1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /***/ 47 48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 49 switch (CC) { 50 default: return llvm::CallingConv::C; 51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 55 case CC_Win64: return llvm::CallingConv::Win64; 56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 60 // TODO: Add support for __pascal to LLVM. 61 case CC_X86Pascal: return llvm::CallingConv::C; 62 // TODO: Add support for __vectorcall to LLVM. 63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 65 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 66 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 67 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 68 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 69 case CC_Swift: return llvm::CallingConv::Swift; 70 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 71 } 72 } 73 74 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 75 /// qualification. Either or both of RD and MD may be null. A null RD indicates 76 /// that there is no meaningful 'this' type, and a null MD can occur when 77 /// calling a method pointer. 78 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 79 const CXXMethodDecl *MD) { 80 QualType RecTy; 81 if (RD) 82 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 83 else 84 RecTy = Context.VoidTy; 85 86 if (MD) 87 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 88 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 89 } 90 91 /// Returns the canonical formal type of the given C++ method. 92 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 93 return MD->getType()->getCanonicalTypeUnqualified() 94 .getAs<FunctionProtoType>(); 95 } 96 97 /// Returns the "extra-canonicalized" return type, which discards 98 /// qualifiers on the return type. Codegen doesn't care about them, 99 /// and it makes ABI code a little easier to be able to assume that 100 /// all parameter and return types are top-level unqualified. 101 static CanQualType GetReturnType(QualType RetTy) { 102 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 103 } 104 105 /// Arrange the argument and result information for a value of the given 106 /// unprototyped freestanding function type. 107 const CGFunctionInfo & 108 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 109 // When translating an unprototyped function type, always use a 110 // variadic type. 111 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 112 /*instanceMethod=*/false, 113 /*chainCall=*/false, None, 114 FTNP->getExtInfo(), {}, RequiredArgs(0)); 115 } 116 117 static void addExtParameterInfosForCall( 118 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 119 const FunctionProtoType *proto, 120 unsigned prefixArgs, 121 unsigned totalArgs) { 122 assert(proto->hasExtParameterInfos()); 123 assert(paramInfos.size() <= prefixArgs); 124 assert(proto->getNumParams() + prefixArgs <= totalArgs); 125 126 paramInfos.reserve(totalArgs); 127 128 // Add default infos for any prefix args that don't already have infos. 129 paramInfos.resize(prefixArgs); 130 131 // Add infos for the prototype. 132 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 133 paramInfos.push_back(ParamInfo); 134 // pass_object_size params have no parameter info. 135 if (ParamInfo.hasPassObjectSize()) 136 paramInfos.emplace_back(); 137 } 138 139 assert(paramInfos.size() <= totalArgs && 140 "Did we forget to insert pass_object_size args?"); 141 // Add default infos for the variadic and/or suffix arguments. 142 paramInfos.resize(totalArgs); 143 } 144 145 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 146 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 147 static void appendParameterTypes(const CodeGenTypes &CGT, 148 SmallVectorImpl<CanQualType> &prefix, 149 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 150 CanQual<FunctionProtoType> FPT) { 151 // Fast path: don't touch param info if we don't need to. 152 if (!FPT->hasExtParameterInfos()) { 153 assert(paramInfos.empty() && 154 "We have paramInfos, but the prototype doesn't?"); 155 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 156 return; 157 } 158 159 unsigned PrefixSize = prefix.size(); 160 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 161 // parameters; the only thing that can change this is the presence of 162 // pass_object_size. So, we preallocate for the common case. 163 prefix.reserve(prefix.size() + FPT->getNumParams()); 164 165 auto ExtInfos = FPT->getExtParameterInfos(); 166 assert(ExtInfos.size() == FPT->getNumParams()); 167 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 168 prefix.push_back(FPT->getParamType(I)); 169 if (ExtInfos[I].hasPassObjectSize()) 170 prefix.push_back(CGT.getContext().getSizeType()); 171 } 172 173 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 174 prefix.size()); 175 } 176 177 /// Arrange the LLVM function layout for a value of the given function 178 /// type, on top of any implicit parameters already stored. 179 static const CGFunctionInfo & 180 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 181 SmallVectorImpl<CanQualType> &prefix, 182 CanQual<FunctionProtoType> FTP) { 183 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 184 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 185 // FIXME: Kill copy. 186 appendParameterTypes(CGT, prefix, paramInfos, FTP); 187 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 188 189 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 190 /*chainCall=*/false, prefix, 191 FTP->getExtInfo(), paramInfos, 192 Required); 193 } 194 195 /// Arrange the argument and result information for a value of the 196 /// given freestanding function type. 197 const CGFunctionInfo & 198 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 199 SmallVector<CanQualType, 16> argTypes; 200 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 201 FTP); 202 } 203 204 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 205 bool IsWindows) { 206 // Set the appropriate calling convention for the Function. 207 if (D->hasAttr<StdCallAttr>()) 208 return CC_X86StdCall; 209 210 if (D->hasAttr<FastCallAttr>()) 211 return CC_X86FastCall; 212 213 if (D->hasAttr<RegCallAttr>()) 214 return CC_X86RegCall; 215 216 if (D->hasAttr<ThisCallAttr>()) 217 return CC_X86ThisCall; 218 219 if (D->hasAttr<VectorCallAttr>()) 220 return CC_X86VectorCall; 221 222 if (D->hasAttr<PascalAttr>()) 223 return CC_X86Pascal; 224 225 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 226 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 227 228 if (D->hasAttr<AArch64VectorPcsAttr>()) 229 return CC_AArch64VectorCall; 230 231 if (D->hasAttr<IntelOclBiccAttr>()) 232 return CC_IntelOclBicc; 233 234 if (D->hasAttr<MSABIAttr>()) 235 return IsWindows ? CC_C : CC_Win64; 236 237 if (D->hasAttr<SysVABIAttr>()) 238 return IsWindows ? CC_X86_64SysV : CC_C; 239 240 if (D->hasAttr<PreserveMostAttr>()) 241 return CC_PreserveMost; 242 243 if (D->hasAttr<PreserveAllAttr>()) 244 return CC_PreserveAll; 245 246 return CC_C; 247 } 248 249 /// Arrange the argument and result information for a call to an 250 /// unknown C++ non-static member function of the given abstract type. 251 /// (A null RD means we don't have any meaningful "this" argument type, 252 /// so fall back to a generic pointer type). 253 /// The member function must be an ordinary function, i.e. not a 254 /// constructor or destructor. 255 const CGFunctionInfo & 256 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 257 const FunctionProtoType *FTP, 258 const CXXMethodDecl *MD) { 259 SmallVector<CanQualType, 16> argTypes; 260 261 // Add the 'this' pointer. 262 argTypes.push_back(DeriveThisType(RD, MD)); 263 264 return ::arrangeLLVMFunctionInfo( 265 *this, true, argTypes, 266 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 267 } 268 269 /// Set calling convention for CUDA/HIP kernel. 270 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 271 const FunctionDecl *FD) { 272 if (FD->hasAttr<CUDAGlobalAttr>()) { 273 const FunctionType *FT = FTy->getAs<FunctionType>(); 274 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 275 FTy = FT->getCanonicalTypeUnqualified(); 276 } 277 } 278 279 /// Arrange the argument and result information for a declaration or 280 /// definition of the given C++ non-static member function. The 281 /// member function must be an ordinary function, i.e. not a 282 /// constructor or destructor. 283 const CGFunctionInfo & 284 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 285 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 286 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 287 288 CanQualType FT = GetFormalType(MD).getAs<Type>(); 289 setCUDAKernelCallingConvention(FT, CGM, MD); 290 auto prototype = FT.getAs<FunctionProtoType>(); 291 292 if (MD->isInstance()) { 293 // The abstract case is perfectly fine. 294 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 295 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 296 } 297 298 return arrangeFreeFunctionType(prototype); 299 } 300 301 bool CodeGenTypes::inheritingCtorHasParams( 302 const InheritedConstructor &Inherited, CXXCtorType Type) { 303 // Parameters are unnecessary if we're constructing a base class subobject 304 // and the inherited constructor lives in a virtual base. 305 return Type == Ctor_Complete || 306 !Inherited.getShadowDecl()->constructsVirtualBase() || 307 !Target.getCXXABI().hasConstructorVariants(); 308 } 309 310 const CGFunctionInfo & 311 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 312 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 313 314 SmallVector<CanQualType, 16> argTypes; 315 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 316 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 317 318 bool PassParams = true; 319 320 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 321 // A base class inheriting constructor doesn't get forwarded arguments 322 // needed to construct a virtual base (or base class thereof). 323 if (auto Inherited = CD->getInheritedConstructor()) 324 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 325 } 326 327 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 328 329 // Add the formal parameters. 330 if (PassParams) 331 appendParameterTypes(*this, argTypes, paramInfos, FTP); 332 333 CGCXXABI::AddedStructorArgCounts AddedArgs = 334 TheCXXABI.buildStructorSignature(GD, argTypes); 335 if (!paramInfos.empty()) { 336 // Note: prefix implies after the first param. 337 if (AddedArgs.Prefix) 338 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 339 FunctionProtoType::ExtParameterInfo{}); 340 if (AddedArgs.Suffix) 341 paramInfos.append(AddedArgs.Suffix, 342 FunctionProtoType::ExtParameterInfo{}); 343 } 344 345 RequiredArgs required = 346 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 347 : RequiredArgs::All); 348 349 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 350 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 351 ? argTypes.front() 352 : TheCXXABI.hasMostDerivedReturn(GD) 353 ? CGM.getContext().VoidPtrTy 354 : Context.VoidTy; 355 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 356 /*chainCall=*/false, argTypes, extInfo, 357 paramInfos, required); 358 } 359 360 static SmallVector<CanQualType, 16> 361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 362 SmallVector<CanQualType, 16> argTypes; 363 for (auto &arg : args) 364 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 365 return argTypes; 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 373 return argTypes; 374 } 375 376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 377 getExtParameterInfosForCall(const FunctionProtoType *proto, 378 unsigned prefixArgs, unsigned totalArgs) { 379 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 380 if (proto->hasExtParameterInfos()) { 381 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 382 } 383 return result; 384 } 385 386 /// Arrange a call to a C++ method, passing the given arguments. 387 /// 388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 389 /// parameter. 390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 391 /// args. 392 /// PassProtoArgs indicates whether `args` has args for the parameters in the 393 /// given CXXConstructorDecl. 394 const CGFunctionInfo & 395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 396 const CXXConstructorDecl *D, 397 CXXCtorType CtorKind, 398 unsigned ExtraPrefixArgs, 399 unsigned ExtraSuffixArgs, 400 bool PassProtoArgs) { 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> ArgTypes; 403 for (const auto &Arg : args) 404 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 405 406 // +1 for implicit this, which should always be args[0]. 407 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 408 409 CanQual<FunctionProtoType> FPT = GetFormalType(D); 410 RequiredArgs Required = PassProtoArgs 411 ? RequiredArgs::forPrototypePlus( 412 FPT, TotalPrefixArgs + ExtraSuffixArgs) 413 : RequiredArgs::All; 414 415 GlobalDecl GD(D, CtorKind); 416 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 417 ? ArgTypes.front() 418 : TheCXXABI.hasMostDerivedReturn(GD) 419 ? CGM.getContext().VoidPtrTy 420 : Context.VoidTy; 421 422 FunctionType::ExtInfo Info = FPT->getExtInfo(); 423 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 424 // If the prototype args are elided, we should only have ABI-specific args, 425 // which never have param info. 426 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 427 // ABI-specific suffix arguments are treated the same as variadic arguments. 428 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 429 ArgTypes.size()); 430 } 431 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 432 /*chainCall=*/false, ArgTypes, Info, 433 ParamInfos, Required); 434 } 435 436 /// Arrange the argument and result information for the declaration or 437 /// definition of the given function. 438 const CGFunctionInfo & 439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 440 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 441 if (MD->isInstance()) 442 return arrangeCXXMethodDeclaration(MD); 443 444 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 445 446 assert(isa<FunctionType>(FTy)); 447 setCUDAKernelCallingConvention(FTy, CGM, FD); 448 449 // When declaring a function without a prototype, always use a 450 // non-variadic type. 451 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 452 return arrangeLLVMFunctionInfo( 453 noProto->getReturnType(), /*instanceMethod=*/false, 454 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 455 } 456 457 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 458 } 459 460 /// Arrange the argument and result information for the declaration or 461 /// definition of an Objective-C method. 462 const CGFunctionInfo & 463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 464 // It happens that this is the same as a call with no optional 465 // arguments, except also using the formal 'self' type. 466 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 467 } 468 469 /// Arrange the argument and result information for the function type 470 /// through which to perform a send to the given Objective-C method, 471 /// using the given receiver type. The receiver type is not always 472 /// the 'self' type of the method or even an Objective-C pointer type. 473 /// This is *not* the right method for actually performing such a 474 /// message send, due to the possibility of optional arguments. 475 const CGFunctionInfo & 476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 477 QualType receiverType) { 478 SmallVector<CanQualType, 16> argTys; 479 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 480 argTys.push_back(Context.getCanonicalParamType(receiverType)); 481 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 482 // FIXME: Kill copy? 483 for (const auto *I : MD->parameters()) { 484 argTys.push_back(Context.getCanonicalParamType(I->getType())); 485 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 486 I->hasAttr<NoEscapeAttr>()); 487 extParamInfos.push_back(extParamInfo); 488 } 489 490 FunctionType::ExtInfo einfo; 491 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 492 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 493 494 if (getContext().getLangOpts().ObjCAutoRefCount && 495 MD->hasAttr<NSReturnsRetainedAttr>()) 496 einfo = einfo.withProducesResult(true); 497 498 RequiredArgs required = 499 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 500 501 return arrangeLLVMFunctionInfo( 502 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 503 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 504 } 505 506 const CGFunctionInfo & 507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 508 const CallArgList &args) { 509 auto argTypes = getArgTypesForCall(Context, args); 510 FunctionType::ExtInfo einfo; 511 512 return arrangeLLVMFunctionInfo( 513 GetReturnType(returnType), /*instanceMethod=*/false, 514 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 515 } 516 517 const CGFunctionInfo & 518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 519 // FIXME: Do we need to handle ObjCMethodDecl? 520 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 521 522 if (isa<CXXConstructorDecl>(GD.getDecl()) || 523 isa<CXXDestructorDecl>(GD.getDecl())) 524 return arrangeCXXStructorDeclaration(GD); 525 526 return arrangeFunctionDeclaration(FD); 527 } 528 529 /// Arrange a thunk that takes 'this' as the first parameter followed by 530 /// varargs. Return a void pointer, regardless of the actual return type. 531 /// The body of the thunk will end in a musttail call to a function of the 532 /// correct type, and the caller will bitcast the function to the correct 533 /// prototype. 534 const CGFunctionInfo & 535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 536 assert(MD->isVirtual() && "only methods have thunks"); 537 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 538 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 539 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 540 /*chainCall=*/false, ArgTys, 541 FTP->getExtInfo(), {}, RequiredArgs(1)); 542 } 543 544 const CGFunctionInfo & 545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 546 CXXCtorType CT) { 547 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 548 549 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 550 SmallVector<CanQualType, 2> ArgTys; 551 const CXXRecordDecl *RD = CD->getParent(); 552 ArgTys.push_back(DeriveThisType(RD, CD)); 553 if (CT == Ctor_CopyingClosure) 554 ArgTys.push_back(*FTP->param_type_begin()); 555 if (RD->getNumVBases() > 0) 556 ArgTys.push_back(Context.IntTy); 557 CallingConv CC = Context.getDefaultCallingConvention( 558 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 559 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 560 /*chainCall=*/false, ArgTys, 561 FunctionType::ExtInfo(CC), {}, 562 RequiredArgs::All); 563 } 564 565 /// Arrange a call as unto a free function, except possibly with an 566 /// additional number of formal parameters considered required. 567 static const CGFunctionInfo & 568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 569 CodeGenModule &CGM, 570 const CallArgList &args, 571 const FunctionType *fnType, 572 unsigned numExtraRequiredArgs, 573 bool chainCall) { 574 assert(args.size() >= numExtraRequiredArgs); 575 576 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 577 578 // In most cases, there are no optional arguments. 579 RequiredArgs required = RequiredArgs::All; 580 581 // If we have a variadic prototype, the required arguments are the 582 // extra prefix plus the arguments in the prototype. 583 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 584 if (proto->isVariadic()) 585 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 586 587 if (proto->hasExtParameterInfos()) 588 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 589 args.size()); 590 591 // If we don't have a prototype at all, but we're supposed to 592 // explicitly use the variadic convention for unprototyped calls, 593 // treat all of the arguments as required but preserve the nominal 594 // possibility of variadics. 595 } else if (CGM.getTargetCodeGenInfo() 596 .isNoProtoCallVariadic(args, 597 cast<FunctionNoProtoType>(fnType))) { 598 required = RequiredArgs(args.size()); 599 } 600 601 // FIXME: Kill copy. 602 SmallVector<CanQualType, 16> argTypes; 603 for (const auto &arg : args) 604 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 605 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 606 /*instanceMethod=*/false, chainCall, 607 argTypes, fnType->getExtInfo(), paramInfos, 608 required); 609 } 610 611 /// Figure out the rules for calling a function with the given formal 612 /// type using the given arguments. The arguments are necessary 613 /// because the function might be unprototyped, in which case it's 614 /// target-dependent in crazy ways. 615 const CGFunctionInfo & 616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 617 const FunctionType *fnType, 618 bool chainCall) { 619 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 620 chainCall ? 1 : 0, chainCall); 621 } 622 623 /// A block function is essentially a free function with an 624 /// extra implicit argument. 625 const CGFunctionInfo & 626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 627 const FunctionType *fnType) { 628 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 629 /*chainCall=*/false); 630 } 631 632 const CGFunctionInfo & 633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 634 const FunctionArgList ¶ms) { 635 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 636 auto argTypes = getArgTypesForDeclaration(Context, params); 637 638 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 639 /*instanceMethod*/ false, /*chainCall*/ false, 640 argTypes, proto->getExtInfo(), paramInfos, 641 RequiredArgs::forPrototypePlus(proto, 1)); 642 } 643 644 const CGFunctionInfo & 645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 646 const CallArgList &args) { 647 // FIXME: Kill copy. 648 SmallVector<CanQualType, 16> argTypes; 649 for (const auto &Arg : args) 650 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 651 return arrangeLLVMFunctionInfo( 652 GetReturnType(resultType), /*instanceMethod=*/false, 653 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 654 /*paramInfos=*/ {}, RequiredArgs::All); 655 } 656 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 659 const FunctionArgList &args) { 660 auto argTypes = getArgTypesForDeclaration(Context, args); 661 662 return arrangeLLVMFunctionInfo( 663 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 664 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 665 } 666 667 const CGFunctionInfo & 668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 669 ArrayRef<CanQualType> argTypes) { 670 return arrangeLLVMFunctionInfo( 671 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 673 } 674 675 /// Arrange a call to a C++ method, passing the given arguments. 676 /// 677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 678 /// does not count `this`. 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 681 const FunctionProtoType *proto, 682 RequiredArgs required, 683 unsigned numPrefixArgs) { 684 assert(numPrefixArgs + 1 <= args.size() && 685 "Emitting a call with less args than the required prefix?"); 686 // Add one to account for `this`. It's a bit awkward here, but we don't count 687 // `this` in similar places elsewhere. 688 auto paramInfos = 689 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 690 691 // FIXME: Kill copy. 692 auto argTypes = getArgTypesForCall(Context, args); 693 694 FunctionType::ExtInfo info = proto->getExtInfo(); 695 return arrangeLLVMFunctionInfo( 696 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 697 /*chainCall=*/false, argTypes, info, paramInfos, required); 698 } 699 700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 701 return arrangeLLVMFunctionInfo( 702 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 703 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 704 } 705 706 const CGFunctionInfo & 707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 708 const CallArgList &args) { 709 assert(signature.arg_size() <= args.size()); 710 if (signature.arg_size() == args.size()) 711 return signature; 712 713 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 714 auto sigParamInfos = signature.getExtParameterInfos(); 715 if (!sigParamInfos.empty()) { 716 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 717 paramInfos.resize(args.size()); 718 } 719 720 auto argTypes = getArgTypesForCall(Context, args); 721 722 assert(signature.getRequiredArgs().allowsOptionalArgs()); 723 return arrangeLLVMFunctionInfo(signature.getReturnType(), 724 signature.isInstanceMethod(), 725 signature.isChainCall(), 726 argTypes, 727 signature.getExtInfo(), 728 paramInfos, 729 signature.getRequiredArgs()); 730 } 731 732 namespace clang { 733 namespace CodeGen { 734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 735 } 736 } 737 738 /// Arrange the argument and result information for an abstract value 739 /// of a given function type. This is the method which all of the 740 /// above functions ultimately defer to. 741 const CGFunctionInfo & 742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 743 bool instanceMethod, 744 bool chainCall, 745 ArrayRef<CanQualType> argTypes, 746 FunctionType::ExtInfo info, 747 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 748 RequiredArgs required) { 749 assert(llvm::all_of(argTypes, 750 [](CanQualType T) { return T.isCanonicalAsParam(); })); 751 752 // Lookup or create unique function info. 753 llvm::FoldingSetNodeID ID; 754 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 755 required, resultType, argTypes); 756 757 void *insertPos = nullptr; 758 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 759 if (FI) 760 return *FI; 761 762 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 763 764 // Construct the function info. We co-allocate the ArgInfos. 765 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 766 paramInfos, resultType, argTypes, required); 767 FunctionInfos.InsertNode(FI, insertPos); 768 769 bool inserted = FunctionsBeingProcessed.insert(FI).second; 770 (void)inserted; 771 assert(inserted && "Recursively being processed?"); 772 773 // Compute ABI information. 774 if (CC == llvm::CallingConv::SPIR_KERNEL) { 775 // Force target independent argument handling for the host visible 776 // kernel functions. 777 computeSPIRKernelABIInfo(CGM, *FI); 778 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 779 swiftcall::computeABIInfo(CGM, *FI); 780 } else { 781 getABIInfo().computeInfo(*FI); 782 } 783 784 // Loop over all of the computed argument and return value info. If any of 785 // them are direct or extend without a specified coerce type, specify the 786 // default now. 787 ABIArgInfo &retInfo = FI->getReturnInfo(); 788 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 789 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 790 791 for (auto &I : FI->arguments()) 792 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 793 I.info.setCoerceToType(ConvertType(I.type)); 794 795 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 796 assert(erased && "Not in set?"); 797 798 return *FI; 799 } 800 801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 802 bool instanceMethod, 803 bool chainCall, 804 const FunctionType::ExtInfo &info, 805 ArrayRef<ExtParameterInfo> paramInfos, 806 CanQualType resultType, 807 ArrayRef<CanQualType> argTypes, 808 RequiredArgs required) { 809 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 810 assert(!required.allowsOptionalArgs() || 811 required.getNumRequiredArgs() <= argTypes.size()); 812 813 void *buffer = 814 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 815 argTypes.size() + 1, paramInfos.size())); 816 817 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 818 FI->CallingConvention = llvmCC; 819 FI->EffectiveCallingConvention = llvmCC; 820 FI->ASTCallingConvention = info.getCC(); 821 FI->InstanceMethod = instanceMethod; 822 FI->ChainCall = chainCall; 823 FI->CmseNSCall = info.getCmseNSCall(); 824 FI->NoReturn = info.getNoReturn(); 825 FI->ReturnsRetained = info.getProducesResult(); 826 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 827 FI->NoCfCheck = info.getNoCfCheck(); 828 FI->Required = required; 829 FI->HasRegParm = info.getHasRegParm(); 830 FI->RegParm = info.getRegParm(); 831 FI->ArgStruct = nullptr; 832 FI->ArgStructAlign = 0; 833 FI->NumArgs = argTypes.size(); 834 FI->HasExtParameterInfos = !paramInfos.empty(); 835 FI->getArgsBuffer()[0].type = resultType; 836 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 837 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 838 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 839 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 840 return FI; 841 } 842 843 /***/ 844 845 namespace { 846 // ABIArgInfo::Expand implementation. 847 848 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 849 struct TypeExpansion { 850 enum TypeExpansionKind { 851 // Elements of constant arrays are expanded recursively. 852 TEK_ConstantArray, 853 // Record fields are expanded recursively (but if record is a union, only 854 // the field with the largest size is expanded). 855 TEK_Record, 856 // For complex types, real and imaginary parts are expanded recursively. 857 TEK_Complex, 858 // All other types are not expandable. 859 TEK_None 860 }; 861 862 const TypeExpansionKind Kind; 863 864 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 865 virtual ~TypeExpansion() {} 866 }; 867 868 struct ConstantArrayExpansion : TypeExpansion { 869 QualType EltTy; 870 uint64_t NumElts; 871 872 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 873 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 874 static bool classof(const TypeExpansion *TE) { 875 return TE->Kind == TEK_ConstantArray; 876 } 877 }; 878 879 struct RecordExpansion : TypeExpansion { 880 SmallVector<const CXXBaseSpecifier *, 1> Bases; 881 882 SmallVector<const FieldDecl *, 1> Fields; 883 884 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 885 SmallVector<const FieldDecl *, 1> &&Fields) 886 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 887 Fields(std::move(Fields)) {} 888 static bool classof(const TypeExpansion *TE) { 889 return TE->Kind == TEK_Record; 890 } 891 }; 892 893 struct ComplexExpansion : TypeExpansion { 894 QualType EltTy; 895 896 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_Complex; 899 } 900 }; 901 902 struct NoExpansion : TypeExpansion { 903 NoExpansion() : TypeExpansion(TEK_None) {} 904 static bool classof(const TypeExpansion *TE) { 905 return TE->Kind == TEK_None; 906 } 907 }; 908 } // namespace 909 910 static std::unique_ptr<TypeExpansion> 911 getTypeExpansion(QualType Ty, const ASTContext &Context) { 912 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 913 return std::make_unique<ConstantArrayExpansion>( 914 AT->getElementType(), AT->getSize().getZExtValue()); 915 } 916 if (const RecordType *RT = Ty->getAs<RecordType>()) { 917 SmallVector<const CXXBaseSpecifier *, 1> Bases; 918 SmallVector<const FieldDecl *, 1> Fields; 919 const RecordDecl *RD = RT->getDecl(); 920 assert(!RD->hasFlexibleArrayMember() && 921 "Cannot expand structure with flexible array."); 922 if (RD->isUnion()) { 923 // Unions can be here only in degenerative cases - all the fields are same 924 // after flattening. Thus we have to use the "largest" field. 925 const FieldDecl *LargestFD = nullptr; 926 CharUnits UnionSize = CharUnits::Zero(); 927 928 for (const auto *FD : RD->fields()) { 929 if (FD->isZeroLengthBitField(Context)) 930 continue; 931 assert(!FD->isBitField() && 932 "Cannot expand structure with bit-field members."); 933 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 934 if (UnionSize < FieldSize) { 935 UnionSize = FieldSize; 936 LargestFD = FD; 937 } 938 } 939 if (LargestFD) 940 Fields.push_back(LargestFD); 941 } else { 942 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 943 assert(!CXXRD->isDynamicClass() && 944 "cannot expand vtable pointers in dynamic classes"); 945 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 946 Bases.push_back(&BS); 947 } 948 949 for (const auto *FD : RD->fields()) { 950 if (FD->isZeroLengthBitField(Context)) 951 continue; 952 assert(!FD->isBitField() && 953 "Cannot expand structure with bit-field members."); 954 Fields.push_back(FD); 955 } 956 } 957 return std::make_unique<RecordExpansion>(std::move(Bases), 958 std::move(Fields)); 959 } 960 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 961 return std::make_unique<ComplexExpansion>(CT->getElementType()); 962 } 963 return std::make_unique<NoExpansion>(); 964 } 965 966 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 967 auto Exp = getTypeExpansion(Ty, Context); 968 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 969 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 970 } 971 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 972 int Res = 0; 973 for (auto BS : RExp->Bases) 974 Res += getExpansionSize(BS->getType(), Context); 975 for (auto FD : RExp->Fields) 976 Res += getExpansionSize(FD->getType(), Context); 977 return Res; 978 } 979 if (isa<ComplexExpansion>(Exp.get())) 980 return 2; 981 assert(isa<NoExpansion>(Exp.get())); 982 return 1; 983 } 984 985 void 986 CodeGenTypes::getExpandedTypes(QualType Ty, 987 SmallVectorImpl<llvm::Type *>::iterator &TI) { 988 auto Exp = getTypeExpansion(Ty, Context); 989 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 990 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 991 getExpandedTypes(CAExp->EltTy, TI); 992 } 993 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 994 for (auto BS : RExp->Bases) 995 getExpandedTypes(BS->getType(), TI); 996 for (auto FD : RExp->Fields) 997 getExpandedTypes(FD->getType(), TI); 998 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 999 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1000 *TI++ = EltTy; 1001 *TI++ = EltTy; 1002 } else { 1003 assert(isa<NoExpansion>(Exp.get())); 1004 *TI++ = ConvertType(Ty); 1005 } 1006 } 1007 1008 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1009 ConstantArrayExpansion *CAE, 1010 Address BaseAddr, 1011 llvm::function_ref<void(Address)> Fn) { 1012 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1013 CharUnits EltAlign = 1014 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1015 1016 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1017 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1018 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1019 Fn(Address(EltAddr, EltAlign)); 1020 } 1021 } 1022 1023 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1024 llvm::Function::arg_iterator &AI) { 1025 assert(LV.isSimple() && 1026 "Unexpected non-simple lvalue during struct expansion."); 1027 1028 auto Exp = getTypeExpansion(Ty, getContext()); 1029 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1030 forConstantArrayExpansion( 1031 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1032 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1033 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1034 }); 1035 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1036 Address This = LV.getAddress(*this); 1037 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1038 // Perform a single step derived-to-base conversion. 1039 Address Base = 1040 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1041 /*NullCheckValue=*/false, SourceLocation()); 1042 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1043 1044 // Recurse onto bases. 1045 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1046 } 1047 for (auto FD : RExp->Fields) { 1048 // FIXME: What are the right qualifiers here? 1049 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1050 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1051 } 1052 } else if (isa<ComplexExpansion>(Exp.get())) { 1053 auto realValue = &*AI++; 1054 auto imagValue = &*AI++; 1055 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1056 } else { 1057 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1058 // primitive store. 1059 assert(isa<NoExpansion>(Exp.get())); 1060 llvm::Value *Arg = &*AI++; 1061 if (LV.isBitField()) { 1062 EmitStoreThroughLValue(RValue::get(Arg), LV); 1063 } else { 1064 // TODO: currently there are some places are inconsistent in what LLVM 1065 // pointer type they use (see D118744). Once clang uses opaque pointers 1066 // all LLVM pointer types will be the same and we can remove this check. 1067 if (Arg->getType()->isPointerTy()) { 1068 Address Addr = LV.getAddress(*this); 1069 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1070 } 1071 EmitStoreOfScalar(Arg, LV); 1072 } 1073 } 1074 } 1075 1076 void CodeGenFunction::ExpandTypeToArgs( 1077 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1078 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1079 auto Exp = getTypeExpansion(Ty, getContext()); 1080 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1081 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1082 : Arg.getKnownRValue().getAggregateAddress(); 1083 forConstantArrayExpansion( 1084 *this, CAExp, Addr, [&](Address EltAddr) { 1085 CallArg EltArg = CallArg( 1086 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1087 CAExp->EltTy); 1088 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1089 IRCallArgPos); 1090 }); 1091 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1092 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1093 : Arg.getKnownRValue().getAggregateAddress(); 1094 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1095 // Perform a single step derived-to-base conversion. 1096 Address Base = 1097 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1098 /*NullCheckValue=*/false, SourceLocation()); 1099 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1100 1101 // Recurse onto bases. 1102 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1103 IRCallArgPos); 1104 } 1105 1106 LValue LV = MakeAddrLValue(This, Ty); 1107 for (auto FD : RExp->Fields) { 1108 CallArg FldArg = 1109 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1110 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1111 IRCallArgPos); 1112 } 1113 } else if (isa<ComplexExpansion>(Exp.get())) { 1114 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1115 IRCallArgs[IRCallArgPos++] = CV.first; 1116 IRCallArgs[IRCallArgPos++] = CV.second; 1117 } else { 1118 assert(isa<NoExpansion>(Exp.get())); 1119 auto RV = Arg.getKnownRValue(); 1120 assert(RV.isScalar() && 1121 "Unexpected non-scalar rvalue during struct expansion."); 1122 1123 // Insert a bitcast as needed. 1124 llvm::Value *V = RV.getScalarVal(); 1125 if (IRCallArgPos < IRFuncTy->getNumParams() && 1126 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1127 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1128 1129 IRCallArgs[IRCallArgPos++] = V; 1130 } 1131 } 1132 1133 /// Create a temporary allocation for the purposes of coercion. 1134 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1135 CharUnits MinAlign, 1136 const Twine &Name = "tmp") { 1137 // Don't use an alignment that's worse than what LLVM would prefer. 1138 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1139 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1140 1141 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1142 } 1143 1144 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1145 /// accessing some number of bytes out of it, try to gep into the struct to get 1146 /// at its inner goodness. Dive as deep as possible without entering an element 1147 /// with an in-memory size smaller than DstSize. 1148 static Address 1149 EnterStructPointerForCoercedAccess(Address SrcPtr, 1150 llvm::StructType *SrcSTy, 1151 uint64_t DstSize, CodeGenFunction &CGF) { 1152 // We can't dive into a zero-element struct. 1153 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1154 1155 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1156 1157 // If the first elt is at least as large as what we're looking for, or if the 1158 // first element is the same size as the whole struct, we can enter it. The 1159 // comparison must be made on the store size and not the alloca size. Using 1160 // the alloca size may overstate the size of the load. 1161 uint64_t FirstEltSize = 1162 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1163 if (FirstEltSize < DstSize && 1164 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1165 return SrcPtr; 1166 1167 // GEP into the first element. 1168 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1169 1170 // If the first element is a struct, recurse. 1171 llvm::Type *SrcTy = SrcPtr.getElementType(); 1172 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1173 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1174 1175 return SrcPtr; 1176 } 1177 1178 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1179 /// are either integers or pointers. This does a truncation of the value if it 1180 /// is too large or a zero extension if it is too small. 1181 /// 1182 /// This behaves as if the value were coerced through memory, so on big-endian 1183 /// targets the high bits are preserved in a truncation, while little-endian 1184 /// targets preserve the low bits. 1185 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1186 llvm::Type *Ty, 1187 CodeGenFunction &CGF) { 1188 if (Val->getType() == Ty) 1189 return Val; 1190 1191 if (isa<llvm::PointerType>(Val->getType())) { 1192 // If this is Pointer->Pointer avoid conversion to and from int. 1193 if (isa<llvm::PointerType>(Ty)) 1194 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1195 1196 // Convert the pointer to an integer so we can play with its width. 1197 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1198 } 1199 1200 llvm::Type *DestIntTy = Ty; 1201 if (isa<llvm::PointerType>(DestIntTy)) 1202 DestIntTy = CGF.IntPtrTy; 1203 1204 if (Val->getType() != DestIntTy) { 1205 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1206 if (DL.isBigEndian()) { 1207 // Preserve the high bits on big-endian targets. 1208 // That is what memory coercion does. 1209 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1210 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1211 1212 if (SrcSize > DstSize) { 1213 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1214 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1215 } else { 1216 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1217 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1218 } 1219 } else { 1220 // Little-endian targets preserve the low bits. No shifts required. 1221 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1222 } 1223 } 1224 1225 if (isa<llvm::PointerType>(Ty)) 1226 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1227 return Val; 1228 } 1229 1230 1231 1232 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1233 /// a pointer to an object of type \arg Ty, known to be aligned to 1234 /// \arg SrcAlign bytes. 1235 /// 1236 /// This safely handles the case when the src type is smaller than the 1237 /// destination type; in this situation the values of bits which not 1238 /// present in the src are undefined. 1239 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1240 CodeGenFunction &CGF) { 1241 llvm::Type *SrcTy = Src.getElementType(); 1242 1243 // If SrcTy and Ty are the same, just do a load. 1244 if (SrcTy == Ty) 1245 return CGF.Builder.CreateLoad(Src); 1246 1247 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1248 1249 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1250 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1251 DstSize.getFixedSize(), CGF); 1252 SrcTy = Src.getElementType(); 1253 } 1254 1255 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1256 1257 // If the source and destination are integer or pointer types, just do an 1258 // extension or truncation to the desired type. 1259 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1260 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1261 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1262 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1263 } 1264 1265 // If load is legal, just bitcast the src pointer. 1266 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1267 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1268 // Generally SrcSize is never greater than DstSize, since this means we are 1269 // losing bits. However, this can happen in cases where the structure has 1270 // additional padding, for example due to a user specified alignment. 1271 // 1272 // FIXME: Assert that we aren't truncating non-padding bits when have access 1273 // to that information. 1274 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1275 return CGF.Builder.CreateLoad(Src); 1276 } 1277 1278 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1279 // the types match, use the llvm.experimental.vector.insert intrinsic to 1280 // perform the conversion. 1281 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1282 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1283 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1284 // vector, use a vector insert and bitcast the result. 1285 bool NeedsBitcast = false; 1286 auto PredType = 1287 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1288 llvm::Type *OrigType = Ty; 1289 if (ScalableDst == PredType && 1290 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1291 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1292 NeedsBitcast = true; 1293 } 1294 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1295 auto *Load = CGF.Builder.CreateLoad(Src); 1296 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1297 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1298 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1299 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1300 if (NeedsBitcast) 1301 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1302 return Result; 1303 } 1304 } 1305 } 1306 1307 // Otherwise do coercion through memory. This is stupid, but simple. 1308 Address Tmp = 1309 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1310 CGF.Builder.CreateMemCpy( 1311 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1312 Src.getAlignment().getAsAlign(), 1313 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1314 return CGF.Builder.CreateLoad(Tmp); 1315 } 1316 1317 // Function to store a first-class aggregate into memory. We prefer to 1318 // store the elements rather than the aggregate to be more friendly to 1319 // fast-isel. 1320 // FIXME: Do we need to recurse here? 1321 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1322 bool DestIsVolatile) { 1323 // Prefer scalar stores to first-class aggregate stores. 1324 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1325 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1326 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1327 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1328 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1329 } 1330 } else { 1331 Builder.CreateStore(Val, Dest, DestIsVolatile); 1332 } 1333 } 1334 1335 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1336 /// where the source and destination may have different types. The 1337 /// destination is known to be aligned to \arg DstAlign bytes. 1338 /// 1339 /// This safely handles the case when the src type is larger than the 1340 /// destination type; the upper bits of the src will be lost. 1341 static void CreateCoercedStore(llvm::Value *Src, 1342 Address Dst, 1343 bool DstIsVolatile, 1344 CodeGenFunction &CGF) { 1345 llvm::Type *SrcTy = Src->getType(); 1346 llvm::Type *DstTy = Dst.getElementType(); 1347 if (SrcTy == DstTy) { 1348 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1349 return; 1350 } 1351 1352 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1353 1354 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1355 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1356 SrcSize.getFixedSize(), CGF); 1357 DstTy = Dst.getElementType(); 1358 } 1359 1360 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1361 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1362 if (SrcPtrTy && DstPtrTy && 1363 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1364 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1365 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1366 return; 1367 } 1368 1369 // If the source and destination are integer or pointer types, just do an 1370 // extension or truncation to the desired type. 1371 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1372 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1373 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1374 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1375 return; 1376 } 1377 1378 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1379 1380 // If store is legal, just bitcast the src pointer. 1381 if (isa<llvm::ScalableVectorType>(SrcTy) || 1382 isa<llvm::ScalableVectorType>(DstTy) || 1383 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1384 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1385 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1386 } else { 1387 // Otherwise do coercion through memory. This is stupid, but 1388 // simple. 1389 1390 // Generally SrcSize is never greater than DstSize, since this means we are 1391 // losing bits. However, this can happen in cases where the structure has 1392 // additional padding, for example due to a user specified alignment. 1393 // 1394 // FIXME: Assert that we aren't truncating non-padding bits when have access 1395 // to that information. 1396 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1397 CGF.Builder.CreateStore(Src, Tmp); 1398 CGF.Builder.CreateMemCpy( 1399 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1400 Tmp.getAlignment().getAsAlign(), 1401 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1402 } 1403 } 1404 1405 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1406 const ABIArgInfo &info) { 1407 if (unsigned offset = info.getDirectOffset()) { 1408 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1409 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1410 CharUnits::fromQuantity(offset)); 1411 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1412 } 1413 return addr; 1414 } 1415 1416 namespace { 1417 1418 /// Encapsulates information about the way function arguments from 1419 /// CGFunctionInfo should be passed to actual LLVM IR function. 1420 class ClangToLLVMArgMapping { 1421 static const unsigned InvalidIndex = ~0U; 1422 unsigned InallocaArgNo; 1423 unsigned SRetArgNo; 1424 unsigned TotalIRArgs; 1425 1426 /// Arguments of LLVM IR function corresponding to single Clang argument. 1427 struct IRArgs { 1428 unsigned PaddingArgIndex; 1429 // Argument is expanded to IR arguments at positions 1430 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1431 unsigned FirstArgIndex; 1432 unsigned NumberOfArgs; 1433 1434 IRArgs() 1435 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1436 NumberOfArgs(0) {} 1437 }; 1438 1439 SmallVector<IRArgs, 8> ArgInfo; 1440 1441 public: 1442 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1443 bool OnlyRequiredArgs = false) 1444 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1445 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1446 construct(Context, FI, OnlyRequiredArgs); 1447 } 1448 1449 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1450 unsigned getInallocaArgNo() const { 1451 assert(hasInallocaArg()); 1452 return InallocaArgNo; 1453 } 1454 1455 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1456 unsigned getSRetArgNo() const { 1457 assert(hasSRetArg()); 1458 return SRetArgNo; 1459 } 1460 1461 unsigned totalIRArgs() const { return TotalIRArgs; } 1462 1463 bool hasPaddingArg(unsigned ArgNo) const { 1464 assert(ArgNo < ArgInfo.size()); 1465 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1466 } 1467 unsigned getPaddingArgNo(unsigned ArgNo) const { 1468 assert(hasPaddingArg(ArgNo)); 1469 return ArgInfo[ArgNo].PaddingArgIndex; 1470 } 1471 1472 /// Returns index of first IR argument corresponding to ArgNo, and their 1473 /// quantity. 1474 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1475 assert(ArgNo < ArgInfo.size()); 1476 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1477 ArgInfo[ArgNo].NumberOfArgs); 1478 } 1479 1480 private: 1481 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1482 bool OnlyRequiredArgs); 1483 }; 1484 1485 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1486 const CGFunctionInfo &FI, 1487 bool OnlyRequiredArgs) { 1488 unsigned IRArgNo = 0; 1489 bool SwapThisWithSRet = false; 1490 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1491 1492 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1493 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1494 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1495 } 1496 1497 unsigned ArgNo = 0; 1498 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1499 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1500 ++I, ++ArgNo) { 1501 assert(I != FI.arg_end()); 1502 QualType ArgType = I->type; 1503 const ABIArgInfo &AI = I->info; 1504 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1505 auto &IRArgs = ArgInfo[ArgNo]; 1506 1507 if (AI.getPaddingType()) 1508 IRArgs.PaddingArgIndex = IRArgNo++; 1509 1510 switch (AI.getKind()) { 1511 case ABIArgInfo::Extend: 1512 case ABIArgInfo::Direct: { 1513 // FIXME: handle sseregparm someday... 1514 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1515 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1516 IRArgs.NumberOfArgs = STy->getNumElements(); 1517 } else { 1518 IRArgs.NumberOfArgs = 1; 1519 } 1520 break; 1521 } 1522 case ABIArgInfo::Indirect: 1523 case ABIArgInfo::IndirectAliased: 1524 IRArgs.NumberOfArgs = 1; 1525 break; 1526 case ABIArgInfo::Ignore: 1527 case ABIArgInfo::InAlloca: 1528 // ignore and inalloca doesn't have matching LLVM parameters. 1529 IRArgs.NumberOfArgs = 0; 1530 break; 1531 case ABIArgInfo::CoerceAndExpand: 1532 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1533 break; 1534 case ABIArgInfo::Expand: 1535 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1536 break; 1537 } 1538 1539 if (IRArgs.NumberOfArgs > 0) { 1540 IRArgs.FirstArgIndex = IRArgNo; 1541 IRArgNo += IRArgs.NumberOfArgs; 1542 } 1543 1544 // Skip over the sret parameter when it comes second. We already handled it 1545 // above. 1546 if (IRArgNo == 1 && SwapThisWithSRet) 1547 IRArgNo++; 1548 } 1549 assert(ArgNo == ArgInfo.size()); 1550 1551 if (FI.usesInAlloca()) 1552 InallocaArgNo = IRArgNo++; 1553 1554 TotalIRArgs = IRArgNo; 1555 } 1556 } // namespace 1557 1558 /***/ 1559 1560 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1561 const auto &RI = FI.getReturnInfo(); 1562 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1563 } 1564 1565 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1566 return ReturnTypeUsesSRet(FI) && 1567 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1568 } 1569 1570 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1571 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1572 switch (BT->getKind()) { 1573 default: 1574 return false; 1575 case BuiltinType::Float: 1576 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1577 case BuiltinType::Double: 1578 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1579 case BuiltinType::LongDouble: 1580 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1581 } 1582 } 1583 1584 return false; 1585 } 1586 1587 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1588 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1589 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1590 if (BT->getKind() == BuiltinType::LongDouble) 1591 return getTarget().useObjCFP2RetForComplexLongDouble(); 1592 } 1593 } 1594 1595 return false; 1596 } 1597 1598 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1599 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1600 return GetFunctionType(FI); 1601 } 1602 1603 llvm::FunctionType * 1604 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1605 1606 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1607 (void)Inserted; 1608 assert(Inserted && "Recursively being processed?"); 1609 1610 llvm::Type *resultType = nullptr; 1611 const ABIArgInfo &retAI = FI.getReturnInfo(); 1612 switch (retAI.getKind()) { 1613 case ABIArgInfo::Expand: 1614 case ABIArgInfo::IndirectAliased: 1615 llvm_unreachable("Invalid ABI kind for return argument"); 1616 1617 case ABIArgInfo::Extend: 1618 case ABIArgInfo::Direct: 1619 resultType = retAI.getCoerceToType(); 1620 break; 1621 1622 case ABIArgInfo::InAlloca: 1623 if (retAI.getInAllocaSRet()) { 1624 // sret things on win32 aren't void, they return the sret pointer. 1625 QualType ret = FI.getReturnType(); 1626 llvm::Type *ty = ConvertType(ret); 1627 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1628 resultType = llvm::PointerType::get(ty, addressSpace); 1629 } else { 1630 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1631 } 1632 break; 1633 1634 case ABIArgInfo::Indirect: 1635 case ABIArgInfo::Ignore: 1636 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1637 break; 1638 1639 case ABIArgInfo::CoerceAndExpand: 1640 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1641 break; 1642 } 1643 1644 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1645 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1646 1647 // Add type for sret argument. 1648 if (IRFunctionArgs.hasSRetArg()) { 1649 QualType Ret = FI.getReturnType(); 1650 llvm::Type *Ty = ConvertType(Ret); 1651 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1652 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1653 llvm::PointerType::get(Ty, AddressSpace); 1654 } 1655 1656 // Add type for inalloca argument. 1657 if (IRFunctionArgs.hasInallocaArg()) { 1658 auto ArgStruct = FI.getArgStruct(); 1659 assert(ArgStruct); 1660 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1661 } 1662 1663 // Add in all of the required arguments. 1664 unsigned ArgNo = 0; 1665 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1666 ie = it + FI.getNumRequiredArgs(); 1667 for (; it != ie; ++it, ++ArgNo) { 1668 const ABIArgInfo &ArgInfo = it->info; 1669 1670 // Insert a padding type to ensure proper alignment. 1671 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1672 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1673 ArgInfo.getPaddingType(); 1674 1675 unsigned FirstIRArg, NumIRArgs; 1676 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1677 1678 switch (ArgInfo.getKind()) { 1679 case ABIArgInfo::Ignore: 1680 case ABIArgInfo::InAlloca: 1681 assert(NumIRArgs == 0); 1682 break; 1683 1684 case ABIArgInfo::Indirect: { 1685 assert(NumIRArgs == 1); 1686 // indirect arguments are always on the stack, which is alloca addr space. 1687 llvm::Type *LTy = ConvertTypeForMem(it->type); 1688 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1689 CGM.getDataLayout().getAllocaAddrSpace()); 1690 break; 1691 } 1692 case ABIArgInfo::IndirectAliased: { 1693 assert(NumIRArgs == 1); 1694 llvm::Type *LTy = ConvertTypeForMem(it->type); 1695 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1696 break; 1697 } 1698 case ABIArgInfo::Extend: 1699 case ABIArgInfo::Direct: { 1700 // Fast-isel and the optimizer generally like scalar values better than 1701 // FCAs, so we flatten them if this is safe to do for this argument. 1702 llvm::Type *argType = ArgInfo.getCoerceToType(); 1703 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1704 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1705 assert(NumIRArgs == st->getNumElements()); 1706 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1707 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1708 } else { 1709 assert(NumIRArgs == 1); 1710 ArgTypes[FirstIRArg] = argType; 1711 } 1712 break; 1713 } 1714 1715 case ABIArgInfo::CoerceAndExpand: { 1716 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1717 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1718 *ArgTypesIter++ = EltTy; 1719 } 1720 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1721 break; 1722 } 1723 1724 case ABIArgInfo::Expand: 1725 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1726 getExpandedTypes(it->type, ArgTypesIter); 1727 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1728 break; 1729 } 1730 } 1731 1732 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1733 assert(Erased && "Not in set?"); 1734 1735 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1736 } 1737 1738 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1739 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1740 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1741 1742 if (!isFuncTypeConvertible(FPT)) 1743 return llvm::StructType::get(getLLVMContext()); 1744 1745 return GetFunctionType(GD); 1746 } 1747 1748 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1749 llvm::AttrBuilder &FuncAttrs, 1750 const FunctionProtoType *FPT) { 1751 if (!FPT) 1752 return; 1753 1754 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1755 FPT->isNothrow()) 1756 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1757 } 1758 1759 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1760 const Decl *Callee) { 1761 if (!Callee) 1762 return; 1763 1764 SmallVector<StringRef, 4> Attrs; 1765 1766 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1767 AA->getAssumption().split(Attrs, ","); 1768 1769 if (!Attrs.empty()) 1770 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1771 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1772 } 1773 1774 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1775 QualType ReturnType) { 1776 // We can't just discard the return value for a record type with a 1777 // complex destructor or a non-trivially copyable type. 1778 if (const RecordType *RT = 1779 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1780 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1781 return ClassDecl->hasTrivialDestructor(); 1782 } 1783 return ReturnType.isTriviallyCopyableType(Context); 1784 } 1785 1786 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1787 bool HasOptnone, 1788 bool AttrOnCallSite, 1789 llvm::AttrBuilder &FuncAttrs) { 1790 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1791 if (!HasOptnone) { 1792 if (CodeGenOpts.OptimizeSize) 1793 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1794 if (CodeGenOpts.OptimizeSize == 2) 1795 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1796 } 1797 1798 if (CodeGenOpts.DisableRedZone) 1799 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1800 if (CodeGenOpts.IndirectTlsSegRefs) 1801 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1802 if (CodeGenOpts.NoImplicitFloat) 1803 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1804 1805 if (AttrOnCallSite) { 1806 // Attributes that should go on the call site only. 1807 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1808 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1809 if (!CodeGenOpts.TrapFuncName.empty()) 1810 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1811 } else { 1812 StringRef FpKind; 1813 switch (CodeGenOpts.getFramePointer()) { 1814 case CodeGenOptions::FramePointerKind::None: 1815 FpKind = "none"; 1816 break; 1817 case CodeGenOptions::FramePointerKind::NonLeaf: 1818 FpKind = "non-leaf"; 1819 break; 1820 case CodeGenOptions::FramePointerKind::All: 1821 FpKind = "all"; 1822 break; 1823 } 1824 FuncAttrs.addAttribute("frame-pointer", FpKind); 1825 1826 if (CodeGenOpts.LessPreciseFPMAD) 1827 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1828 1829 if (CodeGenOpts.NullPointerIsValid) 1830 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1831 1832 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1833 FuncAttrs.addAttribute("denormal-fp-math", 1834 CodeGenOpts.FPDenormalMode.str()); 1835 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1836 FuncAttrs.addAttribute( 1837 "denormal-fp-math-f32", 1838 CodeGenOpts.FP32DenormalMode.str()); 1839 } 1840 1841 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1842 FuncAttrs.addAttribute("no-trapping-math", "true"); 1843 1844 // TODO: Are these all needed? 1845 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1846 if (LangOpts.NoHonorInfs) 1847 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1848 if (LangOpts.NoHonorNaNs) 1849 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1850 if (LangOpts.ApproxFunc) 1851 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1852 if (LangOpts.UnsafeFPMath) 1853 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1854 if (CodeGenOpts.SoftFloat) 1855 FuncAttrs.addAttribute("use-soft-float", "true"); 1856 FuncAttrs.addAttribute("stack-protector-buffer-size", 1857 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1858 if (LangOpts.NoSignedZero) 1859 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1860 1861 // TODO: Reciprocal estimate codegen options should apply to instructions? 1862 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1863 if (!Recips.empty()) 1864 FuncAttrs.addAttribute("reciprocal-estimates", 1865 llvm::join(Recips, ",")); 1866 1867 if (!CodeGenOpts.PreferVectorWidth.empty() && 1868 CodeGenOpts.PreferVectorWidth != "none") 1869 FuncAttrs.addAttribute("prefer-vector-width", 1870 CodeGenOpts.PreferVectorWidth); 1871 1872 if (CodeGenOpts.StackRealignment) 1873 FuncAttrs.addAttribute("stackrealign"); 1874 if (CodeGenOpts.Backchain) 1875 FuncAttrs.addAttribute("backchain"); 1876 if (CodeGenOpts.EnableSegmentedStacks) 1877 FuncAttrs.addAttribute("split-stack"); 1878 1879 if (CodeGenOpts.SpeculativeLoadHardening) 1880 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1881 } 1882 1883 if (getLangOpts().assumeFunctionsAreConvergent()) { 1884 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1885 // convergent (meaning, they may call an intrinsically convergent op, such 1886 // as __syncthreads() / barrier(), and so can't have certain optimizations 1887 // applied around them). LLVM will remove this attribute where it safely 1888 // can. 1889 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1890 } 1891 1892 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1893 // Exceptions aren't supported in CUDA device code. 1894 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1895 } 1896 1897 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1898 StringRef Var, Value; 1899 std::tie(Var, Value) = Attr.split('='); 1900 FuncAttrs.addAttribute(Var, Value); 1901 } 1902 } 1903 1904 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1905 llvm::AttrBuilder FuncAttrs(F.getContext()); 1906 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1907 /* AttrOnCallSite = */ false, FuncAttrs); 1908 // TODO: call GetCPUAndFeaturesAttributes? 1909 F.addFnAttrs(FuncAttrs); 1910 } 1911 1912 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1913 llvm::AttrBuilder &attrs) { 1914 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1915 /*for call*/ false, attrs); 1916 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1917 } 1918 1919 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1920 const LangOptions &LangOpts, 1921 const NoBuiltinAttr *NBA = nullptr) { 1922 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1923 SmallString<32> AttributeName; 1924 AttributeName += "no-builtin-"; 1925 AttributeName += BuiltinName; 1926 FuncAttrs.addAttribute(AttributeName); 1927 }; 1928 1929 // First, handle the language options passed through -fno-builtin. 1930 if (LangOpts.NoBuiltin) { 1931 // -fno-builtin disables them all. 1932 FuncAttrs.addAttribute("no-builtins"); 1933 return; 1934 } 1935 1936 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1937 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1938 1939 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1940 // the source. 1941 if (!NBA) 1942 return; 1943 1944 // If there is a wildcard in the builtin names specified through the 1945 // attribute, disable them all. 1946 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1947 FuncAttrs.addAttribute("no-builtins"); 1948 return; 1949 } 1950 1951 // And last, add the rest of the builtin names. 1952 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1953 } 1954 1955 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1956 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1957 bool CheckCoerce = true) { 1958 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 1959 if (AI.getKind() == ABIArgInfo::Indirect) 1960 return true; 1961 if (AI.getKind() == ABIArgInfo::Extend) 1962 return true; 1963 if (!DL.typeSizeEqualsStoreSize(Ty)) 1964 // TODO: This will result in a modest amount of values not marked noundef 1965 // when they could be. We care about values that *invisibly* contain undef 1966 // bits from the perspective of LLVM IR. 1967 return false; 1968 if (CheckCoerce && AI.canHaveCoerceToType()) { 1969 llvm::Type *CoerceTy = AI.getCoerceToType(); 1970 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 1971 DL.getTypeSizeInBits(Ty))) 1972 // If we're coercing to a type with a greater size than the canonical one, 1973 // we're introducing new undef bits. 1974 // Coercing to a type of smaller or equal size is ok, as we know that 1975 // there's no internal padding (typeSizeEqualsStoreSize). 1976 return false; 1977 } 1978 if (QTy->isBitIntType()) 1979 return true; 1980 if (QTy->isReferenceType()) 1981 return true; 1982 if (QTy->isNullPtrType()) 1983 return false; 1984 if (QTy->isMemberPointerType()) 1985 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 1986 // now, never mark them. 1987 return false; 1988 if (QTy->isScalarType()) { 1989 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 1990 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 1991 return true; 1992 } 1993 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 1994 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 1995 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 1996 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 1997 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 1998 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 1999 2000 // TODO: Some structs may be `noundef`, in specific situations. 2001 return false; 2002 } 2003 2004 /// Construct the IR attribute list of a function or call. 2005 /// 2006 /// When adding an attribute, please consider where it should be handled: 2007 /// 2008 /// - getDefaultFunctionAttributes is for attributes that are essentially 2009 /// part of the global target configuration (but perhaps can be 2010 /// overridden on a per-function basis). Adding attributes there 2011 /// will cause them to also be set in frontends that build on Clang's 2012 /// target-configuration logic, as well as for code defined in library 2013 /// modules such as CUDA's libdevice. 2014 /// 2015 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2016 /// and adds declaration-specific, convention-specific, and 2017 /// frontend-specific logic. The last is of particular importance: 2018 /// attributes that restrict how the frontend generates code must be 2019 /// added here rather than getDefaultFunctionAttributes. 2020 /// 2021 void CodeGenModule::ConstructAttributeList(StringRef Name, 2022 const CGFunctionInfo &FI, 2023 CGCalleeInfo CalleeInfo, 2024 llvm::AttributeList &AttrList, 2025 unsigned &CallingConv, 2026 bool AttrOnCallSite, bool IsThunk) { 2027 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2028 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2029 2030 // Collect function IR attributes from the CC lowering. 2031 // We'll collect the paramete and result attributes later. 2032 CallingConv = FI.getEffectiveCallingConvention(); 2033 if (FI.isNoReturn()) 2034 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2035 if (FI.isCmseNSCall()) 2036 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2037 2038 // Collect function IR attributes from the callee prototype if we have one. 2039 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2040 CalleeInfo.getCalleeFunctionProtoType()); 2041 2042 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2043 2044 // Attach assumption attributes to the declaration. If this is a call 2045 // site, attach assumptions from the caller to the call as well. 2046 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2047 2048 bool HasOptnone = false; 2049 // The NoBuiltinAttr attached to the target FunctionDecl. 2050 const NoBuiltinAttr *NBA = nullptr; 2051 2052 // Collect function IR attributes based on declaration-specific 2053 // information. 2054 // FIXME: handle sseregparm someday... 2055 if (TargetDecl) { 2056 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2057 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2058 if (TargetDecl->hasAttr<NoThrowAttr>()) 2059 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2060 if (TargetDecl->hasAttr<NoReturnAttr>()) 2061 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2062 if (TargetDecl->hasAttr<ColdAttr>()) 2063 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2064 if (TargetDecl->hasAttr<HotAttr>()) 2065 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2066 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2067 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2068 if (TargetDecl->hasAttr<ConvergentAttr>()) 2069 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2070 2071 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2072 AddAttributesFromFunctionProtoType( 2073 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2074 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2075 // A sane operator new returns a non-aliasing pointer. 2076 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2077 if (getCodeGenOpts().AssumeSaneOperatorNew && 2078 (Kind == OO_New || Kind == OO_Array_New)) 2079 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2080 } 2081 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2082 const bool IsVirtualCall = MD && MD->isVirtual(); 2083 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2084 // virtual function. These attributes are not inherited by overloads. 2085 if (!(AttrOnCallSite && IsVirtualCall)) { 2086 if (Fn->isNoReturn()) 2087 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2088 NBA = Fn->getAttr<NoBuiltinAttr>(); 2089 } 2090 // Only place nomerge attribute on call sites, never functions. This 2091 // allows it to work on indirect virtual function calls. 2092 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2093 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2094 } 2095 2096 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2097 if (TargetDecl->hasAttr<ConstAttr>()) { 2098 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2099 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2100 // gcc specifies that 'const' functions have greater restrictions than 2101 // 'pure' functions, so they also cannot have infinite loops. 2102 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2103 } else if (TargetDecl->hasAttr<PureAttr>()) { 2104 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2105 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2106 // gcc specifies that 'pure' functions cannot have infinite loops. 2107 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2108 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2109 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2110 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2111 } 2112 if (TargetDecl->hasAttr<RestrictAttr>()) 2113 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2114 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2115 !CodeGenOpts.NullPointerIsValid) 2116 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2117 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2118 FuncAttrs.addAttribute("no_caller_saved_registers"); 2119 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2120 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2121 if (TargetDecl->hasAttr<LeafAttr>()) 2122 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2123 2124 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2125 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2126 Optional<unsigned> NumElemsParam; 2127 if (AllocSize->getNumElemsParam().isValid()) 2128 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2129 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2130 NumElemsParam); 2131 } 2132 2133 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2134 if (getLangOpts().OpenCLVersion <= 120) { 2135 // OpenCL v1.2 Work groups are always uniform 2136 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2137 } else { 2138 // OpenCL v2.0 Work groups may be whether uniform or not. 2139 // '-cl-uniform-work-group-size' compile option gets a hint 2140 // to the compiler that the global work-size be a multiple of 2141 // the work-group size specified to clEnqueueNDRangeKernel 2142 // (i.e. work groups are uniform). 2143 FuncAttrs.addAttribute("uniform-work-group-size", 2144 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2145 } 2146 } 2147 } 2148 2149 // Attach "no-builtins" attributes to: 2150 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2151 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2152 // The attributes can come from: 2153 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2154 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2155 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2156 2157 // Collect function IR attributes based on global settiings. 2158 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2159 2160 // Override some default IR attributes based on declaration-specific 2161 // information. 2162 if (TargetDecl) { 2163 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2164 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2165 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2166 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2167 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2168 FuncAttrs.removeAttribute("split-stack"); 2169 2170 // Add NonLazyBind attribute to function declarations when -fno-plt 2171 // is used. 2172 // FIXME: what if we just haven't processed the function definition 2173 // yet, or if it's an external definition like C99 inline? 2174 if (CodeGenOpts.NoPLT) { 2175 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2176 if (!Fn->isDefined() && !AttrOnCallSite) { 2177 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2178 } 2179 } 2180 } 2181 } 2182 2183 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2184 // functions with -funique-internal-linkage-names. 2185 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2186 if (isa<FunctionDecl>(TargetDecl)) { 2187 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2188 llvm::GlobalValue::InternalLinkage) 2189 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2190 "selected"); 2191 } 2192 } 2193 2194 // Collect non-call-site function IR attributes from declaration-specific 2195 // information. 2196 if (!AttrOnCallSite) { 2197 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2198 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2199 2200 // Whether tail calls are enabled. 2201 auto shouldDisableTailCalls = [&] { 2202 // Should this be honored in getDefaultFunctionAttributes? 2203 if (CodeGenOpts.DisableTailCalls) 2204 return true; 2205 2206 if (!TargetDecl) 2207 return false; 2208 2209 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2210 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2211 return true; 2212 2213 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2214 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2215 if (!BD->doesNotEscape()) 2216 return true; 2217 } 2218 2219 return false; 2220 }; 2221 if (shouldDisableTailCalls()) 2222 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2223 2224 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2225 // handles these separately to set them based on the global defaults. 2226 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2227 } 2228 2229 // Collect attributes from arguments and return values. 2230 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2231 2232 QualType RetTy = FI.getReturnType(); 2233 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2234 const llvm::DataLayout &DL = getDataLayout(); 2235 2236 // C++ explicitly makes returning undefined values UB. C's rule only applies 2237 // to used values, so we never mark them noundef for now. 2238 bool HasStrictReturn = getLangOpts().CPlusPlus; 2239 if (TargetDecl && HasStrictReturn) { 2240 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2241 HasStrictReturn &= !FDecl->isExternC(); 2242 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2243 // Function pointer 2244 HasStrictReturn &= !VDecl->isExternC(); 2245 } 2246 2247 // We don't want to be too aggressive with the return checking, unless 2248 // it's explicit in the code opts or we're using an appropriate sanitizer. 2249 // Try to respect what the programmer intended. 2250 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2251 !MayDropFunctionReturn(getContext(), RetTy) || 2252 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2253 getLangOpts().Sanitize.has(SanitizerKind::Return); 2254 2255 // Determine if the return type could be partially undef 2256 if (!CodeGenOpts.DisableNoundefAttrs && HasStrictReturn) { 2257 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2258 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2259 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2260 } 2261 2262 switch (RetAI.getKind()) { 2263 case ABIArgInfo::Extend: 2264 if (RetAI.isSignExt()) 2265 RetAttrs.addAttribute(llvm::Attribute::SExt); 2266 else 2267 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2268 LLVM_FALLTHROUGH; 2269 case ABIArgInfo::Direct: 2270 if (RetAI.getInReg()) 2271 RetAttrs.addAttribute(llvm::Attribute::InReg); 2272 break; 2273 case ABIArgInfo::Ignore: 2274 break; 2275 2276 case ABIArgInfo::InAlloca: 2277 case ABIArgInfo::Indirect: { 2278 // inalloca and sret disable readnone and readonly 2279 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2280 .removeAttribute(llvm::Attribute::ReadNone); 2281 break; 2282 } 2283 2284 case ABIArgInfo::CoerceAndExpand: 2285 break; 2286 2287 case ABIArgInfo::Expand: 2288 case ABIArgInfo::IndirectAliased: 2289 llvm_unreachable("Invalid ABI kind for return argument"); 2290 } 2291 2292 if (!IsThunk) { 2293 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2294 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2295 QualType PTy = RefTy->getPointeeType(); 2296 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2297 RetAttrs.addDereferenceableAttr( 2298 getMinimumObjectSize(PTy).getQuantity()); 2299 if (getContext().getTargetAddressSpace(PTy) == 0 && 2300 !CodeGenOpts.NullPointerIsValid) 2301 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2302 if (PTy->isObjectType()) { 2303 llvm::Align Alignment = 2304 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2305 RetAttrs.addAlignmentAttr(Alignment); 2306 } 2307 } 2308 } 2309 2310 bool hasUsedSRet = false; 2311 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2312 2313 // Attach attributes to sret. 2314 if (IRFunctionArgs.hasSRetArg()) { 2315 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2316 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2317 hasUsedSRet = true; 2318 if (RetAI.getInReg()) 2319 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2320 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2321 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2322 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2323 } 2324 2325 // Attach attributes to inalloca argument. 2326 if (IRFunctionArgs.hasInallocaArg()) { 2327 llvm::AttrBuilder Attrs(getLLVMContext()); 2328 Attrs.addInAllocaAttr(FI.getArgStruct()); 2329 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2330 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2331 } 2332 2333 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2334 // unless this is a thunk function. 2335 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2336 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2337 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2338 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2339 2340 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2341 2342 llvm::AttrBuilder Attrs(getLLVMContext()); 2343 2344 QualType ThisTy = 2345 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2346 2347 if (!CodeGenOpts.NullPointerIsValid && 2348 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2349 Attrs.addAttribute(llvm::Attribute::NonNull); 2350 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2351 } else { 2352 // FIXME dereferenceable should be correct here, regardless of 2353 // NullPointerIsValid. However, dereferenceable currently does not always 2354 // respect NullPointerIsValid and may imply nonnull and break the program. 2355 // See https://reviews.llvm.org/D66618 for discussions. 2356 Attrs.addDereferenceableOrNullAttr( 2357 getMinimumObjectSize( 2358 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2359 .getQuantity()); 2360 } 2361 2362 llvm::Align Alignment = 2363 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2364 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2365 .getAsAlign(); 2366 Attrs.addAlignmentAttr(Alignment); 2367 2368 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2369 } 2370 2371 unsigned ArgNo = 0; 2372 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2373 E = FI.arg_end(); 2374 I != E; ++I, ++ArgNo) { 2375 QualType ParamType = I->type; 2376 const ABIArgInfo &AI = I->info; 2377 llvm::AttrBuilder Attrs(getLLVMContext()); 2378 2379 // Add attribute for padding argument, if necessary. 2380 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2381 if (AI.getPaddingInReg()) { 2382 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2383 llvm::AttributeSet::get( 2384 getLLVMContext(), 2385 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2386 } 2387 } 2388 2389 // Decide whether the argument we're handling could be partially undef 2390 if (!CodeGenOpts.DisableNoundefAttrs && 2391 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2392 Attrs.addAttribute(llvm::Attribute::NoUndef); 2393 } 2394 2395 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2396 // have the corresponding parameter variable. It doesn't make 2397 // sense to do it here because parameters are so messed up. 2398 switch (AI.getKind()) { 2399 case ABIArgInfo::Extend: 2400 if (AI.isSignExt()) 2401 Attrs.addAttribute(llvm::Attribute::SExt); 2402 else 2403 Attrs.addAttribute(llvm::Attribute::ZExt); 2404 LLVM_FALLTHROUGH; 2405 case ABIArgInfo::Direct: 2406 if (ArgNo == 0 && FI.isChainCall()) 2407 Attrs.addAttribute(llvm::Attribute::Nest); 2408 else if (AI.getInReg()) 2409 Attrs.addAttribute(llvm::Attribute::InReg); 2410 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2411 break; 2412 2413 case ABIArgInfo::Indirect: { 2414 if (AI.getInReg()) 2415 Attrs.addAttribute(llvm::Attribute::InReg); 2416 2417 if (AI.getIndirectByVal()) 2418 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2419 2420 auto *Decl = ParamType->getAsRecordDecl(); 2421 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2422 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2423 // When calling the function, the pointer passed in will be the only 2424 // reference to the underlying object. Mark it accordingly. 2425 Attrs.addAttribute(llvm::Attribute::NoAlias); 2426 2427 // TODO: We could add the byref attribute if not byval, but it would 2428 // require updating many testcases. 2429 2430 CharUnits Align = AI.getIndirectAlign(); 2431 2432 // In a byval argument, it is important that the required 2433 // alignment of the type is honored, as LLVM might be creating a 2434 // *new* stack object, and needs to know what alignment to give 2435 // it. (Sometimes it can deduce a sensible alignment on its own, 2436 // but not if clang decides it must emit a packed struct, or the 2437 // user specifies increased alignment requirements.) 2438 // 2439 // This is different from indirect *not* byval, where the object 2440 // exists already, and the align attribute is purely 2441 // informative. 2442 assert(!Align.isZero()); 2443 2444 // For now, only add this when we have a byval argument. 2445 // TODO: be less lazy about updating test cases. 2446 if (AI.getIndirectByVal()) 2447 Attrs.addAlignmentAttr(Align.getQuantity()); 2448 2449 // byval disables readnone and readonly. 2450 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2451 .removeAttribute(llvm::Attribute::ReadNone); 2452 2453 break; 2454 } 2455 case ABIArgInfo::IndirectAliased: { 2456 CharUnits Align = AI.getIndirectAlign(); 2457 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2458 Attrs.addAlignmentAttr(Align.getQuantity()); 2459 break; 2460 } 2461 case ABIArgInfo::Ignore: 2462 case ABIArgInfo::Expand: 2463 case ABIArgInfo::CoerceAndExpand: 2464 break; 2465 2466 case ABIArgInfo::InAlloca: 2467 // inalloca disables readnone and readonly. 2468 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2469 .removeAttribute(llvm::Attribute::ReadNone); 2470 continue; 2471 } 2472 2473 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2474 QualType PTy = RefTy->getPointeeType(); 2475 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2476 Attrs.addDereferenceableAttr( 2477 getMinimumObjectSize(PTy).getQuantity()); 2478 if (getContext().getTargetAddressSpace(PTy) == 0 && 2479 !CodeGenOpts.NullPointerIsValid) 2480 Attrs.addAttribute(llvm::Attribute::NonNull); 2481 if (PTy->isObjectType()) { 2482 llvm::Align Alignment = 2483 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2484 Attrs.addAlignmentAttr(Alignment); 2485 } 2486 } 2487 2488 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2489 case ParameterABI::Ordinary: 2490 break; 2491 2492 case ParameterABI::SwiftIndirectResult: { 2493 // Add 'sret' if we haven't already used it for something, but 2494 // only if the result is void. 2495 if (!hasUsedSRet && RetTy->isVoidType()) { 2496 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2497 hasUsedSRet = true; 2498 } 2499 2500 // Add 'noalias' in either case. 2501 Attrs.addAttribute(llvm::Attribute::NoAlias); 2502 2503 // Add 'dereferenceable' and 'alignment'. 2504 auto PTy = ParamType->getPointeeType(); 2505 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2506 auto info = getContext().getTypeInfoInChars(PTy); 2507 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2508 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2509 } 2510 break; 2511 } 2512 2513 case ParameterABI::SwiftErrorResult: 2514 Attrs.addAttribute(llvm::Attribute::SwiftError); 2515 break; 2516 2517 case ParameterABI::SwiftContext: 2518 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2519 break; 2520 2521 case ParameterABI::SwiftAsyncContext: 2522 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2523 break; 2524 } 2525 2526 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2527 Attrs.addAttribute(llvm::Attribute::NoCapture); 2528 2529 if (Attrs.hasAttributes()) { 2530 unsigned FirstIRArg, NumIRArgs; 2531 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2532 for (unsigned i = 0; i < NumIRArgs; i++) 2533 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2534 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2535 } 2536 } 2537 assert(ArgNo == FI.arg_size()); 2538 2539 AttrList = llvm::AttributeList::get( 2540 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2541 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2542 } 2543 2544 /// An argument came in as a promoted argument; demote it back to its 2545 /// declared type. 2546 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2547 const VarDecl *var, 2548 llvm::Value *value) { 2549 llvm::Type *varType = CGF.ConvertType(var->getType()); 2550 2551 // This can happen with promotions that actually don't change the 2552 // underlying type, like the enum promotions. 2553 if (value->getType() == varType) return value; 2554 2555 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2556 && "unexpected promotion type"); 2557 2558 if (isa<llvm::IntegerType>(varType)) 2559 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2560 2561 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2562 } 2563 2564 /// Returns the attribute (either parameter attribute, or function 2565 /// attribute), which declares argument ArgNo to be non-null. 2566 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2567 QualType ArgType, unsigned ArgNo) { 2568 // FIXME: __attribute__((nonnull)) can also be applied to: 2569 // - references to pointers, where the pointee is known to be 2570 // nonnull (apparently a Clang extension) 2571 // - transparent unions containing pointers 2572 // In the former case, LLVM IR cannot represent the constraint. In 2573 // the latter case, we have no guarantee that the transparent union 2574 // is in fact passed as a pointer. 2575 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2576 return nullptr; 2577 // First, check attribute on parameter itself. 2578 if (PVD) { 2579 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2580 return ParmNNAttr; 2581 } 2582 // Check function attributes. 2583 if (!FD) 2584 return nullptr; 2585 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2586 if (NNAttr->isNonNull(ArgNo)) 2587 return NNAttr; 2588 } 2589 return nullptr; 2590 } 2591 2592 namespace { 2593 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2594 Address Temp; 2595 Address Arg; 2596 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2597 void Emit(CodeGenFunction &CGF, Flags flags) override { 2598 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2599 CGF.Builder.CreateStore(errorValue, Arg); 2600 } 2601 }; 2602 } 2603 2604 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2605 llvm::Function *Fn, 2606 const FunctionArgList &Args) { 2607 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2608 // Naked functions don't have prologues. 2609 return; 2610 2611 // If this is an implicit-return-zero function, go ahead and 2612 // initialize the return value. TODO: it might be nice to have 2613 // a more general mechanism for this that didn't require synthesized 2614 // return statements. 2615 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2616 if (FD->hasImplicitReturnZero()) { 2617 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2618 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2619 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2620 Builder.CreateStore(Zero, ReturnValue); 2621 } 2622 } 2623 2624 // FIXME: We no longer need the types from FunctionArgList; lift up and 2625 // simplify. 2626 2627 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2628 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2629 2630 // If we're using inalloca, all the memory arguments are GEPs off of the last 2631 // parameter, which is a pointer to the complete memory area. 2632 Address ArgStruct = Address::invalid(); 2633 if (IRFunctionArgs.hasInallocaArg()) { 2634 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2635 FI.getArgStructAlignment()); 2636 2637 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2638 } 2639 2640 // Name the struct return parameter. 2641 if (IRFunctionArgs.hasSRetArg()) { 2642 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2643 AI->setName("agg.result"); 2644 AI->addAttr(llvm::Attribute::NoAlias); 2645 } 2646 2647 // Track if we received the parameter as a pointer (indirect, byval, or 2648 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2649 // into a local alloca for us. 2650 SmallVector<ParamValue, 16> ArgVals; 2651 ArgVals.reserve(Args.size()); 2652 2653 // Create a pointer value for every parameter declaration. This usually 2654 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2655 // any cleanups or do anything that might unwind. We do that separately, so 2656 // we can push the cleanups in the correct order for the ABI. 2657 assert(FI.arg_size() == Args.size() && 2658 "Mismatch between function signature & arguments."); 2659 unsigned ArgNo = 0; 2660 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2661 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2662 i != e; ++i, ++info_it, ++ArgNo) { 2663 const VarDecl *Arg = *i; 2664 const ABIArgInfo &ArgI = info_it->info; 2665 2666 bool isPromoted = 2667 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2668 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2669 // the parameter is promoted. In this case we convert to 2670 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2671 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2672 assert(hasScalarEvaluationKind(Ty) == 2673 hasScalarEvaluationKind(Arg->getType())); 2674 2675 unsigned FirstIRArg, NumIRArgs; 2676 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2677 2678 switch (ArgI.getKind()) { 2679 case ABIArgInfo::InAlloca: { 2680 assert(NumIRArgs == 0); 2681 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2682 Address V = 2683 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2684 if (ArgI.getInAllocaIndirect()) 2685 V = Address(Builder.CreateLoad(V), 2686 getContext().getTypeAlignInChars(Ty)); 2687 ArgVals.push_back(ParamValue::forIndirect(V)); 2688 break; 2689 } 2690 2691 case ABIArgInfo::Indirect: 2692 case ABIArgInfo::IndirectAliased: { 2693 assert(NumIRArgs == 1); 2694 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2695 ArgI.getIndirectAlign()); 2696 2697 if (!hasScalarEvaluationKind(Ty)) { 2698 // Aggregates and complex variables are accessed by reference. All we 2699 // need to do is realign the value, if requested. Also, if the address 2700 // may be aliased, copy it to ensure that the parameter variable is 2701 // mutable and has a unique adress, as C requires. 2702 Address V = ParamAddr; 2703 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2704 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2705 2706 // Copy from the incoming argument pointer to the temporary with the 2707 // appropriate alignment. 2708 // 2709 // FIXME: We should have a common utility for generating an aggregate 2710 // copy. 2711 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2712 Builder.CreateMemCpy( 2713 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2714 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2715 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2716 V = AlignedTemp; 2717 } 2718 ArgVals.push_back(ParamValue::forIndirect(V)); 2719 } else { 2720 // Load scalar value from indirect argument. 2721 llvm::Value *V = 2722 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2723 2724 if (isPromoted) 2725 V = emitArgumentDemotion(*this, Arg, V); 2726 ArgVals.push_back(ParamValue::forDirect(V)); 2727 } 2728 break; 2729 } 2730 2731 case ABIArgInfo::Extend: 2732 case ABIArgInfo::Direct: { 2733 auto AI = Fn->getArg(FirstIRArg); 2734 llvm::Type *LTy = ConvertType(Arg->getType()); 2735 2736 // Prepare parameter attributes. So far, only attributes for pointer 2737 // parameters are prepared. See 2738 // http://llvm.org/docs/LangRef.html#paramattrs. 2739 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2740 ArgI.getCoerceToType()->isPointerTy()) { 2741 assert(NumIRArgs == 1); 2742 2743 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2744 // Set `nonnull` attribute if any. 2745 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2746 PVD->getFunctionScopeIndex()) && 2747 !CGM.getCodeGenOpts().NullPointerIsValid) 2748 AI->addAttr(llvm::Attribute::NonNull); 2749 2750 QualType OTy = PVD->getOriginalType(); 2751 if (const auto *ArrTy = 2752 getContext().getAsConstantArrayType(OTy)) { 2753 // A C99 array parameter declaration with the static keyword also 2754 // indicates dereferenceability, and if the size is constant we can 2755 // use the dereferenceable attribute (which requires the size in 2756 // bytes). 2757 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2758 QualType ETy = ArrTy->getElementType(); 2759 llvm::Align Alignment = 2760 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2761 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2762 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2763 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2764 ArrSize) { 2765 llvm::AttrBuilder Attrs(getLLVMContext()); 2766 Attrs.addDereferenceableAttr( 2767 getContext().getTypeSizeInChars(ETy).getQuantity() * 2768 ArrSize); 2769 AI->addAttrs(Attrs); 2770 } else if (getContext().getTargetInfo().getNullPointerValue( 2771 ETy.getAddressSpace()) == 0 && 2772 !CGM.getCodeGenOpts().NullPointerIsValid) { 2773 AI->addAttr(llvm::Attribute::NonNull); 2774 } 2775 } 2776 } else if (const auto *ArrTy = 2777 getContext().getAsVariableArrayType(OTy)) { 2778 // For C99 VLAs with the static keyword, we don't know the size so 2779 // we can't use the dereferenceable attribute, but in addrspace(0) 2780 // we know that it must be nonnull. 2781 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2782 QualType ETy = ArrTy->getElementType(); 2783 llvm::Align Alignment = 2784 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2785 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2786 if (!getContext().getTargetAddressSpace(ETy) && 2787 !CGM.getCodeGenOpts().NullPointerIsValid) 2788 AI->addAttr(llvm::Attribute::NonNull); 2789 } 2790 } 2791 2792 // Set `align` attribute if any. 2793 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2794 if (!AVAttr) 2795 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2796 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2797 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2798 // If alignment-assumption sanitizer is enabled, we do *not* add 2799 // alignment attribute here, but emit normal alignment assumption, 2800 // so the UBSAN check could function. 2801 llvm::ConstantInt *AlignmentCI = 2802 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2803 uint64_t AlignmentInt = 2804 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2805 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2806 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2807 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2808 llvm::Align(AlignmentInt))); 2809 } 2810 } 2811 } 2812 2813 // Set 'noalias' if an argument type has the `restrict` qualifier. 2814 if (Arg->getType().isRestrictQualified()) 2815 AI->addAttr(llvm::Attribute::NoAlias); 2816 } 2817 2818 // Prepare the argument value. If we have the trivial case, handle it 2819 // with no muss and fuss. 2820 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2821 ArgI.getCoerceToType() == ConvertType(Ty) && 2822 ArgI.getDirectOffset() == 0) { 2823 assert(NumIRArgs == 1); 2824 2825 // LLVM expects swifterror parameters to be used in very restricted 2826 // ways. Copy the value into a less-restricted temporary. 2827 llvm::Value *V = AI; 2828 if (FI.getExtParameterInfo(ArgNo).getABI() 2829 == ParameterABI::SwiftErrorResult) { 2830 QualType pointeeTy = Ty->getPointeeType(); 2831 assert(pointeeTy->isPointerType()); 2832 Address temp = 2833 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2834 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2835 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2836 Builder.CreateStore(incomingErrorValue, temp); 2837 V = temp.getPointer(); 2838 2839 // Push a cleanup to copy the value back at the end of the function. 2840 // The convention does not guarantee that the value will be written 2841 // back if the function exits with an unwind exception. 2842 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2843 } 2844 2845 // Ensure the argument is the correct type. 2846 if (V->getType() != ArgI.getCoerceToType()) 2847 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2848 2849 if (isPromoted) 2850 V = emitArgumentDemotion(*this, Arg, V); 2851 2852 // Because of merging of function types from multiple decls it is 2853 // possible for the type of an argument to not match the corresponding 2854 // type in the function type. Since we are codegening the callee 2855 // in here, add a cast to the argument type. 2856 llvm::Type *LTy = ConvertType(Arg->getType()); 2857 if (V->getType() != LTy) 2858 V = Builder.CreateBitCast(V, LTy); 2859 2860 ArgVals.push_back(ParamValue::forDirect(V)); 2861 break; 2862 } 2863 2864 // VLST arguments are coerced to VLATs at the function boundary for 2865 // ABI consistency. If this is a VLST that was coerced to 2866 // a VLAT at the function boundary and the types match up, use 2867 // llvm.experimental.vector.extract to convert back to the original 2868 // VLST. 2869 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2870 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2871 if (auto *VecTyFrom = 2872 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2873 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2874 // vector, bitcast the source and use a vector extract. 2875 auto PredType = 2876 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2877 if (VecTyFrom == PredType && 2878 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2879 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2880 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2881 } 2882 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2883 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2884 2885 assert(NumIRArgs == 1); 2886 Coerced->setName(Arg->getName() + ".coerce"); 2887 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2888 VecTyTo, Coerced, Zero, "castFixedSve"))); 2889 break; 2890 } 2891 } 2892 } 2893 2894 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2895 Arg->getName()); 2896 2897 // Pointer to store into. 2898 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2899 2900 // Fast-isel and the optimizer generally like scalar values better than 2901 // FCAs, so we flatten them if this is safe to do for this argument. 2902 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2903 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2904 STy->getNumElements() > 1) { 2905 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2906 llvm::Type *DstTy = Ptr.getElementType(); 2907 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2908 2909 Address AddrToStoreInto = Address::invalid(); 2910 if (SrcSize <= DstSize) { 2911 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2912 } else { 2913 AddrToStoreInto = 2914 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2915 } 2916 2917 assert(STy->getNumElements() == NumIRArgs); 2918 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2919 auto AI = Fn->getArg(FirstIRArg + i); 2920 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2921 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2922 Builder.CreateStore(AI, EltPtr); 2923 } 2924 2925 if (SrcSize > DstSize) { 2926 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2927 } 2928 2929 } else { 2930 // Simple case, just do a coerced store of the argument into the alloca. 2931 assert(NumIRArgs == 1); 2932 auto AI = Fn->getArg(FirstIRArg); 2933 AI->setName(Arg->getName() + ".coerce"); 2934 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2935 } 2936 2937 // Match to what EmitParmDecl is expecting for this type. 2938 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2939 llvm::Value *V = 2940 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2941 if (isPromoted) 2942 V = emitArgumentDemotion(*this, Arg, V); 2943 ArgVals.push_back(ParamValue::forDirect(V)); 2944 } else { 2945 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2946 } 2947 break; 2948 } 2949 2950 case ABIArgInfo::CoerceAndExpand: { 2951 // Reconstruct into a temporary. 2952 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2953 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2954 2955 auto coercionType = ArgI.getCoerceAndExpandType(); 2956 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2957 2958 unsigned argIndex = FirstIRArg; 2959 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2960 llvm::Type *eltType = coercionType->getElementType(i); 2961 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2962 continue; 2963 2964 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2965 auto elt = Fn->getArg(argIndex++); 2966 Builder.CreateStore(elt, eltAddr); 2967 } 2968 assert(argIndex == FirstIRArg + NumIRArgs); 2969 break; 2970 } 2971 2972 case ABIArgInfo::Expand: { 2973 // If this structure was expanded into multiple arguments then 2974 // we need to create a temporary and reconstruct it from the 2975 // arguments. 2976 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2977 LValue LV = MakeAddrLValue(Alloca, Ty); 2978 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2979 2980 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2981 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2982 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2983 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2984 auto AI = Fn->getArg(FirstIRArg + i); 2985 AI->setName(Arg->getName() + "." + Twine(i)); 2986 } 2987 break; 2988 } 2989 2990 case ABIArgInfo::Ignore: 2991 assert(NumIRArgs == 0); 2992 // Initialize the local variable appropriately. 2993 if (!hasScalarEvaluationKind(Ty)) { 2994 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2995 } else { 2996 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2997 ArgVals.push_back(ParamValue::forDirect(U)); 2998 } 2999 break; 3000 } 3001 } 3002 3003 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3004 for (int I = Args.size() - 1; I >= 0; --I) 3005 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3006 } else { 3007 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3008 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3009 } 3010 } 3011 3012 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3013 while (insn->use_empty()) { 3014 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3015 if (!bitcast) return; 3016 3017 // This is "safe" because we would have used a ConstantExpr otherwise. 3018 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3019 bitcast->eraseFromParent(); 3020 } 3021 } 3022 3023 /// Try to emit a fused autorelease of a return result. 3024 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3025 llvm::Value *result) { 3026 // We must be immediately followed the cast. 3027 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3028 if (BB->empty()) return nullptr; 3029 if (&BB->back() != result) return nullptr; 3030 3031 llvm::Type *resultType = result->getType(); 3032 3033 // result is in a BasicBlock and is therefore an Instruction. 3034 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3035 3036 SmallVector<llvm::Instruction *, 4> InstsToKill; 3037 3038 // Look for: 3039 // %generator = bitcast %type1* %generator2 to %type2* 3040 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3041 // We would have emitted this as a constant if the operand weren't 3042 // an Instruction. 3043 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3044 3045 // Require the generator to be immediately followed by the cast. 3046 if (generator->getNextNode() != bitcast) 3047 return nullptr; 3048 3049 InstsToKill.push_back(bitcast); 3050 } 3051 3052 // Look for: 3053 // %generator = call i8* @objc_retain(i8* %originalResult) 3054 // or 3055 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3056 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3057 if (!call) return nullptr; 3058 3059 bool doRetainAutorelease; 3060 3061 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3062 doRetainAutorelease = true; 3063 } else if (call->getCalledOperand() == 3064 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3065 doRetainAutorelease = false; 3066 3067 // If we emitted an assembly marker for this call (and the 3068 // ARCEntrypoints field should have been set if so), go looking 3069 // for that call. If we can't find it, we can't do this 3070 // optimization. But it should always be the immediately previous 3071 // instruction, unless we needed bitcasts around the call. 3072 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3073 llvm::Instruction *prev = call->getPrevNode(); 3074 assert(prev); 3075 if (isa<llvm::BitCastInst>(prev)) { 3076 prev = prev->getPrevNode(); 3077 assert(prev); 3078 } 3079 assert(isa<llvm::CallInst>(prev)); 3080 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3081 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3082 InstsToKill.push_back(prev); 3083 } 3084 } else { 3085 return nullptr; 3086 } 3087 3088 result = call->getArgOperand(0); 3089 InstsToKill.push_back(call); 3090 3091 // Keep killing bitcasts, for sanity. Note that we no longer care 3092 // about precise ordering as long as there's exactly one use. 3093 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3094 if (!bitcast->hasOneUse()) break; 3095 InstsToKill.push_back(bitcast); 3096 result = bitcast->getOperand(0); 3097 } 3098 3099 // Delete all the unnecessary instructions, from latest to earliest. 3100 for (auto *I : InstsToKill) 3101 I->eraseFromParent(); 3102 3103 // Do the fused retain/autorelease if we were asked to. 3104 if (doRetainAutorelease) 3105 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3106 3107 // Cast back to the result type. 3108 return CGF.Builder.CreateBitCast(result, resultType); 3109 } 3110 3111 /// If this is a +1 of the value of an immutable 'self', remove it. 3112 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3113 llvm::Value *result) { 3114 // This is only applicable to a method with an immutable 'self'. 3115 const ObjCMethodDecl *method = 3116 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3117 if (!method) return nullptr; 3118 const VarDecl *self = method->getSelfDecl(); 3119 if (!self->getType().isConstQualified()) return nullptr; 3120 3121 // Look for a retain call. 3122 llvm::CallInst *retainCall = 3123 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3124 if (!retainCall || retainCall->getCalledOperand() != 3125 CGF.CGM.getObjCEntrypoints().objc_retain) 3126 return nullptr; 3127 3128 // Look for an ordinary load of 'self'. 3129 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3130 llvm::LoadInst *load = 3131 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3132 if (!load || load->isAtomic() || load->isVolatile() || 3133 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3134 return nullptr; 3135 3136 // Okay! Burn it all down. This relies for correctness on the 3137 // assumption that the retain is emitted as part of the return and 3138 // that thereafter everything is used "linearly". 3139 llvm::Type *resultType = result->getType(); 3140 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3141 assert(retainCall->use_empty()); 3142 retainCall->eraseFromParent(); 3143 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3144 3145 return CGF.Builder.CreateBitCast(load, resultType); 3146 } 3147 3148 /// Emit an ARC autorelease of the result of a function. 3149 /// 3150 /// \return the value to actually return from the function 3151 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3152 llvm::Value *result) { 3153 // If we're returning 'self', kill the initial retain. This is a 3154 // heuristic attempt to "encourage correctness" in the really unfortunate 3155 // case where we have a return of self during a dealloc and we desperately 3156 // need to avoid the possible autorelease. 3157 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3158 return self; 3159 3160 // At -O0, try to emit a fused retain/autorelease. 3161 if (CGF.shouldUseFusedARCCalls()) 3162 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3163 return fused; 3164 3165 return CGF.EmitARCAutoreleaseReturnValue(result); 3166 } 3167 3168 /// Heuristically search for a dominating store to the return-value slot. 3169 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3170 // Check if a User is a store which pointerOperand is the ReturnValue. 3171 // We are looking for stores to the ReturnValue, not for stores of the 3172 // ReturnValue to some other location. 3173 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3174 auto *SI = dyn_cast<llvm::StoreInst>(U); 3175 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 3176 return nullptr; 3177 // These aren't actually possible for non-coerced returns, and we 3178 // only care about non-coerced returns on this code path. 3179 assert(!SI->isAtomic() && !SI->isVolatile()); 3180 return SI; 3181 }; 3182 // If there are multiple uses of the return-value slot, just check 3183 // for something immediately preceding the IP. Sometimes this can 3184 // happen with how we generate implicit-returns; it can also happen 3185 // with noreturn cleanups. 3186 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3187 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3188 if (IP->empty()) return nullptr; 3189 llvm::Instruction *I = &IP->back(); 3190 3191 // Skip lifetime markers 3192 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 3193 IE = IP->rend(); 3194 II != IE; ++II) { 3195 if (llvm::IntrinsicInst *Intrinsic = 3196 dyn_cast<llvm::IntrinsicInst>(&*II)) { 3197 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 3198 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 3199 ++II; 3200 if (II == IE) 3201 break; 3202 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 3203 continue; 3204 } 3205 } 3206 I = &*II; 3207 break; 3208 } 3209 3210 return GetStoreIfValid(I); 3211 } 3212 3213 llvm::StoreInst *store = 3214 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3215 if (!store) return nullptr; 3216 3217 // Now do a first-and-dirty dominance check: just walk up the 3218 // single-predecessors chain from the current insertion point. 3219 llvm::BasicBlock *StoreBB = store->getParent(); 3220 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3221 while (IP != StoreBB) { 3222 if (!(IP = IP->getSinglePredecessor())) 3223 return nullptr; 3224 } 3225 3226 // Okay, the store's basic block dominates the insertion point; we 3227 // can do our thing. 3228 return store; 3229 } 3230 3231 // Helper functions for EmitCMSEClearRecord 3232 3233 // Set the bits corresponding to a field having width `BitWidth` and located at 3234 // offset `BitOffset` (from the least significant bit) within a storage unit of 3235 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3236 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3237 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3238 int BitWidth, int CharWidth) { 3239 assert(CharWidth <= 64); 3240 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3241 3242 int Pos = 0; 3243 if (BitOffset >= CharWidth) { 3244 Pos += BitOffset / CharWidth; 3245 BitOffset = BitOffset % CharWidth; 3246 } 3247 3248 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3249 if (BitOffset + BitWidth >= CharWidth) { 3250 Bits[Pos++] |= (Used << BitOffset) & Used; 3251 BitWidth -= CharWidth - BitOffset; 3252 BitOffset = 0; 3253 } 3254 3255 while (BitWidth >= CharWidth) { 3256 Bits[Pos++] = Used; 3257 BitWidth -= CharWidth; 3258 } 3259 3260 if (BitWidth > 0) 3261 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3262 } 3263 3264 // Set the bits corresponding to a field having width `BitWidth` and located at 3265 // offset `BitOffset` (from the least significant bit) within a storage unit of 3266 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3267 // `Bits` corresponds to one target byte. Use target endian layout. 3268 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3269 int StorageSize, int BitOffset, int BitWidth, 3270 int CharWidth, bool BigEndian) { 3271 3272 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3273 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3274 3275 if (BigEndian) 3276 std::reverse(TmpBits.begin(), TmpBits.end()); 3277 3278 for (uint64_t V : TmpBits) 3279 Bits[StorageOffset++] |= V; 3280 } 3281 3282 static void setUsedBits(CodeGenModule &, QualType, int, 3283 SmallVectorImpl<uint64_t> &); 3284 3285 // Set the bits in `Bits`, which correspond to the value representations of 3286 // the actual members of the record type `RTy`. Note that this function does 3287 // not handle base classes, virtual tables, etc, since they cannot happen in 3288 // CMSE function arguments or return. The bit mask corresponds to the target 3289 // memory layout, i.e. it's endian dependent. 3290 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3291 SmallVectorImpl<uint64_t> &Bits) { 3292 ASTContext &Context = CGM.getContext(); 3293 int CharWidth = Context.getCharWidth(); 3294 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3295 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3296 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3297 3298 int Idx = 0; 3299 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3300 const FieldDecl *F = *I; 3301 3302 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3303 F->getType()->isIncompleteArrayType()) 3304 continue; 3305 3306 if (F->isBitField()) { 3307 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3308 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3309 BFI.StorageSize / CharWidth, BFI.Offset, 3310 BFI.Size, CharWidth, 3311 CGM.getDataLayout().isBigEndian()); 3312 continue; 3313 } 3314 3315 setUsedBits(CGM, F->getType(), 3316 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3317 } 3318 } 3319 3320 // Set the bits in `Bits`, which correspond to the value representations of 3321 // the elements of an array type `ATy`. 3322 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3323 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3324 const ASTContext &Context = CGM.getContext(); 3325 3326 QualType ETy = Context.getBaseElementType(ATy); 3327 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3328 SmallVector<uint64_t, 4> TmpBits(Size); 3329 setUsedBits(CGM, ETy, 0, TmpBits); 3330 3331 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3332 auto Src = TmpBits.begin(); 3333 auto Dst = Bits.begin() + Offset + I * Size; 3334 for (int J = 0; J < Size; ++J) 3335 *Dst++ |= *Src++; 3336 } 3337 } 3338 3339 // Set the bits in `Bits`, which correspond to the value representations of 3340 // the type `QTy`. 3341 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3342 SmallVectorImpl<uint64_t> &Bits) { 3343 if (const auto *RTy = QTy->getAs<RecordType>()) 3344 return setUsedBits(CGM, RTy, Offset, Bits); 3345 3346 ASTContext &Context = CGM.getContext(); 3347 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3348 return setUsedBits(CGM, ATy, Offset, Bits); 3349 3350 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3351 if (Size <= 0) 3352 return; 3353 3354 std::fill_n(Bits.begin() + Offset, Size, 3355 (uint64_t(1) << Context.getCharWidth()) - 1); 3356 } 3357 3358 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3359 int Pos, int Size, int CharWidth, 3360 bool BigEndian) { 3361 assert(Size > 0); 3362 uint64_t Mask = 0; 3363 if (BigEndian) { 3364 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3365 ++P) 3366 Mask = (Mask << CharWidth) | *P; 3367 } else { 3368 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3369 do 3370 Mask = (Mask << CharWidth) | *--P; 3371 while (P != End); 3372 } 3373 return Mask; 3374 } 3375 3376 // Emit code to clear the bits in a record, which aren't a part of any user 3377 // declared member, when the record is a function return. 3378 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3379 llvm::IntegerType *ITy, 3380 QualType QTy) { 3381 assert(Src->getType() == ITy); 3382 assert(ITy->getScalarSizeInBits() <= 64); 3383 3384 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3385 int Size = DataLayout.getTypeStoreSize(ITy); 3386 SmallVector<uint64_t, 4> Bits(Size); 3387 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3388 3389 int CharWidth = CGM.getContext().getCharWidth(); 3390 uint64_t Mask = 3391 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3392 3393 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3394 } 3395 3396 // Emit code to clear the bits in a record, which aren't a part of any user 3397 // declared member, when the record is a function argument. 3398 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3399 llvm::ArrayType *ATy, 3400 QualType QTy) { 3401 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3402 int Size = DataLayout.getTypeStoreSize(ATy); 3403 SmallVector<uint64_t, 16> Bits(Size); 3404 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3405 3406 // Clear each element of the LLVM array. 3407 int CharWidth = CGM.getContext().getCharWidth(); 3408 int CharsPerElt = 3409 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3410 int MaskIndex = 0; 3411 llvm::Value *R = llvm::UndefValue::get(ATy); 3412 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3413 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3414 DataLayout.isBigEndian()); 3415 MaskIndex += CharsPerElt; 3416 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3417 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3418 R = Builder.CreateInsertValue(R, T1, I); 3419 } 3420 3421 return R; 3422 } 3423 3424 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3425 bool EmitRetDbgLoc, 3426 SourceLocation EndLoc) { 3427 if (FI.isNoReturn()) { 3428 // Noreturn functions don't return. 3429 EmitUnreachable(EndLoc); 3430 return; 3431 } 3432 3433 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3434 // Naked functions don't have epilogues. 3435 Builder.CreateUnreachable(); 3436 return; 3437 } 3438 3439 // Functions with no result always return void. 3440 if (!ReturnValue.isValid()) { 3441 Builder.CreateRetVoid(); 3442 return; 3443 } 3444 3445 llvm::DebugLoc RetDbgLoc; 3446 llvm::Value *RV = nullptr; 3447 QualType RetTy = FI.getReturnType(); 3448 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3449 3450 switch (RetAI.getKind()) { 3451 case ABIArgInfo::InAlloca: 3452 // Aggregrates get evaluated directly into the destination. Sometimes we 3453 // need to return the sret value in a register, though. 3454 assert(hasAggregateEvaluationKind(RetTy)); 3455 if (RetAI.getInAllocaSRet()) { 3456 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3457 --EI; 3458 llvm::Value *ArgStruct = &*EI; 3459 llvm::Value *SRet = Builder.CreateStructGEP( 3460 EI->getType()->getPointerElementType(), ArgStruct, 3461 RetAI.getInAllocaFieldIndex()); 3462 llvm::Type *Ty = 3463 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3464 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3465 } 3466 break; 3467 3468 case ABIArgInfo::Indirect: { 3469 auto AI = CurFn->arg_begin(); 3470 if (RetAI.isSRetAfterThis()) 3471 ++AI; 3472 switch (getEvaluationKind(RetTy)) { 3473 case TEK_Complex: { 3474 ComplexPairTy RT = 3475 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3476 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3477 /*isInit*/ true); 3478 break; 3479 } 3480 case TEK_Aggregate: 3481 // Do nothing; aggregrates get evaluated directly into the destination. 3482 break; 3483 case TEK_Scalar: { 3484 LValueBaseInfo BaseInfo; 3485 TBAAAccessInfo TBAAInfo; 3486 CharUnits Alignment = 3487 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3488 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3489 LValue ArgVal = 3490 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3491 EmitStoreOfScalar( 3492 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3493 break; 3494 } 3495 } 3496 break; 3497 } 3498 3499 case ABIArgInfo::Extend: 3500 case ABIArgInfo::Direct: 3501 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3502 RetAI.getDirectOffset() == 0) { 3503 // The internal return value temp always will have pointer-to-return-type 3504 // type, just do a load. 3505 3506 // If there is a dominating store to ReturnValue, we can elide 3507 // the load, zap the store, and usually zap the alloca. 3508 if (llvm::StoreInst *SI = 3509 findDominatingStoreToReturnValue(*this)) { 3510 // Reuse the debug location from the store unless there is 3511 // cleanup code to be emitted between the store and return 3512 // instruction. 3513 if (EmitRetDbgLoc && !AutoreleaseResult) 3514 RetDbgLoc = SI->getDebugLoc(); 3515 // Get the stored value and nuke the now-dead store. 3516 RV = SI->getValueOperand(); 3517 SI->eraseFromParent(); 3518 3519 // Otherwise, we have to do a simple load. 3520 } else { 3521 RV = Builder.CreateLoad(ReturnValue); 3522 } 3523 } else { 3524 // If the value is offset in memory, apply the offset now. 3525 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3526 3527 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3528 } 3529 3530 // In ARC, end functions that return a retainable type with a call 3531 // to objc_autoreleaseReturnValue. 3532 if (AutoreleaseResult) { 3533 #ifndef NDEBUG 3534 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3535 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3536 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3537 // CurCodeDecl or BlockInfo. 3538 QualType RT; 3539 3540 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3541 RT = FD->getReturnType(); 3542 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3543 RT = MD->getReturnType(); 3544 else if (isa<BlockDecl>(CurCodeDecl)) 3545 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3546 else 3547 llvm_unreachable("Unexpected function/method type"); 3548 3549 assert(getLangOpts().ObjCAutoRefCount && 3550 !FI.isReturnsRetained() && 3551 RT->isObjCRetainableType()); 3552 #endif 3553 RV = emitAutoreleaseOfResult(*this, RV); 3554 } 3555 3556 break; 3557 3558 case ABIArgInfo::Ignore: 3559 break; 3560 3561 case ABIArgInfo::CoerceAndExpand: { 3562 auto coercionType = RetAI.getCoerceAndExpandType(); 3563 3564 // Load all of the coerced elements out into results. 3565 llvm::SmallVector<llvm::Value*, 4> results; 3566 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3567 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3568 auto coercedEltType = coercionType->getElementType(i); 3569 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3570 continue; 3571 3572 auto eltAddr = Builder.CreateStructGEP(addr, i); 3573 auto elt = Builder.CreateLoad(eltAddr); 3574 results.push_back(elt); 3575 } 3576 3577 // If we have one result, it's the single direct result type. 3578 if (results.size() == 1) { 3579 RV = results[0]; 3580 3581 // Otherwise, we need to make a first-class aggregate. 3582 } else { 3583 // Construct a return type that lacks padding elements. 3584 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3585 3586 RV = llvm::UndefValue::get(returnType); 3587 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3588 RV = Builder.CreateInsertValue(RV, results[i], i); 3589 } 3590 } 3591 break; 3592 } 3593 case ABIArgInfo::Expand: 3594 case ABIArgInfo::IndirectAliased: 3595 llvm_unreachable("Invalid ABI kind for return argument"); 3596 } 3597 3598 llvm::Instruction *Ret; 3599 if (RV) { 3600 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3601 // For certain return types, clear padding bits, as they may reveal 3602 // sensitive information. 3603 // Small struct/union types are passed as integers. 3604 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3605 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3606 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3607 } 3608 EmitReturnValueCheck(RV); 3609 Ret = Builder.CreateRet(RV); 3610 } else { 3611 Ret = Builder.CreateRetVoid(); 3612 } 3613 3614 if (RetDbgLoc) 3615 Ret->setDebugLoc(std::move(RetDbgLoc)); 3616 } 3617 3618 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3619 // A current decl may not be available when emitting vtable thunks. 3620 if (!CurCodeDecl) 3621 return; 3622 3623 // If the return block isn't reachable, neither is this check, so don't emit 3624 // it. 3625 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3626 return; 3627 3628 ReturnsNonNullAttr *RetNNAttr = nullptr; 3629 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3630 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3631 3632 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3633 return; 3634 3635 // Prefer the returns_nonnull attribute if it's present. 3636 SourceLocation AttrLoc; 3637 SanitizerMask CheckKind; 3638 SanitizerHandler Handler; 3639 if (RetNNAttr) { 3640 assert(!requiresReturnValueNullabilityCheck() && 3641 "Cannot check nullability and the nonnull attribute"); 3642 AttrLoc = RetNNAttr->getLocation(); 3643 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3644 Handler = SanitizerHandler::NonnullReturn; 3645 } else { 3646 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3647 if (auto *TSI = DD->getTypeSourceInfo()) 3648 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3649 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3650 CheckKind = SanitizerKind::NullabilityReturn; 3651 Handler = SanitizerHandler::NullabilityReturn; 3652 } 3653 3654 SanitizerScope SanScope(this); 3655 3656 // Make sure the "return" source location is valid. If we're checking a 3657 // nullability annotation, make sure the preconditions for the check are met. 3658 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3659 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3660 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3661 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3662 if (requiresReturnValueNullabilityCheck()) 3663 CanNullCheck = 3664 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3665 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3666 EmitBlock(Check); 3667 3668 // Now do the null check. 3669 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3670 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3671 llvm::Value *DynamicData[] = {SLocPtr}; 3672 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3673 3674 EmitBlock(NoCheck); 3675 3676 #ifndef NDEBUG 3677 // The return location should not be used after the check has been emitted. 3678 ReturnLocation = Address::invalid(); 3679 #endif 3680 } 3681 3682 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3683 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3684 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3685 } 3686 3687 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3688 QualType Ty) { 3689 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3690 // placeholders. 3691 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3692 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3693 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3694 3695 // FIXME: When we generate this IR in one pass, we shouldn't need 3696 // this win32-specific alignment hack. 3697 CharUnits Align = CharUnits::fromQuantity(4); 3698 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3699 3700 return AggValueSlot::forAddr(Address(Placeholder, Align), 3701 Ty.getQualifiers(), 3702 AggValueSlot::IsNotDestructed, 3703 AggValueSlot::DoesNotNeedGCBarriers, 3704 AggValueSlot::IsNotAliased, 3705 AggValueSlot::DoesNotOverlap); 3706 } 3707 3708 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3709 const VarDecl *param, 3710 SourceLocation loc) { 3711 // StartFunction converted the ABI-lowered parameter(s) into a 3712 // local alloca. We need to turn that into an r-value suitable 3713 // for EmitCall. 3714 Address local = GetAddrOfLocalVar(param); 3715 3716 QualType type = param->getType(); 3717 3718 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3719 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3720 } 3721 3722 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3723 // but the argument needs to be the original pointer. 3724 if (type->isReferenceType()) { 3725 args.add(RValue::get(Builder.CreateLoad(local)), type); 3726 3727 // In ARC, move out of consumed arguments so that the release cleanup 3728 // entered by StartFunction doesn't cause an over-release. This isn't 3729 // optimal -O0 code generation, but it should get cleaned up when 3730 // optimization is enabled. This also assumes that delegate calls are 3731 // performed exactly once for a set of arguments, but that should be safe. 3732 } else if (getLangOpts().ObjCAutoRefCount && 3733 param->hasAttr<NSConsumedAttr>() && 3734 type->isObjCRetainableType()) { 3735 llvm::Value *ptr = Builder.CreateLoad(local); 3736 auto null = 3737 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3738 Builder.CreateStore(null, local); 3739 args.add(RValue::get(ptr), type); 3740 3741 // For the most part, we just need to load the alloca, except that 3742 // aggregate r-values are actually pointers to temporaries. 3743 } else { 3744 args.add(convertTempToRValue(local, type, loc), type); 3745 } 3746 3747 // Deactivate the cleanup for the callee-destructed param that was pushed. 3748 if (type->isRecordType() && !CurFuncIsThunk && 3749 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3750 param->needsDestruction(getContext())) { 3751 EHScopeStack::stable_iterator cleanup = 3752 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3753 assert(cleanup.isValid() && 3754 "cleanup for callee-destructed param not recorded"); 3755 // This unreachable is a temporary marker which will be removed later. 3756 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3757 args.addArgCleanupDeactivation(cleanup, isActive); 3758 } 3759 } 3760 3761 static bool isProvablyNull(llvm::Value *addr) { 3762 return isa<llvm::ConstantPointerNull>(addr); 3763 } 3764 3765 /// Emit the actual writing-back of a writeback. 3766 static void emitWriteback(CodeGenFunction &CGF, 3767 const CallArgList::Writeback &writeback) { 3768 const LValue &srcLV = writeback.Source; 3769 Address srcAddr = srcLV.getAddress(CGF); 3770 assert(!isProvablyNull(srcAddr.getPointer()) && 3771 "shouldn't have writeback for provably null argument"); 3772 3773 llvm::BasicBlock *contBB = nullptr; 3774 3775 // If the argument wasn't provably non-null, we need to null check 3776 // before doing the store. 3777 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3778 CGF.CGM.getDataLayout()); 3779 if (!provablyNonNull) { 3780 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3781 contBB = CGF.createBasicBlock("icr.done"); 3782 3783 llvm::Value *isNull = 3784 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3785 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3786 CGF.EmitBlock(writebackBB); 3787 } 3788 3789 // Load the value to writeback. 3790 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3791 3792 // Cast it back, in case we're writing an id to a Foo* or something. 3793 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3794 "icr.writeback-cast"); 3795 3796 // Perform the writeback. 3797 3798 // If we have a "to use" value, it's something we need to emit a use 3799 // of. This has to be carefully threaded in: if it's done after the 3800 // release it's potentially undefined behavior (and the optimizer 3801 // will ignore it), and if it happens before the retain then the 3802 // optimizer could move the release there. 3803 if (writeback.ToUse) { 3804 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3805 3806 // Retain the new value. No need to block-copy here: the block's 3807 // being passed up the stack. 3808 value = CGF.EmitARCRetainNonBlock(value); 3809 3810 // Emit the intrinsic use here. 3811 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3812 3813 // Load the old value (primitively). 3814 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3815 3816 // Put the new value in place (primitively). 3817 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3818 3819 // Release the old value. 3820 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3821 3822 // Otherwise, we can just do a normal lvalue store. 3823 } else { 3824 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3825 } 3826 3827 // Jump to the continuation block. 3828 if (!provablyNonNull) 3829 CGF.EmitBlock(contBB); 3830 } 3831 3832 static void emitWritebacks(CodeGenFunction &CGF, 3833 const CallArgList &args) { 3834 for (const auto &I : args.writebacks()) 3835 emitWriteback(CGF, I); 3836 } 3837 3838 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3839 const CallArgList &CallArgs) { 3840 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3841 CallArgs.getCleanupsToDeactivate(); 3842 // Iterate in reverse to increase the likelihood of popping the cleanup. 3843 for (const auto &I : llvm::reverse(Cleanups)) { 3844 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3845 I.IsActiveIP->eraseFromParent(); 3846 } 3847 } 3848 3849 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3850 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3851 if (uop->getOpcode() == UO_AddrOf) 3852 return uop->getSubExpr(); 3853 return nullptr; 3854 } 3855 3856 /// Emit an argument that's being passed call-by-writeback. That is, 3857 /// we are passing the address of an __autoreleased temporary; it 3858 /// might be copy-initialized with the current value of the given 3859 /// address, but it will definitely be copied out of after the call. 3860 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3861 const ObjCIndirectCopyRestoreExpr *CRE) { 3862 LValue srcLV; 3863 3864 // Make an optimistic effort to emit the address as an l-value. 3865 // This can fail if the argument expression is more complicated. 3866 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3867 srcLV = CGF.EmitLValue(lvExpr); 3868 3869 // Otherwise, just emit it as a scalar. 3870 } else { 3871 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3872 3873 QualType srcAddrType = 3874 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3875 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3876 } 3877 Address srcAddr = srcLV.getAddress(CGF); 3878 3879 // The dest and src types don't necessarily match in LLVM terms 3880 // because of the crazy ObjC compatibility rules. 3881 3882 llvm::PointerType *destType = 3883 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3884 3885 // If the address is a constant null, just pass the appropriate null. 3886 if (isProvablyNull(srcAddr.getPointer())) { 3887 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3888 CRE->getType()); 3889 return; 3890 } 3891 3892 // Create the temporary. 3893 Address temp = CGF.CreateTempAlloca(destType->getPointerElementType(), 3894 CGF.getPointerAlign(), "icr.temp"); 3895 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3896 // and that cleanup will be conditional if we can't prove that the l-value 3897 // isn't null, so we need to register a dominating point so that the cleanups 3898 // system will make valid IR. 3899 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3900 3901 // Zero-initialize it if we're not doing a copy-initialization. 3902 bool shouldCopy = CRE->shouldCopy(); 3903 if (!shouldCopy) { 3904 llvm::Value *null = llvm::ConstantPointerNull::get( 3905 cast<llvm::PointerType>(destType->getPointerElementType())); 3906 CGF.Builder.CreateStore(null, temp); 3907 } 3908 3909 llvm::BasicBlock *contBB = nullptr; 3910 llvm::BasicBlock *originBB = nullptr; 3911 3912 // If the address is *not* known to be non-null, we need to switch. 3913 llvm::Value *finalArgument; 3914 3915 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3916 CGF.CGM.getDataLayout()); 3917 if (provablyNonNull) { 3918 finalArgument = temp.getPointer(); 3919 } else { 3920 llvm::Value *isNull = 3921 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3922 3923 finalArgument = CGF.Builder.CreateSelect(isNull, 3924 llvm::ConstantPointerNull::get(destType), 3925 temp.getPointer(), "icr.argument"); 3926 3927 // If we need to copy, then the load has to be conditional, which 3928 // means we need control flow. 3929 if (shouldCopy) { 3930 originBB = CGF.Builder.GetInsertBlock(); 3931 contBB = CGF.createBasicBlock("icr.cont"); 3932 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3933 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3934 CGF.EmitBlock(copyBB); 3935 condEval.begin(CGF); 3936 } 3937 } 3938 3939 llvm::Value *valueToUse = nullptr; 3940 3941 // Perform a copy if necessary. 3942 if (shouldCopy) { 3943 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3944 assert(srcRV.isScalar()); 3945 3946 llvm::Value *src = srcRV.getScalarVal(); 3947 src = CGF.Builder.CreateBitCast(src, destType->getPointerElementType(), 3948 "icr.cast"); 3949 3950 // Use an ordinary store, not a store-to-lvalue. 3951 CGF.Builder.CreateStore(src, temp); 3952 3953 // If optimization is enabled, and the value was held in a 3954 // __strong variable, we need to tell the optimizer that this 3955 // value has to stay alive until we're doing the store back. 3956 // This is because the temporary is effectively unretained, 3957 // and so otherwise we can violate the high-level semantics. 3958 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3959 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3960 valueToUse = src; 3961 } 3962 } 3963 3964 // Finish the control flow if we needed it. 3965 if (shouldCopy && !provablyNonNull) { 3966 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3967 CGF.EmitBlock(contBB); 3968 3969 // Make a phi for the value to intrinsically use. 3970 if (valueToUse) { 3971 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3972 "icr.to-use"); 3973 phiToUse->addIncoming(valueToUse, copyBB); 3974 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3975 originBB); 3976 valueToUse = phiToUse; 3977 } 3978 3979 condEval.end(CGF); 3980 } 3981 3982 args.addWriteback(srcLV, temp, valueToUse); 3983 args.add(RValue::get(finalArgument), CRE->getType()); 3984 } 3985 3986 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3987 assert(!StackBase); 3988 3989 // Save the stack. 3990 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3991 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3992 } 3993 3994 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3995 if (StackBase) { 3996 // Restore the stack after the call. 3997 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3998 CGF.Builder.CreateCall(F, StackBase); 3999 } 4000 } 4001 4002 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4003 SourceLocation ArgLoc, 4004 AbstractCallee AC, 4005 unsigned ParmNum) { 4006 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4007 SanOpts.has(SanitizerKind::NullabilityArg))) 4008 return; 4009 4010 // The param decl may be missing in a variadic function. 4011 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4012 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4013 4014 // Prefer the nonnull attribute if it's present. 4015 const NonNullAttr *NNAttr = nullptr; 4016 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4017 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4018 4019 bool CanCheckNullability = false; 4020 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4021 auto Nullability = PVD->getType()->getNullability(getContext()); 4022 CanCheckNullability = Nullability && 4023 *Nullability == NullabilityKind::NonNull && 4024 PVD->getTypeSourceInfo(); 4025 } 4026 4027 if (!NNAttr && !CanCheckNullability) 4028 return; 4029 4030 SourceLocation AttrLoc; 4031 SanitizerMask CheckKind; 4032 SanitizerHandler Handler; 4033 if (NNAttr) { 4034 AttrLoc = NNAttr->getLocation(); 4035 CheckKind = SanitizerKind::NonnullAttribute; 4036 Handler = SanitizerHandler::NonnullArg; 4037 } else { 4038 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4039 CheckKind = SanitizerKind::NullabilityArg; 4040 Handler = SanitizerHandler::NullabilityArg; 4041 } 4042 4043 SanitizerScope SanScope(this); 4044 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4045 llvm::Constant *StaticData[] = { 4046 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4047 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4048 }; 4049 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4050 } 4051 4052 // Check if the call is going to use the inalloca convention. This needs to 4053 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4054 // later, so we can't check it directly. 4055 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4056 ArrayRef<QualType> ArgTypes) { 4057 // The Swift calling conventions don't go through the target-specific 4058 // argument classification, they never use inalloca. 4059 // TODO: Consider limiting inalloca use to only calling conventions supported 4060 // by MSVC. 4061 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4062 return false; 4063 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4064 return false; 4065 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4066 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4067 }); 4068 } 4069 4070 #ifndef NDEBUG 4071 // Determine whether the given argument is an Objective-C method 4072 // that may have type parameters in its signature. 4073 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4074 const DeclContext *dc = method->getDeclContext(); 4075 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4076 return classDecl->getTypeParamListAsWritten(); 4077 } 4078 4079 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4080 return catDecl->getTypeParamList(); 4081 } 4082 4083 return false; 4084 } 4085 #endif 4086 4087 /// EmitCallArgs - Emit call arguments for a function. 4088 void CodeGenFunction::EmitCallArgs( 4089 CallArgList &Args, PrototypeWrapper Prototype, 4090 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4091 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4092 SmallVector<QualType, 16> ArgTypes; 4093 4094 assert((ParamsToSkip == 0 || Prototype.P) && 4095 "Can't skip parameters if type info is not provided"); 4096 4097 // This variable only captures *explicitly* written conventions, not those 4098 // applied by default via command line flags or target defaults, such as 4099 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4100 // require knowing if this is a C++ instance method or being able to see 4101 // unprototyped FunctionTypes. 4102 CallingConv ExplicitCC = CC_C; 4103 4104 // First, if a prototype was provided, use those argument types. 4105 bool IsVariadic = false; 4106 if (Prototype.P) { 4107 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4108 if (MD) { 4109 IsVariadic = MD->isVariadic(); 4110 ExplicitCC = getCallingConventionForDecl( 4111 MD, CGM.getTarget().getTriple().isOSWindows()); 4112 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4113 MD->param_type_end()); 4114 } else { 4115 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4116 IsVariadic = FPT->isVariadic(); 4117 ExplicitCC = FPT->getExtInfo().getCC(); 4118 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4119 FPT->param_type_end()); 4120 } 4121 4122 #ifndef NDEBUG 4123 // Check that the prototyped types match the argument expression types. 4124 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4125 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4126 for (QualType Ty : ArgTypes) { 4127 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4128 assert( 4129 (isGenericMethod || Ty->isVariablyModifiedType() || 4130 Ty.getNonReferenceType()->isObjCRetainableType() || 4131 getContext() 4132 .getCanonicalType(Ty.getNonReferenceType()) 4133 .getTypePtr() == 4134 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4135 "type mismatch in call argument!"); 4136 ++Arg; 4137 } 4138 4139 // Either we've emitted all the call args, or we have a call to variadic 4140 // function. 4141 assert((Arg == ArgRange.end() || IsVariadic) && 4142 "Extra arguments in non-variadic function!"); 4143 #endif 4144 } 4145 4146 // If we still have any arguments, emit them using the type of the argument. 4147 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4148 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4149 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4150 4151 // We must evaluate arguments from right to left in the MS C++ ABI, 4152 // because arguments are destroyed left to right in the callee. As a special 4153 // case, there are certain language constructs that require left-to-right 4154 // evaluation, and in those cases we consider the evaluation order requirement 4155 // to trump the "destruction order is reverse construction order" guarantee. 4156 bool LeftToRight = 4157 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4158 ? Order == EvaluationOrder::ForceLeftToRight 4159 : Order != EvaluationOrder::ForceRightToLeft; 4160 4161 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4162 RValue EmittedArg) { 4163 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4164 return; 4165 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4166 if (PS == nullptr) 4167 return; 4168 4169 const auto &Context = getContext(); 4170 auto SizeTy = Context.getSizeType(); 4171 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4172 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4173 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4174 EmittedArg.getScalarVal(), 4175 PS->isDynamic()); 4176 Args.add(RValue::get(V), SizeTy); 4177 // If we're emitting args in reverse, be sure to do so with 4178 // pass_object_size, as well. 4179 if (!LeftToRight) 4180 std::swap(Args.back(), *(&Args.back() - 1)); 4181 }; 4182 4183 // Insert a stack save if we're going to need any inalloca args. 4184 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4185 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4186 "inalloca only supported on x86"); 4187 Args.allocateArgumentMemory(*this); 4188 } 4189 4190 // Evaluate each argument in the appropriate order. 4191 size_t CallArgsStart = Args.size(); 4192 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4193 unsigned Idx = LeftToRight ? I : E - I - 1; 4194 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4195 unsigned InitialArgSize = Args.size(); 4196 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4197 // the argument and parameter match or the objc method is parameterized. 4198 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4199 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4200 ArgTypes[Idx]) || 4201 (isa<ObjCMethodDecl>(AC.getDecl()) && 4202 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4203 "Argument and parameter types don't match"); 4204 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4205 // In particular, we depend on it being the last arg in Args, and the 4206 // objectsize bits depend on there only being one arg if !LeftToRight. 4207 assert(InitialArgSize + 1 == Args.size() && 4208 "The code below depends on only adding one arg per EmitCallArg"); 4209 (void)InitialArgSize; 4210 // Since pointer argument are never emitted as LValue, it is safe to emit 4211 // non-null argument check for r-value only. 4212 if (!Args.back().hasLValue()) { 4213 RValue RVArg = Args.back().getKnownRValue(); 4214 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4215 ParamsToSkip + Idx); 4216 // @llvm.objectsize should never have side-effects and shouldn't need 4217 // destruction/cleanups, so we can safely "emit" it after its arg, 4218 // regardless of right-to-leftness 4219 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4220 } 4221 } 4222 4223 if (!LeftToRight) { 4224 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4225 // IR function. 4226 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4227 } 4228 } 4229 4230 namespace { 4231 4232 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4233 DestroyUnpassedArg(Address Addr, QualType Ty) 4234 : Addr(Addr), Ty(Ty) {} 4235 4236 Address Addr; 4237 QualType Ty; 4238 4239 void Emit(CodeGenFunction &CGF, Flags flags) override { 4240 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4241 if (DtorKind == QualType::DK_cxx_destructor) { 4242 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4243 assert(!Dtor->isTrivial()); 4244 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4245 /*Delegating=*/false, Addr, Ty); 4246 } else { 4247 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4248 } 4249 } 4250 }; 4251 4252 struct DisableDebugLocationUpdates { 4253 CodeGenFunction &CGF; 4254 bool disabledDebugInfo; 4255 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4256 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4257 CGF.disableDebugInfo(); 4258 } 4259 ~DisableDebugLocationUpdates() { 4260 if (disabledDebugInfo) 4261 CGF.enableDebugInfo(); 4262 } 4263 }; 4264 4265 } // end anonymous namespace 4266 4267 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4268 if (!HasLV) 4269 return RV; 4270 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4271 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4272 LV.isVolatile()); 4273 IsUsed = true; 4274 return RValue::getAggregate(Copy.getAddress(CGF)); 4275 } 4276 4277 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4278 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4279 if (!HasLV && RV.isScalar()) 4280 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4281 else if (!HasLV && RV.isComplex()) 4282 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4283 else { 4284 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4285 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4286 // We assume that call args are never copied into subobjects. 4287 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4288 HasLV ? LV.isVolatileQualified() 4289 : RV.isVolatileQualified()); 4290 } 4291 IsUsed = true; 4292 } 4293 4294 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4295 QualType type) { 4296 DisableDebugLocationUpdates Dis(*this, E); 4297 if (const ObjCIndirectCopyRestoreExpr *CRE 4298 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4299 assert(getLangOpts().ObjCAutoRefCount); 4300 return emitWritebackArg(*this, args, CRE); 4301 } 4302 4303 assert(type->isReferenceType() == E->isGLValue() && 4304 "reference binding to unmaterialized r-value!"); 4305 4306 if (E->isGLValue()) { 4307 assert(E->getObjectKind() == OK_Ordinary); 4308 return args.add(EmitReferenceBindingToExpr(E), type); 4309 } 4310 4311 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4312 4313 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4314 // However, we still have to push an EH-only cleanup in case we unwind before 4315 // we make it to the call. 4316 if (type->isRecordType() && 4317 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4318 // If we're using inalloca, use the argument memory. Otherwise, use a 4319 // temporary. 4320 AggValueSlot Slot = args.isUsingInAlloca() 4321 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4322 4323 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4324 if (const auto *RD = type->getAsCXXRecordDecl()) 4325 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4326 else 4327 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4328 4329 if (DestroyedInCallee) 4330 Slot.setExternallyDestructed(); 4331 4332 EmitAggExpr(E, Slot); 4333 RValue RV = Slot.asRValue(); 4334 args.add(RV, type); 4335 4336 if (DestroyedInCallee && NeedsEHCleanup) { 4337 // Create a no-op GEP between the placeholder and the cleanup so we can 4338 // RAUW it successfully. It also serves as a marker of the first 4339 // instruction where the cleanup is active. 4340 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4341 type); 4342 // This unreachable is a temporary marker which will be removed later. 4343 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4344 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 4345 } 4346 return; 4347 } 4348 4349 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4350 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4351 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4352 assert(L.isSimple()); 4353 args.addUncopiedAggregate(L, type); 4354 return; 4355 } 4356 4357 args.add(EmitAnyExprToTemp(E), type); 4358 } 4359 4360 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4361 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4362 // implicitly widens null pointer constants that are arguments to varargs 4363 // functions to pointer-sized ints. 4364 if (!getTarget().getTriple().isOSWindows()) 4365 return Arg->getType(); 4366 4367 if (Arg->getType()->isIntegerType() && 4368 getContext().getTypeSize(Arg->getType()) < 4369 getContext().getTargetInfo().getPointerWidth(0) && 4370 Arg->isNullPointerConstant(getContext(), 4371 Expr::NPC_ValueDependentIsNotNull)) { 4372 return getContext().getIntPtrType(); 4373 } 4374 4375 return Arg->getType(); 4376 } 4377 4378 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4379 // optimizer it can aggressively ignore unwind edges. 4380 void 4381 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4382 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4383 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4384 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4385 CGM.getNoObjCARCExceptionsMetadata()); 4386 } 4387 4388 /// Emits a call to the given no-arguments nounwind runtime function. 4389 llvm::CallInst * 4390 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4391 const llvm::Twine &name) { 4392 return EmitNounwindRuntimeCall(callee, None, name); 4393 } 4394 4395 /// Emits a call to the given nounwind runtime function. 4396 llvm::CallInst * 4397 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4398 ArrayRef<llvm::Value *> args, 4399 const llvm::Twine &name) { 4400 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4401 call->setDoesNotThrow(); 4402 return call; 4403 } 4404 4405 /// Emits a simple call (never an invoke) to the given no-arguments 4406 /// runtime function. 4407 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4408 const llvm::Twine &name) { 4409 return EmitRuntimeCall(callee, None, name); 4410 } 4411 4412 // Calls which may throw must have operand bundles indicating which funclet 4413 // they are nested within. 4414 SmallVector<llvm::OperandBundleDef, 1> 4415 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4416 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4417 // There is no need for a funclet operand bundle if we aren't inside a 4418 // funclet. 4419 if (!CurrentFuncletPad) 4420 return BundleList; 4421 4422 // Skip intrinsics which cannot throw. 4423 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4424 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4425 return BundleList; 4426 4427 BundleList.emplace_back("funclet", CurrentFuncletPad); 4428 return BundleList; 4429 } 4430 4431 /// Emits a simple call (never an invoke) to the given runtime function. 4432 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4433 ArrayRef<llvm::Value *> args, 4434 const llvm::Twine &name) { 4435 llvm::CallInst *call = Builder.CreateCall( 4436 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4437 call->setCallingConv(getRuntimeCC()); 4438 return call; 4439 } 4440 4441 /// Emits a call or invoke to the given noreturn runtime function. 4442 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4443 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4444 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4445 getBundlesForFunclet(callee.getCallee()); 4446 4447 if (getInvokeDest()) { 4448 llvm::InvokeInst *invoke = 4449 Builder.CreateInvoke(callee, 4450 getUnreachableBlock(), 4451 getInvokeDest(), 4452 args, 4453 BundleList); 4454 invoke->setDoesNotReturn(); 4455 invoke->setCallingConv(getRuntimeCC()); 4456 } else { 4457 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4458 call->setDoesNotReturn(); 4459 call->setCallingConv(getRuntimeCC()); 4460 Builder.CreateUnreachable(); 4461 } 4462 } 4463 4464 /// Emits a call or invoke instruction to the given nullary runtime function. 4465 llvm::CallBase * 4466 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4467 const Twine &name) { 4468 return EmitRuntimeCallOrInvoke(callee, None, name); 4469 } 4470 4471 /// Emits a call or invoke instruction to the given runtime function. 4472 llvm::CallBase * 4473 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4474 ArrayRef<llvm::Value *> args, 4475 const Twine &name) { 4476 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4477 call->setCallingConv(getRuntimeCC()); 4478 return call; 4479 } 4480 4481 /// Emits a call or invoke instruction to the given function, depending 4482 /// on the current state of the EH stack. 4483 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4484 ArrayRef<llvm::Value *> Args, 4485 const Twine &Name) { 4486 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4487 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4488 getBundlesForFunclet(Callee.getCallee()); 4489 4490 llvm::CallBase *Inst; 4491 if (!InvokeDest) 4492 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4493 else { 4494 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4495 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4496 Name); 4497 EmitBlock(ContBB); 4498 } 4499 4500 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4501 // optimizer it can aggressively ignore unwind edges. 4502 if (CGM.getLangOpts().ObjCAutoRefCount) 4503 AddObjCARCExceptionMetadata(Inst); 4504 4505 return Inst; 4506 } 4507 4508 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4509 llvm::Value *New) { 4510 DeferredReplacements.push_back( 4511 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4512 } 4513 4514 namespace { 4515 4516 /// Specify given \p NewAlign as the alignment of return value attribute. If 4517 /// such attribute already exists, re-set it to the maximal one of two options. 4518 LLVM_NODISCARD llvm::AttributeList 4519 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4520 const llvm::AttributeList &Attrs, 4521 llvm::Align NewAlign) { 4522 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4523 if (CurAlign >= NewAlign) 4524 return Attrs; 4525 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4526 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4527 .addRetAttribute(Ctx, AlignAttr); 4528 } 4529 4530 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4531 protected: 4532 CodeGenFunction &CGF; 4533 4534 /// We do nothing if this is, or becomes, nullptr. 4535 const AlignedAttrTy *AA = nullptr; 4536 4537 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4538 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4539 4540 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4541 : CGF(CGF_) { 4542 if (!FuncDecl) 4543 return; 4544 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4545 } 4546 4547 public: 4548 /// If we can, materialize the alignment as an attribute on return value. 4549 LLVM_NODISCARD llvm::AttributeList 4550 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4551 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4552 return Attrs; 4553 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4554 if (!AlignmentCI) 4555 return Attrs; 4556 // We may legitimately have non-power-of-2 alignment here. 4557 // If so, this is UB land, emit it via `@llvm.assume` instead. 4558 if (!AlignmentCI->getValue().isPowerOf2()) 4559 return Attrs; 4560 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4561 CGF.getLLVMContext(), Attrs, 4562 llvm::Align( 4563 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4564 AA = nullptr; // We're done. Disallow doing anything else. 4565 return NewAttrs; 4566 } 4567 4568 /// Emit alignment assumption. 4569 /// This is a general fallback that we take if either there is an offset, 4570 /// or the alignment is variable or we are sanitizing for alignment. 4571 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4572 if (!AA) 4573 return; 4574 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4575 AA->getLocation(), Alignment, OffsetCI); 4576 AA = nullptr; // We're done. Disallow doing anything else. 4577 } 4578 }; 4579 4580 /// Helper data structure to emit `AssumeAlignedAttr`. 4581 class AssumeAlignedAttrEmitter final 4582 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4583 public: 4584 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4585 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4586 if (!AA) 4587 return; 4588 // It is guaranteed that the alignment/offset are constants. 4589 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4590 if (Expr *Offset = AA->getOffset()) { 4591 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4592 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4593 OffsetCI = nullptr; 4594 } 4595 } 4596 }; 4597 4598 /// Helper data structure to emit `AllocAlignAttr`. 4599 class AllocAlignAttrEmitter final 4600 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4601 public: 4602 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4603 const CallArgList &CallArgs) 4604 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4605 if (!AA) 4606 return; 4607 // Alignment may or may not be a constant, and that is okay. 4608 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4609 .getRValue(CGF) 4610 .getScalarVal(); 4611 } 4612 }; 4613 4614 } // namespace 4615 4616 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4617 const CGCallee &Callee, 4618 ReturnValueSlot ReturnValue, 4619 const CallArgList &CallArgs, 4620 llvm::CallBase **callOrInvoke, bool IsMustTail, 4621 SourceLocation Loc) { 4622 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4623 4624 assert(Callee.isOrdinary() || Callee.isVirtual()); 4625 4626 // Handle struct-return functions by passing a pointer to the 4627 // location that we would like to return into. 4628 QualType RetTy = CallInfo.getReturnType(); 4629 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4630 4631 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4632 4633 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4634 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4635 // We can only guarantee that a function is called from the correct 4636 // context/function based on the appropriate target attributes, 4637 // so only check in the case where we have both always_inline and target 4638 // since otherwise we could be making a conditional call after a check for 4639 // the proper cpu features (and it won't cause code generation issues due to 4640 // function based code generation). 4641 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4642 TargetDecl->hasAttr<TargetAttr>()) 4643 checkTargetFeatures(Loc, FD); 4644 4645 // Some architectures (such as x86-64) have the ABI changed based on 4646 // attribute-target/features. Give them a chance to diagnose. 4647 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4648 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4649 } 4650 4651 #ifndef NDEBUG 4652 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4653 // For an inalloca varargs function, we don't expect CallInfo to match the 4654 // function pointer's type, because the inalloca struct a will have extra 4655 // fields in it for the varargs parameters. Code later in this function 4656 // bitcasts the function pointer to the type derived from CallInfo. 4657 // 4658 // In other cases, we assert that the types match up (until pointers stop 4659 // having pointee types). 4660 if (Callee.isVirtual()) 4661 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4662 else { 4663 llvm::PointerType *PtrTy = 4664 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4665 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4666 } 4667 } 4668 #endif 4669 4670 // 1. Set up the arguments. 4671 4672 // If we're using inalloca, insert the allocation after the stack save. 4673 // FIXME: Do this earlier rather than hacking it in here! 4674 Address ArgMemory = Address::invalid(); 4675 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4676 const llvm::DataLayout &DL = CGM.getDataLayout(); 4677 llvm::Instruction *IP = CallArgs.getStackBase(); 4678 llvm::AllocaInst *AI; 4679 if (IP) { 4680 IP = IP->getNextNode(); 4681 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4682 "argmem", IP); 4683 } else { 4684 AI = CreateTempAlloca(ArgStruct, "argmem"); 4685 } 4686 auto Align = CallInfo.getArgStructAlignment(); 4687 AI->setAlignment(Align.getAsAlign()); 4688 AI->setUsedWithInAlloca(true); 4689 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4690 ArgMemory = Address(AI, Align); 4691 } 4692 4693 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4694 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4695 4696 // If the call returns a temporary with struct return, create a temporary 4697 // alloca to hold the result, unless one is given to us. 4698 Address SRetPtr = Address::invalid(); 4699 Address SRetAlloca = Address::invalid(); 4700 llvm::Value *UnusedReturnSizePtr = nullptr; 4701 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4702 if (!ReturnValue.isNull()) { 4703 SRetPtr = ReturnValue.getValue(); 4704 } else { 4705 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4706 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4707 llvm::TypeSize size = 4708 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4709 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4710 } 4711 } 4712 if (IRFunctionArgs.hasSRetArg()) { 4713 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4714 } else if (RetAI.isInAlloca()) { 4715 Address Addr = 4716 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4717 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4718 } 4719 } 4720 4721 Address swiftErrorTemp = Address::invalid(); 4722 Address swiftErrorArg = Address::invalid(); 4723 4724 // When passing arguments using temporary allocas, we need to add the 4725 // appropriate lifetime markers. This vector keeps track of all the lifetime 4726 // markers that need to be ended right after the call. 4727 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4728 4729 // Translate all of the arguments as necessary to match the IR lowering. 4730 assert(CallInfo.arg_size() == CallArgs.size() && 4731 "Mismatch between function signature & arguments."); 4732 unsigned ArgNo = 0; 4733 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4734 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4735 I != E; ++I, ++info_it, ++ArgNo) { 4736 const ABIArgInfo &ArgInfo = info_it->info; 4737 4738 // Insert a padding argument to ensure proper alignment. 4739 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4740 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4741 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4742 4743 unsigned FirstIRArg, NumIRArgs; 4744 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4745 4746 switch (ArgInfo.getKind()) { 4747 case ABIArgInfo::InAlloca: { 4748 assert(NumIRArgs == 0); 4749 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4750 if (I->isAggregate()) { 4751 Address Addr = I->hasLValue() 4752 ? I->getKnownLValue().getAddress(*this) 4753 : I->getKnownRValue().getAggregateAddress(); 4754 llvm::Instruction *Placeholder = 4755 cast<llvm::Instruction>(Addr.getPointer()); 4756 4757 if (!ArgInfo.getInAllocaIndirect()) { 4758 // Replace the placeholder with the appropriate argument slot GEP. 4759 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4760 Builder.SetInsertPoint(Placeholder); 4761 Addr = Builder.CreateStructGEP(ArgMemory, 4762 ArgInfo.getInAllocaFieldIndex()); 4763 Builder.restoreIP(IP); 4764 } else { 4765 // For indirect things such as overaligned structs, replace the 4766 // placeholder with a regular aggregate temporary alloca. Store the 4767 // address of this alloca into the struct. 4768 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4769 Address ArgSlot = Builder.CreateStructGEP( 4770 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4771 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4772 } 4773 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4774 } else if (ArgInfo.getInAllocaIndirect()) { 4775 // Make a temporary alloca and store the address of it into the argument 4776 // struct. 4777 Address Addr = CreateMemTempWithoutCast( 4778 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4779 "indirect-arg-temp"); 4780 I->copyInto(*this, Addr); 4781 Address ArgSlot = 4782 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4783 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4784 } else { 4785 // Store the RValue into the argument struct. 4786 Address Addr = 4787 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4788 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4789 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4790 // There are some cases where a trivial bitcast is not avoidable. The 4791 // definition of a type later in a translation unit may change it's type 4792 // from {}* to (%struct.foo*)*. 4793 if (Addr.getType() != MemType) 4794 Addr = Builder.CreateBitCast(Addr, MemType); 4795 I->copyInto(*this, Addr); 4796 } 4797 break; 4798 } 4799 4800 case ABIArgInfo::Indirect: 4801 case ABIArgInfo::IndirectAliased: { 4802 assert(NumIRArgs == 1); 4803 if (!I->isAggregate()) { 4804 // Make a temporary alloca to pass the argument. 4805 Address Addr = CreateMemTempWithoutCast( 4806 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4807 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4808 4809 I->copyInto(*this, Addr); 4810 } else { 4811 // We want to avoid creating an unnecessary temporary+copy here; 4812 // however, we need one in three cases: 4813 // 1. If the argument is not byval, and we are required to copy the 4814 // source. (This case doesn't occur on any common architecture.) 4815 // 2. If the argument is byval, RV is not sufficiently aligned, and 4816 // we cannot force it to be sufficiently aligned. 4817 // 3. If the argument is byval, but RV is not located in default 4818 // or alloca address space. 4819 Address Addr = I->hasLValue() 4820 ? I->getKnownLValue().getAddress(*this) 4821 : I->getKnownRValue().getAggregateAddress(); 4822 llvm::Value *V = Addr.getPointer(); 4823 CharUnits Align = ArgInfo.getIndirectAlign(); 4824 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4825 4826 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4827 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4828 TD->getAllocaAddrSpace()) && 4829 "indirect argument must be in alloca address space"); 4830 4831 bool NeedCopy = false; 4832 4833 if (Addr.getAlignment() < Align && 4834 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4835 Align.getAsAlign()) { 4836 NeedCopy = true; 4837 } else if (I->hasLValue()) { 4838 auto LV = I->getKnownLValue(); 4839 auto AS = LV.getAddressSpace(); 4840 4841 if (!ArgInfo.getIndirectByVal() || 4842 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4843 NeedCopy = true; 4844 } 4845 if (!getLangOpts().OpenCL) { 4846 if ((ArgInfo.getIndirectByVal() && 4847 (AS != LangAS::Default && 4848 AS != CGM.getASTAllocaAddressSpace()))) { 4849 NeedCopy = true; 4850 } 4851 } 4852 // For OpenCL even if RV is located in default or alloca address space 4853 // we don't want to perform address space cast for it. 4854 else if ((ArgInfo.getIndirectByVal() && 4855 Addr.getType()->getAddressSpace() != IRFuncTy-> 4856 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4857 NeedCopy = true; 4858 } 4859 } 4860 4861 if (NeedCopy) { 4862 // Create an aligned temporary, and copy to it. 4863 Address AI = CreateMemTempWithoutCast( 4864 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4865 IRCallArgs[FirstIRArg] = AI.getPointer(); 4866 4867 // Emit lifetime markers for the temporary alloca. 4868 llvm::TypeSize ByvalTempElementSize = 4869 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4870 llvm::Value *LifetimeSize = 4871 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4872 4873 // Add cleanup code to emit the end lifetime marker after the call. 4874 if (LifetimeSize) // In case we disabled lifetime markers. 4875 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4876 4877 // Generate the copy. 4878 I->copyInto(*this, AI); 4879 } else { 4880 // Skip the extra memcpy call. 4881 auto *T = llvm::PointerType::getWithSamePointeeType( 4882 cast<llvm::PointerType>(V->getType()), 4883 CGM.getDataLayout().getAllocaAddrSpace()); 4884 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4885 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4886 true); 4887 } 4888 } 4889 break; 4890 } 4891 4892 case ABIArgInfo::Ignore: 4893 assert(NumIRArgs == 0); 4894 break; 4895 4896 case ABIArgInfo::Extend: 4897 case ABIArgInfo::Direct: { 4898 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4899 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4900 ArgInfo.getDirectOffset() == 0) { 4901 assert(NumIRArgs == 1); 4902 llvm::Value *V; 4903 if (!I->isAggregate()) 4904 V = I->getKnownRValue().getScalarVal(); 4905 else 4906 V = Builder.CreateLoad( 4907 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4908 : I->getKnownRValue().getAggregateAddress()); 4909 4910 // Implement swifterror by copying into a new swifterror argument. 4911 // We'll write back in the normal path out of the call. 4912 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4913 == ParameterABI::SwiftErrorResult) { 4914 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4915 4916 QualType pointeeTy = I->Ty->getPointeeType(); 4917 swiftErrorArg = 4918 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4919 4920 swiftErrorTemp = 4921 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4922 V = swiftErrorTemp.getPointer(); 4923 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4924 4925 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4926 Builder.CreateStore(errorValue, swiftErrorTemp); 4927 } 4928 4929 // We might have to widen integers, but we should never truncate. 4930 if (ArgInfo.getCoerceToType() != V->getType() && 4931 V->getType()->isIntegerTy()) 4932 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4933 4934 // If the argument doesn't match, perform a bitcast to coerce it. This 4935 // can happen due to trivial type mismatches. 4936 if (FirstIRArg < IRFuncTy->getNumParams() && 4937 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4938 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4939 4940 IRCallArgs[FirstIRArg] = V; 4941 break; 4942 } 4943 4944 // FIXME: Avoid the conversion through memory if possible. 4945 Address Src = Address::invalid(); 4946 if (!I->isAggregate()) { 4947 Src = CreateMemTemp(I->Ty, "coerce"); 4948 I->copyInto(*this, Src); 4949 } else { 4950 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4951 : I->getKnownRValue().getAggregateAddress(); 4952 } 4953 4954 // If the value is offset in memory, apply the offset now. 4955 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4956 4957 // Fast-isel and the optimizer generally like scalar values better than 4958 // FCAs, so we flatten them if this is safe to do for this argument. 4959 llvm::StructType *STy = 4960 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4961 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4962 llvm::Type *SrcTy = Src.getElementType(); 4963 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4964 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4965 4966 // If the source type is smaller than the destination type of the 4967 // coerce-to logic, copy the source value into a temp alloca the size 4968 // of the destination type to allow loading all of it. The bits past 4969 // the source value are left undef. 4970 if (SrcSize < DstSize) { 4971 Address TempAlloca 4972 = CreateTempAlloca(STy, Src.getAlignment(), 4973 Src.getName() + ".coerce"); 4974 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4975 Src = TempAlloca; 4976 } else { 4977 Src = Builder.CreateElementBitCast(Src, STy); 4978 } 4979 4980 assert(NumIRArgs == STy->getNumElements()); 4981 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4982 Address EltPtr = Builder.CreateStructGEP(Src, i); 4983 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4984 IRCallArgs[FirstIRArg + i] = LI; 4985 } 4986 } else { 4987 // In the simple case, just pass the coerced loaded value. 4988 assert(NumIRArgs == 1); 4989 llvm::Value *Load = 4990 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4991 4992 if (CallInfo.isCmseNSCall()) { 4993 // For certain parameter types, clear padding bits, as they may reveal 4994 // sensitive information. 4995 // Small struct/union types are passed as integer arrays. 4996 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4997 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4998 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4999 } 5000 IRCallArgs[FirstIRArg] = Load; 5001 } 5002 5003 break; 5004 } 5005 5006 case ABIArgInfo::CoerceAndExpand: { 5007 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5008 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5009 5010 llvm::Value *tempSize = nullptr; 5011 Address addr = Address::invalid(); 5012 Address AllocaAddr = Address::invalid(); 5013 if (I->isAggregate()) { 5014 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5015 : I->getKnownRValue().getAggregateAddress(); 5016 5017 } else { 5018 RValue RV = I->getKnownRValue(); 5019 assert(RV.isScalar()); // complex should always just be direct 5020 5021 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5022 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5023 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5024 5025 // Materialize to a temporary. 5026 addr = 5027 CreateTempAlloca(RV.getScalarVal()->getType(), 5028 CharUnits::fromQuantity(std::max( 5029 layout->getAlignment().value(), scalarAlign)), 5030 "tmp", 5031 /*ArraySize=*/nullptr, &AllocaAddr); 5032 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5033 5034 Builder.CreateStore(RV.getScalarVal(), addr); 5035 } 5036 5037 addr = Builder.CreateElementBitCast(addr, coercionType); 5038 5039 unsigned IRArgPos = FirstIRArg; 5040 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5041 llvm::Type *eltType = coercionType->getElementType(i); 5042 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5043 Address eltAddr = Builder.CreateStructGEP(addr, i); 5044 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5045 IRCallArgs[IRArgPos++] = elt; 5046 } 5047 assert(IRArgPos == FirstIRArg + NumIRArgs); 5048 5049 if (tempSize) { 5050 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5051 } 5052 5053 break; 5054 } 5055 5056 case ABIArgInfo::Expand: { 5057 unsigned IRArgPos = FirstIRArg; 5058 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5059 assert(IRArgPos == FirstIRArg + NumIRArgs); 5060 break; 5061 } 5062 } 5063 } 5064 5065 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5066 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5067 5068 // If we're using inalloca, set up that argument. 5069 if (ArgMemory.isValid()) { 5070 llvm::Value *Arg = ArgMemory.getPointer(); 5071 if (CallInfo.isVariadic()) { 5072 // When passing non-POD arguments by value to variadic functions, we will 5073 // end up with a variadic prototype and an inalloca call site. In such 5074 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5075 // the callee. 5076 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5077 CalleePtr = 5078 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5079 } else { 5080 llvm::Type *LastParamTy = 5081 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5082 if (Arg->getType() != LastParamTy) { 5083 #ifndef NDEBUG 5084 // Assert that these structs have equivalent element types. 5085 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5086 llvm::StructType *DeclaredTy = 5087 cast<llvm::StructType>(LastParamTy->getPointerElementType()); 5088 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5089 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 5090 DE = DeclaredTy->element_end(), 5091 FI = FullTy->element_begin(); 5092 DI != DE; ++DI, ++FI) 5093 assert(*DI == *FI); 5094 #endif 5095 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5096 } 5097 } 5098 assert(IRFunctionArgs.hasInallocaArg()); 5099 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5100 } 5101 5102 // 2. Prepare the function pointer. 5103 5104 // If the callee is a bitcast of a non-variadic function to have a 5105 // variadic function pointer type, check to see if we can remove the 5106 // bitcast. This comes up with unprototyped functions. 5107 // 5108 // This makes the IR nicer, but more importantly it ensures that we 5109 // can inline the function at -O0 if it is marked always_inline. 5110 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5111 llvm::Value *Ptr) -> llvm::Function * { 5112 if (!CalleeFT->isVarArg()) 5113 return nullptr; 5114 5115 // Get underlying value if it's a bitcast 5116 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5117 if (CE->getOpcode() == llvm::Instruction::BitCast) 5118 Ptr = CE->getOperand(0); 5119 } 5120 5121 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5122 if (!OrigFn) 5123 return nullptr; 5124 5125 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5126 5127 // If the original type is variadic, or if any of the component types 5128 // disagree, we cannot remove the cast. 5129 if (OrigFT->isVarArg() || 5130 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5131 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5132 return nullptr; 5133 5134 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5135 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5136 return nullptr; 5137 5138 return OrigFn; 5139 }; 5140 5141 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5142 CalleePtr = OrigFn; 5143 IRFuncTy = OrigFn->getFunctionType(); 5144 } 5145 5146 // 3. Perform the actual call. 5147 5148 // Deactivate any cleanups that we're supposed to do immediately before 5149 // the call. 5150 if (!CallArgs.getCleanupsToDeactivate().empty()) 5151 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5152 5153 // Assert that the arguments we computed match up. The IR verifier 5154 // will catch this, but this is a common enough source of problems 5155 // during IRGen changes that it's way better for debugging to catch 5156 // it ourselves here. 5157 #ifndef NDEBUG 5158 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5159 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5160 // Inalloca argument can have different type. 5161 if (IRFunctionArgs.hasInallocaArg() && 5162 i == IRFunctionArgs.getInallocaArgNo()) 5163 continue; 5164 if (i < IRFuncTy->getNumParams()) 5165 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5166 } 5167 #endif 5168 5169 // Update the largest vector width if any arguments have vector types. 5170 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5171 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 5172 LargestVectorWidth = 5173 std::max((uint64_t)LargestVectorWidth, 5174 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5175 } 5176 5177 // Compute the calling convention and attributes. 5178 unsigned CallingConv; 5179 llvm::AttributeList Attrs; 5180 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5181 Callee.getAbstractInfo(), Attrs, CallingConv, 5182 /*AttrOnCallSite=*/true, 5183 /*IsThunk=*/false); 5184 5185 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5186 if (FD->hasAttr<StrictFPAttr>()) 5187 // All calls within a strictfp function are marked strictfp 5188 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5189 5190 // Add call-site nomerge attribute if exists. 5191 if (InNoMergeAttributedStmt) 5192 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5193 5194 // Apply some call-site-specific attributes. 5195 // TODO: work this into building the attribute set. 5196 5197 // Apply always_inline to all calls within flatten functions. 5198 // FIXME: should this really take priority over __try, below? 5199 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5200 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5201 Attrs = 5202 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5203 } 5204 5205 // Disable inlining inside SEH __try blocks. 5206 if (isSEHTryScope()) { 5207 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5208 } 5209 5210 // Decide whether to use a call or an invoke. 5211 bool CannotThrow; 5212 if (currentFunctionUsesSEHTry()) { 5213 // SEH cares about asynchronous exceptions, so everything can "throw." 5214 CannotThrow = false; 5215 } else if (isCleanupPadScope() && 5216 EHPersonality::get(*this).isMSVCXXPersonality()) { 5217 // The MSVC++ personality will implicitly terminate the program if an 5218 // exception is thrown during a cleanup outside of a try/catch. 5219 // We don't need to model anything in IR to get this behavior. 5220 CannotThrow = true; 5221 } else { 5222 // Otherwise, nounwind call sites will never throw. 5223 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5224 5225 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5226 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5227 CannotThrow = true; 5228 } 5229 5230 // If we made a temporary, be sure to clean up after ourselves. Note that we 5231 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5232 // pop this cleanup later on. Being eager about this is OK, since this 5233 // temporary is 'invisible' outside of the callee. 5234 if (UnusedReturnSizePtr) 5235 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5236 UnusedReturnSizePtr); 5237 5238 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5239 5240 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5241 getBundlesForFunclet(CalleePtr); 5242 5243 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5244 if (FD->hasAttr<StrictFPAttr>()) 5245 // All calls within a strictfp function are marked strictfp 5246 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5247 5248 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5249 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5250 5251 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5252 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5253 5254 // Emit the actual call/invoke instruction. 5255 llvm::CallBase *CI; 5256 if (!InvokeDest) { 5257 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5258 } else { 5259 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5260 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5261 BundleList); 5262 EmitBlock(Cont); 5263 } 5264 if (callOrInvoke) 5265 *callOrInvoke = CI; 5266 5267 // If this is within a function that has the guard(nocf) attribute and is an 5268 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5269 // Control Flow Guard checks should not be added, even if the call is inlined. 5270 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5271 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5272 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5273 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5274 } 5275 } 5276 5277 // Apply the attributes and calling convention. 5278 CI->setAttributes(Attrs); 5279 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5280 5281 // Apply various metadata. 5282 5283 if (!CI->getType()->isVoidTy()) 5284 CI->setName("call"); 5285 5286 // Update largest vector width from the return type. 5287 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5288 LargestVectorWidth = 5289 std::max((uint64_t)LargestVectorWidth, 5290 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5291 5292 // Insert instrumentation or attach profile metadata at indirect call sites. 5293 // For more details, see the comment before the definition of 5294 // IPVK_IndirectCallTarget in InstrProfData.inc. 5295 if (!CI->getCalledFunction()) 5296 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5297 CI, CalleePtr); 5298 5299 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5300 // optimizer it can aggressively ignore unwind edges. 5301 if (CGM.getLangOpts().ObjCAutoRefCount) 5302 AddObjCARCExceptionMetadata(CI); 5303 5304 // Set tail call kind if necessary. 5305 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5306 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5307 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5308 else if (IsMustTail) 5309 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5310 } 5311 5312 // Add metadata for calls to MSAllocator functions 5313 if (getDebugInfo() && TargetDecl && 5314 TargetDecl->hasAttr<MSAllocatorAttr>()) 5315 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5316 5317 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5318 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5319 llvm::ConstantInt *Line = 5320 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5321 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5322 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5323 CI->setMetadata("srcloc", MDT); 5324 } 5325 5326 // 4. Finish the call. 5327 5328 // If the call doesn't return, finish the basic block and clear the 5329 // insertion point; this allows the rest of IRGen to discard 5330 // unreachable code. 5331 if (CI->doesNotReturn()) { 5332 if (UnusedReturnSizePtr) 5333 PopCleanupBlock(); 5334 5335 // Strip away the noreturn attribute to better diagnose unreachable UB. 5336 if (SanOpts.has(SanitizerKind::Unreachable)) { 5337 // Also remove from function since CallBase::hasFnAttr additionally checks 5338 // attributes of the called function. 5339 if (auto *F = CI->getCalledFunction()) 5340 F->removeFnAttr(llvm::Attribute::NoReturn); 5341 CI->removeFnAttr(llvm::Attribute::NoReturn); 5342 5343 // Avoid incompatibility with ASan which relies on the `noreturn` 5344 // attribute to insert handler calls. 5345 if (SanOpts.hasOneOf(SanitizerKind::Address | 5346 SanitizerKind::KernelAddress)) { 5347 SanitizerScope SanScope(this); 5348 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5349 Builder.SetInsertPoint(CI); 5350 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5351 llvm::FunctionCallee Fn = 5352 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5353 EmitNounwindRuntimeCall(Fn); 5354 } 5355 } 5356 5357 EmitUnreachable(Loc); 5358 Builder.ClearInsertionPoint(); 5359 5360 // FIXME: For now, emit a dummy basic block because expr emitters in 5361 // generally are not ready to handle emitting expressions at unreachable 5362 // points. 5363 EnsureInsertPoint(); 5364 5365 // Return a reasonable RValue. 5366 return GetUndefRValue(RetTy); 5367 } 5368 5369 // If this is a musttail call, return immediately. We do not branch to the 5370 // epilogue in this case. 5371 if (IsMustTail) { 5372 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5373 ++it) { 5374 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5375 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5376 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5377 } 5378 if (CI->getType()->isVoidTy()) 5379 Builder.CreateRetVoid(); 5380 else 5381 Builder.CreateRet(CI); 5382 Builder.ClearInsertionPoint(); 5383 EnsureInsertPoint(); 5384 return GetUndefRValue(RetTy); 5385 } 5386 5387 // Perform the swifterror writeback. 5388 if (swiftErrorTemp.isValid()) { 5389 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5390 Builder.CreateStore(errorResult, swiftErrorArg); 5391 } 5392 5393 // Emit any call-associated writebacks immediately. Arguably this 5394 // should happen after any return-value munging. 5395 if (CallArgs.hasWritebacks()) 5396 emitWritebacks(*this, CallArgs); 5397 5398 // The stack cleanup for inalloca arguments has to run out of the normal 5399 // lexical order, so deactivate it and run it manually here. 5400 CallArgs.freeArgumentMemory(*this); 5401 5402 // Extract the return value. 5403 RValue Ret = [&] { 5404 switch (RetAI.getKind()) { 5405 case ABIArgInfo::CoerceAndExpand: { 5406 auto coercionType = RetAI.getCoerceAndExpandType(); 5407 5408 Address addr = SRetPtr; 5409 addr = Builder.CreateElementBitCast(addr, coercionType); 5410 5411 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5412 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5413 5414 unsigned unpaddedIndex = 0; 5415 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5416 llvm::Type *eltType = coercionType->getElementType(i); 5417 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5418 Address eltAddr = Builder.CreateStructGEP(addr, i); 5419 llvm::Value *elt = CI; 5420 if (requiresExtract) 5421 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5422 else 5423 assert(unpaddedIndex == 0); 5424 Builder.CreateStore(elt, eltAddr); 5425 } 5426 // FALLTHROUGH 5427 LLVM_FALLTHROUGH; 5428 } 5429 5430 case ABIArgInfo::InAlloca: 5431 case ABIArgInfo::Indirect: { 5432 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5433 if (UnusedReturnSizePtr) 5434 PopCleanupBlock(); 5435 return ret; 5436 } 5437 5438 case ABIArgInfo::Ignore: 5439 // If we are ignoring an argument that had a result, make sure to 5440 // construct the appropriate return value for our caller. 5441 return GetUndefRValue(RetTy); 5442 5443 case ABIArgInfo::Extend: 5444 case ABIArgInfo::Direct: { 5445 llvm::Type *RetIRTy = ConvertType(RetTy); 5446 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5447 switch (getEvaluationKind(RetTy)) { 5448 case TEK_Complex: { 5449 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5450 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5451 return RValue::getComplex(std::make_pair(Real, Imag)); 5452 } 5453 case TEK_Aggregate: { 5454 Address DestPtr = ReturnValue.getValue(); 5455 bool DestIsVolatile = ReturnValue.isVolatile(); 5456 5457 if (!DestPtr.isValid()) { 5458 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5459 DestIsVolatile = false; 5460 } 5461 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5462 return RValue::getAggregate(DestPtr); 5463 } 5464 case TEK_Scalar: { 5465 // If the argument doesn't match, perform a bitcast to coerce it. This 5466 // can happen due to trivial type mismatches. 5467 llvm::Value *V = CI; 5468 if (V->getType() != RetIRTy) 5469 V = Builder.CreateBitCast(V, RetIRTy); 5470 return RValue::get(V); 5471 } 5472 } 5473 llvm_unreachable("bad evaluation kind"); 5474 } 5475 5476 Address DestPtr = ReturnValue.getValue(); 5477 bool DestIsVolatile = ReturnValue.isVolatile(); 5478 5479 if (!DestPtr.isValid()) { 5480 DestPtr = CreateMemTemp(RetTy, "coerce"); 5481 DestIsVolatile = false; 5482 } 5483 5484 // If the value is offset in memory, apply the offset now. 5485 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5486 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5487 5488 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5489 } 5490 5491 case ABIArgInfo::Expand: 5492 case ABIArgInfo::IndirectAliased: 5493 llvm_unreachable("Invalid ABI kind for return argument"); 5494 } 5495 5496 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5497 } (); 5498 5499 // Emit the assume_aligned check on the return value. 5500 if (Ret.isScalar() && TargetDecl) { 5501 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5502 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5503 } 5504 5505 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5506 // we can't use the full cleanup mechanism. 5507 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5508 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5509 5510 if (!ReturnValue.isExternallyDestructed() && 5511 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5512 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5513 RetTy); 5514 5515 return Ret; 5516 } 5517 5518 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5519 if (isVirtual()) { 5520 const CallExpr *CE = getVirtualCallExpr(); 5521 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5522 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5523 CE ? CE->getBeginLoc() : SourceLocation()); 5524 } 5525 5526 return *this; 5527 } 5528 5529 /* VarArg handling */ 5530 5531 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5532 VAListAddr = VE->isMicrosoftABI() 5533 ? EmitMSVAListRef(VE->getSubExpr()) 5534 : EmitVAListRef(VE->getSubExpr()); 5535 QualType Ty = VE->getType(); 5536 if (VE->isMicrosoftABI()) 5537 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5538 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5539 } 5540