FD->isBitField() && 980 "Cannot expand structure with bit-field members."); 981 Fields.push_back(FD); 982 } 983 } 984 return std::make_unique<RecordExpansion>(std::move(Bases), 985 std::move(Fields)); 986 } 987 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 988 return std::make_unique<ComplexExpansion>(CT->getElementType()); 989 } 990 return std::make_unique<NoExpansion>(); 991 } 992 993 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 994 auto Exp = getTypeExpansion(Ty, Context); 995 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 996 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 997 } 998 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 999 int Res = 0; 1000 for (auto BS : RExp->Bases) 1001 Res += getExpansionSize(BS->getType(), Context); 1002 for (auto FD : RExp->Fields) 1003 Res += getExpansionSize(FD->getType(), Context); 1004 return Res; 1005 } 1006 if (isa<ComplexExpansion>(Exp.get())) 1007 return 2; 1008 assert(isa<NoExpansion>(Exp.get())); 1009 return 1; 1010 } 1011 1012 void 1013 CodeGenTypes::getExpandedTypes(QualType Ty, 1014 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1015 auto Exp = getTypeExpansion(Ty, Context); 1016 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1017 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1018 getExpandedTypes(CAExp->EltTy, TI); 1019 } 1020 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1021 for (auto BS : RExp->Bases) 1022 getExpandedTypes(BS->getType(), TI); 1023 for (auto FD : RExp->Fields) 1024 getExpandedTypes(FD->getType(), TI); 1025 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1026 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1027 *TI++ = EltTy; 1028 *TI++ = EltTy; 1029 } else { 1030 assert(isa<NoExpansion>(Exp.get())); 1031 *TI++ = ConvertType(Ty); 1032 } 1033 } 1034 1035 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1036 ConstantArrayExpansion *CAE, 1037 Address BaseAddr, 1038 llvm::function_ref<void(Address)> Fn) { 1039 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1040 Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i); 1041 Fn(EltAddr); 1042 } 1043 } 1044 1045 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1046 llvm::Function::arg_iterator &AI) { 1047 assert(LV.isSimple() && 1048 "Unexpected non-simple lvalue during struct expansion."); 1049 1050 auto Exp = getTypeExpansion(Ty, getContext()); 1051 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1052 forConstantArrayExpansion( 1053 *this, CAExp, LV.getAddress(), [&](Address EltAddr) { 1054 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1055 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1056 }); 1057 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1058 Address This = LV.getAddress(); 1059 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1060 // Perform a single step derived-to-base conversion. 1061 Address Base = 1062 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1063 /*NullCheckValue=*/false, SourceLocation()); 1064 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1065 1066 // Recurse onto bases. 1067 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1068 } 1069 for (auto FD : RExp->Fields) { 1070 // FIXME: What are the right qualifiers here? 1071 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1072 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1073 } 1074 } else if (isa<ComplexExpansion>(Exp.get())) { 1075 auto realValue = &*AI++; 1076 auto imagValue = &*AI++; 1077 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1078 } else { 1079 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1080 // primitive store. 1081 assert(isa<NoExpansion>(Exp.get())); 1082 llvm::Value *Arg = &*AI++; 1083 if (LV.isBitField()) { 1084 EmitStoreThroughLValue(RValue::get(Arg), LV); 1085 } else { 1086 // TODO: currently there are some places are inconsistent in what LLVM 1087 // pointer type they use (see D118744). Once clang uses opaque pointers 1088 // all LLVM pointer types will be the same and we can remove this check. 1089 if (Arg->getType()->isPointerTy()) { 1090 Address Addr = LV.getAddress(); 1091 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1092 } 1093 EmitStoreOfScalar(Arg, LV); 1094 } 1095 } 1096 } 1097 1098 void CodeGenFunction::ExpandTypeToArgs( 1099 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1100 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1101 auto Exp = getTypeExpansion(Ty, getContext()); 1102 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1103 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1104 : Arg.getKnownRValue().getAggregateAddress(); 1105 forConstantArrayExpansion( 1106 *this, CAExp, Addr, [&](Address EltAddr) { 1107 CallArg EltArg = CallArg( 1108 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1109 CAExp->EltTy); 1110 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1111 IRCallArgPos); 1112 }); 1113 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1114 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1115 : Arg.getKnownRValue().getAggregateAddress(); 1116 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1117 // Perform a single step derived-to-base conversion. 1118 Address Base = 1119 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1120 /*NullCheckValue=*/false, SourceLocation()); 1121 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1122 1123 // Recurse onto bases. 1124 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1125 IRCallArgPos); 1126 } 1127 1128 LValue LV = MakeAddrLValue(This, Ty); 1129 for (auto FD : RExp->Fields) { 1130 CallArg FldArg = 1131 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1132 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1133 IRCallArgPos); 1134 } 1135 } else if (isa<ComplexExpansion>(Exp.get())) { 1136 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1137 IRCallArgs[IRCallArgPos++] = CV.first; 1138 IRCallArgs[IRCallArgPos++] = CV.second; 1139 } else { 1140 assert(isa<NoExpansion>(Exp.get())); 1141 auto RV = Arg.getKnownRValue(); 1142 assert(RV.isScalar() && 1143 "Unexpected non-scalar rvalue during struct expansion."); 1144 1145 // Insert a bitcast as needed. 1146 llvm::Value *V = RV.getScalarVal(); 1147 if (IRCallArgPos < IRFuncTy->getNumParams() && 1148 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1149 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1150 1151 IRCallArgs[IRCallArgPos++] = V; 1152 } 1153 } 1154 1155 /// Create a temporary allocation for the purposes of coercion. 1156 static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF, 1157 llvm::Type *Ty, 1158 CharUnits MinAlign, 1159 const Twine &Name = "tmp") { 1160 // Don't use an alignment that's worse than what LLVM would prefer. 1161 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1162 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1163 1164 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1165 } 1166 1167 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1168 /// accessing some number of bytes out of it, try to gep into the struct to get 1169 /// at its inner goodness. Dive as deep as possible without entering an element 1170 /// with an in-memory size smaller than DstSize. 1171 static Address 1172 EnterStructPointerForCoercedAccess(Address SrcPtr, 1173 llvm::StructType *SrcSTy, 1174 uint64_t DstSize, CodeGenFunction &CGF) { 1175 // We can't dive into a zero-element struct. 1176 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1177 1178 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1179 1180 // If the first elt is at least as large as what we're looking for, or if the 1181 // first element is the same size as the whole struct, we can enter it. The 1182 // comparison must be made on the store size and not the alloca size. Using 1183 // the alloca size may overstate the size of the load. 1184 uint64_t FirstEltSize = 1185 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1186 if (FirstEltSize < DstSize && 1187 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1188 return SrcPtr; 1189 1190 // GEP into the first element. 1191 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1192 1193 // If the first element is a struct, recurse. 1194 llvm::Type *SrcTy = SrcPtr.getElementType(); 1195 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1196 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1197 1198 return SrcPtr; 1199 } 1200 1201 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1202 /// are either integers or pointers. This does a truncation of the value if it 1203 /// is too large or a zero extension if it is too small. 1204 /// 1205 /// This behaves as if the value were coerced through memory, so on big-endian 1206 /// targets the high bits are preserved in a truncation, while little-endian 1207 /// targets preserve the low bits. 1208 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1209 llvm::Type *Ty, 1210 CodeGenFunction &CGF) { 1211 if (Val->getType() == Ty) 1212 return Val; 1213 1214 if (isa<llvm::PointerType>(Val->getType())) { 1215 // If this is Pointer->Pointer avoid conversion to and from int. 1216 if (isa<llvm::PointerType>(Ty)) 1217 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1218 1219 // Convert the pointer to an integer so we can play with its width. 1220 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1221 } 1222 1223 llvm::Type *DestIntTy = Ty; 1224 if (isa<llvm::PointerType>(DestIntTy)) 1225 DestIntTy = CGF.IntPtrTy; 1226 1227 if (Val->getType() != DestIntTy) { 1228 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1229 if (DL.isBigEndian()) { 1230 // Preserve the high bits on big-endian targets. 1231 // That is what memory coercion does. 1232 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1233 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1234 1235 if (SrcSize > DstSize) { 1236 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1237 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1238 } else { 1239 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1240 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1241 } 1242 } else { 1243 // Little-endian targets preserve the low bits. No shifts required. 1244 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1245 } 1246 } 1247 1248 if (isa<llvm::PointerType>(Ty)) 1249 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1250 return Val; 1251 } 1252 1253 1254 1255 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1256 /// a pointer to an object of type \arg Ty, known to be aligned to 1257 /// \arg SrcAlign bytes. 1258 /// 1259 /// This safely handles the case when the src type is smaller than the 1260 /// destination type; in this situation the values of bits which not 1261 /// present in the src are undefined. 1262 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1263 CodeGenFunction &CGF) { 1264 llvm::Type *SrcTy = Src.getElementType(); 1265 1266 // If SrcTy and Ty are the same, just do a load. 1267 if (SrcTy == Ty) 1268 return CGF.Builder.CreateLoad(Src); 1269 1270 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1271 1272 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1273 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1274 DstSize.getFixedValue(), CGF); 1275 SrcTy = Src.getElementType(); 1276 } 1277 1278 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1279 1280 // If the source and destination are integer or pointer types, just do an 1281 // extension or truncation to the desired type. 1282 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1283 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1284 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1285 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1286 } 1287 1288 // If load is legal, just bitcast the src pointer. 1289 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1290 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1291 // Generally SrcSize is never greater than DstSize, since this means we are 1292 // losing bits. However, this can happen in cases where the structure has 1293 // additional padding, for example due to a user specified alignment. 1294 // 1295 // FIXME: Assert that we aren't truncating non-padding bits when have access 1296 // to that information. 1297 Src = Src.withElementType(Ty); 1298 return CGF.Builder.CreateLoad(Src); 1299 } 1300 1301 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1302 // the types match, use the llvm.vector.insert intrinsic to perform the 1303 // conversion. 1304 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1305 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1306 // If we are casting a fixed i8 vector to a scalable i1 predicate 1307 // vector, use a vector insert and bitcast the result. 1308 if (ScalableDstTy->getElementType()->isIntegerTy(1) && 1309 ScalableDstTy->getElementCount().isKnownMultipleOf(8) && 1310 FixedSrcTy->getElementType()->isIntegerTy(8)) { 1311 ScalableDstTy = llvm::ScalableVectorType::get( 1312 FixedSrcTy->getElementType(), 1313 ScalableDstTy->getElementCount().getKnownMinValue() / 8); 1314 } 1315 if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) { 1316 auto *Load = CGF.Builder.CreateLoad(Src); 1317 auto *UndefVec = llvm::UndefValue::get(ScalableDstTy); 1318 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1319 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1320 ScalableDstTy, UndefVec, Load, Zero, "cast.scalable"); 1321 if (ScalableDstTy != Ty) 1322 Result = CGF.Builder.CreateBitCast(Result, Ty); 1323 return Result; 1324 } 1325 } 1326 } 1327 1328 // Otherwise do coercion through memory. This is stupid, but simple. 1329 RawAddress Tmp = 1330 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1331 CGF.Builder.CreateMemCpy( 1332 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1333 Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(), 1334 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1335 return CGF.Builder.CreateLoad(Tmp); 1336 } 1337 1338 void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst, 1339 llvm::TypeSize DstSize, 1340 bool DstIsVolatile) { 1341 if (!DstSize) 1342 return; 1343 1344 llvm::Type *SrcTy = Src->getType(); 1345 llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 1346 1347 // GEP into structs to try to make types match. 1348 // FIXME: This isn't really that useful with opaque types, but it impacts a 1349 // lot of regression tests. 1350 if (SrcTy != Dst.getElementType()) { 1351 if (llvm::StructType *DstSTy = 1352 dyn_cast<llvm::StructType>(Dst.getElementType())) { 1353 assert(!SrcSize.isScalable()); 1354 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1355 SrcSize.getFixedValue(), *this); 1356 } 1357 } 1358 1359 if (SrcSize.isScalable() || SrcSize <= DstSize) { 1360 if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() && 1361 SrcSize == CGM.getDataLayout().getTypeAllocSize(Dst.getElementType())) { 1362 // If the value is supposed to be a pointer, convert it before storing it. 1363 Src = CoerceIntOrPtrToIntOrPtr(Src, Dst.getElementType(), *this); 1364 Builder.CreateStore(Src, Dst, DstIsVolatile); 1365 } else if (llvm::StructType *STy = 1366 dyn_cast<llvm::StructType>(Src->getType())) { 1367 // Prefer scalar stores to first-class aggregate stores. 1368 Dst = Dst.withElementType(SrcTy); 1369 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1370 Address EltPtr = Builder.CreateStructGEP(Dst, i); 1371 llvm::Value *Elt = Builder.CreateExtractValue(Src, i); 1372 Builder.CreateStore(Elt, EltPtr, DstIsVolatile); 1373 } 1374 } else { 1375 Builder.CreateStore(Src, Dst.withElementType(SrcTy), DstIsVolatile); 1376 } 1377 } else if (SrcTy->isIntegerTy()) { 1378 // If the source is a simple integer, coerce it directly. 1379 llvm::Type *DstIntTy = Builder.getIntNTy(DstSize.getFixedValue() * 8); 1380 Src = CoerceIntOrPtrToIntOrPtr(Src, DstIntTy, *this); 1381 Builder.CreateStore(Src, Dst.withElementType(DstIntTy), DstIsVolatile); 1382 } else { 1383 // Otherwise do coercion through memory. This is stupid, but 1384 // simple. 1385 1386 // Generally SrcSize is never greater than DstSize, since this means we are 1387 // losing bits. However, this can happen in cases where the structure has 1388 // additional padding, for example due to a user specified alignment. 1389 // 1390 // FIXME: Assert that we aren't truncating non-padding bits when have access 1391 // to that information. 1392 RawAddress Tmp = 1393 CreateTempAllocaForCoercion(*this, SrcTy, Dst.getAlignment()); 1394 Builder.CreateStore(Src, Tmp); 1395 Builder.CreateMemCpy(Dst.emitRawPointer(*this), 1396 Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1397 Tmp.getAlignment().getAsAlign(), 1398 Builder.CreateTypeSize(IntPtrTy, DstSize)); 1399 } 1400 } 1401 1402 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1403 const ABIArgInfo &info) { 1404 if (unsigned offset = info.getDirectOffset()) { 1405 addr = addr.withElementType(CGF.Int8Ty); 1406 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1407 CharUnits::fromQuantity(offset)); 1408 addr = addr.withElementType(info.getCoerceToType()); 1409 } 1410 return addr; 1411 } 1412 1413 namespace { 1414 1415 /// Encapsulates information about the way function arguments from 1416 /// CGFunctionInfo should be passed to actual LLVM IR function. 1417 class ClangToLLVMArgMapping { 1418 static const unsigned InvalidIndex = ~0U; 1419 unsigned InallocaArgNo; 1420 unsigned SRetArgNo; 1421 unsigned TotalIRArgs; 1422 1423 /// Arguments of LLVM IR function corresponding to single Clang argument. 1424 struct IRArgs { 1425 unsigned PaddingArgIndex; 1426 // Argument is expanded to IR arguments at positions 1427 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1428 unsigned FirstArgIndex; 1429 unsigned NumberOfArgs; 1430 1431 IRArgs() 1432 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1433 NumberOfArgs(0) {} 1434 }; 1435 1436 SmallVector<IRArgs, 8> ArgInfo; 1437 1438 public: 1439 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1440 bool OnlyRequiredArgs = false) 1441 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1442 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1443 construct(Context, FI, OnlyRequiredArgs); 1444 } 1445 1446 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1447 unsigned getInallocaArgNo() const { 1448 assert(hasInallocaArg()); 1449 return InallocaArgNo; 1450 } 1451 1452 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1453 unsigned getSRetArgNo() const { 1454 assert(hasSRetArg()); 1455 return SRetArgNo; 1456 } 1457 1458 unsigned totalIRArgs() const { return TotalIRArgs; } 1459 1460 bool hasPaddingArg(unsigned ArgNo) const { 1461 assert(ArgNo < ArgInfo.size()); 1462 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1463 } 1464 unsigned getPaddingArgNo(unsigned ArgNo) const { 1465 assert(hasPaddingArg(ArgNo)); 1466 return ArgInfo[ArgNo].PaddingArgIndex; 1467 } 1468 1469 /// Returns index of first IR argument corresponding to ArgNo, and their 1470 /// quantity. 1471 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1472 assert(ArgNo < ArgInfo.size()); 1473 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1474 ArgInfo[ArgNo].NumberOfArgs); 1475 } 1476 1477 private: 1478 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1479 bool OnlyRequiredArgs); 1480 }; 1481 1482 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1483 const CGFunctionInfo &FI, 1484 bool OnlyRequiredArgs) { 1485 unsigned IRArgNo = 0; 1486 bool SwapThisWithSRet = false; 1487 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1488 1489 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1490 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1491 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1492 } 1493 1494 unsigned ArgNo = 0; 1495 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1496 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1497 ++I, ++ArgNo) { 1498 assert(I != FI.arg_end()); 1499 QualType ArgType = I->type; 1500 const ABIArgInfo &AI = I->info; 1501 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1502 auto &IRArgs = ArgInfo[ArgNo]; 1503 1504 if (AI.getPaddingType()) 1505 IRArgs.PaddingArgIndex = IRArgNo++; 1506 1507 switch (AI.getKind()) { 1508 case ABIArgInfo::Extend: 1509 case ABIArgInfo::Direct: { 1510 // FIXME: handle sseregparm someday... 1511 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1512 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1513 IRArgs.NumberOfArgs = STy->getNumElements(); 1514 } else { 1515 IRArgs.NumberOfArgs = 1; 1516 } 1517 break; 1518 } 1519 case ABIArgInfo::Indirect: 1520 case ABIArgInfo::IndirectAliased: 1521 IRArgs.NumberOfArgs = 1; 1522 break; 1523 case ABIArgInfo::Ignore: 1524 case ABIArgInfo::InAlloca: 1525 // ignore and inalloca doesn't have matching LLVM parameters. 1526 IRArgs.NumberOfArgs = 0; 1527 break; 1528 case ABIArgInfo::CoerceAndExpand: 1529 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1530 break; 1531 case ABIArgInfo::Expand: 1532 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1533 break; 1534 } 1535 1536 if (IRArgs.NumberOfArgs > 0) { 1537 IRArgs.FirstArgIndex = IRArgNo; 1538 IRArgNo += IRArgs.NumberOfArgs; 1539 } 1540 1541 // Skip over the sret parameter when it comes second. We already handled it 1542 // above. 1543 if (IRArgNo == 1 && SwapThisWithSRet) 1544 IRArgNo++; 1545 } 1546 assert(ArgNo == ArgInfo.size()); 1547 1548 if (FI.usesInAlloca()) 1549 InallocaArgNo = IRArgNo++; 1550 1551 TotalIRArgs = IRArgNo; 1552 } 1553 } // namespace 1554 1555 /***/ 1556 1557 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1558 const auto &RI = FI.getReturnInfo(); 1559 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1560 } 1561 1562 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { 1563 const auto &RI = FI.getReturnInfo(); 1564 return RI.getInReg(); 1565 } 1566 1567 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1568 return ReturnTypeUsesSRet(FI) && 1569 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1570 } 1571 1572 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1573 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1574 switch (BT->getKind()) { 1575 default: 1576 return false; 1577 case BuiltinType::Float: 1578 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1579 case BuiltinType::Double: 1580 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1581 case BuiltinType::LongDouble: 1582 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1583 } 1584 } 1585 1586 return false; 1587 } 1588 1589 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1590 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1591 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1592 if (BT->getKind() == BuiltinType::LongDouble) 1593 return getTarget().useObjCFP2RetForComplexLongDouble(); 1594 } 1595 } 1596 1597 return false; 1598 } 1599 1600 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1601 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1602 return GetFunctionType(FI); 1603 } 1604 1605 llvm::FunctionType * 1606 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1607 1608 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1609 (void)Inserted; 1610 assert(Inserted && "Recursively being processed?"); 1611 1612 llvm::Type *resultType = nullptr; 1613 const ABIArgInfo &retAI = FI.getReturnInfo(); 1614 switch (retAI.getKind()) { 1615 case ABIArgInfo::Expand: 1616 case ABIArgInfo::IndirectAliased: 1617 llvm_unreachable("Invalid ABI kind for return argument"); 1618 1619 case ABIArgInfo::Extend: 1620 case ABIArgInfo::Direct: 1621 resultType = retAI.getCoerceToType(); 1622 break; 1623 1624 case ABIArgInfo::InAlloca: 1625 if (retAI.getInAllocaSRet()) { 1626 // sret things on win32 aren't void, they return the sret pointer. 1627 QualType ret = FI.getReturnType(); 1628 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1629 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 1630 } else { 1631 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1632 } 1633 break; 1634 1635 case ABIArgInfo::Indirect: 1636 case ABIArgInfo::Ignore: 1637 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1638 break; 1639 1640 case ABIArgInfo::CoerceAndExpand: 1641 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1642 break; 1643 } 1644 1645 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1646 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1647 1648 // Add type for sret argument. 1649 if (IRFunctionArgs.hasSRetArg()) { 1650 QualType Ret = FI.getReturnType(); 1651 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1652 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1653 llvm::PointerType::get(getLLVMContext(), AddressSpace); 1654 } 1655 1656 // Add type for inalloca argument. 1657 if (IRFunctionArgs.hasInallocaArg()) 1658 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 1659 llvm::PointerType::getUnqual(getLLVMContext()); 1660 1661 // Add in all of the required arguments. 1662 unsigned ArgNo = 0; 1663 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1664 ie = it + FI.getNumRequiredArgs(); 1665 for (; it != ie; ++it, ++ArgNo) { 1666 const ABIArgInfo &ArgInfo = it->info; 1667 1668 // Insert a padding type to ensure proper alignment. 1669 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1670 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1671 ArgInfo.getPaddingType(); 1672 1673 unsigned FirstIRArg, NumIRArgs; 1674 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1675 1676 switch (ArgInfo.getKind()) { 1677 case ABIArgInfo::Ignore: 1678 case ABIArgInfo::InAlloca: 1679 assert(NumIRArgs == 0); 1680 break; 1681 1682 case ABIArgInfo::Indirect: 1683 assert(NumIRArgs == 1); 1684 // indirect arguments are always on the stack, which is alloca addr space. 1685 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1686 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 1687 break; 1688 case ABIArgInfo::IndirectAliased: 1689 assert(NumIRArgs == 1); 1690 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1691 getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1692 break; 1693 case ABIArgInfo::Extend: 1694 case ABIArgInfo::Direct: { 1695 // Fast-isel and the optimizer generally like scalar values better than 1696 // FCAs, so we flatten them if this is safe to do for this argument. 1697 llvm::Type *argType = ArgInfo.getCoerceToType(); 1698 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1699 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1700 assert(NumIRArgs == st->getNumElements()); 1701 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1702 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1703 } else { 1704 assert(NumIRArgs == 1); 1705 ArgTypes[FirstIRArg] = argType; 1706 } 1707 break; 1708 } 1709 1710 case ABIArgInfo::CoerceAndExpand: { 1711 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1712 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1713 *ArgTypesIter++ = EltTy; 1714 } 1715 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1716 break; 1717 } 1718 1719 case ABIArgInfo::Expand: 1720 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1721 getExpandedTypes(it->type, ArgTypesIter); 1722 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1723 break; 1724 } 1725 } 1726 1727 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1728 assert(Erased && "Not in set?"); 1729 1730 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1731 } 1732 1733 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1734 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1735 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1736 1737 if (!isFuncTypeConvertible(FPT)) 1738 return llvm::StructType::get(getLLVMContext()); 1739 1740 return GetFunctionType(GD); 1741 } 1742 1743 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1744 llvm::AttrBuilder &FuncAttrs, 1745 const FunctionProtoType *FPT) { 1746 if (!FPT) 1747 return; 1748 1749 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1750 FPT->isNothrow()) 1751 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1752 1753 unsigned SMEBits = FPT->getAArch64SMEAttributes(); 1754 if (SMEBits & FunctionType::SME_PStateSMEnabledMask) 1755 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 1756 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) 1757 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 1758 1759 // ZA 1760 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves) 1761 FuncAttrs.addAttribute("aarch64_preserves_za"); 1762 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) 1763 FuncAttrs.addAttribute("aarch64_in_za"); 1764 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out) 1765 FuncAttrs.addAttribute("aarch64_out_za"); 1766 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut) 1767 FuncAttrs.addAttribute("aarch64_inout_za"); 1768 1769 // ZT0 1770 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves) 1771 FuncAttrs.addAttribute("aarch64_preserves_zt0"); 1772 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In) 1773 FuncAttrs.addAttribute("aarch64_in_zt0"); 1774 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out) 1775 FuncAttrs.addAttribute("aarch64_out_zt0"); 1776 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut) 1777 FuncAttrs.addAttribute("aarch64_inout_zt0"); 1778 } 1779 1780 static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs, 1781 const Decl *Callee) { 1782 if (!Callee) 1783 return; 1784 1785 SmallVector<StringRef, 4> Attrs; 1786 1787 for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>()) 1788 AA->getAssumption().split(Attrs, ","); 1789 1790 if (!Attrs.empty()) 1791 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1792 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1793 } 1794 1795 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1796 QualType ReturnType) const { 1797 // We can't just discard the return value for a record type with a 1798 // complex destructor or a non-trivially copyable type. 1799 if (const RecordType *RT = 1800 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1801 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1802 return ClassDecl->hasTrivialDestructor(); 1803 } 1804 return ReturnType.isTriviallyCopyableType(Context); 1805 } 1806 1807 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1808 const Decl *TargetDecl) { 1809 // As-is msan can not tolerate noundef mismatch between caller and 1810 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1811 // into C++. Such mismatches lead to confusing false reports. To avoid 1812 // expensive workaround on msan we enforce initialization event in uncommon 1813 // cases where it's allowed. 1814 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1815 return true; 1816 // C++ explicitly makes returning undefined values UB. C's rule only applies 1817 // to used values, so we never mark them noundef for now. 1818 if (!Module.getLangOpts().CPlusPlus) 1819 return false; 1820 if (TargetDecl) { 1821 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1822 if (FDecl->isExternC()) 1823 return false; 1824 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1825 // Function pointer. 1826 if (VDecl->isExternC()) 1827 return false; 1828 } 1829 } 1830 1831 // We don't want to be too aggressive with the return checking, unless 1832 // it's explicit in the code opts or we're using an appropriate sanitizer. 1833 // Try to respect what the programmer intended. 1834 return Module.getCodeGenOpts().StrictReturn || 1835 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1836 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1837 } 1838 1839 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 1840 /// requested denormal behavior, accounting for the overriding behavior of the 1841 /// -f32 case. 1842 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 1843 llvm::DenormalMode FP32DenormalMode, 1844 llvm::AttrBuilder &FuncAttrs) { 1845 if (FPDenormalMode != llvm::DenormalMode::getDefault()) 1846 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 1847 1848 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 1849 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 1850 } 1851 1852 /// Add default attributes to a function, which have merge semantics under 1853 /// -mlink-builtin-bitcode and should not simply overwrite any existing 1854 /// attributes in the linked library. 1855 static void 1856 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 1857 llvm::AttrBuilder &FuncAttrs) { 1858 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 1859 FuncAttrs); 1860 } 1861 1862 static void getTrivialDefaultFunctionAttributes( 1863 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 1864 const LangOptions &LangOpts, bool AttrOnCallSite, 1865 llvm::AttrBuilder &FuncAttrs) { 1866 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1867 if (!HasOptnone) { 1868 if (CodeGenOpts.OptimizeSize) 1869 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1870 if (CodeGenOpts.OptimizeSize == 2) 1871 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1872 } 1873 1874 if (CodeGenOpts.DisableRedZone) 1875 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1876 if (CodeGenOpts.IndirectTlsSegRefs) 1877 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1878 if (CodeGenOpts.NoImplicitFloat) 1879 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1880 1881 if (AttrOnCallSite) { 1882 // Attributes that should go on the call site only. 1883 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1884 // the -fno-builtin-foo list. 1885 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1886 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1887 if (!CodeGenOpts.TrapFuncName.empty()) 1888 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1889 } else { 1890 switch (CodeGenOpts.getFramePointer()) { 1891 case CodeGenOptions::FramePointerKind::None: 1892 // This is the default behavior. 1893 break; 1894 case CodeGenOptions::FramePointerKind::Reserved: 1895 case CodeGenOptions::FramePointerKind::NonLeaf: 1896 case CodeGenOptions::FramePointerKind::All: 1897 FuncAttrs.addAttribute("frame-pointer", 1898 CodeGenOptions::getFramePointerKindName( 1899 CodeGenOpts.getFramePointer())); 1900 } 1901 1902 if (CodeGenOpts.LessPreciseFPMAD) 1903 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1904 1905 if (CodeGenOpts.NullPointerIsValid) 1906 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1907 1908 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1909 FuncAttrs.addAttribute("no-trapping-math", "true"); 1910 1911 // TODO: Are these all needed? 1912 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1913 if (LangOpts.NoHonorInfs) 1914 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1915 if (LangOpts.NoHonorNaNs) 1916 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1917 if (LangOpts.ApproxFunc) 1918 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1919 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1920 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1921 (LangOpts.getDefaultFPContractMode() == 1922 LangOptions::FPModeKind::FPM_Fast || 1923 LangOpts.getDefaultFPContractMode() == 1924 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1925 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1926 if (CodeGenOpts.SoftFloat) 1927 FuncAttrs.addAttribute("use-soft-float", "true"); 1928 FuncAttrs.addAttribute("stack-protector-buffer-size", 1929 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1930 if (LangOpts.NoSignedZero) 1931 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1932 1933 // TODO: Reciprocal estimate codegen options should apply to instructions? 1934 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1935 if (!Recips.empty()) 1936 FuncAttrs.addAttribute("reciprocal-estimates", 1937 llvm::join(Recips, ",")); 1938 1939 if (!CodeGenOpts.PreferVectorWidth.empty() && 1940 CodeGenOpts.PreferVectorWidth != "none") 1941 FuncAttrs.addAttribute("prefer-vector-width", 1942 CodeGenOpts.PreferVectorWidth); 1943 1944 if (CodeGenOpts.StackRealignment) 1945 FuncAttrs.addAttribute("stackrealign"); 1946 if (CodeGenOpts.Backchain) 1947 FuncAttrs.addAttribute("backchain"); 1948 if (CodeGenOpts.EnableSegmentedStacks) 1949 FuncAttrs.addAttribute("split-stack"); 1950 1951 if (CodeGenOpts.SpeculativeLoadHardening) 1952 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1953 1954 // Add zero-call-used-regs attribute. 1955 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1956 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1957 FuncAttrs.removeAttribute("zero-call-used-regs"); 1958 break; 1959 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1960 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1961 break; 1962 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1963 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1964 break; 1965 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1966 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1967 break; 1968 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1969 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1970 break; 1971 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1972 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1973 break; 1974 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1975 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1976 break; 1977 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1978 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1979 break; 1980 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1981 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1982 break; 1983 } 1984 } 1985 1986 if (LangOpts.assumeFunctionsAreConvergent()) { 1987 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1988 // convergent (meaning, they may call an intrinsically convergent op, such 1989 // as __syncthreads() / barrier(), and so can't have certain optimizations 1990 // applied around them). LLVM will remove this attribute where it safely 1991 // can. 1992 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1993 } 1994 1995 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 1996 // OpenMP offload. AFAIK, neither of them support exceptions in device code. 1997 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 1998 LangOpts.SYCLIsDevice) { 1999 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2000 } 2001 2002 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 2003 StringRef Var, Value; 2004 std::tie(Var, Value) = Attr.split('='); 2005 FuncAttrs.addAttribute(Var, Value); 2006 } 2007 2008 TargetInfo::BranchProtectionInfo BPI(LangOpts); 2009 TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs); 2010 } 2011 2012 /// Merges `target-features` from \TargetOpts and \F, and sets the result in 2013 /// \FuncAttr 2014 /// * features from \F are always kept 2015 /// * a feature from \TargetOpts is kept if itself and its opposite are absent 2016 /// from \F 2017 static void 2018 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 2019 const llvm::Function &F, 2020 const TargetOptions &TargetOpts) { 2021 auto FFeatures = F.getFnAttribute("target-features"); 2022 2023 llvm::StringSet<> MergedNames; 2024 SmallVector<StringRef> MergedFeatures; 2025 MergedFeatures.reserve(TargetOpts.Features.size()); 2026 2027 auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 2028 for (StringRef Feature : FeatureRange) { 2029 if (Feature.empty()) 2030 continue; 2031 assert(Feature[0] == '+' || Feature[0] == '-'); 2032 StringRef Name = Feature.drop_front(1); 2033 bool Merged = !MergedNames.insert(Name).second; 2034 if (!Merged) 2035 MergedFeatures.push_back(Feature); 2036 } 2037 }; 2038 2039 if (FFeatures.isValid()) 2040 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 2041 AddUnmergedFeatures(TargetOpts.Features); 2042 2043 if (!MergedFeatures.empty()) { 2044 llvm::sort(MergedFeatures); 2045 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 2046 } 2047 } 2048 2049 void CodeGen::mergeDefaultFunctionDefinitionAttributes( 2050 llvm::Function &F, const CodeGenOptions &CodeGenOpts, 2051 const LangOptions &LangOpts, const TargetOptions &TargetOpts, 2052 bool WillInternalize) { 2053 2054 llvm::AttrBuilder FuncAttrs(F.getContext()); 2055 // Here we only extract the options that are relevant compared to the version 2056 // from GetCPUAndFeaturesAttributes. 2057 if (!TargetOpts.CPU.empty()) 2058 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 2059 if (!TargetOpts.TuneCPU.empty()) 2060 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 2061 2062 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 2063 CodeGenOpts, LangOpts, 2064 /*AttrOnCallSite=*/false, FuncAttrs); 2065 2066 if (!WillInternalize && F.isInterposable()) { 2067 // Do not promote "dynamic" denormal-fp-math to this translation unit's 2068 // setting for weak functions that won't be internalized. The user has no 2069 // real control for how builtin bitcode is linked, so we shouldn't assume 2070 // later copies will use a consistent mode. 2071 F.addFnAttrs(FuncAttrs); 2072 return; 2073 } 2074 2075 llvm::AttributeMask AttrsToRemove; 2076 2077 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 2078 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 2079 llvm::DenormalMode Merged = 2080 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 2081 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 2082 2083 if (DenormModeToMergeF32.isValid()) { 2084 MergedF32 = 2085 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 2086 } 2087 2088 if (Merged == llvm::DenormalMode::getDefault()) { 2089 AttrsToRemove.addAttribute("denormal-fp-math"); 2090 } else if (Merged != DenormModeToMerge) { 2091 // Overwrite existing attribute 2092 FuncAttrs.addAttribute("denormal-fp-math", 2093 CodeGenOpts.FPDenormalMode.str()); 2094 } 2095 2096 if (MergedF32 == llvm::DenormalMode::getDefault()) { 2097 AttrsToRemove.addAttribute("denormal-fp-math-f32"); 2098 } else if (MergedF32 != DenormModeToMergeF32) { 2099 // Overwrite existing attribute 2100 FuncAttrs.addAttribute("denormal-fp-math-f32", 2101 CodeGenOpts.FP32DenormalMode.str()); 2102 } 2103 2104 F.removeFnAttrs(AttrsToRemove); 2105 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 2106 2107 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 2108 2109 F.addFnAttrs(FuncAttrs); 2110 } 2111 2112 void CodeGenModule::getTrivialDefaultFunctionAttributes( 2113 StringRef Name, bool HasOptnone, bool AttrOnCallSite, 2114 llvm::AttrBuilder &FuncAttrs) { 2115 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 2116 getLangOpts(), AttrOnCallSite, 2117 FuncAttrs); 2118 } 2119 2120 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 2121 bool HasOptnone, 2122 bool AttrOnCallSite, 2123 llvm::AttrBuilder &FuncAttrs) { 2124 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 2125 FuncAttrs); 2126 // If we're just getting the default, get the default values for mergeable 2127 // attributes. 2128 if (!AttrOnCallSite) 2129 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 2130 } 2131 2132 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 2133 llvm::AttrBuilder &attrs) { 2134 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2135 /*for call*/ false, attrs); 2136 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2137 } 2138 2139 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2140 const LangOptions &LangOpts, 2141 const NoBuiltinAttr *NBA = nullptr) { 2142 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2143 SmallString<32> AttributeName; 2144 AttributeName += "no-builtin-"; 2145 AttributeName += BuiltinName; 2146 FuncAttrs.addAttribute(AttributeName); 2147 }; 2148 2149 // First, handle the language options passed through -fno-builtin. 2150 if (LangOpts.NoBuiltin) { 2151 // -fno-builtin disables them all. 2152 FuncAttrs.addAttribute("no-builtins"); 2153 return; 2154 } 2155 2156 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2157 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2158 2159 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2160 // the source. 2161 if (!NBA) 2162 return; 2163 2164 // If there is a wildcard in the builtin names specified through the 2165 // attribute, disable them all. 2166 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2167 FuncAttrs.addAttribute("no-builtins"); 2168 return; 2169 } 2170 2171 // And last, add the rest of the builtin names. 2172 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2173 } 2174 2175 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2176 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2177 bool CheckCoerce = true) { 2178 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2179 if (AI.getKind() == ABIArgInfo::Indirect || 2180 AI.getKind() == ABIArgInfo::IndirectAliased) 2181 return true; 2182 if (AI.getKind() == ABIArgInfo::Extend) 2183 return true; 2184 if (!DL.typeSizeEqualsStoreSize(Ty)) 2185 // TODO: This will result in a modest amount of values not marked noundef 2186 // when they could be. We care about values that *invisibly* contain undef 2187 // bits from the perspective of LLVM IR. 2188 return false; 2189 if (CheckCoerce && AI.canHaveCoerceToType()) { 2190 llvm::Type *CoerceTy = AI.getCoerceToType(); 2191 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2192 DL.getTypeSizeInBits(Ty))) 2193 // If we're coercing to a type with a greater size than the canonical one, 2194 // we're introducing new undef bits. 2195 // Coercing to a type of smaller or equal size is ok, as we know that 2196 // there's no internal padding (typeSizeEqualsStoreSize). 2197 return false; 2198 } 2199 if (QTy->isBitIntType()) 2200 return true; 2201 if (QTy->isReferenceType()) 2202 return true; 2203 if (QTy->isNullPtrType()) 2204 return false; 2205 if (QTy->isMemberPointerType()) 2206 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2207 // now, never mark them. 2208 return false; 2209 if (QTy->isScalarType()) { 2210 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2211 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2212 return true; 2213 } 2214 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2215 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2216 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2217 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2218 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2219 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2220 2221 // TODO: Some structs may be `noundef`, in specific situations. 2222 return false; 2223 } 2224 2225 /// Check if the argument of a function has maybe_undef attribute. 2226 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2227 unsigned NumRequiredArgs, unsigned ArgNo) { 2228 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2229 if (!FD) 2230 return false; 2231 2232 // Assume variadic arguments do not have maybe_undef attribute. 2233 if (ArgNo >= NumRequiredArgs) 2234 return false; 2235 2236 // Check if argument has maybe_undef attribute. 2237 if (ArgNo < FD->getNumParams()) { 2238 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2239 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2240 return true; 2241 } 2242 2243 return false; 2244 } 2245 2246 /// Test if it's legal to apply nofpclass for the given parameter type and it's 2247 /// lowered IR type. 2248 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 2249 bool IsReturn) { 2250 // Should only apply to FP types in the source, not ABI promoted. 2251 if (!ParamType->hasFloatingRepresentation()) 2252 return false; 2253 2254 // The promoted-to IR type also needs to support nofpclass. 2255 llvm::Type *IRTy = AI.getCoerceToType(); 2256 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 2257 return true; 2258 2259 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 2260 return !IsReturn && AI.getCanBeFlattened() && 2261 llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 2262 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 2263 }); 2264 } 2265 2266 return false; 2267 } 2268 2269 /// Return the nofpclass mask that can be applied to floating-point parameters. 2270 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 2271 llvm::FPClassTest Mask = llvm::fcNone; 2272 if (LangOpts.NoHonorInfs) 2273 Mask |= llvm::fcInf; 2274 if (LangOpts.NoHonorNaNs) 2275 Mask |= llvm::fcNan; 2276 return Mask; 2277 } 2278 2279 void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 2280 CGCalleeInfo CalleeInfo, 2281 llvm::AttributeList &Attrs) { 2282 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 2283 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 2284 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 2285 getLLVMContext(), llvm::MemoryEffects::writeOnly()); 2286 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 2287 } 2288 } 2289 2290 /// Construct the IR attribute list of a function or call. 2291 /// 2292 /// When adding an attribute, please consider where it should be handled: 2293 /// 2294 /// - getDefaultFunctionAttributes is for attributes that are essentially 2295 /// part of the global target configuration (but perhaps can be 2296 /// overridden on a per-function basis). Adding attributes there 2297 /// will cause them to also be set in frontends that build on Clang's 2298 /// target-configuration logic, as well as for code defined in library 2299 /// modules such as CUDA's libdevice. 2300 /// 2301 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2302 /// and adds declaration-specific, convention-specific, and 2303 /// frontend-specific logic. The last is of particular importance: 2304 /// attributes that restrict how the frontend generates code must be 2305 /// added here rather than getDefaultFunctionAttributes. 2306 /// 2307 void CodeGenModule::ConstructAttributeList(StringRef Name, 2308 const CGFunctionInfo &FI, 2309 CGCalleeInfo CalleeInfo, 2310 llvm::AttributeList &AttrList, 2311 unsigned &CallingConv, 2312 bool AttrOnCallSite, bool IsThunk) { 2313 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2314 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2315 2316 // Collect function IR attributes from the CC lowering. 2317 // We'll collect the paramete and result attributes later. 2318 CallingConv = FI.getEffectiveCallingConvention(); 2319 if (FI.isNoReturn()) 2320 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2321 if (FI.isCmseNSCall()) 2322 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2323 2324 // Collect function IR attributes from the callee prototype if we have one. 2325 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2326 CalleeInfo.getCalleeFunctionProtoType()); 2327 2328 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2329 2330 // Attach assumption attributes to the declaration. If this is a call 2331 // site, attach assumptions from the caller to the call as well. 2332 AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl); 2333 2334 bool HasOptnone = false; 2335 // The NoBuiltinAttr attached to the target FunctionDecl. 2336 const NoBuiltinAttr *NBA = nullptr; 2337 2338 // Some ABIs may result in additional accesses to arguments that may 2339 // otherwise not be present. 2340 auto AddPotentialArgAccess = [&]() { 2341 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2342 if (A.isValid()) 2343 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2344 llvm::MemoryEffects::argMemOnly()); 2345 }; 2346 2347 // Collect function IR attributes based on declaration-specific 2348 // information. 2349 // FIXME: handle sseregparm someday... 2350 if (TargetDecl) { 2351 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2352 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2353 if (TargetDecl->hasAttr<NoThrowAttr>()) 2354 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2355 if (TargetDecl->hasAttr<NoReturnAttr>()) 2356 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2357 if (TargetDecl->hasAttr<ColdAttr>()) 2358 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2359 if (TargetDecl->hasAttr<HotAttr>()) 2360 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2361 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2362 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2363 if (TargetDecl->hasAttr<ConvergentAttr>()) 2364 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2365 2366 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2367 AddAttributesFromFunctionProtoType( 2368 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2369 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2370 // A sane operator new returns a non-aliasing pointer. 2371 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2372 if (getCodeGenOpts().AssumeSaneOperatorNew && 2373 (Kind == OO_New || Kind == OO_Array_New)) 2374 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2375 } 2376 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2377 const bool IsVirtualCall = MD && MD->isVirtual(); 2378 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2379 // virtual function. These attributes are not inherited by overloads. 2380 if (!(AttrOnCallSite && IsVirtualCall)) { 2381 if (Fn->isNoReturn()) 2382 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2383 NBA = Fn->getAttr<NoBuiltinAttr>(); 2384 } 2385 } 2386 2387 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2388 // Only place nomerge attribute on call sites, never functions. This 2389 // allows it to work on indirect virtual function calls. 2390 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2391 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2392 } 2393 2394 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2395 if (TargetDecl->hasAttr<ConstAttr>()) { 2396 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2397 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2398 // gcc specifies that 'const' functions have greater restrictions than 2399 // 'pure' functions, so they also cannot have infinite loops. 2400 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2401 } else if (TargetDecl->hasAttr<PureAttr>()) { 2402 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2403 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2404 // gcc specifies that 'pure' functions cannot have infinite loops. 2405 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2406 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2407 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 2408 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2409 } 2410 if (TargetDecl->hasAttr<RestrictAttr>()) 2411 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2412 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2413 !CodeGenOpts.NullPointerIsValid) 2414 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2415 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2416 FuncAttrs.addAttribute("no_caller_saved_registers"); 2417 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2418 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2419 if (TargetDecl->hasAttr<LeafAttr>()) 2420 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2421 2422 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2423 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2424 std::optional<unsigned> NumElemsParam; 2425 if (AllocSize->getNumElemsParam().isValid()) 2426 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2427 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2428 NumElemsParam); 2429 } 2430 2431 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2432 if (getLangOpts().OpenCLVersion <= 120) { 2433 // OpenCL v1.2 Work groups are always uniform 2434 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2435 } else { 2436 // OpenCL v2.0 Work groups may be whether uniform or not. 2437 // '-cl-uniform-work-group-size' compile option gets a hint 2438 // to the compiler that the global work-size be a multiple of 2439 // the work-group size specified to clEnqueueNDRangeKernel 2440 // (i.e. work groups are uniform). 2441 FuncAttrs.addAttribute( 2442 "uniform-work-group-size", 2443 llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 2444 } 2445 } 2446 2447 if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 2448 getLangOpts().OffloadUniformBlock) 2449 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2450 2451 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 2452 FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 2453 } 2454 2455 // Attach "no-builtins" attributes to: 2456 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2457 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2458 // The attributes can come from: 2459 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2460 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2461 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2462 2463 // Collect function IR attributes based on global settiings. 2464 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2465 2466 // Override some default IR attributes based on declaration-specific 2467 // information. 2468 if (TargetDecl) { 2469 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2470 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2471 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2472 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2473 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2474 FuncAttrs.removeAttribute("split-stack"); 2475 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2476 // A function "__attribute__((...))" overrides the command-line flag. 2477 auto Kind = 2478 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2479 FuncAttrs.removeAttribute("zero-call-used-regs"); 2480 FuncAttrs.addAttribute( 2481 "zero-call-used-regs", 2482 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2483 } 2484 2485 // Add NonLazyBind attribute to function declarations when -fno-plt 2486 // is used. 2487 // FIXME: what if we just haven't processed the function definition 2488 // yet, or if it's an external definition like C99 inline? 2489 if (CodeGenOpts.NoPLT) { 2490 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2491 if (!Fn->isDefined() && !AttrOnCallSite) { 2492 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2493 } 2494 } 2495 } 2496 } 2497 2498 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2499 // functions with -funique-internal-linkage-names. 2500 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2501 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2502 if (!FD->isExternallyVisible()) 2503 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2504 "selected"); 2505 } 2506 } 2507 2508 // Collect non-call-site function IR attributes from declaration-specific 2509 // information. 2510 if (!AttrOnCallSite) { 2511 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2512 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2513 2514 // Whether tail calls are enabled. 2515 auto shouldDisableTailCalls = [&] { 2516 // Should this be honored in getDefaultFunctionAttributes? 2517 if (CodeGenOpts.DisableTailCalls) 2518 return true; 2519 2520 if (!TargetDecl) 2521 return false; 2522 2523 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2524 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2525 return true; 2526 2527 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2528 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2529 if (!BD->doesNotEscape()) 2530 return true; 2531 } 2532 2533 return false; 2534 }; 2535 if (shouldDisableTailCalls()) 2536 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2537 2538 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2539 // handles these separately to set them based on the global defaults. 2540 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2541 } 2542 2543 // Collect attributes from arguments and return values. 2544 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2545 2546 QualType RetTy = FI.getReturnType(); 2547 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2548 const llvm::DataLayout &DL = getDataLayout(); 2549 2550 // Determine if the return type could be partially undef 2551 if (CodeGenOpts.EnableNoundefAttrs && 2552 HasStrictReturn(*this, RetTy, TargetDecl)) { 2553 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2554 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2555 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2556 } 2557 2558 switch (RetAI.getKind()) { 2559 case ABIArgInfo::Extend: 2560 if (RetAI.isSignExt()) 2561 RetAttrs.addAttribute(llvm::Attribute::SExt); 2562 else 2563 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2564 [[fallthrough]]; 2565 case ABIArgInfo::Direct: 2566 if (RetAI.getInReg()) 2567 RetAttrs.addAttribute(llvm::Attribute::InReg); 2568 2569 if (canApplyNoFPClass(RetAI, RetTy, true)) 2570 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2571 2572 break; 2573 case ABIArgInfo::Ignore: 2574 break; 2575 2576 case ABIArgInfo::InAlloca: 2577 case ABIArgInfo::Indirect: { 2578 // inalloca and sret disable readnone and readonly 2579 AddPotentialArgAccess(); 2580 break; 2581 } 2582 2583 case ABIArgInfo::CoerceAndExpand: 2584 break; 2585 2586 case ABIArgInfo::Expand: 2587 case ABIArgInfo::IndirectAliased: 2588 llvm_unreachable("Invalid ABI kind for return argument"); 2589 } 2590 2591 if (!IsThunk) { 2592 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2593 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2594 QualType PTy = RefTy->getPointeeType(); 2595 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2596 RetAttrs.addDereferenceableAttr( 2597 getMinimumObjectSize(PTy).getQuantity()); 2598 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2599 !CodeGenOpts.NullPointerIsValid) 2600 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2601 if (PTy->isObjectType()) { 2602 llvm::Align Alignment = 2603 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2604 RetAttrs.addAlignmentAttr(Alignment); 2605 } 2606 } 2607 } 2608 2609 bool hasUsedSRet = false; 2610 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2611 2612 // Attach attributes to sret. 2613 if (IRFunctionArgs.hasSRetArg()) { 2614 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2615 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2616 SRETAttrs.addAttribute(llvm::Attribute::Writable); 2617 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 2618 hasUsedSRet = true; 2619 if (RetAI.getInReg()) 2620 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2621 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2622 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2623 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2624 } 2625 2626 // Attach attributes to inalloca argument. 2627 if (IRFunctionArgs.hasInallocaArg()) { 2628 llvm::AttrBuilder Attrs(getLLVMContext()); 2629 Attrs.addInAllocaAttr(FI.getArgStruct()); 2630 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2631 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2632 } 2633 2634 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2635 // unless this is a thunk function. 2636 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2637 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2638 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2639 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2640 2641 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2642 2643 llvm::AttrBuilder Attrs(getLLVMContext()); 2644 2645 QualType ThisTy = 2646 FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2647 2648 if (!CodeGenOpts.NullPointerIsValid && 2649 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2650 Attrs.addAttribute(llvm::Attribute::NonNull); 2651 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2652 } else { 2653 // FIXME dereferenceable should be correct here, regardless of 2654 // NullPointerIsValid. However, dereferenceable currently does not always 2655 // respect NullPointerIsValid and may imply nonnull and break the program. 2656 // See https://reviews.llvm.org/D66618 for discussions. 2657 Attrs.addDereferenceableOrNullAttr( 2658 getMinimumObjectSize( 2659 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2660 .getQuantity()); 2661 } 2662 2663 llvm::Align Alignment = 2664 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2665 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2666 .getAsAlign(); 2667 Attrs.addAlignmentAttr(Alignment); 2668 2669 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2670 } 2671 2672 unsigned ArgNo = 0; 2673 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2674 E = FI.arg_end(); 2675 I != E; ++I, ++ArgNo) { 2676 QualType ParamType = I->type; 2677 const ABIArgInfo &AI = I->info; 2678 llvm::AttrBuilder Attrs(getLLVMContext()); 2679 2680 // Add attribute for padding argument, if necessary. 2681 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2682 if (AI.getPaddingInReg()) { 2683 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2684 llvm::AttributeSet::get( 2685 getLLVMContext(), 2686 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2687 } 2688 } 2689 2690 // Decide whether the argument we're handling could be partially undef 2691 if (CodeGenOpts.EnableNoundefAttrs && 2692 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2693 Attrs.addAttribute(llvm::Attribute::NoUndef); 2694 } 2695 2696 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2697 // have the corresponding parameter variable. It doesn't make 2698 // sense to do it here because parameters are so messed up. 2699 switch (AI.getKind()) { 2700 case ABIArgInfo::Extend: 2701 if (AI.isSignExt()) 2702 Attrs.addAttribute(llvm::Attribute::SExt); 2703 else 2704 Attrs.addAttribute(llvm::Attribute::ZExt); 2705 [[fallthrough]]; 2706 case ABIArgInfo::Direct: 2707 if (ArgNo == 0 && FI.isChainCall()) 2708 Attrs.addAttribute(llvm::Attribute::Nest); 2709 else if (AI.getInReg()) 2710 Attrs.addAttribute(llvm::Attribute::InReg); 2711 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2712 2713 if (canApplyNoFPClass(AI, ParamType, false)) 2714 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2715 break; 2716 case ABIArgInfo::Indirect: { 2717 if (AI.getInReg()) 2718 Attrs.addAttribute(llvm::Attribute::InReg); 2719 2720 if (AI.getIndirectByVal()) 2721 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2722 2723 auto *Decl = ParamType->getAsRecordDecl(); 2724 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2725 Decl->getArgPassingRestrictions() == 2726 RecordArgPassingKind::CanPassInRegs) 2727 // When calling the function, the pointer passed in will be the only 2728 // reference to the underlying object. Mark it accordingly. 2729 Attrs.addAttribute(llvm::Attribute::NoAlias); 2730 2731 // TODO: We could add the byref attribute if not byval, but it would 2732 // require updating many testcases. 2733 2734 CharUnits Align = AI.getIndirectAlign(); 2735 2736 // In a byval argument, it is important that the required 2737 // alignment of the type is honored, as LLVM might be creating a 2738 // *new* stack object, and needs to know what alignment to give 2739 // it. (Sometimes it can deduce a sensible alignment on its own, 2740 // but not if clang decides it must emit a packed struct, or the 2741 // user specifies increased alignment requirements.) 2742 // 2743 // This is different from indirect *not* byval, where the object 2744 // exists already, and the align attribute is purely 2745 // informative. 2746 assert(!Align.isZero()); 2747 2748 // For now, only add this when we have a byval argument. 2749 // TODO: be less lazy about updating test cases. 2750 if (AI.getIndirectByVal()) 2751 Attrs.addAlignmentAttr(Align.getQuantity()); 2752 2753 // byval disables readnone and readonly. 2754 AddPotentialArgAccess(); 2755 break; 2756 } 2757 case ABIArgInfo::IndirectAliased: { 2758 CharUnits Align = AI.getIndirectAlign(); 2759 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2760 Attrs.addAlignmentAttr(Align.getQuantity()); 2761 break; 2762 } 2763 case ABIArgInfo::Ignore: 2764 case ABIArgInfo::Expand: 2765 case ABIArgInfo::CoerceAndExpand: 2766 break; 2767 2768 case ABIArgInfo::InAlloca: 2769 // inalloca disables readnone and readonly. 2770 AddPotentialArgAccess(); 2771 continue; 2772 } 2773 2774 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2775 QualType PTy = RefTy->getPointeeType(); 2776 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2777 Attrs.addDereferenceableAttr( 2778 getMinimumObjectSize(PTy).getQuantity()); 2779 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2780 !CodeGenOpts.NullPointerIsValid) 2781 Attrs.addAttribute(llvm::Attribute::NonNull); 2782 if (PTy->isObjectType()) { 2783 llvm::Align Alignment = 2784 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2785 Attrs.addAlignmentAttr(Alignment); 2786 } 2787 } 2788 2789 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2790 // > For arguments to a __kernel function declared to be a pointer to a 2791 // > data type, the OpenCL compiler can assume that the pointee is always 2792 // > appropriately aligned as required by the data type. 2793 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2794 ParamType->isPointerType()) { 2795 QualType PTy = ParamType->getPointeeType(); 2796 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2797 llvm::Align Alignment = 2798 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2799 Attrs.addAlignmentAttr(Alignment); 2800 } 2801 } 2802 2803 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2804 case ParameterABI::Ordinary: 2805 break; 2806 2807 case ParameterABI::SwiftIndirectResult: { 2808 // Add 'sret' if we haven't already used it for something, but 2809 // only if the result is void. 2810 if (!hasUsedSRet && RetTy->isVoidType()) { 2811 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2812 hasUsedSRet = true; 2813 } 2814 2815 // Add 'noalias' in either case. 2816 Attrs.addAttribute(llvm::Attribute::NoAlias); 2817 2818 // Add 'dereferenceable' and 'alignment'. 2819 auto PTy = ParamType->getPointeeType(); 2820 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2821 auto info = getContext().getTypeInfoInChars(PTy); 2822 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2823 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2824 } 2825 break; 2826 } 2827 2828 case ParameterABI::SwiftErrorResult: 2829 Attrs.addAttribute(llvm::Attribute::SwiftError); 2830 break; 2831 2832 case ParameterABI::SwiftContext: 2833 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2834 break; 2835 2836 case ParameterABI::SwiftAsyncContext: 2837 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2838 break; 2839 } 2840 2841 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2842 Attrs.addAttribute(llvm::Attribute::NoCapture); 2843 2844 if (Attrs.hasAttributes()) { 2845 unsigned FirstIRArg, NumIRArgs; 2846 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2847 for (unsigned i = 0; i < NumIRArgs; i++) 2848 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2849 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2850 } 2851 } 2852 assert(ArgNo == FI.arg_size()); 2853 2854 AttrList = llvm::AttributeList::get( 2855 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2856 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2857 } 2858 2859 /// An argument came in as a promoted argument; demote it back to its 2860 /// declared type. 2861 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2862 const VarDecl *var, 2863 llvm::Value *value) { 2864 llvm::Type *varType = CGF.ConvertType(var->getType()); 2865 2866 // This can happen with promotions that actually don't change the 2867 // underlying type, like the enum promotions. 2868 if (value->getType() == varType) return value; 2869 2870 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2871 && "unexpected promotion type"); 2872 2873 if (isa<llvm::IntegerType>(varType)) 2874 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2875 2876 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2877 } 2878 2879 /// Returns the attribute (either parameter attribute, or function 2880 /// attribute), which declares argument ArgNo to be non-null. 2881 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2882 QualType ArgType, unsigned ArgNo) { 2883 // FIXME: __attribute__((nonnull)) can also be applied to: 2884 // - references to pointers, where the pointee is known to be 2885 // nonnull (apparently a Clang extension) 2886 // - transparent unions containing pointers 2887 // In the former case, LLVM IR cannot represent the constraint. In 2888 // the latter case, we have no guarantee that the transparent union 2889 // is in fact passed as a pointer. 2890 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2891 return nullptr; 2892 // First, check attribute on parameter itself. 2893 if (PVD) { 2894 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2895 return ParmNNAttr; 2896 } 2897 // Check function attributes. 2898 if (!FD) 2899 return nullptr; 2900 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2901 if (NNAttr->isNonNull(ArgNo)) 2902 return NNAttr; 2903 } 2904 return nullptr; 2905 } 2906 2907 namespace { 2908 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2909 Address Temp; 2910 Address Arg; 2911 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2912 void Emit(CodeGenFunction &CGF, Flags flags) override { 2913 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2914 CGF.Builder.CreateStore(errorValue, Arg); 2915 } 2916 }; 2917 } 2918 2919 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2920 llvm::Function *Fn, 2921 const FunctionArgList &Args) { 2922 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2923 // Naked functions don't have prologues. 2924 return; 2925 2926 // If this is an implicit-return-zero function, go ahead and 2927 // initialize the return value. TODO: it might be nice to have 2928 // a more general mechanism for this that didn't require synthesized 2929 // return statements. 2930 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2931 if (FD->hasImplicitReturnZero()) { 2932 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2933 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2934 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2935 Builder.CreateStore(Zero, ReturnValue); 2936 } 2937 } 2938 2939 // FIXME: We no longer need the types from FunctionArgList; lift up and 2940 // simplify. 2941 2942 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2943 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2944 2945 // If we're using inalloca, all the memory arguments are GEPs off of the last 2946 // parameter, which is a pointer to the complete memory area. 2947 Address ArgStruct = Address::invalid(); 2948 if (IRFunctionArgs.hasInallocaArg()) 2949 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2950 FI.getArgStruct(), FI.getArgStructAlignment()); 2951 2952 // Name the struct return parameter. 2953 if (IRFunctionArgs.hasSRetArg()) { 2954 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2955 AI->setName("agg.result"); 2956 AI->addAttr(llvm::Attribute::NoAlias); 2957 } 2958 2959 // Track if we received the parameter as a pointer (indirect, byval, or 2960 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2961 // into a local alloca for us. 2962 SmallVector<ParamValue, 16> ArgVals; 2963 ArgVals.reserve(Args.size()); 2964 2965 // Create a pointer value for every parameter declaration. This usually 2966 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2967 // any cleanups or do anything that might unwind. We do that separately, so 2968 // we can push the cleanups in the correct order for the ABI. 2969 assert(FI.arg_size() == Args.size() && 2970 "Mismatch between function signature & arguments."); 2971 unsigned ArgNo = 0; 2972 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2973 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2974 i != e; ++i, ++info_it, ++ArgNo) { 2975 const VarDecl *Arg = *i; 2976 const ABIArgInfo &ArgI = info_it->info; 2977 2978 bool isPromoted = 2979 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2980 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2981 // the parameter is promoted. In this case we convert to 2982 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2983 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2984 assert(hasScalarEvaluationKind(Ty) == 2985 hasScalarEvaluationKind(Arg->getType())); 2986 2987 unsigned FirstIRArg, NumIRArgs; 2988 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2989 2990 switch (ArgI.getKind()) { 2991 case ABIArgInfo::InAlloca: { 2992 assert(NumIRArgs == 0); 2993 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2994 Address V = 2995 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2996 if (ArgI.getInAllocaIndirect()) 2997 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2998 getContext().getTypeAlignInChars(Ty)); 2999 ArgVals.push_back(ParamValue::forIndirect(V)); 3000 break; 3001 } 3002 3003 case ABIArgInfo::Indirect: 3004 case ABIArgInfo::IndirectAliased: { 3005 assert(NumIRArgs == 1); 3006 Address ParamAddr = makeNaturalAddressForPointer( 3007 Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr, 3008 nullptr, KnownNonNull); 3009 3010 if (!hasScalarEvaluationKind(Ty)) { 3011 // Aggregates and complex variables are accessed by reference. All we 3012 // need to do is realign the value, if requested. Also, if the address 3013 // may be aliased, copy it to ensure that the parameter variable is 3014 // mutable and has a unique adress, as C requires. 3015 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 3016 RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce"); 3017 3018 // Copy from the incoming argument pointer to the temporary with the 3019 // appropriate alignment. 3020 // 3021 // FIXME: We should have a common utility for generating an aggregate 3022 // copy. 3023 CharUnits Size = getContext().getTypeSizeInChars(Ty); 3024 Builder.CreateMemCpy( 3025 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 3026 ParamAddr.emitRawPointer(*this), 3027 ParamAddr.getAlignment().getAsAlign(), 3028 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 3029 ParamAddr = AlignedTemp; 3030 } 3031 ArgVals.push_back(ParamValue::forIndirect(ParamAddr)); 3032 } else { 3033 // Load scalar value from indirect argument. 3034 llvm::Value *V = 3035 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 3036 3037 if (isPromoted) 3038 V = emitArgumentDemotion(*this, Arg, V); 3039 ArgVals.push_back(ParamValue::forDirect(V)); 3040 } 3041 break; 3042 } 3043 3044 case ABIArgInfo::Extend: 3045 case ABIArgInfo::Direct: { 3046 auto AI = Fn->getArg(FirstIRArg); 3047 llvm::Type *LTy = ConvertType(Arg->getType()); 3048 3049 // Prepare parameter attributes. So far, only attributes for pointer 3050 // parameters are prepared. See 3051 // http://llvm.org/docs/LangRef.html#paramattrs. 3052 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 3053 ArgI.getCoerceToType()->isPointerTy()) { 3054 assert(NumIRArgs == 1); 3055 3056 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 3057 // Set `nonnull` attribute if any. 3058 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 3059 PVD->getFunctionScopeIndex()) && 3060 !CGM.getCodeGenOpts().NullPointerIsValid) 3061 AI->addAttr(llvm::Attribute::NonNull); 3062 3063 QualType OTy = PVD->getOriginalType(); 3064 if (const auto *ArrTy = 3065 getContext().getAsConstantArrayType(OTy)) { 3066 // A C99 array parameter declaration with the static keyword also 3067 // indicates dereferenceability, and if the size is constant we can 3068 // use the dereferenceable attribute (which requires the size in 3069 // bytes). 3070 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3071 QualType ETy = ArrTy->getElementType(); 3072 llvm::Align Alignment = 3073 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3074 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3075 uint64_t ArrSize = ArrTy->getZExtSize(); 3076 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 3077 ArrSize) { 3078 llvm::AttrBuilder Attrs(getLLVMContext()); 3079 Attrs.addDereferenceableAttr( 3080 getContext().getTypeSizeInChars(ETy).getQuantity() * 3081 ArrSize); 3082 AI->addAttrs(Attrs); 3083 } else if (getContext().getTargetInfo().getNullPointerValue( 3084 ETy.getAddressSpace()) == 0 && 3085 !CGM.getCodeGenOpts().NullPointerIsValid) { 3086 AI->addAttr(llvm::Attribute::NonNull); 3087 } 3088 } 3089 } else if (const auto *ArrTy = 3090 getContext().getAsVariableArrayType(OTy)) { 3091 // For C99 VLAs with the static keyword, we don't know the size so 3092 // we can't use the dereferenceable attribute, but in addrspace(0) 3093 // we know that it must be nonnull. 3094 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3095 QualType ETy = ArrTy->getElementType(); 3096 llvm::Align Alignment = 3097 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3098 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3099 if (!getTypes().getTargetAddressSpace(ETy) && 3100 !CGM.getCodeGenOpts().NullPointerIsValid) 3101 AI->addAttr(llvm::Attribute::NonNull); 3102 } 3103 } 3104 3105 // Set `align` attribute if any. 3106 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 3107 if (!AVAttr) 3108 if (const auto *TOTy = OTy->getAs<TypedefType>()) 3109 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 3110 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 3111 // If alignment-assumption sanitizer is enabled, we do *not* add 3112 // alignment attribute here, but emit normal alignment assumption, 3113 // so the UBSAN check could function. 3114 llvm::ConstantInt *AlignmentCI = 3115 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3116 uint64_t AlignmentInt = 3117 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 3118 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 3119 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 3120 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 3121 llvm::Align(AlignmentInt))); 3122 } 3123 } 3124 } 3125 3126 // Set 'noalias' if an argument type has the `restrict` qualifier. 3127 if (Arg->getType().isRestrictQualified()) 3128 AI->addAttr(llvm::Attribute::NoAlias); 3129 } 3130 3131 // Prepare the argument value. If we have the trivial case, handle it 3132 // with no muss and fuss. 3133 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 3134 ArgI.getCoerceToType() == ConvertType(Ty) && 3135 ArgI.getDirectOffset() == 0) { 3136 assert(NumIRArgs == 1); 3137 3138 // LLVM expects swifterror parameters to be used in very restricted 3139 // ways. Copy the value into a less-restricted temporary. 3140 llvm::Value *V = AI; 3141 if (FI.getExtParameterInfo(ArgNo).getABI() 3142 == ParameterABI::SwiftErrorResult) { 3143 QualType pointeeTy = Ty->getPointeeType(); 3144 assert(pointeeTy->isPointerType()); 3145 RawAddress temp = 3146 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3147 Address arg = makeNaturalAddressForPointer( 3148 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 3149 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 3150 Builder.CreateStore(incomingErrorValue, temp); 3151 V = temp.getPointer(); 3152 3153 // Push a cleanup to copy the value back at the end of the function. 3154 // The convention does not guarantee that the value will be written 3155 // back if the function exits with an unwind exception. 3156 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 3157 } 3158 3159 // Ensure the argument is the correct type. 3160 if (V->getType() != ArgI.getCoerceToType()) 3161 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 3162 3163 if (isPromoted) 3164 V = emitArgumentDemotion(*this, Arg, V); 3165 3166 // Because of merging of function types from multiple decls it is 3167 // possible for the type of an argument to not match the corresponding 3168 // type in the function type. Since we are codegening the callee 3169 // in here, add a cast to the argument type. 3170 llvm::Type *LTy = ConvertType(Arg->getType()); 3171 if (V->getType() != LTy) 3172 V = Builder.CreateBitCast(V, LTy); 3173 3174 ArgVals.push_back(ParamValue::forDirect(V)); 3175 break; 3176 } 3177 3178 // VLST arguments are coerced to VLATs at the function boundary for 3179 // ABI consistency. If this is a VLST that was coerced to 3180 // a VLAT at the function boundary and the types match up, use 3181 // llvm.vector.extract to convert back to the original VLST. 3182 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3183 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 3184 if (auto *VecTyFrom = 3185 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 3186 // If we are casting a scalable i1 predicate vector to a fixed i8 3187 // vector, bitcast the source and use a vector extract. 3188 if (VecTyFrom->getElementType()->isIntegerTy(1) && 3189 VecTyFrom->getElementCount().isKnownMultipleOf(8) && 3190 VecTyTo->getElementType() == Builder.getInt8Ty()) { 3191 VecTyFrom = llvm::ScalableVectorType::get( 3192 VecTyTo->getElementType(), 3193 VecTyFrom->getElementCount().getKnownMinValue() / 8); 3194 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 3195 } 3196 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 3197 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 3198 3199 assert(NumIRArgs == 1); 3200 Coerced->setName(Arg->getName() + ".coerce"); 3201 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 3202 VecTyTo, Coerced, Zero, "cast.fixed"))); 3203 break; 3204 } 3205 } 3206 } 3207 3208 llvm::StructType *STy = 3209 dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3210 if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy && 3211 STy->getNumElements() > 1) { 3212 [[maybe_unused]] llvm::TypeSize StructSize = 3213 CGM.getDataLayout().getTypeAllocSize(STy); 3214 [[maybe_unused]] llvm::TypeSize PtrElementSize = 3215 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(Ty)); 3216 if (STy->containsHomogeneousScalableVectorTypes()) { 3217 assert(StructSize == PtrElementSize && 3218 "Only allow non-fractional movement of structure with" 3219 "homogeneous scalable vector type"); 3220 3221 ArgVals.push_back(ParamValue::forDirect(AI)); 3222 break; 3223 } 3224 } 3225 3226 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3227 Arg->getName()); 3228 3229 // Pointer to store into. 3230 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3231 3232 // Fast-isel and the optimizer generally like scalar values better than 3233 // FCAs, so we flatten them if this is safe to do for this argument. 3234 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3235 STy->getNumElements() > 1) { 3236 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 3237 llvm::TypeSize PtrElementSize = 3238 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 3239 if (StructSize.isScalable()) { 3240 assert(STy->containsHomogeneousScalableVectorTypes() && 3241 "ABI only supports structure with homogeneous scalable vector " 3242 "type"); 3243 assert(StructSize == PtrElementSize && 3244 "Only allow non-fractional movement of structure with" 3245 "homogeneous scalable vector type"); 3246 assert(STy->getNumElements() == NumIRArgs); 3247 3248 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 3249 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3250 auto *AI = Fn->getArg(FirstIRArg + i); 3251 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3252 LoadedStructValue = 3253 Builder.CreateInsertValue(LoadedStructValue, AI, i); 3254 } 3255 3256 Builder.CreateStore(LoadedStructValue, Ptr); 3257 } else { 3258 uint64_t SrcSize = StructSize.getFixedValue(); 3259 uint64_t DstSize = PtrElementSize.getFixedValue(); 3260 3261 Address AddrToStoreInto = Address::invalid(); 3262 if (SrcSize <= DstSize) { 3263 AddrToStoreInto = Ptr.withElementType(STy); 3264 } else { 3265 AddrToStoreInto = 3266 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3267 } 3268 3269 assert(STy->getNumElements() == NumIRArgs); 3270 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3271 auto AI = Fn->getArg(FirstIRArg + i); 3272 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3273 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3274 Builder.CreateStore(AI, EltPtr); 3275 } 3276 3277 if (SrcSize > DstSize) { 3278 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3279 } 3280 } 3281 } else { 3282 // Simple case, just do a coerced store of the argument into the alloca. 3283 assert(NumIRArgs == 1); 3284 auto AI = Fn->getArg(FirstIRArg); 3285 AI->setName(Arg->getName() + ".coerce"); 3286 CreateCoercedStore( 3287 AI, Ptr, 3288 llvm::TypeSize::getFixed( 3289 getContext().getTypeSizeInChars(Ty).getQuantity() - 3290 ArgI.getDirectOffset()), 3291 /*DstIsVolatile=*/false); 3292 } 3293 3294 // Match to what EmitParmDecl is expecting for this type. 3295 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3296 llvm::Value *V = 3297 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3298 if (isPromoted) 3299 V = emitArgumentDemotion(*this, Arg, V); 3300 ArgVals.push_back(ParamValue::forDirect(V)); 3301 } else { 3302 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3303 } 3304 break; 3305 } 3306 3307 case ABIArgInfo::CoerceAndExpand: { 3308 // Reconstruct into a temporary. 3309 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3310 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3311 3312 auto coercionType = ArgI.getCoerceAndExpandType(); 3313 alloca = alloca.withElementType(coercionType); 3314 3315 unsigned argIndex = FirstIRArg; 3316 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3317 llvm::Type *eltType = coercionType->getElementType(i); 3318 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3319 continue; 3320 3321 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3322 auto elt = Fn->getArg(argIndex++); 3323 Builder.CreateStore(elt, eltAddr); 3324 } 3325 assert(argIndex == FirstIRArg + NumIRArgs); 3326 break; 3327 } 3328 3329 case ABIArgInfo::Expand: { 3330 // If this structure was expanded into multiple arguments then 3331 // we need to create a temporary and reconstruct it from the 3332 // arguments. 3333 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3334 LValue LV = MakeAddrLValue(Alloca, Ty); 3335 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3336 3337 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3338 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3339 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3340 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3341 auto AI = Fn->getArg(FirstIRArg + i); 3342 AI->setName(Arg->getName() + "." + Twine(i)); 3343 } 3344 break; 3345 } 3346 3347 case ABIArgInfo::Ignore: 3348 assert(NumIRArgs == 0); 3349 // Initialize the local variable appropriately. 3350 if (!hasScalarEvaluationKind(Ty)) { 3351 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3352 } else { 3353 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3354 ArgVals.push_back(ParamValue::forDirect(U)); 3355 } 3356 break; 3357 } 3358 } 3359 3360 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3361 for (int I = Args.size() - 1; I >= 0; --I) 3362 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3363 } else { 3364 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3365 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3366 } 3367 } 3368 3369 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3370 while (insn->use_empty()) { 3371 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3372 if (!bitcast) return; 3373 3374 // This is "safe" because we would have used a ConstantExpr otherwise. 3375 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3376 bitcast->eraseFromParent(); 3377 } 3378 } 3379 3380 /// Try to emit a fused autorelease of a return result. 3381 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3382 llvm::Value *result) { 3383 // We must be immediately followed the cast. 3384 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3385 if (BB->empty()) return nullptr; 3386 if (&BB->back() != result) return nullptr; 3387 3388 llvm::Type *resultType = result->getType(); 3389 3390 // result is in a BasicBlock and is therefore an Instruction. 3391 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3392 3393 SmallVector<llvm::Instruction *, 4> InstsToKill; 3394 3395 // Look for: 3396 // %generator = bitcast %type1* %generator2 to %type2* 3397 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3398 // We would have emitted this as a constant if the operand weren't 3399 // an Instruction. 3400 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3401 3402 // Require the generator to be immediately followed by the cast. 3403 if (generator->getNextNode() != bitcast) 3404 return nullptr; 3405 3406 InstsToKill.push_back(bitcast); 3407 } 3408 3409 // Look for: 3410 // %generator = call i8* @objc_retain(i8* %originalResult) 3411 // or 3412 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3413 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3414 if (!call) return nullptr; 3415 3416 bool doRetainAutorelease; 3417 3418 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3419 doRetainAutorelease = true; 3420 } else if (call->getCalledOperand() == 3421 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3422 doRetainAutorelease = false; 3423 3424 // If we emitted an assembly marker for this call (and the 3425 // ARCEntrypoints field should have been set if so), go looking 3426 // for that call. If we can't find it, we can't do this 3427 // optimization. But it should always be the immediately previous 3428 // instruction, unless we needed bitcasts around the call. 3429 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3430 llvm::Instruction *prev = call->getPrevNode(); 3431 assert(prev); 3432 if (isa<llvm::BitCastInst>(prev)) { 3433 prev = prev->getPrevNode(); 3434 assert(prev); 3435 } 3436 assert(isa<llvm::CallInst>(prev)); 3437 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3438 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3439 InstsToKill.push_back(prev); 3440 } 3441 } else { 3442 return nullptr; 3443 } 3444 3445 result = call->getArgOperand(0); 3446 InstsToKill.push_back(call); 3447 3448 // Keep killing bitcasts, for sanity. Note that we no longer care 3449 // about precise ordering as long as there's exactly one use. 3450 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3451 if (!bitcast->hasOneUse()) break; 3452 InstsToKill.push_back(bitcast); 3453 result = bitcast->getOperand(0); 3454 } 3455 3456 // Delete all the unnecessary instructions, from latest to earliest. 3457 for (auto *I : InstsToKill) 3458 I->eraseFromParent(); 3459 3460 // Do the fused retain/autorelease if we were asked to. 3461 if (doRetainAutorelease) 3462 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3463 3464 // Cast back to the result type. 3465 return CGF.Builder.CreateBitCast(result, resultType); 3466 } 3467 3468 /// If this is a +1 of the value of an immutable 'self', remove it. 3469 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3470 llvm::Value *result) { 3471 // This is only applicable to a method with an immutable 'self'. 3472 const ObjCMethodDecl *method = 3473 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3474 if (!method) return nullptr; 3475 const VarDecl *self = method->getSelfDecl(); 3476 if (!self->getType().isConstQualified()) return nullptr; 3477 3478 // Look for a retain call. Note: stripPointerCasts looks through returned arg 3479 // functions, which would cause us to miss the retain. 3480 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 3481 if (!retainCall || retainCall->getCalledOperand() != 3482 CGF.CGM.getObjCEntrypoints().objc_retain) 3483 return nullptr; 3484 3485 // Look for an ordinary load of 'self'. 3486 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3487 llvm::LoadInst *load = 3488 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3489 if (!load || load->isAtomic() || load->isVolatile() || 3490 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer()) 3491 return nullptr; 3492 3493 // Okay! Burn it all down. This relies for correctness on the 3494 // assumption that the retain is emitted as part of the return and 3495 // that thereafter everything is used "linearly". 3496 llvm::Type *resultType = result->getType(); 3497 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3498 assert(retainCall->use_empty()); 3499 retainCall->eraseFromParent(); 3500 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3501 3502 return CGF.Builder.CreateBitCast(load, resultType); 3503 } 3504 3505 /// Emit an ARC autorelease of the result of a function. 3506 /// 3507 /// \return the value to actually return from the function 3508 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3509 llvm::Value *result) { 3510 // If we're returning 'self', kill the initial retain. This is a 3511 // heuristic attempt to "encourage correctness" in the really unfortunate 3512 // case where we have a return of self during a dealloc and we desperately 3513 // need to avoid the possible autorelease. 3514 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3515 return self; 3516 3517 // At -O0, try to emit a fused retain/autorelease. 3518 if (CGF.shouldUseFusedARCCalls()) 3519 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3520 return fused; 3521 3522 return CGF.EmitARCAutoreleaseReturnValue(result); 3523 } 3524 3525 /// Heuristically search for a dominating store to the return-value slot. 3526 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3527 llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer(); 3528 3529 // Check if a User is a store which pointerOperand is the ReturnValue. 3530 // We are looking for stores to the ReturnValue, not for stores of the 3531 // ReturnValue to some other location. 3532 auto GetStoreIfValid = [&CGF, 3533 ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * { 3534 auto *SI = dyn_cast<llvm::StoreInst>(U); 3535 if (!SI || SI->getPointerOperand() != ReturnValuePtr || 3536 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3537 return nullptr; 3538 // These aren't actually possible for non-coerced returns, and we 3539 // only care about non-coerced returns on this code path. 3540 // All memory instructions inside __try block are volatile. 3541 assert(!SI->isAtomic() && 3542 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 3543 return SI; 3544 }; 3545 // If there are multiple uses of the return-value slot, just check 3546 // for something immediately preceding the IP. Sometimes this can 3547 // happen with how we generate implicit-returns; it can also happen 3548 // with noreturn cleanups. 3549 if (!ReturnValuePtr->hasOneUse()) { 3550 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3551 if (IP->empty()) return nullptr; 3552 3553 // Look at directly preceding instruction, skipping bitcasts and lifetime 3554 // markers. 3555 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3556 if (isa<llvm::BitCastInst>(&I)) 3557 continue; 3558 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3559 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3560 continue; 3561 3562 return GetStoreIfValid(&I); 3563 } 3564 return nullptr; 3565 } 3566 3567 llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back()); 3568 if (!store) return nullptr; 3569 3570 // Now do a first-and-dirty dominance check: just walk up the 3571 // single-predecessors chain from the current insertion point. 3572 llvm::BasicBlock *StoreBB = store->getParent(); 3573 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3574 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 3575 while (IP != StoreBB) { 3576 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 3577 return nullptr; 3578 } 3579 3580 // Okay, the store's basic block dominates the insertion point; we 3581 // can do our thing. 3582 return store; 3583 } 3584 3585 // Helper functions for EmitCMSEClearRecord 3586 3587 // Set the bits corresponding to a field having width `BitWidth` and located at 3588 // offset `BitOffset` (from the least significant bit) within a storage unit of 3589 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3590 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3591 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3592 int BitWidth, int CharWidth) { 3593 assert(CharWidth <= 64); 3594 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3595 3596 int Pos = 0; 3597 if (BitOffset >= CharWidth) { 3598 Pos += BitOffset / CharWidth; 3599 BitOffset = BitOffset % CharWidth; 3600 } 3601 3602 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3603 if (BitOffset + BitWidth >= CharWidth) { 3604 Bits[Pos++] |= (Used << BitOffset) & Used; 3605 BitWidth -= CharWidth - BitOffset; 3606 BitOffset = 0; 3607 } 3608 3609 while (BitWidth >= CharWidth) { 3610 Bits[Pos++] = Used; 3611 BitWidth -= CharWidth; 3612 } 3613 3614 if (BitWidth > 0) 3615 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3616 } 3617 3618 // Set the bits corresponding to a field having width `BitWidth` and located at 3619 // offset `BitOffset` (from the least significant bit) within a storage unit of 3620 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3621 // `Bits` corresponds to one target byte. Use target endian layout. 3622 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3623 int StorageSize, int BitOffset, int BitWidth, 3624 int CharWidth, bool BigEndian) { 3625 3626 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3627 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3628 3629 if (BigEndian) 3630 std::reverse(TmpBits.begin(), TmpBits.end()); 3631 3632 for (uint64_t V : TmpBits) 3633 Bits[StorageOffset++] |= V; 3634 } 3635 3636 static void setUsedBits(CodeGenModule &, QualType, int, 3637 SmallVectorImpl<uint64_t> &); 3638 3639 // Set the bits in `Bits`, which correspond to the value representations of 3640 // the actual members of the record type `RTy`. Note that this function does 3641 // not handle base classes, virtual tables, etc, since they cannot happen in 3642 // CMSE function arguments or return. The bit mask corresponds to the target 3643 // memory layout, i.e. it's endian dependent. 3644 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3645 SmallVectorImpl<uint64_t> &Bits) { 3646 ASTContext &Context = CGM.getContext(); 3647 int CharWidth = Context.getCharWidth(); 3648 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3649 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3650 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3651 3652 int Idx = 0; 3653 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3654 const FieldDecl *F = *I; 3655 3656 if (F->isUnnamedBitField() || F->isZeroLengthBitField(Context) || 3657 F->getType()->isIncompleteArrayType()) 3658 continue; 3659 3660 if (F->isBitField()) { 3661 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3662 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3663 BFI.StorageSize / CharWidth, BFI.Offset, 3664 BFI.Size, CharWidth, 3665 CGM.getDataLayout().isBigEndian()); 3666 continue; 3667 } 3668 3669 setUsedBits(CGM, F->getType(), 3670 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3671 } 3672 } 3673 3674 // Set the bits in `Bits`, which correspond to the value representations of 3675 // the elements of an array type `ATy`. 3676 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3677 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3678 const ASTContext &Context = CGM.getContext(); 3679 3680 QualType ETy = Context.getBaseElementType(ATy); 3681 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3682 SmallVector<uint64_t, 4> TmpBits(Size); 3683 setUsedBits(CGM, ETy, 0, TmpBits); 3684 3685 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3686 auto Src = TmpBits.begin(); 3687 auto Dst = Bits.begin() + Offset + I * Size; 3688 for (int J = 0; J < Size; ++J) 3689 *Dst++ |= *Src++; 3690 } 3691 } 3692 3693 // Set the bits in `Bits`, which correspond to the value representations of 3694 // the type `QTy`. 3695 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3696 SmallVectorImpl<uint64_t> &Bits) { 3697 if (const auto *RTy = QTy->getAs<RecordType>()) 3698 return setUsedBits(CGM, RTy, Offset, Bits); 3699 3700 ASTContext &Context = CGM.getContext(); 3701 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3702 return setUsedBits(CGM, ATy, Offset, Bits); 3703 3704 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3705 if (Size <= 0) 3706 return; 3707 3708 std::fill_n(Bits.begin() + Offset, Size, 3709 (uint64_t(1) << Context.getCharWidth()) - 1); 3710 } 3711 3712 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3713 int Pos, int Size, int CharWidth, 3714 bool BigEndian) { 3715 assert(Size > 0); 3716 uint64_t Mask = 0; 3717 if (BigEndian) { 3718 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3719 ++P) 3720 Mask = (Mask << CharWidth) | *P; 3721 } else { 3722 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3723 do 3724 Mask = (Mask << CharWidth) | *--P; 3725 while (P != End); 3726 } 3727 return Mask; 3728 } 3729 3730 // Emit code to clear the bits in a record, which aren't a part of any user 3731 // declared member, when the record is a function return. 3732 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3733 llvm::IntegerType *ITy, 3734 QualType QTy) { 3735 assert(Src->getType() == ITy); 3736 assert(ITy->getScalarSizeInBits() <= 64); 3737 3738 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3739 int Size = DataLayout.getTypeStoreSize(ITy); 3740 SmallVector<uint64_t, 4> Bits(Size); 3741 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3742 3743 int CharWidth = CGM.getContext().getCharWidth(); 3744 uint64_t Mask = 3745 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3746 3747 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3748 } 3749 3750 // Emit code to clear the bits in a record, which aren't a part of any user 3751 // declared member, when the record is a function argument. 3752 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3753 llvm::ArrayType *ATy, 3754 QualType QTy) { 3755 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3756 int Size = DataLayout.getTypeStoreSize(ATy); 3757 SmallVector<uint64_t, 16> Bits(Size); 3758 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3759 3760 // Clear each element of the LLVM array. 3761 int CharWidth = CGM.getContext().getCharWidth(); 3762 int CharsPerElt = 3763 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3764 int MaskIndex = 0; 3765 llvm::Value *R = llvm::PoisonValue::get(ATy); 3766 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3767 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3768 DataLayout.isBigEndian()); 3769 MaskIndex += CharsPerElt; 3770 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3771 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3772 R = Builder.CreateInsertValue(R, T1, I); 3773 } 3774 3775 return R; 3776 } 3777 3778 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3779 bool EmitRetDbgLoc, 3780 SourceLocation EndLoc) { 3781 if (FI.isNoReturn()) { 3782 // Noreturn functions don't return. 3783 EmitUnreachable(EndLoc); 3784 return; 3785 } 3786 3787 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3788 // Naked functions don't have epilogues. 3789 Builder.CreateUnreachable(); 3790 return; 3791 } 3792 3793 // Functions with no result always return void. 3794 if (!ReturnValue.isValid()) { 3795 Builder.CreateRetVoid(); 3796 return; 3797 } 3798 3799 llvm::DebugLoc RetDbgLoc; 3800 llvm::Value *RV = nullptr; 3801 QualType RetTy = FI.getReturnType(); 3802 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3803 3804 switch (RetAI.getKind()) { 3805 case ABIArgInfo::InAlloca: 3806 // Aggregates get evaluated directly into the destination. Sometimes we 3807 // need to return the sret value in a register, though. 3808 assert(hasAggregateEvaluationKind(RetTy)); 3809 if (RetAI.getInAllocaSRet()) { 3810 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3811 --EI; 3812 llvm::Value *ArgStruct = &*EI; 3813 llvm::Value *SRet = Builder.CreateStructGEP( 3814 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3815 llvm::Type *Ty = 3816 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3817 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3818 } 3819 break; 3820 3821 case ABIArgInfo::Indirect: { 3822 auto AI = CurFn->arg_begin(); 3823 if (RetAI.isSRetAfterThis()) 3824 ++AI; 3825 switch (getEvaluationKind(RetTy)) { 3826 case TEK_Complex: { 3827 ComplexPairTy RT = 3828 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3829 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3830 /*isInit*/ true); 3831 break; 3832 } 3833 case TEK_Aggregate: 3834 // Do nothing; aggregates get evaluated directly into the destination. 3835 break; 3836 case TEK_Scalar: { 3837 LValueBaseInfo BaseInfo; 3838 TBAAAccessInfo TBAAInfo; 3839 CharUnits Alignment = 3840 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3841 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3842 LValue ArgVal = 3843 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3844 EmitStoreOfScalar( 3845 EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal, 3846 /*isInit*/ true); 3847 break; 3848 } 3849 } 3850 break; 3851 } 3852 3853 case ABIArgInfo::Extend: 3854 case ABIArgInfo::Direct: 3855 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3856 RetAI.getDirectOffset() == 0) { 3857 // The internal return value temp always will have pointer-to-return-type 3858 // type, just do a load. 3859 3860 // If there is a dominating store to ReturnValue, we can elide 3861 // the load, zap the store, and usually zap the alloca. 3862 if (llvm::StoreInst *SI = 3863 findDominatingStoreToReturnValue(*this)) { 3864 // Reuse the debug location from the store unless there is 3865 // cleanup code to be emitted between the store and return 3866 // instruction. 3867 if (EmitRetDbgLoc && !AutoreleaseResult) 3868 RetDbgLoc = SI->getDebugLoc(); 3869 // Get the stored value and nuke the now-dead store. 3870 RV = SI->getValueOperand(); 3871 SI->eraseFromParent(); 3872 3873 // Otherwise, we have to do a simple load. 3874 } else { 3875 RV = Builder.CreateLoad(ReturnValue); 3876 } 3877 } else { 3878 // If the value is offset in memory, apply the offset now. 3879 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3880 3881 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3882 } 3883 3884 // In ARC, end functions that return a retainable type with a call 3885 // to objc_autoreleaseReturnValue. 3886 if (AutoreleaseResult) { 3887 #ifndef NDEBUG 3888 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3889 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3890 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3891 // CurCodeDecl or BlockInfo. 3892 QualType RT; 3893 3894 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3895 RT = FD->getReturnType(); 3896 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3897 RT = MD->getReturnType(); 3898 else if (isa<BlockDecl>(CurCodeDecl)) 3899 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3900 else 3901 llvm_unreachable("Unexpected function/method type"); 3902 3903 assert(getLangOpts().ObjCAutoRefCount && 3904 !FI.isReturnsRetained() && 3905 RT->isObjCRetainableType()); 3906 #endif 3907 RV = emitAutoreleaseOfResult(*this, RV); 3908 } 3909 3910 break; 3911 3912 case ABIArgInfo::Ignore: 3913 break; 3914 3915 case ABIArgInfo::CoerceAndExpand: { 3916 auto coercionType = RetAI.getCoerceAndExpandType(); 3917 3918 // Load all of the coerced elements out into results. 3919 llvm::SmallVector<llvm::Value*, 4> results; 3920 Address addr = ReturnValue.withElementType(coercionType); 3921 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3922 auto coercedEltType = coercionType->getElementType(i); 3923 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3924 continue; 3925 3926 auto eltAddr = Builder.CreateStructGEP(addr, i); 3927 auto elt = Builder.CreateLoad(eltAddr); 3928 results.push_back(elt); 3929 } 3930 3931 // If we have one result, it's the single direct result type. 3932 if (results.size() == 1) { 3933 RV = results[0]; 3934 3935 // Otherwise, we need to make a first-class aggregate. 3936 } else { 3937 // Construct a return type that lacks padding elements. 3938 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3939 3940 RV = llvm::PoisonValue::get(returnType); 3941 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3942 RV = Builder.CreateInsertValue(RV, results[i], i); 3943 } 3944 } 3945 break; 3946 } 3947 case ABIArgInfo::Expand: 3948 case ABIArgInfo::IndirectAliased: 3949 llvm_unreachable("Invalid ABI kind for return argument"); 3950 } 3951 3952 llvm::Instruction *Ret; 3953 if (RV) { 3954 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3955 // For certain return types, clear padding bits, as they may reveal 3956 // sensitive information. 3957 // Small struct/union types are passed as integers. 3958 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3959 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3960 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3961 } 3962 EmitReturnValueCheck(RV); 3963 Ret = Builder.CreateRet(RV); 3964 } else { 3965 Ret = Builder.CreateRetVoid(); 3966 } 3967 3968 if (RetDbgLoc) 3969 Ret->setDebugLoc(std::move(RetDbgLoc)); 3970 } 3971 3972 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3973 // A current decl may not be available when emitting vtable thunks. 3974 if (!CurCodeDecl) 3975 return; 3976 3977 // If the return block isn't reachable, neither is this check, so don't emit 3978 // it. 3979 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3980 return; 3981 3982 ReturnsNonNullAttr *RetNNAttr = nullptr; 3983 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3984 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3985 3986 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3987 return; 3988 3989 // Prefer the returns_nonnull attribute if it's present. 3990 SourceLocation AttrLoc; 3991 SanitizerMask CheckKind; 3992 SanitizerHandler Handler; 3993 if (RetNNAttr) { 3994 assert(!requiresReturnValueNullabilityCheck() && 3995 "Cannot check nullability and the nonnull attribute"); 3996 AttrLoc = RetNNAttr->getLocation(); 3997 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3998 Handler = SanitizerHandler::NonnullReturn; 3999 } else { 4000 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 4001 if (auto *TSI = DD->getTypeSourceInfo()) 4002 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 4003 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 4004 CheckKind = SanitizerKind::NullabilityReturn; 4005 Handler = SanitizerHandler::NullabilityReturn; 4006 } 4007 4008 SanitizerScope SanScope(this); 4009 4010 // Make sure the "return" source location is valid. If we're checking a 4011 // nullability annotation, make sure the preconditions for the check are met. 4012 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 4013 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 4014 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 4015 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 4016 if (requiresReturnValueNullabilityCheck()) 4017 CanNullCheck = 4018 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 4019 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 4020 EmitBlock(Check); 4021 4022 // Now do the null check. 4023 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 4024 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 4025 llvm::Value *DynamicData[] = {SLocPtr}; 4026 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 4027 4028 EmitBlock(NoCheck); 4029 4030 #ifndef NDEBUG 4031 // The return location should not be used after the check has been emitted. 4032 ReturnLocation = Address::invalid(); 4033 #endif 4034 } 4035 4036 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 4037 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 4038 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 4039 } 4040 4041 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 4042 QualType Ty) { 4043 // FIXME: Generate IR in one pass, rather than going back and fixing up these 4044 // placeholders. 4045 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 4046 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 4047 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 4048 4049 // FIXME: When we generate this IR in one pass, we shouldn't need 4050 // this win32-specific alignment hack. 4051 CharUnits Align = CharUnits::fromQuantity(4); 4052 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 4053 4054 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 4055 Ty.getQualifiers(), 4056 AggValueSlot::IsNotDestructed, 4057 AggValueSlot::DoesNotNeedGCBarriers, 4058 AggValueSlot::IsNotAliased, 4059 AggValueSlot::DoesNotOverlap); 4060 } 4061 4062 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 4063 const VarDecl *param, 4064 SourceLocation loc) { 4065 // StartFunction converted the ABI-lowered parameter(s) into a 4066 // local alloca. We need to turn that into an r-value suitable 4067 // for EmitCall. 4068 Address local = GetAddrOfLocalVar(param); 4069 4070 QualType type = param->getType(); 4071 4072 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 4073 // but the argument needs to be the original pointer. 4074 if (type->isReferenceType()) { 4075 args.add(RValue::get(Builder.CreateLoad(local)), type); 4076 4077 // In ARC, move out of consumed arguments so that the release cleanup 4078 // entered by StartFunction doesn't cause an over-release. This isn't 4079 // optimal -O0 code generation, but it should get cleaned up when 4080 // optimization is enabled. This also assumes that delegate calls are 4081 // performed exactly once for a set of arguments, but that should be safe. 4082 } else if (getLangOpts().ObjCAutoRefCount && 4083 param->hasAttr<NSConsumedAttr>() && 4084 type->isObjCRetainableType()) { 4085 llvm::Value *ptr = Builder.CreateLoad(local); 4086 auto null = 4087 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 4088 Builder.CreateStore(null, local); 4089 args.add(RValue::get(ptr), type); 4090 4091 // For the most part, we just need to load the alloca, except that 4092 // aggregate r-values are actually pointers to temporaries. 4093 } else { 4094 args.add(convertTempToRValue(local, type, loc), type); 4095 } 4096 4097 // Deactivate the cleanup for the callee-destructed param that was pushed. 4098 if (type->isRecordType() && !CurFuncIsThunk && 4099 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4100 param->needsDestruction(getContext())) { 4101 EHScopeStack::stable_iterator cleanup = 4102 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 4103 assert(cleanup.isValid() && 4104 "cleanup for callee-destructed param not recorded"); 4105 // This unreachable is a temporary marker which will be removed later. 4106 llvm::Instruction *isActive = Builder.CreateUnreachable(); 4107 args.addArgCleanupDeactivation(cleanup, isActive); 4108 } 4109 } 4110 4111 static bool isProvablyNull(llvm::Value *addr) { 4112 return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr); 4113 } 4114 4115 static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) { 4116 return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout()); 4117 } 4118 4119 /// Emit the actual writing-back of a writeback. 4120 static void emitWriteback(CodeGenFunction &CGF, 4121 const CallArgList::Writeback &writeback) { 4122 const LValue &srcLV = writeback.Source; 4123 Address srcAddr = srcLV.getAddress(); 4124 assert(!isProvablyNull(srcAddr.getBasePointer()) && 4125 "shouldn't have writeback for provably null argument"); 4126 4127 llvm::BasicBlock *contBB = nullptr; 4128 4129 // If the argument wasn't provably non-null, we need to null check 4130 // before doing the store. 4131 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4132 4133 if (!provablyNonNull) { 4134 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 4135 contBB = CGF.createBasicBlock("icr.done"); 4136 4137 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4138 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 4139 CGF.EmitBlock(writebackBB); 4140 } 4141 4142 // Load the value to writeback. 4143 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 4144 4145 // Cast it back, in case we're writing an id to a Foo* or something. 4146 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 4147 "icr.writeback-cast"); 4148 4149 // Perform the writeback. 4150 4151 // If we have a "to use" value, it's something we need to emit a use 4152 // of. This has to be carefully threaded in: if it's done after the 4153 // release it's potentially undefined behavior (and the optimizer 4154 // will ignore it), and if it happens before the retain then the 4155 // optimizer could move the release there. 4156 if (writeback.ToUse) { 4157 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 4158 4159 // Retain the new value. No need to block-copy here: the block's 4160 // being passed up the stack. 4161 value = CGF.EmitARCRetainNonBlock(value); 4162 4163 // Emit the intrinsic use here. 4164 CGF.EmitARCIntrinsicUse(writeback.ToUse); 4165 4166 // Load the old value (primitively). 4167 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 4168 4169 // Put the new value in place (primitively). 4170 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 4171 4172 // Release the old value. 4173 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 4174 4175 // Otherwise, we can just do a normal lvalue store. 4176 } else { 4177 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 4178 } 4179 4180 // Jump to the continuation block. 4181 if (!provablyNonNull) 4182 CGF.EmitBlock(contBB); 4183 } 4184 4185 static void emitWritebacks(CodeGenFunction &CGF, 4186 const CallArgList &args) { 4187 for (const auto &I : args.writebacks()) 4188 emitWriteback(CGF, I); 4189 } 4190 4191 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 4192 const CallArgList &CallArgs) { 4193 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 4194 CallArgs.getCleanupsToDeactivate(); 4195 // Iterate in reverse to increase the likelihood of popping the cleanup. 4196 for (const auto &I : llvm::reverse(Cleanups)) { 4197 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 4198 I.IsActiveIP->eraseFromParent(); 4199 } 4200 } 4201 4202 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 4203 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 4204 if (uop->getOpcode() == UO_AddrOf) 4205 return uop->getSubExpr(); 4206 return nullptr; 4207 } 4208 4209 /// Emit an argument that's being passed call-by-writeback. That is, 4210 /// we are passing the address of an __autoreleased temporary; it 4211 /// might be copy-initialized with the current value of the given 4212 /// address, but it will definitely be copied out of after the call. 4213 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 4214 const ObjCIndirectCopyRestoreExpr *CRE) { 4215 LValue srcLV; 4216 4217 // Make an optimistic effort to emit the address as an l-value. 4218 // This can fail if the argument expression is more complicated. 4219 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 4220 srcLV = CGF.EmitLValue(lvExpr); 4221 4222 // Otherwise, just emit it as a scalar. 4223 } else { 4224 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 4225 4226 QualType srcAddrType = 4227 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 4228 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 4229 } 4230 Address srcAddr = srcLV.getAddress(); 4231 4232 // The dest and src types don't necessarily match in LLVM terms 4233 // because of the crazy ObjC compatibility rules. 4234 4235 llvm::PointerType *destType = 4236 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 4237 llvm::Type *destElemType = 4238 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 4239 4240 // If the address is a constant null, just pass the appropriate null. 4241 if (isProvablyNull(srcAddr.getBasePointer())) { 4242 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 4243 CRE->getType()); 4244 return; 4245 } 4246 4247 // Create the temporary. 4248 Address temp = 4249 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4250 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4251 // and that cleanup will be conditional if we can't prove that the l-value 4252 // isn't null, so we need to register a dominating point so that the cleanups 4253 // system will make valid IR. 4254 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4255 4256 // Zero-initialize it if we're not doing a copy-initialization. 4257 bool shouldCopy = CRE->shouldCopy(); 4258 if (!shouldCopy) { 4259 llvm::Value *null = 4260 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4261 CGF.Builder.CreateStore(null, temp); 4262 } 4263 4264 llvm::BasicBlock *contBB = nullptr; 4265 llvm::BasicBlock *originBB = nullptr; 4266 4267 // If the address is *not* known to be non-null, we need to switch. 4268 llvm::Value *finalArgument; 4269 4270 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4271 4272 if (provablyNonNull) { 4273 finalArgument = temp.emitRawPointer(CGF); 4274 } else { 4275 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4276 4277 finalArgument = CGF.Builder.CreateSelect( 4278 isNull, llvm::ConstantPointerNull::get(destType), 4279 temp.emitRawPointer(CGF), "icr.argument"); 4280 4281 // If we need to copy, then the load has to be conditional, which 4282 // means we need control flow. 4283 if (shouldCopy) { 4284 originBB = CGF.Builder.GetInsertBlock(); 4285 contBB = CGF.createBasicBlock("icr.cont"); 4286 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4287 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4288 CGF.EmitBlock(copyBB); 4289 condEval.begin(CGF); 4290 } 4291 } 4292 4293 llvm::Value *valueToUse = nullptr; 4294 4295 // Perform a copy if necessary. 4296 if (shouldCopy) { 4297 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4298 assert(srcRV.isScalar()); 4299 4300 llvm::Value *src = srcRV.getScalarVal(); 4301 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4302 4303 // Use an ordinary store, not a store-to-lvalue. 4304 CGF.Builder.CreateStore(src, temp); 4305 4306 // If optimization is enabled, and the value was held in a 4307 // __strong variable, we need to tell the optimizer that this 4308 // value has to stay alive until we're doing the store back. 4309 // This is because the temporary is effectively unretained, 4310 // and so otherwise we can violate the high-level semantics. 4311 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4312 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4313 valueToUse = src; 4314 } 4315 } 4316 4317 // Finish the control flow if we needed it. 4318 if (shouldCopy && !provablyNonNull) { 4319 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4320 CGF.EmitBlock(contBB); 4321 4322 // Make a phi for the value to intrinsically use. 4323 if (valueToUse) { 4324 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4325 "icr.to-use"); 4326 phiToUse->addIncoming(valueToUse, copyBB); 4327 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4328 originBB); 4329 valueToUse = phiToUse; 4330 } 4331 4332 condEval.end(CGF); 4333 } 4334 4335 args.addWriteback(srcLV, temp, valueToUse); 4336 args.add(RValue::get(finalArgument), CRE->getType()); 4337 } 4338 4339 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4340 assert(!StackBase); 4341 4342 // Save the stack. 4343 StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 4344 } 4345 4346 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4347 if (StackBase) { 4348 // Restore the stack after the call. 4349 CGF.Builder.CreateStackRestore(StackBase); 4350 } 4351 } 4352 4353 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4354 SourceLocation ArgLoc, 4355 AbstractCallee AC, 4356 unsigned ParmNum) { 4357 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4358 SanOpts.has(SanitizerKind::NullabilityArg))) 4359 return; 4360 4361 // The param decl may be missing in a variadic function. 4362 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4363 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4364 4365 // Prefer the nonnull attribute if it's present. 4366 const NonNullAttr *NNAttr = nullptr; 4367 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4368 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4369 4370 bool CanCheckNullability = false; 4371 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD && 4372 !PVD->getType()->isRecordType()) { 4373 auto Nullability = PVD->getType()->getNullability(); 4374 CanCheckNullability = Nullability && 4375 *Nullability == NullabilityKind::NonNull && 4376 PVD->getTypeSourceInfo(); 4377 } 4378 4379 if (!NNAttr && !CanCheckNullability) 4380 return; 4381 4382 SourceLocation AttrLoc; 4383 SanitizerMask CheckKind; 4384 SanitizerHandler Handler; 4385 if (NNAttr) { 4386 AttrLoc = NNAttr->getLocation(); 4387 CheckKind = SanitizerKind::NonnullAttribute; 4388 Handler = SanitizerHandler::NonnullArg; 4389 } else { 4390 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4391 CheckKind = SanitizerKind::NullabilityArg; 4392 Handler = SanitizerHandler::NullabilityArg; 4393 } 4394 4395 SanitizerScope SanScope(this); 4396 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4397 llvm::Constant *StaticData[] = { 4398 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4399 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4400 }; 4401 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 4402 } 4403 4404 void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType, 4405 SourceLocation ArgLoc, 4406 AbstractCallee AC, unsigned ParmNum) { 4407 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4408 SanOpts.has(SanitizerKind::NullabilityArg))) 4409 return; 4410 4411 EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum); 4412 } 4413 4414 // Check if the call is going to use the inalloca convention. This needs to 4415 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4416 // later, so we can't check it directly. 4417 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4418 ArrayRef<QualType> ArgTypes) { 4419 // The Swift calling conventions don't go through the target-specific 4420 // argument classification, they never use inalloca. 4421 // TODO: Consider limiting inalloca use to only calling conventions supported 4422 // by MSVC. 4423 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4424 return false; 4425 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4426 return false; 4427 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4428 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4429 }); 4430 } 4431 4432 #ifndef NDEBUG 4433 // Determine whether the given argument is an Objective-C method 4434 // that may have type parameters in its signature. 4435 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4436 const DeclContext *dc = method->getDeclContext(); 4437 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4438 return classDecl->getTypeParamListAsWritten(); 4439 } 4440 4441 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4442 return catDecl->getTypeParamList(); 4443 } 4444 4445 return false; 4446 } 4447 #endif 4448 4449 /// EmitCallArgs - Emit call arguments for a function. 4450 void CodeGenFunction::EmitCallArgs( 4451 CallArgList &Args, PrototypeWrapper Prototype, 4452 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4453 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4454 SmallVector<QualType, 16> ArgTypes; 4455 4456 assert((ParamsToSkip == 0 || Prototype.P) && 4457 "Can't skip parameters if type info is not provided"); 4458 4459 // This variable only captures *explicitly* written conventions, not those 4460 // applied by default via command line flags or target defaults, such as 4461 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4462 // require knowing if this is a C++ instance method or being able to see 4463 // unprototyped FunctionTypes. 4464 CallingConv ExplicitCC = CC_C; 4465 4466 // First, if a prototype was provided, use those argument types. 4467 bool IsVariadic = false; 4468 if (Prototype.P) { 4469 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4470 if (MD) { 4471 IsVariadic = MD->isVariadic(); 4472 ExplicitCC = getCallingConventionForDecl( 4473 MD, CGM.getTarget().getTriple().isOSWindows()); 4474 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4475 MD->param_type_end()); 4476 } else { 4477 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4478 IsVariadic = FPT->isVariadic(); 4479 ExplicitCC = FPT->getExtInfo().getCC(); 4480 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4481 FPT->param_type_end()); 4482 } 4483 4484 #ifndef NDEBUG 4485 // Check that the prototyped types match the argument expression types. 4486 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4487 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4488 for (QualType Ty : ArgTypes) { 4489 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4490 assert( 4491 (isGenericMethod || Ty->isVariablyModifiedType() || 4492 Ty.getNonReferenceType()->isObjCRetainableType() || 4493 getContext() 4494 .getCanonicalType(Ty.getNonReferenceType()) 4495 .getTypePtr() == 4496 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4497 "type mismatch in call argument!"); 4498 ++Arg; 4499 } 4500 4501 // Either we've emitted all the call args, or we have a call to variadic 4502 // function. 4503 assert((Arg == ArgRange.end() || IsVariadic) && 4504 "Extra arguments in non-variadic function!"); 4505 #endif 4506 } 4507 4508 // If we still have any arguments, emit them using the type of the argument. 4509 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4510 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4511 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4512 4513 // We must evaluate arguments from right to left in the MS C++ ABI, 4514 // because arguments are destroyed left to right in the callee. As a special 4515 // case, there are certain language constructs that require left-to-right 4516 // evaluation, and in those cases we consider the evaluation order requirement 4517 // to trump the "destruction order is reverse construction order" guarantee. 4518 bool LeftToRight = 4519 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4520 ? Order == EvaluationOrder::ForceLeftToRight 4521 : Order != EvaluationOrder::ForceRightToLeft; 4522 4523 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4524 RValue EmittedArg) { 4525 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4526 return; 4527 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4528 if (PS == nullptr) 4529 return; 4530 4531 const auto &Context = getContext(); 4532 auto SizeTy = Context.getSizeType(); 4533 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4534 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4535 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4536 EmittedArg.getScalarVal(), 4537 PS->isDynamic()); 4538 Args.add(RValue::get(V), SizeTy); 4539 // If we're emitting args in reverse, be sure to do so with 4540 // pass_object_size, as well. 4541 if (!LeftToRight) 4542 std::swap(Args.back(), *(&Args.back() - 1)); 4543 }; 4544 4545 // Insert a stack save if we're going to need any inalloca args. 4546 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4547 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4548 "inalloca only supported on x86"); 4549 Args.allocateArgumentMemory(*this); 4550 } 4551 4552 // Evaluate each argument in the appropriate order. 4553 size_t CallArgsStart = Args.size(); 4554 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4555 unsigned Idx = LeftToRight ? I : E - I - 1; 4556 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4557 unsigned InitialArgSize = Args.size(); 4558 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4559 // the argument and parameter match or the objc method is parameterized. 4560 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4561 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4562 ArgTypes[Idx]) || 4563 (isa<ObjCMethodDecl>(AC.getDecl()) && 4564 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4565 "Argument and parameter types don't match"); 4566 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4567 // In particular, we depend on it being the last arg in Args, and the 4568 // objectsize bits depend on there only being one arg if !LeftToRight. 4569 assert(InitialArgSize + 1 == Args.size() && 4570 "The code below depends on only adding one arg per EmitCallArg"); 4571 (void)InitialArgSize; 4572 // Since pointer argument are never emitted as LValue, it is safe to emit 4573 // non-null argument check for r-value only. 4574 if (!Args.back().hasLValue()) { 4575 RValue RVArg = Args.back().getKnownRValue(); 4576 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4577 ParamsToSkip + Idx); 4578 // @llvm.objectsize should never have side-effects and shouldn't need 4579 // destruction/cleanups, so we can safely "emit" it after its arg, 4580 // regardless of right-to-leftness 4581 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4582 } 4583 } 4584 4585 if (!LeftToRight) { 4586 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4587 // IR function. 4588 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4589 } 4590 } 4591 4592 namespace { 4593 4594 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4595 DestroyUnpassedArg(Address Addr, QualType Ty) 4596 : Addr(Addr), Ty(Ty) {} 4597 4598 Address Addr; 4599 QualType Ty; 4600 4601 void Emit(CodeGenFunction &CGF, Flags flags) override { 4602 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4603 if (DtorKind == QualType::DK_cxx_destructor) { 4604 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4605 assert(!Dtor->isTrivial()); 4606 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4607 /*Delegating=*/false, Addr, Ty); 4608 } else { 4609 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4610 } 4611 } 4612 }; 4613 4614 struct DisableDebugLocationUpdates { 4615 CodeGenFunction &CGF; 4616 bool disabledDebugInfo; 4617 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4618 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4619 CGF.disableDebugInfo(); 4620 } 4621 ~DisableDebugLocationUpdates() { 4622 if (disabledDebugInfo) 4623 CGF.enableDebugInfo(); 4624 } 4625 }; 4626 4627 } // end anonymous namespace 4628 4629 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4630 if (!HasLV) 4631 return RV; 4632 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4633 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4634 LV.isVolatile()); 4635 IsUsed = true; 4636 return RValue::getAggregate(Copy.getAddress()); 4637 } 4638 4639 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4640 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4641 if (!HasLV && RV.isScalar()) 4642 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4643 else if (!HasLV && RV.isComplex()) 4644 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4645 else { 4646 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 4647 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4648 // We assume that call args are never copied into subobjects. 4649 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4650 HasLV ? LV.isVolatileQualified() 4651 : RV.isVolatileQualified()); 4652 } 4653 IsUsed = true; 4654 } 4655 4656 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4657 QualType type) { 4658 DisableDebugLocationUpdates Dis(*this, E); 4659 if (const ObjCIndirectCopyRestoreExpr *CRE 4660 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4661 assert(getLangOpts().ObjCAutoRefCount); 4662 return emitWritebackArg(*this, args, CRE); 4663 } 4664 4665 assert(type->isReferenceType() == E->isGLValue() && 4666 "reference binding to unmaterialized r-value!"); 4667 4668 if (E->isGLValue()) { 4669 assert(E->getObjectKind() == OK_Ordinary); 4670 return args.add(EmitReferenceBindingToExpr(E), type); 4671 } 4672 4673 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4674 4675 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4676 // However, we still have to push an EH-only cleanup in case we unwind before 4677 // we make it to the call. 4678 if (type->isRecordType() && 4679 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4680 // If we're using inalloca, use the argument memory. Otherwise, use a 4681 // temporary. 4682 AggValueSlot Slot = args.isUsingInAlloca() 4683 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4684 4685 bool DestroyedInCallee = true, NeedsCleanup = true; 4686 if (const auto *RD = type->getAsCXXRecordDecl()) 4687 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4688 else 4689 NeedsCleanup = type.isDestructedType(); 4690 4691 if (DestroyedInCallee) 4692 Slot.setExternallyDestructed(); 4693 4694 EmitAggExpr(E, Slot); 4695 RValue RV = Slot.asRValue(); 4696 args.add(RV, type); 4697 4698 if (DestroyedInCallee && NeedsCleanup) { 4699 // Create a no-op GEP between the placeholder and the cleanup so we can 4700 // RAUW it successfully. It also serves as a marker of the first 4701 // instruction where the cleanup is active. 4702 pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup, 4703 Slot.getAddress(), type); 4704 // This unreachable is a temporary marker which will be removed later. 4705 llvm::Instruction *IsActive = 4706 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 4707 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4708 } 4709 return; 4710 } 4711 4712 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4713 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue && 4714 !type->isArrayParameterType()) { 4715 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4716 assert(L.isSimple()); 4717 args.addUncopiedAggregate(L, type); 4718 return; 4719 } 4720 4721 args.add(EmitAnyExprToTemp(E), type); 4722 } 4723 4724 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4725 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4726 // implicitly widens null pointer constants that are arguments to varargs 4727 // functions to pointer-sized ints. 4728 if (!getTarget().getTriple().isOSWindows()) 4729 return Arg->getType(); 4730 4731 if (Arg->getType()->isIntegerType() && 4732 getContext().getTypeSize(Arg->getType()) < 4733 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4734 Arg->isNullPointerConstant(getContext(), 4735 Expr::NPC_ValueDependentIsNotNull)) { 4736 return getContext().getIntPtrType(); 4737 } 4738 4739 return Arg->getType(); 4740 } 4741 4742 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4743 // optimizer it can aggressively ignore unwind edges. 4744 void 4745 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4746 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4747 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4748 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4749 CGM.getNoObjCARCExceptionsMetadata()); 4750 } 4751 4752 /// Emits a call to the given no-arguments nounwind runtime function. 4753 llvm::CallInst * 4754 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4755 const llvm::Twine &name) { 4756 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name); 4757 } 4758 4759 /// Emits a call to the given nounwind runtime function. 4760 llvm::CallInst * 4761 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4762 ArrayRef<Address> args, 4763 const llvm::Twine &name) { 4764 SmallVector<llvm::Value *, 3> values; 4765 for (auto arg : args) 4766 values.push_back(arg.emitRawPointer(*this)); 4767 return EmitNounwindRuntimeCall(callee, values, name); 4768 } 4769 4770 llvm::CallInst * 4771 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4772 ArrayRef<llvm::Value *> args, 4773 const llvm::Twine &name) { 4774 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4775 call->setDoesNotThrow(); 4776 return call; 4777 } 4778 4779 /// Emits a simple call (never an invoke) to the given no-arguments 4780 /// runtime function. 4781 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4782 const llvm::Twine &name) { 4783 return EmitRuntimeCall(callee, std::nullopt, name); 4784 } 4785 4786 // Calls which may throw must have operand bundles indicating which funclet 4787 // they are nested within. 4788 SmallVector<llvm::OperandBundleDef, 1> 4789 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4790 // There is no need for a funclet operand bundle if we aren't inside a 4791 // funclet. 4792 if (!CurrentFuncletPad) 4793 return (SmallVector<llvm::OperandBundleDef, 1>()); 4794 4795 // Skip intrinsics which cannot throw (as long as they don't lower into 4796 // regular function calls in the course of IR transformations). 4797 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4798 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4799 auto IID = CalleeFn->getIntrinsicID(); 4800 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4801 return (SmallVector<llvm::OperandBundleDef, 1>()); 4802 } 4803 } 4804 4805 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4806 BundleList.emplace_back("funclet", CurrentFuncletPad); 4807 return BundleList; 4808 } 4809 4810 /// Emits a simple call (never an invoke) to the given runtime function. 4811 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4812 ArrayRef<llvm::Value *> args, 4813 const llvm::Twine &name) { 4814 llvm::CallInst *call = Builder.CreateCall( 4815 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4816 call->setCallingConv(getRuntimeCC()); 4817 4818 if (CGM.shouldEmitConvergenceTokens() && call->isConvergent()) 4819 return addControlledConvergenceToken(call); 4820 return call; 4821 } 4822 4823 /// Emits a call or invoke to the given noreturn runtime function. 4824 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4825 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4826 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4827 getBundlesForFunclet(callee.getCallee()); 4828 4829 if (getInvokeDest()) { 4830 llvm::InvokeInst *invoke = 4831 Builder.CreateInvoke(callee, 4832 getUnreachableBlock(), 4833 getInvokeDest(), 4834 args, 4835 BundleList); 4836 invoke->setDoesNotReturn(); 4837 invoke->setCallingConv(getRuntimeCC()); 4838 } else { 4839 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4840 call->setDoesNotReturn(); 4841 call->setCallingConv(getRuntimeCC()); 4842 Builder.CreateUnreachable(); 4843 } 4844 } 4845 4846 /// Emits a call or invoke instruction to the given nullary runtime function. 4847 llvm::CallBase * 4848 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4849 const Twine &name) { 4850 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 4851 } 4852 4853 /// Emits a call or invoke instruction to the given runtime function. 4854 llvm::CallBase * 4855 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4856 ArrayRef<llvm::Value *> args, 4857 const Twine &name) { 4858 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4859 call->setCallingConv(getRuntimeCC()); 4860 return call; 4861 } 4862 4863 /// Emits a call or invoke instruction to the given function, depending 4864 /// on the current state of the EH stack. 4865 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4866 ArrayRef<llvm::Value *> Args, 4867 const Twine &Name) { 4868 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4869 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4870 getBundlesForFunclet(Callee.getCallee()); 4871 4872 llvm::CallBase *Inst; 4873 if (!InvokeDest) 4874 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4875 else { 4876 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4877 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4878 Name); 4879 EmitBlock(ContBB); 4880 } 4881 4882 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4883 // optimizer it can aggressively ignore unwind edges. 4884 if (CGM.getLangOpts().ObjCAutoRefCount) 4885 AddObjCARCExceptionMetadata(Inst); 4886 4887 return Inst; 4888 } 4889 4890 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4891 llvm::Value *New) { 4892 DeferredReplacements.push_back( 4893 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4894 } 4895 4896 namespace { 4897 4898 /// Specify given \p NewAlign as the alignment of return value attribute. If 4899 /// such attribute already exists, re-set it to the maximal one of two options. 4900 [[nodiscard]] llvm::AttributeList 4901 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4902 const llvm::AttributeList &Attrs, 4903 llvm::Align NewAlign) { 4904 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4905 if (CurAlign >= NewAlign) 4906 return Attrs; 4907 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4908 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4909 .addRetAttribute(Ctx, AlignAttr); 4910 } 4911 4912 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4913 protected: 4914 CodeGenFunction &CGF; 4915 4916 /// We do nothing if this is, or becomes, nullptr. 4917 const AlignedAttrTy *AA = nullptr; 4918 4919 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4920 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4921 4922 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4923 : CGF(CGF_) { 4924 if (!FuncDecl) 4925 return; 4926 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4927 } 4928 4929 public: 4930 /// If we can, materialize the alignment as an attribute on return value. 4931 [[nodiscard]] llvm::AttributeList 4932 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4933 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4934 return Attrs; 4935 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4936 if (!AlignmentCI) 4937 return Attrs; 4938 // We may legitimately have non-power-of-2 alignment here. 4939 // If so, this is UB land, emit it via `@llvm.assume` instead. 4940 if (!AlignmentCI->getValue().isPowerOf2()) 4941 return Attrs; 4942 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4943 CGF.getLLVMContext(), Attrs, 4944 llvm::Align( 4945 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4946 AA = nullptr; // We're done. Disallow doing anything else. 4947 return NewAttrs; 4948 } 4949 4950 /// Emit alignment assumption. 4951 /// This is a general fallback that we take if either there is an offset, 4952 /// or the alignment is variable or we are sanitizing for alignment. 4953 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4954 if (!AA) 4955 return; 4956 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4957 AA->getLocation(), Alignment, OffsetCI); 4958 AA = nullptr; // We're done. Disallow doing anything else. 4959 } 4960 }; 4961 4962 /// Helper data structure to emit `AssumeAlignedAttr`. 4963 class AssumeAlignedAttrEmitter final 4964 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4965 public: 4966 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4967 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4968 if (!AA) 4969 return; 4970 // It is guaranteed that the alignment/offset are constants. 4971 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4972 if (Expr *Offset = AA->getOffset()) { 4973 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4974 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4975 OffsetCI = nullptr; 4976 } 4977 } 4978 }; 4979 4980 /// Helper data structure to emit `AllocAlignAttr`. 4981 class AllocAlignAttrEmitter final 4982 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4983 public: 4984 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4985 const CallArgList &CallArgs) 4986 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4987 if (!AA) 4988 return; 4989 // Alignment may or may not be a constant, and that is okay. 4990 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4991 .getRValue(CGF) 4992 .getScalarVal(); 4993 } 4994 }; 4995 4996 } // namespace 4997 4998 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4999 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 5000 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 5001 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 5002 return getMaxVectorWidth(AT->getElementType()); 5003 5004 unsigned MaxVectorWidth = 0; 5005 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 5006 for (auto *I : ST->elements()) 5007 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 5008 return MaxVectorWidth; 5009 } 5010 5011 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 5012 const CGCallee &Callee, 5013 ReturnValueSlot ReturnValue, 5014 const CallArgList &CallArgs, 5015 llvm::CallBase **callOrInvoke, bool IsMustTail, 5016 SourceLocation Loc, 5017 bool IsVirtualFunctionPointerThunk) { 5018 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 5019 5020 assert(Callee.isOrdinary() || Callee.isVirtual()); 5021 5022 // Handle struct-return functions by passing a pointer to the 5023 // location that we would like to return into. 5024 QualType RetTy = CallInfo.getReturnType(); 5025 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 5026 5027 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 5028 5029 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 5030 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5031 // We can only guarantee that a function is called from the correct 5032 // context/function based on the appropriate target attributes, 5033 // so only check in the case where we have both always_inline and target 5034 // since otherwise we could be making a conditional call after a check for 5035 // the proper cpu features (and it won't cause code generation issues due to 5036 // function based code generation). 5037 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 5038 (TargetDecl->hasAttr<TargetAttr>() || 5039 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 5040 checkTargetFeatures(Loc, FD); 5041 } 5042 5043 // Some architectures (such as x86-64) have the ABI changed based on 5044 // attribute-target/features. Give them a chance to diagnose. 5045 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 5046 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), 5047 dyn_cast_or_null<FunctionDecl>(TargetDecl), CallArgs, RetTy); 5048 5049 // 1. Set up the arguments. 5050 5051 // If we're using inalloca, insert the allocation after the stack save. 5052 // FIXME: Do this earlier rather than hacking it in here! 5053 RawAddress ArgMemory = RawAddress::invalid(); 5054 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 5055 const llvm::DataLayout &DL = CGM.getDataLayout(); 5056 llvm::Instruction *IP = CallArgs.getStackBase(); 5057 llvm::AllocaInst *AI; 5058 if (IP) { 5059 IP = IP->getNextNode(); 5060 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 5061 "argmem", IP); 5062 } else { 5063 AI = CreateTempAlloca(ArgStruct, "argmem"); 5064 } 5065 auto Align = CallInfo.getArgStructAlignment(); 5066 AI->setAlignment(Align.getAsAlign()); 5067 AI->setUsedWithInAlloca(true); 5068 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 5069 ArgMemory = RawAddress(AI, ArgStruct, Align); 5070 } 5071 5072 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 5073 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 5074 5075 // If the call returns a temporary with struct return, create a temporary 5076 // alloca to hold the result, unless one is given to us. 5077 Address SRetPtr = Address::invalid(); 5078 RawAddress SRetAlloca = RawAddress::invalid(); 5079 llvm::Value *UnusedReturnSizePtr = nullptr; 5080 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 5081 if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) { 5082 SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() + 5083 IRFunctionArgs.getSRetArgNo(), 5084 RetTy, CharUnits::fromQuantity(1)); 5085 } else if (!ReturnValue.isNull()) { 5086 SRetPtr = ReturnValue.getAddress(); 5087 } else { 5088 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 5089 if (HaveInsertPoint() && ReturnValue.isUnused()) { 5090 llvm::TypeSize size = 5091 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 5092 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 5093 } 5094 } 5095 if (IRFunctionArgs.hasSRetArg()) { 5096 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = 5097 getAsNaturalPointerTo(SRetPtr, RetTy); 5098 } else if (RetAI.isInAlloca()) { 5099 Address Addr = 5100 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 5101 Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr); 5102 } 5103 } 5104 5105 RawAddress swiftErrorTemp = RawAddress::invalid(); 5106 Address swiftErrorArg = Address::invalid(); 5107 5108 // When passing arguments using temporary allocas, we need to add the 5109 // appropriate lifetime markers. This vector keeps track of all the lifetime 5110 // markers that need to be ended right after the call. 5111 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5112 5113 // Translate all of the arguments as necessary to match the IR lowering. 5114 assert(CallInfo.arg_size() == CallArgs.size() && 5115 "Mismatch between function signature & arguments."); 5116 unsigned ArgNo = 0; 5117 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 5118 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 5119 I != E; ++I, ++info_it, ++ArgNo) { 5120 const ABIArgInfo &ArgInfo = info_it->info; 5121 5122 // Insert a padding argument to ensure proper alignment. 5123 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 5124 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 5125 llvm::UndefValue::get(ArgInfo.getPaddingType()); 5126 5127 unsigned FirstIRArg, NumIRArgs; 5128 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 5129 5130 bool ArgHasMaybeUndefAttr = 5131 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5132 5133 switch (ArgInfo.getKind()) { 5134 case ABIArgInfo::InAlloca: { 5135 assert(NumIRArgs == 0); 5136 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 5137 if (I->isAggregate()) { 5138 RawAddress Addr = I->hasLValue() 5139 ? I->getKnownLValue().getAddress() 5140 : I->getKnownRValue().getAggregateAddress(); 5141 llvm::Instruction *Placeholder = 5142 cast<llvm::Instruction>(Addr.getPointer()); 5143 5144 if (!ArgInfo.getInAllocaIndirect()) { 5145 // Replace the placeholder with the appropriate argument slot GEP. 5146 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 5147 Builder.SetInsertPoint(Placeholder); 5148 Addr = Builder.CreateStructGEP(ArgMemory, 5149 ArgInfo.getInAllocaFieldIndex()); 5150 Builder.restoreIP(IP); 5151 } else { 5152 // For indirect things such as overaligned structs, replace the 5153 // placeholder with a regular aggregate temporary alloca. Store the 5154 // address of this alloca into the struct. 5155 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 5156 Address ArgSlot = Builder.CreateStructGEP( 5157 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5158 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5159 } 5160 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 5161 } else if (ArgInfo.getInAllocaIndirect()) { 5162 // Make a temporary alloca and store the address of it into the argument 5163 // struct. 5164 RawAddress Addr = CreateMemTempWithoutCast( 5165 I->Ty, getContext().getTypeAlignInChars(I->Ty), 5166 "indirect-arg-temp"); 5167 I->copyInto(*this, Addr); 5168 Address ArgSlot = 5169 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5170 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5171 } else { 5172 // Store the RValue into the argument struct. 5173 Address Addr = 5174 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5175 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 5176 I->copyInto(*this, Addr); 5177 } 5178 break; 5179 } 5180 5181 case ABIArgInfo::Indirect: 5182 case ABIArgInfo::IndirectAliased: { 5183 assert(NumIRArgs == 1); 5184 if (I->isAggregate()) { 5185 // We want to avoid creating an unnecessary temporary+copy here; 5186 // however, we need one in three cases: 5187 // 1. If the argument is not byval, and we are required to copy the 5188 // source. (This case doesn't occur on any common architecture.) 5189 // 2. If the argument is byval, RV is not sufficiently aligned, and 5190 // we cannot force it to be sufficiently aligned. 5191 // 3. If the argument is byval, but RV is not located in default 5192 // or alloca address space. 5193 Address Addr = I->hasLValue() 5194 ? I->getKnownLValue().getAddress() 5195 : I->getKnownRValue().getAggregateAddress(); 5196 CharUnits Align = ArgInfo.getIndirectAlign(); 5197 const llvm::DataLayout *TD = &CGM.getDataLayout(); 5198 5199 assert((FirstIRArg >= IRFuncTy->getNumParams() || 5200 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 5201 TD->getAllocaAddrSpace()) && 5202 "indirect argument must be in alloca address space"); 5203 5204 bool NeedCopy = false; 5205 if (Addr.getAlignment() < Align && 5206 llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this), 5207 Align.getAsAlign(), 5208 *TD) < Align.getAsAlign()) { 5209 NeedCopy = true; 5210 } else if (I->hasLValue()) { 5211 auto LV = I->getKnownLValue(); 5212 auto AS = LV.getAddressSpace(); 5213 5214 bool isByValOrRef = 5215 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 5216 5217 if (!isByValOrRef || 5218 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 5219 NeedCopy = true; 5220 } 5221 if (!getLangOpts().OpenCL) { 5222 if ((isByValOrRef && 5223 (AS != LangAS::Default && 5224 AS != CGM.getASTAllocaAddressSpace()))) { 5225 NeedCopy = true; 5226 } 5227 } 5228 // For OpenCL even if RV is located in default or alloca address space 5229 // we don't want to perform address space cast for it. 5230 else if ((isByValOrRef && 5231 Addr.getType()->getAddressSpace() != IRFuncTy-> 5232 getParamType(FirstIRArg)->getPointerAddressSpace())) { 5233 NeedCopy = true; 5234 } 5235 } 5236 5237 if (!NeedCopy) { 5238 // Skip the extra memcpy call. 5239 llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty); 5240 auto *T = llvm::PointerType::get( 5241 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 5242 5243 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5244 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5245 true); 5246 if (ArgHasMaybeUndefAttr) 5247 Val = Builder.CreateFreeze(Val); 5248 IRCallArgs[FirstIRArg] = Val; 5249 break; 5250 } 5251 } 5252 5253 // For non-aggregate args and aggregate args meeting conditions above 5254 // we need to create an aligned temporary, and copy to it. 5255 RawAddress AI = CreateMemTempWithoutCast( 5256 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 5257 llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty); 5258 if (ArgHasMaybeUndefAttr) 5259 Val = Builder.CreateFreeze(Val); 5260 IRCallArgs[FirstIRArg] = Val; 5261 5262 // Emit lifetime markers for the temporary alloca. 5263 llvm::TypeSize ByvalTempElementSize = 5264 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5265 llvm::Value *LifetimeSize = 5266 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5267 5268 // Add cleanup code to emit the end lifetime marker after the call. 5269 if (LifetimeSize) // In case we disabled lifetime markers. 5270 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5271 5272 // Generate the copy. 5273 I->copyInto(*this, AI); 5274 break; 5275 } 5276 5277 case ABIArgInfo::Ignore: 5278 assert(NumIRArgs == 0); 5279 break; 5280 5281 case ABIArgInfo::Extend: 5282 case ABIArgInfo::Direct: { 5283 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5284 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5285 ArgInfo.getDirectOffset() == 0) { 5286 assert(NumIRArgs == 1); 5287 llvm::Value *V; 5288 if (!I->isAggregate()) 5289 V = I->getKnownRValue().getScalarVal(); 5290 else 5291 V = Builder.CreateLoad( 5292 I->hasLValue() ? I->getKnownLValue().getAddress() 5293 : I->getKnownRValue().getAggregateAddress()); 5294 5295 // Implement swifterror by copying into a new swifterror argument. 5296 // We'll write back in the normal path out of the call. 5297 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5298 == ParameterABI::SwiftErrorResult) { 5299 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5300 5301 QualType pointeeTy = I->Ty->getPointeeType(); 5302 swiftErrorArg = makeNaturalAddressForPointer( 5303 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 5304 5305 swiftErrorTemp = 5306 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5307 V = swiftErrorTemp.getPointer(); 5308 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5309 5310 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5311 Builder.CreateStore(errorValue, swiftErrorTemp); 5312 } 5313 5314 // We might have to widen integers, but we should never truncate. 5315 if (ArgInfo.getCoerceToType() != V->getType() && 5316 V->getType()->isIntegerTy()) 5317 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5318 5319 // If the argument doesn't match, perform a bitcast to coerce it. This 5320 // can happen due to trivial type mismatches. 5321 if (FirstIRArg < IRFuncTy->getNumParams() && 5322 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5323 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5324 5325 if (ArgHasMaybeUndefAttr) 5326 V = Builder.CreateFreeze(V); 5327 IRCallArgs[FirstIRArg] = V; 5328 break; 5329 } 5330 5331 llvm::StructType *STy = 5332 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5333 if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) { 5334 llvm::Type *SrcTy = ConvertTypeForMem(I->Ty); 5335 [[maybe_unused]] llvm::TypeSize SrcTypeSize = 5336 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5337 [[maybe_unused]] llvm::TypeSize DstTypeSize = 5338 CGM.getDataLayout().getTypeAllocSize(STy); 5339 if (STy->containsHomogeneousScalableVectorTypes()) { 5340 assert(SrcTypeSize == DstTypeSize && 5341 "Only allow non-fractional movement of structure with " 5342 "homogeneous scalable vector type"); 5343 5344 IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal(); 5345 break; 5346 } 5347 } 5348 5349 // FIXME: Avoid the conversion through memory if possible. 5350 Address Src = Address::invalid(); 5351 if (!I->isAggregate()) { 5352 Src = CreateMemTemp(I->Ty, "coerce"); 5353 I->copyInto(*this, Src); 5354 } else { 5355 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 5356 : I->getKnownRValue().getAggregateAddress(); 5357 } 5358 5359 // If the value is offset in memory, apply the offset now. 5360 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5361 5362 // Fast-isel and the optimizer generally like scalar values better than 5363 // FCAs, so we flatten them if this is safe to do for this argument. 5364 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5365 llvm::Type *SrcTy = Src.getElementType(); 5366 llvm::TypeSize SrcTypeSize = 5367 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5368 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 5369 if (SrcTypeSize.isScalable()) { 5370 assert(STy->containsHomogeneousScalableVectorTypes() && 5371 "ABI only supports structure with homogeneous scalable vector " 5372 "type"); 5373 assert(SrcTypeSize == DstTypeSize && 5374 "Only allow non-fractional movement of structure with " 5375 "homogeneous scalable vector type"); 5376 assert(NumIRArgs == STy->getNumElements()); 5377 5378 llvm::Value *StoredStructValue = 5379 Builder.CreateLoad(Src, Src.getName() + ".tuple"); 5380 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5381 llvm::Value *Extract = Builder.CreateExtractValue( 5382 StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 5383 IRCallArgs[FirstIRArg + i] = Extract; 5384 } 5385 } else { 5386 uint64_t SrcSize = SrcTypeSize.getFixedValue(); 5387 uint64_t DstSize = DstTypeSize.getFixedValue(); 5388 5389 // If the source type is smaller than the destination type of the 5390 // coerce-to logic, copy the source value into a temp alloca the size 5391 // of the destination type to allow loading all of it. The bits past 5392 // the source value are left undef. 5393 if (SrcSize < DstSize) { 5394 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 5395 Src.getName() + ".coerce"); 5396 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5397 Src = TempAlloca; 5398 } else { 5399 Src = Src.withElementType(STy); 5400 } 5401 5402 assert(NumIRArgs == STy->getNumElements()); 5403 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5404 Address EltPtr = Builder.CreateStructGEP(Src, i); 5405 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5406 if (ArgHasMaybeUndefAttr) 5407 LI = Builder.CreateFreeze(LI); 5408 IRCallArgs[FirstIRArg + i] = LI; 5409 } 5410 } 5411 } else { 5412 // In the simple case, just pass the coerced loaded value. 5413 assert(NumIRArgs == 1); 5414 llvm::Value *Load = 5415 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5416 5417 if (CallInfo.isCmseNSCall()) { 5418 // For certain parameter types, clear padding bits, as they may reveal 5419 // sensitive information. 5420 // Small struct/union types are passed as integer arrays. 5421 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5422 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5423 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5424 } 5425 5426 if (ArgHasMaybeUndefAttr) 5427 Load = Builder.CreateFreeze(Load); 5428 IRCallArgs[FirstIRArg] = Load; 5429 } 5430 5431 break; 5432 } 5433 5434 case ABIArgInfo::CoerceAndExpand: { 5435 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5436 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5437 5438 llvm::Value *tempSize = nullptr; 5439 Address addr = Address::invalid(); 5440 RawAddress AllocaAddr = RawAddress::invalid(); 5441 if (I->isAggregate()) { 5442 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 5443 : I->getKnownRValue().getAggregateAddress(); 5444 5445 } else { 5446 RValue RV = I->getKnownRValue(); 5447 assert(RV.isScalar()); // complex should always just be direct 5448 5449 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5450 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5451 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5452 5453 // Materialize to a temporary. 5454 addr = CreateTempAlloca( 5455 RV.getScalarVal()->getType(), 5456 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5457 "tmp", 5458 /*ArraySize=*/nullptr, &AllocaAddr); 5459 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5460 5461 Builder.CreateStore(RV.getScalarVal(), addr); 5462 } 5463 5464 addr = addr.withElementType(coercionType); 5465 5466 unsigned IRArgPos = FirstIRArg; 5467 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5468 llvm::Type *eltType = coercionType->getElementType(i); 5469 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5470 Address eltAddr = Builder.CreateStructGEP(addr, i); 5471 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5472 if (ArgHasMaybeUndefAttr) 5473 elt = Builder.CreateFreeze(elt); 5474 IRCallArgs[IRArgPos++] = elt; 5475 } 5476 assert(IRArgPos == FirstIRArg + NumIRArgs); 5477 5478 if (tempSize) { 5479 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5480 } 5481 5482 break; 5483 } 5484 5485 case ABIArgInfo::Expand: { 5486 unsigned IRArgPos = FirstIRArg; 5487 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5488 assert(IRArgPos == FirstIRArg + NumIRArgs); 5489 break; 5490 } 5491 } 5492 } 5493 5494 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5495 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5496 5497 // If we're using inalloca, set up that argument. 5498 if (ArgMemory.isValid()) { 5499 llvm::Value *Arg = ArgMemory.getPointer(); 5500 assert(IRFunctionArgs.hasInallocaArg()); 5501 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5502 } 5503 5504 // 2. Prepare the function pointer. 5505 5506 // If the callee is a bitcast of a non-variadic function to have a 5507 // variadic function pointer type, check to see if we can remove the 5508 // bitcast. This comes up with unprototyped functions. 5509 // 5510 // This makes the IR nicer, but more importantly it ensures that we 5511 // can inline the function at -O0 if it is marked always_inline. 5512 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5513 llvm::Value *Ptr) -> llvm::Function * { 5514 if (!CalleeFT->isVarArg()) 5515 return nullptr; 5516 5517 // Get underlying value if it's a bitcast 5518 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5519 if (CE->getOpcode() == llvm::Instruction::BitCast) 5520 Ptr = CE->getOperand(0); 5521 } 5522 5523 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5524 if (!OrigFn) 5525 return nullptr; 5526 5527 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5528 5529 // If the original type is variadic, or if any of the component types 5530 // disagree, we cannot remove the cast. 5531 if (OrigFT->isVarArg() || 5532 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5533 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5534 return nullptr; 5535 5536 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5537 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5538 return nullptr; 5539 5540 return OrigFn; 5541 }; 5542 5543 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5544 CalleePtr = OrigFn; 5545 IRFuncTy = OrigFn->getFunctionType(); 5546 } 5547 5548 // 3. Perform the actual call. 5549 5550 // Deactivate any cleanups that we're supposed to do immediately before 5551 // the call. 5552 if (!CallArgs.getCleanupsToDeactivate().empty()) 5553 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5554 5555 // Assert that the arguments we computed match up. The IR verifier 5556 // will catch this, but this is a common enough source of problems 5557 // during IRGen changes that it's way better for debugging to catch 5558 // it ourselves here. 5559 #ifndef NDEBUG 5560 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5561 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5562 // Inalloca argument can have different type. 5563 if (IRFunctionArgs.hasInallocaArg() && 5564 i == IRFunctionArgs.getInallocaArgNo()) 5565 continue; 5566 if (i < IRFuncTy->getNumParams()) 5567 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5568 } 5569 #endif 5570 5571 // Update the largest vector width if any arguments have vector types. 5572 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5573 LargestVectorWidth = std::max(LargestVectorWidth, 5574 getMaxVectorWidth(IRCallArgs[i]->getType())); 5575 5576 // Compute the calling convention and attributes. 5577 unsigned CallingConv; 5578 llvm::AttributeList Attrs; 5579 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5580 Callee.getAbstractInfo(), Attrs, CallingConv, 5581 /*AttrOnCallSite=*/true, 5582 /*IsThunk=*/false); 5583 5584 if (CallingConv == llvm::CallingConv::X86_VectorCall && 5585 getTarget().getTriple().isWindowsArm64EC()) { 5586 CGM.Error(Loc, "__vectorcall calling convention is not currently " 5587 "supported"); 5588 } 5589 5590 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5591 if (FD->hasAttr<StrictFPAttr>()) 5592 // All calls within a strictfp function are marked strictfp 5593 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5594 5595 // If -ffast-math is enabled and the function is guarded by an 5596 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 5597 // library call instead of the intrinsic. 5598 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 5599 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 5600 Attrs); 5601 } 5602 // Add call-site nomerge attribute if exists. 5603 if (InNoMergeAttributedStmt) 5604 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5605 5606 // Add call-site noinline attribute if exists. 5607 if (InNoInlineAttributedStmt) 5608 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5609 5610 // Add call-site always_inline attribute if exists. 5611 if (InAlwaysInlineAttributedStmt) 5612 Attrs = 5613 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5614 5615 // Apply some call-site-specific attributes. 5616 // TODO: work this into building the attribute set. 5617 5618 // Apply always_inline to all calls within flatten functions. 5619 // FIXME: should this really take priority over __try, below? 5620 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5621 !InNoInlineAttributedStmt && 5622 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5623 Attrs = 5624 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5625 } 5626 5627 // Disable inlining inside SEH __try blocks. 5628 if (isSEHTryScope()) { 5629 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5630 } 5631 5632 // Decide whether to use a call or an invoke. 5633 bool CannotThrow; 5634 if (currentFunctionUsesSEHTry()) { 5635 // SEH cares about asynchronous exceptions, so everything can "throw." 5636 CannotThrow = false; 5637 } else if (isCleanupPadScope() && 5638 EHPersonality::get(*this).isMSVCXXPersonality()) { 5639 // The MSVC++ personality will implicitly terminate the program if an 5640 // exception is thrown during a cleanup outside of a try/catch. 5641 // We don't need to model anything in IR to get this behavior. 5642 CannotThrow = true; 5643 } else { 5644 // Otherwise, nounwind call sites will never throw. 5645 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5646 5647 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5648 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5649 CannotThrow = true; 5650 } 5651 5652 // If we made a temporary, be sure to clean up after ourselves. Note that we 5653 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5654 // pop this cleanup later on. Being eager about this is OK, since this 5655 // temporary is 'invisible' outside of the callee. 5656 if (UnusedReturnSizePtr) 5657 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5658 UnusedReturnSizePtr); 5659 5660 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5661 5662 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5663 getBundlesForFunclet(CalleePtr); 5664 5665 if (SanOpts.has(SanitizerKind::KCFI) && 5666 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5667 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5668 5669 // Add the pointer-authentication bundle. 5670 EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList); 5671 5672 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5673 if (FD->hasAttr<StrictFPAttr>()) 5674 // All calls within a strictfp function are marked strictfp 5675 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5676 5677 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5678 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5679 5680 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5681 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5682 5683 // Emit the actual call/invoke instruction. 5684 llvm::CallBase *CI; 5685 if (!InvokeDest) { 5686 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5687 } else { 5688 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5689 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5690 BundleList); 5691 EmitBlock(Cont); 5692 } 5693 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 5694 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 5695 SetSqrtFPAccuracy(CI); 5696 } 5697 if (callOrInvoke) 5698 *callOrInvoke = CI; 5699 5700 // If this is within a function that has the guard(nocf) attribute and is an 5701 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5702 // Control Flow Guard checks should not be added, even if the call is inlined. 5703 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5704 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5705 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5706 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5707 } 5708 } 5709 5710 // Apply the attributes and calling convention. 5711 CI->setAttributes(Attrs); 5712 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5713 5714 // Apply various metadata. 5715 5716 if (!CI->getType()->isVoidTy()) 5717 CI->setName("call"); 5718 5719 if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent()) 5720 CI = addControlledConvergenceToken(CI); 5721 5722 // Update largest vector width from the return type. 5723 LargestVectorWidth = 5724 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5725 5726 // Insert instrumentation or attach profile metadata at indirect call sites. 5727 // For more details, see the comment before the definition of 5728 // IPVK_IndirectCallTarget in InstrProfData.inc. 5729 if (!CI->getCalledFunction()) 5730 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5731 CI, CalleePtr); 5732 5733 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5734 // optimizer it can aggressively ignore unwind edges. 5735 if (CGM.getLangOpts().ObjCAutoRefCount) 5736 AddObjCARCExceptionMetadata(CI); 5737 5738 // Set tail call kind if necessary. 5739 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5740 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5741 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5742 else if (IsMustTail) { 5743 if (getTarget().getTriple().isPPC()) { 5744 if (getTarget().getTriple().isOSAIX()) 5745 CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported); 5746 else if (!getTarget().hasFeature("pcrelative-memops")) { 5747 if (getTarget().hasFeature("longcall")) 5748 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0; 5749 else if (Call->isIndirectCall()) 5750 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1; 5751 else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) { 5752 if (!cast<FunctionDecl>(TargetDecl)->isDefined()) 5753 // The undefined callee may be a forward declaration. Without 5754 // knowning all symbols in the module, we won't know the symbol is 5755 // defined or not. Collect all these symbols for later diagnosing. 5756 CGM.addUndefinedGlobalForTailCall( 5757 {cast<FunctionDecl>(TargetDecl), Loc}); 5758 else { 5759 llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage( 5760 GlobalDecl(cast<FunctionDecl>(TargetDecl))); 5761 if (llvm::GlobalValue::isWeakForLinker(Linkage) || 5762 llvm::GlobalValue::isDiscardableIfUnused(Linkage)) 5763 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) 5764 << 2; 5765 } 5766 } 5767 } 5768 } 5769 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5770 } 5771 } 5772 5773 // Add metadata for calls to MSAllocator functions 5774 if (getDebugInfo() && TargetDecl && 5775 TargetDecl->hasAttr<MSAllocatorAttr>()) 5776 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5777 5778 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5779 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5780 llvm::ConstantInt *Line = 5781 llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding()); 5782 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5783 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5784 CI->setMetadata("srcloc", MDT); 5785 } 5786 5787 // 4. Finish the call. 5788 5789 // If the call doesn't return, finish the basic block and clear the 5790 // insertion point; this allows the rest of IRGen to discard 5791 // unreachable code. 5792 if (CI->doesNotReturn()) { 5793 if (UnusedReturnSizePtr) 5794 PopCleanupBlock(); 5795 5796 // Strip away the noreturn attribute to better diagnose unreachable UB. 5797 if (SanOpts.has(SanitizerKind::Unreachable)) { 5798 // Also remove from function since CallBase::hasFnAttr additionally checks 5799 // attributes of the called function. 5800 if (auto *F = CI->getCalledFunction()) 5801 F->removeFnAttr(llvm::Attribute::NoReturn); 5802 CI->removeFnAttr(llvm::Attribute::NoReturn); 5803 5804 // Avoid incompatibility with ASan which relies on the `noreturn` 5805 // attribute to insert handler calls. 5806 if (SanOpts.hasOneOf(SanitizerKind::Address | 5807 SanitizerKind::KernelAddress)) { 5808 SanitizerScope SanScope(this); 5809 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5810 Builder.SetInsertPoint(CI); 5811 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5812 llvm::FunctionCallee Fn = 5813 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5814 EmitNounwindRuntimeCall(Fn); 5815 } 5816 } 5817 5818 EmitUnreachable(Loc); 5819 Builder.ClearInsertionPoint(); 5820 5821 // FIXME: For now, emit a dummy basic block because expr emitters in 5822 // generally are not ready to handle emitting expressions at unreachable 5823 // points. 5824 EnsureInsertPoint(); 5825 5826 // Return a reasonable RValue. 5827 return GetUndefRValue(RetTy); 5828 } 5829 5830 // If this is a musttail call, return immediately. We do not branch to the 5831 // epilogue in this case. 5832 if (IsMustTail) { 5833 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5834 ++it) { 5835 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5836 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5837 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5838 } 5839 if (CI->getType()->isVoidTy()) 5840 Builder.CreateRetVoid(); 5841 else 5842 Builder.CreateRet(CI); 5843 Builder.ClearInsertionPoint(); 5844 EnsureInsertPoint(); 5845 return GetUndefRValue(RetTy); 5846 } 5847 5848 // Perform the swifterror writeback. 5849 if (swiftErrorTemp.isValid()) { 5850 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5851 Builder.CreateStore(errorResult, swiftErrorArg); 5852 } 5853 5854 // Emit any call-associated writebacks immediately. Arguably this 5855 // should happen after any return-value munging. 5856 if (CallArgs.hasWritebacks()) 5857 emitWritebacks(*this, CallArgs); 5858 5859 // The stack cleanup for inalloca arguments has to run out of the normal 5860 // lexical order, so deactivate it and run it manually here. 5861 CallArgs.freeArgumentMemory(*this); 5862 5863 // Extract the return value. 5864 RValue Ret; 5865 5866 // If the current function is a virtual function pointer thunk, avoid copying 5867 // the return value of the musttail call to a temporary. 5868 if (IsVirtualFunctionPointerThunk) { 5869 Ret = RValue::get(CI); 5870 } else { 5871 Ret = [&] { 5872 switch (RetAI.getKind()) { 5873 case ABIArgInfo::CoerceAndExpand: { 5874 auto coercionType = RetAI.getCoerceAndExpandType(); 5875 5876 Address addr = SRetPtr.withElementType(coercionType); 5877 5878 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5879 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5880 5881 unsigned unpaddedIndex = 0; 5882 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5883 llvm::Type *eltType = coercionType->getElementType(i); 5884 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 5885 continue; 5886 Address eltAddr = Builder.CreateStructGEP(addr, i); 5887 llvm::Value *elt = CI; 5888 if (requiresExtract) 5889 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5890 else 5891 assert(unpaddedIndex == 0); 5892 Builder.CreateStore(elt, eltAddr); 5893 } 5894 [[fallthrough]]; 5895 } 5896 5897 case ABIArgInfo::InAlloca: 5898 case ABIArgInfo::Indirect: { 5899 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5900 if (UnusedReturnSizePtr) 5901 PopCleanupBlock(); 5902 return ret; 5903 } 5904 5905 case ABIArgInfo::Ignore: 5906 // If we are ignoring an argument that had a result, make sure to 5907 // construct the appropriate return value for our caller. 5908 return GetUndefRValue(RetTy); 5909 5910 case ABIArgInfo::Extend: 5911 case ABIArgInfo::Direct: { 5912 llvm::Type *RetIRTy = ConvertType(RetTy); 5913 if (RetAI.getCoerceToType() == RetIRTy && 5914 RetAI.getDirectOffset() == 0) { 5915 switch (getEvaluationKind(RetTy)) { 5916 case TEK_Complex: { 5917 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5918 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5919 return RValue::getComplex(std::make_pair(Real, Imag)); 5920 } 5921 case TEK_Aggregate: 5922 break; 5923 case TEK_Scalar: { 5924 // If the argument doesn't match, perform a bitcast to coerce it. 5925 // This can happen due to trivial type mismatches. 5926 llvm::Value *V = CI; 5927 if (V->getType() != RetIRTy) 5928 V = Builder.CreateBitCast(V, RetIRTy); 5929 return RValue::get(V); 5930 } 5931 } 5932 } 5933 5934 // If coercing a fixed vector from a scalable vector for ABI 5935 // compatibility, and the types match, use the llvm.vector.extract 5936 // intrinsic to perform the conversion. 5937 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 5938 llvm::Value *V = CI; 5939 if (auto *ScalableSrcTy = 5940 dyn_cast<llvm::ScalableVectorType>(V->getType())) { 5941 if (FixedDstTy->getElementType() == 5942 ScalableSrcTy->getElementType()) { 5943 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 5944 V = Builder.CreateExtractVector(FixedDstTy, V, Zero, 5945 "cast.fixed"); 5946 return RValue::get(V); 5947 } 5948 } 5949 } 5950 5951 Address DestPtr = ReturnValue.getValue(); 5952 bool DestIsVolatile = ReturnValue.isVolatile(); 5953 uint64_t DestSize = 5954 getContext().getTypeInfoDataSizeInChars(RetTy).Width.getQuantity(); 5955 5956 if (!DestPtr.isValid()) { 5957 DestPtr = CreateMemTemp(RetTy, "coerce"); 5958 DestIsVolatile = false; 5959 DestSize = getContext().getTypeSizeInChars(RetTy).getQuantity(); 5960 } 5961 5962 // An empty record can overlap other data (if declared with 5963 // no_unique_address); omit the store for such types - as there is no 5964 // actual data to store. 5965 if (!isEmptyRecord(getContext(), RetTy, true)) { 5966 // If the value is offset in memory, apply the offset now. 5967 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5968 CreateCoercedStore( 5969 CI, StorePtr, 5970 llvm::TypeSize::getFixed(DestSize - RetAI.getDirectOffset()), 5971 DestIsVolatile); 5972 } 5973 5974 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5975 } 5976 5977 case ABIArgInfo::Expand: 5978 case ABIArgInfo::IndirectAliased: 5979 llvm_unreachable("Invalid ABI kind for return argument"); 5980 } 5981 5982 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5983 }(); 5984 } 5985 5986 // Emit the assume_aligned check on the return value. 5987 if (Ret.isScalar() && TargetDecl) { 5988 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5989 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5990 } 5991 5992 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5993 // we can't use the full cleanup mechanism. 5994 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5995 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5996 5997 if (!ReturnValue.isExternallyDestructed() && 5998 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5999 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 6000 RetTy); 6001 6002 return Ret; 6003 } 6004 6005 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 6006 if (isVirtual()) { 6007 const CallExpr *CE = getVirtualCallExpr(); 6008 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 6009 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 6010 CE ? CE->getBeginLoc() : SourceLocation()); 6011 } 6012 6013 return *this; 6014 } 6015 6016 /* VarArg handling */ 6017 6018 RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 6019 AggValueSlot Slot) { 6020 VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr()) 6021 : EmitVAListRef(VE->getSubExpr()); 6022 QualType Ty = VE->getType(); 6023 if (VE->isMicrosoftABI()) 6024 return CGM.getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot); 6025 return CGM.getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot); 6026 } 6027