1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include <optional> 44 using namespace clang; 45 using namespace CodeGen; 46 47 /***/ 48 49 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 50 switch (CC) { 51 default: return llvm::CallingConv::C; 52 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 53 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 54 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 55 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 56 case CC_Win64: return llvm::CallingConv::Win64; 57 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 58 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 59 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 60 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 61 // TODO: Add support for __pascal to LLVM. 62 case CC_X86Pascal: return llvm::CallingConv::C; 63 // TODO: Add support for __vectorcall to LLVM. 64 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 65 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 66 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 67 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 68 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 69 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 70 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 71 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 72 case CC_Swift: return llvm::CallingConv::Swift; 73 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 74 } 75 } 76 77 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 78 /// qualification. Either or both of RD and MD may be null. A null RD indicates 79 /// that there is no meaningful 'this' type, and a null MD can occur when 80 /// calling a method pointer. 81 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 82 const CXXMethodDecl *MD) { 83 QualType RecTy; 84 if (RD) 85 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 86 else 87 RecTy = Context.VoidTy; 88 89 if (MD) 90 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 91 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 92 } 93 94 /// Returns the canonical formal type of the given C++ method. 95 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 96 return MD->getType()->getCanonicalTypeUnqualified() 97 .getAs<FunctionProtoType>(); 98 } 99 100 /// Returns the "extra-canonicalized" return type, which discards 101 /// qualifiers on the return type. Codegen doesn't care about them, 102 /// and it makes ABI code a little easier to be able to assume that 103 /// all parameter and return types are top-level unqualified. 104 static CanQualType GetReturnType(QualType RetTy) { 105 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 106 } 107 108 /// Arrange the argument and result information for a value of the given 109 /// unprototyped freestanding function type. 110 const CGFunctionInfo & 111 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 112 // When translating an unprototyped function type, always use a 113 // variadic type. 114 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 115 /*instanceMethod=*/false, 116 /*chainCall=*/false, std::nullopt, 117 FTNP->getExtInfo(), {}, RequiredArgs(0)); 118 } 119 120 static void addExtParameterInfosForCall( 121 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 122 const FunctionProtoType *proto, 123 unsigned prefixArgs, 124 unsigned totalArgs) { 125 assert(proto->hasExtParameterInfos()); 126 assert(paramInfos.size() <= prefixArgs); 127 assert(proto->getNumParams() + prefixArgs <= totalArgs); 128 129 paramInfos.reserve(totalArgs); 130 131 // Add default infos for any prefix args that don't already have infos. 132 paramInfos.resize(prefixArgs); 133 134 // Add infos for the prototype. 135 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 136 paramInfos.push_back(ParamInfo); 137 // pass_object_size params have no parameter info. 138 if (ParamInfo.hasPassObjectSize()) 139 paramInfos.emplace_back(); 140 } 141 142 assert(paramInfos.size() <= totalArgs && 143 "Did we forget to insert pass_object_size args?"); 144 // Add default infos for the variadic and/or suffix arguments. 145 paramInfos.resize(totalArgs); 146 } 147 148 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 149 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 150 static void appendParameterTypes(const CodeGenTypes &CGT, 151 SmallVectorImpl<CanQualType> &prefix, 152 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 153 CanQual<FunctionProtoType> FPT) { 154 // Fast path: don't touch param info if we don't need to. 155 if (!FPT->hasExtParameterInfos()) { 156 assert(paramInfos.empty() && 157 "We have paramInfos, but the prototype doesn't?"); 158 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 159 return; 160 } 161 162 unsigned PrefixSize = prefix.size(); 163 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 164 // parameters; the only thing that can change this is the presence of 165 // pass_object_size. So, we preallocate for the common case. 166 prefix.reserve(prefix.size() + FPT->getNumParams()); 167 168 auto ExtInfos = FPT->getExtParameterInfos(); 169 assert(ExtInfos.size() == FPT->getNumParams()); 170 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 171 prefix.push_back(FPT->getParamType(I)); 172 if (ExtInfos[I].hasPassObjectSize()) 173 prefix.push_back(CGT.getContext().getSizeType()); 174 } 175 176 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 177 prefix.size()); 178 } 179 180 /// Arrange the LLVM function layout for a value of the given function 181 /// type, on top of any implicit parameters already stored. 182 static const CGFunctionInfo & 183 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 184 SmallVectorImpl<CanQualType> &prefix, 185 CanQual<FunctionProtoType> FTP) { 186 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 187 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 188 // FIXME: Kill copy. 189 appendParameterTypes(CGT, prefix, paramInfos, FTP); 190 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 191 192 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 193 /*chainCall=*/false, prefix, 194 FTP->getExtInfo(), paramInfos, 195 Required); 196 } 197 198 /// Arrange the argument and result information for a value of the 199 /// given freestanding function type. 200 const CGFunctionInfo & 201 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 202 SmallVector<CanQualType, 16> argTypes; 203 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 204 FTP); 205 } 206 207 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 208 bool IsWindows) { 209 // Set the appropriate calling convention for the Function. 210 if (D->hasAttr<StdCallAttr>()) 211 return CC_X86StdCall; 212 213 if (D->hasAttr<FastCallAttr>()) 214 return CC_X86FastCall; 215 216 if (D->hasAttr<RegCallAttr>()) 217 return CC_X86RegCall; 218 219 if (D->hasAttr<ThisCallAttr>()) 220 return CC_X86ThisCall; 221 222 if (D->hasAttr<VectorCallAttr>()) 223 return CC_X86VectorCall; 224 225 if (D->hasAttr<PascalAttr>()) 226 return CC_X86Pascal; 227 228 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 229 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 230 231 if (D->hasAttr<AArch64VectorPcsAttr>()) 232 return CC_AArch64VectorCall; 233 234 if (D->hasAttr<AArch64SVEPcsAttr>()) 235 return CC_AArch64SVEPCS; 236 237 if (D->hasAttr<AMDGPUKernelCallAttr>()) 238 return CC_AMDGPUKernelCall; 239 240 if (D->hasAttr<IntelOclBiccAttr>()) 241 return CC_IntelOclBicc; 242 243 if (D->hasAttr<MSABIAttr>()) 244 return IsWindows ? CC_C : CC_Win64; 245 246 if (D->hasAttr<SysVABIAttr>()) 247 return IsWindows ? CC_X86_64SysV : CC_C; 248 249 if (D->hasAttr<PreserveMostAttr>()) 250 return CC_PreserveMost; 251 252 if (D->hasAttr<PreserveAllAttr>()) 253 return CC_PreserveAll; 254 255 return CC_C; 256 } 257 258 /// Arrange the argument and result information for a call to an 259 /// unknown C++ non-static member function of the given abstract type. 260 /// (A null RD means we don't have any meaningful "this" argument type, 261 /// so fall back to a generic pointer type). 262 /// The member function must be an ordinary function, i.e. not a 263 /// constructor or destructor. 264 const CGFunctionInfo & 265 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 266 const FunctionProtoType *FTP, 267 const CXXMethodDecl *MD) { 268 SmallVector<CanQualType, 16> argTypes; 269 270 // Add the 'this' pointer. 271 argTypes.push_back(DeriveThisType(RD, MD)); 272 273 return ::arrangeLLVMFunctionInfo( 274 *this, true, argTypes, 275 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 276 } 277 278 /// Set calling convention for CUDA/HIP kernel. 279 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 280 const FunctionDecl *FD) { 281 if (FD->hasAttr<CUDAGlobalAttr>()) { 282 const FunctionType *FT = FTy->getAs<FunctionType>(); 283 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 284 FTy = FT->getCanonicalTypeUnqualified(); 285 } 286 } 287 288 /// Arrange the argument and result information for a declaration or 289 /// definition of the given C++ non-static member function. The 290 /// member function must be an ordinary function, i.e. not a 291 /// constructor or destructor. 292 const CGFunctionInfo & 293 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 294 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 295 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 296 297 CanQualType FT = GetFormalType(MD).getAs<Type>(); 298 setCUDAKernelCallingConvention(FT, CGM, MD); 299 auto prototype = FT.getAs<FunctionProtoType>(); 300 301 if (MD->isInstance()) { 302 // The abstract case is perfectly fine. 303 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 304 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 305 } 306 307 return arrangeFreeFunctionType(prototype); 308 } 309 310 bool CodeGenTypes::inheritingCtorHasParams( 311 const InheritedConstructor &Inherited, CXXCtorType Type) { 312 // Parameters are unnecessary if we're constructing a base class subobject 313 // and the inherited constructor lives in a virtual base. 314 return Type == Ctor_Complete || 315 !Inherited.getShadowDecl()->constructsVirtualBase() || 316 !Target.getCXXABI().hasConstructorVariants(); 317 } 318 319 const CGFunctionInfo & 320 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 321 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 322 323 SmallVector<CanQualType, 16> argTypes; 324 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 325 326 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD); 327 argTypes.push_back(DeriveThisType(ThisType, MD)); 328 329 bool PassParams = true; 330 331 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 332 // A base class inheriting constructor doesn't get forwarded arguments 333 // needed to construct a virtual base (or base class thereof). 334 if (auto Inherited = CD->getInheritedConstructor()) 335 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 336 } 337 338 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 339 340 // Add the formal parameters. 341 if (PassParams) 342 appendParameterTypes(*this, argTypes, paramInfos, FTP); 343 344 CGCXXABI::AddedStructorArgCounts AddedArgs = 345 TheCXXABI.buildStructorSignature(GD, argTypes); 346 if (!paramInfos.empty()) { 347 // Note: prefix implies after the first param. 348 if (AddedArgs.Prefix) 349 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 350 FunctionProtoType::ExtParameterInfo{}); 351 if (AddedArgs.Suffix) 352 paramInfos.append(AddedArgs.Suffix, 353 FunctionProtoType::ExtParameterInfo{}); 354 } 355 356 RequiredArgs required = 357 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 358 : RequiredArgs::All); 359 360 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 361 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 362 ? argTypes.front() 363 : TheCXXABI.hasMostDerivedReturn(GD) 364 ? CGM.getContext().VoidPtrTy 365 : Context.VoidTy; 366 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 367 /*chainCall=*/false, argTypes, extInfo, 368 paramInfos, required); 369 } 370 371 static SmallVector<CanQualType, 16> 372 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 373 SmallVector<CanQualType, 16> argTypes; 374 for (auto &arg : args) 375 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 376 return argTypes; 377 } 378 379 static SmallVector<CanQualType, 16> 380 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 381 SmallVector<CanQualType, 16> argTypes; 382 for (auto &arg : args) 383 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 384 return argTypes; 385 } 386 387 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 388 getExtParameterInfosForCall(const FunctionProtoType *proto, 389 unsigned prefixArgs, unsigned totalArgs) { 390 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 391 if (proto->hasExtParameterInfos()) { 392 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 393 } 394 return result; 395 } 396 397 /// Arrange a call to a C++ method, passing the given arguments. 398 /// 399 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 400 /// parameter. 401 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 402 /// args. 403 /// PassProtoArgs indicates whether `args` has args for the parameters in the 404 /// given CXXConstructorDecl. 405 const CGFunctionInfo & 406 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 407 const CXXConstructorDecl *D, 408 CXXCtorType CtorKind, 409 unsigned ExtraPrefixArgs, 410 unsigned ExtraSuffixArgs, 411 bool PassProtoArgs) { 412 // FIXME: Kill copy. 413 SmallVector<CanQualType, 16> ArgTypes; 414 for (const auto &Arg : args) 415 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 416 417 // +1 for implicit this, which should always be args[0]. 418 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 419 420 CanQual<FunctionProtoType> FPT = GetFormalType(D); 421 RequiredArgs Required = PassProtoArgs 422 ? RequiredArgs::forPrototypePlus( 423 FPT, TotalPrefixArgs + ExtraSuffixArgs) 424 : RequiredArgs::All; 425 426 GlobalDecl GD(D, CtorKind); 427 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 428 ? ArgTypes.front() 429 : TheCXXABI.hasMostDerivedReturn(GD) 430 ? CGM.getContext().VoidPtrTy 431 : Context.VoidTy; 432 433 FunctionType::ExtInfo Info = FPT->getExtInfo(); 434 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 435 // If the prototype args are elided, we should only have ABI-specific args, 436 // which never have param info. 437 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 438 // ABI-specific suffix arguments are treated the same as variadic arguments. 439 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 440 ArgTypes.size()); 441 } 442 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 443 /*chainCall=*/false, ArgTypes, Info, 444 ParamInfos, Required); 445 } 446 447 /// Arrange the argument and result information for the declaration or 448 /// definition of the given function. 449 const CGFunctionInfo & 450 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 451 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 452 if (MD->isInstance()) 453 return arrangeCXXMethodDeclaration(MD); 454 455 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 456 457 assert(isa<FunctionType>(FTy)); 458 setCUDAKernelCallingConvention(FTy, CGM, FD); 459 460 // When declaring a function without a prototype, always use a 461 // non-variadic type. 462 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 463 return arrangeLLVMFunctionInfo( 464 noProto->getReturnType(), /*instanceMethod=*/false, 465 /*chainCall=*/false, std::nullopt, noProto->getExtInfo(), {}, 466 RequiredArgs::All); 467 } 468 469 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 470 } 471 472 /// Arrange the argument and result information for the declaration or 473 /// definition of an Objective-C method. 474 const CGFunctionInfo & 475 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 476 // It happens that this is the same as a call with no optional 477 // arguments, except also using the formal 'self' type. 478 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 479 } 480 481 /// Arrange the argument and result information for the function type 482 /// through which to perform a send to the given Objective-C method, 483 /// using the given receiver type. The receiver type is not always 484 /// the 'self' type of the method or even an Objective-C pointer type. 485 /// This is *not* the right method for actually performing such a 486 /// message send, due to the possibility of optional arguments. 487 const CGFunctionInfo & 488 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 489 QualType receiverType) { 490 SmallVector<CanQualType, 16> argTys; 491 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 492 MD->isDirectMethod() ? 1 : 2); 493 argTys.push_back(Context.getCanonicalParamType(receiverType)); 494 if (!MD->isDirectMethod()) 495 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 496 // FIXME: Kill copy? 497 for (const auto *I : MD->parameters()) { 498 argTys.push_back(Context.getCanonicalParamType(I->getType())); 499 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 500 I->hasAttr<NoEscapeAttr>()); 501 extParamInfos.push_back(extParamInfo); 502 } 503 504 FunctionType::ExtInfo einfo; 505 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 506 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 507 508 if (getContext().getLangOpts().ObjCAutoRefCount && 509 MD->hasAttr<NSReturnsRetainedAttr>()) 510 einfo = einfo.withProducesResult(true); 511 512 RequiredArgs required = 513 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 514 515 return arrangeLLVMFunctionInfo( 516 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 517 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 518 } 519 520 const CGFunctionInfo & 521 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 522 const CallArgList &args) { 523 auto argTypes = getArgTypesForCall(Context, args); 524 FunctionType::ExtInfo einfo; 525 526 return arrangeLLVMFunctionInfo( 527 GetReturnType(returnType), /*instanceMethod=*/false, 528 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 529 } 530 531 const CGFunctionInfo & 532 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 533 // FIXME: Do we need to handle ObjCMethodDecl? 534 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 535 536 if (isa<CXXConstructorDecl>(GD.getDecl()) || 537 isa<CXXDestructorDecl>(GD.getDecl())) 538 return arrangeCXXStructorDeclaration(GD); 539 540 return arrangeFunctionDeclaration(FD); 541 } 542 543 /// Arrange a thunk that takes 'this' as the first parameter followed by 544 /// varargs. Return a void pointer, regardless of the actual return type. 545 /// The body of the thunk will end in a musttail call to a function of the 546 /// correct type, and the caller will bitcast the function to the correct 547 /// prototype. 548 const CGFunctionInfo & 549 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 550 assert(MD->isVirtual() && "only methods have thunks"); 551 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 552 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 553 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 554 /*chainCall=*/false, ArgTys, 555 FTP->getExtInfo(), {}, RequiredArgs(1)); 556 } 557 558 const CGFunctionInfo & 559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 560 CXXCtorType CT) { 561 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 562 563 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 564 SmallVector<CanQualType, 2> ArgTys; 565 const CXXRecordDecl *RD = CD->getParent(); 566 ArgTys.push_back(DeriveThisType(RD, CD)); 567 if (CT == Ctor_CopyingClosure) 568 ArgTys.push_back(*FTP->param_type_begin()); 569 if (RD->getNumVBases() > 0) 570 ArgTys.push_back(Context.IntTy); 571 CallingConv CC = Context.getDefaultCallingConvention( 572 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 573 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 574 /*chainCall=*/false, ArgTys, 575 FunctionType::ExtInfo(CC), {}, 576 RequiredArgs::All); 577 } 578 579 /// Arrange a call as unto a free function, except possibly with an 580 /// additional number of formal parameters considered required. 581 static const CGFunctionInfo & 582 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 583 CodeGenModule &CGM, 584 const CallArgList &args, 585 const FunctionType *fnType, 586 unsigned numExtraRequiredArgs, 587 bool chainCall) { 588 assert(args.size() >= numExtraRequiredArgs); 589 590 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 591 592 // In most cases, there are no optional arguments. 593 RequiredArgs required = RequiredArgs::All; 594 595 // If we have a variadic prototype, the required arguments are the 596 // extra prefix plus the arguments in the prototype. 597 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 598 if (proto->isVariadic()) 599 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 600 601 if (proto->hasExtParameterInfos()) 602 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 603 args.size()); 604 605 // If we don't have a prototype at all, but we're supposed to 606 // explicitly use the variadic convention for unprototyped calls, 607 // treat all of the arguments as required but preserve the nominal 608 // possibility of variadics. 609 } else if (CGM.getTargetCodeGenInfo() 610 .isNoProtoCallVariadic(args, 611 cast<FunctionNoProtoType>(fnType))) { 612 required = RequiredArgs(args.size()); 613 } 614 615 // FIXME: Kill copy. 616 SmallVector<CanQualType, 16> argTypes; 617 for (const auto &arg : args) 618 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 619 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 620 /*instanceMethod=*/false, chainCall, 621 argTypes, fnType->getExtInfo(), paramInfos, 622 required); 623 } 624 625 /// Figure out the rules for calling a function with the given formal 626 /// type using the given arguments. The arguments are necessary 627 /// because the function might be unprototyped, in which case it's 628 /// target-dependent in crazy ways. 629 const CGFunctionInfo & 630 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 631 const FunctionType *fnType, 632 bool chainCall) { 633 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 634 chainCall ? 1 : 0, chainCall); 635 } 636 637 /// A block function is essentially a free function with an 638 /// extra implicit argument. 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 641 const FunctionType *fnType) { 642 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 643 /*chainCall=*/false); 644 } 645 646 const CGFunctionInfo & 647 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 648 const FunctionArgList ¶ms) { 649 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 650 auto argTypes = getArgTypesForDeclaration(Context, params); 651 652 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 653 /*instanceMethod*/ false, /*chainCall*/ false, 654 argTypes, proto->getExtInfo(), paramInfos, 655 RequiredArgs::forPrototypePlus(proto, 1)); 656 } 657 658 const CGFunctionInfo & 659 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 660 const CallArgList &args) { 661 // FIXME: Kill copy. 662 SmallVector<CanQualType, 16> argTypes; 663 for (const auto &Arg : args) 664 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 665 return arrangeLLVMFunctionInfo( 666 GetReturnType(resultType), /*instanceMethod=*/false, 667 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 668 /*paramInfos=*/ {}, RequiredArgs::All); 669 } 670 671 const CGFunctionInfo & 672 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 673 const FunctionArgList &args) { 674 auto argTypes = getArgTypesForDeclaration(Context, args); 675 676 return arrangeLLVMFunctionInfo( 677 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 678 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 679 } 680 681 const CGFunctionInfo & 682 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 683 ArrayRef<CanQualType> argTypes) { 684 return arrangeLLVMFunctionInfo( 685 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 686 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 687 } 688 689 /// Arrange a call to a C++ method, passing the given arguments. 690 /// 691 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 692 /// does not count `this`. 693 const CGFunctionInfo & 694 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 695 const FunctionProtoType *proto, 696 RequiredArgs required, 697 unsigned numPrefixArgs) { 698 assert(numPrefixArgs + 1 <= args.size() && 699 "Emitting a call with less args than the required prefix?"); 700 // Add one to account for `this`. It's a bit awkward here, but we don't count 701 // `this` in similar places elsewhere. 702 auto paramInfos = 703 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 704 705 // FIXME: Kill copy. 706 auto argTypes = getArgTypesForCall(Context, args); 707 708 FunctionType::ExtInfo info = proto->getExtInfo(); 709 return arrangeLLVMFunctionInfo( 710 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 711 /*chainCall=*/false, argTypes, info, paramInfos, required); 712 } 713 714 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 715 return arrangeLLVMFunctionInfo( 716 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 717 std::nullopt, FunctionType::ExtInfo(), {}, RequiredArgs::All); 718 } 719 720 const CGFunctionInfo & 721 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 722 const CallArgList &args) { 723 assert(signature.arg_size() <= args.size()); 724 if (signature.arg_size() == args.size()) 725 return signature; 726 727 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 728 auto sigParamInfos = signature.getExtParameterInfos(); 729 if (!sigParamInfos.empty()) { 730 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 731 paramInfos.resize(args.size()); 732 } 733 734 auto argTypes = getArgTypesForCall(Context, args); 735 736 assert(signature.getRequiredArgs().allowsOptionalArgs()); 737 return arrangeLLVMFunctionInfo(signature.getReturnType(), 738 signature.isInstanceMethod(), 739 signature.isChainCall(), 740 argTypes, 741 signature.getExtInfo(), 742 paramInfos, 743 signature.getRequiredArgs()); 744 } 745 746 namespace clang { 747 namespace CodeGen { 748 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 749 } 750 } 751 752 /// Arrange the argument and result information for an abstract value 753 /// of a given function type. This is the method which all of the 754 /// above functions ultimately defer to. 755 const CGFunctionInfo & 756 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 757 bool instanceMethod, 758 bool chainCall, 759 ArrayRef<CanQualType> argTypes, 760 FunctionType::ExtInfo info, 761 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 762 RequiredArgs required) { 763 assert(llvm::all_of(argTypes, 764 [](CanQualType T) { return T.isCanonicalAsParam(); })); 765 766 // Lookup or create unique function info. 767 llvm::FoldingSetNodeID ID; 768 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 769 required, resultType, argTypes); 770 771 void *insertPos = nullptr; 772 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 773 if (FI) 774 return *FI; 775 776 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 777 778 // Construct the function info. We co-allocate the ArgInfos. 779 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 780 paramInfos, resultType, argTypes, required); 781 FunctionInfos.InsertNode(FI, insertPos); 782 783 bool inserted = FunctionsBeingProcessed.insert(FI).second; 784 (void)inserted; 785 assert(inserted && "Recursively being processed?"); 786 787 // Compute ABI information. 788 if (CC == llvm::CallingConv::SPIR_KERNEL) { 789 // Force target independent argument handling for the host visible 790 // kernel functions. 791 computeSPIRKernelABIInfo(CGM, *FI); 792 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 793 swiftcall::computeABIInfo(CGM, *FI); 794 } else { 795 getABIInfo().computeInfo(*FI); 796 } 797 798 // Loop over all of the computed argument and return value info. If any of 799 // them are direct or extend without a specified coerce type, specify the 800 // default now. 801 ABIArgInfo &retInfo = FI->getReturnInfo(); 802 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 803 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 804 805 for (auto &I : FI->arguments()) 806 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 807 I.info.setCoerceToType(ConvertType(I.type)); 808 809 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 810 assert(erased && "Not in set?"); 811 812 return *FI; 813 } 814 815 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 816 bool instanceMethod, 817 bool chainCall, 818 const FunctionType::ExtInfo &info, 819 ArrayRef<ExtParameterInfo> paramInfos, 820 CanQualType resultType, 821 ArrayRef<CanQualType> argTypes, 822 RequiredArgs required) { 823 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 824 assert(!required.allowsOptionalArgs() || 825 required.getNumRequiredArgs() <= argTypes.size()); 826 827 void *buffer = 828 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 829 argTypes.size() + 1, paramInfos.size())); 830 831 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 832 FI->CallingConvention = llvmCC; 833 FI->EffectiveCallingConvention = llvmCC; 834 FI->ASTCallingConvention = info.getCC(); 835 FI->InstanceMethod = instanceMethod; 836 FI->ChainCall = chainCall; 837 FI->CmseNSCall = info.getCmseNSCall(); 838 FI->NoReturn = info.getNoReturn(); 839 FI->ReturnsRetained = info.getProducesResult(); 840 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 841 FI->NoCfCheck = info.getNoCfCheck(); 842 FI->Required = required; 843 FI->HasRegParm = info.getHasRegParm(); 844 FI->RegParm = info.getRegParm(); 845 FI->ArgStruct = nullptr; 846 FI->ArgStructAlign = 0; 847 FI->NumArgs = argTypes.size(); 848 FI->HasExtParameterInfos = !paramInfos.empty(); 849 FI->getArgsBuffer()[0].type = resultType; 850 FI->MaxVectorWidth = 0; 851 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 852 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 853 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 854 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 855 return FI; 856 } 857 858 /***/ 859 860 namespace { 861 // ABIArgInfo::Expand implementation. 862 863 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 864 struct TypeExpansion { 865 enum TypeExpansionKind { 866 // Elements of constant arrays are expanded recursively. 867 TEK_ConstantArray, 868 // Record fields are expanded recursively (but if record is a union, only 869 // the field with the largest size is expanded). 870 TEK_Record, 871 // For complex types, real and imaginary parts are expanded recursively. 872 TEK_Complex, 873 // All other types are not expandable. 874 TEK_None 875 }; 876 877 const TypeExpansionKind Kind; 878 879 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 880 virtual ~TypeExpansion() {} 881 }; 882 883 struct ConstantArrayExpansion : TypeExpansion { 884 QualType EltTy; 885 uint64_t NumElts; 886 887 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 888 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 889 static bool classof(const TypeExpansion *TE) { 890 return TE->Kind == TEK_ConstantArray; 891 } 892 }; 893 894 struct RecordExpansion : TypeExpansion { 895 SmallVector<const CXXBaseSpecifier *, 1> Bases; 896 897 SmallVector<const FieldDecl *, 1> Fields; 898 899 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 900 SmallVector<const FieldDecl *, 1> &&Fields) 901 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 902 Fields(std::move(Fields)) {} 903 static bool classof(const TypeExpansion *TE) { 904 return TE->Kind == TEK_Record; 905 } 906 }; 907 908 struct ComplexExpansion : TypeExpansion { 909 QualType EltTy; 910 911 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 912 static bool classof(const TypeExpansion *TE) { 913 return TE->Kind == TEK_Complex; 914 } 915 }; 916 917 struct NoExpansion : TypeExpansion { 918 NoExpansion() : TypeExpansion(TEK_None) {} 919 static bool classof(const TypeExpansion *TE) { 920 return TE->Kind == TEK_None; 921 } 922 }; 923 } // namespace 924 925 static std::unique_ptr<TypeExpansion> 926 getTypeExpansion(QualType Ty, const ASTContext &Context) { 927 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 928 return std::make_unique<ConstantArrayExpansion>( 929 AT->getElementType(), AT->getSize().getZExtValue()); 930 } 931 if (const RecordType *RT = Ty->getAs<RecordType>()) { 932 SmallVector<const CXXBaseSpecifier *, 1> Bases; 933 SmallVector<const FieldDecl *, 1> Fields; 934 const RecordDecl *RD = RT->getDecl(); 935 assert(!RD->hasFlexibleArrayMember() && 936 "Cannot expand structure with flexible array."); 937 if (RD->isUnion()) { 938 // Unions can be here only in degenerative cases - all the fields are same 939 // after flattening. Thus we have to use the "largest" field. 940 const FieldDecl *LargestFD = nullptr; 941 CharUnits UnionSize = CharUnits::Zero(); 942 943 for (const auto *FD : RD->fields()) { 944 if (FD->isZeroLengthBitField(Context)) 945 continue; 946 assert(!FD->isBitField() && 947 "Cannot expand structure with bit-field members."); 948 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 949 if (UnionSize < FieldSize) { 950 UnionSize = FieldSize; 951 LargestFD = FD; 952 } 953 } 954 if (LargestFD) 955 Fields.push_back(LargestFD); 956 } else { 957 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 958 assert(!CXXRD->isDynamicClass() && 959 "cannot expand vtable pointers in dynamic classes"); 960 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 961 } 962 963 for (const auto *FD : RD->fields()) { 964 if (FD->isZeroLengthBitField(Context)) 965 continue; 966 assert(!FD->isBitField() && 967 "Cannot expand structure with bit-field members."); 968 Fields.push_back(FD); 969 } 970 } 971 return std::make_unique<RecordExpansion>(std::move(Bases), 972 std::move(Fields)); 973 } 974 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 975 return std::make_unique<ComplexExpansion>(CT->getElementType()); 976 } 977 return std::make_unique<NoExpansion>(); 978 } 979 980 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 981 auto Exp = getTypeExpansion(Ty, Context); 982 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 983 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 984 } 985 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 986 int Res = 0; 987 for (auto BS : RExp->Bases) 988 Res += getExpansionSize(BS->getType(), Context); 989 for (auto FD : RExp->Fields) 990 Res += getExpansionSize(FD->getType(), Context); 991 return Res; 992 } 993 if (isa<ComplexExpansion>(Exp.get())) 994 return 2; 995 assert(isa<NoExpansion>(Exp.get())); 996 return 1; 997 } 998 999 void 1000 CodeGenTypes::getExpandedTypes(QualType Ty, 1001 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1002 auto Exp = getTypeExpansion(Ty, Context); 1003 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1004 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1005 getExpandedTypes(CAExp->EltTy, TI); 1006 } 1007 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1008 for (auto BS : RExp->Bases) 1009 getExpandedTypes(BS->getType(), TI); 1010 for (auto FD : RExp->Fields) 1011 getExpandedTypes(FD->getType(), TI); 1012 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1013 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1014 *TI++ = EltTy; 1015 *TI++ = EltTy; 1016 } else { 1017 assert(isa<NoExpansion>(Exp.get())); 1018 *TI++ = ConvertType(Ty); 1019 } 1020 } 1021 1022 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1023 ConstantArrayExpansion *CAE, 1024 Address BaseAddr, 1025 llvm::function_ref<void(Address)> Fn) { 1026 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1027 CharUnits EltAlign = 1028 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1029 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy); 1030 1031 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1032 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1033 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1034 Fn(Address(EltAddr, EltTy, EltAlign)); 1035 } 1036 } 1037 1038 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1039 llvm::Function::arg_iterator &AI) { 1040 assert(LV.isSimple() && 1041 "Unexpected non-simple lvalue during struct expansion."); 1042 1043 auto Exp = getTypeExpansion(Ty, getContext()); 1044 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1045 forConstantArrayExpansion( 1046 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1047 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1048 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1049 }); 1050 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1051 Address This = LV.getAddress(*this); 1052 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1053 // Perform a single step derived-to-base conversion. 1054 Address Base = 1055 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1056 /*NullCheckValue=*/false, SourceLocation()); 1057 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1058 1059 // Recurse onto bases. 1060 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1061 } 1062 for (auto FD : RExp->Fields) { 1063 // FIXME: What are the right qualifiers here? 1064 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1065 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1066 } 1067 } else if (isa<ComplexExpansion>(Exp.get())) { 1068 auto realValue = &*AI++; 1069 auto imagValue = &*AI++; 1070 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1071 } else { 1072 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1073 // primitive store. 1074 assert(isa<NoExpansion>(Exp.get())); 1075 llvm::Value *Arg = &*AI++; 1076 if (LV.isBitField()) { 1077 EmitStoreThroughLValue(RValue::get(Arg), LV); 1078 } else { 1079 // TODO: currently there are some places are inconsistent in what LLVM 1080 // pointer type they use (see D118744). Once clang uses opaque pointers 1081 // all LLVM pointer types will be the same and we can remove this check. 1082 if (Arg->getType()->isPointerTy()) { 1083 Address Addr = LV.getAddress(*this); 1084 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1085 } 1086 EmitStoreOfScalar(Arg, LV); 1087 } 1088 } 1089 } 1090 1091 void CodeGenFunction::ExpandTypeToArgs( 1092 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1093 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1094 auto Exp = getTypeExpansion(Ty, getContext()); 1095 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1096 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1097 : Arg.getKnownRValue().getAggregateAddress(); 1098 forConstantArrayExpansion( 1099 *this, CAExp, Addr, [&](Address EltAddr) { 1100 CallArg EltArg = CallArg( 1101 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1102 CAExp->EltTy); 1103 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1104 IRCallArgPos); 1105 }); 1106 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1107 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1108 : Arg.getKnownRValue().getAggregateAddress(); 1109 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1110 // Perform a single step derived-to-base conversion. 1111 Address Base = 1112 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1113 /*NullCheckValue=*/false, SourceLocation()); 1114 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1115 1116 // Recurse onto bases. 1117 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1118 IRCallArgPos); 1119 } 1120 1121 LValue LV = MakeAddrLValue(This, Ty); 1122 for (auto FD : RExp->Fields) { 1123 CallArg FldArg = 1124 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1125 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1126 IRCallArgPos); 1127 } 1128 } else if (isa<ComplexExpansion>(Exp.get())) { 1129 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1130 IRCallArgs[IRCallArgPos++] = CV.first; 1131 IRCallArgs[IRCallArgPos++] = CV.second; 1132 } else { 1133 assert(isa<NoExpansion>(Exp.get())); 1134 auto RV = Arg.getKnownRValue(); 1135 assert(RV.isScalar() && 1136 "Unexpected non-scalar rvalue during struct expansion."); 1137 1138 // Insert a bitcast as needed. 1139 llvm::Value *V = RV.getScalarVal(); 1140 if (IRCallArgPos < IRFuncTy->getNumParams() && 1141 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1142 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1143 1144 IRCallArgs[IRCallArgPos++] = V; 1145 } 1146 } 1147 1148 /// Create a temporary allocation for the purposes of coercion. 1149 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1150 CharUnits MinAlign, 1151 const Twine &Name = "tmp") { 1152 // Don't use an alignment that's worse than what LLVM would prefer. 1153 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1154 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1155 1156 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1157 } 1158 1159 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1160 /// accessing some number of bytes out of it, try to gep into the struct to get 1161 /// at its inner goodness. Dive as deep as possible without entering an element 1162 /// with an in-memory size smaller than DstSize. 1163 static Address 1164 EnterStructPointerForCoercedAccess(Address SrcPtr, 1165 llvm::StructType *SrcSTy, 1166 uint64_t DstSize, CodeGenFunction &CGF) { 1167 // We can't dive into a zero-element struct. 1168 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1169 1170 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1171 1172 // If the first elt is at least as large as what we're looking for, or if the 1173 // first element is the same size as the whole struct, we can enter it. The 1174 // comparison must be made on the store size and not the alloca size. Using 1175 // the alloca size may overstate the size of the load. 1176 uint64_t FirstEltSize = 1177 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1178 if (FirstEltSize < DstSize && 1179 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1180 return SrcPtr; 1181 1182 // GEP into the first element. 1183 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1184 1185 // If the first element is a struct, recurse. 1186 llvm::Type *SrcTy = SrcPtr.getElementType(); 1187 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1188 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1189 1190 return SrcPtr; 1191 } 1192 1193 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1194 /// are either integers or pointers. This does a truncation of the value if it 1195 /// is too large or a zero extension if it is too small. 1196 /// 1197 /// This behaves as if the value were coerced through memory, so on big-endian 1198 /// targets the high bits are preserved in a truncation, while little-endian 1199 /// targets preserve the low bits. 1200 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1201 llvm::Type *Ty, 1202 CodeGenFunction &CGF) { 1203 if (Val->getType() == Ty) 1204 return Val; 1205 1206 if (isa<llvm::PointerType>(Val->getType())) { 1207 // If this is Pointer->Pointer avoid conversion to and from int. 1208 if (isa<llvm::PointerType>(Ty)) 1209 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1210 1211 // Convert the pointer to an integer so we can play with its width. 1212 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1213 } 1214 1215 llvm::Type *DestIntTy = Ty; 1216 if (isa<llvm::PointerType>(DestIntTy)) 1217 DestIntTy = CGF.IntPtrTy; 1218 1219 if (Val->getType() != DestIntTy) { 1220 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1221 if (DL.isBigEndian()) { 1222 // Preserve the high bits on big-endian targets. 1223 // That is what memory coercion does. 1224 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1225 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1226 1227 if (SrcSize > DstSize) { 1228 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1229 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1230 } else { 1231 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1232 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1233 } 1234 } else { 1235 // Little-endian targets preserve the low bits. No shifts required. 1236 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1237 } 1238 } 1239 1240 if (isa<llvm::PointerType>(Ty)) 1241 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1242 return Val; 1243 } 1244 1245 1246 1247 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1248 /// a pointer to an object of type \arg Ty, known to be aligned to 1249 /// \arg SrcAlign bytes. 1250 /// 1251 /// This safely handles the case when the src type is smaller than the 1252 /// destination type; in this situation the values of bits which not 1253 /// present in the src are undefined. 1254 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1255 CodeGenFunction &CGF) { 1256 llvm::Type *SrcTy = Src.getElementType(); 1257 1258 // If SrcTy and Ty are the same, just do a load. 1259 if (SrcTy == Ty) 1260 return CGF.Builder.CreateLoad(Src); 1261 1262 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1263 1264 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1265 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1266 DstSize.getFixedValue(), CGF); 1267 SrcTy = Src.getElementType(); 1268 } 1269 1270 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1271 1272 // If the source and destination are integer or pointer types, just do an 1273 // extension or truncation to the desired type. 1274 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1275 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1276 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1277 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1278 } 1279 1280 // If load is legal, just bitcast the src pointer. 1281 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1282 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1283 // Generally SrcSize is never greater than DstSize, since this means we are 1284 // losing bits. However, this can happen in cases where the structure has 1285 // additional padding, for example due to a user specified alignment. 1286 // 1287 // FIXME: Assert that we aren't truncating non-padding bits when have access 1288 // to that information. 1289 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1290 return CGF.Builder.CreateLoad(Src); 1291 } 1292 1293 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1294 // the types match, use the llvm.vector.insert intrinsic to perform the 1295 // conversion. 1296 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1297 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1298 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1299 // vector, use a vector insert and bitcast the result. 1300 bool NeedsBitcast = false; 1301 auto PredType = 1302 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1303 llvm::Type *OrigType = Ty; 1304 if (ScalableDst == PredType && 1305 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1306 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1307 NeedsBitcast = true; 1308 } 1309 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1310 auto *Load = CGF.Builder.CreateLoad(Src); 1311 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1312 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1313 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1314 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1315 if (NeedsBitcast) 1316 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1317 return Result; 1318 } 1319 } 1320 } 1321 1322 // Otherwise do coercion through memory. This is stupid, but simple. 1323 Address Tmp = 1324 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1325 CGF.Builder.CreateMemCpy( 1326 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1327 Src.getAlignment().getAsAlign(), 1328 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1329 return CGF.Builder.CreateLoad(Tmp); 1330 } 1331 1332 // Function to store a first-class aggregate into memory. We prefer to 1333 // store the elements rather than the aggregate to be more friendly to 1334 // fast-isel. 1335 // FIXME: Do we need to recurse here? 1336 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1337 bool DestIsVolatile) { 1338 // Prefer scalar stores to first-class aggregate stores. 1339 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1340 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1341 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1342 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1343 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1344 } 1345 } else { 1346 Builder.CreateStore(Val, Dest, DestIsVolatile); 1347 } 1348 } 1349 1350 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1351 /// where the source and destination may have different types. The 1352 /// destination is known to be aligned to \arg DstAlign bytes. 1353 /// 1354 /// This safely handles the case when the src type is larger than the 1355 /// destination type; the upper bits of the src will be lost. 1356 static void CreateCoercedStore(llvm::Value *Src, 1357 Address Dst, 1358 bool DstIsVolatile, 1359 CodeGenFunction &CGF) { 1360 llvm::Type *SrcTy = Src->getType(); 1361 llvm::Type *DstTy = Dst.getElementType(); 1362 if (SrcTy == DstTy) { 1363 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1364 return; 1365 } 1366 1367 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1368 1369 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1370 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1371 SrcSize.getFixedValue(), CGF); 1372 DstTy = Dst.getElementType(); 1373 } 1374 1375 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1376 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1377 if (SrcPtrTy && DstPtrTy && 1378 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1379 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1380 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1381 return; 1382 } 1383 1384 // If the source and destination are integer or pointer types, just do an 1385 // extension or truncation to the desired type. 1386 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1387 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1388 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1389 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1390 return; 1391 } 1392 1393 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1394 1395 // If store is legal, just bitcast the src pointer. 1396 if (isa<llvm::ScalableVectorType>(SrcTy) || 1397 isa<llvm::ScalableVectorType>(DstTy) || 1398 SrcSize.getFixedValue() <= DstSize.getFixedValue()) { 1399 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1400 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1401 } else { 1402 // Otherwise do coercion through memory. This is stupid, but 1403 // simple. 1404 1405 // Generally SrcSize is never greater than DstSize, since this means we are 1406 // losing bits. However, this can happen in cases where the structure has 1407 // additional padding, for example due to a user specified alignment. 1408 // 1409 // FIXME: Assert that we aren't truncating non-padding bits when have access 1410 // to that information. 1411 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1412 CGF.Builder.CreateStore(Src, Tmp); 1413 CGF.Builder.CreateMemCpy( 1414 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1415 Tmp.getAlignment().getAsAlign(), 1416 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue())); 1417 } 1418 } 1419 1420 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1421 const ABIArgInfo &info) { 1422 if (unsigned offset = info.getDirectOffset()) { 1423 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1424 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1425 CharUnits::fromQuantity(offset)); 1426 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1427 } 1428 return addr; 1429 } 1430 1431 namespace { 1432 1433 /// Encapsulates information about the way function arguments from 1434 /// CGFunctionInfo should be passed to actual LLVM IR function. 1435 class ClangToLLVMArgMapping { 1436 static const unsigned InvalidIndex = ~0U; 1437 unsigned InallocaArgNo; 1438 unsigned SRetArgNo; 1439 unsigned TotalIRArgs; 1440 1441 /// Arguments of LLVM IR function corresponding to single Clang argument. 1442 struct IRArgs { 1443 unsigned PaddingArgIndex; 1444 // Argument is expanded to IR arguments at positions 1445 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1446 unsigned FirstArgIndex; 1447 unsigned NumberOfArgs; 1448 1449 IRArgs() 1450 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1451 NumberOfArgs(0) {} 1452 }; 1453 1454 SmallVector<IRArgs, 8> ArgInfo; 1455 1456 public: 1457 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1458 bool OnlyRequiredArgs = false) 1459 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1460 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1461 construct(Context, FI, OnlyRequiredArgs); 1462 } 1463 1464 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1465 unsigned getInallocaArgNo() const { 1466 assert(hasInallocaArg()); 1467 return InallocaArgNo; 1468 } 1469 1470 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1471 unsigned getSRetArgNo() const { 1472 assert(hasSRetArg()); 1473 return SRetArgNo; 1474 } 1475 1476 unsigned totalIRArgs() const { return TotalIRArgs; } 1477 1478 bool hasPaddingArg(unsigned ArgNo) const { 1479 assert(ArgNo < ArgInfo.size()); 1480 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1481 } 1482 unsigned getPaddingArgNo(unsigned ArgNo) const { 1483 assert(hasPaddingArg(ArgNo)); 1484 return ArgInfo[ArgNo].PaddingArgIndex; 1485 } 1486 1487 /// Returns index of first IR argument corresponding to ArgNo, and their 1488 /// quantity. 1489 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1490 assert(ArgNo < ArgInfo.size()); 1491 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1492 ArgInfo[ArgNo].NumberOfArgs); 1493 } 1494 1495 private: 1496 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1497 bool OnlyRequiredArgs); 1498 }; 1499 1500 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1501 const CGFunctionInfo &FI, 1502 bool OnlyRequiredArgs) { 1503 unsigned IRArgNo = 0; 1504 bool SwapThisWithSRet = false; 1505 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1506 1507 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1508 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1509 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1510 } 1511 1512 unsigned ArgNo = 0; 1513 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1514 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1515 ++I, ++ArgNo) { 1516 assert(I != FI.arg_end()); 1517 QualType ArgType = I->type; 1518 const ABIArgInfo &AI = I->info; 1519 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1520 auto &IRArgs = ArgInfo[ArgNo]; 1521 1522 if (AI.getPaddingType()) 1523 IRArgs.PaddingArgIndex = IRArgNo++; 1524 1525 switch (AI.getKind()) { 1526 case ABIArgInfo::Extend: 1527 case ABIArgInfo::Direct: { 1528 // FIXME: handle sseregparm someday... 1529 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1530 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1531 IRArgs.NumberOfArgs = STy->getNumElements(); 1532 } else { 1533 IRArgs.NumberOfArgs = 1; 1534 } 1535 break; 1536 } 1537 case ABIArgInfo::Indirect: 1538 case ABIArgInfo::IndirectAliased: 1539 IRArgs.NumberOfArgs = 1; 1540 break; 1541 case ABIArgInfo::Ignore: 1542 case ABIArgInfo::InAlloca: 1543 // ignore and inalloca doesn't have matching LLVM parameters. 1544 IRArgs.NumberOfArgs = 0; 1545 break; 1546 case ABIArgInfo::CoerceAndExpand: 1547 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1548 break; 1549 case ABIArgInfo::Expand: 1550 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1551 break; 1552 } 1553 1554 if (IRArgs.NumberOfArgs > 0) { 1555 IRArgs.FirstArgIndex = IRArgNo; 1556 IRArgNo += IRArgs.NumberOfArgs; 1557 } 1558 1559 // Skip over the sret parameter when it comes second. We already handled it 1560 // above. 1561 if (IRArgNo == 1 && SwapThisWithSRet) 1562 IRArgNo++; 1563 } 1564 assert(ArgNo == ArgInfo.size()); 1565 1566 if (FI.usesInAlloca()) 1567 InallocaArgNo = IRArgNo++; 1568 1569 TotalIRArgs = IRArgNo; 1570 } 1571 } // namespace 1572 1573 /***/ 1574 1575 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1576 const auto &RI = FI.getReturnInfo(); 1577 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1578 } 1579 1580 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1581 return ReturnTypeUsesSRet(FI) && 1582 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1583 } 1584 1585 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1586 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1587 switch (BT->getKind()) { 1588 default: 1589 return false; 1590 case BuiltinType::Float: 1591 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1592 case BuiltinType::Double: 1593 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1594 case BuiltinType::LongDouble: 1595 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1596 } 1597 } 1598 1599 return false; 1600 } 1601 1602 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1603 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1604 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1605 if (BT->getKind() == BuiltinType::LongDouble) 1606 return getTarget().useObjCFP2RetForComplexLongDouble(); 1607 } 1608 } 1609 1610 return false; 1611 } 1612 1613 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1614 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1615 return GetFunctionType(FI); 1616 } 1617 1618 llvm::FunctionType * 1619 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1620 1621 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1622 (void)Inserted; 1623 assert(Inserted && "Recursively being processed?"); 1624 1625 llvm::Type *resultType = nullptr; 1626 const ABIArgInfo &retAI = FI.getReturnInfo(); 1627 switch (retAI.getKind()) { 1628 case ABIArgInfo::Expand: 1629 case ABIArgInfo::IndirectAliased: 1630 llvm_unreachable("Invalid ABI kind for return argument"); 1631 1632 case ABIArgInfo::Extend: 1633 case ABIArgInfo::Direct: 1634 resultType = retAI.getCoerceToType(); 1635 break; 1636 1637 case ABIArgInfo::InAlloca: 1638 if (retAI.getInAllocaSRet()) { 1639 // sret things on win32 aren't void, they return the sret pointer. 1640 QualType ret = FI.getReturnType(); 1641 llvm::Type *ty = ConvertType(ret); 1642 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1643 resultType = llvm::PointerType::get(ty, addressSpace); 1644 } else { 1645 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1646 } 1647 break; 1648 1649 case ABIArgInfo::Indirect: 1650 case ABIArgInfo::Ignore: 1651 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1652 break; 1653 1654 case ABIArgInfo::CoerceAndExpand: 1655 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1656 break; 1657 } 1658 1659 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1660 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1661 1662 // Add type for sret argument. 1663 if (IRFunctionArgs.hasSRetArg()) { 1664 QualType Ret = FI.getReturnType(); 1665 llvm::Type *Ty = ConvertType(Ret); 1666 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1667 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1668 llvm::PointerType::get(Ty, AddressSpace); 1669 } 1670 1671 // Add type for inalloca argument. 1672 if (IRFunctionArgs.hasInallocaArg()) { 1673 auto ArgStruct = FI.getArgStruct(); 1674 assert(ArgStruct); 1675 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1676 } 1677 1678 // Add in all of the required arguments. 1679 unsigned ArgNo = 0; 1680 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1681 ie = it + FI.getNumRequiredArgs(); 1682 for (; it != ie; ++it, ++ArgNo) { 1683 const ABIArgInfo &ArgInfo = it->info; 1684 1685 // Insert a padding type to ensure proper alignment. 1686 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1687 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1688 ArgInfo.getPaddingType(); 1689 1690 unsigned FirstIRArg, NumIRArgs; 1691 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1692 1693 switch (ArgInfo.getKind()) { 1694 case ABIArgInfo::Ignore: 1695 case ABIArgInfo::InAlloca: 1696 assert(NumIRArgs == 0); 1697 break; 1698 1699 case ABIArgInfo::Indirect: { 1700 assert(NumIRArgs == 1); 1701 // indirect arguments are always on the stack, which is alloca addr space. 1702 llvm::Type *LTy = ConvertTypeForMem(it->type); 1703 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1704 CGM.getDataLayout().getAllocaAddrSpace()); 1705 break; 1706 } 1707 case ABIArgInfo::IndirectAliased: { 1708 assert(NumIRArgs == 1); 1709 llvm::Type *LTy = ConvertTypeForMem(it->type); 1710 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1711 break; 1712 } 1713 case ABIArgInfo::Extend: 1714 case ABIArgInfo::Direct: { 1715 // Fast-isel and the optimizer generally like scalar values better than 1716 // FCAs, so we flatten them if this is safe to do for this argument. 1717 llvm::Type *argType = ArgInfo.getCoerceToType(); 1718 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1719 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1720 assert(NumIRArgs == st->getNumElements()); 1721 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1722 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1723 } else { 1724 assert(NumIRArgs == 1); 1725 ArgTypes[FirstIRArg] = argType; 1726 } 1727 break; 1728 } 1729 1730 case ABIArgInfo::CoerceAndExpand: { 1731 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1732 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1733 *ArgTypesIter++ = EltTy; 1734 } 1735 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1736 break; 1737 } 1738 1739 case ABIArgInfo::Expand: 1740 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1741 getExpandedTypes(it->type, ArgTypesIter); 1742 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1743 break; 1744 } 1745 } 1746 1747 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1748 assert(Erased && "Not in set?"); 1749 1750 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1751 } 1752 1753 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1754 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1755 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1756 1757 if (!isFuncTypeConvertible(FPT)) 1758 return llvm::StructType::get(getLLVMContext()); 1759 1760 return GetFunctionType(GD); 1761 } 1762 1763 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1764 llvm::AttrBuilder &FuncAttrs, 1765 const FunctionProtoType *FPT) { 1766 if (!FPT) 1767 return; 1768 1769 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1770 FPT->isNothrow()) 1771 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1772 } 1773 1774 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1775 const Decl *Callee) { 1776 if (!Callee) 1777 return; 1778 1779 SmallVector<StringRef, 4> Attrs; 1780 1781 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1782 AA->getAssumption().split(Attrs, ","); 1783 1784 if (!Attrs.empty()) 1785 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1786 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1787 } 1788 1789 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1790 QualType ReturnType) const { 1791 // We can't just discard the return value for a record type with a 1792 // complex destructor or a non-trivially copyable type. 1793 if (const RecordType *RT = 1794 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1795 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1796 return ClassDecl->hasTrivialDestructor(); 1797 } 1798 return ReturnType.isTriviallyCopyableType(Context); 1799 } 1800 1801 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1802 const Decl *TargetDecl) { 1803 // As-is msan can not tolerate noundef mismatch between caller and 1804 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1805 // into C++. Such mismatches lead to confusing false reports. To avoid 1806 // expensive workaround on msan we enforce initialization event in uncommon 1807 // cases where it's allowed. 1808 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1809 return true; 1810 // C++ explicitly makes returning undefined values UB. C's rule only applies 1811 // to used values, so we never mark them noundef for now. 1812 if (!Module.getLangOpts().CPlusPlus) 1813 return false; 1814 if (TargetDecl) { 1815 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1816 if (FDecl->isExternC()) 1817 return false; 1818 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1819 // Function pointer. 1820 if (VDecl->isExternC()) 1821 return false; 1822 } 1823 } 1824 1825 // We don't want to be too aggressive with the return checking, unless 1826 // it's explicit in the code opts or we're using an appropriate sanitizer. 1827 // Try to respect what the programmer intended. 1828 return Module.getCodeGenOpts().StrictReturn || 1829 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1830 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1831 } 1832 1833 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1834 bool HasOptnone, 1835 bool AttrOnCallSite, 1836 llvm::AttrBuilder &FuncAttrs) { 1837 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1838 if (!HasOptnone) { 1839 if (CodeGenOpts.OptimizeSize) 1840 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1841 if (CodeGenOpts.OptimizeSize == 2) 1842 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1843 } 1844 1845 if (CodeGenOpts.DisableRedZone) 1846 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1847 if (CodeGenOpts.IndirectTlsSegRefs) 1848 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1849 if (CodeGenOpts.NoImplicitFloat) 1850 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1851 1852 if (AttrOnCallSite) { 1853 // Attributes that should go on the call site only. 1854 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1855 // the -fno-builtin-foo list. 1856 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1857 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1858 if (!CodeGenOpts.TrapFuncName.empty()) 1859 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1860 } else { 1861 switch (CodeGenOpts.getFramePointer()) { 1862 case CodeGenOptions::FramePointerKind::None: 1863 // This is the default behavior. 1864 break; 1865 case CodeGenOptions::FramePointerKind::NonLeaf: 1866 case CodeGenOptions::FramePointerKind::All: 1867 FuncAttrs.addAttribute("frame-pointer", 1868 CodeGenOptions::getFramePointerKindName( 1869 CodeGenOpts.getFramePointer())); 1870 } 1871 1872 if (CodeGenOpts.LessPreciseFPMAD) 1873 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1874 1875 if (CodeGenOpts.NullPointerIsValid) 1876 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1877 1878 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1879 FuncAttrs.addAttribute("denormal-fp-math", 1880 CodeGenOpts.FPDenormalMode.str()); 1881 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1882 FuncAttrs.addAttribute( 1883 "denormal-fp-math-f32", 1884 CodeGenOpts.FP32DenormalMode.str()); 1885 } 1886 1887 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1888 FuncAttrs.addAttribute("no-trapping-math", "true"); 1889 1890 // TODO: Are these all needed? 1891 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1892 if (LangOpts.NoHonorInfs) 1893 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1894 if (LangOpts.NoHonorNaNs) 1895 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1896 if (LangOpts.ApproxFunc) 1897 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1898 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1899 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1900 (LangOpts.getDefaultFPContractMode() == 1901 LangOptions::FPModeKind::FPM_Fast || 1902 LangOpts.getDefaultFPContractMode() == 1903 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1904 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1905 if (CodeGenOpts.SoftFloat) 1906 FuncAttrs.addAttribute("use-soft-float", "true"); 1907 FuncAttrs.addAttribute("stack-protector-buffer-size", 1908 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1909 if (LangOpts.NoSignedZero) 1910 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1911 1912 // TODO: Reciprocal estimate codegen options should apply to instructions? 1913 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1914 if (!Recips.empty()) 1915 FuncAttrs.addAttribute("reciprocal-estimates", 1916 llvm::join(Recips, ",")); 1917 1918 if (!CodeGenOpts.PreferVectorWidth.empty() && 1919 CodeGenOpts.PreferVectorWidth != "none") 1920 FuncAttrs.addAttribute("prefer-vector-width", 1921 CodeGenOpts.PreferVectorWidth); 1922 1923 if (CodeGenOpts.StackRealignment) 1924 FuncAttrs.addAttribute("stackrealign"); 1925 if (CodeGenOpts.Backchain) 1926 FuncAttrs.addAttribute("backchain"); 1927 if (CodeGenOpts.EnableSegmentedStacks) 1928 FuncAttrs.addAttribute("split-stack"); 1929 1930 if (CodeGenOpts.SpeculativeLoadHardening) 1931 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1932 1933 // Add zero-call-used-regs attribute. 1934 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1935 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1936 FuncAttrs.removeAttribute("zero-call-used-regs"); 1937 break; 1938 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1939 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1940 break; 1941 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1942 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1943 break; 1944 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1945 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1946 break; 1947 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1948 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1949 break; 1950 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1951 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1952 break; 1953 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1954 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1955 break; 1956 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1957 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1958 break; 1959 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1960 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1961 break; 1962 } 1963 } 1964 1965 if (getLangOpts().assumeFunctionsAreConvergent()) { 1966 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1967 // convergent (meaning, they may call an intrinsically convergent op, such 1968 // as __syncthreads() / barrier(), and so can't have certain optimizations 1969 // applied around them). LLVM will remove this attribute where it safely 1970 // can. 1971 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1972 } 1973 1974 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 1975 // SYCL, OpenMP offload. AFAIK, none of them support exceptions in device 1976 // code. 1977 if ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) || 1978 getLangOpts().OpenCL) { 1979 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1980 } 1981 1982 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1983 StringRef Var, Value; 1984 std::tie(Var, Value) = Attr.split('='); 1985 FuncAttrs.addAttribute(Var, Value); 1986 } 1987 } 1988 1989 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1990 llvm::AttrBuilder FuncAttrs(F.getContext()); 1991 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1992 /* AttrOnCallSite = */ false, FuncAttrs); 1993 // TODO: call GetCPUAndFeaturesAttributes? 1994 F.addFnAttrs(FuncAttrs); 1995 } 1996 1997 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1998 llvm::AttrBuilder &attrs) { 1999 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2000 /*for call*/ false, attrs); 2001 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2002 } 2003 2004 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2005 const LangOptions &LangOpts, 2006 const NoBuiltinAttr *NBA = nullptr) { 2007 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2008 SmallString<32> AttributeName; 2009 AttributeName += "no-builtin-"; 2010 AttributeName += BuiltinName; 2011 FuncAttrs.addAttribute(AttributeName); 2012 }; 2013 2014 // First, handle the language options passed through -fno-builtin. 2015 if (LangOpts.NoBuiltin) { 2016 // -fno-builtin disables them all. 2017 FuncAttrs.addAttribute("no-builtins"); 2018 return; 2019 } 2020 2021 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2022 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2023 2024 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2025 // the source. 2026 if (!NBA) 2027 return; 2028 2029 // If there is a wildcard in the builtin names specified through the 2030 // attribute, disable them all. 2031 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2032 FuncAttrs.addAttribute("no-builtins"); 2033 return; 2034 } 2035 2036 // And last, add the rest of the builtin names. 2037 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2038 } 2039 2040 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2041 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2042 bool CheckCoerce = true) { 2043 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2044 if (AI.getKind() == ABIArgInfo::Indirect) 2045 return true; 2046 if (AI.getKind() == ABIArgInfo::Extend) 2047 return true; 2048 if (!DL.typeSizeEqualsStoreSize(Ty)) 2049 // TODO: This will result in a modest amount of values not marked noundef 2050 // when they could be. We care about values that *invisibly* contain undef 2051 // bits from the perspective of LLVM IR. 2052 return false; 2053 if (CheckCoerce && AI.canHaveCoerceToType()) { 2054 llvm::Type *CoerceTy = AI.getCoerceToType(); 2055 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2056 DL.getTypeSizeInBits(Ty))) 2057 // If we're coercing to a type with a greater size than the canonical one, 2058 // we're introducing new undef bits. 2059 // Coercing to a type of smaller or equal size is ok, as we know that 2060 // there's no internal padding (typeSizeEqualsStoreSize). 2061 return false; 2062 } 2063 if (QTy->isBitIntType()) 2064 return true; 2065 if (QTy->isReferenceType()) 2066 return true; 2067 if (QTy->isNullPtrType()) 2068 return false; 2069 if (QTy->isMemberPointerType()) 2070 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2071 // now, never mark them. 2072 return false; 2073 if (QTy->isScalarType()) { 2074 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2075 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2076 return true; 2077 } 2078 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2079 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2080 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2081 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2082 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2083 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2084 2085 // TODO: Some structs may be `noundef`, in specific situations. 2086 return false; 2087 } 2088 2089 /// Check if the argument of a function has maybe_undef attribute. 2090 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2091 unsigned NumRequiredArgs, unsigned ArgNo) { 2092 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2093 if (!FD) 2094 return false; 2095 2096 // Assume variadic arguments do not have maybe_undef attribute. 2097 if (ArgNo >= NumRequiredArgs) 2098 return false; 2099 2100 // Check if argument has maybe_undef attribute. 2101 if (ArgNo < FD->getNumParams()) { 2102 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2103 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2104 return true; 2105 } 2106 2107 return false; 2108 } 2109 2110 /// Construct the IR attribute list of a function or call. 2111 /// 2112 /// When adding an attribute, please consider where it should be handled: 2113 /// 2114 /// - getDefaultFunctionAttributes is for attributes that are essentially 2115 /// part of the global target configuration (but perhaps can be 2116 /// overridden on a per-function basis). Adding attributes there 2117 /// will cause them to also be set in frontends that build on Clang's 2118 /// target-configuration logic, as well as for code defined in library 2119 /// modules such as CUDA's libdevice. 2120 /// 2121 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2122 /// and adds declaration-specific, convention-specific, and 2123 /// frontend-specific logic. The last is of particular importance: 2124 /// attributes that restrict how the frontend generates code must be 2125 /// added here rather than getDefaultFunctionAttributes. 2126 /// 2127 void CodeGenModule::ConstructAttributeList(StringRef Name, 2128 const CGFunctionInfo &FI, 2129 CGCalleeInfo CalleeInfo, 2130 llvm::AttributeList &AttrList, 2131 unsigned &CallingConv, 2132 bool AttrOnCallSite, bool IsThunk) { 2133 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2134 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2135 2136 // Collect function IR attributes from the CC lowering. 2137 // We'll collect the paramete and result attributes later. 2138 CallingConv = FI.getEffectiveCallingConvention(); 2139 if (FI.isNoReturn()) 2140 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2141 if (FI.isCmseNSCall()) 2142 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2143 2144 // Collect function IR attributes from the callee prototype if we have one. 2145 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2146 CalleeInfo.getCalleeFunctionProtoType()); 2147 2148 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2149 2150 // Attach assumption attributes to the declaration. If this is a call 2151 // site, attach assumptions from the caller to the call as well. 2152 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2153 2154 bool HasOptnone = false; 2155 // The NoBuiltinAttr attached to the target FunctionDecl. 2156 const NoBuiltinAttr *NBA = nullptr; 2157 2158 // Some ABIs may result in additional accesses to arguments that may 2159 // otherwise not be present. 2160 auto AddPotentialArgAccess = [&]() { 2161 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2162 if (A.isValid()) 2163 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2164 llvm::MemoryEffects::argMemOnly()); 2165 }; 2166 2167 // Collect function IR attributes based on declaration-specific 2168 // information. 2169 // FIXME: handle sseregparm someday... 2170 if (TargetDecl) { 2171 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2172 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2173 if (TargetDecl->hasAttr<NoThrowAttr>()) 2174 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2175 if (TargetDecl->hasAttr<NoReturnAttr>()) 2176 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2177 if (TargetDecl->hasAttr<ColdAttr>()) 2178 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2179 if (TargetDecl->hasAttr<HotAttr>()) 2180 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2181 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2182 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2183 if (TargetDecl->hasAttr<ConvergentAttr>()) 2184 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2185 2186 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2187 AddAttributesFromFunctionProtoType( 2188 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2189 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2190 // A sane operator new returns a non-aliasing pointer. 2191 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2192 if (getCodeGenOpts().AssumeSaneOperatorNew && 2193 (Kind == OO_New || Kind == OO_Array_New)) 2194 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2195 } 2196 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2197 const bool IsVirtualCall = MD && MD->isVirtual(); 2198 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2199 // virtual function. These attributes are not inherited by overloads. 2200 if (!(AttrOnCallSite && IsVirtualCall)) { 2201 if (Fn->isNoReturn()) 2202 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2203 NBA = Fn->getAttr<NoBuiltinAttr>(); 2204 } 2205 // Only place nomerge attribute on call sites, never functions. This 2206 // allows it to work on indirect virtual function calls. 2207 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2208 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2209 } 2210 2211 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2212 if (TargetDecl->hasAttr<ConstAttr>()) { 2213 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2214 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2215 // gcc specifies that 'const' functions have greater restrictions than 2216 // 'pure' functions, so they also cannot have infinite loops. 2217 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2218 } else if (TargetDecl->hasAttr<PureAttr>()) { 2219 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2220 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2221 // gcc specifies that 'pure' functions cannot have infinite loops. 2222 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2223 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2224 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::argMemOnly()); 2225 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2226 } 2227 if (TargetDecl->hasAttr<RestrictAttr>()) 2228 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2229 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2230 !CodeGenOpts.NullPointerIsValid) 2231 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2232 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2233 FuncAttrs.addAttribute("no_caller_saved_registers"); 2234 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2235 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2236 if (TargetDecl->hasAttr<LeafAttr>()) 2237 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2238 2239 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2240 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2241 std::optional<unsigned> NumElemsParam; 2242 if (AllocSize->getNumElemsParam().isValid()) 2243 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2244 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2245 NumElemsParam); 2246 } 2247 2248 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2249 if (getLangOpts().OpenCLVersion <= 120) { 2250 // OpenCL v1.2 Work groups are always uniform 2251 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2252 } else { 2253 // OpenCL v2.0 Work groups may be whether uniform or not. 2254 // '-cl-uniform-work-group-size' compile option gets a hint 2255 // to the compiler that the global work-size be a multiple of 2256 // the work-group size specified to clEnqueueNDRangeKernel 2257 // (i.e. work groups are uniform). 2258 FuncAttrs.addAttribute("uniform-work-group-size", 2259 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2260 } 2261 } 2262 } 2263 2264 // Attach "no-builtins" attributes to: 2265 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2266 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2267 // The attributes can come from: 2268 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2269 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2270 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2271 2272 // Collect function IR attributes based on global settiings. 2273 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2274 2275 // Override some default IR attributes based on declaration-specific 2276 // information. 2277 if (TargetDecl) { 2278 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2279 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2280 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2281 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2282 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2283 FuncAttrs.removeAttribute("split-stack"); 2284 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2285 // A function "__attribute__((...))" overrides the command-line flag. 2286 auto Kind = 2287 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2288 FuncAttrs.removeAttribute("zero-call-used-regs"); 2289 FuncAttrs.addAttribute( 2290 "zero-call-used-regs", 2291 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2292 } 2293 2294 // Add NonLazyBind attribute to function declarations when -fno-plt 2295 // is used. 2296 // FIXME: what if we just haven't processed the function definition 2297 // yet, or if it's an external definition like C99 inline? 2298 if (CodeGenOpts.NoPLT) { 2299 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2300 if (!Fn->isDefined() && !AttrOnCallSite) { 2301 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2302 } 2303 } 2304 } 2305 } 2306 2307 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2308 // functions with -funique-internal-linkage-names. 2309 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2310 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2311 if (!FD->isExternallyVisible()) 2312 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2313 "selected"); 2314 } 2315 } 2316 2317 // Collect non-call-site function IR attributes from declaration-specific 2318 // information. 2319 if (!AttrOnCallSite) { 2320 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2321 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2322 2323 // Whether tail calls are enabled. 2324 auto shouldDisableTailCalls = [&] { 2325 // Should this be honored in getDefaultFunctionAttributes? 2326 if (CodeGenOpts.DisableTailCalls) 2327 return true; 2328 2329 if (!TargetDecl) 2330 return false; 2331 2332 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2333 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2334 return true; 2335 2336 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2337 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2338 if (!BD->doesNotEscape()) 2339 return true; 2340 } 2341 2342 return false; 2343 }; 2344 if (shouldDisableTailCalls()) 2345 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2346 2347 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2348 // handles these separately to set them based on the global defaults. 2349 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2350 } 2351 2352 // Collect attributes from arguments and return values. 2353 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2354 2355 QualType RetTy = FI.getReturnType(); 2356 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2357 const llvm::DataLayout &DL = getDataLayout(); 2358 2359 // Determine if the return type could be partially undef 2360 if (CodeGenOpts.EnableNoundefAttrs && 2361 HasStrictReturn(*this, RetTy, TargetDecl)) { 2362 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2363 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2364 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2365 } 2366 2367 switch (RetAI.getKind()) { 2368 case ABIArgInfo::Extend: 2369 if (RetAI.isSignExt()) 2370 RetAttrs.addAttribute(llvm::Attribute::SExt); 2371 else 2372 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2373 [[fallthrough]]; 2374 case ABIArgInfo::Direct: 2375 if (RetAI.getInReg()) 2376 RetAttrs.addAttribute(llvm::Attribute::InReg); 2377 break; 2378 case ABIArgInfo::Ignore: 2379 break; 2380 2381 case ABIArgInfo::InAlloca: 2382 case ABIArgInfo::Indirect: { 2383 // inalloca and sret disable readnone and readonly 2384 AddPotentialArgAccess(); 2385 break; 2386 } 2387 2388 case ABIArgInfo::CoerceAndExpand: 2389 break; 2390 2391 case ABIArgInfo::Expand: 2392 case ABIArgInfo::IndirectAliased: 2393 llvm_unreachable("Invalid ABI kind for return argument"); 2394 } 2395 2396 if (!IsThunk) { 2397 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2398 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2399 QualType PTy = RefTy->getPointeeType(); 2400 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2401 RetAttrs.addDereferenceableAttr( 2402 getMinimumObjectSize(PTy).getQuantity()); 2403 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2404 !CodeGenOpts.NullPointerIsValid) 2405 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2406 if (PTy->isObjectType()) { 2407 llvm::Align Alignment = 2408 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2409 RetAttrs.addAlignmentAttr(Alignment); 2410 } 2411 } 2412 } 2413 2414 bool hasUsedSRet = false; 2415 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2416 2417 // Attach attributes to sret. 2418 if (IRFunctionArgs.hasSRetArg()) { 2419 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2420 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2421 hasUsedSRet = true; 2422 if (RetAI.getInReg()) 2423 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2424 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2425 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2426 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2427 } 2428 2429 // Attach attributes to inalloca argument. 2430 if (IRFunctionArgs.hasInallocaArg()) { 2431 llvm::AttrBuilder Attrs(getLLVMContext()); 2432 Attrs.addInAllocaAttr(FI.getArgStruct()); 2433 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2434 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2435 } 2436 2437 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2438 // unless this is a thunk function. 2439 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2440 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2441 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2442 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2443 2444 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2445 2446 llvm::AttrBuilder Attrs(getLLVMContext()); 2447 2448 QualType ThisTy = 2449 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2450 2451 if (!CodeGenOpts.NullPointerIsValid && 2452 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2453 Attrs.addAttribute(llvm::Attribute::NonNull); 2454 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2455 } else { 2456 // FIXME dereferenceable should be correct here, regardless of 2457 // NullPointerIsValid. However, dereferenceable currently does not always 2458 // respect NullPointerIsValid and may imply nonnull and break the program. 2459 // See https://reviews.llvm.org/D66618 for discussions. 2460 Attrs.addDereferenceableOrNullAttr( 2461 getMinimumObjectSize( 2462 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2463 .getQuantity()); 2464 } 2465 2466 llvm::Align Alignment = 2467 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2468 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2469 .getAsAlign(); 2470 Attrs.addAlignmentAttr(Alignment); 2471 2472 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2473 } 2474 2475 unsigned ArgNo = 0; 2476 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2477 E = FI.arg_end(); 2478 I != E; ++I, ++ArgNo) { 2479 QualType ParamType = I->type; 2480 const ABIArgInfo &AI = I->info; 2481 llvm::AttrBuilder Attrs(getLLVMContext()); 2482 2483 // Add attribute for padding argument, if necessary. 2484 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2485 if (AI.getPaddingInReg()) { 2486 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2487 llvm::AttributeSet::get( 2488 getLLVMContext(), 2489 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2490 } 2491 } 2492 2493 // Decide whether the argument we're handling could be partially undef 2494 if (CodeGenOpts.EnableNoundefAttrs && 2495 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2496 Attrs.addAttribute(llvm::Attribute::NoUndef); 2497 } 2498 2499 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2500 // have the corresponding parameter variable. It doesn't make 2501 // sense to do it here because parameters are so messed up. 2502 switch (AI.getKind()) { 2503 case ABIArgInfo::Extend: 2504 if (AI.isSignExt()) 2505 Attrs.addAttribute(llvm::Attribute::SExt); 2506 else 2507 Attrs.addAttribute(llvm::Attribute::ZExt); 2508 [[fallthrough]]; 2509 case ABIArgInfo::Direct: 2510 if (ArgNo == 0 && FI.isChainCall()) 2511 Attrs.addAttribute(llvm::Attribute::Nest); 2512 else if (AI.getInReg()) 2513 Attrs.addAttribute(llvm::Attribute::InReg); 2514 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2515 break; 2516 2517 case ABIArgInfo::Indirect: { 2518 if (AI.getInReg()) 2519 Attrs.addAttribute(llvm::Attribute::InReg); 2520 2521 if (AI.getIndirectByVal()) 2522 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2523 2524 auto *Decl = ParamType->getAsRecordDecl(); 2525 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2526 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2527 // When calling the function, the pointer passed in will be the only 2528 // reference to the underlying object. Mark it accordingly. 2529 Attrs.addAttribute(llvm::Attribute::NoAlias); 2530 2531 // TODO: We could add the byref attribute if not byval, but it would 2532 // require updating many testcases. 2533 2534 CharUnits Align = AI.getIndirectAlign(); 2535 2536 // In a byval argument, it is important that the required 2537 // alignment of the type is honored, as LLVM might be creating a 2538 // *new* stack object, and needs to know what alignment to give 2539 // it. (Sometimes it can deduce a sensible alignment on its own, 2540 // but not if clang decides it must emit a packed struct, or the 2541 // user specifies increased alignment requirements.) 2542 // 2543 // This is different from indirect *not* byval, where the object 2544 // exists already, and the align attribute is purely 2545 // informative. 2546 assert(!Align.isZero()); 2547 2548 // For now, only add this when we have a byval argument. 2549 // TODO: be less lazy about updating test cases. 2550 if (AI.getIndirectByVal()) 2551 Attrs.addAlignmentAttr(Align.getQuantity()); 2552 2553 // byval disables readnone and readonly. 2554 AddPotentialArgAccess(); 2555 break; 2556 } 2557 case ABIArgInfo::IndirectAliased: { 2558 CharUnits Align = AI.getIndirectAlign(); 2559 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2560 Attrs.addAlignmentAttr(Align.getQuantity()); 2561 break; 2562 } 2563 case ABIArgInfo::Ignore: 2564 case ABIArgInfo::Expand: 2565 case ABIArgInfo::CoerceAndExpand: 2566 break; 2567 2568 case ABIArgInfo::InAlloca: 2569 // inalloca disables readnone and readonly. 2570 AddPotentialArgAccess(); 2571 continue; 2572 } 2573 2574 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2575 QualType PTy = RefTy->getPointeeType(); 2576 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2577 Attrs.addDereferenceableAttr( 2578 getMinimumObjectSize(PTy).getQuantity()); 2579 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2580 !CodeGenOpts.NullPointerIsValid) 2581 Attrs.addAttribute(llvm::Attribute::NonNull); 2582 if (PTy->isObjectType()) { 2583 llvm::Align Alignment = 2584 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2585 Attrs.addAlignmentAttr(Alignment); 2586 } 2587 } 2588 2589 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2590 // > For arguments to a __kernel function declared to be a pointer to a 2591 // > data type, the OpenCL compiler can assume that the pointee is always 2592 // > appropriately aligned as required by the data type. 2593 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2594 ParamType->isPointerType()) { 2595 QualType PTy = ParamType->getPointeeType(); 2596 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2597 llvm::Align Alignment = 2598 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2599 Attrs.addAlignmentAttr(Alignment); 2600 } 2601 } 2602 2603 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2604 case ParameterABI::Ordinary: 2605 break; 2606 2607 case ParameterABI::SwiftIndirectResult: { 2608 // Add 'sret' if we haven't already used it for something, but 2609 // only if the result is void. 2610 if (!hasUsedSRet && RetTy->isVoidType()) { 2611 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2612 hasUsedSRet = true; 2613 } 2614 2615 // Add 'noalias' in either case. 2616 Attrs.addAttribute(llvm::Attribute::NoAlias); 2617 2618 // Add 'dereferenceable' and 'alignment'. 2619 auto PTy = ParamType->getPointeeType(); 2620 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2621 auto info = getContext().getTypeInfoInChars(PTy); 2622 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2623 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2624 } 2625 break; 2626 } 2627 2628 case ParameterABI::SwiftErrorResult: 2629 Attrs.addAttribute(llvm::Attribute::SwiftError); 2630 break; 2631 2632 case ParameterABI::SwiftContext: 2633 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2634 break; 2635 2636 case ParameterABI::SwiftAsyncContext: 2637 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2638 break; 2639 } 2640 2641 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2642 Attrs.addAttribute(llvm::Attribute::NoCapture); 2643 2644 if (Attrs.hasAttributes()) { 2645 unsigned FirstIRArg, NumIRArgs; 2646 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2647 for (unsigned i = 0; i < NumIRArgs; i++) 2648 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2649 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2650 } 2651 } 2652 assert(ArgNo == FI.arg_size()); 2653 2654 AttrList = llvm::AttributeList::get( 2655 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2656 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2657 } 2658 2659 /// An argument came in as a promoted argument; demote it back to its 2660 /// declared type. 2661 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2662 const VarDecl *var, 2663 llvm::Value *value) { 2664 llvm::Type *varType = CGF.ConvertType(var->getType()); 2665 2666 // This can happen with promotions that actually don't change the 2667 // underlying type, like the enum promotions. 2668 if (value->getType() == varType) return value; 2669 2670 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2671 && "unexpected promotion type"); 2672 2673 if (isa<llvm::IntegerType>(varType)) 2674 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2675 2676 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2677 } 2678 2679 /// Returns the attribute (either parameter attribute, or function 2680 /// attribute), which declares argument ArgNo to be non-null. 2681 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2682 QualType ArgType, unsigned ArgNo) { 2683 // FIXME: __attribute__((nonnull)) can also be applied to: 2684 // - references to pointers, where the pointee is known to be 2685 // nonnull (apparently a Clang extension) 2686 // - transparent unions containing pointers 2687 // In the former case, LLVM IR cannot represent the constraint. In 2688 // the latter case, we have no guarantee that the transparent union 2689 // is in fact passed as a pointer. 2690 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2691 return nullptr; 2692 // First, check attribute on parameter itself. 2693 if (PVD) { 2694 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2695 return ParmNNAttr; 2696 } 2697 // Check function attributes. 2698 if (!FD) 2699 return nullptr; 2700 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2701 if (NNAttr->isNonNull(ArgNo)) 2702 return NNAttr; 2703 } 2704 return nullptr; 2705 } 2706 2707 namespace { 2708 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2709 Address Temp; 2710 Address Arg; 2711 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2712 void Emit(CodeGenFunction &CGF, Flags flags) override { 2713 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2714 CGF.Builder.CreateStore(errorValue, Arg); 2715 } 2716 }; 2717 } 2718 2719 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2720 llvm::Function *Fn, 2721 const FunctionArgList &Args) { 2722 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2723 // Naked functions don't have prologues. 2724 return; 2725 2726 // If this is an implicit-return-zero function, go ahead and 2727 // initialize the return value. TODO: it might be nice to have 2728 // a more general mechanism for this that didn't require synthesized 2729 // return statements. 2730 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2731 if (FD->hasImplicitReturnZero()) { 2732 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2733 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2734 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2735 Builder.CreateStore(Zero, ReturnValue); 2736 } 2737 } 2738 2739 // FIXME: We no longer need the types from FunctionArgList; lift up and 2740 // simplify. 2741 2742 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2743 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2744 2745 // If we're using inalloca, all the memory arguments are GEPs off of the last 2746 // parameter, which is a pointer to the complete memory area. 2747 Address ArgStruct = Address::invalid(); 2748 if (IRFunctionArgs.hasInallocaArg()) { 2749 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2750 FI.getArgStruct(), FI.getArgStructAlignment()); 2751 2752 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2753 } 2754 2755 // Name the struct return parameter. 2756 if (IRFunctionArgs.hasSRetArg()) { 2757 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2758 AI->setName("agg.result"); 2759 AI->addAttr(llvm::Attribute::NoAlias); 2760 } 2761 2762 // Track if we received the parameter as a pointer (indirect, byval, or 2763 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2764 // into a local alloca for us. 2765 SmallVector<ParamValue, 16> ArgVals; 2766 ArgVals.reserve(Args.size()); 2767 2768 // Create a pointer value for every parameter declaration. This usually 2769 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2770 // any cleanups or do anything that might unwind. We do that separately, so 2771 // we can push the cleanups in the correct order for the ABI. 2772 assert(FI.arg_size() == Args.size() && 2773 "Mismatch between function signature & arguments."); 2774 unsigned ArgNo = 0; 2775 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2776 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2777 i != e; ++i, ++info_it, ++ArgNo) { 2778 const VarDecl *Arg = *i; 2779 const ABIArgInfo &ArgI = info_it->info; 2780 2781 bool isPromoted = 2782 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2783 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2784 // the parameter is promoted. In this case we convert to 2785 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2786 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2787 assert(hasScalarEvaluationKind(Ty) == 2788 hasScalarEvaluationKind(Arg->getType())); 2789 2790 unsigned FirstIRArg, NumIRArgs; 2791 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2792 2793 switch (ArgI.getKind()) { 2794 case ABIArgInfo::InAlloca: { 2795 assert(NumIRArgs == 0); 2796 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2797 Address V = 2798 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2799 if (ArgI.getInAllocaIndirect()) 2800 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2801 getContext().getTypeAlignInChars(Ty)); 2802 ArgVals.push_back(ParamValue::forIndirect(V)); 2803 break; 2804 } 2805 2806 case ABIArgInfo::Indirect: 2807 case ABIArgInfo::IndirectAliased: { 2808 assert(NumIRArgs == 1); 2809 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2810 ArgI.getIndirectAlign()); 2811 2812 if (!hasScalarEvaluationKind(Ty)) { 2813 // Aggregates and complex variables are accessed by reference. All we 2814 // need to do is realign the value, if requested. Also, if the address 2815 // may be aliased, copy it to ensure that the parameter variable is 2816 // mutable and has a unique adress, as C requires. 2817 Address V = ParamAddr; 2818 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2819 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2820 2821 // Copy from the incoming argument pointer to the temporary with the 2822 // appropriate alignment. 2823 // 2824 // FIXME: We should have a common utility for generating an aggregate 2825 // copy. 2826 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2827 Builder.CreateMemCpy( 2828 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2829 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2830 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2831 V = AlignedTemp; 2832 } 2833 ArgVals.push_back(ParamValue::forIndirect(V)); 2834 } else { 2835 // Load scalar value from indirect argument. 2836 llvm::Value *V = 2837 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2838 2839 if (isPromoted) 2840 V = emitArgumentDemotion(*this, Arg, V); 2841 ArgVals.push_back(ParamValue::forDirect(V)); 2842 } 2843 break; 2844 } 2845 2846 case ABIArgInfo::Extend: 2847 case ABIArgInfo::Direct: { 2848 auto AI = Fn->getArg(FirstIRArg); 2849 llvm::Type *LTy = ConvertType(Arg->getType()); 2850 2851 // Prepare parameter attributes. So far, only attributes for pointer 2852 // parameters are prepared. See 2853 // http://llvm.org/docs/LangRef.html#paramattrs. 2854 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2855 ArgI.getCoerceToType()->isPointerTy()) { 2856 assert(NumIRArgs == 1); 2857 2858 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2859 // Set `nonnull` attribute if any. 2860 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2861 PVD->getFunctionScopeIndex()) && 2862 !CGM.getCodeGenOpts().NullPointerIsValid) 2863 AI->addAttr(llvm::Attribute::NonNull); 2864 2865 QualType OTy = PVD->getOriginalType(); 2866 if (const auto *ArrTy = 2867 getContext().getAsConstantArrayType(OTy)) { 2868 // A C99 array parameter declaration with the static keyword also 2869 // indicates dereferenceability, and if the size is constant we can 2870 // use the dereferenceable attribute (which requires the size in 2871 // bytes). 2872 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2873 QualType ETy = ArrTy->getElementType(); 2874 llvm::Align Alignment = 2875 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2876 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2877 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2878 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2879 ArrSize) { 2880 llvm::AttrBuilder Attrs(getLLVMContext()); 2881 Attrs.addDereferenceableAttr( 2882 getContext().getTypeSizeInChars(ETy).getQuantity() * 2883 ArrSize); 2884 AI->addAttrs(Attrs); 2885 } else if (getContext().getTargetInfo().getNullPointerValue( 2886 ETy.getAddressSpace()) == 0 && 2887 !CGM.getCodeGenOpts().NullPointerIsValid) { 2888 AI->addAttr(llvm::Attribute::NonNull); 2889 } 2890 } 2891 } else if (const auto *ArrTy = 2892 getContext().getAsVariableArrayType(OTy)) { 2893 // For C99 VLAs with the static keyword, we don't know the size so 2894 // we can't use the dereferenceable attribute, but in addrspace(0) 2895 // we know that it must be nonnull. 2896 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2897 QualType ETy = ArrTy->getElementType(); 2898 llvm::Align Alignment = 2899 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2900 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2901 if (!getTypes().getTargetAddressSpace(ETy) && 2902 !CGM.getCodeGenOpts().NullPointerIsValid) 2903 AI->addAttr(llvm::Attribute::NonNull); 2904 } 2905 } 2906 2907 // Set `align` attribute if any. 2908 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2909 if (!AVAttr) 2910 if (const auto *TOTy = OTy->getAs<TypedefType>()) 2911 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2912 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2913 // If alignment-assumption sanitizer is enabled, we do *not* add 2914 // alignment attribute here, but emit normal alignment assumption, 2915 // so the UBSAN check could function. 2916 llvm::ConstantInt *AlignmentCI = 2917 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2918 uint64_t AlignmentInt = 2919 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2920 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2921 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2922 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2923 llvm::Align(AlignmentInt))); 2924 } 2925 } 2926 } 2927 2928 // Set 'noalias' if an argument type has the `restrict` qualifier. 2929 if (Arg->getType().isRestrictQualified()) 2930 AI->addAttr(llvm::Attribute::NoAlias); 2931 } 2932 2933 // Prepare the argument value. If we have the trivial case, handle it 2934 // with no muss and fuss. 2935 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2936 ArgI.getCoerceToType() == ConvertType(Ty) && 2937 ArgI.getDirectOffset() == 0) { 2938 assert(NumIRArgs == 1); 2939 2940 // LLVM expects swifterror parameters to be used in very restricted 2941 // ways. Copy the value into a less-restricted temporary. 2942 llvm::Value *V = AI; 2943 if (FI.getExtParameterInfo(ArgNo).getABI() 2944 == ParameterABI::SwiftErrorResult) { 2945 QualType pointeeTy = Ty->getPointeeType(); 2946 assert(pointeeTy->isPointerType()); 2947 Address temp = 2948 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2949 Address arg(V, ConvertTypeForMem(pointeeTy), 2950 getContext().getTypeAlignInChars(pointeeTy)); 2951 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2952 Builder.CreateStore(incomingErrorValue, temp); 2953 V = temp.getPointer(); 2954 2955 // Push a cleanup to copy the value back at the end of the function. 2956 // The convention does not guarantee that the value will be written 2957 // back if the function exits with an unwind exception. 2958 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2959 } 2960 2961 // Ensure the argument is the correct type. 2962 if (V->getType() != ArgI.getCoerceToType()) 2963 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2964 2965 if (isPromoted) 2966 V = emitArgumentDemotion(*this, Arg, V); 2967 2968 // Because of merging of function types from multiple decls it is 2969 // possible for the type of an argument to not match the corresponding 2970 // type in the function type. Since we are codegening the callee 2971 // in here, add a cast to the argument type. 2972 llvm::Type *LTy = ConvertType(Arg->getType()); 2973 if (V->getType() != LTy) 2974 V = Builder.CreateBitCast(V, LTy); 2975 2976 ArgVals.push_back(ParamValue::forDirect(V)); 2977 break; 2978 } 2979 2980 // VLST arguments are coerced to VLATs at the function boundary for 2981 // ABI consistency. If this is a VLST that was coerced to 2982 // a VLAT at the function boundary and the types match up, use 2983 // llvm.vector.extract to convert back to the original VLST. 2984 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2985 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2986 if (auto *VecTyFrom = 2987 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2988 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2989 // vector, bitcast the source and use a vector extract. 2990 auto PredType = 2991 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2992 if (VecTyFrom == PredType && 2993 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2994 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2995 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2996 } 2997 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2998 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2999 3000 assert(NumIRArgs == 1); 3001 Coerced->setName(Arg->getName() + ".coerce"); 3002 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 3003 VecTyTo, Coerced, Zero, "castFixedSve"))); 3004 break; 3005 } 3006 } 3007 } 3008 3009 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3010 Arg->getName()); 3011 3012 // Pointer to store into. 3013 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3014 3015 // Fast-isel and the optimizer generally like scalar values better than 3016 // FCAs, so we flatten them if this is safe to do for this argument. 3017 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3018 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3019 STy->getNumElements() > 1) { 3020 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 3021 llvm::Type *DstTy = Ptr.getElementType(); 3022 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 3023 3024 Address AddrToStoreInto = Address::invalid(); 3025 if (SrcSize <= DstSize) { 3026 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 3027 } else { 3028 AddrToStoreInto = 3029 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3030 } 3031 3032 assert(STy->getNumElements() == NumIRArgs); 3033 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3034 auto AI = Fn->getArg(FirstIRArg + i); 3035 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3036 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3037 Builder.CreateStore(AI, EltPtr); 3038 } 3039 3040 if (SrcSize > DstSize) { 3041 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3042 } 3043 3044 } else { 3045 // Simple case, just do a coerced store of the argument into the alloca. 3046 assert(NumIRArgs == 1); 3047 auto AI = Fn->getArg(FirstIRArg); 3048 AI->setName(Arg->getName() + ".coerce"); 3049 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 3050 } 3051 3052 // Match to what EmitParmDecl is expecting for this type. 3053 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3054 llvm::Value *V = 3055 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3056 if (isPromoted) 3057 V = emitArgumentDemotion(*this, Arg, V); 3058 ArgVals.push_back(ParamValue::forDirect(V)); 3059 } else { 3060 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3061 } 3062 break; 3063 } 3064 3065 case ABIArgInfo::CoerceAndExpand: { 3066 // Reconstruct into a temporary. 3067 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3068 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3069 3070 auto coercionType = ArgI.getCoerceAndExpandType(); 3071 alloca = Builder.CreateElementBitCast(alloca, coercionType); 3072 3073 unsigned argIndex = FirstIRArg; 3074 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3075 llvm::Type *eltType = coercionType->getElementType(i); 3076 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3077 continue; 3078 3079 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3080 auto elt = Fn->getArg(argIndex++); 3081 Builder.CreateStore(elt, eltAddr); 3082 } 3083 assert(argIndex == FirstIRArg + NumIRArgs); 3084 break; 3085 } 3086 3087 case ABIArgInfo::Expand: { 3088 // If this structure was expanded into multiple arguments then 3089 // we need to create a temporary and reconstruct it from the 3090 // arguments. 3091 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3092 LValue LV = MakeAddrLValue(Alloca, Ty); 3093 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3094 3095 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3096 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3097 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3098 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3099 auto AI = Fn->getArg(FirstIRArg + i); 3100 AI->setName(Arg->getName() + "." + Twine(i)); 3101 } 3102 break; 3103 } 3104 3105 case ABIArgInfo::Ignore: 3106 assert(NumIRArgs == 0); 3107 // Initialize the local variable appropriately. 3108 if (!hasScalarEvaluationKind(Ty)) { 3109 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3110 } else { 3111 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3112 ArgVals.push_back(ParamValue::forDirect(U)); 3113 } 3114 break; 3115 } 3116 } 3117 3118 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3119 for (int I = Args.size() - 1; I >= 0; --I) 3120 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3121 } else { 3122 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3123 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3124 } 3125 } 3126 3127 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3128 while (insn->use_empty()) { 3129 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3130 if (!bitcast) return; 3131 3132 // This is "safe" because we would have used a ConstantExpr otherwise. 3133 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3134 bitcast->eraseFromParent(); 3135 } 3136 } 3137 3138 /// Try to emit a fused autorelease of a return result. 3139 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3140 llvm::Value *result) { 3141 // We must be immediately followed the cast. 3142 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3143 if (BB->empty()) return nullptr; 3144 if (&BB->back() != result) return nullptr; 3145 3146 llvm::Type *resultType = result->getType(); 3147 3148 // result is in a BasicBlock and is therefore an Instruction. 3149 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3150 3151 SmallVector<llvm::Instruction *, 4> InstsToKill; 3152 3153 // Look for: 3154 // %generator = bitcast %type1* %generator2 to %type2* 3155 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3156 // We would have emitted this as a constant if the operand weren't 3157 // an Instruction. 3158 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3159 3160 // Require the generator to be immediately followed by the cast. 3161 if (generator->getNextNode() != bitcast) 3162 return nullptr; 3163 3164 InstsToKill.push_back(bitcast); 3165 } 3166 3167 // Look for: 3168 // %generator = call i8* @objc_retain(i8* %originalResult) 3169 // or 3170 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3171 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3172 if (!call) return nullptr; 3173 3174 bool doRetainAutorelease; 3175 3176 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3177 doRetainAutorelease = true; 3178 } else if (call->getCalledOperand() == 3179 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3180 doRetainAutorelease = false; 3181 3182 // If we emitted an assembly marker for this call (and the 3183 // ARCEntrypoints field should have been set if so), go looking 3184 // for that call. If we can't find it, we can't do this 3185 // optimization. But it should always be the immediately previous 3186 // instruction, unless we needed bitcasts around the call. 3187 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3188 llvm::Instruction *prev = call->getPrevNode(); 3189 assert(prev); 3190 if (isa<llvm::BitCastInst>(prev)) { 3191 prev = prev->getPrevNode(); 3192 assert(prev); 3193 } 3194 assert(isa<llvm::CallInst>(prev)); 3195 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3196 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3197 InstsToKill.push_back(prev); 3198 } 3199 } else { 3200 return nullptr; 3201 } 3202 3203 result = call->getArgOperand(0); 3204 InstsToKill.push_back(call); 3205 3206 // Keep killing bitcasts, for sanity. Note that we no longer care 3207 // about precise ordering as long as there's exactly one use. 3208 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3209 if (!bitcast->hasOneUse()) break; 3210 InstsToKill.push_back(bitcast); 3211 result = bitcast->getOperand(0); 3212 } 3213 3214 // Delete all the unnecessary instructions, from latest to earliest. 3215 for (auto *I : InstsToKill) 3216 I->eraseFromParent(); 3217 3218 // Do the fused retain/autorelease if we were asked to. 3219 if (doRetainAutorelease) 3220 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3221 3222 // Cast back to the result type. 3223 return CGF.Builder.CreateBitCast(result, resultType); 3224 } 3225 3226 /// If this is a +1 of the value of an immutable 'self', remove it. 3227 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3228 llvm::Value *result) { 3229 // This is only applicable to a method with an immutable 'self'. 3230 const ObjCMethodDecl *method = 3231 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3232 if (!method) return nullptr; 3233 const VarDecl *self = method->getSelfDecl(); 3234 if (!self->getType().isConstQualified()) return nullptr; 3235 3236 // Look for a retain call. 3237 llvm::CallInst *retainCall = 3238 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3239 if (!retainCall || retainCall->getCalledOperand() != 3240 CGF.CGM.getObjCEntrypoints().objc_retain) 3241 return nullptr; 3242 3243 // Look for an ordinary load of 'self'. 3244 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3245 llvm::LoadInst *load = 3246 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3247 if (!load || load->isAtomic() || load->isVolatile() || 3248 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3249 return nullptr; 3250 3251 // Okay! Burn it all down. This relies for correctness on the 3252 // assumption that the retain is emitted as part of the return and 3253 // that thereafter everything is used "linearly". 3254 llvm::Type *resultType = result->getType(); 3255 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3256 assert(retainCall->use_empty()); 3257 retainCall->eraseFromParent(); 3258 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3259 3260 return CGF.Builder.CreateBitCast(load, resultType); 3261 } 3262 3263 /// Emit an ARC autorelease of the result of a function. 3264 /// 3265 /// \return the value to actually return from the function 3266 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3267 llvm::Value *result) { 3268 // If we're returning 'self', kill the initial retain. This is a 3269 // heuristic attempt to "encourage correctness" in the really unfortunate 3270 // case where we have a return of self during a dealloc and we desperately 3271 // need to avoid the possible autorelease. 3272 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3273 return self; 3274 3275 // At -O0, try to emit a fused retain/autorelease. 3276 if (CGF.shouldUseFusedARCCalls()) 3277 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3278 return fused; 3279 3280 return CGF.EmitARCAutoreleaseReturnValue(result); 3281 } 3282 3283 /// Heuristically search for a dominating store to the return-value slot. 3284 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3285 // Check if a User is a store which pointerOperand is the ReturnValue. 3286 // We are looking for stores to the ReturnValue, not for stores of the 3287 // ReturnValue to some other location. 3288 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3289 auto *SI = dyn_cast<llvm::StoreInst>(U); 3290 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() || 3291 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3292 return nullptr; 3293 // These aren't actually possible for non-coerced returns, and we 3294 // only care about non-coerced returns on this code path. 3295 assert(!SI->isAtomic() && !SI->isVolatile()); 3296 return SI; 3297 }; 3298 // If there are multiple uses of the return-value slot, just check 3299 // for something immediately preceding the IP. Sometimes this can 3300 // happen with how we generate implicit-returns; it can also happen 3301 // with noreturn cleanups. 3302 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3303 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3304 if (IP->empty()) return nullptr; 3305 3306 // Look at directly preceding instruction, skipping bitcasts and lifetime 3307 // markers. 3308 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3309 if (isa<llvm::BitCastInst>(&I)) 3310 continue; 3311 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3312 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3313 continue; 3314 3315 return GetStoreIfValid(&I); 3316 } 3317 return nullptr; 3318 } 3319 3320 llvm::StoreInst *store = 3321 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3322 if (!store) return nullptr; 3323 3324 // Now do a first-and-dirty dominance check: just walk up the 3325 // single-predecessors chain from the current insertion point. 3326 llvm::BasicBlock *StoreBB = store->getParent(); 3327 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3328 while (IP != StoreBB) { 3329 if (!(IP = IP->getSinglePredecessor())) 3330 return nullptr; 3331 } 3332 3333 // Okay, the store's basic block dominates the insertion point; we 3334 // can do our thing. 3335 return store; 3336 } 3337 3338 // Helper functions for EmitCMSEClearRecord 3339 3340 // Set the bits corresponding to a field having width `BitWidth` and located at 3341 // offset `BitOffset` (from the least significant bit) within a storage unit of 3342 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3343 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3344 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3345 int BitWidth, int CharWidth) { 3346 assert(CharWidth <= 64); 3347 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3348 3349 int Pos = 0; 3350 if (BitOffset >= CharWidth) { 3351 Pos += BitOffset / CharWidth; 3352 BitOffset = BitOffset % CharWidth; 3353 } 3354 3355 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3356 if (BitOffset + BitWidth >= CharWidth) { 3357 Bits[Pos++] |= (Used << BitOffset) & Used; 3358 BitWidth -= CharWidth - BitOffset; 3359 BitOffset = 0; 3360 } 3361 3362 while (BitWidth >= CharWidth) { 3363 Bits[Pos++] = Used; 3364 BitWidth -= CharWidth; 3365 } 3366 3367 if (BitWidth > 0) 3368 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3369 } 3370 3371 // Set the bits corresponding to a field having width `BitWidth` and located at 3372 // offset `BitOffset` (from the least significant bit) within a storage unit of 3373 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3374 // `Bits` corresponds to one target byte. Use target endian layout. 3375 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3376 int StorageSize, int BitOffset, int BitWidth, 3377 int CharWidth, bool BigEndian) { 3378 3379 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3380 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3381 3382 if (BigEndian) 3383 std::reverse(TmpBits.begin(), TmpBits.end()); 3384 3385 for (uint64_t V : TmpBits) 3386 Bits[StorageOffset++] |= V; 3387 } 3388 3389 static void setUsedBits(CodeGenModule &, QualType, int, 3390 SmallVectorImpl<uint64_t> &); 3391 3392 // Set the bits in `Bits`, which correspond to the value representations of 3393 // the actual members of the record type `RTy`. Note that this function does 3394 // not handle base classes, virtual tables, etc, since they cannot happen in 3395 // CMSE function arguments or return. The bit mask corresponds to the target 3396 // memory layout, i.e. it's endian dependent. 3397 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3398 SmallVectorImpl<uint64_t> &Bits) { 3399 ASTContext &Context = CGM.getContext(); 3400 int CharWidth = Context.getCharWidth(); 3401 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3402 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3403 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3404 3405 int Idx = 0; 3406 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3407 const FieldDecl *F = *I; 3408 3409 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3410 F->getType()->isIncompleteArrayType()) 3411 continue; 3412 3413 if (F->isBitField()) { 3414 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3415 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3416 BFI.StorageSize / CharWidth, BFI.Offset, 3417 BFI.Size, CharWidth, 3418 CGM.getDataLayout().isBigEndian()); 3419 continue; 3420 } 3421 3422 setUsedBits(CGM, F->getType(), 3423 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3424 } 3425 } 3426 3427 // Set the bits in `Bits`, which correspond to the value representations of 3428 // the elements of an array type `ATy`. 3429 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3430 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3431 const ASTContext &Context = CGM.getContext(); 3432 3433 QualType ETy = Context.getBaseElementType(ATy); 3434 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3435 SmallVector<uint64_t, 4> TmpBits(Size); 3436 setUsedBits(CGM, ETy, 0, TmpBits); 3437 3438 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3439 auto Src = TmpBits.begin(); 3440 auto Dst = Bits.begin() + Offset + I * Size; 3441 for (int J = 0; J < Size; ++J) 3442 *Dst++ |= *Src++; 3443 } 3444 } 3445 3446 // Set the bits in `Bits`, which correspond to the value representations of 3447 // the type `QTy`. 3448 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3449 SmallVectorImpl<uint64_t> &Bits) { 3450 if (const auto *RTy = QTy->getAs<RecordType>()) 3451 return setUsedBits(CGM, RTy, Offset, Bits); 3452 3453 ASTContext &Context = CGM.getContext(); 3454 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3455 return setUsedBits(CGM, ATy, Offset, Bits); 3456 3457 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3458 if (Size <= 0) 3459 return; 3460 3461 std::fill_n(Bits.begin() + Offset, Size, 3462 (uint64_t(1) << Context.getCharWidth()) - 1); 3463 } 3464 3465 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3466 int Pos, int Size, int CharWidth, 3467 bool BigEndian) { 3468 assert(Size > 0); 3469 uint64_t Mask = 0; 3470 if (BigEndian) { 3471 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3472 ++P) 3473 Mask = (Mask << CharWidth) | *P; 3474 } else { 3475 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3476 do 3477 Mask = (Mask << CharWidth) | *--P; 3478 while (P != End); 3479 } 3480 return Mask; 3481 } 3482 3483 // Emit code to clear the bits in a record, which aren't a part of any user 3484 // declared member, when the record is a function return. 3485 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3486 llvm::IntegerType *ITy, 3487 QualType QTy) { 3488 assert(Src->getType() == ITy); 3489 assert(ITy->getScalarSizeInBits() <= 64); 3490 3491 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3492 int Size = DataLayout.getTypeStoreSize(ITy); 3493 SmallVector<uint64_t, 4> Bits(Size); 3494 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3495 3496 int CharWidth = CGM.getContext().getCharWidth(); 3497 uint64_t Mask = 3498 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3499 3500 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3501 } 3502 3503 // Emit code to clear the bits in a record, which aren't a part of any user 3504 // declared member, when the record is a function argument. 3505 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3506 llvm::ArrayType *ATy, 3507 QualType QTy) { 3508 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3509 int Size = DataLayout.getTypeStoreSize(ATy); 3510 SmallVector<uint64_t, 16> Bits(Size); 3511 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3512 3513 // Clear each element of the LLVM array. 3514 int CharWidth = CGM.getContext().getCharWidth(); 3515 int CharsPerElt = 3516 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3517 int MaskIndex = 0; 3518 llvm::Value *R = llvm::PoisonValue::get(ATy); 3519 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3520 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3521 DataLayout.isBigEndian()); 3522 MaskIndex += CharsPerElt; 3523 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3524 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3525 R = Builder.CreateInsertValue(R, T1, I); 3526 } 3527 3528 return R; 3529 } 3530 3531 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3532 bool EmitRetDbgLoc, 3533 SourceLocation EndLoc) { 3534 if (FI.isNoReturn()) { 3535 // Noreturn functions don't return. 3536 EmitUnreachable(EndLoc); 3537 return; 3538 } 3539 3540 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3541 // Naked functions don't have epilogues. 3542 Builder.CreateUnreachable(); 3543 return; 3544 } 3545 3546 // Functions with no result always return void. 3547 if (!ReturnValue.isValid()) { 3548 Builder.CreateRetVoid(); 3549 return; 3550 } 3551 3552 llvm::DebugLoc RetDbgLoc; 3553 llvm::Value *RV = nullptr; 3554 QualType RetTy = FI.getReturnType(); 3555 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3556 3557 switch (RetAI.getKind()) { 3558 case ABIArgInfo::InAlloca: 3559 // Aggregates get evaluated directly into the destination. Sometimes we 3560 // need to return the sret value in a register, though. 3561 assert(hasAggregateEvaluationKind(RetTy)); 3562 if (RetAI.getInAllocaSRet()) { 3563 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3564 --EI; 3565 llvm::Value *ArgStruct = &*EI; 3566 llvm::Value *SRet = Builder.CreateStructGEP( 3567 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3568 llvm::Type *Ty = 3569 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3570 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3571 } 3572 break; 3573 3574 case ABIArgInfo::Indirect: { 3575 auto AI = CurFn->arg_begin(); 3576 if (RetAI.isSRetAfterThis()) 3577 ++AI; 3578 switch (getEvaluationKind(RetTy)) { 3579 case TEK_Complex: { 3580 ComplexPairTy RT = 3581 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3582 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3583 /*isInit*/ true); 3584 break; 3585 } 3586 case TEK_Aggregate: 3587 // Do nothing; aggregates get evaluated directly into the destination. 3588 break; 3589 case TEK_Scalar: { 3590 LValueBaseInfo BaseInfo; 3591 TBAAAccessInfo TBAAInfo; 3592 CharUnits Alignment = 3593 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3594 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3595 LValue ArgVal = 3596 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3597 EmitStoreOfScalar( 3598 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3599 break; 3600 } 3601 } 3602 break; 3603 } 3604 3605 case ABIArgInfo::Extend: 3606 case ABIArgInfo::Direct: 3607 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3608 RetAI.getDirectOffset() == 0) { 3609 // The internal return value temp always will have pointer-to-return-type 3610 // type, just do a load. 3611 3612 // If there is a dominating store to ReturnValue, we can elide 3613 // the load, zap the store, and usually zap the alloca. 3614 if (llvm::StoreInst *SI = 3615 findDominatingStoreToReturnValue(*this)) { 3616 // Reuse the debug location from the store unless there is 3617 // cleanup code to be emitted between the store and return 3618 // instruction. 3619 if (EmitRetDbgLoc && !AutoreleaseResult) 3620 RetDbgLoc = SI->getDebugLoc(); 3621 // Get the stored value and nuke the now-dead store. 3622 RV = SI->getValueOperand(); 3623 SI->eraseFromParent(); 3624 3625 // Otherwise, we have to do a simple load. 3626 } else { 3627 RV = Builder.CreateLoad(ReturnValue); 3628 } 3629 } else { 3630 // If the value is offset in memory, apply the offset now. 3631 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3632 3633 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3634 } 3635 3636 // In ARC, end functions that return a retainable type with a call 3637 // to objc_autoreleaseReturnValue. 3638 if (AutoreleaseResult) { 3639 #ifndef NDEBUG 3640 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3641 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3642 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3643 // CurCodeDecl or BlockInfo. 3644 QualType RT; 3645 3646 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3647 RT = FD->getReturnType(); 3648 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3649 RT = MD->getReturnType(); 3650 else if (isa<BlockDecl>(CurCodeDecl)) 3651 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3652 else 3653 llvm_unreachable("Unexpected function/method type"); 3654 3655 assert(getLangOpts().ObjCAutoRefCount && 3656 !FI.isReturnsRetained() && 3657 RT->isObjCRetainableType()); 3658 #endif 3659 RV = emitAutoreleaseOfResult(*this, RV); 3660 } 3661 3662 break; 3663 3664 case ABIArgInfo::Ignore: 3665 break; 3666 3667 case ABIArgInfo::CoerceAndExpand: { 3668 auto coercionType = RetAI.getCoerceAndExpandType(); 3669 3670 // Load all of the coerced elements out into results. 3671 llvm::SmallVector<llvm::Value*, 4> results; 3672 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3673 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3674 auto coercedEltType = coercionType->getElementType(i); 3675 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3676 continue; 3677 3678 auto eltAddr = Builder.CreateStructGEP(addr, i); 3679 auto elt = Builder.CreateLoad(eltAddr); 3680 results.push_back(elt); 3681 } 3682 3683 // If we have one result, it's the single direct result type. 3684 if (results.size() == 1) { 3685 RV = results[0]; 3686 3687 // Otherwise, we need to make a first-class aggregate. 3688 } else { 3689 // Construct a return type that lacks padding elements. 3690 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3691 3692 RV = llvm::PoisonValue::get(returnType); 3693 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3694 RV = Builder.CreateInsertValue(RV, results[i], i); 3695 } 3696 } 3697 break; 3698 } 3699 case ABIArgInfo::Expand: 3700 case ABIArgInfo::IndirectAliased: 3701 llvm_unreachable("Invalid ABI kind for return argument"); 3702 } 3703 3704 llvm::Instruction *Ret; 3705 if (RV) { 3706 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3707 // For certain return types, clear padding bits, as they may reveal 3708 // sensitive information. 3709 // Small struct/union types are passed as integers. 3710 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3711 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3712 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3713 } 3714 EmitReturnValueCheck(RV); 3715 Ret = Builder.CreateRet(RV); 3716 } else { 3717 Ret = Builder.CreateRetVoid(); 3718 } 3719 3720 if (RetDbgLoc) 3721 Ret->setDebugLoc(std::move(RetDbgLoc)); 3722 } 3723 3724 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3725 // A current decl may not be available when emitting vtable thunks. 3726 if (!CurCodeDecl) 3727 return; 3728 3729 // If the return block isn't reachable, neither is this check, so don't emit 3730 // it. 3731 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3732 return; 3733 3734 ReturnsNonNullAttr *RetNNAttr = nullptr; 3735 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3736 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3737 3738 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3739 return; 3740 3741 // Prefer the returns_nonnull attribute if it's present. 3742 SourceLocation AttrLoc; 3743 SanitizerMask CheckKind; 3744 SanitizerHandler Handler; 3745 if (RetNNAttr) { 3746 assert(!requiresReturnValueNullabilityCheck() && 3747 "Cannot check nullability and the nonnull attribute"); 3748 AttrLoc = RetNNAttr->getLocation(); 3749 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3750 Handler = SanitizerHandler::NonnullReturn; 3751 } else { 3752 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3753 if (auto *TSI = DD->getTypeSourceInfo()) 3754 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3755 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3756 CheckKind = SanitizerKind::NullabilityReturn; 3757 Handler = SanitizerHandler::NullabilityReturn; 3758 } 3759 3760 SanitizerScope SanScope(this); 3761 3762 // Make sure the "return" source location is valid. If we're checking a 3763 // nullability annotation, make sure the preconditions for the check are met. 3764 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3765 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3766 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3767 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3768 if (requiresReturnValueNullabilityCheck()) 3769 CanNullCheck = 3770 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3771 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3772 EmitBlock(Check); 3773 3774 // Now do the null check. 3775 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3776 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3777 llvm::Value *DynamicData[] = {SLocPtr}; 3778 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3779 3780 EmitBlock(NoCheck); 3781 3782 #ifndef NDEBUG 3783 // The return location should not be used after the check has been emitted. 3784 ReturnLocation = Address::invalid(); 3785 #endif 3786 } 3787 3788 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3789 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3790 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3791 } 3792 3793 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3794 QualType Ty) { 3795 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3796 // placeholders. 3797 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3798 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3799 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy->getPointerTo()); 3800 3801 // FIXME: When we generate this IR in one pass, we shouldn't need 3802 // this win32-specific alignment hack. 3803 CharUnits Align = CharUnits::fromQuantity(4); 3804 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3805 3806 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 3807 Ty.getQualifiers(), 3808 AggValueSlot::IsNotDestructed, 3809 AggValueSlot::DoesNotNeedGCBarriers, 3810 AggValueSlot::IsNotAliased, 3811 AggValueSlot::DoesNotOverlap); 3812 } 3813 3814 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3815 const VarDecl *param, 3816 SourceLocation loc) { 3817 // StartFunction converted the ABI-lowered parameter(s) into a 3818 // local alloca. We need to turn that into an r-value suitable 3819 // for EmitCall. 3820 Address local = GetAddrOfLocalVar(param); 3821 3822 QualType type = param->getType(); 3823 3824 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3825 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3826 } 3827 3828 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3829 // but the argument needs to be the original pointer. 3830 if (type->isReferenceType()) { 3831 args.add(RValue::get(Builder.CreateLoad(local)), type); 3832 3833 // In ARC, move out of consumed arguments so that the release cleanup 3834 // entered by StartFunction doesn't cause an over-release. This isn't 3835 // optimal -O0 code generation, but it should get cleaned up when 3836 // optimization is enabled. This also assumes that delegate calls are 3837 // performed exactly once for a set of arguments, but that should be safe. 3838 } else if (getLangOpts().ObjCAutoRefCount && 3839 param->hasAttr<NSConsumedAttr>() && 3840 type->isObjCRetainableType()) { 3841 llvm::Value *ptr = Builder.CreateLoad(local); 3842 auto null = 3843 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3844 Builder.CreateStore(null, local); 3845 args.add(RValue::get(ptr), type); 3846 3847 // For the most part, we just need to load the alloca, except that 3848 // aggregate r-values are actually pointers to temporaries. 3849 } else { 3850 args.add(convertTempToRValue(local, type, loc), type); 3851 } 3852 3853 // Deactivate the cleanup for the callee-destructed param that was pushed. 3854 if (type->isRecordType() && !CurFuncIsThunk && 3855 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3856 param->needsDestruction(getContext())) { 3857 EHScopeStack::stable_iterator cleanup = 3858 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3859 assert(cleanup.isValid() && 3860 "cleanup for callee-destructed param not recorded"); 3861 // This unreachable is a temporary marker which will be removed later. 3862 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3863 args.addArgCleanupDeactivation(cleanup, isActive); 3864 } 3865 } 3866 3867 static bool isProvablyNull(llvm::Value *addr) { 3868 return isa<llvm::ConstantPointerNull>(addr); 3869 } 3870 3871 /// Emit the actual writing-back of a writeback. 3872 static void emitWriteback(CodeGenFunction &CGF, 3873 const CallArgList::Writeback &writeback) { 3874 const LValue &srcLV = writeback.Source; 3875 Address srcAddr = srcLV.getAddress(CGF); 3876 assert(!isProvablyNull(srcAddr.getPointer()) && 3877 "shouldn't have writeback for provably null argument"); 3878 3879 llvm::BasicBlock *contBB = nullptr; 3880 3881 // If the argument wasn't provably non-null, we need to null check 3882 // before doing the store. 3883 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3884 CGF.CGM.getDataLayout()); 3885 if (!provablyNonNull) { 3886 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3887 contBB = CGF.createBasicBlock("icr.done"); 3888 3889 llvm::Value *isNull = 3890 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3891 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3892 CGF.EmitBlock(writebackBB); 3893 } 3894 3895 // Load the value to writeback. 3896 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3897 3898 // Cast it back, in case we're writing an id to a Foo* or something. 3899 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3900 "icr.writeback-cast"); 3901 3902 // Perform the writeback. 3903 3904 // If we have a "to use" value, it's something we need to emit a use 3905 // of. This has to be carefully threaded in: if it's done after the 3906 // release it's potentially undefined behavior (and the optimizer 3907 // will ignore it), and if it happens before the retain then the 3908 // optimizer could move the release there. 3909 if (writeback.ToUse) { 3910 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3911 3912 // Retain the new value. No need to block-copy here: the block's 3913 // being passed up the stack. 3914 value = CGF.EmitARCRetainNonBlock(value); 3915 3916 // Emit the intrinsic use here. 3917 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3918 3919 // Load the old value (primitively). 3920 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3921 3922 // Put the new value in place (primitively). 3923 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3924 3925 // Release the old value. 3926 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3927 3928 // Otherwise, we can just do a normal lvalue store. 3929 } else { 3930 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3931 } 3932 3933 // Jump to the continuation block. 3934 if (!provablyNonNull) 3935 CGF.EmitBlock(contBB); 3936 } 3937 3938 static void emitWritebacks(CodeGenFunction &CGF, 3939 const CallArgList &args) { 3940 for (const auto &I : args.writebacks()) 3941 emitWriteback(CGF, I); 3942 } 3943 3944 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3945 const CallArgList &CallArgs) { 3946 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3947 CallArgs.getCleanupsToDeactivate(); 3948 // Iterate in reverse to increase the likelihood of popping the cleanup. 3949 for (const auto &I : llvm::reverse(Cleanups)) { 3950 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3951 I.IsActiveIP->eraseFromParent(); 3952 } 3953 } 3954 3955 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3956 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3957 if (uop->getOpcode() == UO_AddrOf) 3958 return uop->getSubExpr(); 3959 return nullptr; 3960 } 3961 3962 /// Emit an argument that's being passed call-by-writeback. That is, 3963 /// we are passing the address of an __autoreleased temporary; it 3964 /// might be copy-initialized with the current value of the given 3965 /// address, but it will definitely be copied out of after the call. 3966 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3967 const ObjCIndirectCopyRestoreExpr *CRE) { 3968 LValue srcLV; 3969 3970 // Make an optimistic effort to emit the address as an l-value. 3971 // This can fail if the argument expression is more complicated. 3972 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3973 srcLV = CGF.EmitLValue(lvExpr); 3974 3975 // Otherwise, just emit it as a scalar. 3976 } else { 3977 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3978 3979 QualType srcAddrType = 3980 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3981 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3982 } 3983 Address srcAddr = srcLV.getAddress(CGF); 3984 3985 // The dest and src types don't necessarily match in LLVM terms 3986 // because of the crazy ObjC compatibility rules. 3987 3988 llvm::PointerType *destType = 3989 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3990 llvm::Type *destElemType = 3991 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 3992 3993 // If the address is a constant null, just pass the appropriate null. 3994 if (isProvablyNull(srcAddr.getPointer())) { 3995 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3996 CRE->getType()); 3997 return; 3998 } 3999 4000 // Create the temporary. 4001 Address temp = 4002 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4003 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4004 // and that cleanup will be conditional if we can't prove that the l-value 4005 // isn't null, so we need to register a dominating point so that the cleanups 4006 // system will make valid IR. 4007 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4008 4009 // Zero-initialize it if we're not doing a copy-initialization. 4010 bool shouldCopy = CRE->shouldCopy(); 4011 if (!shouldCopy) { 4012 llvm::Value *null = 4013 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4014 CGF.Builder.CreateStore(null, temp); 4015 } 4016 4017 llvm::BasicBlock *contBB = nullptr; 4018 llvm::BasicBlock *originBB = nullptr; 4019 4020 // If the address is *not* known to be non-null, we need to switch. 4021 llvm::Value *finalArgument; 4022 4023 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 4024 CGF.CGM.getDataLayout()); 4025 if (provablyNonNull) { 4026 finalArgument = temp.getPointer(); 4027 } else { 4028 llvm::Value *isNull = 4029 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 4030 4031 finalArgument = CGF.Builder.CreateSelect(isNull, 4032 llvm::ConstantPointerNull::get(destType), 4033 temp.getPointer(), "icr.argument"); 4034 4035 // If we need to copy, then the load has to be conditional, which 4036 // means we need control flow. 4037 if (shouldCopy) { 4038 originBB = CGF.Builder.GetInsertBlock(); 4039 contBB = CGF.createBasicBlock("icr.cont"); 4040 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4041 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4042 CGF.EmitBlock(copyBB); 4043 condEval.begin(CGF); 4044 } 4045 } 4046 4047 llvm::Value *valueToUse = nullptr; 4048 4049 // Perform a copy if necessary. 4050 if (shouldCopy) { 4051 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4052 assert(srcRV.isScalar()); 4053 4054 llvm::Value *src = srcRV.getScalarVal(); 4055 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4056 4057 // Use an ordinary store, not a store-to-lvalue. 4058 CGF.Builder.CreateStore(src, temp); 4059 4060 // If optimization is enabled, and the value was held in a 4061 // __strong variable, we need to tell the optimizer that this 4062 // value has to stay alive until we're doing the store back. 4063 // This is because the temporary is effectively unretained, 4064 // and so otherwise we can violate the high-level semantics. 4065 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4066 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4067 valueToUse = src; 4068 } 4069 } 4070 4071 // Finish the control flow if we needed it. 4072 if (shouldCopy && !provablyNonNull) { 4073 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4074 CGF.EmitBlock(contBB); 4075 4076 // Make a phi for the value to intrinsically use. 4077 if (valueToUse) { 4078 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4079 "icr.to-use"); 4080 phiToUse->addIncoming(valueToUse, copyBB); 4081 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4082 originBB); 4083 valueToUse = phiToUse; 4084 } 4085 4086 condEval.end(CGF); 4087 } 4088 4089 args.addWriteback(srcLV, temp, valueToUse); 4090 args.add(RValue::get(finalArgument), CRE->getType()); 4091 } 4092 4093 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4094 assert(!StackBase); 4095 4096 // Save the stack. 4097 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 4098 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 4099 } 4100 4101 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4102 if (StackBase) { 4103 // Restore the stack after the call. 4104 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 4105 CGF.Builder.CreateCall(F, StackBase); 4106 } 4107 } 4108 4109 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4110 SourceLocation ArgLoc, 4111 AbstractCallee AC, 4112 unsigned ParmNum) { 4113 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4114 SanOpts.has(SanitizerKind::NullabilityArg))) 4115 return; 4116 4117 // The param decl may be missing in a variadic function. 4118 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4119 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4120 4121 // Prefer the nonnull attribute if it's present. 4122 const NonNullAttr *NNAttr = nullptr; 4123 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4124 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4125 4126 bool CanCheckNullability = false; 4127 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4128 auto Nullability = PVD->getType()->getNullability(); 4129 CanCheckNullability = Nullability && 4130 *Nullability == NullabilityKind::NonNull && 4131 PVD->getTypeSourceInfo(); 4132 } 4133 4134 if (!NNAttr && !CanCheckNullability) 4135 return; 4136 4137 SourceLocation AttrLoc; 4138 SanitizerMask CheckKind; 4139 SanitizerHandler Handler; 4140 if (NNAttr) { 4141 AttrLoc = NNAttr->getLocation(); 4142 CheckKind = SanitizerKind::NonnullAttribute; 4143 Handler = SanitizerHandler::NonnullArg; 4144 } else { 4145 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4146 CheckKind = SanitizerKind::NullabilityArg; 4147 Handler = SanitizerHandler::NullabilityArg; 4148 } 4149 4150 SanitizerScope SanScope(this); 4151 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4152 llvm::Constant *StaticData[] = { 4153 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4154 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4155 }; 4156 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 4157 } 4158 4159 // Check if the call is going to use the inalloca convention. This needs to 4160 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4161 // later, so we can't check it directly. 4162 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4163 ArrayRef<QualType> ArgTypes) { 4164 // The Swift calling conventions don't go through the target-specific 4165 // argument classification, they never use inalloca. 4166 // TODO: Consider limiting inalloca use to only calling conventions supported 4167 // by MSVC. 4168 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4169 return false; 4170 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4171 return false; 4172 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4173 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4174 }); 4175 } 4176 4177 #ifndef NDEBUG 4178 // Determine whether the given argument is an Objective-C method 4179 // that may have type parameters in its signature. 4180 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4181 const DeclContext *dc = method->getDeclContext(); 4182 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4183 return classDecl->getTypeParamListAsWritten(); 4184 } 4185 4186 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4187 return catDecl->getTypeParamList(); 4188 } 4189 4190 return false; 4191 } 4192 #endif 4193 4194 /// EmitCallArgs - Emit call arguments for a function. 4195 void CodeGenFunction::EmitCallArgs( 4196 CallArgList &Args, PrototypeWrapper Prototype, 4197 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4198 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4199 SmallVector<QualType, 16> ArgTypes; 4200 4201 assert((ParamsToSkip == 0 || Prototype.P) && 4202 "Can't skip parameters if type info is not provided"); 4203 4204 // This variable only captures *explicitly* written conventions, not those 4205 // applied by default via command line flags or target defaults, such as 4206 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4207 // require knowing if this is a C++ instance method or being able to see 4208 // unprototyped FunctionTypes. 4209 CallingConv ExplicitCC = CC_C; 4210 4211 // First, if a prototype was provided, use those argument types. 4212 bool IsVariadic = false; 4213 if (Prototype.P) { 4214 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4215 if (MD) { 4216 IsVariadic = MD->isVariadic(); 4217 ExplicitCC = getCallingConventionForDecl( 4218 MD, CGM.getTarget().getTriple().isOSWindows()); 4219 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4220 MD->param_type_end()); 4221 } else { 4222 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4223 IsVariadic = FPT->isVariadic(); 4224 ExplicitCC = FPT->getExtInfo().getCC(); 4225 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4226 FPT->param_type_end()); 4227 } 4228 4229 #ifndef NDEBUG 4230 // Check that the prototyped types match the argument expression types. 4231 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4232 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4233 for (QualType Ty : ArgTypes) { 4234 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4235 assert( 4236 (isGenericMethod || Ty->isVariablyModifiedType() || 4237 Ty.getNonReferenceType()->isObjCRetainableType() || 4238 getContext() 4239 .getCanonicalType(Ty.getNonReferenceType()) 4240 .getTypePtr() == 4241 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4242 "type mismatch in call argument!"); 4243 ++Arg; 4244 } 4245 4246 // Either we've emitted all the call args, or we have a call to variadic 4247 // function. 4248 assert((Arg == ArgRange.end() || IsVariadic) && 4249 "Extra arguments in non-variadic function!"); 4250 #endif 4251 } 4252 4253 // If we still have any arguments, emit them using the type of the argument. 4254 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4255 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4256 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4257 4258 // We must evaluate arguments from right to left in the MS C++ ABI, 4259 // because arguments are destroyed left to right in the callee. As a special 4260 // case, there are certain language constructs that require left-to-right 4261 // evaluation, and in those cases we consider the evaluation order requirement 4262 // to trump the "destruction order is reverse construction order" guarantee. 4263 bool LeftToRight = 4264 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4265 ? Order == EvaluationOrder::ForceLeftToRight 4266 : Order != EvaluationOrder::ForceRightToLeft; 4267 4268 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4269 RValue EmittedArg) { 4270 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4271 return; 4272 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4273 if (PS == nullptr) 4274 return; 4275 4276 const auto &Context = getContext(); 4277 auto SizeTy = Context.getSizeType(); 4278 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4279 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4280 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4281 EmittedArg.getScalarVal(), 4282 PS->isDynamic()); 4283 Args.add(RValue::get(V), SizeTy); 4284 // If we're emitting args in reverse, be sure to do so with 4285 // pass_object_size, as well. 4286 if (!LeftToRight) 4287 std::swap(Args.back(), *(&Args.back() - 1)); 4288 }; 4289 4290 // Insert a stack save if we're going to need any inalloca args. 4291 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4292 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4293 "inalloca only supported on x86"); 4294 Args.allocateArgumentMemory(*this); 4295 } 4296 4297 // Evaluate each argument in the appropriate order. 4298 size_t CallArgsStart = Args.size(); 4299 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4300 unsigned Idx = LeftToRight ? I : E - I - 1; 4301 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4302 unsigned InitialArgSize = Args.size(); 4303 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4304 // the argument and parameter match or the objc method is parameterized. 4305 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4306 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4307 ArgTypes[Idx]) || 4308 (isa<ObjCMethodDecl>(AC.getDecl()) && 4309 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4310 "Argument and parameter types don't match"); 4311 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4312 // In particular, we depend on it being the last arg in Args, and the 4313 // objectsize bits depend on there only being one arg if !LeftToRight. 4314 assert(InitialArgSize + 1 == Args.size() && 4315 "The code below depends on only adding one arg per EmitCallArg"); 4316 (void)InitialArgSize; 4317 // Since pointer argument are never emitted as LValue, it is safe to emit 4318 // non-null argument check for r-value only. 4319 if (!Args.back().hasLValue()) { 4320 RValue RVArg = Args.back().getKnownRValue(); 4321 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4322 ParamsToSkip + Idx); 4323 // @llvm.objectsize should never have side-effects and shouldn't need 4324 // destruction/cleanups, so we can safely "emit" it after its arg, 4325 // regardless of right-to-leftness 4326 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4327 } 4328 } 4329 4330 if (!LeftToRight) { 4331 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4332 // IR function. 4333 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4334 } 4335 } 4336 4337 namespace { 4338 4339 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4340 DestroyUnpassedArg(Address Addr, QualType Ty) 4341 : Addr(Addr), Ty(Ty) {} 4342 4343 Address Addr; 4344 QualType Ty; 4345 4346 void Emit(CodeGenFunction &CGF, Flags flags) override { 4347 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4348 if (DtorKind == QualType::DK_cxx_destructor) { 4349 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4350 assert(!Dtor->isTrivial()); 4351 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4352 /*Delegating=*/false, Addr, Ty); 4353 } else { 4354 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4355 } 4356 } 4357 }; 4358 4359 struct DisableDebugLocationUpdates { 4360 CodeGenFunction &CGF; 4361 bool disabledDebugInfo; 4362 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4363 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4364 CGF.disableDebugInfo(); 4365 } 4366 ~DisableDebugLocationUpdates() { 4367 if (disabledDebugInfo) 4368 CGF.enableDebugInfo(); 4369 } 4370 }; 4371 4372 } // end anonymous namespace 4373 4374 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4375 if (!HasLV) 4376 return RV; 4377 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4378 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4379 LV.isVolatile()); 4380 IsUsed = true; 4381 return RValue::getAggregate(Copy.getAddress(CGF)); 4382 } 4383 4384 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4385 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4386 if (!HasLV && RV.isScalar()) 4387 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4388 else if (!HasLV && RV.isComplex()) 4389 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4390 else { 4391 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4392 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4393 // We assume that call args are never copied into subobjects. 4394 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4395 HasLV ? LV.isVolatileQualified() 4396 : RV.isVolatileQualified()); 4397 } 4398 IsUsed = true; 4399 } 4400 4401 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4402 QualType type) { 4403 DisableDebugLocationUpdates Dis(*this, E); 4404 if (const ObjCIndirectCopyRestoreExpr *CRE 4405 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4406 assert(getLangOpts().ObjCAutoRefCount); 4407 return emitWritebackArg(*this, args, CRE); 4408 } 4409 4410 assert(type->isReferenceType() == E->isGLValue() && 4411 "reference binding to unmaterialized r-value!"); 4412 4413 if (E->isGLValue()) { 4414 assert(E->getObjectKind() == OK_Ordinary); 4415 return args.add(EmitReferenceBindingToExpr(E), type); 4416 } 4417 4418 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4419 4420 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4421 // However, we still have to push an EH-only cleanup in case we unwind before 4422 // we make it to the call. 4423 if (type->isRecordType() && 4424 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4425 // If we're using inalloca, use the argument memory. Otherwise, use a 4426 // temporary. 4427 AggValueSlot Slot = args.isUsingInAlloca() 4428 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4429 4430 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4431 if (const auto *RD = type->getAsCXXRecordDecl()) 4432 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4433 else 4434 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4435 4436 if (DestroyedInCallee) 4437 Slot.setExternallyDestructed(); 4438 4439 EmitAggExpr(E, Slot); 4440 RValue RV = Slot.asRValue(); 4441 args.add(RV, type); 4442 4443 if (DestroyedInCallee && NeedsEHCleanup) { 4444 // Create a no-op GEP between the placeholder and the cleanup so we can 4445 // RAUW it successfully. It also serves as a marker of the first 4446 // instruction where the cleanup is active. 4447 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4448 type); 4449 // This unreachable is a temporary marker which will be removed later. 4450 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4451 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4452 } 4453 return; 4454 } 4455 4456 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4457 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4458 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4459 assert(L.isSimple()); 4460 args.addUncopiedAggregate(L, type); 4461 return; 4462 } 4463 4464 args.add(EmitAnyExprToTemp(E), type); 4465 } 4466 4467 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4468 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4469 // implicitly widens null pointer constants that are arguments to varargs 4470 // functions to pointer-sized ints. 4471 if (!getTarget().getTriple().isOSWindows()) 4472 return Arg->getType(); 4473 4474 if (Arg->getType()->isIntegerType() && 4475 getContext().getTypeSize(Arg->getType()) < 4476 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4477 Arg->isNullPointerConstant(getContext(), 4478 Expr::NPC_ValueDependentIsNotNull)) { 4479 return getContext().getIntPtrType(); 4480 } 4481 4482 return Arg->getType(); 4483 } 4484 4485 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4486 // optimizer it can aggressively ignore unwind edges. 4487 void 4488 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4489 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4490 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4491 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4492 CGM.getNoObjCARCExceptionsMetadata()); 4493 } 4494 4495 /// Emits a call to the given no-arguments nounwind runtime function. 4496 llvm::CallInst * 4497 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4498 const llvm::Twine &name) { 4499 return EmitNounwindRuntimeCall(callee, std::nullopt, name); 4500 } 4501 4502 /// Emits a call to the given nounwind runtime function. 4503 llvm::CallInst * 4504 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4505 ArrayRef<llvm::Value *> args, 4506 const llvm::Twine &name) { 4507 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4508 call->setDoesNotThrow(); 4509 return call; 4510 } 4511 4512 /// Emits a simple call (never an invoke) to the given no-arguments 4513 /// runtime function. 4514 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4515 const llvm::Twine &name) { 4516 return EmitRuntimeCall(callee, std::nullopt, name); 4517 } 4518 4519 // Calls which may throw must have operand bundles indicating which funclet 4520 // they are nested within. 4521 SmallVector<llvm::OperandBundleDef, 1> 4522 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4523 // There is no need for a funclet operand bundle if we aren't inside a 4524 // funclet. 4525 if (!CurrentFuncletPad) 4526 return (SmallVector<llvm::OperandBundleDef, 1>()); 4527 4528 // Skip intrinsics which cannot throw (as long as they don't lower into 4529 // regular function calls in the course of IR transformations). 4530 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4531 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4532 auto IID = CalleeFn->getIntrinsicID(); 4533 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4534 return (SmallVector<llvm::OperandBundleDef, 1>()); 4535 } 4536 } 4537 4538 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4539 BundleList.emplace_back("funclet", CurrentFuncletPad); 4540 return BundleList; 4541 } 4542 4543 /// Emits a simple call (never an invoke) to the given runtime function. 4544 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4545 ArrayRef<llvm::Value *> args, 4546 const llvm::Twine &name) { 4547 llvm::CallInst *call = Builder.CreateCall( 4548 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4549 call->setCallingConv(getRuntimeCC()); 4550 return call; 4551 } 4552 4553 /// Emits a call or invoke to the given noreturn runtime function. 4554 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4555 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4556 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4557 getBundlesForFunclet(callee.getCallee()); 4558 4559 if (getInvokeDest()) { 4560 llvm::InvokeInst *invoke = 4561 Builder.CreateInvoke(callee, 4562 getUnreachableBlock(), 4563 getInvokeDest(), 4564 args, 4565 BundleList); 4566 invoke->setDoesNotReturn(); 4567 invoke->setCallingConv(getRuntimeCC()); 4568 } else { 4569 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4570 call->setDoesNotReturn(); 4571 call->setCallingConv(getRuntimeCC()); 4572 Builder.CreateUnreachable(); 4573 } 4574 } 4575 4576 /// Emits a call or invoke instruction to the given nullary runtime function. 4577 llvm::CallBase * 4578 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4579 const Twine &name) { 4580 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 4581 } 4582 4583 /// Emits a call or invoke instruction to the given runtime function. 4584 llvm::CallBase * 4585 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4586 ArrayRef<llvm::Value *> args, 4587 const Twine &name) { 4588 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4589 call->setCallingConv(getRuntimeCC()); 4590 return call; 4591 } 4592 4593 /// Emits a call or invoke instruction to the given function, depending 4594 /// on the current state of the EH stack. 4595 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4596 ArrayRef<llvm::Value *> Args, 4597 const Twine &Name) { 4598 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4599 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4600 getBundlesForFunclet(Callee.getCallee()); 4601 4602 llvm::CallBase *Inst; 4603 if (!InvokeDest) 4604 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4605 else { 4606 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4607 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4608 Name); 4609 EmitBlock(ContBB); 4610 } 4611 4612 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4613 // optimizer it can aggressively ignore unwind edges. 4614 if (CGM.getLangOpts().ObjCAutoRefCount) 4615 AddObjCARCExceptionMetadata(Inst); 4616 4617 return Inst; 4618 } 4619 4620 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4621 llvm::Value *New) { 4622 DeferredReplacements.push_back( 4623 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4624 } 4625 4626 namespace { 4627 4628 /// Specify given \p NewAlign as the alignment of return value attribute. If 4629 /// such attribute already exists, re-set it to the maximal one of two options. 4630 [[nodiscard]] llvm::AttributeList 4631 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4632 const llvm::AttributeList &Attrs, 4633 llvm::Align NewAlign) { 4634 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4635 if (CurAlign >= NewAlign) 4636 return Attrs; 4637 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4638 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4639 .addRetAttribute(Ctx, AlignAttr); 4640 } 4641 4642 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4643 protected: 4644 CodeGenFunction &CGF; 4645 4646 /// We do nothing if this is, or becomes, nullptr. 4647 const AlignedAttrTy *AA = nullptr; 4648 4649 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4650 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4651 4652 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4653 : CGF(CGF_) { 4654 if (!FuncDecl) 4655 return; 4656 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4657 } 4658 4659 public: 4660 /// If we can, materialize the alignment as an attribute on return value. 4661 [[nodiscard]] llvm::AttributeList 4662 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4663 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4664 return Attrs; 4665 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4666 if (!AlignmentCI) 4667 return Attrs; 4668 // We may legitimately have non-power-of-2 alignment here. 4669 // If so, this is UB land, emit it via `@llvm.assume` instead. 4670 if (!AlignmentCI->getValue().isPowerOf2()) 4671 return Attrs; 4672 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4673 CGF.getLLVMContext(), Attrs, 4674 llvm::Align( 4675 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4676 AA = nullptr; // We're done. Disallow doing anything else. 4677 return NewAttrs; 4678 } 4679 4680 /// Emit alignment assumption. 4681 /// This is a general fallback that we take if either there is an offset, 4682 /// or the alignment is variable or we are sanitizing for alignment. 4683 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4684 if (!AA) 4685 return; 4686 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4687 AA->getLocation(), Alignment, OffsetCI); 4688 AA = nullptr; // We're done. Disallow doing anything else. 4689 } 4690 }; 4691 4692 /// Helper data structure to emit `AssumeAlignedAttr`. 4693 class AssumeAlignedAttrEmitter final 4694 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4695 public: 4696 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4697 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4698 if (!AA) 4699 return; 4700 // It is guaranteed that the alignment/offset are constants. 4701 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4702 if (Expr *Offset = AA->getOffset()) { 4703 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4704 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4705 OffsetCI = nullptr; 4706 } 4707 } 4708 }; 4709 4710 /// Helper data structure to emit `AllocAlignAttr`. 4711 class AllocAlignAttrEmitter final 4712 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4713 public: 4714 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4715 const CallArgList &CallArgs) 4716 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4717 if (!AA) 4718 return; 4719 // Alignment may or may not be a constant, and that is okay. 4720 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4721 .getRValue(CGF) 4722 .getScalarVal(); 4723 } 4724 }; 4725 4726 } // namespace 4727 4728 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4729 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 4730 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 4731 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 4732 return getMaxVectorWidth(AT->getElementType()); 4733 4734 unsigned MaxVectorWidth = 0; 4735 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 4736 for (auto *I : ST->elements()) 4737 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 4738 return MaxVectorWidth; 4739 } 4740 4741 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4742 const CGCallee &Callee, 4743 ReturnValueSlot ReturnValue, 4744 const CallArgList &CallArgs, 4745 llvm::CallBase **callOrInvoke, bool IsMustTail, 4746 SourceLocation Loc) { 4747 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4748 4749 assert(Callee.isOrdinary() || Callee.isVirtual()); 4750 4751 // Handle struct-return functions by passing a pointer to the 4752 // location that we would like to return into. 4753 QualType RetTy = CallInfo.getReturnType(); 4754 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4755 4756 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4757 4758 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4759 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4760 // We can only guarantee that a function is called from the correct 4761 // context/function based on the appropriate target attributes, 4762 // so only check in the case where we have both always_inline and target 4763 // since otherwise we could be making a conditional call after a check for 4764 // the proper cpu features (and it won't cause code generation issues due to 4765 // function based code generation). 4766 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4767 TargetDecl->hasAttr<TargetAttr>()) 4768 checkTargetFeatures(Loc, FD); 4769 4770 // Some architectures (such as x86-64) have the ABI changed based on 4771 // attribute-target/features. Give them a chance to diagnose. 4772 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4773 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4774 } 4775 4776 #ifndef NDEBUG 4777 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4778 // For an inalloca varargs function, we don't expect CallInfo to match the 4779 // function pointer's type, because the inalloca struct a will have extra 4780 // fields in it for the varargs parameters. Code later in this function 4781 // bitcasts the function pointer to the type derived from CallInfo. 4782 // 4783 // In other cases, we assert that the types match up (until pointers stop 4784 // having pointee types). 4785 if (Callee.isVirtual()) 4786 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4787 else { 4788 llvm::PointerType *PtrTy = 4789 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4790 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4791 } 4792 } 4793 #endif 4794 4795 // 1. Set up the arguments. 4796 4797 // If we're using inalloca, insert the allocation after the stack save. 4798 // FIXME: Do this earlier rather than hacking it in here! 4799 Address ArgMemory = Address::invalid(); 4800 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4801 const llvm::DataLayout &DL = CGM.getDataLayout(); 4802 llvm::Instruction *IP = CallArgs.getStackBase(); 4803 llvm::AllocaInst *AI; 4804 if (IP) { 4805 IP = IP->getNextNode(); 4806 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4807 "argmem", IP); 4808 } else { 4809 AI = CreateTempAlloca(ArgStruct, "argmem"); 4810 } 4811 auto Align = CallInfo.getArgStructAlignment(); 4812 AI->setAlignment(Align.getAsAlign()); 4813 AI->setUsedWithInAlloca(true); 4814 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4815 ArgMemory = Address(AI, ArgStruct, Align); 4816 } 4817 4818 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4819 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4820 4821 // If the call returns a temporary with struct return, create a temporary 4822 // alloca to hold the result, unless one is given to us. 4823 Address SRetPtr = Address::invalid(); 4824 Address SRetAlloca = Address::invalid(); 4825 llvm::Value *UnusedReturnSizePtr = nullptr; 4826 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4827 if (!ReturnValue.isNull()) { 4828 SRetPtr = ReturnValue.getValue(); 4829 } else { 4830 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4831 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4832 llvm::TypeSize size = 4833 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4834 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4835 } 4836 } 4837 if (IRFunctionArgs.hasSRetArg()) { 4838 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4839 } else if (RetAI.isInAlloca()) { 4840 Address Addr = 4841 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4842 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4843 } 4844 } 4845 4846 Address swiftErrorTemp = Address::invalid(); 4847 Address swiftErrorArg = Address::invalid(); 4848 4849 // When passing arguments using temporary allocas, we need to add the 4850 // appropriate lifetime markers. This vector keeps track of all the lifetime 4851 // markers that need to be ended right after the call. 4852 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4853 4854 // Translate all of the arguments as necessary to match the IR lowering. 4855 assert(CallInfo.arg_size() == CallArgs.size() && 4856 "Mismatch between function signature & arguments."); 4857 unsigned ArgNo = 0; 4858 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4859 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4860 I != E; ++I, ++info_it, ++ArgNo) { 4861 const ABIArgInfo &ArgInfo = info_it->info; 4862 4863 // Insert a padding argument to ensure proper alignment. 4864 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4865 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4866 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4867 4868 unsigned FirstIRArg, NumIRArgs; 4869 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4870 4871 bool ArgHasMaybeUndefAttr = 4872 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 4873 4874 switch (ArgInfo.getKind()) { 4875 case ABIArgInfo::InAlloca: { 4876 assert(NumIRArgs == 0); 4877 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4878 if (I->isAggregate()) { 4879 Address Addr = I->hasLValue() 4880 ? I->getKnownLValue().getAddress(*this) 4881 : I->getKnownRValue().getAggregateAddress(); 4882 llvm::Instruction *Placeholder = 4883 cast<llvm::Instruction>(Addr.getPointer()); 4884 4885 if (!ArgInfo.getInAllocaIndirect()) { 4886 // Replace the placeholder with the appropriate argument slot GEP. 4887 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4888 Builder.SetInsertPoint(Placeholder); 4889 Addr = Builder.CreateStructGEP(ArgMemory, 4890 ArgInfo.getInAllocaFieldIndex()); 4891 Builder.restoreIP(IP); 4892 } else { 4893 // For indirect things such as overaligned structs, replace the 4894 // placeholder with a regular aggregate temporary alloca. Store the 4895 // address of this alloca into the struct. 4896 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4897 Address ArgSlot = Builder.CreateStructGEP( 4898 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4899 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4900 } 4901 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4902 } else if (ArgInfo.getInAllocaIndirect()) { 4903 // Make a temporary alloca and store the address of it into the argument 4904 // struct. 4905 Address Addr = CreateMemTempWithoutCast( 4906 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4907 "indirect-arg-temp"); 4908 I->copyInto(*this, Addr); 4909 Address ArgSlot = 4910 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4911 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4912 } else { 4913 // Store the RValue into the argument struct. 4914 Address Addr = 4915 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4916 // There are some cases where a trivial bitcast is not avoidable. The 4917 // definition of a type later in a translation unit may change it's type 4918 // from {}* to (%struct.foo*)*. 4919 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty)); 4920 I->copyInto(*this, Addr); 4921 } 4922 break; 4923 } 4924 4925 case ABIArgInfo::Indirect: 4926 case ABIArgInfo::IndirectAliased: { 4927 assert(NumIRArgs == 1); 4928 if (!I->isAggregate()) { 4929 // Make a temporary alloca to pass the argument. 4930 Address Addr = CreateMemTempWithoutCast( 4931 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4932 4933 llvm::Value *Val = Addr.getPointer(); 4934 if (ArgHasMaybeUndefAttr) 4935 Val = Builder.CreateFreeze(Addr.getPointer()); 4936 IRCallArgs[FirstIRArg] = Val; 4937 4938 I->copyInto(*this, Addr); 4939 } else { 4940 // We want to avoid creating an unnecessary temporary+copy here; 4941 // however, we need one in three cases: 4942 // 1. If the argument is not byval, and we are required to copy the 4943 // source. (This case doesn't occur on any common architecture.) 4944 // 2. If the argument is byval, RV is not sufficiently aligned, and 4945 // we cannot force it to be sufficiently aligned. 4946 // 3. If the argument is byval, but RV is not located in default 4947 // or alloca address space. 4948 Address Addr = I->hasLValue() 4949 ? I->getKnownLValue().getAddress(*this) 4950 : I->getKnownRValue().getAggregateAddress(); 4951 llvm::Value *V = Addr.getPointer(); 4952 CharUnits Align = ArgInfo.getIndirectAlign(); 4953 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4954 4955 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4956 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4957 TD->getAllocaAddrSpace()) && 4958 "indirect argument must be in alloca address space"); 4959 4960 bool NeedCopy = false; 4961 4962 if (Addr.getAlignment() < Align && 4963 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4964 Align.getAsAlign()) { 4965 NeedCopy = true; 4966 } else if (I->hasLValue()) { 4967 auto LV = I->getKnownLValue(); 4968 auto AS = LV.getAddressSpace(); 4969 4970 if (!ArgInfo.getIndirectByVal() || 4971 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4972 NeedCopy = true; 4973 } 4974 if (!getLangOpts().OpenCL) { 4975 if ((ArgInfo.getIndirectByVal() && 4976 (AS != LangAS::Default && 4977 AS != CGM.getASTAllocaAddressSpace()))) { 4978 NeedCopy = true; 4979 } 4980 } 4981 // For OpenCL even if RV is located in default or alloca address space 4982 // we don't want to perform address space cast for it. 4983 else if ((ArgInfo.getIndirectByVal() && 4984 Addr.getType()->getAddressSpace() != IRFuncTy-> 4985 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4986 NeedCopy = true; 4987 } 4988 } 4989 4990 if (NeedCopy) { 4991 // Create an aligned temporary, and copy to it. 4992 Address AI = CreateMemTempWithoutCast( 4993 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4994 llvm::Value *Val = AI.getPointer(); 4995 if (ArgHasMaybeUndefAttr) 4996 Val = Builder.CreateFreeze(AI.getPointer()); 4997 IRCallArgs[FirstIRArg] = Val; 4998 4999 // Emit lifetime markers for the temporary alloca. 5000 llvm::TypeSize ByvalTempElementSize = 5001 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5002 llvm::Value *LifetimeSize = 5003 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5004 5005 // Add cleanup code to emit the end lifetime marker after the call. 5006 if (LifetimeSize) // In case we disabled lifetime markers. 5007 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5008 5009 // Generate the copy. 5010 I->copyInto(*this, AI); 5011 } else { 5012 // Skip the extra memcpy call. 5013 auto *T = llvm::PointerType::getWithSamePointeeType( 5014 cast<llvm::PointerType>(V->getType()), 5015 CGM.getDataLayout().getAllocaAddrSpace()); 5016 5017 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5018 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5019 true); 5020 if (ArgHasMaybeUndefAttr) 5021 Val = Builder.CreateFreeze(Val); 5022 IRCallArgs[FirstIRArg] = Val; 5023 } 5024 } 5025 break; 5026 } 5027 5028 case ABIArgInfo::Ignore: 5029 assert(NumIRArgs == 0); 5030 break; 5031 5032 case ABIArgInfo::Extend: 5033 case ABIArgInfo::Direct: { 5034 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5035 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5036 ArgInfo.getDirectOffset() == 0) { 5037 assert(NumIRArgs == 1); 5038 llvm::Value *V; 5039 if (!I->isAggregate()) 5040 V = I->getKnownRValue().getScalarVal(); 5041 else 5042 V = Builder.CreateLoad( 5043 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5044 : I->getKnownRValue().getAggregateAddress()); 5045 5046 // Implement swifterror by copying into a new swifterror argument. 5047 // We'll write back in the normal path out of the call. 5048 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5049 == ParameterABI::SwiftErrorResult) { 5050 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5051 5052 QualType pointeeTy = I->Ty->getPointeeType(); 5053 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy), 5054 getContext().getTypeAlignInChars(pointeeTy)); 5055 5056 swiftErrorTemp = 5057 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5058 V = swiftErrorTemp.getPointer(); 5059 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5060 5061 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5062 Builder.CreateStore(errorValue, swiftErrorTemp); 5063 } 5064 5065 // We might have to widen integers, but we should never truncate. 5066 if (ArgInfo.getCoerceToType() != V->getType() && 5067 V->getType()->isIntegerTy()) 5068 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5069 5070 // If the argument doesn't match, perform a bitcast to coerce it. This 5071 // can happen due to trivial type mismatches. 5072 if (FirstIRArg < IRFuncTy->getNumParams() && 5073 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5074 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5075 5076 if (ArgHasMaybeUndefAttr) 5077 V = Builder.CreateFreeze(V); 5078 IRCallArgs[FirstIRArg] = V; 5079 break; 5080 } 5081 5082 // FIXME: Avoid the conversion through memory if possible. 5083 Address Src = Address::invalid(); 5084 if (!I->isAggregate()) { 5085 Src = CreateMemTemp(I->Ty, "coerce"); 5086 I->copyInto(*this, Src); 5087 } else { 5088 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5089 : I->getKnownRValue().getAggregateAddress(); 5090 } 5091 5092 // If the value is offset in memory, apply the offset now. 5093 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5094 5095 // Fast-isel and the optimizer generally like scalar values better than 5096 // FCAs, so we flatten them if this is safe to do for this argument. 5097 llvm::StructType *STy = 5098 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5099 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5100 llvm::Type *SrcTy = Src.getElementType(); 5101 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5102 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 5103 5104 // If the source type is smaller than the destination type of the 5105 // coerce-to logic, copy the source value into a temp alloca the size 5106 // of the destination type to allow loading all of it. The bits past 5107 // the source value are left undef. 5108 if (SrcSize < DstSize) { 5109 Address TempAlloca 5110 = CreateTempAlloca(STy, Src.getAlignment(), 5111 Src.getName() + ".coerce"); 5112 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5113 Src = TempAlloca; 5114 } else { 5115 Src = Builder.CreateElementBitCast(Src, STy); 5116 } 5117 5118 assert(NumIRArgs == STy->getNumElements()); 5119 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5120 Address EltPtr = Builder.CreateStructGEP(Src, i); 5121 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5122 if (ArgHasMaybeUndefAttr) 5123 LI = Builder.CreateFreeze(LI); 5124 IRCallArgs[FirstIRArg + i] = LI; 5125 } 5126 } else { 5127 // In the simple case, just pass the coerced loaded value. 5128 assert(NumIRArgs == 1); 5129 llvm::Value *Load = 5130 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5131 5132 if (CallInfo.isCmseNSCall()) { 5133 // For certain parameter types, clear padding bits, as they may reveal 5134 // sensitive information. 5135 // Small struct/union types are passed as integer arrays. 5136 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5137 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5138 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5139 } 5140 5141 if (ArgHasMaybeUndefAttr) 5142 Load = Builder.CreateFreeze(Load); 5143 IRCallArgs[FirstIRArg] = Load; 5144 } 5145 5146 break; 5147 } 5148 5149 case ABIArgInfo::CoerceAndExpand: { 5150 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5151 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5152 5153 llvm::Value *tempSize = nullptr; 5154 Address addr = Address::invalid(); 5155 Address AllocaAddr = Address::invalid(); 5156 if (I->isAggregate()) { 5157 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5158 : I->getKnownRValue().getAggregateAddress(); 5159 5160 } else { 5161 RValue RV = I->getKnownRValue(); 5162 assert(RV.isScalar()); // complex should always just be direct 5163 5164 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5165 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5166 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5167 5168 // Materialize to a temporary. 5169 addr = CreateTempAlloca( 5170 RV.getScalarVal()->getType(), 5171 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5172 "tmp", 5173 /*ArraySize=*/nullptr, &AllocaAddr); 5174 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5175 5176 Builder.CreateStore(RV.getScalarVal(), addr); 5177 } 5178 5179 addr = Builder.CreateElementBitCast(addr, coercionType); 5180 5181 unsigned IRArgPos = FirstIRArg; 5182 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5183 llvm::Type *eltType = coercionType->getElementType(i); 5184 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5185 Address eltAddr = Builder.CreateStructGEP(addr, i); 5186 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5187 if (ArgHasMaybeUndefAttr) 5188 elt = Builder.CreateFreeze(elt); 5189 IRCallArgs[IRArgPos++] = elt; 5190 } 5191 assert(IRArgPos == FirstIRArg + NumIRArgs); 5192 5193 if (tempSize) { 5194 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5195 } 5196 5197 break; 5198 } 5199 5200 case ABIArgInfo::Expand: { 5201 unsigned IRArgPos = FirstIRArg; 5202 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5203 assert(IRArgPos == FirstIRArg + NumIRArgs); 5204 break; 5205 } 5206 } 5207 } 5208 5209 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5210 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5211 5212 // If we're using inalloca, set up that argument. 5213 if (ArgMemory.isValid()) { 5214 llvm::Value *Arg = ArgMemory.getPointer(); 5215 if (CallInfo.isVariadic()) { 5216 // When passing non-POD arguments by value to variadic functions, we will 5217 // end up with a variadic prototype and an inalloca call site. In such 5218 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5219 // the callee. 5220 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5221 CalleePtr = 5222 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5223 } else { 5224 llvm::Type *LastParamTy = 5225 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5226 if (Arg->getType() != LastParamTy) { 5227 #ifndef NDEBUG 5228 // Assert that these structs have equivalent element types. 5229 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5230 if (!LastParamTy->isOpaquePointerTy()) { 5231 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 5232 LastParamTy->getNonOpaquePointerElementType()); 5233 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5234 for (auto DI = DeclaredTy->element_begin(), 5235 DE = DeclaredTy->element_end(), 5236 FI = FullTy->element_begin(); 5237 DI != DE; ++DI, ++FI) 5238 assert(*DI == *FI); 5239 } 5240 #endif 5241 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5242 } 5243 } 5244 assert(IRFunctionArgs.hasInallocaArg()); 5245 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5246 } 5247 5248 // 2. Prepare the function pointer. 5249 5250 // If the callee is a bitcast of a non-variadic function to have a 5251 // variadic function pointer type, check to see if we can remove the 5252 // bitcast. This comes up with unprototyped functions. 5253 // 5254 // This makes the IR nicer, but more importantly it ensures that we 5255 // can inline the function at -O0 if it is marked always_inline. 5256 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5257 llvm::Value *Ptr) -> llvm::Function * { 5258 if (!CalleeFT->isVarArg()) 5259 return nullptr; 5260 5261 // Get underlying value if it's a bitcast 5262 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5263 if (CE->getOpcode() == llvm::Instruction::BitCast) 5264 Ptr = CE->getOperand(0); 5265 } 5266 5267 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5268 if (!OrigFn) 5269 return nullptr; 5270 5271 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5272 5273 // If the original type is variadic, or if any of the component types 5274 // disagree, we cannot remove the cast. 5275 if (OrigFT->isVarArg() || 5276 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5277 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5278 return nullptr; 5279 5280 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5281 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5282 return nullptr; 5283 5284 return OrigFn; 5285 }; 5286 5287 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5288 CalleePtr = OrigFn; 5289 IRFuncTy = OrigFn->getFunctionType(); 5290 } 5291 5292 // 3. Perform the actual call. 5293 5294 // Deactivate any cleanups that we're supposed to do immediately before 5295 // the call. 5296 if (!CallArgs.getCleanupsToDeactivate().empty()) 5297 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5298 5299 // Assert that the arguments we computed match up. The IR verifier 5300 // will catch this, but this is a common enough source of problems 5301 // during IRGen changes that it's way better for debugging to catch 5302 // it ourselves here. 5303 #ifndef NDEBUG 5304 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5305 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5306 // Inalloca argument can have different type. 5307 if (IRFunctionArgs.hasInallocaArg() && 5308 i == IRFunctionArgs.getInallocaArgNo()) 5309 continue; 5310 if (i < IRFuncTy->getNumParams()) 5311 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5312 } 5313 #endif 5314 5315 // Update the largest vector width if any arguments have vector types. 5316 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5317 LargestVectorWidth = std::max(LargestVectorWidth, 5318 getMaxVectorWidth(IRCallArgs[i]->getType())); 5319 5320 // Compute the calling convention and attributes. 5321 unsigned CallingConv; 5322 llvm::AttributeList Attrs; 5323 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5324 Callee.getAbstractInfo(), Attrs, CallingConv, 5325 /*AttrOnCallSite=*/true, 5326 /*IsThunk=*/false); 5327 5328 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5329 if (FD->hasAttr<StrictFPAttr>()) 5330 // All calls within a strictfp function are marked strictfp 5331 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5332 5333 // Add call-site nomerge attribute if exists. 5334 if (InNoMergeAttributedStmt) 5335 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5336 5337 // Add call-site noinline attribute if exists. 5338 if (InNoInlineAttributedStmt) 5339 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5340 5341 // Add call-site always_inline attribute if exists. 5342 if (InAlwaysInlineAttributedStmt) 5343 Attrs = 5344 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5345 5346 // Apply some call-site-specific attributes. 5347 // TODO: work this into building the attribute set. 5348 5349 // Apply always_inline to all calls within flatten functions. 5350 // FIXME: should this really take priority over __try, below? 5351 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5352 !InNoInlineAttributedStmt && 5353 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5354 Attrs = 5355 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5356 } 5357 5358 // Disable inlining inside SEH __try blocks. 5359 if (isSEHTryScope()) { 5360 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5361 } 5362 5363 // Decide whether to use a call or an invoke. 5364 bool CannotThrow; 5365 if (currentFunctionUsesSEHTry()) { 5366 // SEH cares about asynchronous exceptions, so everything can "throw." 5367 CannotThrow = false; 5368 } else if (isCleanupPadScope() && 5369 EHPersonality::get(*this).isMSVCXXPersonality()) { 5370 // The MSVC++ personality will implicitly terminate the program if an 5371 // exception is thrown during a cleanup outside of a try/catch. 5372 // We don't need to model anything in IR to get this behavior. 5373 CannotThrow = true; 5374 } else { 5375 // Otherwise, nounwind call sites will never throw. 5376 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5377 5378 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5379 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5380 CannotThrow = true; 5381 } 5382 5383 // If we made a temporary, be sure to clean up after ourselves. Note that we 5384 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5385 // pop this cleanup later on. Being eager about this is OK, since this 5386 // temporary is 'invisible' outside of the callee. 5387 if (UnusedReturnSizePtr) 5388 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5389 UnusedReturnSizePtr); 5390 5391 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5392 5393 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5394 getBundlesForFunclet(CalleePtr); 5395 5396 if (SanOpts.has(SanitizerKind::KCFI) && 5397 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5398 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5399 5400 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5401 if (FD->hasAttr<StrictFPAttr>()) 5402 // All calls within a strictfp function are marked strictfp 5403 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5404 5405 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5406 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5407 5408 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5409 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5410 5411 // Emit the actual call/invoke instruction. 5412 llvm::CallBase *CI; 5413 if (!InvokeDest) { 5414 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5415 } else { 5416 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5417 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5418 BundleList); 5419 EmitBlock(Cont); 5420 } 5421 if (callOrInvoke) 5422 *callOrInvoke = CI; 5423 5424 // If this is within a function that has the guard(nocf) attribute and is an 5425 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5426 // Control Flow Guard checks should not be added, even if the call is inlined. 5427 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5428 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5429 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5430 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5431 } 5432 } 5433 5434 // Apply the attributes and calling convention. 5435 CI->setAttributes(Attrs); 5436 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5437 5438 // Apply various metadata. 5439 5440 if (!CI->getType()->isVoidTy()) 5441 CI->setName("call"); 5442 5443 // Update largest vector width from the return type. 5444 LargestVectorWidth = 5445 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5446 5447 // Insert instrumentation or attach profile metadata at indirect call sites. 5448 // For more details, see the comment before the definition of 5449 // IPVK_IndirectCallTarget in InstrProfData.inc. 5450 if (!CI->getCalledFunction()) 5451 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5452 CI, CalleePtr); 5453 5454 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5455 // optimizer it can aggressively ignore unwind edges. 5456 if (CGM.getLangOpts().ObjCAutoRefCount) 5457 AddObjCARCExceptionMetadata(CI); 5458 5459 // Set tail call kind if necessary. 5460 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5461 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5462 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5463 else if (IsMustTail) 5464 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5465 } 5466 5467 // Add metadata for calls to MSAllocator functions 5468 if (getDebugInfo() && TargetDecl && 5469 TargetDecl->hasAttr<MSAllocatorAttr>()) 5470 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5471 5472 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5473 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5474 llvm::ConstantInt *Line = 5475 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5476 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5477 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5478 CI->setMetadata("srcloc", MDT); 5479 } 5480 5481 // 4. Finish the call. 5482 5483 // If the call doesn't return, finish the basic block and clear the 5484 // insertion point; this allows the rest of IRGen to discard 5485 // unreachable code. 5486 if (CI->doesNotReturn()) { 5487 if (UnusedReturnSizePtr) 5488 PopCleanupBlock(); 5489 5490 // Strip away the noreturn attribute to better diagnose unreachable UB. 5491 if (SanOpts.has(SanitizerKind::Unreachable)) { 5492 // Also remove from function since CallBase::hasFnAttr additionally checks 5493 // attributes of the called function. 5494 if (auto *F = CI->getCalledFunction()) 5495 F->removeFnAttr(llvm::Attribute::NoReturn); 5496 CI->removeFnAttr(llvm::Attribute::NoReturn); 5497 5498 // Avoid incompatibility with ASan which relies on the `noreturn` 5499 // attribute to insert handler calls. 5500 if (SanOpts.hasOneOf(SanitizerKind::Address | 5501 SanitizerKind::KernelAddress)) { 5502 SanitizerScope SanScope(this); 5503 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5504 Builder.SetInsertPoint(CI); 5505 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5506 llvm::FunctionCallee Fn = 5507 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5508 EmitNounwindRuntimeCall(Fn); 5509 } 5510 } 5511 5512 EmitUnreachable(Loc); 5513 Builder.ClearInsertionPoint(); 5514 5515 // FIXME: For now, emit a dummy basic block because expr emitters in 5516 // generally are not ready to handle emitting expressions at unreachable 5517 // points. 5518 EnsureInsertPoint(); 5519 5520 // Return a reasonable RValue. 5521 return GetUndefRValue(RetTy); 5522 } 5523 5524 // If this is a musttail call, return immediately. We do not branch to the 5525 // epilogue in this case. 5526 if (IsMustTail) { 5527 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5528 ++it) { 5529 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5530 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5531 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5532 } 5533 if (CI->getType()->isVoidTy()) 5534 Builder.CreateRetVoid(); 5535 else 5536 Builder.CreateRet(CI); 5537 Builder.ClearInsertionPoint(); 5538 EnsureInsertPoint(); 5539 return GetUndefRValue(RetTy); 5540 } 5541 5542 // Perform the swifterror writeback. 5543 if (swiftErrorTemp.isValid()) { 5544 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5545 Builder.CreateStore(errorResult, swiftErrorArg); 5546 } 5547 5548 // Emit any call-associated writebacks immediately. Arguably this 5549 // should happen after any return-value munging. 5550 if (CallArgs.hasWritebacks()) 5551 emitWritebacks(*this, CallArgs); 5552 5553 // The stack cleanup for inalloca arguments has to run out of the normal 5554 // lexical order, so deactivate it and run it manually here. 5555 CallArgs.freeArgumentMemory(*this); 5556 5557 // Extract the return value. 5558 RValue Ret = [&] { 5559 switch (RetAI.getKind()) { 5560 case ABIArgInfo::CoerceAndExpand: { 5561 auto coercionType = RetAI.getCoerceAndExpandType(); 5562 5563 Address addr = SRetPtr; 5564 addr = Builder.CreateElementBitCast(addr, coercionType); 5565 5566 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5567 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5568 5569 unsigned unpaddedIndex = 0; 5570 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5571 llvm::Type *eltType = coercionType->getElementType(i); 5572 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5573 Address eltAddr = Builder.CreateStructGEP(addr, i); 5574 llvm::Value *elt = CI; 5575 if (requiresExtract) 5576 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5577 else 5578 assert(unpaddedIndex == 0); 5579 Builder.CreateStore(elt, eltAddr); 5580 } 5581 // FALLTHROUGH 5582 [[fallthrough]]; 5583 } 5584 5585 case ABIArgInfo::InAlloca: 5586 case ABIArgInfo::Indirect: { 5587 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5588 if (UnusedReturnSizePtr) 5589 PopCleanupBlock(); 5590 return ret; 5591 } 5592 5593 case ABIArgInfo::Ignore: 5594 // If we are ignoring an argument that had a result, make sure to 5595 // construct the appropriate return value for our caller. 5596 return GetUndefRValue(RetTy); 5597 5598 case ABIArgInfo::Extend: 5599 case ABIArgInfo::Direct: { 5600 llvm::Type *RetIRTy = ConvertType(RetTy); 5601 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5602 switch (getEvaluationKind(RetTy)) { 5603 case TEK_Complex: { 5604 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5605 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5606 return RValue::getComplex(std::make_pair(Real, Imag)); 5607 } 5608 case TEK_Aggregate: { 5609 Address DestPtr = ReturnValue.getValue(); 5610 bool DestIsVolatile = ReturnValue.isVolatile(); 5611 5612 if (!DestPtr.isValid()) { 5613 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5614 DestIsVolatile = false; 5615 } 5616 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5617 return RValue::getAggregate(DestPtr); 5618 } 5619 case TEK_Scalar: { 5620 // If the argument doesn't match, perform a bitcast to coerce it. This 5621 // can happen due to trivial type mismatches. 5622 llvm::Value *V = CI; 5623 if (V->getType() != RetIRTy) 5624 V = Builder.CreateBitCast(V, RetIRTy); 5625 return RValue::get(V); 5626 } 5627 } 5628 llvm_unreachable("bad evaluation kind"); 5629 } 5630 5631 Address DestPtr = ReturnValue.getValue(); 5632 bool DestIsVolatile = ReturnValue.isVolatile(); 5633 5634 if (!DestPtr.isValid()) { 5635 DestPtr = CreateMemTemp(RetTy, "coerce"); 5636 DestIsVolatile = false; 5637 } 5638 5639 // If the value is offset in memory, apply the offset now. 5640 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5641 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5642 5643 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5644 } 5645 5646 case ABIArgInfo::Expand: 5647 case ABIArgInfo::IndirectAliased: 5648 llvm_unreachable("Invalid ABI kind for return argument"); 5649 } 5650 5651 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5652 } (); 5653 5654 // Emit the assume_aligned check on the return value. 5655 if (Ret.isScalar() && TargetDecl) { 5656 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5657 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5658 } 5659 5660 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5661 // we can't use the full cleanup mechanism. 5662 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5663 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5664 5665 if (!ReturnValue.isExternallyDestructed() && 5666 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5667 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5668 RetTy); 5669 5670 return Ret; 5671 } 5672 5673 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5674 if (isVirtual()) { 5675 const CallExpr *CE = getVirtualCallExpr(); 5676 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5677 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5678 CE ? CE->getBeginLoc() : SourceLocation()); 5679 } 5680 5681 return *this; 5682 } 5683 5684 /* VarArg handling */ 5685 5686 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5687 VAListAddr = VE->isMicrosoftABI() 5688 ? EmitMSVAListRef(VE->getSubExpr()) 5689 : EmitVAListRef(VE->getSubExpr()); 5690 QualType Ty = VE->getType(); 5691 if (VE->isMicrosoftABI()) 5692 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5693 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5694 } 5695