xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGCall.cpp (revision 1fd880742ace94e11fa60ee0b074f0b18e54c54f)
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "ABIInfoImpl.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <optional>
45 using namespace clang;
46 using namespace CodeGen;
47 
48 /***/
49 
50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
51   switch (CC) {
52   default: return llvm::CallingConv::C;
53   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
54   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
55   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
56   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
57   case CC_Win64: return llvm::CallingConv::Win64;
58   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
59   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
60   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
61   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
62   // TODO: Add support for __pascal to LLVM.
63   case CC_X86Pascal: return llvm::CallingConv::C;
64   // TODO: Add support for __vectorcall to LLVM.
65   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
66   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
67   case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
68   case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
69   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
70   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
72   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
73   case CC_Swift: return llvm::CallingConv::Swift;
74   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
75   case CC_M68kRTD: return llvm::CallingConv::M68k_RTD;
76   }
77 }
78 
79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
80 /// qualification. Either or both of RD and MD may be null. A null RD indicates
81 /// that there is no meaningful 'this' type, and a null MD can occur when
82 /// calling a method pointer.
83 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
84                                          const CXXMethodDecl *MD) {
85   QualType RecTy;
86   if (RD)
87     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
88   else
89     RecTy = Context.VoidTy;
90 
91   if (MD)
92     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
93   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
94 }
95 
96 /// Returns the canonical formal type of the given C++ method.
97 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
98   return MD->getType()->getCanonicalTypeUnqualified()
99            .getAs<FunctionProtoType>();
100 }
101 
102 /// Returns the "extra-canonicalized" return type, which discards
103 /// qualifiers on the return type.  Codegen doesn't care about them,
104 /// and it makes ABI code a little easier to be able to assume that
105 /// all parameter and return types are top-level unqualified.
106 static CanQualType GetReturnType(QualType RetTy) {
107   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
108 }
109 
110 /// Arrange the argument and result information for a value of the given
111 /// unprototyped freestanding function type.
112 const CGFunctionInfo &
113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
114   // When translating an unprototyped function type, always use a
115   // variadic type.
116   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
117                                  FnInfoOpts::None, std::nullopt,
118                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
119 }
120 
121 static void addExtParameterInfosForCall(
122          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
123                                         const FunctionProtoType *proto,
124                                         unsigned prefixArgs,
125                                         unsigned totalArgs) {
126   assert(proto->hasExtParameterInfos());
127   assert(paramInfos.size() <= prefixArgs);
128   assert(proto->getNumParams() + prefixArgs <= totalArgs);
129 
130   paramInfos.reserve(totalArgs);
131 
132   // Add default infos for any prefix args that don't already have infos.
133   paramInfos.resize(prefixArgs);
134 
135   // Add infos for the prototype.
136   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
137     paramInfos.push_back(ParamInfo);
138     // pass_object_size params have no parameter info.
139     if (ParamInfo.hasPassObjectSize())
140       paramInfos.emplace_back();
141   }
142 
143   assert(paramInfos.size() <= totalArgs &&
144          "Did we forget to insert pass_object_size args?");
145   // Add default infos for the variadic and/or suffix arguments.
146   paramInfos.resize(totalArgs);
147 }
148 
149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
151 static void appendParameterTypes(const CodeGenTypes &CGT,
152                                  SmallVectorImpl<CanQualType> &prefix,
153               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
154                                  CanQual<FunctionProtoType> FPT) {
155   // Fast path: don't touch param info if we don't need to.
156   if (!FPT->hasExtParameterInfos()) {
157     assert(paramInfos.empty() &&
158            "We have paramInfos, but the prototype doesn't?");
159     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
160     return;
161   }
162 
163   unsigned PrefixSize = prefix.size();
164   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
165   // parameters; the only thing that can change this is the presence of
166   // pass_object_size. So, we preallocate for the common case.
167   prefix.reserve(prefix.size() + FPT->getNumParams());
168 
169   auto ExtInfos = FPT->getExtParameterInfos();
170   assert(ExtInfos.size() == FPT->getNumParams());
171   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
172     prefix.push_back(FPT->getParamType(I));
173     if (ExtInfos[I].hasPassObjectSize())
174       prefix.push_back(CGT.getContext().getSizeType());
175   }
176 
177   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
178                               prefix.size());
179 }
180 
181 /// Arrange the LLVM function layout for a value of the given function
182 /// type, on top of any implicit parameters already stored.
183 static const CGFunctionInfo &
184 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
185                         SmallVectorImpl<CanQualType> &prefix,
186                         CanQual<FunctionProtoType> FTP) {
187   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
188   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
189   // FIXME: Kill copy.
190   appendParameterTypes(CGT, prefix, paramInfos, FTP);
191   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
192 
193   FnInfoOpts opts =
194       instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None;
195   return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix,
196                                      FTP->getExtInfo(), paramInfos, Required);
197 }
198 
199 /// Arrange the argument and result information for a value of the
200 /// given freestanding function type.
201 const CGFunctionInfo &
202 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
203   SmallVector<CanQualType, 16> argTypes;
204   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
205                                    FTP);
206 }
207 
208 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
209                                                bool IsWindows) {
210   // Set the appropriate calling convention for the Function.
211   if (D->hasAttr<StdCallAttr>())
212     return CC_X86StdCall;
213 
214   if (D->hasAttr<FastCallAttr>())
215     return CC_X86FastCall;
216 
217   if (D->hasAttr<RegCallAttr>())
218     return CC_X86RegCall;
219 
220   if (D->hasAttr<ThisCallAttr>())
221     return CC_X86ThisCall;
222 
223   if (D->hasAttr<VectorCallAttr>())
224     return CC_X86VectorCall;
225 
226   if (D->hasAttr<PascalAttr>())
227     return CC_X86Pascal;
228 
229   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
230     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
231 
232   if (D->hasAttr<AArch64VectorPcsAttr>())
233     return CC_AArch64VectorCall;
234 
235   if (D->hasAttr<AArch64SVEPcsAttr>())
236     return CC_AArch64SVEPCS;
237 
238   if (D->hasAttr<AMDGPUKernelCallAttr>())
239     return CC_AMDGPUKernelCall;
240 
241   if (D->hasAttr<IntelOclBiccAttr>())
242     return CC_IntelOclBicc;
243 
244   if (D->hasAttr<MSABIAttr>())
245     return IsWindows ? CC_C : CC_Win64;
246 
247   if (D->hasAttr<SysVABIAttr>())
248     return IsWindows ? CC_X86_64SysV : CC_C;
249 
250   if (D->hasAttr<PreserveMostAttr>())
251     return CC_PreserveMost;
252 
253   if (D->hasAttr<PreserveAllAttr>())
254     return CC_PreserveAll;
255 
256   if (D->hasAttr<M68kRTDAttr>())
257     return CC_M68kRTD;
258 
259   return CC_C;
260 }
261 
262 /// Arrange the argument and result information for a call to an
263 /// unknown C++ non-static member function of the given abstract type.
264 /// (A null RD means we don't have any meaningful "this" argument type,
265 ///  so fall back to a generic pointer type).
266 /// The member function must be an ordinary function, i.e. not a
267 /// constructor or destructor.
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
270                                    const FunctionProtoType *FTP,
271                                    const CXXMethodDecl *MD) {
272   SmallVector<CanQualType, 16> argTypes;
273 
274   // Add the 'this' pointer.
275   argTypes.push_back(DeriveThisType(RD, MD));
276 
277   return ::arrangeLLVMFunctionInfo(
278       *this, /*instanceMethod=*/true, argTypes,
279       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
280 }
281 
282 /// Set calling convention for CUDA/HIP kernel.
283 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
284                                            const FunctionDecl *FD) {
285   if (FD->hasAttr<CUDAGlobalAttr>()) {
286     const FunctionType *FT = FTy->getAs<FunctionType>();
287     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
288     FTy = FT->getCanonicalTypeUnqualified();
289   }
290 }
291 
292 /// Arrange the argument and result information for a declaration or
293 /// definition of the given C++ non-static member function.  The
294 /// member function must be an ordinary function, i.e. not a
295 /// constructor or destructor.
296 const CGFunctionInfo &
297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
298   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
299   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
300 
301   CanQualType FT = GetFormalType(MD).getAs<Type>();
302   setCUDAKernelCallingConvention(FT, CGM, MD);
303   auto prototype = FT.getAs<FunctionProtoType>();
304 
305   if (MD->isImplicitObjectMemberFunction()) {
306     // The abstract case is perfectly fine.
307     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
308     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
309   }
310 
311   return arrangeFreeFunctionType(prototype);
312 }
313 
314 bool CodeGenTypes::inheritingCtorHasParams(
315     const InheritedConstructor &Inherited, CXXCtorType Type) {
316   // Parameters are unnecessary if we're constructing a base class subobject
317   // and the inherited constructor lives in a virtual base.
318   return Type == Ctor_Complete ||
319          !Inherited.getShadowDecl()->constructsVirtualBase() ||
320          !Target.getCXXABI().hasConstructorVariants();
321 }
322 
323 const CGFunctionInfo &
324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
325   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
326 
327   SmallVector<CanQualType, 16> argTypes;
328   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
329 
330   const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
331   argTypes.push_back(DeriveThisType(ThisType, MD));
332 
333   bool PassParams = true;
334 
335   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
336     // A base class inheriting constructor doesn't get forwarded arguments
337     // needed to construct a virtual base (or base class thereof).
338     if (auto Inherited = CD->getInheritedConstructor())
339       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
340   }
341 
342   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
343 
344   // Add the formal parameters.
345   if (PassParams)
346     appendParameterTypes(*this, argTypes, paramInfos, FTP);
347 
348   CGCXXABI::AddedStructorArgCounts AddedArgs =
349       TheCXXABI.buildStructorSignature(GD, argTypes);
350   if (!paramInfos.empty()) {
351     // Note: prefix implies after the first param.
352     if (AddedArgs.Prefix)
353       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
354                         FunctionProtoType::ExtParameterInfo{});
355     if (AddedArgs.Suffix)
356       paramInfos.append(AddedArgs.Suffix,
357                         FunctionProtoType::ExtParameterInfo{});
358   }
359 
360   RequiredArgs required =
361       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
362                                       : RequiredArgs::All);
363 
364   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
365   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
366                                ? argTypes.front()
367                                : TheCXXABI.hasMostDerivedReturn(GD)
368                                      ? CGM.getContext().VoidPtrTy
369                                      : Context.VoidTy;
370   return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod,
371                                  argTypes, extInfo, paramInfos, required);
372 }
373 
374 static SmallVector<CanQualType, 16>
375 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
376   SmallVector<CanQualType, 16> argTypes;
377   for (auto &arg : args)
378     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
379   return argTypes;
380 }
381 
382 static SmallVector<CanQualType, 16>
383 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
384   SmallVector<CanQualType, 16> argTypes;
385   for (auto &arg : args)
386     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
387   return argTypes;
388 }
389 
390 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
391 getExtParameterInfosForCall(const FunctionProtoType *proto,
392                             unsigned prefixArgs, unsigned totalArgs) {
393   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
394   if (proto->hasExtParameterInfos()) {
395     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
396   }
397   return result;
398 }
399 
400 /// Arrange a call to a C++ method, passing the given arguments.
401 ///
402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
403 /// parameter.
404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
405 /// args.
406 /// PassProtoArgs indicates whether `args` has args for the parameters in the
407 /// given CXXConstructorDecl.
408 const CGFunctionInfo &
409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
410                                         const CXXConstructorDecl *D,
411                                         CXXCtorType CtorKind,
412                                         unsigned ExtraPrefixArgs,
413                                         unsigned ExtraSuffixArgs,
414                                         bool PassProtoArgs) {
415   // FIXME: Kill copy.
416   SmallVector<CanQualType, 16> ArgTypes;
417   for (const auto &Arg : args)
418     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
419 
420   // +1 for implicit this, which should always be args[0].
421   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
422 
423   CanQual<FunctionProtoType> FPT = GetFormalType(D);
424   RequiredArgs Required = PassProtoArgs
425                               ? RequiredArgs::forPrototypePlus(
426                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
427                               : RequiredArgs::All;
428 
429   GlobalDecl GD(D, CtorKind);
430   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
431                                ? ArgTypes.front()
432                                : TheCXXABI.hasMostDerivedReturn(GD)
433                                      ? CGM.getContext().VoidPtrTy
434                                      : Context.VoidTy;
435 
436   FunctionType::ExtInfo Info = FPT->getExtInfo();
437   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
438   // If the prototype args are elided, we should only have ABI-specific args,
439   // which never have param info.
440   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
441     // ABI-specific suffix arguments are treated the same as variadic arguments.
442     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
443                                 ArgTypes.size());
444   }
445 
446   return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod,
447                                  ArgTypes, Info, ParamInfos, Required);
448 }
449 
450 /// Arrange the argument and result information for the declaration or
451 /// definition of the given function.
452 const CGFunctionInfo &
453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
454   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
455     if (MD->isImplicitObjectMemberFunction())
456       return arrangeCXXMethodDeclaration(MD);
457 
458   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
459 
460   assert(isa<FunctionType>(FTy));
461   setCUDAKernelCallingConvention(FTy, CGM, FD);
462 
463   // When declaring a function without a prototype, always use a
464   // non-variadic type.
465   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
466     return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None,
467                                    std::nullopt, noProto->getExtInfo(), {},
468                                    RequiredArgs::All);
469   }
470 
471   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
472 }
473 
474 /// Arrange the argument and result information for the declaration or
475 /// definition of an Objective-C method.
476 const CGFunctionInfo &
477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
478   // It happens that this is the same as a call with no optional
479   // arguments, except also using the formal 'self' type.
480   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
481 }
482 
483 /// Arrange the argument and result information for the function type
484 /// through which to perform a send to the given Objective-C method,
485 /// using the given receiver type.  The receiver type is not always
486 /// the 'self' type of the method or even an Objective-C pointer type.
487 /// This is *not* the right method for actually performing such a
488 /// message send, due to the possibility of optional arguments.
489 const CGFunctionInfo &
490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
491                                               QualType receiverType) {
492   SmallVector<CanQualType, 16> argTys;
493   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
494       MD->isDirectMethod() ? 1 : 2);
495   argTys.push_back(Context.getCanonicalParamType(receiverType));
496   if (!MD->isDirectMethod())
497     argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
498   // FIXME: Kill copy?
499   for (const auto *I : MD->parameters()) {
500     argTys.push_back(Context.getCanonicalParamType(I->getType()));
501     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
502         I->hasAttr<NoEscapeAttr>());
503     extParamInfos.push_back(extParamInfo);
504   }
505 
506   FunctionType::ExtInfo einfo;
507   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
508   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
509 
510   if (getContext().getLangOpts().ObjCAutoRefCount &&
511       MD->hasAttr<NSReturnsRetainedAttr>())
512     einfo = einfo.withProducesResult(true);
513 
514   RequiredArgs required =
515     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
516 
517   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()),
518                                  FnInfoOpts::None, argTys, einfo, extParamInfos,
519                                  required);
520 }
521 
522 const CGFunctionInfo &
523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
524                                                  const CallArgList &args) {
525   auto argTypes = getArgTypesForCall(Context, args);
526   FunctionType::ExtInfo einfo;
527 
528   return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None,
529                                  argTypes, einfo, {}, RequiredArgs::All);
530 }
531 
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
534   // FIXME: Do we need to handle ObjCMethodDecl?
535   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
536 
537   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
538       isa<CXXDestructorDecl>(GD.getDecl()))
539     return arrangeCXXStructorDeclaration(GD);
540 
541   return arrangeFunctionDeclaration(FD);
542 }
543 
544 /// Arrange a thunk that takes 'this' as the first parameter followed by
545 /// varargs.  Return a void pointer, regardless of the actual return type.
546 /// The body of the thunk will end in a musttail call to a function of the
547 /// correct type, and the caller will bitcast the function to the correct
548 /// prototype.
549 const CGFunctionInfo &
550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
551   assert(MD->isVirtual() && "only methods have thunks");
552   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
553   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
554   return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys,
555                                  FTP->getExtInfo(), {}, RequiredArgs(1));
556 }
557 
558 const CGFunctionInfo &
559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
560                                    CXXCtorType CT) {
561   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
562 
563   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
564   SmallVector<CanQualType, 2> ArgTys;
565   const CXXRecordDecl *RD = CD->getParent();
566   ArgTys.push_back(DeriveThisType(RD, CD));
567   if (CT == Ctor_CopyingClosure)
568     ArgTys.push_back(*FTP->param_type_begin());
569   if (RD->getNumVBases() > 0)
570     ArgTys.push_back(Context.IntTy);
571   CallingConv CC = Context.getDefaultCallingConvention(
572       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
573   return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod,
574                                  ArgTys, FunctionType::ExtInfo(CC), {},
575                                  RequiredArgs::All);
576 }
577 
578 /// Arrange a call as unto a free function, except possibly with an
579 /// additional number of formal parameters considered required.
580 static const CGFunctionInfo &
581 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
582                             CodeGenModule &CGM,
583                             const CallArgList &args,
584                             const FunctionType *fnType,
585                             unsigned numExtraRequiredArgs,
586                             bool chainCall) {
587   assert(args.size() >= numExtraRequiredArgs);
588 
589   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
590 
591   // In most cases, there are no optional arguments.
592   RequiredArgs required = RequiredArgs::All;
593 
594   // If we have a variadic prototype, the required arguments are the
595   // extra prefix plus the arguments in the prototype.
596   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
597     if (proto->isVariadic())
598       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
599 
600     if (proto->hasExtParameterInfos())
601       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
602                                   args.size());
603 
604   // If we don't have a prototype at all, but we're supposed to
605   // explicitly use the variadic convention for unprototyped calls,
606   // treat all of the arguments as required but preserve the nominal
607   // possibility of variadics.
608   } else if (CGM.getTargetCodeGenInfo()
609                 .isNoProtoCallVariadic(args,
610                                        cast<FunctionNoProtoType>(fnType))) {
611     required = RequiredArgs(args.size());
612   }
613 
614   // FIXME: Kill copy.
615   SmallVector<CanQualType, 16> argTypes;
616   for (const auto &arg : args)
617     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
618   FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None;
619   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
620                                      opts, argTypes, fnType->getExtInfo(),
621                                      paramInfos, required);
622 }
623 
624 /// Figure out the rules for calling a function with the given formal
625 /// type using the given arguments.  The arguments are necessary
626 /// because the function might be unprototyped, in which case it's
627 /// target-dependent in crazy ways.
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
630                                       const FunctionType *fnType,
631                                       bool chainCall) {
632   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
633                                      chainCall ? 1 : 0, chainCall);
634 }
635 
636 /// A block function is essentially a free function with an
637 /// extra implicit argument.
638 const CGFunctionInfo &
639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
640                                        const FunctionType *fnType) {
641   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
642                                      /*chainCall=*/false);
643 }
644 
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
647                                               const FunctionArgList &params) {
648   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
649   auto argTypes = getArgTypesForDeclaration(Context, params);
650 
651   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
652                                  FnInfoOpts::None, argTypes,
653                                  proto->getExtInfo(), paramInfos,
654                                  RequiredArgs::forPrototypePlus(proto, 1));
655 }
656 
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
659                                          const CallArgList &args) {
660   // FIXME: Kill copy.
661   SmallVector<CanQualType, 16> argTypes;
662   for (const auto &Arg : args)
663     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
664   return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
665                                  argTypes, FunctionType::ExtInfo(),
666                                  /*paramInfos=*/{}, RequiredArgs::All);
667 }
668 
669 const CGFunctionInfo &
670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
671                                                 const FunctionArgList &args) {
672   auto argTypes = getArgTypesForDeclaration(Context, args);
673 
674   return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
675                                  argTypes, FunctionType::ExtInfo(), {},
676                                  RequiredArgs::All);
677 }
678 
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
681                                               ArrayRef<CanQualType> argTypes) {
682   return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes,
683                                  FunctionType::ExtInfo(), {},
684                                  RequiredArgs::All);
685 }
686 
687 /// Arrange a call to a C++ method, passing the given arguments.
688 ///
689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
690 /// does not count `this`.
691 const CGFunctionInfo &
692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
693                                    const FunctionProtoType *proto,
694                                    RequiredArgs required,
695                                    unsigned numPrefixArgs) {
696   assert(numPrefixArgs + 1 <= args.size() &&
697          "Emitting a call with less args than the required prefix?");
698   // Add one to account for `this`. It's a bit awkward here, but we don't count
699   // `this` in similar places elsewhere.
700   auto paramInfos =
701     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
702 
703   // FIXME: Kill copy.
704   auto argTypes = getArgTypesForCall(Context, args);
705 
706   FunctionType::ExtInfo info = proto->getExtInfo();
707   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
708                                  FnInfoOpts::IsInstanceMethod, argTypes, info,
709                                  paramInfos, required);
710 }
711 
712 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
713   return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None,
714                                  std::nullopt, FunctionType::ExtInfo(), {},
715                                  RequiredArgs::All);
716 }
717 
718 const CGFunctionInfo &
719 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
720                           const CallArgList &args) {
721   assert(signature.arg_size() <= args.size());
722   if (signature.arg_size() == args.size())
723     return signature;
724 
725   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
726   auto sigParamInfos = signature.getExtParameterInfos();
727   if (!sigParamInfos.empty()) {
728     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
729     paramInfos.resize(args.size());
730   }
731 
732   auto argTypes = getArgTypesForCall(Context, args);
733 
734   assert(signature.getRequiredArgs().allowsOptionalArgs());
735   FnInfoOpts opts = FnInfoOpts::None;
736   if (signature.isInstanceMethod())
737     opts |= FnInfoOpts::IsInstanceMethod;
738   if (signature.isChainCall())
739     opts |= FnInfoOpts::IsChainCall;
740   if (signature.isDelegateCall())
741     opts |= FnInfoOpts::IsDelegateCall;
742   return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes,
743                                  signature.getExtInfo(), paramInfos,
744                                  signature.getRequiredArgs());
745 }
746 
747 namespace clang {
748 namespace CodeGen {
749 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
750 }
751 }
752 
753 /// Arrange the argument and result information for an abstract value
754 /// of a given function type.  This is the method which all of the
755 /// above functions ultimately defer to.
756 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo(
757     CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
758     FunctionType::ExtInfo info,
759     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
760     RequiredArgs required) {
761   assert(llvm::all_of(argTypes,
762                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
763 
764   // Lookup or create unique function info.
765   llvm::FoldingSetNodeID ID;
766   bool isInstanceMethod =
767       (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod;
768   bool isChainCall =
769       (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall;
770   bool isDelegateCall =
771       (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall;
772   CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall,
773                           info, paramInfos, required, resultType, argTypes);
774 
775   void *insertPos = nullptr;
776   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
777   if (FI)
778     return *FI;
779 
780   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
781 
782   // Construct the function info.  We co-allocate the ArgInfos.
783   FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall,
784                               info, paramInfos, resultType, argTypes, required);
785   FunctionInfos.InsertNode(FI, insertPos);
786 
787   bool inserted = FunctionsBeingProcessed.insert(FI).second;
788   (void)inserted;
789   assert(inserted && "Recursively being processed?");
790 
791   // Compute ABI information.
792   if (CC == llvm::CallingConv::SPIR_KERNEL) {
793     // Force target independent argument handling for the host visible
794     // kernel functions.
795     computeSPIRKernelABIInfo(CGM, *FI);
796   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
797     swiftcall::computeABIInfo(CGM, *FI);
798   } else {
799     getABIInfo().computeInfo(*FI);
800   }
801 
802   // Loop over all of the computed argument and return value info.  If any of
803   // them are direct or extend without a specified coerce type, specify the
804   // default now.
805   ABIArgInfo &retInfo = FI->getReturnInfo();
806   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
807     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
808 
809   for (auto &I : FI->arguments())
810     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
811       I.info.setCoerceToType(ConvertType(I.type));
812 
813   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
814   assert(erased && "Not in set?");
815 
816   return *FI;
817 }
818 
819 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod,
820                                        bool chainCall, bool delegateCall,
821                                        const FunctionType::ExtInfo &info,
822                                        ArrayRef<ExtParameterInfo> paramInfos,
823                                        CanQualType resultType,
824                                        ArrayRef<CanQualType> argTypes,
825                                        RequiredArgs required) {
826   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
827   assert(!required.allowsOptionalArgs() ||
828          required.getNumRequiredArgs() <= argTypes.size());
829 
830   void *buffer =
831     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
832                                   argTypes.size() + 1, paramInfos.size()));
833 
834   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
835   FI->CallingConvention = llvmCC;
836   FI->EffectiveCallingConvention = llvmCC;
837   FI->ASTCallingConvention = info.getCC();
838   FI->InstanceMethod = instanceMethod;
839   FI->ChainCall = chainCall;
840   FI->DelegateCall = delegateCall;
841   FI->CmseNSCall = info.getCmseNSCall();
842   FI->NoReturn = info.getNoReturn();
843   FI->ReturnsRetained = info.getProducesResult();
844   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
845   FI->NoCfCheck = info.getNoCfCheck();
846   FI->Required = required;
847   FI->HasRegParm = info.getHasRegParm();
848   FI->RegParm = info.getRegParm();
849   FI->ArgStruct = nullptr;
850   FI->ArgStructAlign = 0;
851   FI->NumArgs = argTypes.size();
852   FI->HasExtParameterInfos = !paramInfos.empty();
853   FI->getArgsBuffer()[0].type = resultType;
854   FI->MaxVectorWidth = 0;
855   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
856     FI->getArgsBuffer()[i + 1].type = argTypes[i];
857   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
858     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
859   return FI;
860 }
861 
862 /***/
863 
864 namespace {
865 // ABIArgInfo::Expand implementation.
866 
867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
868 struct TypeExpansion {
869   enum TypeExpansionKind {
870     // Elements of constant arrays are expanded recursively.
871     TEK_ConstantArray,
872     // Record fields are expanded recursively (but if record is a union, only
873     // the field with the largest size is expanded).
874     TEK_Record,
875     // For complex types, real and imaginary parts are expanded recursively.
876     TEK_Complex,
877     // All other types are not expandable.
878     TEK_None
879   };
880 
881   const TypeExpansionKind Kind;
882 
883   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
884   virtual ~TypeExpansion() {}
885 };
886 
887 struct ConstantArrayExpansion : TypeExpansion {
888   QualType EltTy;
889   uint64_t NumElts;
890 
891   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
892       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_ConstantArray;
895   }
896 };
897 
898 struct RecordExpansion : TypeExpansion {
899   SmallVector<const CXXBaseSpecifier *, 1> Bases;
900 
901   SmallVector<const FieldDecl *, 1> Fields;
902 
903   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
904                   SmallVector<const FieldDecl *, 1> &&Fields)
905       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
906         Fields(std::move(Fields)) {}
907   static bool classof(const TypeExpansion *TE) {
908     return TE->Kind == TEK_Record;
909   }
910 };
911 
912 struct ComplexExpansion : TypeExpansion {
913   QualType EltTy;
914 
915   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
916   static bool classof(const TypeExpansion *TE) {
917     return TE->Kind == TEK_Complex;
918   }
919 };
920 
921 struct NoExpansion : TypeExpansion {
922   NoExpansion() : TypeExpansion(TEK_None) {}
923   static bool classof(const TypeExpansion *TE) {
924     return TE->Kind == TEK_None;
925   }
926 };
927 }  // namespace
928 
929 static std::unique_ptr<TypeExpansion>
930 getTypeExpansion(QualType Ty, const ASTContext &Context) {
931   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
932     return std::make_unique<ConstantArrayExpansion>(
933         AT->getElementType(), AT->getSize().getZExtValue());
934   }
935   if (const RecordType *RT = Ty->getAs<RecordType>()) {
936     SmallVector<const CXXBaseSpecifier *, 1> Bases;
937     SmallVector<const FieldDecl *, 1> Fields;
938     const RecordDecl *RD = RT->getDecl();
939     assert(!RD->hasFlexibleArrayMember() &&
940            "Cannot expand structure with flexible array.");
941     if (RD->isUnion()) {
942       // Unions can be here only in degenerative cases - all the fields are same
943       // after flattening. Thus we have to use the "largest" field.
944       const FieldDecl *LargestFD = nullptr;
945       CharUnits UnionSize = CharUnits::Zero();
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
953         if (UnionSize < FieldSize) {
954           UnionSize = FieldSize;
955           LargestFD = FD;
956         }
957       }
958       if (LargestFD)
959         Fields.push_back(LargestFD);
960     } else {
961       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
962         assert(!CXXRD->isDynamicClass() &&
963                "cannot expand vtable pointers in dynamic classes");
964         llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
965       }
966 
967       for (const auto *FD : RD->fields()) {
968         if (FD->isZeroLengthBitField(Context))
969           continue;
970         assert(!FD->isBitField() &&
971                "Cannot expand structure with bit-field members.");
972         Fields.push_back(FD);
973       }
974     }
975     return std::make_unique<RecordExpansion>(std::move(Bases),
976                                               std::move(Fields));
977   }
978   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
979     return std::make_unique<ComplexExpansion>(CT->getElementType());
980   }
981   return std::make_unique<NoExpansion>();
982 }
983 
984 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
985   auto Exp = getTypeExpansion(Ty, Context);
986   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
987     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
988   }
989   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     int Res = 0;
991     for (auto BS : RExp->Bases)
992       Res += getExpansionSize(BS->getType(), Context);
993     for (auto FD : RExp->Fields)
994       Res += getExpansionSize(FD->getType(), Context);
995     return Res;
996   }
997   if (isa<ComplexExpansion>(Exp.get()))
998     return 2;
999   assert(isa<NoExpansion>(Exp.get()));
1000   return 1;
1001 }
1002 
1003 void
1004 CodeGenTypes::getExpandedTypes(QualType Ty,
1005                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
1006   auto Exp = getTypeExpansion(Ty, Context);
1007   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1008     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1009       getExpandedTypes(CAExp->EltTy, TI);
1010     }
1011   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1012     for (auto BS : RExp->Bases)
1013       getExpandedTypes(BS->getType(), TI);
1014     for (auto FD : RExp->Fields)
1015       getExpandedTypes(FD->getType(), TI);
1016   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1017     llvm::Type *EltTy = ConvertType(CExp->EltTy);
1018     *TI++ = EltTy;
1019     *TI++ = EltTy;
1020   } else {
1021     assert(isa<NoExpansion>(Exp.get()));
1022     *TI++ = ConvertType(Ty);
1023   }
1024 }
1025 
1026 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1027                                       ConstantArrayExpansion *CAE,
1028                                       Address BaseAddr,
1029                                       llvm::function_ref<void(Address)> Fn) {
1030   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1031   CharUnits EltAlign =
1032     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1033   llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1034 
1035   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1036     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1037         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1038     Fn(Address(EltAddr, EltTy, EltAlign));
1039   }
1040 }
1041 
1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1043                                          llvm::Function::arg_iterator &AI) {
1044   assert(LV.isSimple() &&
1045          "Unexpected non-simple lvalue during struct expansion.");
1046 
1047   auto Exp = getTypeExpansion(Ty, getContext());
1048   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1049     forConstantArrayExpansion(
1050         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1051           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1052           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1053         });
1054   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1055     Address This = LV.getAddress(*this);
1056     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1057       // Perform a single step derived-to-base conversion.
1058       Address Base =
1059           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1060                                 /*NullCheckValue=*/false, SourceLocation());
1061       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1062 
1063       // Recurse onto bases.
1064       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1065     }
1066     for (auto FD : RExp->Fields) {
1067       // FIXME: What are the right qualifiers here?
1068       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1069       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1070     }
1071   } else if (isa<ComplexExpansion>(Exp.get())) {
1072     auto realValue = &*AI++;
1073     auto imagValue = &*AI++;
1074     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1075   } else {
1076     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1077     // primitive store.
1078     assert(isa<NoExpansion>(Exp.get()));
1079     llvm::Value *Arg = &*AI++;
1080     if (LV.isBitField()) {
1081       EmitStoreThroughLValue(RValue::get(Arg), LV);
1082     } else {
1083       // TODO: currently there are some places are inconsistent in what LLVM
1084       // pointer type they use (see D118744). Once clang uses opaque pointers
1085       // all LLVM pointer types will be the same and we can remove this check.
1086       if (Arg->getType()->isPointerTy()) {
1087         Address Addr = LV.getAddress(*this);
1088         Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1089       }
1090       EmitStoreOfScalar(Arg, LV);
1091     }
1092   }
1093 }
1094 
1095 void CodeGenFunction::ExpandTypeToArgs(
1096     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1097     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1098   auto Exp = getTypeExpansion(Ty, getContext());
1099   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1100     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1101                                    : Arg.getKnownRValue().getAggregateAddress();
1102     forConstantArrayExpansion(
1103         *this, CAExp, Addr, [&](Address EltAddr) {
1104           CallArg EltArg = CallArg(
1105               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1106               CAExp->EltTy);
1107           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1108                            IRCallArgPos);
1109         });
1110   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1111     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1112                                    : Arg.getKnownRValue().getAggregateAddress();
1113     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1114       // Perform a single step derived-to-base conversion.
1115       Address Base =
1116           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1117                                 /*NullCheckValue=*/false, SourceLocation());
1118       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1119 
1120       // Recurse onto bases.
1121       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1122                        IRCallArgPos);
1123     }
1124 
1125     LValue LV = MakeAddrLValue(This, Ty);
1126     for (auto FD : RExp->Fields) {
1127       CallArg FldArg =
1128           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1129       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1130                        IRCallArgPos);
1131     }
1132   } else if (isa<ComplexExpansion>(Exp.get())) {
1133     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1134     IRCallArgs[IRCallArgPos++] = CV.first;
1135     IRCallArgs[IRCallArgPos++] = CV.second;
1136   } else {
1137     assert(isa<NoExpansion>(Exp.get()));
1138     auto RV = Arg.getKnownRValue();
1139     assert(RV.isScalar() &&
1140            "Unexpected non-scalar rvalue during struct expansion.");
1141 
1142     // Insert a bitcast as needed.
1143     llvm::Value *V = RV.getScalarVal();
1144     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1145         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1146       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1147 
1148     IRCallArgs[IRCallArgPos++] = V;
1149   }
1150 }
1151 
1152 /// Create a temporary allocation for the purposes of coercion.
1153 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1154                                            CharUnits MinAlign,
1155                                            const Twine &Name = "tmp") {
1156   // Don't use an alignment that's worse than what LLVM would prefer.
1157   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1158   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1159 
1160   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1161 }
1162 
1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1164 /// accessing some number of bytes out of it, try to gep into the struct to get
1165 /// at its inner goodness.  Dive as deep as possible without entering an element
1166 /// with an in-memory size smaller than DstSize.
1167 static Address
1168 EnterStructPointerForCoercedAccess(Address SrcPtr,
1169                                    llvm::StructType *SrcSTy,
1170                                    uint64_t DstSize, CodeGenFunction &CGF) {
1171   // We can't dive into a zero-element struct.
1172   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1173 
1174   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1175 
1176   // If the first elt is at least as large as what we're looking for, or if the
1177   // first element is the same size as the whole struct, we can enter it. The
1178   // comparison must be made on the store size and not the alloca size. Using
1179   // the alloca size may overstate the size of the load.
1180   uint64_t FirstEltSize =
1181     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1182   if (FirstEltSize < DstSize &&
1183       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1184     return SrcPtr;
1185 
1186   // GEP into the first element.
1187   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1188 
1189   // If the first element is a struct, recurse.
1190   llvm::Type *SrcTy = SrcPtr.getElementType();
1191   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1192     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1193 
1194   return SrcPtr;
1195 }
1196 
1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1198 /// are either integers or pointers.  This does a truncation of the value if it
1199 /// is too large or a zero extension if it is too small.
1200 ///
1201 /// This behaves as if the value were coerced through memory, so on big-endian
1202 /// targets the high bits are preserved in a truncation, while little-endian
1203 /// targets preserve the low bits.
1204 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1205                                              llvm::Type *Ty,
1206                                              CodeGenFunction &CGF) {
1207   if (Val->getType() == Ty)
1208     return Val;
1209 
1210   if (isa<llvm::PointerType>(Val->getType())) {
1211     // If this is Pointer->Pointer avoid conversion to and from int.
1212     if (isa<llvm::PointerType>(Ty))
1213       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1214 
1215     // Convert the pointer to an integer so we can play with its width.
1216     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1217   }
1218 
1219   llvm::Type *DestIntTy = Ty;
1220   if (isa<llvm::PointerType>(DestIntTy))
1221     DestIntTy = CGF.IntPtrTy;
1222 
1223   if (Val->getType() != DestIntTy) {
1224     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1225     if (DL.isBigEndian()) {
1226       // Preserve the high bits on big-endian targets.
1227       // That is what memory coercion does.
1228       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1229       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1230 
1231       if (SrcSize > DstSize) {
1232         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1233         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1234       } else {
1235         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1236         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1237       }
1238     } else {
1239       // Little-endian targets preserve the low bits. No shifts required.
1240       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1241     }
1242   }
1243 
1244   if (isa<llvm::PointerType>(Ty))
1245     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1246   return Val;
1247 }
1248 
1249 
1250 
1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1252 /// a pointer to an object of type \arg Ty, known to be aligned to
1253 /// \arg SrcAlign bytes.
1254 ///
1255 /// This safely handles the case when the src type is smaller than the
1256 /// destination type; in this situation the values of bits which not
1257 /// present in the src are undefined.
1258 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1259                                       CodeGenFunction &CGF) {
1260   llvm::Type *SrcTy = Src.getElementType();
1261 
1262   // If SrcTy and Ty are the same, just do a load.
1263   if (SrcTy == Ty)
1264     return CGF.Builder.CreateLoad(Src);
1265 
1266   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1267 
1268   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1269     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1270                                              DstSize.getFixedValue(), CGF);
1271     SrcTy = Src.getElementType();
1272   }
1273 
1274   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1275 
1276   // If the source and destination are integer or pointer types, just do an
1277   // extension or truncation to the desired type.
1278   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1279       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1280     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1281     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1282   }
1283 
1284   // If load is legal, just bitcast the src pointer.
1285   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1286       SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1287     // Generally SrcSize is never greater than DstSize, since this means we are
1288     // losing bits. However, this can happen in cases where the structure has
1289     // additional padding, for example due to a user specified alignment.
1290     //
1291     // FIXME: Assert that we aren't truncating non-padding bits when have access
1292     // to that information.
1293     Src = Src.withElementType(Ty);
1294     return CGF.Builder.CreateLoad(Src);
1295   }
1296 
1297   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1298   // the types match, use the llvm.vector.insert intrinsic to perform the
1299   // conversion.
1300   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1301     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1302       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1303       // vector, use a vector insert and bitcast the result.
1304       bool NeedsBitcast = false;
1305       auto PredType =
1306           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1307       llvm::Type *OrigType = Ty;
1308       if (ScalableDst == PredType &&
1309           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1310         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1311         NeedsBitcast = true;
1312       }
1313       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1314         auto *Load = CGF.Builder.CreateLoad(Src);
1315         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1316         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1317         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1318             ScalableDst, UndefVec, Load, Zero, "cast.scalable");
1319         if (NeedsBitcast)
1320           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1321         return Result;
1322       }
1323     }
1324   }
1325 
1326   // Otherwise do coercion through memory. This is stupid, but simple.
1327   Address Tmp =
1328       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1329   CGF.Builder.CreateMemCpy(
1330       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1331       Src.getAlignment().getAsAlign(),
1332       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
1333   return CGF.Builder.CreateLoad(Tmp);
1334 }
1335 
1336 // Function to store a first-class aggregate into memory.  We prefer to
1337 // store the elements rather than the aggregate to be more friendly to
1338 // fast-isel.
1339 // FIXME: Do we need to recurse here?
1340 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1341                                          bool DestIsVolatile) {
1342   // Prefer scalar stores to first-class aggregate stores.
1343   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1344     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1345       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1346       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1347       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1348     }
1349   } else {
1350     Builder.CreateStore(Val, Dest, DestIsVolatile);
1351   }
1352 }
1353 
1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1355 /// where the source and destination may have different types.  The
1356 /// destination is known to be aligned to \arg DstAlign bytes.
1357 ///
1358 /// This safely handles the case when the src type is larger than the
1359 /// destination type; the upper bits of the src will be lost.
1360 static void CreateCoercedStore(llvm::Value *Src,
1361                                Address Dst,
1362                                bool DstIsVolatile,
1363                                CodeGenFunction &CGF) {
1364   llvm::Type *SrcTy = Src->getType();
1365   llvm::Type *DstTy = Dst.getElementType();
1366   if (SrcTy == DstTy) {
1367     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1368     return;
1369   }
1370 
1371   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1372 
1373   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1374     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1375                                              SrcSize.getFixedValue(), CGF);
1376     DstTy = Dst.getElementType();
1377   }
1378 
1379   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1380   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1381   if (SrcPtrTy && DstPtrTy &&
1382       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1383     Src = CGF.Builder.CreateAddrSpaceCast(Src, DstTy);
1384     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1385     return;
1386   }
1387 
1388   // If the source and destination are integer or pointer types, just do an
1389   // extension or truncation to the desired type.
1390   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1391       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1392     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1393     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1394     return;
1395   }
1396 
1397   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1398 
1399   // If store is legal, just bitcast the src pointer.
1400   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1401       isa<llvm::ScalableVectorType>(DstTy) ||
1402       SrcSize.getFixedValue() <= DstSize.getFixedValue()) {
1403     Dst = Dst.withElementType(SrcTy);
1404     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1405   } else {
1406     // Otherwise do coercion through memory. This is stupid, but
1407     // simple.
1408 
1409     // Generally SrcSize is never greater than DstSize, since this means we are
1410     // losing bits. However, this can happen in cases where the structure has
1411     // additional padding, for example due to a user specified alignment.
1412     //
1413     // FIXME: Assert that we aren't truncating non-padding bits when have access
1414     // to that information.
1415     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1416     CGF.Builder.CreateStore(Src, Tmp);
1417     CGF.Builder.CreateMemCpy(
1418         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1419         Tmp.getAlignment().getAsAlign(),
1420         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue()));
1421   }
1422 }
1423 
1424 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1425                                    const ABIArgInfo &info) {
1426   if (unsigned offset = info.getDirectOffset()) {
1427     addr = addr.withElementType(CGF.Int8Ty);
1428     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1429                                              CharUnits::fromQuantity(offset));
1430     addr = addr.withElementType(info.getCoerceToType());
1431   }
1432   return addr;
1433 }
1434 
1435 namespace {
1436 
1437 /// Encapsulates information about the way function arguments from
1438 /// CGFunctionInfo should be passed to actual LLVM IR function.
1439 class ClangToLLVMArgMapping {
1440   static const unsigned InvalidIndex = ~0U;
1441   unsigned InallocaArgNo;
1442   unsigned SRetArgNo;
1443   unsigned TotalIRArgs;
1444 
1445   /// Arguments of LLVM IR function corresponding to single Clang argument.
1446   struct IRArgs {
1447     unsigned PaddingArgIndex;
1448     // Argument is expanded to IR arguments at positions
1449     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1450     unsigned FirstArgIndex;
1451     unsigned NumberOfArgs;
1452 
1453     IRArgs()
1454         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1455           NumberOfArgs(0) {}
1456   };
1457 
1458   SmallVector<IRArgs, 8> ArgInfo;
1459 
1460 public:
1461   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1462                         bool OnlyRequiredArgs = false)
1463       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1464         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1465     construct(Context, FI, OnlyRequiredArgs);
1466   }
1467 
1468   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1469   unsigned getInallocaArgNo() const {
1470     assert(hasInallocaArg());
1471     return InallocaArgNo;
1472   }
1473 
1474   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1475   unsigned getSRetArgNo() const {
1476     assert(hasSRetArg());
1477     return SRetArgNo;
1478   }
1479 
1480   unsigned totalIRArgs() const { return TotalIRArgs; }
1481 
1482   bool hasPaddingArg(unsigned ArgNo) const {
1483     assert(ArgNo < ArgInfo.size());
1484     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1485   }
1486   unsigned getPaddingArgNo(unsigned ArgNo) const {
1487     assert(hasPaddingArg(ArgNo));
1488     return ArgInfo[ArgNo].PaddingArgIndex;
1489   }
1490 
1491   /// Returns index of first IR argument corresponding to ArgNo, and their
1492   /// quantity.
1493   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1494     assert(ArgNo < ArgInfo.size());
1495     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1496                           ArgInfo[ArgNo].NumberOfArgs);
1497   }
1498 
1499 private:
1500   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1501                  bool OnlyRequiredArgs);
1502 };
1503 
1504 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1505                                       const CGFunctionInfo &FI,
1506                                       bool OnlyRequiredArgs) {
1507   unsigned IRArgNo = 0;
1508   bool SwapThisWithSRet = false;
1509   const ABIArgInfo &RetAI = FI.getReturnInfo();
1510 
1511   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1512     SwapThisWithSRet = RetAI.isSRetAfterThis();
1513     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1514   }
1515 
1516   unsigned ArgNo = 0;
1517   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1518   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1519        ++I, ++ArgNo) {
1520     assert(I != FI.arg_end());
1521     QualType ArgType = I->type;
1522     const ABIArgInfo &AI = I->info;
1523     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1524     auto &IRArgs = ArgInfo[ArgNo];
1525 
1526     if (AI.getPaddingType())
1527       IRArgs.PaddingArgIndex = IRArgNo++;
1528 
1529     switch (AI.getKind()) {
1530     case ABIArgInfo::Extend:
1531     case ABIArgInfo::Direct: {
1532       // FIXME: handle sseregparm someday...
1533       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1534       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1535         IRArgs.NumberOfArgs = STy->getNumElements();
1536       } else {
1537         IRArgs.NumberOfArgs = 1;
1538       }
1539       break;
1540     }
1541     case ABIArgInfo::Indirect:
1542     case ABIArgInfo::IndirectAliased:
1543       IRArgs.NumberOfArgs = 1;
1544       break;
1545     case ABIArgInfo::Ignore:
1546     case ABIArgInfo::InAlloca:
1547       // ignore and inalloca doesn't have matching LLVM parameters.
1548       IRArgs.NumberOfArgs = 0;
1549       break;
1550     case ABIArgInfo::CoerceAndExpand:
1551       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1552       break;
1553     case ABIArgInfo::Expand:
1554       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1555       break;
1556     }
1557 
1558     if (IRArgs.NumberOfArgs > 0) {
1559       IRArgs.FirstArgIndex = IRArgNo;
1560       IRArgNo += IRArgs.NumberOfArgs;
1561     }
1562 
1563     // Skip over the sret parameter when it comes second.  We already handled it
1564     // above.
1565     if (IRArgNo == 1 && SwapThisWithSRet)
1566       IRArgNo++;
1567   }
1568   assert(ArgNo == ArgInfo.size());
1569 
1570   if (FI.usesInAlloca())
1571     InallocaArgNo = IRArgNo++;
1572 
1573   TotalIRArgs = IRArgNo;
1574 }
1575 }  // namespace
1576 
1577 /***/
1578 
1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1580   const auto &RI = FI.getReturnInfo();
1581   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1582 }
1583 
1584 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1585   return ReturnTypeUsesSRet(FI) &&
1586          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1587 }
1588 
1589 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1590   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1591     switch (BT->getKind()) {
1592     default:
1593       return false;
1594     case BuiltinType::Float:
1595       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1596     case BuiltinType::Double:
1597       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1598     case BuiltinType::LongDouble:
1599       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1600     }
1601   }
1602 
1603   return false;
1604 }
1605 
1606 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1607   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1608     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1609       if (BT->getKind() == BuiltinType::LongDouble)
1610         return getTarget().useObjCFP2RetForComplexLongDouble();
1611     }
1612   }
1613 
1614   return false;
1615 }
1616 
1617 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1618   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1619   return GetFunctionType(FI);
1620 }
1621 
1622 llvm::FunctionType *
1623 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1624 
1625   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1626   (void)Inserted;
1627   assert(Inserted && "Recursively being processed?");
1628 
1629   llvm::Type *resultType = nullptr;
1630   const ABIArgInfo &retAI = FI.getReturnInfo();
1631   switch (retAI.getKind()) {
1632   case ABIArgInfo::Expand:
1633   case ABIArgInfo::IndirectAliased:
1634     llvm_unreachable("Invalid ABI kind for return argument");
1635 
1636   case ABIArgInfo::Extend:
1637   case ABIArgInfo::Direct:
1638     resultType = retAI.getCoerceToType();
1639     break;
1640 
1641   case ABIArgInfo::InAlloca:
1642     if (retAI.getInAllocaSRet()) {
1643       // sret things on win32 aren't void, they return the sret pointer.
1644       QualType ret = FI.getReturnType();
1645       unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
1646       resultType = llvm::PointerType::get(getLLVMContext(), addressSpace);
1647     } else {
1648       resultType = llvm::Type::getVoidTy(getLLVMContext());
1649     }
1650     break;
1651 
1652   case ABIArgInfo::Indirect:
1653   case ABIArgInfo::Ignore:
1654     resultType = llvm::Type::getVoidTy(getLLVMContext());
1655     break;
1656 
1657   case ABIArgInfo::CoerceAndExpand:
1658     resultType = retAI.getUnpaddedCoerceAndExpandType();
1659     break;
1660   }
1661 
1662   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1663   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1664 
1665   // Add type for sret argument.
1666   if (IRFunctionArgs.hasSRetArg()) {
1667     QualType Ret = FI.getReturnType();
1668     unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
1669     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1670         llvm::PointerType::get(getLLVMContext(), AddressSpace);
1671   }
1672 
1673   // Add type for inalloca argument.
1674   if (IRFunctionArgs.hasInallocaArg())
1675     ArgTypes[IRFunctionArgs.getInallocaArgNo()] =
1676         llvm::PointerType::getUnqual(getLLVMContext());
1677 
1678   // Add in all of the required arguments.
1679   unsigned ArgNo = 0;
1680   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1681                                      ie = it + FI.getNumRequiredArgs();
1682   for (; it != ie; ++it, ++ArgNo) {
1683     const ABIArgInfo &ArgInfo = it->info;
1684 
1685     // Insert a padding type to ensure proper alignment.
1686     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1687       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1688           ArgInfo.getPaddingType();
1689 
1690     unsigned FirstIRArg, NumIRArgs;
1691     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1692 
1693     switch (ArgInfo.getKind()) {
1694     case ABIArgInfo::Ignore:
1695     case ABIArgInfo::InAlloca:
1696       assert(NumIRArgs == 0);
1697       break;
1698 
1699     case ABIArgInfo::Indirect:
1700       assert(NumIRArgs == 1);
1701       // indirect arguments are always on the stack, which is alloca addr space.
1702       ArgTypes[FirstIRArg] = llvm::PointerType::get(
1703           getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
1704       break;
1705     case ABIArgInfo::IndirectAliased:
1706       assert(NumIRArgs == 1);
1707       ArgTypes[FirstIRArg] = llvm::PointerType::get(
1708           getLLVMContext(), ArgInfo.getIndirectAddrSpace());
1709       break;
1710     case ABIArgInfo::Extend:
1711     case ABIArgInfo::Direct: {
1712       // Fast-isel and the optimizer generally like scalar values better than
1713       // FCAs, so we flatten them if this is safe to do for this argument.
1714       llvm::Type *argType = ArgInfo.getCoerceToType();
1715       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1716       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1717         assert(NumIRArgs == st->getNumElements());
1718         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1719           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1720       } else {
1721         assert(NumIRArgs == 1);
1722         ArgTypes[FirstIRArg] = argType;
1723       }
1724       break;
1725     }
1726 
1727     case ABIArgInfo::CoerceAndExpand: {
1728       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1729       for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1730         *ArgTypesIter++ = EltTy;
1731       }
1732       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1733       break;
1734     }
1735 
1736     case ABIArgInfo::Expand:
1737       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1738       getExpandedTypes(it->type, ArgTypesIter);
1739       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1740       break;
1741     }
1742   }
1743 
1744   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1745   assert(Erased && "Not in set?");
1746 
1747   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1748 }
1749 
1750 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1751   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1752   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1753 
1754   if (!isFuncTypeConvertible(FPT))
1755     return llvm::StructType::get(getLLVMContext());
1756 
1757   return GetFunctionType(GD);
1758 }
1759 
1760 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1761                                                llvm::AttrBuilder &FuncAttrs,
1762                                                const FunctionProtoType *FPT) {
1763   if (!FPT)
1764     return;
1765 
1766   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1767       FPT->isNothrow())
1768     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1769 
1770   unsigned SMEBits = FPT->getAArch64SMEAttributes();
1771   if (SMEBits & FunctionType::SME_PStateSMEnabledMask)
1772     FuncAttrs.addAttribute("aarch64_pstate_sm_enabled");
1773   if (SMEBits & FunctionType::SME_PStateSMCompatibleMask)
1774     FuncAttrs.addAttribute("aarch64_pstate_sm_compatible");
1775 
1776   // ZA
1777   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out ||
1778       FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut)
1779     FuncAttrs.addAttribute("aarch64_pstate_za_shared");
1780   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves ||
1781       FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) {
1782     FuncAttrs.addAttribute("aarch64_pstate_za_shared");
1783     FuncAttrs.addAttribute("aarch64_pstate_za_preserved");
1784   }
1785 
1786   // ZT0
1787   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves)
1788     FuncAttrs.addAttribute("aarch64_preserves_zt0");
1789   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In)
1790     FuncAttrs.addAttribute("aarch64_in_zt0");
1791   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out)
1792     FuncAttrs.addAttribute("aarch64_out_zt0");
1793   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut)
1794     FuncAttrs.addAttribute("aarch64_inout_zt0");
1795 }
1796 
1797 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1798                                      const Decl *Callee) {
1799   if (!Callee)
1800     return;
1801 
1802   SmallVector<StringRef, 4> Attrs;
1803 
1804   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1805     AA->getAssumption().split(Attrs, ",");
1806 
1807   if (!Attrs.empty())
1808     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1809                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1810 }
1811 
1812 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1813                                           QualType ReturnType) const {
1814   // We can't just discard the return value for a record type with a
1815   // complex destructor or a non-trivially copyable type.
1816   if (const RecordType *RT =
1817           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1818     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1819       return ClassDecl->hasTrivialDestructor();
1820   }
1821   return ReturnType.isTriviallyCopyableType(Context);
1822 }
1823 
1824 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1825                             const Decl *TargetDecl) {
1826   // As-is msan can not tolerate noundef mismatch between caller and
1827   // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1828   // into C++. Such mismatches lead to confusing false reports. To avoid
1829   // expensive workaround on msan we enforce initialization event in uncommon
1830   // cases where it's allowed.
1831   if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
1832     return true;
1833   // C++ explicitly makes returning undefined values UB. C's rule only applies
1834   // to used values, so we never mark them noundef for now.
1835   if (!Module.getLangOpts().CPlusPlus)
1836     return false;
1837   if (TargetDecl) {
1838     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
1839       if (FDecl->isExternC())
1840         return false;
1841     } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
1842       // Function pointer.
1843       if (VDecl->isExternC())
1844         return false;
1845     }
1846   }
1847 
1848   // We don't want to be too aggressive with the return checking, unless
1849   // it's explicit in the code opts or we're using an appropriate sanitizer.
1850   // Try to respect what the programmer intended.
1851   return Module.getCodeGenOpts().StrictReturn ||
1852          !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
1853          Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
1854 }
1855 
1856 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1857 /// requested denormal behavior, accounting for the overriding behavior of the
1858 /// -f32 case.
1859 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,
1860                                  llvm::DenormalMode FP32DenormalMode,
1861                                  llvm::AttrBuilder &FuncAttrs) {
1862   if (FPDenormalMode != llvm::DenormalMode::getDefault())
1863     FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str());
1864 
1865   if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid())
1866     FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str());
1867 }
1868 
1869 /// Add default attributes to a function, which have merge semantics under
1870 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1871 /// attributes in the linked library.
1872 static void
1873 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts,
1874                                      llvm::AttrBuilder &FuncAttrs) {
1875   addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode,
1876                        FuncAttrs);
1877 }
1878 
1879 static void getTrivialDefaultFunctionAttributes(
1880     StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts,
1881     const LangOptions &LangOpts, bool AttrOnCallSite,
1882     llvm::AttrBuilder &FuncAttrs) {
1883   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1884   if (!HasOptnone) {
1885     if (CodeGenOpts.OptimizeSize)
1886       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1887     if (CodeGenOpts.OptimizeSize == 2)
1888       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1889   }
1890 
1891   if (CodeGenOpts.DisableRedZone)
1892     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1893   if (CodeGenOpts.IndirectTlsSegRefs)
1894     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1895   if (CodeGenOpts.NoImplicitFloat)
1896     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1897 
1898   if (AttrOnCallSite) {
1899     // Attributes that should go on the call site only.
1900     // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1901     // the -fno-builtin-foo list.
1902     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1903       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1904     if (!CodeGenOpts.TrapFuncName.empty())
1905       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1906   } else {
1907     switch (CodeGenOpts.getFramePointer()) {
1908     case CodeGenOptions::FramePointerKind::None:
1909       // This is the default behavior.
1910       break;
1911     case CodeGenOptions::FramePointerKind::NonLeaf:
1912     case CodeGenOptions::FramePointerKind::All:
1913       FuncAttrs.addAttribute("frame-pointer",
1914                              CodeGenOptions::getFramePointerKindName(
1915                                  CodeGenOpts.getFramePointer()));
1916     }
1917 
1918     if (CodeGenOpts.LessPreciseFPMAD)
1919       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1920 
1921     if (CodeGenOpts.NullPointerIsValid)
1922       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1923 
1924     if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1925       FuncAttrs.addAttribute("no-trapping-math", "true");
1926 
1927     // TODO: Are these all needed?
1928     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1929     if (LangOpts.NoHonorInfs)
1930       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1931     if (LangOpts.NoHonorNaNs)
1932       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1933     if (LangOpts.ApproxFunc)
1934       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1935     if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1936         LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1937         (LangOpts.getDefaultFPContractMode() ==
1938              LangOptions::FPModeKind::FPM_Fast ||
1939          LangOpts.getDefaultFPContractMode() ==
1940              LangOptions::FPModeKind::FPM_FastHonorPragmas))
1941       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1942     if (CodeGenOpts.SoftFloat)
1943       FuncAttrs.addAttribute("use-soft-float", "true");
1944     FuncAttrs.addAttribute("stack-protector-buffer-size",
1945                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1946     if (LangOpts.NoSignedZero)
1947       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1948 
1949     // TODO: Reciprocal estimate codegen options should apply to instructions?
1950     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1951     if (!Recips.empty())
1952       FuncAttrs.addAttribute("reciprocal-estimates",
1953                              llvm::join(Recips, ","));
1954 
1955     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1956         CodeGenOpts.PreferVectorWidth != "none")
1957       FuncAttrs.addAttribute("prefer-vector-width",
1958                              CodeGenOpts.PreferVectorWidth);
1959 
1960     if (CodeGenOpts.StackRealignment)
1961       FuncAttrs.addAttribute("stackrealign");
1962     if (CodeGenOpts.Backchain)
1963       FuncAttrs.addAttribute("backchain");
1964     if (CodeGenOpts.EnableSegmentedStacks)
1965       FuncAttrs.addAttribute("split-stack");
1966 
1967     if (CodeGenOpts.SpeculativeLoadHardening)
1968       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1969 
1970     // Add zero-call-used-regs attribute.
1971     switch (CodeGenOpts.getZeroCallUsedRegs()) {
1972     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1973       FuncAttrs.removeAttribute("zero-call-used-regs");
1974       break;
1975     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1976       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1977       break;
1978     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1979       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1980       break;
1981     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1982       FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1983       break;
1984     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1985       FuncAttrs.addAttribute("zero-call-used-regs", "used");
1986       break;
1987     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1988       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1989       break;
1990     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1991       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1992       break;
1993     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1994       FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1995       break;
1996     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1997       FuncAttrs.addAttribute("zero-call-used-regs", "all");
1998       break;
1999     }
2000   }
2001 
2002   if (LangOpts.assumeFunctionsAreConvergent()) {
2003     // Conservatively, mark all functions and calls in CUDA and OpenCL as
2004     // convergent (meaning, they may call an intrinsically convergent op, such
2005     // as __syncthreads() / barrier(), and so can't have certain optimizations
2006     // applied around them).  LLVM will remove this attribute where it safely
2007     // can.
2008     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2009   }
2010 
2011   // TODO: NoUnwind attribute should be added for other GPU modes HIP,
2012   // OpenMP offload. AFAIK, neither of them support exceptions in device code.
2013   if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL ||
2014       LangOpts.SYCLIsDevice) {
2015     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2016   }
2017 
2018   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
2019     StringRef Var, Value;
2020     std::tie(Var, Value) = Attr.split('=');
2021     FuncAttrs.addAttribute(Var, Value);
2022   }
2023 }
2024 
2025 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2026 /// \FuncAttr
2027 /// * features from \F are always kept
2028 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2029 /// from \F
2030 static void
2031 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr,
2032                                            const llvm::Function &F,
2033                                            const TargetOptions &TargetOpts) {
2034   auto FFeatures = F.getFnAttribute("target-features");
2035 
2036   llvm::StringSet<> MergedNames;
2037   SmallVector<StringRef> MergedFeatures;
2038   MergedFeatures.reserve(TargetOpts.Features.size());
2039 
2040   auto AddUnmergedFeatures = [&](auto &&FeatureRange) {
2041     for (StringRef Feature : FeatureRange) {
2042       if (Feature.empty())
2043         continue;
2044       assert(Feature[0] == '+' || Feature[0] == '-');
2045       StringRef Name = Feature.drop_front(1);
2046       bool Merged = !MergedNames.insert(Name).second;
2047       if (!Merged)
2048         MergedFeatures.push_back(Feature);
2049     }
2050   };
2051 
2052   if (FFeatures.isValid())
2053     AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ','));
2054   AddUnmergedFeatures(TargetOpts.Features);
2055 
2056   if (!MergedFeatures.empty()) {
2057     llvm::sort(MergedFeatures);
2058     FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ","));
2059   }
2060 }
2061 
2062 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2063     llvm::Function &F, const CodeGenOptions &CodeGenOpts,
2064     const LangOptions &LangOpts, const TargetOptions &TargetOpts,
2065     bool WillInternalize) {
2066 
2067   llvm::AttrBuilder FuncAttrs(F.getContext());
2068   // Here we only extract the options that are relevant compared to the version
2069   // from GetCPUAndFeaturesAttributes.
2070   if (!TargetOpts.CPU.empty())
2071     FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU);
2072   if (!TargetOpts.TuneCPU.empty())
2073     FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU);
2074 
2075   ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
2076                                         CodeGenOpts, LangOpts,
2077                                         /*AttrOnCallSite=*/false, FuncAttrs);
2078 
2079   if (!WillInternalize && F.isInterposable()) {
2080     // Do not promote "dynamic" denormal-fp-math to this translation unit's
2081     // setting for weak functions that won't be internalized. The user has no
2082     // real control for how builtin bitcode is linked, so we shouldn't assume
2083     // later copies will use a consistent mode.
2084     F.addFnAttrs(FuncAttrs);
2085     return;
2086   }
2087 
2088   llvm::AttributeMask AttrsToRemove;
2089 
2090   llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw();
2091   llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw();
2092   llvm::DenormalMode Merged =
2093       CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge);
2094   llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode;
2095 
2096   if (DenormModeToMergeF32.isValid()) {
2097     MergedF32 =
2098         CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32);
2099   }
2100 
2101   if (Merged == llvm::DenormalMode::getDefault()) {
2102     AttrsToRemove.addAttribute("denormal-fp-math");
2103   } else if (Merged != DenormModeToMerge) {
2104     // Overwrite existing attribute
2105     FuncAttrs.addAttribute("denormal-fp-math",
2106                            CodeGenOpts.FPDenormalMode.str());
2107   }
2108 
2109   if (MergedF32 == llvm::DenormalMode::getDefault()) {
2110     AttrsToRemove.addAttribute("denormal-fp-math-f32");
2111   } else if (MergedF32 != DenormModeToMergeF32) {
2112     // Overwrite existing attribute
2113     FuncAttrs.addAttribute("denormal-fp-math-f32",
2114                            CodeGenOpts.FP32DenormalMode.str());
2115   }
2116 
2117   F.removeFnAttrs(AttrsToRemove);
2118   addDenormalModeAttrs(Merged, MergedF32, FuncAttrs);
2119 
2120   overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts);
2121 
2122   F.addFnAttrs(FuncAttrs);
2123 }
2124 
2125 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2126     StringRef Name, bool HasOptnone, bool AttrOnCallSite,
2127     llvm::AttrBuilder &FuncAttrs) {
2128   ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(),
2129                                         getLangOpts(), AttrOnCallSite,
2130                                         FuncAttrs);
2131 }
2132 
2133 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
2134                                                  bool HasOptnone,
2135                                                  bool AttrOnCallSite,
2136                                                  llvm::AttrBuilder &FuncAttrs) {
2137   getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite,
2138                                       FuncAttrs);
2139   // If we're just getting the default, get the default values for mergeable
2140   // attributes.
2141   if (!AttrOnCallSite)
2142     addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs);
2143 }
2144 
2145 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2146     llvm::AttrBuilder &attrs) {
2147   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2148                                /*for call*/ false, attrs);
2149   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
2150 }
2151 
2152 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2153                                    const LangOptions &LangOpts,
2154                                    const NoBuiltinAttr *NBA = nullptr) {
2155   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2156     SmallString<32> AttributeName;
2157     AttributeName += "no-builtin-";
2158     AttributeName += BuiltinName;
2159     FuncAttrs.addAttribute(AttributeName);
2160   };
2161 
2162   // First, handle the language options passed through -fno-builtin.
2163   if (LangOpts.NoBuiltin) {
2164     // -fno-builtin disables them all.
2165     FuncAttrs.addAttribute("no-builtins");
2166     return;
2167   }
2168 
2169   // Then, add attributes for builtins specified through -fno-builtin-<name>.
2170   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
2171 
2172   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2173   // the source.
2174   if (!NBA)
2175     return;
2176 
2177   // If there is a wildcard in the builtin names specified through the
2178   // attribute, disable them all.
2179   if (llvm::is_contained(NBA->builtinNames(), "*")) {
2180     FuncAttrs.addAttribute("no-builtins");
2181     return;
2182   }
2183 
2184   // And last, add the rest of the builtin names.
2185   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
2186 }
2187 
2188 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2189                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
2190                              bool CheckCoerce = true) {
2191   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2192   if (AI.getKind() == ABIArgInfo::Indirect ||
2193       AI.getKind() == ABIArgInfo::IndirectAliased)
2194     return true;
2195   if (AI.getKind() == ABIArgInfo::Extend)
2196     return true;
2197   if (!DL.typeSizeEqualsStoreSize(Ty))
2198     // TODO: This will result in a modest amount of values not marked noundef
2199     // when they could be. We care about values that *invisibly* contain undef
2200     // bits from the perspective of LLVM IR.
2201     return false;
2202   if (CheckCoerce && AI.canHaveCoerceToType()) {
2203     llvm::Type *CoerceTy = AI.getCoerceToType();
2204     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2205                                   DL.getTypeSizeInBits(Ty)))
2206       // If we're coercing to a type with a greater size than the canonical one,
2207       // we're introducing new undef bits.
2208       // Coercing to a type of smaller or equal size is ok, as we know that
2209       // there's no internal padding (typeSizeEqualsStoreSize).
2210       return false;
2211   }
2212   if (QTy->isBitIntType())
2213     return true;
2214   if (QTy->isReferenceType())
2215     return true;
2216   if (QTy->isNullPtrType())
2217     return false;
2218   if (QTy->isMemberPointerType())
2219     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2220     // now, never mark them.
2221     return false;
2222   if (QTy->isScalarType()) {
2223     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2224       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2225     return true;
2226   }
2227   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2228     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2229   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2230     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2231   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2232     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2233 
2234   // TODO: Some structs may be `noundef`, in specific situations.
2235   return false;
2236 }
2237 
2238 /// Check if the argument of a function has maybe_undef attribute.
2239 static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2240                                  unsigned NumRequiredArgs, unsigned ArgNo) {
2241   const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
2242   if (!FD)
2243     return false;
2244 
2245   // Assume variadic arguments do not have maybe_undef attribute.
2246   if (ArgNo >= NumRequiredArgs)
2247     return false;
2248 
2249   // Check if argument has maybe_undef attribute.
2250   if (ArgNo < FD->getNumParams()) {
2251     const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
2252     if (Param && Param->hasAttr<MaybeUndefAttr>())
2253       return true;
2254   }
2255 
2256   return false;
2257 }
2258 
2259 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2260 /// lowered IR type.
2261 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType,
2262                               bool IsReturn) {
2263   // Should only apply to FP types in the source, not ABI promoted.
2264   if (!ParamType->hasFloatingRepresentation())
2265     return false;
2266 
2267   // The promoted-to IR type also needs to support nofpclass.
2268   llvm::Type *IRTy = AI.getCoerceToType();
2269   if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy))
2270     return true;
2271 
2272   if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) {
2273     return !IsReturn && AI.getCanBeFlattened() &&
2274            llvm::all_of(ST->elements(), [](llvm::Type *Ty) {
2275              return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty);
2276            });
2277   }
2278 
2279   return false;
2280 }
2281 
2282 /// Return the nofpclass mask that can be applied to floating-point parameters.
2283 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) {
2284   llvm::FPClassTest Mask = llvm::fcNone;
2285   if (LangOpts.NoHonorInfs)
2286     Mask |= llvm::fcInf;
2287   if (LangOpts.NoHonorNaNs)
2288     Mask |= llvm::fcNan;
2289   return Mask;
2290 }
2291 
2292 void CodeGenModule::AdjustMemoryAttribute(StringRef Name,
2293                                           CGCalleeInfo CalleeInfo,
2294                                           llvm::AttributeList &Attrs) {
2295   if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) {
2296     Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory);
2297     llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects(
2298         getLLVMContext(), llvm::MemoryEffects::writeOnly());
2299     Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr);
2300   }
2301 }
2302 
2303 /// Construct the IR attribute list of a function or call.
2304 ///
2305 /// When adding an attribute, please consider where it should be handled:
2306 ///
2307 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2308 ///     part of the global target configuration (but perhaps can be
2309 ///     overridden on a per-function basis).  Adding attributes there
2310 ///     will cause them to also be set in frontends that build on Clang's
2311 ///     target-configuration logic, as well as for code defined in library
2312 ///     modules such as CUDA's libdevice.
2313 ///
2314 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2315 ///     and adds declaration-specific, convention-specific, and
2316 ///     frontend-specific logic.  The last is of particular importance:
2317 ///     attributes that restrict how the frontend generates code must be
2318 ///     added here rather than getDefaultFunctionAttributes.
2319 ///
2320 void CodeGenModule::ConstructAttributeList(StringRef Name,
2321                                            const CGFunctionInfo &FI,
2322                                            CGCalleeInfo CalleeInfo,
2323                                            llvm::AttributeList &AttrList,
2324                                            unsigned &CallingConv,
2325                                            bool AttrOnCallSite, bool IsThunk) {
2326   llvm::AttrBuilder FuncAttrs(getLLVMContext());
2327   llvm::AttrBuilder RetAttrs(getLLVMContext());
2328 
2329   // Collect function IR attributes from the CC lowering.
2330   // We'll collect the paramete and result attributes later.
2331   CallingConv = FI.getEffectiveCallingConvention();
2332   if (FI.isNoReturn())
2333     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2334   if (FI.isCmseNSCall())
2335     FuncAttrs.addAttribute("cmse_nonsecure_call");
2336 
2337   // Collect function IR attributes from the callee prototype if we have one.
2338   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2339                                      CalleeInfo.getCalleeFunctionProtoType());
2340 
2341   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2342 
2343   // Attach assumption attributes to the declaration. If this is a call
2344   // site, attach assumptions from the caller to the call as well.
2345   AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2346 
2347   bool HasOptnone = false;
2348   // The NoBuiltinAttr attached to the target FunctionDecl.
2349   const NoBuiltinAttr *NBA = nullptr;
2350 
2351   // Some ABIs may result in additional accesses to arguments that may
2352   // otherwise not be present.
2353   auto AddPotentialArgAccess = [&]() {
2354     llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
2355     if (A.isValid())
2356       FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
2357                               llvm::MemoryEffects::argMemOnly());
2358   };
2359 
2360   // Collect function IR attributes based on declaration-specific
2361   // information.
2362   // FIXME: handle sseregparm someday...
2363   if (TargetDecl) {
2364     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2365       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2366     if (TargetDecl->hasAttr<NoThrowAttr>())
2367       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2368     if (TargetDecl->hasAttr<NoReturnAttr>())
2369       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2370     if (TargetDecl->hasAttr<ColdAttr>())
2371       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2372     if (TargetDecl->hasAttr<HotAttr>())
2373       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2374     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2375       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2376     if (TargetDecl->hasAttr<ConvergentAttr>())
2377       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2378 
2379     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2380       AddAttributesFromFunctionProtoType(
2381           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2382       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2383         // A sane operator new returns a non-aliasing pointer.
2384         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2385         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2386             (Kind == OO_New || Kind == OO_Array_New))
2387           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2388       }
2389       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2390       const bool IsVirtualCall = MD && MD->isVirtual();
2391       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2392       // virtual function. These attributes are not inherited by overloads.
2393       if (!(AttrOnCallSite && IsVirtualCall)) {
2394         if (Fn->isNoReturn())
2395           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2396         NBA = Fn->getAttr<NoBuiltinAttr>();
2397       }
2398     }
2399 
2400     if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) {
2401       // Only place nomerge attribute on call sites, never functions. This
2402       // allows it to work on indirect virtual function calls.
2403       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2404         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2405     }
2406 
2407     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2408     if (TargetDecl->hasAttr<ConstAttr>()) {
2409       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
2410       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2411       // gcc specifies that 'const' functions have greater restrictions than
2412       // 'pure' functions, so they also cannot have infinite loops.
2413       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2414     } else if (TargetDecl->hasAttr<PureAttr>()) {
2415       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
2416       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2417       // gcc specifies that 'pure' functions cannot have infinite loops.
2418       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2419     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2420       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2421       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2422     }
2423     if (TargetDecl->hasAttr<RestrictAttr>())
2424       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2425     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2426         !CodeGenOpts.NullPointerIsValid)
2427       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2428     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2429       FuncAttrs.addAttribute("no_caller_saved_registers");
2430     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2431       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2432     if (TargetDecl->hasAttr<LeafAttr>())
2433       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2434 
2435     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2436     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2437       std::optional<unsigned> NumElemsParam;
2438       if (AllocSize->getNumElemsParam().isValid())
2439         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2440       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2441                                  NumElemsParam);
2442     }
2443 
2444     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2445       if (getLangOpts().OpenCLVersion <= 120) {
2446         // OpenCL v1.2 Work groups are always uniform
2447         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2448       } else {
2449         // OpenCL v2.0 Work groups may be whether uniform or not.
2450         // '-cl-uniform-work-group-size' compile option gets a hint
2451         // to the compiler that the global work-size be a multiple of
2452         // the work-group size specified to clEnqueueNDRangeKernel
2453         // (i.e. work groups are uniform).
2454         FuncAttrs.addAttribute(
2455             "uniform-work-group-size",
2456             llvm::toStringRef(getLangOpts().OffloadUniformBlock));
2457       }
2458     }
2459 
2460     if (TargetDecl->hasAttr<CUDAGlobalAttr>() &&
2461         getLangOpts().OffloadUniformBlock)
2462       FuncAttrs.addAttribute("uniform-work-group-size", "true");
2463 
2464     if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>())
2465       FuncAttrs.addAttribute("aarch64_pstate_sm_body");
2466   }
2467 
2468   // Attach "no-builtins" attributes to:
2469   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2470   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2471   // The attributes can come from:
2472   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2473   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2474   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2475 
2476   // Collect function IR attributes based on global settiings.
2477   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2478 
2479   // Override some default IR attributes based on declaration-specific
2480   // information.
2481   if (TargetDecl) {
2482     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2483       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2484     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2485       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2486     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2487       FuncAttrs.removeAttribute("split-stack");
2488     if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2489       // A function "__attribute__((...))" overrides the command-line flag.
2490       auto Kind =
2491           TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2492       FuncAttrs.removeAttribute("zero-call-used-regs");
2493       FuncAttrs.addAttribute(
2494           "zero-call-used-regs",
2495           ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2496     }
2497 
2498     // Add NonLazyBind attribute to function declarations when -fno-plt
2499     // is used.
2500     // FIXME: what if we just haven't processed the function definition
2501     // yet, or if it's an external definition like C99 inline?
2502     if (CodeGenOpts.NoPLT) {
2503       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2504         if (!Fn->isDefined() && !AttrOnCallSite) {
2505           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2506         }
2507       }
2508     }
2509   }
2510 
2511   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2512   // functions with -funique-internal-linkage-names.
2513   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2514     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2515       if (!FD->isExternallyVisible())
2516         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2517                                "selected");
2518     }
2519   }
2520 
2521   // Collect non-call-site function IR attributes from declaration-specific
2522   // information.
2523   if (!AttrOnCallSite) {
2524     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2525       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2526 
2527     // Whether tail calls are enabled.
2528     auto shouldDisableTailCalls = [&] {
2529       // Should this be honored in getDefaultFunctionAttributes?
2530       if (CodeGenOpts.DisableTailCalls)
2531         return true;
2532 
2533       if (!TargetDecl)
2534         return false;
2535 
2536       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2537           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2538         return true;
2539 
2540       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2541         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2542           if (!BD->doesNotEscape())
2543             return true;
2544       }
2545 
2546       return false;
2547     };
2548     if (shouldDisableTailCalls())
2549       FuncAttrs.addAttribute("disable-tail-calls", "true");
2550 
2551     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2552     // handles these separately to set them based on the global defaults.
2553     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2554   }
2555 
2556   // Collect attributes from arguments and return values.
2557   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2558 
2559   QualType RetTy = FI.getReturnType();
2560   const ABIArgInfo &RetAI = FI.getReturnInfo();
2561   const llvm::DataLayout &DL = getDataLayout();
2562 
2563   // Determine if the return type could be partially undef
2564   if (CodeGenOpts.EnableNoundefAttrs &&
2565       HasStrictReturn(*this, RetTy, TargetDecl)) {
2566     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2567         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2568       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2569   }
2570 
2571   switch (RetAI.getKind()) {
2572   case ABIArgInfo::Extend:
2573     if (RetAI.isSignExt())
2574       RetAttrs.addAttribute(llvm::Attribute::SExt);
2575     else
2576       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2577     [[fallthrough]];
2578   case ABIArgInfo::Direct:
2579     if (RetAI.getInReg())
2580       RetAttrs.addAttribute(llvm::Attribute::InReg);
2581 
2582     if (canApplyNoFPClass(RetAI, RetTy, true))
2583       RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2584 
2585     break;
2586   case ABIArgInfo::Ignore:
2587     break;
2588 
2589   case ABIArgInfo::InAlloca:
2590   case ABIArgInfo::Indirect: {
2591     // inalloca and sret disable readnone and readonly
2592     AddPotentialArgAccess();
2593     break;
2594   }
2595 
2596   case ABIArgInfo::CoerceAndExpand:
2597     break;
2598 
2599   case ABIArgInfo::Expand:
2600   case ABIArgInfo::IndirectAliased:
2601     llvm_unreachable("Invalid ABI kind for return argument");
2602   }
2603 
2604   if (!IsThunk) {
2605     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2606     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2607       QualType PTy = RefTy->getPointeeType();
2608       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2609         RetAttrs.addDereferenceableAttr(
2610             getMinimumObjectSize(PTy).getQuantity());
2611       if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2612           !CodeGenOpts.NullPointerIsValid)
2613         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2614       if (PTy->isObjectType()) {
2615         llvm::Align Alignment =
2616             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2617         RetAttrs.addAlignmentAttr(Alignment);
2618       }
2619     }
2620   }
2621 
2622   bool hasUsedSRet = false;
2623   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2624 
2625   // Attach attributes to sret.
2626   if (IRFunctionArgs.hasSRetArg()) {
2627     llvm::AttrBuilder SRETAttrs(getLLVMContext());
2628     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2629     SRETAttrs.addAttribute(llvm::Attribute::Writable);
2630     SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind);
2631     hasUsedSRet = true;
2632     if (RetAI.getInReg())
2633       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2634     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2635     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2636         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2637   }
2638 
2639   // Attach attributes to inalloca argument.
2640   if (IRFunctionArgs.hasInallocaArg()) {
2641     llvm::AttrBuilder Attrs(getLLVMContext());
2642     Attrs.addInAllocaAttr(FI.getArgStruct());
2643     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2644         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2645   }
2646 
2647   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2648   // unless this is a thunk function.
2649   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2650   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2651       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2652     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2653 
2654     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2655 
2656     llvm::AttrBuilder Attrs(getLLVMContext());
2657 
2658     QualType ThisTy =
2659         FI.arg_begin()->type.getTypePtr()->getPointeeType();
2660 
2661     if (!CodeGenOpts.NullPointerIsValid &&
2662         getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2663       Attrs.addAttribute(llvm::Attribute::NonNull);
2664       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2665     } else {
2666       // FIXME dereferenceable should be correct here, regardless of
2667       // NullPointerIsValid. However, dereferenceable currently does not always
2668       // respect NullPointerIsValid and may imply nonnull and break the program.
2669       // See https://reviews.llvm.org/D66618 for discussions.
2670       Attrs.addDereferenceableOrNullAttr(
2671           getMinimumObjectSize(
2672               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2673               .getQuantity());
2674     }
2675 
2676     llvm::Align Alignment =
2677         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2678                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2679             .getAsAlign();
2680     Attrs.addAlignmentAttr(Alignment);
2681 
2682     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2683   }
2684 
2685   unsigned ArgNo = 0;
2686   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2687                                           E = FI.arg_end();
2688        I != E; ++I, ++ArgNo) {
2689     QualType ParamType = I->type;
2690     const ABIArgInfo &AI = I->info;
2691     llvm::AttrBuilder Attrs(getLLVMContext());
2692 
2693     // Add attribute for padding argument, if necessary.
2694     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2695       if (AI.getPaddingInReg()) {
2696         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2697             llvm::AttributeSet::get(
2698                 getLLVMContext(),
2699                 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2700       }
2701     }
2702 
2703     // Decide whether the argument we're handling could be partially undef
2704     if (CodeGenOpts.EnableNoundefAttrs &&
2705         DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2706       Attrs.addAttribute(llvm::Attribute::NoUndef);
2707     }
2708 
2709     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2710     // have the corresponding parameter variable.  It doesn't make
2711     // sense to do it here because parameters are so messed up.
2712     switch (AI.getKind()) {
2713     case ABIArgInfo::Extend:
2714       if (AI.isSignExt())
2715         Attrs.addAttribute(llvm::Attribute::SExt);
2716       else
2717         Attrs.addAttribute(llvm::Attribute::ZExt);
2718       [[fallthrough]];
2719     case ABIArgInfo::Direct:
2720       if (ArgNo == 0 && FI.isChainCall())
2721         Attrs.addAttribute(llvm::Attribute::Nest);
2722       else if (AI.getInReg())
2723         Attrs.addAttribute(llvm::Attribute::InReg);
2724       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2725 
2726       if (canApplyNoFPClass(AI, ParamType, false))
2727         Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2728       break;
2729     case ABIArgInfo::Indirect: {
2730       if (AI.getInReg())
2731         Attrs.addAttribute(llvm::Attribute::InReg);
2732 
2733       if (AI.getIndirectByVal())
2734         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2735 
2736       auto *Decl = ParamType->getAsRecordDecl();
2737       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2738           Decl->getArgPassingRestrictions() ==
2739               RecordArgPassingKind::CanPassInRegs)
2740         // When calling the function, the pointer passed in will be the only
2741         // reference to the underlying object. Mark it accordingly.
2742         Attrs.addAttribute(llvm::Attribute::NoAlias);
2743 
2744       // TODO: We could add the byref attribute if not byval, but it would
2745       // require updating many testcases.
2746 
2747       CharUnits Align = AI.getIndirectAlign();
2748 
2749       // In a byval argument, it is important that the required
2750       // alignment of the type is honored, as LLVM might be creating a
2751       // *new* stack object, and needs to know what alignment to give
2752       // it. (Sometimes it can deduce a sensible alignment on its own,
2753       // but not if clang decides it must emit a packed struct, or the
2754       // user specifies increased alignment requirements.)
2755       //
2756       // This is different from indirect *not* byval, where the object
2757       // exists already, and the align attribute is purely
2758       // informative.
2759       assert(!Align.isZero());
2760 
2761       // For now, only add this when we have a byval argument.
2762       // TODO: be less lazy about updating test cases.
2763       if (AI.getIndirectByVal())
2764         Attrs.addAlignmentAttr(Align.getQuantity());
2765 
2766       // byval disables readnone and readonly.
2767       AddPotentialArgAccess();
2768       break;
2769     }
2770     case ABIArgInfo::IndirectAliased: {
2771       CharUnits Align = AI.getIndirectAlign();
2772       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2773       Attrs.addAlignmentAttr(Align.getQuantity());
2774       break;
2775     }
2776     case ABIArgInfo::Ignore:
2777     case ABIArgInfo::Expand:
2778     case ABIArgInfo::CoerceAndExpand:
2779       break;
2780 
2781     case ABIArgInfo::InAlloca:
2782       // inalloca disables readnone and readonly.
2783       AddPotentialArgAccess();
2784       continue;
2785     }
2786 
2787     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2788       QualType PTy = RefTy->getPointeeType();
2789       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2790         Attrs.addDereferenceableAttr(
2791             getMinimumObjectSize(PTy).getQuantity());
2792       if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2793           !CodeGenOpts.NullPointerIsValid)
2794         Attrs.addAttribute(llvm::Attribute::NonNull);
2795       if (PTy->isObjectType()) {
2796         llvm::Align Alignment =
2797             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2798         Attrs.addAlignmentAttr(Alignment);
2799       }
2800     }
2801 
2802     // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2803     // > For arguments to a __kernel function declared to be a pointer to a
2804     // > data type, the OpenCL compiler can assume that the pointee is always
2805     // > appropriately aligned as required by the data type.
2806     if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2807         ParamType->isPointerType()) {
2808       QualType PTy = ParamType->getPointeeType();
2809       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2810         llvm::Align Alignment =
2811             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2812         Attrs.addAlignmentAttr(Alignment);
2813       }
2814     }
2815 
2816     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2817     case ParameterABI::Ordinary:
2818       break;
2819 
2820     case ParameterABI::SwiftIndirectResult: {
2821       // Add 'sret' if we haven't already used it for something, but
2822       // only if the result is void.
2823       if (!hasUsedSRet && RetTy->isVoidType()) {
2824         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2825         hasUsedSRet = true;
2826       }
2827 
2828       // Add 'noalias' in either case.
2829       Attrs.addAttribute(llvm::Attribute::NoAlias);
2830 
2831       // Add 'dereferenceable' and 'alignment'.
2832       auto PTy = ParamType->getPointeeType();
2833       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2834         auto info = getContext().getTypeInfoInChars(PTy);
2835         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2836         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2837       }
2838       break;
2839     }
2840 
2841     case ParameterABI::SwiftErrorResult:
2842       Attrs.addAttribute(llvm::Attribute::SwiftError);
2843       break;
2844 
2845     case ParameterABI::SwiftContext:
2846       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2847       break;
2848 
2849     case ParameterABI::SwiftAsyncContext:
2850       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2851       break;
2852     }
2853 
2854     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2855       Attrs.addAttribute(llvm::Attribute::NoCapture);
2856 
2857     if (Attrs.hasAttributes()) {
2858       unsigned FirstIRArg, NumIRArgs;
2859       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2860       for (unsigned i = 0; i < NumIRArgs; i++)
2861         ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2862             getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2863     }
2864   }
2865   assert(ArgNo == FI.arg_size());
2866 
2867   AttrList = llvm::AttributeList::get(
2868       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2869       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2870 }
2871 
2872 /// An argument came in as a promoted argument; demote it back to its
2873 /// declared type.
2874 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2875                                          const VarDecl *var,
2876                                          llvm::Value *value) {
2877   llvm::Type *varType = CGF.ConvertType(var->getType());
2878 
2879   // This can happen with promotions that actually don't change the
2880   // underlying type, like the enum promotions.
2881   if (value->getType() == varType) return value;
2882 
2883   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2884          && "unexpected promotion type");
2885 
2886   if (isa<llvm::IntegerType>(varType))
2887     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2888 
2889   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2890 }
2891 
2892 /// Returns the attribute (either parameter attribute, or function
2893 /// attribute), which declares argument ArgNo to be non-null.
2894 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2895                                          QualType ArgType, unsigned ArgNo) {
2896   // FIXME: __attribute__((nonnull)) can also be applied to:
2897   //   - references to pointers, where the pointee is known to be
2898   //     nonnull (apparently a Clang extension)
2899   //   - transparent unions containing pointers
2900   // In the former case, LLVM IR cannot represent the constraint. In
2901   // the latter case, we have no guarantee that the transparent union
2902   // is in fact passed as a pointer.
2903   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2904     return nullptr;
2905   // First, check attribute on parameter itself.
2906   if (PVD) {
2907     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2908       return ParmNNAttr;
2909   }
2910   // Check function attributes.
2911   if (!FD)
2912     return nullptr;
2913   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2914     if (NNAttr->isNonNull(ArgNo))
2915       return NNAttr;
2916   }
2917   return nullptr;
2918 }
2919 
2920 namespace {
2921   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2922     Address Temp;
2923     Address Arg;
2924     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2925     void Emit(CodeGenFunction &CGF, Flags flags) override {
2926       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2927       CGF.Builder.CreateStore(errorValue, Arg);
2928     }
2929   };
2930 }
2931 
2932 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2933                                          llvm::Function *Fn,
2934                                          const FunctionArgList &Args) {
2935   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2936     // Naked functions don't have prologues.
2937     return;
2938 
2939   // If this is an implicit-return-zero function, go ahead and
2940   // initialize the return value.  TODO: it might be nice to have
2941   // a more general mechanism for this that didn't require synthesized
2942   // return statements.
2943   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2944     if (FD->hasImplicitReturnZero()) {
2945       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2946       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2947       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2948       Builder.CreateStore(Zero, ReturnValue);
2949     }
2950   }
2951 
2952   // FIXME: We no longer need the types from FunctionArgList; lift up and
2953   // simplify.
2954 
2955   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2956   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2957 
2958   // If we're using inalloca, all the memory arguments are GEPs off of the last
2959   // parameter, which is a pointer to the complete memory area.
2960   Address ArgStruct = Address::invalid();
2961   if (IRFunctionArgs.hasInallocaArg())
2962     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2963                         FI.getArgStruct(), FI.getArgStructAlignment());
2964 
2965   // Name the struct return parameter.
2966   if (IRFunctionArgs.hasSRetArg()) {
2967     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2968     AI->setName("agg.result");
2969     AI->addAttr(llvm::Attribute::NoAlias);
2970   }
2971 
2972   // Track if we received the parameter as a pointer (indirect, byval, or
2973   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2974   // into a local alloca for us.
2975   SmallVector<ParamValue, 16> ArgVals;
2976   ArgVals.reserve(Args.size());
2977 
2978   // Create a pointer value for every parameter declaration.  This usually
2979   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2980   // any cleanups or do anything that might unwind.  We do that separately, so
2981   // we can push the cleanups in the correct order for the ABI.
2982   assert(FI.arg_size() == Args.size() &&
2983          "Mismatch between function signature & arguments.");
2984   unsigned ArgNo = 0;
2985   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2986   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2987        i != e; ++i, ++info_it, ++ArgNo) {
2988     const VarDecl *Arg = *i;
2989     const ABIArgInfo &ArgI = info_it->info;
2990 
2991     bool isPromoted =
2992       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2993     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2994     // the parameter is promoted. In this case we convert to
2995     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2996     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2997     assert(hasScalarEvaluationKind(Ty) ==
2998            hasScalarEvaluationKind(Arg->getType()));
2999 
3000     unsigned FirstIRArg, NumIRArgs;
3001     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3002 
3003     switch (ArgI.getKind()) {
3004     case ABIArgInfo::InAlloca: {
3005       assert(NumIRArgs == 0);
3006       auto FieldIndex = ArgI.getInAllocaFieldIndex();
3007       Address V =
3008           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
3009       if (ArgI.getInAllocaIndirect())
3010         V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
3011                     getContext().getTypeAlignInChars(Ty));
3012       ArgVals.push_back(ParamValue::forIndirect(V));
3013       break;
3014     }
3015 
3016     case ABIArgInfo::Indirect:
3017     case ABIArgInfo::IndirectAliased: {
3018       assert(NumIRArgs == 1);
3019       Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
3020                                   ArgI.getIndirectAlign(), KnownNonNull);
3021 
3022       if (!hasScalarEvaluationKind(Ty)) {
3023         // Aggregates and complex variables are accessed by reference. All we
3024         // need to do is realign the value, if requested. Also, if the address
3025         // may be aliased, copy it to ensure that the parameter variable is
3026         // mutable and has a unique adress, as C requires.
3027         Address V = ParamAddr;
3028         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
3029           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
3030 
3031           // Copy from the incoming argument pointer to the temporary with the
3032           // appropriate alignment.
3033           //
3034           // FIXME: We should have a common utility for generating an aggregate
3035           // copy.
3036           CharUnits Size = getContext().getTypeSizeInChars(Ty);
3037           Builder.CreateMemCpy(
3038               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
3039               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
3040               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
3041           V = AlignedTemp;
3042         }
3043         ArgVals.push_back(ParamValue::forIndirect(V));
3044       } else {
3045         // Load scalar value from indirect argument.
3046         llvm::Value *V =
3047             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
3048 
3049         if (isPromoted)
3050           V = emitArgumentDemotion(*this, Arg, V);
3051         ArgVals.push_back(ParamValue::forDirect(V));
3052       }
3053       break;
3054     }
3055 
3056     case ABIArgInfo::Extend:
3057     case ABIArgInfo::Direct: {
3058       auto AI = Fn->getArg(FirstIRArg);
3059       llvm::Type *LTy = ConvertType(Arg->getType());
3060 
3061       // Prepare parameter attributes. So far, only attributes for pointer
3062       // parameters are prepared. See
3063       // http://llvm.org/docs/LangRef.html#paramattrs.
3064       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
3065           ArgI.getCoerceToType()->isPointerTy()) {
3066         assert(NumIRArgs == 1);
3067 
3068         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
3069           // Set `nonnull` attribute if any.
3070           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
3071                              PVD->getFunctionScopeIndex()) &&
3072               !CGM.getCodeGenOpts().NullPointerIsValid)
3073             AI->addAttr(llvm::Attribute::NonNull);
3074 
3075           QualType OTy = PVD->getOriginalType();
3076           if (const auto *ArrTy =
3077               getContext().getAsConstantArrayType(OTy)) {
3078             // A C99 array parameter declaration with the static keyword also
3079             // indicates dereferenceability, and if the size is constant we can
3080             // use the dereferenceable attribute (which requires the size in
3081             // bytes).
3082             if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3083               QualType ETy = ArrTy->getElementType();
3084               llvm::Align Alignment =
3085                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3086               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3087               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
3088               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
3089                   ArrSize) {
3090                 llvm::AttrBuilder Attrs(getLLVMContext());
3091                 Attrs.addDereferenceableAttr(
3092                     getContext().getTypeSizeInChars(ETy).getQuantity() *
3093                     ArrSize);
3094                 AI->addAttrs(Attrs);
3095               } else if (getContext().getTargetInfo().getNullPointerValue(
3096                              ETy.getAddressSpace()) == 0 &&
3097                          !CGM.getCodeGenOpts().NullPointerIsValid) {
3098                 AI->addAttr(llvm::Attribute::NonNull);
3099               }
3100             }
3101           } else if (const auto *ArrTy =
3102                      getContext().getAsVariableArrayType(OTy)) {
3103             // For C99 VLAs with the static keyword, we don't know the size so
3104             // we can't use the dereferenceable attribute, but in addrspace(0)
3105             // we know that it must be nonnull.
3106             if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3107               QualType ETy = ArrTy->getElementType();
3108               llvm::Align Alignment =
3109                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3110               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3111               if (!getTypes().getTargetAddressSpace(ETy) &&
3112                   !CGM.getCodeGenOpts().NullPointerIsValid)
3113                 AI->addAttr(llvm::Attribute::NonNull);
3114             }
3115           }
3116 
3117           // Set `align` attribute if any.
3118           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
3119           if (!AVAttr)
3120             if (const auto *TOTy = OTy->getAs<TypedefType>())
3121               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
3122           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
3123             // If alignment-assumption sanitizer is enabled, we do *not* add
3124             // alignment attribute here, but emit normal alignment assumption,
3125             // so the UBSAN check could function.
3126             llvm::ConstantInt *AlignmentCI =
3127                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
3128             uint64_t AlignmentInt =
3129                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
3130             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
3131               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
3132               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3133                   llvm::Align(AlignmentInt)));
3134             }
3135           }
3136         }
3137 
3138         // Set 'noalias' if an argument type has the `restrict` qualifier.
3139         if (Arg->getType().isRestrictQualified())
3140           AI->addAttr(llvm::Attribute::NoAlias);
3141       }
3142 
3143       // Prepare the argument value. If we have the trivial case, handle it
3144       // with no muss and fuss.
3145       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
3146           ArgI.getCoerceToType() == ConvertType(Ty) &&
3147           ArgI.getDirectOffset() == 0) {
3148         assert(NumIRArgs == 1);
3149 
3150         // LLVM expects swifterror parameters to be used in very restricted
3151         // ways.  Copy the value into a less-restricted temporary.
3152         llvm::Value *V = AI;
3153         if (FI.getExtParameterInfo(ArgNo).getABI()
3154               == ParameterABI::SwiftErrorResult) {
3155           QualType pointeeTy = Ty->getPointeeType();
3156           assert(pointeeTy->isPointerType());
3157           Address temp =
3158             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3159           Address arg(V, ConvertTypeForMem(pointeeTy),
3160                       getContext().getTypeAlignInChars(pointeeTy));
3161           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
3162           Builder.CreateStore(incomingErrorValue, temp);
3163           V = temp.getPointer();
3164 
3165           // Push a cleanup to copy the value back at the end of the function.
3166           // The convention does not guarantee that the value will be written
3167           // back if the function exits with an unwind exception.
3168           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
3169         }
3170 
3171         // Ensure the argument is the correct type.
3172         if (V->getType() != ArgI.getCoerceToType())
3173           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
3174 
3175         if (isPromoted)
3176           V = emitArgumentDemotion(*this, Arg, V);
3177 
3178         // Because of merging of function types from multiple decls it is
3179         // possible for the type of an argument to not match the corresponding
3180         // type in the function type. Since we are codegening the callee
3181         // in here, add a cast to the argument type.
3182         llvm::Type *LTy = ConvertType(Arg->getType());
3183         if (V->getType() != LTy)
3184           V = Builder.CreateBitCast(V, LTy);
3185 
3186         ArgVals.push_back(ParamValue::forDirect(V));
3187         break;
3188       }
3189 
3190       // VLST arguments are coerced to VLATs at the function boundary for
3191       // ABI consistency. If this is a VLST that was coerced to
3192       // a VLAT at the function boundary and the types match up, use
3193       // llvm.vector.extract to convert back to the original VLST.
3194       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
3195         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
3196         if (auto *VecTyFrom =
3197                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
3198           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
3199           // vector, bitcast the source and use a vector extract.
3200           auto PredType =
3201               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
3202           if (VecTyFrom == PredType &&
3203               VecTyTo->getElementType() == Builder.getInt8Ty()) {
3204             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
3205             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
3206           }
3207           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3208             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
3209 
3210             assert(NumIRArgs == 1);
3211             Coerced->setName(Arg->getName() + ".coerce");
3212             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
3213                 VecTyTo, Coerced, Zero, "cast.fixed")));
3214             break;
3215           }
3216         }
3217       }
3218 
3219       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
3220                                      Arg->getName());
3221 
3222       // Pointer to store into.
3223       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
3224 
3225       // Fast-isel and the optimizer generally like scalar values better than
3226       // FCAs, so we flatten them if this is safe to do for this argument.
3227       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
3228       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3229           STy->getNumElements() > 1) {
3230         llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy);
3231         llvm::TypeSize PtrElementSize =
3232             CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType());
3233         if (StructSize.isScalable()) {
3234           assert(STy->containsHomogeneousScalableVectorTypes() &&
3235                  "ABI only supports structure with homogeneous scalable vector "
3236                  "type");
3237           assert(StructSize == PtrElementSize &&
3238                  "Only allow non-fractional movement of structure with"
3239                  "homogeneous scalable vector type");
3240           assert(STy->getNumElements() == NumIRArgs);
3241 
3242           llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy);
3243           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3244             auto *AI = Fn->getArg(FirstIRArg + i);
3245             AI->setName(Arg->getName() + ".coerce" + Twine(i));
3246             LoadedStructValue =
3247                 Builder.CreateInsertValue(LoadedStructValue, AI, i);
3248           }
3249 
3250           Builder.CreateStore(LoadedStructValue, Ptr);
3251         } else {
3252           uint64_t SrcSize = StructSize.getFixedValue();
3253           uint64_t DstSize = PtrElementSize.getFixedValue();
3254 
3255           Address AddrToStoreInto = Address::invalid();
3256           if (SrcSize <= DstSize) {
3257             AddrToStoreInto = Ptr.withElementType(STy);
3258           } else {
3259             AddrToStoreInto =
3260                 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
3261           }
3262 
3263           assert(STy->getNumElements() == NumIRArgs);
3264           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3265             auto AI = Fn->getArg(FirstIRArg + i);
3266             AI->setName(Arg->getName() + ".coerce" + Twine(i));
3267             Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
3268             Builder.CreateStore(AI, EltPtr);
3269           }
3270 
3271           if (SrcSize > DstSize) {
3272             Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
3273           }
3274         }
3275       } else {
3276         // Simple case, just do a coerced store of the argument into the alloca.
3277         assert(NumIRArgs == 1);
3278         auto AI = Fn->getArg(FirstIRArg);
3279         AI->setName(Arg->getName() + ".coerce");
3280         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
3281       }
3282 
3283       // Match to what EmitParmDecl is expecting for this type.
3284       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3285         llvm::Value *V =
3286             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3287         if (isPromoted)
3288           V = emitArgumentDemotion(*this, Arg, V);
3289         ArgVals.push_back(ParamValue::forDirect(V));
3290       } else {
3291         ArgVals.push_back(ParamValue::forIndirect(Alloca));
3292       }
3293       break;
3294     }
3295 
3296     case ABIArgInfo::CoerceAndExpand: {
3297       // Reconstruct into a temporary.
3298       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3299       ArgVals.push_back(ParamValue::forIndirect(alloca));
3300 
3301       auto coercionType = ArgI.getCoerceAndExpandType();
3302       alloca = alloca.withElementType(coercionType);
3303 
3304       unsigned argIndex = FirstIRArg;
3305       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3306         llvm::Type *eltType = coercionType->getElementType(i);
3307         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3308           continue;
3309 
3310         auto eltAddr = Builder.CreateStructGEP(alloca, i);
3311         auto elt = Fn->getArg(argIndex++);
3312         Builder.CreateStore(elt, eltAddr);
3313       }
3314       assert(argIndex == FirstIRArg + NumIRArgs);
3315       break;
3316     }
3317 
3318     case ABIArgInfo::Expand: {
3319       // If this structure was expanded into multiple arguments then
3320       // we need to create a temporary and reconstruct it from the
3321       // arguments.
3322       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3323       LValue LV = MakeAddrLValue(Alloca, Ty);
3324       ArgVals.push_back(ParamValue::forIndirect(Alloca));
3325 
3326       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3327       ExpandTypeFromArgs(Ty, LV, FnArgIter);
3328       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3329       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3330         auto AI = Fn->getArg(FirstIRArg + i);
3331         AI->setName(Arg->getName() + "." + Twine(i));
3332       }
3333       break;
3334     }
3335 
3336     case ABIArgInfo::Ignore:
3337       assert(NumIRArgs == 0);
3338       // Initialize the local variable appropriately.
3339       if (!hasScalarEvaluationKind(Ty)) {
3340         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3341       } else {
3342         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3343         ArgVals.push_back(ParamValue::forDirect(U));
3344       }
3345       break;
3346     }
3347   }
3348 
3349   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3350     for (int I = Args.size() - 1; I >= 0; --I)
3351       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3352   } else {
3353     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3354       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3355   }
3356 }
3357 
3358 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3359   while (insn->use_empty()) {
3360     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3361     if (!bitcast) return;
3362 
3363     // This is "safe" because we would have used a ConstantExpr otherwise.
3364     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3365     bitcast->eraseFromParent();
3366   }
3367 }
3368 
3369 /// Try to emit a fused autorelease of a return result.
3370 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3371                                                     llvm::Value *result) {
3372   // We must be immediately followed the cast.
3373   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3374   if (BB->empty()) return nullptr;
3375   if (&BB->back() != result) return nullptr;
3376 
3377   llvm::Type *resultType = result->getType();
3378 
3379   // result is in a BasicBlock and is therefore an Instruction.
3380   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3381 
3382   SmallVector<llvm::Instruction *, 4> InstsToKill;
3383 
3384   // Look for:
3385   //  %generator = bitcast %type1* %generator2 to %type2*
3386   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3387     // We would have emitted this as a constant if the operand weren't
3388     // an Instruction.
3389     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3390 
3391     // Require the generator to be immediately followed by the cast.
3392     if (generator->getNextNode() != bitcast)
3393       return nullptr;
3394 
3395     InstsToKill.push_back(bitcast);
3396   }
3397 
3398   // Look for:
3399   //   %generator = call i8* @objc_retain(i8* %originalResult)
3400   // or
3401   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3402   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3403   if (!call) return nullptr;
3404 
3405   bool doRetainAutorelease;
3406 
3407   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3408     doRetainAutorelease = true;
3409   } else if (call->getCalledOperand() ==
3410              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3411     doRetainAutorelease = false;
3412 
3413     // If we emitted an assembly marker for this call (and the
3414     // ARCEntrypoints field should have been set if so), go looking
3415     // for that call.  If we can't find it, we can't do this
3416     // optimization.  But it should always be the immediately previous
3417     // instruction, unless we needed bitcasts around the call.
3418     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3419       llvm::Instruction *prev = call->getPrevNode();
3420       assert(prev);
3421       if (isa<llvm::BitCastInst>(prev)) {
3422         prev = prev->getPrevNode();
3423         assert(prev);
3424       }
3425       assert(isa<llvm::CallInst>(prev));
3426       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3427              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3428       InstsToKill.push_back(prev);
3429     }
3430   } else {
3431     return nullptr;
3432   }
3433 
3434   result = call->getArgOperand(0);
3435   InstsToKill.push_back(call);
3436 
3437   // Keep killing bitcasts, for sanity.  Note that we no longer care
3438   // about precise ordering as long as there's exactly one use.
3439   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3440     if (!bitcast->hasOneUse()) break;
3441     InstsToKill.push_back(bitcast);
3442     result = bitcast->getOperand(0);
3443   }
3444 
3445   // Delete all the unnecessary instructions, from latest to earliest.
3446   for (auto *I : InstsToKill)
3447     I->eraseFromParent();
3448 
3449   // Do the fused retain/autorelease if we were asked to.
3450   if (doRetainAutorelease)
3451     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3452 
3453   // Cast back to the result type.
3454   return CGF.Builder.CreateBitCast(result, resultType);
3455 }
3456 
3457 /// If this is a +1 of the value of an immutable 'self', remove it.
3458 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3459                                           llvm::Value *result) {
3460   // This is only applicable to a method with an immutable 'self'.
3461   const ObjCMethodDecl *method =
3462     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3463   if (!method) return nullptr;
3464   const VarDecl *self = method->getSelfDecl();
3465   if (!self->getType().isConstQualified()) return nullptr;
3466 
3467   // Look for a retain call. Note: stripPointerCasts looks through returned arg
3468   // functions, which would cause us to miss the retain.
3469   llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result);
3470   if (!retainCall || retainCall->getCalledOperand() !=
3471                          CGF.CGM.getObjCEntrypoints().objc_retain)
3472     return nullptr;
3473 
3474   // Look for an ordinary load of 'self'.
3475   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3476   llvm::LoadInst *load =
3477     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3478   if (!load || load->isAtomic() || load->isVolatile() ||
3479       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3480     return nullptr;
3481 
3482   // Okay!  Burn it all down.  This relies for correctness on the
3483   // assumption that the retain is emitted as part of the return and
3484   // that thereafter everything is used "linearly".
3485   llvm::Type *resultType = result->getType();
3486   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3487   assert(retainCall->use_empty());
3488   retainCall->eraseFromParent();
3489   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3490 
3491   return CGF.Builder.CreateBitCast(load, resultType);
3492 }
3493 
3494 /// Emit an ARC autorelease of the result of a function.
3495 ///
3496 /// \return the value to actually return from the function
3497 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3498                                             llvm::Value *result) {
3499   // If we're returning 'self', kill the initial retain.  This is a
3500   // heuristic attempt to "encourage correctness" in the really unfortunate
3501   // case where we have a return of self during a dealloc and we desperately
3502   // need to avoid the possible autorelease.
3503   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3504     return self;
3505 
3506   // At -O0, try to emit a fused retain/autorelease.
3507   if (CGF.shouldUseFusedARCCalls())
3508     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3509       return fused;
3510 
3511   return CGF.EmitARCAutoreleaseReturnValue(result);
3512 }
3513 
3514 /// Heuristically search for a dominating store to the return-value slot.
3515 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3516   // Check if a User is a store which pointerOperand is the ReturnValue.
3517   // We are looking for stores to the ReturnValue, not for stores of the
3518   // ReturnValue to some other location.
3519   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3520     auto *SI = dyn_cast<llvm::StoreInst>(U);
3521     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
3522         SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3523       return nullptr;
3524     // These aren't actually possible for non-coerced returns, and we
3525     // only care about non-coerced returns on this code path.
3526     // All memory instructions inside __try block are volatile.
3527     assert(!SI->isAtomic() &&
3528            (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry()));
3529     return SI;
3530   };
3531   // If there are multiple uses of the return-value slot, just check
3532   // for something immediately preceding the IP.  Sometimes this can
3533   // happen with how we generate implicit-returns; it can also happen
3534   // with noreturn cleanups.
3535   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3536     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3537     if (IP->empty()) return nullptr;
3538 
3539     // Look at directly preceding instruction, skipping bitcasts and lifetime
3540     // markers.
3541     for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3542       if (isa<llvm::BitCastInst>(&I))
3543         continue;
3544       if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3545         if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3546           continue;
3547 
3548       return GetStoreIfValid(&I);
3549     }
3550     return nullptr;
3551   }
3552 
3553   llvm::StoreInst *store =
3554       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3555   if (!store) return nullptr;
3556 
3557   // Now do a first-and-dirty dominance check: just walk up the
3558   // single-predecessors chain from the current insertion point.
3559   llvm::BasicBlock *StoreBB = store->getParent();
3560   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3561   llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs;
3562   while (IP != StoreBB) {
3563     if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor()))
3564       return nullptr;
3565   }
3566 
3567   // Okay, the store's basic block dominates the insertion point; we
3568   // can do our thing.
3569   return store;
3570 }
3571 
3572 // Helper functions for EmitCMSEClearRecord
3573 
3574 // Set the bits corresponding to a field having width `BitWidth` and located at
3575 // offset `BitOffset` (from the least significant bit) within a storage unit of
3576 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3577 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3578 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3579                         int BitWidth, int CharWidth) {
3580   assert(CharWidth <= 64);
3581   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3582 
3583   int Pos = 0;
3584   if (BitOffset >= CharWidth) {
3585     Pos += BitOffset / CharWidth;
3586     BitOffset = BitOffset % CharWidth;
3587   }
3588 
3589   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3590   if (BitOffset + BitWidth >= CharWidth) {
3591     Bits[Pos++] |= (Used << BitOffset) & Used;
3592     BitWidth -= CharWidth - BitOffset;
3593     BitOffset = 0;
3594   }
3595 
3596   while (BitWidth >= CharWidth) {
3597     Bits[Pos++] = Used;
3598     BitWidth -= CharWidth;
3599   }
3600 
3601   if (BitWidth > 0)
3602     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3603 }
3604 
3605 // Set the bits corresponding to a field having width `BitWidth` and located at
3606 // offset `BitOffset` (from the least significant bit) within a storage unit of
3607 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3608 // `Bits` corresponds to one target byte. Use target endian layout.
3609 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3610                         int StorageSize, int BitOffset, int BitWidth,
3611                         int CharWidth, bool BigEndian) {
3612 
3613   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3614   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3615 
3616   if (BigEndian)
3617     std::reverse(TmpBits.begin(), TmpBits.end());
3618 
3619   for (uint64_t V : TmpBits)
3620     Bits[StorageOffset++] |= V;
3621 }
3622 
3623 static void setUsedBits(CodeGenModule &, QualType, int,
3624                         SmallVectorImpl<uint64_t> &);
3625 
3626 // Set the bits in `Bits`, which correspond to the value representations of
3627 // the actual members of the record type `RTy`. Note that this function does
3628 // not handle base classes, virtual tables, etc, since they cannot happen in
3629 // CMSE function arguments or return. The bit mask corresponds to the target
3630 // memory layout, i.e. it's endian dependent.
3631 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3632                         SmallVectorImpl<uint64_t> &Bits) {
3633   ASTContext &Context = CGM.getContext();
3634   int CharWidth = Context.getCharWidth();
3635   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3636   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3637   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3638 
3639   int Idx = 0;
3640   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3641     const FieldDecl *F = *I;
3642 
3643     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3644         F->getType()->isIncompleteArrayType())
3645       continue;
3646 
3647     if (F->isBitField()) {
3648       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3649       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3650                   BFI.StorageSize / CharWidth, BFI.Offset,
3651                   BFI.Size, CharWidth,
3652                   CGM.getDataLayout().isBigEndian());
3653       continue;
3654     }
3655 
3656     setUsedBits(CGM, F->getType(),
3657                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3658   }
3659 }
3660 
3661 // Set the bits in `Bits`, which correspond to the value representations of
3662 // the elements of an array type `ATy`.
3663 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3664                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3665   const ASTContext &Context = CGM.getContext();
3666 
3667   QualType ETy = Context.getBaseElementType(ATy);
3668   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3669   SmallVector<uint64_t, 4> TmpBits(Size);
3670   setUsedBits(CGM, ETy, 0, TmpBits);
3671 
3672   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3673     auto Src = TmpBits.begin();
3674     auto Dst = Bits.begin() + Offset + I * Size;
3675     for (int J = 0; J < Size; ++J)
3676       *Dst++ |= *Src++;
3677   }
3678 }
3679 
3680 // Set the bits in `Bits`, which correspond to the value representations of
3681 // the type `QTy`.
3682 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3683                         SmallVectorImpl<uint64_t> &Bits) {
3684   if (const auto *RTy = QTy->getAs<RecordType>())
3685     return setUsedBits(CGM, RTy, Offset, Bits);
3686 
3687   ASTContext &Context = CGM.getContext();
3688   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3689     return setUsedBits(CGM, ATy, Offset, Bits);
3690 
3691   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3692   if (Size <= 0)
3693     return;
3694 
3695   std::fill_n(Bits.begin() + Offset, Size,
3696               (uint64_t(1) << Context.getCharWidth()) - 1);
3697 }
3698 
3699 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3700                                    int Pos, int Size, int CharWidth,
3701                                    bool BigEndian) {
3702   assert(Size > 0);
3703   uint64_t Mask = 0;
3704   if (BigEndian) {
3705     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3706          ++P)
3707       Mask = (Mask << CharWidth) | *P;
3708   } else {
3709     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3710     do
3711       Mask = (Mask << CharWidth) | *--P;
3712     while (P != End);
3713   }
3714   return Mask;
3715 }
3716 
3717 // Emit code to clear the bits in a record, which aren't a part of any user
3718 // declared member, when the record is a function return.
3719 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3720                                                   llvm::IntegerType *ITy,
3721                                                   QualType QTy) {
3722   assert(Src->getType() == ITy);
3723   assert(ITy->getScalarSizeInBits() <= 64);
3724 
3725   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3726   int Size = DataLayout.getTypeStoreSize(ITy);
3727   SmallVector<uint64_t, 4> Bits(Size);
3728   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3729 
3730   int CharWidth = CGM.getContext().getCharWidth();
3731   uint64_t Mask =
3732       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3733 
3734   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3735 }
3736 
3737 // Emit code to clear the bits in a record, which aren't a part of any user
3738 // declared member, when the record is a function argument.
3739 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3740                                                   llvm::ArrayType *ATy,
3741                                                   QualType QTy) {
3742   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3743   int Size = DataLayout.getTypeStoreSize(ATy);
3744   SmallVector<uint64_t, 16> Bits(Size);
3745   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3746 
3747   // Clear each element of the LLVM array.
3748   int CharWidth = CGM.getContext().getCharWidth();
3749   int CharsPerElt =
3750       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3751   int MaskIndex = 0;
3752   llvm::Value *R = llvm::PoisonValue::get(ATy);
3753   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3754     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3755                                        DataLayout.isBigEndian());
3756     MaskIndex += CharsPerElt;
3757     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3758     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3759     R = Builder.CreateInsertValue(R, T1, I);
3760   }
3761 
3762   return R;
3763 }
3764 
3765 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3766                                          bool EmitRetDbgLoc,
3767                                          SourceLocation EndLoc) {
3768   if (FI.isNoReturn()) {
3769     // Noreturn functions don't return.
3770     EmitUnreachable(EndLoc);
3771     return;
3772   }
3773 
3774   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3775     // Naked functions don't have epilogues.
3776     Builder.CreateUnreachable();
3777     return;
3778   }
3779 
3780   // Functions with no result always return void.
3781   if (!ReturnValue.isValid()) {
3782     Builder.CreateRetVoid();
3783     return;
3784   }
3785 
3786   llvm::DebugLoc RetDbgLoc;
3787   llvm::Value *RV = nullptr;
3788   QualType RetTy = FI.getReturnType();
3789   const ABIArgInfo &RetAI = FI.getReturnInfo();
3790 
3791   switch (RetAI.getKind()) {
3792   case ABIArgInfo::InAlloca:
3793     // Aggregates get evaluated directly into the destination.  Sometimes we
3794     // need to return the sret value in a register, though.
3795     assert(hasAggregateEvaluationKind(RetTy));
3796     if (RetAI.getInAllocaSRet()) {
3797       llvm::Function::arg_iterator EI = CurFn->arg_end();
3798       --EI;
3799       llvm::Value *ArgStruct = &*EI;
3800       llvm::Value *SRet = Builder.CreateStructGEP(
3801           FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3802       llvm::Type *Ty =
3803           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3804       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3805     }
3806     break;
3807 
3808   case ABIArgInfo::Indirect: {
3809     auto AI = CurFn->arg_begin();
3810     if (RetAI.isSRetAfterThis())
3811       ++AI;
3812     switch (getEvaluationKind(RetTy)) {
3813     case TEK_Complex: {
3814       ComplexPairTy RT =
3815         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3816       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3817                          /*isInit*/ true);
3818       break;
3819     }
3820     case TEK_Aggregate:
3821       // Do nothing; aggregates get evaluated directly into the destination.
3822       break;
3823     case TEK_Scalar: {
3824       LValueBaseInfo BaseInfo;
3825       TBAAAccessInfo TBAAInfo;
3826       CharUnits Alignment =
3827           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3828       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3829       LValue ArgVal =
3830           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3831       EmitStoreOfScalar(
3832           Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3833       break;
3834     }
3835     }
3836     break;
3837   }
3838 
3839   case ABIArgInfo::Extend:
3840   case ABIArgInfo::Direct:
3841     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3842         RetAI.getDirectOffset() == 0) {
3843       // The internal return value temp always will have pointer-to-return-type
3844       // type, just do a load.
3845 
3846       // If there is a dominating store to ReturnValue, we can elide
3847       // the load, zap the store, and usually zap the alloca.
3848       if (llvm::StoreInst *SI =
3849               findDominatingStoreToReturnValue(*this)) {
3850         // Reuse the debug location from the store unless there is
3851         // cleanup code to be emitted between the store and return
3852         // instruction.
3853         if (EmitRetDbgLoc && !AutoreleaseResult)
3854           RetDbgLoc = SI->getDebugLoc();
3855         // Get the stored value and nuke the now-dead store.
3856         RV = SI->getValueOperand();
3857         SI->eraseFromParent();
3858 
3859       // Otherwise, we have to do a simple load.
3860       } else {
3861         RV = Builder.CreateLoad(ReturnValue);
3862       }
3863     } else {
3864       // If the value is offset in memory, apply the offset now.
3865       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3866 
3867       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3868     }
3869 
3870     // In ARC, end functions that return a retainable type with a call
3871     // to objc_autoreleaseReturnValue.
3872     if (AutoreleaseResult) {
3873 #ifndef NDEBUG
3874       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3875       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3876       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3877       // CurCodeDecl or BlockInfo.
3878       QualType RT;
3879 
3880       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3881         RT = FD->getReturnType();
3882       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3883         RT = MD->getReturnType();
3884       else if (isa<BlockDecl>(CurCodeDecl))
3885         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3886       else
3887         llvm_unreachable("Unexpected function/method type");
3888 
3889       assert(getLangOpts().ObjCAutoRefCount &&
3890              !FI.isReturnsRetained() &&
3891              RT->isObjCRetainableType());
3892 #endif
3893       RV = emitAutoreleaseOfResult(*this, RV);
3894     }
3895 
3896     break;
3897 
3898   case ABIArgInfo::Ignore:
3899     break;
3900 
3901   case ABIArgInfo::CoerceAndExpand: {
3902     auto coercionType = RetAI.getCoerceAndExpandType();
3903 
3904     // Load all of the coerced elements out into results.
3905     llvm::SmallVector<llvm::Value*, 4> results;
3906     Address addr = ReturnValue.withElementType(coercionType);
3907     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3908       auto coercedEltType = coercionType->getElementType(i);
3909       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3910         continue;
3911 
3912       auto eltAddr = Builder.CreateStructGEP(addr, i);
3913       auto elt = Builder.CreateLoad(eltAddr);
3914       results.push_back(elt);
3915     }
3916 
3917     // If we have one result, it's the single direct result type.
3918     if (results.size() == 1) {
3919       RV = results[0];
3920 
3921     // Otherwise, we need to make a first-class aggregate.
3922     } else {
3923       // Construct a return type that lacks padding elements.
3924       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3925 
3926       RV = llvm::PoisonValue::get(returnType);
3927       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3928         RV = Builder.CreateInsertValue(RV, results[i], i);
3929       }
3930     }
3931     break;
3932   }
3933   case ABIArgInfo::Expand:
3934   case ABIArgInfo::IndirectAliased:
3935     llvm_unreachable("Invalid ABI kind for return argument");
3936   }
3937 
3938   llvm::Instruction *Ret;
3939   if (RV) {
3940     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3941       // For certain return types, clear padding bits, as they may reveal
3942       // sensitive information.
3943       // Small struct/union types are passed as integers.
3944       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3945       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3946         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3947     }
3948     EmitReturnValueCheck(RV);
3949     Ret = Builder.CreateRet(RV);
3950   } else {
3951     Ret = Builder.CreateRetVoid();
3952   }
3953 
3954   if (RetDbgLoc)
3955     Ret->setDebugLoc(std::move(RetDbgLoc));
3956 }
3957 
3958 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3959   // A current decl may not be available when emitting vtable thunks.
3960   if (!CurCodeDecl)
3961     return;
3962 
3963   // If the return block isn't reachable, neither is this check, so don't emit
3964   // it.
3965   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3966     return;
3967 
3968   ReturnsNonNullAttr *RetNNAttr = nullptr;
3969   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3970     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3971 
3972   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3973     return;
3974 
3975   // Prefer the returns_nonnull attribute if it's present.
3976   SourceLocation AttrLoc;
3977   SanitizerMask CheckKind;
3978   SanitizerHandler Handler;
3979   if (RetNNAttr) {
3980     assert(!requiresReturnValueNullabilityCheck() &&
3981            "Cannot check nullability and the nonnull attribute");
3982     AttrLoc = RetNNAttr->getLocation();
3983     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3984     Handler = SanitizerHandler::NonnullReturn;
3985   } else {
3986     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3987       if (auto *TSI = DD->getTypeSourceInfo())
3988         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3989           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3990     CheckKind = SanitizerKind::NullabilityReturn;
3991     Handler = SanitizerHandler::NullabilityReturn;
3992   }
3993 
3994   SanitizerScope SanScope(this);
3995 
3996   // Make sure the "return" source location is valid. If we're checking a
3997   // nullability annotation, make sure the preconditions for the check are met.
3998   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3999   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
4000   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
4001   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
4002   if (requiresReturnValueNullabilityCheck())
4003     CanNullCheck =
4004         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
4005   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
4006   EmitBlock(Check);
4007 
4008   // Now do the null check.
4009   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
4010   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
4011   llvm::Value *DynamicData[] = {SLocPtr};
4012   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
4013 
4014   EmitBlock(NoCheck);
4015 
4016 #ifndef NDEBUG
4017   // The return location should not be used after the check has been emitted.
4018   ReturnLocation = Address::invalid();
4019 #endif
4020 }
4021 
4022 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
4023   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
4024   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
4025 }
4026 
4027 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
4028                                           QualType Ty) {
4029   // FIXME: Generate IR in one pass, rather than going back and fixing up these
4030   // placeholders.
4031   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
4032   llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
4033   llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy);
4034 
4035   // FIXME: When we generate this IR in one pass, we shouldn't need
4036   // this win32-specific alignment hack.
4037   CharUnits Align = CharUnits::fromQuantity(4);
4038   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
4039 
4040   return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
4041                                Ty.getQualifiers(),
4042                                AggValueSlot::IsNotDestructed,
4043                                AggValueSlot::DoesNotNeedGCBarriers,
4044                                AggValueSlot::IsNotAliased,
4045                                AggValueSlot::DoesNotOverlap);
4046 }
4047 
4048 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
4049                                           const VarDecl *param,
4050                                           SourceLocation loc) {
4051   // StartFunction converted the ABI-lowered parameter(s) into a
4052   // local alloca.  We need to turn that into an r-value suitable
4053   // for EmitCall.
4054   Address local = GetAddrOfLocalVar(param);
4055 
4056   QualType type = param->getType();
4057 
4058   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4059   // but the argument needs to be the original pointer.
4060   if (type->isReferenceType()) {
4061     args.add(RValue::get(Builder.CreateLoad(local)), type);
4062 
4063   // In ARC, move out of consumed arguments so that the release cleanup
4064   // entered by StartFunction doesn't cause an over-release.  This isn't
4065   // optimal -O0 code generation, but it should get cleaned up when
4066   // optimization is enabled.  This also assumes that delegate calls are
4067   // performed exactly once for a set of arguments, but that should be safe.
4068   } else if (getLangOpts().ObjCAutoRefCount &&
4069              param->hasAttr<NSConsumedAttr>() &&
4070              type->isObjCRetainableType()) {
4071     llvm::Value *ptr = Builder.CreateLoad(local);
4072     auto null =
4073       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
4074     Builder.CreateStore(null, local);
4075     args.add(RValue::get(ptr), type);
4076 
4077   // For the most part, we just need to load the alloca, except that
4078   // aggregate r-values are actually pointers to temporaries.
4079   } else {
4080     args.add(convertTempToRValue(local, type, loc), type);
4081   }
4082 
4083   // Deactivate the cleanup for the callee-destructed param that was pushed.
4084   if (type->isRecordType() && !CurFuncIsThunk &&
4085       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
4086       param->needsDestruction(getContext())) {
4087     EHScopeStack::stable_iterator cleanup =
4088         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
4089     assert(cleanup.isValid() &&
4090            "cleanup for callee-destructed param not recorded");
4091     // This unreachable is a temporary marker which will be removed later.
4092     llvm::Instruction *isActive = Builder.CreateUnreachable();
4093     args.addArgCleanupDeactivation(cleanup, isActive);
4094   }
4095 }
4096 
4097 static bool isProvablyNull(llvm::Value *addr) {
4098   return isa<llvm::ConstantPointerNull>(addr);
4099 }
4100 
4101 /// Emit the actual writing-back of a writeback.
4102 static void emitWriteback(CodeGenFunction &CGF,
4103                           const CallArgList::Writeback &writeback) {
4104   const LValue &srcLV = writeback.Source;
4105   Address srcAddr = srcLV.getAddress(CGF);
4106   assert(!isProvablyNull(srcAddr.getPointer()) &&
4107          "shouldn't have writeback for provably null argument");
4108 
4109   llvm::BasicBlock *contBB = nullptr;
4110 
4111   // If the argument wasn't provably non-null, we need to null check
4112   // before doing the store.
4113   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4114                                               CGF.CGM.getDataLayout());
4115   if (!provablyNonNull) {
4116     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
4117     contBB = CGF.createBasicBlock("icr.done");
4118 
4119     llvm::Value *isNull =
4120       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4121     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
4122     CGF.EmitBlock(writebackBB);
4123   }
4124 
4125   // Load the value to writeback.
4126   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
4127 
4128   // Cast it back, in case we're writing an id to a Foo* or something.
4129   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
4130                                     "icr.writeback-cast");
4131 
4132   // Perform the writeback.
4133 
4134   // If we have a "to use" value, it's something we need to emit a use
4135   // of.  This has to be carefully threaded in: if it's done after the
4136   // release it's potentially undefined behavior (and the optimizer
4137   // will ignore it), and if it happens before the retain then the
4138   // optimizer could move the release there.
4139   if (writeback.ToUse) {
4140     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
4141 
4142     // Retain the new value.  No need to block-copy here:  the block's
4143     // being passed up the stack.
4144     value = CGF.EmitARCRetainNonBlock(value);
4145 
4146     // Emit the intrinsic use here.
4147     CGF.EmitARCIntrinsicUse(writeback.ToUse);
4148 
4149     // Load the old value (primitively).
4150     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
4151 
4152     // Put the new value in place (primitively).
4153     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
4154 
4155     // Release the old value.
4156     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
4157 
4158   // Otherwise, we can just do a normal lvalue store.
4159   } else {
4160     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
4161   }
4162 
4163   // Jump to the continuation block.
4164   if (!provablyNonNull)
4165     CGF.EmitBlock(contBB);
4166 }
4167 
4168 static void emitWritebacks(CodeGenFunction &CGF,
4169                            const CallArgList &args) {
4170   for (const auto &I : args.writebacks())
4171     emitWriteback(CGF, I);
4172 }
4173 
4174 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
4175                                             const CallArgList &CallArgs) {
4176   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
4177     CallArgs.getCleanupsToDeactivate();
4178   // Iterate in reverse to increase the likelihood of popping the cleanup.
4179   for (const auto &I : llvm::reverse(Cleanups)) {
4180     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
4181     I.IsActiveIP->eraseFromParent();
4182   }
4183 }
4184 
4185 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
4186   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
4187     if (uop->getOpcode() == UO_AddrOf)
4188       return uop->getSubExpr();
4189   return nullptr;
4190 }
4191 
4192 /// Emit an argument that's being passed call-by-writeback.  That is,
4193 /// we are passing the address of an __autoreleased temporary; it
4194 /// might be copy-initialized with the current value of the given
4195 /// address, but it will definitely be copied out of after the call.
4196 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
4197                              const ObjCIndirectCopyRestoreExpr *CRE) {
4198   LValue srcLV;
4199 
4200   // Make an optimistic effort to emit the address as an l-value.
4201   // This can fail if the argument expression is more complicated.
4202   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
4203     srcLV = CGF.EmitLValue(lvExpr);
4204 
4205   // Otherwise, just emit it as a scalar.
4206   } else {
4207     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
4208 
4209     QualType srcAddrType =
4210       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
4211     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
4212   }
4213   Address srcAddr = srcLV.getAddress(CGF);
4214 
4215   // The dest and src types don't necessarily match in LLVM terms
4216   // because of the crazy ObjC compatibility rules.
4217 
4218   llvm::PointerType *destType =
4219       cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
4220   llvm::Type *destElemType =
4221       CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
4222 
4223   // If the address is a constant null, just pass the appropriate null.
4224   if (isProvablyNull(srcAddr.getPointer())) {
4225     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
4226              CRE->getType());
4227     return;
4228   }
4229 
4230   // Create the temporary.
4231   Address temp =
4232       CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
4233   // Loading an l-value can introduce a cleanup if the l-value is __weak,
4234   // and that cleanup will be conditional if we can't prove that the l-value
4235   // isn't null, so we need to register a dominating point so that the cleanups
4236   // system will make valid IR.
4237   CodeGenFunction::ConditionalEvaluation condEval(CGF);
4238 
4239   // Zero-initialize it if we're not doing a copy-initialization.
4240   bool shouldCopy = CRE->shouldCopy();
4241   if (!shouldCopy) {
4242     llvm::Value *null =
4243         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
4244     CGF.Builder.CreateStore(null, temp);
4245   }
4246 
4247   llvm::BasicBlock *contBB = nullptr;
4248   llvm::BasicBlock *originBB = nullptr;
4249 
4250   // If the address is *not* known to be non-null, we need to switch.
4251   llvm::Value *finalArgument;
4252 
4253   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4254                                               CGF.CGM.getDataLayout());
4255   if (provablyNonNull) {
4256     finalArgument = temp.getPointer();
4257   } else {
4258     llvm::Value *isNull =
4259       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4260 
4261     finalArgument = CGF.Builder.CreateSelect(isNull,
4262                                    llvm::ConstantPointerNull::get(destType),
4263                                              temp.getPointer(), "icr.argument");
4264 
4265     // If we need to copy, then the load has to be conditional, which
4266     // means we need control flow.
4267     if (shouldCopy) {
4268       originBB = CGF.Builder.GetInsertBlock();
4269       contBB = CGF.createBasicBlock("icr.cont");
4270       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
4271       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
4272       CGF.EmitBlock(copyBB);
4273       condEval.begin(CGF);
4274     }
4275   }
4276 
4277   llvm::Value *valueToUse = nullptr;
4278 
4279   // Perform a copy if necessary.
4280   if (shouldCopy) {
4281     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4282     assert(srcRV.isScalar());
4283 
4284     llvm::Value *src = srcRV.getScalarVal();
4285     src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4286 
4287     // Use an ordinary store, not a store-to-lvalue.
4288     CGF.Builder.CreateStore(src, temp);
4289 
4290     // If optimization is enabled, and the value was held in a
4291     // __strong variable, we need to tell the optimizer that this
4292     // value has to stay alive until we're doing the store back.
4293     // This is because the temporary is effectively unretained,
4294     // and so otherwise we can violate the high-level semantics.
4295     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4296         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4297       valueToUse = src;
4298     }
4299   }
4300 
4301   // Finish the control flow if we needed it.
4302   if (shouldCopy && !provablyNonNull) {
4303     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4304     CGF.EmitBlock(contBB);
4305 
4306     // Make a phi for the value to intrinsically use.
4307     if (valueToUse) {
4308       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4309                                                       "icr.to-use");
4310       phiToUse->addIncoming(valueToUse, copyBB);
4311       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4312                             originBB);
4313       valueToUse = phiToUse;
4314     }
4315 
4316     condEval.end(CGF);
4317   }
4318 
4319   args.addWriteback(srcLV, temp, valueToUse);
4320   args.add(RValue::get(finalArgument), CRE->getType());
4321 }
4322 
4323 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4324   assert(!StackBase);
4325 
4326   // Save the stack.
4327   StackBase = CGF.Builder.CreateStackSave("inalloca.save");
4328 }
4329 
4330 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4331   if (StackBase) {
4332     // Restore the stack after the call.
4333     CGF.Builder.CreateStackRestore(StackBase);
4334   }
4335 }
4336 
4337 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4338                                           SourceLocation ArgLoc,
4339                                           AbstractCallee AC,
4340                                           unsigned ParmNum) {
4341   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4342                          SanOpts.has(SanitizerKind::NullabilityArg)))
4343     return;
4344 
4345   // The param decl may be missing in a variadic function.
4346   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4347   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4348 
4349   // Prefer the nonnull attribute if it's present.
4350   const NonNullAttr *NNAttr = nullptr;
4351   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4352     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4353 
4354   bool CanCheckNullability = false;
4355   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4356     auto Nullability = PVD->getType()->getNullability();
4357     CanCheckNullability = Nullability &&
4358                           *Nullability == NullabilityKind::NonNull &&
4359                           PVD->getTypeSourceInfo();
4360   }
4361 
4362   if (!NNAttr && !CanCheckNullability)
4363     return;
4364 
4365   SourceLocation AttrLoc;
4366   SanitizerMask CheckKind;
4367   SanitizerHandler Handler;
4368   if (NNAttr) {
4369     AttrLoc = NNAttr->getLocation();
4370     CheckKind = SanitizerKind::NonnullAttribute;
4371     Handler = SanitizerHandler::NonnullArg;
4372   } else {
4373     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4374     CheckKind = SanitizerKind::NullabilityArg;
4375     Handler = SanitizerHandler::NullabilityArg;
4376   }
4377 
4378   SanitizerScope SanScope(this);
4379   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4380   llvm::Constant *StaticData[] = {
4381       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4382       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4383   };
4384   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
4385 }
4386 
4387 // Check if the call is going to use the inalloca convention. This needs to
4388 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4389 // later, so we can't check it directly.
4390 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4391                             ArrayRef<QualType> ArgTypes) {
4392   // The Swift calling conventions don't go through the target-specific
4393   // argument classification, they never use inalloca.
4394   // TODO: Consider limiting inalloca use to only calling conventions supported
4395   // by MSVC.
4396   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4397     return false;
4398   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4399     return false;
4400   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4401     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4402   });
4403 }
4404 
4405 #ifndef NDEBUG
4406 // Determine whether the given argument is an Objective-C method
4407 // that may have type parameters in its signature.
4408 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4409   const DeclContext *dc = method->getDeclContext();
4410   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4411     return classDecl->getTypeParamListAsWritten();
4412   }
4413 
4414   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4415     return catDecl->getTypeParamList();
4416   }
4417 
4418   return false;
4419 }
4420 #endif
4421 
4422 /// EmitCallArgs - Emit call arguments for a function.
4423 void CodeGenFunction::EmitCallArgs(
4424     CallArgList &Args, PrototypeWrapper Prototype,
4425     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4426     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4427   SmallVector<QualType, 16> ArgTypes;
4428 
4429   assert((ParamsToSkip == 0 || Prototype.P) &&
4430          "Can't skip parameters if type info is not provided");
4431 
4432   // This variable only captures *explicitly* written conventions, not those
4433   // applied by default via command line flags or target defaults, such as
4434   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4435   // require knowing if this is a C++ instance method or being able to see
4436   // unprototyped FunctionTypes.
4437   CallingConv ExplicitCC = CC_C;
4438 
4439   // First, if a prototype was provided, use those argument types.
4440   bool IsVariadic = false;
4441   if (Prototype.P) {
4442     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4443     if (MD) {
4444       IsVariadic = MD->isVariadic();
4445       ExplicitCC = getCallingConventionForDecl(
4446           MD, CGM.getTarget().getTriple().isOSWindows());
4447       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4448                       MD->param_type_end());
4449     } else {
4450       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4451       IsVariadic = FPT->isVariadic();
4452       ExplicitCC = FPT->getExtInfo().getCC();
4453       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4454                       FPT->param_type_end());
4455     }
4456 
4457 #ifndef NDEBUG
4458     // Check that the prototyped types match the argument expression types.
4459     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4460     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4461     for (QualType Ty : ArgTypes) {
4462       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4463       assert(
4464           (isGenericMethod || Ty->isVariablyModifiedType() ||
4465            Ty.getNonReferenceType()->isObjCRetainableType() ||
4466            getContext()
4467                    .getCanonicalType(Ty.getNonReferenceType())
4468                    .getTypePtr() ==
4469                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4470           "type mismatch in call argument!");
4471       ++Arg;
4472     }
4473 
4474     // Either we've emitted all the call args, or we have a call to variadic
4475     // function.
4476     assert((Arg == ArgRange.end() || IsVariadic) &&
4477            "Extra arguments in non-variadic function!");
4478 #endif
4479   }
4480 
4481   // If we still have any arguments, emit them using the type of the argument.
4482   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4483     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4484   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4485 
4486   // We must evaluate arguments from right to left in the MS C++ ABI,
4487   // because arguments are destroyed left to right in the callee. As a special
4488   // case, there are certain language constructs that require left-to-right
4489   // evaluation, and in those cases we consider the evaluation order requirement
4490   // to trump the "destruction order is reverse construction order" guarantee.
4491   bool LeftToRight =
4492       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4493           ? Order == EvaluationOrder::ForceLeftToRight
4494           : Order != EvaluationOrder::ForceRightToLeft;
4495 
4496   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4497                                          RValue EmittedArg) {
4498     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4499       return;
4500     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4501     if (PS == nullptr)
4502       return;
4503 
4504     const auto &Context = getContext();
4505     auto SizeTy = Context.getSizeType();
4506     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4507     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4508     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4509                                                      EmittedArg.getScalarVal(),
4510                                                      PS->isDynamic());
4511     Args.add(RValue::get(V), SizeTy);
4512     // If we're emitting args in reverse, be sure to do so with
4513     // pass_object_size, as well.
4514     if (!LeftToRight)
4515       std::swap(Args.back(), *(&Args.back() - 1));
4516   };
4517 
4518   // Insert a stack save if we're going to need any inalloca args.
4519   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4520     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4521            "inalloca only supported on x86");
4522     Args.allocateArgumentMemory(*this);
4523   }
4524 
4525   // Evaluate each argument in the appropriate order.
4526   size_t CallArgsStart = Args.size();
4527   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4528     unsigned Idx = LeftToRight ? I : E - I - 1;
4529     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4530     unsigned InitialArgSize = Args.size();
4531     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4532     // the argument and parameter match or the objc method is parameterized.
4533     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4534             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4535                                                 ArgTypes[Idx]) ||
4536             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4537              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4538            "Argument and parameter types don't match");
4539     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4540     // In particular, we depend on it being the last arg in Args, and the
4541     // objectsize bits depend on there only being one arg if !LeftToRight.
4542     assert(InitialArgSize + 1 == Args.size() &&
4543            "The code below depends on only adding one arg per EmitCallArg");
4544     (void)InitialArgSize;
4545     // Since pointer argument are never emitted as LValue, it is safe to emit
4546     // non-null argument check for r-value only.
4547     if (!Args.back().hasLValue()) {
4548       RValue RVArg = Args.back().getKnownRValue();
4549       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4550                           ParamsToSkip + Idx);
4551       // @llvm.objectsize should never have side-effects and shouldn't need
4552       // destruction/cleanups, so we can safely "emit" it after its arg,
4553       // regardless of right-to-leftness
4554       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4555     }
4556   }
4557 
4558   if (!LeftToRight) {
4559     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4560     // IR function.
4561     std::reverse(Args.begin() + CallArgsStart, Args.end());
4562   }
4563 }
4564 
4565 namespace {
4566 
4567 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4568   DestroyUnpassedArg(Address Addr, QualType Ty)
4569       : Addr(Addr), Ty(Ty) {}
4570 
4571   Address Addr;
4572   QualType Ty;
4573 
4574   void Emit(CodeGenFunction &CGF, Flags flags) override {
4575     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4576     if (DtorKind == QualType::DK_cxx_destructor) {
4577       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4578       assert(!Dtor->isTrivial());
4579       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4580                                 /*Delegating=*/false, Addr, Ty);
4581     } else {
4582       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4583     }
4584   }
4585 };
4586 
4587 struct DisableDebugLocationUpdates {
4588   CodeGenFunction &CGF;
4589   bool disabledDebugInfo;
4590   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4591     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4592       CGF.disableDebugInfo();
4593   }
4594   ~DisableDebugLocationUpdates() {
4595     if (disabledDebugInfo)
4596       CGF.enableDebugInfo();
4597   }
4598 };
4599 
4600 } // end anonymous namespace
4601 
4602 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4603   if (!HasLV)
4604     return RV;
4605   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4606   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4607                         LV.isVolatile());
4608   IsUsed = true;
4609   return RValue::getAggregate(Copy.getAddress(CGF));
4610 }
4611 
4612 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4613   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4614   if (!HasLV && RV.isScalar())
4615     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4616   else if (!HasLV && RV.isComplex())
4617     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4618   else {
4619     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4620     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4621     // We assume that call args are never copied into subobjects.
4622     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4623                           HasLV ? LV.isVolatileQualified()
4624                                 : RV.isVolatileQualified());
4625   }
4626   IsUsed = true;
4627 }
4628 
4629 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4630                                   QualType type) {
4631   DisableDebugLocationUpdates Dis(*this, E);
4632   if (const ObjCIndirectCopyRestoreExpr *CRE
4633         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4634     assert(getLangOpts().ObjCAutoRefCount);
4635     return emitWritebackArg(*this, args, CRE);
4636   }
4637 
4638   assert(type->isReferenceType() == E->isGLValue() &&
4639          "reference binding to unmaterialized r-value!");
4640 
4641   if (E->isGLValue()) {
4642     assert(E->getObjectKind() == OK_Ordinary);
4643     return args.add(EmitReferenceBindingToExpr(E), type);
4644   }
4645 
4646   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4647 
4648   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4649   // However, we still have to push an EH-only cleanup in case we unwind before
4650   // we make it to the call.
4651   if (type->isRecordType() &&
4652       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4653     // If we're using inalloca, use the argument memory.  Otherwise, use a
4654     // temporary.
4655     AggValueSlot Slot = args.isUsingInAlloca()
4656         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4657 
4658     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4659     if (const auto *RD = type->getAsCXXRecordDecl())
4660       DestroyedInCallee = RD->hasNonTrivialDestructor();
4661     else
4662       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4663 
4664     if (DestroyedInCallee)
4665       Slot.setExternallyDestructed();
4666 
4667     EmitAggExpr(E, Slot);
4668     RValue RV = Slot.asRValue();
4669     args.add(RV, type);
4670 
4671     if (DestroyedInCallee && NeedsEHCleanup) {
4672       // Create a no-op GEP between the placeholder and the cleanup so we can
4673       // RAUW it successfully.  It also serves as a marker of the first
4674       // instruction where the cleanup is active.
4675       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4676                                               type);
4677       // This unreachable is a temporary marker which will be removed later.
4678       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4679       args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4680     }
4681     return;
4682   }
4683 
4684   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4685       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4686     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4687     assert(L.isSimple());
4688     args.addUncopiedAggregate(L, type);
4689     return;
4690   }
4691 
4692   args.add(EmitAnyExprToTemp(E), type);
4693 }
4694 
4695 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4696   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4697   // implicitly widens null pointer constants that are arguments to varargs
4698   // functions to pointer-sized ints.
4699   if (!getTarget().getTriple().isOSWindows())
4700     return Arg->getType();
4701 
4702   if (Arg->getType()->isIntegerType() &&
4703       getContext().getTypeSize(Arg->getType()) <
4704           getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
4705       Arg->isNullPointerConstant(getContext(),
4706                                  Expr::NPC_ValueDependentIsNotNull)) {
4707     return getContext().getIntPtrType();
4708   }
4709 
4710   return Arg->getType();
4711 }
4712 
4713 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4714 // optimizer it can aggressively ignore unwind edges.
4715 void
4716 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4717   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4718       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4719     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4720                       CGM.getNoObjCARCExceptionsMetadata());
4721 }
4722 
4723 /// Emits a call to the given no-arguments nounwind runtime function.
4724 llvm::CallInst *
4725 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4726                                          const llvm::Twine &name) {
4727   return EmitNounwindRuntimeCall(callee, std::nullopt, name);
4728 }
4729 
4730 /// Emits a call to the given nounwind runtime function.
4731 llvm::CallInst *
4732 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4733                                          ArrayRef<llvm::Value *> args,
4734                                          const llvm::Twine &name) {
4735   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4736   call->setDoesNotThrow();
4737   return call;
4738 }
4739 
4740 /// Emits a simple call (never an invoke) to the given no-arguments
4741 /// runtime function.
4742 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4743                                                  const llvm::Twine &name) {
4744   return EmitRuntimeCall(callee, std::nullopt, name);
4745 }
4746 
4747 // Calls which may throw must have operand bundles indicating which funclet
4748 // they are nested within.
4749 SmallVector<llvm::OperandBundleDef, 1>
4750 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4751   // There is no need for a funclet operand bundle if we aren't inside a
4752   // funclet.
4753   if (!CurrentFuncletPad)
4754     return (SmallVector<llvm::OperandBundleDef, 1>());
4755 
4756   // Skip intrinsics which cannot throw (as long as they don't lower into
4757   // regular function calls in the course of IR transformations).
4758   if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4759     if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4760       auto IID = CalleeFn->getIntrinsicID();
4761       if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4762         return (SmallVector<llvm::OperandBundleDef, 1>());
4763     }
4764   }
4765 
4766   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4767   BundleList.emplace_back("funclet", CurrentFuncletPad);
4768   return BundleList;
4769 }
4770 
4771 /// Emits a simple call (never an invoke) to the given runtime function.
4772 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4773                                                  ArrayRef<llvm::Value *> args,
4774                                                  const llvm::Twine &name) {
4775   llvm::CallInst *call = Builder.CreateCall(
4776       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4777   call->setCallingConv(getRuntimeCC());
4778   return call;
4779 }
4780 
4781 /// Emits a call or invoke to the given noreturn runtime function.
4782 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4783     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4784   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4785       getBundlesForFunclet(callee.getCallee());
4786 
4787   if (getInvokeDest()) {
4788     llvm::InvokeInst *invoke =
4789       Builder.CreateInvoke(callee,
4790                            getUnreachableBlock(),
4791                            getInvokeDest(),
4792                            args,
4793                            BundleList);
4794     invoke->setDoesNotReturn();
4795     invoke->setCallingConv(getRuntimeCC());
4796   } else {
4797     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4798     call->setDoesNotReturn();
4799     call->setCallingConv(getRuntimeCC());
4800     Builder.CreateUnreachable();
4801   }
4802 }
4803 
4804 /// Emits a call or invoke instruction to the given nullary runtime function.
4805 llvm::CallBase *
4806 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4807                                          const Twine &name) {
4808   return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
4809 }
4810 
4811 /// Emits a call or invoke instruction to the given runtime function.
4812 llvm::CallBase *
4813 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4814                                          ArrayRef<llvm::Value *> args,
4815                                          const Twine &name) {
4816   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4817   call->setCallingConv(getRuntimeCC());
4818   return call;
4819 }
4820 
4821 /// Emits a call or invoke instruction to the given function, depending
4822 /// on the current state of the EH stack.
4823 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4824                                                   ArrayRef<llvm::Value *> Args,
4825                                                   const Twine &Name) {
4826   llvm::BasicBlock *InvokeDest = getInvokeDest();
4827   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4828       getBundlesForFunclet(Callee.getCallee());
4829 
4830   llvm::CallBase *Inst;
4831   if (!InvokeDest)
4832     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4833   else {
4834     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4835     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4836                                 Name);
4837     EmitBlock(ContBB);
4838   }
4839 
4840   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4841   // optimizer it can aggressively ignore unwind edges.
4842   if (CGM.getLangOpts().ObjCAutoRefCount)
4843     AddObjCARCExceptionMetadata(Inst);
4844 
4845   return Inst;
4846 }
4847 
4848 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4849                                                   llvm::Value *New) {
4850   DeferredReplacements.push_back(
4851       std::make_pair(llvm::WeakTrackingVH(Old), New));
4852 }
4853 
4854 namespace {
4855 
4856 /// Specify given \p NewAlign as the alignment of return value attribute. If
4857 /// such attribute already exists, re-set it to the maximal one of two options.
4858 [[nodiscard]] llvm::AttributeList
4859 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4860                                 const llvm::AttributeList &Attrs,
4861                                 llvm::Align NewAlign) {
4862   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4863   if (CurAlign >= NewAlign)
4864     return Attrs;
4865   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4866   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4867       .addRetAttribute(Ctx, AlignAttr);
4868 }
4869 
4870 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4871 protected:
4872   CodeGenFunction &CGF;
4873 
4874   /// We do nothing if this is, or becomes, nullptr.
4875   const AlignedAttrTy *AA = nullptr;
4876 
4877   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4878   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4879 
4880   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4881       : CGF(CGF_) {
4882     if (!FuncDecl)
4883       return;
4884     AA = FuncDecl->getAttr<AlignedAttrTy>();
4885   }
4886 
4887 public:
4888   /// If we can, materialize the alignment as an attribute on return value.
4889   [[nodiscard]] llvm::AttributeList
4890   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4891     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4892       return Attrs;
4893     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4894     if (!AlignmentCI)
4895       return Attrs;
4896     // We may legitimately have non-power-of-2 alignment here.
4897     // If so, this is UB land, emit it via `@llvm.assume` instead.
4898     if (!AlignmentCI->getValue().isPowerOf2())
4899       return Attrs;
4900     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4901         CGF.getLLVMContext(), Attrs,
4902         llvm::Align(
4903             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4904     AA = nullptr; // We're done. Disallow doing anything else.
4905     return NewAttrs;
4906   }
4907 
4908   /// Emit alignment assumption.
4909   /// This is a general fallback that we take if either there is an offset,
4910   /// or the alignment is variable or we are sanitizing for alignment.
4911   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4912     if (!AA)
4913       return;
4914     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4915                                 AA->getLocation(), Alignment, OffsetCI);
4916     AA = nullptr; // We're done. Disallow doing anything else.
4917   }
4918 };
4919 
4920 /// Helper data structure to emit `AssumeAlignedAttr`.
4921 class AssumeAlignedAttrEmitter final
4922     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4923 public:
4924   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4925       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4926     if (!AA)
4927       return;
4928     // It is guaranteed that the alignment/offset are constants.
4929     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4930     if (Expr *Offset = AA->getOffset()) {
4931       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4932       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4933         OffsetCI = nullptr;
4934     }
4935   }
4936 };
4937 
4938 /// Helper data structure to emit `AllocAlignAttr`.
4939 class AllocAlignAttrEmitter final
4940     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4941 public:
4942   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4943                         const CallArgList &CallArgs)
4944       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4945     if (!AA)
4946       return;
4947     // Alignment may or may not be a constant, and that is okay.
4948     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4949                     .getRValue(CGF)
4950                     .getScalarVal();
4951   }
4952 };
4953 
4954 } // namespace
4955 
4956 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4957   if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4958     return VT->getPrimitiveSizeInBits().getKnownMinValue();
4959   if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4960     return getMaxVectorWidth(AT->getElementType());
4961 
4962   unsigned MaxVectorWidth = 0;
4963   if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4964     for (auto *I : ST->elements())
4965       MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4966   return MaxVectorWidth;
4967 }
4968 
4969 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4970                                  const CGCallee &Callee,
4971                                  ReturnValueSlot ReturnValue,
4972                                  const CallArgList &CallArgs,
4973                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4974                                  SourceLocation Loc) {
4975   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4976 
4977   assert(Callee.isOrdinary() || Callee.isVirtual());
4978 
4979   // Handle struct-return functions by passing a pointer to the
4980   // location that we would like to return into.
4981   QualType RetTy = CallInfo.getReturnType();
4982   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4983 
4984   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4985 
4986   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4987   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4988     // We can only guarantee that a function is called from the correct
4989     // context/function based on the appropriate target attributes,
4990     // so only check in the case where we have both always_inline and target
4991     // since otherwise we could be making a conditional call after a check for
4992     // the proper cpu features (and it won't cause code generation issues due to
4993     // function based code generation).
4994     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4995         (TargetDecl->hasAttr<TargetAttr>() ||
4996          (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>())))
4997       checkTargetFeatures(Loc, FD);
4998 
4999     // Some architectures (such as x86-64) have the ABI changed based on
5000     // attribute-target/features. Give them a chance to diagnose.
5001     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
5002         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
5003   }
5004 
5005   // 1. Set up the arguments.
5006 
5007   // If we're using inalloca, insert the allocation after the stack save.
5008   // FIXME: Do this earlier rather than hacking it in here!
5009   Address ArgMemory = Address::invalid();
5010   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
5011     const llvm::DataLayout &DL = CGM.getDataLayout();
5012     llvm::Instruction *IP = CallArgs.getStackBase();
5013     llvm::AllocaInst *AI;
5014     if (IP) {
5015       IP = IP->getNextNode();
5016       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
5017                                 "argmem", IP);
5018     } else {
5019       AI = CreateTempAlloca(ArgStruct, "argmem");
5020     }
5021     auto Align = CallInfo.getArgStructAlignment();
5022     AI->setAlignment(Align.getAsAlign());
5023     AI->setUsedWithInAlloca(true);
5024     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
5025     ArgMemory = Address(AI, ArgStruct, Align);
5026   }
5027 
5028   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
5029   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
5030 
5031   // If the call returns a temporary with struct return, create a temporary
5032   // alloca to hold the result, unless one is given to us.
5033   Address SRetPtr = Address::invalid();
5034   Address SRetAlloca = Address::invalid();
5035   llvm::Value *UnusedReturnSizePtr = nullptr;
5036   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
5037     if (!ReturnValue.isNull()) {
5038       SRetPtr = ReturnValue.getValue();
5039     } else {
5040       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
5041       if (HaveInsertPoint() && ReturnValue.isUnused()) {
5042         llvm::TypeSize size =
5043             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
5044         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
5045       }
5046     }
5047     if (IRFunctionArgs.hasSRetArg()) {
5048       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
5049     } else if (RetAI.isInAlloca()) {
5050       Address Addr =
5051           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
5052       Builder.CreateStore(SRetPtr.getPointer(), Addr);
5053     }
5054   }
5055 
5056   Address swiftErrorTemp = Address::invalid();
5057   Address swiftErrorArg = Address::invalid();
5058 
5059   // When passing arguments using temporary allocas, we need to add the
5060   // appropriate lifetime markers. This vector keeps track of all the lifetime
5061   // markers that need to be ended right after the call.
5062   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
5063 
5064   // Translate all of the arguments as necessary to match the IR lowering.
5065   assert(CallInfo.arg_size() == CallArgs.size() &&
5066          "Mismatch between function signature & arguments.");
5067   unsigned ArgNo = 0;
5068   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
5069   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
5070        I != E; ++I, ++info_it, ++ArgNo) {
5071     const ABIArgInfo &ArgInfo = info_it->info;
5072 
5073     // Insert a padding argument to ensure proper alignment.
5074     if (IRFunctionArgs.hasPaddingArg(ArgNo))
5075       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
5076           llvm::UndefValue::get(ArgInfo.getPaddingType());
5077 
5078     unsigned FirstIRArg, NumIRArgs;
5079     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
5080 
5081     bool ArgHasMaybeUndefAttr =
5082         IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
5083 
5084     switch (ArgInfo.getKind()) {
5085     case ABIArgInfo::InAlloca: {
5086       assert(NumIRArgs == 0);
5087       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
5088       if (I->isAggregate()) {
5089         Address Addr = I->hasLValue()
5090                            ? I->getKnownLValue().getAddress(*this)
5091                            : I->getKnownRValue().getAggregateAddress();
5092         llvm::Instruction *Placeholder =
5093             cast<llvm::Instruction>(Addr.getPointer());
5094 
5095         if (!ArgInfo.getInAllocaIndirect()) {
5096           // Replace the placeholder with the appropriate argument slot GEP.
5097           CGBuilderTy::InsertPoint IP = Builder.saveIP();
5098           Builder.SetInsertPoint(Placeholder);
5099           Addr = Builder.CreateStructGEP(ArgMemory,
5100                                          ArgInfo.getInAllocaFieldIndex());
5101           Builder.restoreIP(IP);
5102         } else {
5103           // For indirect things such as overaligned structs, replace the
5104           // placeholder with a regular aggregate temporary alloca. Store the
5105           // address of this alloca into the struct.
5106           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
5107           Address ArgSlot = Builder.CreateStructGEP(
5108               ArgMemory, ArgInfo.getInAllocaFieldIndex());
5109           Builder.CreateStore(Addr.getPointer(), ArgSlot);
5110         }
5111         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
5112       } else if (ArgInfo.getInAllocaIndirect()) {
5113         // Make a temporary alloca and store the address of it into the argument
5114         // struct.
5115         Address Addr = CreateMemTempWithoutCast(
5116             I->Ty, getContext().getTypeAlignInChars(I->Ty),
5117             "indirect-arg-temp");
5118         I->copyInto(*this, Addr);
5119         Address ArgSlot =
5120             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5121         Builder.CreateStore(Addr.getPointer(), ArgSlot);
5122       } else {
5123         // Store the RValue into the argument struct.
5124         Address Addr =
5125             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5126         Addr = Addr.withElementType(ConvertTypeForMem(I->Ty));
5127         I->copyInto(*this, Addr);
5128       }
5129       break;
5130     }
5131 
5132     case ABIArgInfo::Indirect:
5133     case ABIArgInfo::IndirectAliased: {
5134       assert(NumIRArgs == 1);
5135       if (!I->isAggregate()) {
5136         // Make a temporary alloca to pass the argument.
5137         Address Addr = CreateMemTempWithoutCast(
5138             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
5139 
5140         llvm::Value *Val = Addr.getPointer();
5141         if (ArgHasMaybeUndefAttr)
5142           Val = Builder.CreateFreeze(Addr.getPointer());
5143         IRCallArgs[FirstIRArg] = Val;
5144 
5145         I->copyInto(*this, Addr);
5146       } else {
5147         // We want to avoid creating an unnecessary temporary+copy here;
5148         // however, we need one in three cases:
5149         // 1. If the argument is not byval, and we are required to copy the
5150         //    source.  (This case doesn't occur on any common architecture.)
5151         // 2. If the argument is byval, RV is not sufficiently aligned, and
5152         //    we cannot force it to be sufficiently aligned.
5153         // 3. If the argument is byval, but RV is not located in default
5154         //    or alloca address space.
5155         Address Addr = I->hasLValue()
5156                            ? I->getKnownLValue().getAddress(*this)
5157                            : I->getKnownRValue().getAggregateAddress();
5158         llvm::Value *V = Addr.getPointer();
5159         CharUnits Align = ArgInfo.getIndirectAlign();
5160         const llvm::DataLayout *TD = &CGM.getDataLayout();
5161 
5162         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
5163                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
5164                     TD->getAllocaAddrSpace()) &&
5165                "indirect argument must be in alloca address space");
5166 
5167         bool NeedCopy = false;
5168         if (Addr.getAlignment() < Align &&
5169             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
5170                 Align.getAsAlign()) {
5171           NeedCopy = true;
5172         } else if (I->hasLValue()) {
5173           auto LV = I->getKnownLValue();
5174           auto AS = LV.getAddressSpace();
5175 
5176           bool isByValOrRef =
5177               ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal();
5178 
5179           if (!isByValOrRef ||
5180               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
5181             NeedCopy = true;
5182           }
5183           if (!getLangOpts().OpenCL) {
5184             if ((isByValOrRef &&
5185                 (AS != LangAS::Default &&
5186                  AS != CGM.getASTAllocaAddressSpace()))) {
5187               NeedCopy = true;
5188             }
5189           }
5190           // For OpenCL even if RV is located in default or alloca address space
5191           // we don't want to perform address space cast for it.
5192           else if ((isByValOrRef &&
5193                     Addr.getType()->getAddressSpace() != IRFuncTy->
5194                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
5195             NeedCopy = true;
5196           }
5197         }
5198 
5199         if (NeedCopy) {
5200           // Create an aligned temporary, and copy to it.
5201           Address AI = CreateMemTempWithoutCast(
5202               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
5203           llvm::Value *Val = AI.getPointer();
5204           if (ArgHasMaybeUndefAttr)
5205             Val = Builder.CreateFreeze(AI.getPointer());
5206           IRCallArgs[FirstIRArg] = Val;
5207 
5208           // Emit lifetime markers for the temporary alloca.
5209           llvm::TypeSize ByvalTempElementSize =
5210               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
5211           llvm::Value *LifetimeSize =
5212               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
5213 
5214           // Add cleanup code to emit the end lifetime marker after the call.
5215           if (LifetimeSize) // In case we disabled lifetime markers.
5216             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
5217 
5218           // Generate the copy.
5219           I->copyInto(*this, AI);
5220         } else {
5221           // Skip the extra memcpy call.
5222           auto *T = llvm::PointerType::get(
5223               CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
5224 
5225           llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5226               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
5227               true);
5228           if (ArgHasMaybeUndefAttr)
5229             Val = Builder.CreateFreeze(Val);
5230           IRCallArgs[FirstIRArg] = Val;
5231         }
5232       }
5233       break;
5234     }
5235 
5236     case ABIArgInfo::Ignore:
5237       assert(NumIRArgs == 0);
5238       break;
5239 
5240     case ABIArgInfo::Extend:
5241     case ABIArgInfo::Direct: {
5242       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
5243           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
5244           ArgInfo.getDirectOffset() == 0) {
5245         assert(NumIRArgs == 1);
5246         llvm::Value *V;
5247         if (!I->isAggregate())
5248           V = I->getKnownRValue().getScalarVal();
5249         else
5250           V = Builder.CreateLoad(
5251               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5252                              : I->getKnownRValue().getAggregateAddress());
5253 
5254         // Implement swifterror by copying into a new swifterror argument.
5255         // We'll write back in the normal path out of the call.
5256         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
5257               == ParameterABI::SwiftErrorResult) {
5258           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5259 
5260           QualType pointeeTy = I->Ty->getPointeeType();
5261           swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
5262                                   getContext().getTypeAlignInChars(pointeeTy));
5263 
5264           swiftErrorTemp =
5265             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
5266           V = swiftErrorTemp.getPointer();
5267           cast<llvm::AllocaInst>(V)->setSwiftError(true);
5268 
5269           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5270           Builder.CreateStore(errorValue, swiftErrorTemp);
5271         }
5272 
5273         // We might have to widen integers, but we should never truncate.
5274         if (ArgInfo.getCoerceToType() != V->getType() &&
5275             V->getType()->isIntegerTy())
5276           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5277 
5278         // If the argument doesn't match, perform a bitcast to coerce it.  This
5279         // can happen due to trivial type mismatches.
5280         if (FirstIRArg < IRFuncTy->getNumParams() &&
5281             V->getType() != IRFuncTy->getParamType(FirstIRArg))
5282           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5283 
5284         if (ArgHasMaybeUndefAttr)
5285           V = Builder.CreateFreeze(V);
5286         IRCallArgs[FirstIRArg] = V;
5287         break;
5288       }
5289 
5290       // FIXME: Avoid the conversion through memory if possible.
5291       Address Src = Address::invalid();
5292       if (!I->isAggregate()) {
5293         Src = CreateMemTemp(I->Ty, "coerce");
5294         I->copyInto(*this, Src);
5295       } else {
5296         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5297                              : I->getKnownRValue().getAggregateAddress();
5298       }
5299 
5300       // If the value is offset in memory, apply the offset now.
5301       Src = emitAddressAtOffset(*this, Src, ArgInfo);
5302 
5303       // Fast-isel and the optimizer generally like scalar values better than
5304       // FCAs, so we flatten them if this is safe to do for this argument.
5305       llvm::StructType *STy =
5306             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5307       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5308         llvm::Type *SrcTy = Src.getElementType();
5309         llvm::TypeSize SrcTypeSize =
5310             CGM.getDataLayout().getTypeAllocSize(SrcTy);
5311         llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy);
5312         if (SrcTypeSize.isScalable()) {
5313           assert(STy->containsHomogeneousScalableVectorTypes() &&
5314                  "ABI only supports structure with homogeneous scalable vector "
5315                  "type");
5316           assert(SrcTypeSize == DstTypeSize &&
5317                  "Only allow non-fractional movement of structure with "
5318                  "homogeneous scalable vector type");
5319           assert(NumIRArgs == STy->getNumElements());
5320 
5321           llvm::Value *StoredStructValue =
5322               Builder.CreateLoad(Src, Src.getName() + ".tuple");
5323           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5324             llvm::Value *Extract = Builder.CreateExtractValue(
5325                 StoredStructValue, i, Src.getName() + ".extract" + Twine(i));
5326             IRCallArgs[FirstIRArg + i] = Extract;
5327           }
5328         } else {
5329           uint64_t SrcSize = SrcTypeSize.getFixedValue();
5330           uint64_t DstSize = DstTypeSize.getFixedValue();
5331 
5332           // If the source type is smaller than the destination type of the
5333           // coerce-to logic, copy the source value into a temp alloca the size
5334           // of the destination type to allow loading all of it. The bits past
5335           // the source value are left undef.
5336           if (SrcSize < DstSize) {
5337             Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(),
5338                                                   Src.getName() + ".coerce");
5339             Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5340             Src = TempAlloca;
5341           } else {
5342             Src = Src.withElementType(STy);
5343           }
5344 
5345           assert(NumIRArgs == STy->getNumElements());
5346           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5347             Address EltPtr = Builder.CreateStructGEP(Src, i);
5348             llvm::Value *LI = Builder.CreateLoad(EltPtr);
5349             if (ArgHasMaybeUndefAttr)
5350               LI = Builder.CreateFreeze(LI);
5351             IRCallArgs[FirstIRArg + i] = LI;
5352           }
5353         }
5354       } else {
5355         // In the simple case, just pass the coerced loaded value.
5356         assert(NumIRArgs == 1);
5357         llvm::Value *Load =
5358             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5359 
5360         if (CallInfo.isCmseNSCall()) {
5361           // For certain parameter types, clear padding bits, as they may reveal
5362           // sensitive information.
5363           // Small struct/union types are passed as integer arrays.
5364           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5365           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5366             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5367         }
5368 
5369         if (ArgHasMaybeUndefAttr)
5370           Load = Builder.CreateFreeze(Load);
5371         IRCallArgs[FirstIRArg] = Load;
5372       }
5373 
5374       break;
5375     }
5376 
5377     case ABIArgInfo::CoerceAndExpand: {
5378       auto coercionType = ArgInfo.getCoerceAndExpandType();
5379       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5380 
5381       llvm::Value *tempSize = nullptr;
5382       Address addr = Address::invalid();
5383       Address AllocaAddr = Address::invalid();
5384       if (I->isAggregate()) {
5385         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5386                               : I->getKnownRValue().getAggregateAddress();
5387 
5388       } else {
5389         RValue RV = I->getKnownRValue();
5390         assert(RV.isScalar()); // complex should always just be direct
5391 
5392         llvm::Type *scalarType = RV.getScalarVal()->getType();
5393         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5394         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
5395 
5396         // Materialize to a temporary.
5397         addr = CreateTempAlloca(
5398             RV.getScalarVal()->getType(),
5399             CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
5400             "tmp",
5401             /*ArraySize=*/nullptr, &AllocaAddr);
5402         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5403 
5404         Builder.CreateStore(RV.getScalarVal(), addr);
5405       }
5406 
5407       addr = addr.withElementType(coercionType);
5408 
5409       unsigned IRArgPos = FirstIRArg;
5410       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5411         llvm::Type *eltType = coercionType->getElementType(i);
5412         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5413         Address eltAddr = Builder.CreateStructGEP(addr, i);
5414         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5415         if (ArgHasMaybeUndefAttr)
5416           elt = Builder.CreateFreeze(elt);
5417         IRCallArgs[IRArgPos++] = elt;
5418       }
5419       assert(IRArgPos == FirstIRArg + NumIRArgs);
5420 
5421       if (tempSize) {
5422         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5423       }
5424 
5425       break;
5426     }
5427 
5428     case ABIArgInfo::Expand: {
5429       unsigned IRArgPos = FirstIRArg;
5430       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5431       assert(IRArgPos == FirstIRArg + NumIRArgs);
5432       break;
5433     }
5434     }
5435   }
5436 
5437   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5438   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5439 
5440   // If we're using inalloca, set up that argument.
5441   if (ArgMemory.isValid()) {
5442     llvm::Value *Arg = ArgMemory.getPointer();
5443     assert(IRFunctionArgs.hasInallocaArg());
5444     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5445   }
5446 
5447   // 2. Prepare the function pointer.
5448 
5449   // If the callee is a bitcast of a non-variadic function to have a
5450   // variadic function pointer type, check to see if we can remove the
5451   // bitcast.  This comes up with unprototyped functions.
5452   //
5453   // This makes the IR nicer, but more importantly it ensures that we
5454   // can inline the function at -O0 if it is marked always_inline.
5455   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5456                                    llvm::Value *Ptr) -> llvm::Function * {
5457     if (!CalleeFT->isVarArg())
5458       return nullptr;
5459 
5460     // Get underlying value if it's a bitcast
5461     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5462       if (CE->getOpcode() == llvm::Instruction::BitCast)
5463         Ptr = CE->getOperand(0);
5464     }
5465 
5466     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5467     if (!OrigFn)
5468       return nullptr;
5469 
5470     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5471 
5472     // If the original type is variadic, or if any of the component types
5473     // disagree, we cannot remove the cast.
5474     if (OrigFT->isVarArg() ||
5475         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5476         OrigFT->getReturnType() != CalleeFT->getReturnType())
5477       return nullptr;
5478 
5479     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5480       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5481         return nullptr;
5482 
5483     return OrigFn;
5484   };
5485 
5486   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5487     CalleePtr = OrigFn;
5488     IRFuncTy = OrigFn->getFunctionType();
5489   }
5490 
5491   // 3. Perform the actual call.
5492 
5493   // Deactivate any cleanups that we're supposed to do immediately before
5494   // the call.
5495   if (!CallArgs.getCleanupsToDeactivate().empty())
5496     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5497 
5498   // Assert that the arguments we computed match up.  The IR verifier
5499   // will catch this, but this is a common enough source of problems
5500   // during IRGen changes that it's way better for debugging to catch
5501   // it ourselves here.
5502 #ifndef NDEBUG
5503   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5504   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5505     // Inalloca argument can have different type.
5506     if (IRFunctionArgs.hasInallocaArg() &&
5507         i == IRFunctionArgs.getInallocaArgNo())
5508       continue;
5509     if (i < IRFuncTy->getNumParams())
5510       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5511   }
5512 #endif
5513 
5514   // Update the largest vector width if any arguments have vector types.
5515   for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5516     LargestVectorWidth = std::max(LargestVectorWidth,
5517                                   getMaxVectorWidth(IRCallArgs[i]->getType()));
5518 
5519   // Compute the calling convention and attributes.
5520   unsigned CallingConv;
5521   llvm::AttributeList Attrs;
5522   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5523                              Callee.getAbstractInfo(), Attrs, CallingConv,
5524                              /*AttrOnCallSite=*/true,
5525                              /*IsThunk=*/false);
5526 
5527   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5528     if (FD->hasAttr<StrictFPAttr>())
5529       // All calls within a strictfp function are marked strictfp
5530       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5531 
5532     // If -ffast-math is enabled and the function is guarded by an
5533     // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5534     // library call instead of the intrinsic.
5535     if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath)
5536       CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(),
5537                                 Attrs);
5538   }
5539   // Add call-site nomerge attribute if exists.
5540   if (InNoMergeAttributedStmt)
5541     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5542 
5543   // Add call-site noinline attribute if exists.
5544   if (InNoInlineAttributedStmt)
5545     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5546 
5547   // Add call-site always_inline attribute if exists.
5548   if (InAlwaysInlineAttributedStmt)
5549     Attrs =
5550         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5551 
5552   // Apply some call-site-specific attributes.
5553   // TODO: work this into building the attribute set.
5554 
5555   // Apply always_inline to all calls within flatten functions.
5556   // FIXME: should this really take priority over __try, below?
5557   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5558       !InNoInlineAttributedStmt &&
5559       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5560     Attrs =
5561         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5562   }
5563 
5564   // Disable inlining inside SEH __try blocks.
5565   if (isSEHTryScope()) {
5566     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5567   }
5568 
5569   // Decide whether to use a call or an invoke.
5570   bool CannotThrow;
5571   if (currentFunctionUsesSEHTry()) {
5572     // SEH cares about asynchronous exceptions, so everything can "throw."
5573     CannotThrow = false;
5574   } else if (isCleanupPadScope() &&
5575              EHPersonality::get(*this).isMSVCXXPersonality()) {
5576     // The MSVC++ personality will implicitly terminate the program if an
5577     // exception is thrown during a cleanup outside of a try/catch.
5578     // We don't need to model anything in IR to get this behavior.
5579     CannotThrow = true;
5580   } else {
5581     // Otherwise, nounwind call sites will never throw.
5582     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5583 
5584     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5585       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5586         CannotThrow = true;
5587   }
5588 
5589   // If we made a temporary, be sure to clean up after ourselves. Note that we
5590   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5591   // pop this cleanup later on. Being eager about this is OK, since this
5592   // temporary is 'invisible' outside of the callee.
5593   if (UnusedReturnSizePtr)
5594     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5595                                          UnusedReturnSizePtr);
5596 
5597   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5598 
5599   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5600       getBundlesForFunclet(CalleePtr);
5601 
5602   if (SanOpts.has(SanitizerKind::KCFI) &&
5603       !isa_and_nonnull<FunctionDecl>(TargetDecl))
5604     EmitKCFIOperandBundle(ConcreteCallee, BundleList);
5605 
5606   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5607     if (FD->hasAttr<StrictFPAttr>())
5608       // All calls within a strictfp function are marked strictfp
5609       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5610 
5611   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5612   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5613 
5614   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5615   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5616 
5617   // Emit the actual call/invoke instruction.
5618   llvm::CallBase *CI;
5619   if (!InvokeDest) {
5620     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5621   } else {
5622     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5623     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5624                               BundleList);
5625     EmitBlock(Cont);
5626   }
5627   if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() &&
5628       CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) {
5629     SetSqrtFPAccuracy(CI);
5630   }
5631   if (callOrInvoke)
5632     *callOrInvoke = CI;
5633 
5634   // If this is within a function that has the guard(nocf) attribute and is an
5635   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5636   // Control Flow Guard checks should not be added, even if the call is inlined.
5637   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5638     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5639       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5640         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5641     }
5642   }
5643 
5644   // Apply the attributes and calling convention.
5645   CI->setAttributes(Attrs);
5646   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5647 
5648   // Apply various metadata.
5649 
5650   if (!CI->getType()->isVoidTy())
5651     CI->setName("call");
5652 
5653   // Update largest vector width from the return type.
5654   LargestVectorWidth =
5655       std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5656 
5657   // Insert instrumentation or attach profile metadata at indirect call sites.
5658   // For more details, see the comment before the definition of
5659   // IPVK_IndirectCallTarget in InstrProfData.inc.
5660   if (!CI->getCalledFunction())
5661     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5662                      CI, CalleePtr);
5663 
5664   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5665   // optimizer it can aggressively ignore unwind edges.
5666   if (CGM.getLangOpts().ObjCAutoRefCount)
5667     AddObjCARCExceptionMetadata(CI);
5668 
5669   // Set tail call kind if necessary.
5670   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5671     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5672       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5673     else if (IsMustTail)
5674       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5675   }
5676 
5677   // Add metadata for calls to MSAllocator functions
5678   if (getDebugInfo() && TargetDecl &&
5679       TargetDecl->hasAttr<MSAllocatorAttr>())
5680     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5681 
5682   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5683   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5684     llvm::ConstantInt *Line =
5685         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5686     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5687     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5688     CI->setMetadata("srcloc", MDT);
5689   }
5690 
5691   // 4. Finish the call.
5692 
5693   // If the call doesn't return, finish the basic block and clear the
5694   // insertion point; this allows the rest of IRGen to discard
5695   // unreachable code.
5696   if (CI->doesNotReturn()) {
5697     if (UnusedReturnSizePtr)
5698       PopCleanupBlock();
5699 
5700     // Strip away the noreturn attribute to better diagnose unreachable UB.
5701     if (SanOpts.has(SanitizerKind::Unreachable)) {
5702       // Also remove from function since CallBase::hasFnAttr additionally checks
5703       // attributes of the called function.
5704       if (auto *F = CI->getCalledFunction())
5705         F->removeFnAttr(llvm::Attribute::NoReturn);
5706       CI->removeFnAttr(llvm::Attribute::NoReturn);
5707 
5708       // Avoid incompatibility with ASan which relies on the `noreturn`
5709       // attribute to insert handler calls.
5710       if (SanOpts.hasOneOf(SanitizerKind::Address |
5711                            SanitizerKind::KernelAddress)) {
5712         SanitizerScope SanScope(this);
5713         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5714         Builder.SetInsertPoint(CI);
5715         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5716         llvm::FunctionCallee Fn =
5717             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5718         EmitNounwindRuntimeCall(Fn);
5719       }
5720     }
5721 
5722     EmitUnreachable(Loc);
5723     Builder.ClearInsertionPoint();
5724 
5725     // FIXME: For now, emit a dummy basic block because expr emitters in
5726     // generally are not ready to handle emitting expressions at unreachable
5727     // points.
5728     EnsureInsertPoint();
5729 
5730     // Return a reasonable RValue.
5731     return GetUndefRValue(RetTy);
5732   }
5733 
5734   // If this is a musttail call, return immediately. We do not branch to the
5735   // epilogue in this case.
5736   if (IsMustTail) {
5737     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5738          ++it) {
5739       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5740       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5741         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5742     }
5743     if (CI->getType()->isVoidTy())
5744       Builder.CreateRetVoid();
5745     else
5746       Builder.CreateRet(CI);
5747     Builder.ClearInsertionPoint();
5748     EnsureInsertPoint();
5749     return GetUndefRValue(RetTy);
5750   }
5751 
5752   // Perform the swifterror writeback.
5753   if (swiftErrorTemp.isValid()) {
5754     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5755     Builder.CreateStore(errorResult, swiftErrorArg);
5756   }
5757 
5758   // Emit any call-associated writebacks immediately.  Arguably this
5759   // should happen after any return-value munging.
5760   if (CallArgs.hasWritebacks())
5761     emitWritebacks(*this, CallArgs);
5762 
5763   // The stack cleanup for inalloca arguments has to run out of the normal
5764   // lexical order, so deactivate it and run it manually here.
5765   CallArgs.freeArgumentMemory(*this);
5766 
5767   // Extract the return value.
5768   RValue Ret = [&] {
5769     switch (RetAI.getKind()) {
5770     case ABIArgInfo::CoerceAndExpand: {
5771       auto coercionType = RetAI.getCoerceAndExpandType();
5772 
5773       Address addr = SRetPtr.withElementType(coercionType);
5774 
5775       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5776       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5777 
5778       unsigned unpaddedIndex = 0;
5779       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5780         llvm::Type *eltType = coercionType->getElementType(i);
5781         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5782         Address eltAddr = Builder.CreateStructGEP(addr, i);
5783         llvm::Value *elt = CI;
5784         if (requiresExtract)
5785           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5786         else
5787           assert(unpaddedIndex == 0);
5788         Builder.CreateStore(elt, eltAddr);
5789       }
5790       [[fallthrough]];
5791     }
5792 
5793     case ABIArgInfo::InAlloca:
5794     case ABIArgInfo::Indirect: {
5795       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5796       if (UnusedReturnSizePtr)
5797         PopCleanupBlock();
5798       return ret;
5799     }
5800 
5801     case ABIArgInfo::Ignore:
5802       // If we are ignoring an argument that had a result, make sure to
5803       // construct the appropriate return value for our caller.
5804       return GetUndefRValue(RetTy);
5805 
5806     case ABIArgInfo::Extend:
5807     case ABIArgInfo::Direct: {
5808       llvm::Type *RetIRTy = ConvertType(RetTy);
5809       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5810         switch (getEvaluationKind(RetTy)) {
5811         case TEK_Complex: {
5812           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5813           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5814           return RValue::getComplex(std::make_pair(Real, Imag));
5815         }
5816         case TEK_Aggregate: {
5817           Address DestPtr = ReturnValue.getValue();
5818           bool DestIsVolatile = ReturnValue.isVolatile();
5819 
5820           if (!DestPtr.isValid()) {
5821             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5822             DestIsVolatile = false;
5823           }
5824           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5825           return RValue::getAggregate(DestPtr);
5826         }
5827         case TEK_Scalar: {
5828           // If the argument doesn't match, perform a bitcast to coerce it.  This
5829           // can happen due to trivial type mismatches.
5830           llvm::Value *V = CI;
5831           if (V->getType() != RetIRTy)
5832             V = Builder.CreateBitCast(V, RetIRTy);
5833           return RValue::get(V);
5834         }
5835         }
5836         llvm_unreachable("bad evaluation kind");
5837       }
5838 
5839       // If coercing a fixed vector from a scalable vector for ABI
5840       // compatibility, and the types match, use the llvm.vector.extract
5841       // intrinsic to perform the conversion.
5842       if (auto *FixedDst = dyn_cast<llvm::FixedVectorType>(RetIRTy)) {
5843         llvm::Value *V = CI;
5844         if (auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(V->getType())) {
5845           if (FixedDst->getElementType() == ScalableSrc->getElementType()) {
5846             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
5847             V = Builder.CreateExtractVector(FixedDst, V, Zero, "cast.fixed");
5848             return RValue::get(V);
5849           }
5850         }
5851       }
5852 
5853       Address DestPtr = ReturnValue.getValue();
5854       bool DestIsVolatile = ReturnValue.isVolatile();
5855 
5856       if (!DestPtr.isValid()) {
5857         DestPtr = CreateMemTemp(RetTy, "coerce");
5858         DestIsVolatile = false;
5859       }
5860 
5861       // An empty record can overlap other data (if declared with
5862       // no_unique_address); omit the store for such types - as there is no
5863       // actual data to store.
5864       if (!isEmptyRecord(getContext(), RetTy, true)) {
5865         // If the value is offset in memory, apply the offset now.
5866         Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5867         CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5868       }
5869 
5870       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5871     }
5872 
5873     case ABIArgInfo::Expand:
5874     case ABIArgInfo::IndirectAliased:
5875       llvm_unreachable("Invalid ABI kind for return argument");
5876     }
5877 
5878     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5879   } ();
5880 
5881   // Emit the assume_aligned check on the return value.
5882   if (Ret.isScalar() && TargetDecl) {
5883     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5884     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5885   }
5886 
5887   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5888   // we can't use the full cleanup mechanism.
5889   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5890     LifetimeEnd.Emit(*this, /*Flags=*/{});
5891 
5892   if (!ReturnValue.isExternallyDestructed() &&
5893       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5894     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5895                 RetTy);
5896 
5897   return Ret;
5898 }
5899 
5900 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5901   if (isVirtual()) {
5902     const CallExpr *CE = getVirtualCallExpr();
5903     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5904         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5905         CE ? CE->getBeginLoc() : SourceLocation());
5906   }
5907 
5908   return *this;
5909 }
5910 
5911 /* VarArg handling */
5912 
5913 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5914   VAListAddr = VE->isMicrosoftABI()
5915                  ? EmitMSVAListRef(VE->getSubExpr())
5916                  : EmitVAListRef(VE->getSubExpr());
5917   QualType Ty = VE->getType();
5918   if (VE->isMicrosoftABI())
5919     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5920   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5921 }
5922