1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a device stub function to a symbol for identifying kernel in host code. 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 73 llvm::FunctionCallee getSetupArgumentFn() const; 74 llvm::FunctionCallee getLaunchFn() const; 75 76 llvm::FunctionType *getRegisterGlobalsFnTy() const; 77 llvm::FunctionType *getCallbackFnTy() const; 78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 79 std::string addPrefixToName(StringRef FuncName) const; 80 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 81 82 /// Creates a function to register all kernel stubs generated in this module. 83 llvm::Function *makeRegisterGlobalsFn(); 84 85 /// Helper function that generates a constant string and returns a pointer to 86 /// the start of the string. The result of this function can be used anywhere 87 /// where the C code specifies const char*. 88 llvm::Constant *makeConstantString(const std::string &Str, 89 const std::string &Name = "", 90 const std::string &SectionName = "", 91 unsigned Alignment = 0) { 92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 93 llvm::ConstantInt::get(SizeTy, 0)}; 94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 95 llvm::GlobalVariable *GV = 96 cast<llvm::GlobalVariable>(ConstStr.getPointer()); 97 if (!SectionName.empty()) { 98 GV->setSection(SectionName); 99 // Mark the address as used which make sure that this section isn't 100 // merged and we will really have it in the object file. 101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 102 } 103 if (Alignment) 104 GV->setAlignment(llvm::Align(Alignment)); 105 106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 107 ConstStr.getPointer(), Zeros); 108 } 109 110 /// Helper function that generates an empty dummy function returning void. 111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 112 assert(FnTy->getReturnType()->isVoidTy() && 113 "Can only generate dummy functions returning void!"); 114 llvm::Function *DummyFunc = llvm::Function::Create( 115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 116 117 llvm::BasicBlock *DummyBlock = 118 llvm::BasicBlock::Create(Context, "", DummyFunc); 119 CGBuilderTy FuncBuilder(CGM, Context); 120 FuncBuilder.SetInsertPoint(DummyBlock); 121 FuncBuilder.CreateRetVoid(); 122 123 return DummyFunc; 124 } 125 126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 128 std::string getDeviceSideName(const NamedDecl *ND) override; 129 130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 131 bool Extern, bool Constant) { 132 DeviceVars.push_back({&Var, 133 VD, 134 {DeviceVarFlags::Variable, Extern, Constant, 135 VD->hasAttr<HIPManagedAttr>(), 136 /*Normalized*/ false, 0}}); 137 } 138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 139 bool Extern, int Type) { 140 DeviceVars.push_back({&Var, 141 VD, 142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 143 /*Managed*/ false, 144 /*Normalized*/ false, Type}}); 145 } 146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 147 bool Extern, int Type, bool Normalized) { 148 DeviceVars.push_back({&Var, 149 VD, 150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 151 /*Managed*/ false, Normalized, Type}}); 152 } 153 154 /// Creates module constructor function 155 llvm::Function *makeModuleCtorFunction(); 156 /// Creates module destructor function 157 llvm::Function *makeModuleDtorFunction(); 158 /// Transform managed variables for device compilation. 159 void transformManagedVars(); 160 /// Create offloading entries to register globals in RDC mode. 161 void createOffloadingEntries(); 162 163 public: 164 CGNVCUDARuntime(CodeGenModule &CGM); 165 166 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 167 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 168 auto Loc = KernelStubs.find(Handle); 169 assert(Loc != KernelStubs.end()); 170 return Loc->second; 171 } 172 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 173 void handleVarRegistration(const VarDecl *VD, 174 llvm::GlobalVariable &Var) override; 175 void 176 internalizeDeviceSideVar(const VarDecl *D, 177 llvm::GlobalValue::LinkageTypes &Linkage) override; 178 179 llvm::Function *finalizeModule() override; 180 }; 181 182 } // end anonymous namespace 183 184 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 185 if (CGM.getLangOpts().HIP) 186 return ((Twine("hip") + Twine(FuncName)).str()); 187 return ((Twine("cuda") + Twine(FuncName)).str()); 188 } 189 std::string 190 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 191 if (CGM.getLangOpts().HIP) 192 return ((Twine("__hip") + Twine(FuncName)).str()); 193 return ((Twine("__cuda") + Twine(FuncName)).str()); 194 } 195 196 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 197 // If the host and device have different C++ ABIs, mark it as the device 198 // mangle context so that the mangling needs to retrieve the additional 199 // device lambda mangling number instead of the regular host one. 200 if (CGM.getContext().getAuxTargetInfo() && 201 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 202 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 203 return std::unique_ptr<MangleContext>( 204 CGM.getContext().createDeviceMangleContext( 205 *CGM.getContext().getAuxTargetInfo())); 206 } 207 208 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 209 CGM.getContext().getAuxTargetInfo())); 210 } 211 212 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 213 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 214 TheModule(CGM.getModule()), 215 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), 216 DeviceMC(InitDeviceMC(CGM)) { 217 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 218 ASTContext &Ctx = CGM.getContext(); 219 220 IntTy = CGM.IntTy; 221 SizeTy = CGM.SizeTy; 222 VoidTy = CGM.VoidTy; 223 224 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 225 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 226 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 227 } 228 229 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 230 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 231 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 232 return CGM.CreateRuntimeFunction( 233 llvm::FunctionType::get(IntTy, Params, false), 234 addPrefixToName("SetupArgument")); 235 } 236 237 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 238 if (CGM.getLangOpts().HIP) { 239 // hipError_t hipLaunchByPtr(char *); 240 return CGM.CreateRuntimeFunction( 241 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 242 } 243 // cudaError_t cudaLaunch(char *); 244 return CGM.CreateRuntimeFunction( 245 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 246 } 247 248 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 249 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 250 } 251 252 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 253 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 254 } 255 256 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 257 auto *CallbackFnTy = getCallbackFnTy(); 258 auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 259 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 260 VoidPtrTy, CallbackFnTy->getPointerTo()}; 261 return llvm::FunctionType::get(VoidTy, Params, false); 262 } 263 264 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 265 GlobalDecl GD; 266 // D could be either a kernel or a variable. 267 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 268 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 269 else 270 GD = GlobalDecl(ND); 271 std::string DeviceSideName; 272 MangleContext *MC; 273 if (CGM.getLangOpts().CUDAIsDevice) 274 MC = &CGM.getCXXABI().getMangleContext(); 275 else 276 MC = DeviceMC.get(); 277 if (MC->shouldMangleDeclName(ND)) { 278 SmallString<256> Buffer; 279 llvm::raw_svector_ostream Out(Buffer); 280 MC->mangleName(GD, Out); 281 DeviceSideName = std::string(Out.str()); 282 } else 283 DeviceSideName = std::string(ND->getIdentifier()->getName()); 284 285 // Make unique name for device side static file-scope variable for HIP. 286 if (CGM.getContext().shouldExternalize(ND) && 287 CGM.getLangOpts().GPURelocatableDeviceCode) { 288 SmallString<256> Buffer; 289 llvm::raw_svector_ostream Out(Buffer); 290 Out << DeviceSideName; 291 CGM.printPostfixForExternalizedDecl(Out, ND); 292 DeviceSideName = std::string(Out.str()); 293 } 294 return DeviceSideName; 295 } 296 297 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 298 FunctionArgList &Args) { 299 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 300 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { 301 GV->setLinkage(CGF.CurFn->getLinkage()); 302 GV->setInitializer(CGF.CurFn); 303 } 304 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 305 CudaFeature::CUDA_USES_NEW_LAUNCH) || 306 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 307 emitDeviceStubBodyNew(CGF, Args); 308 else 309 emitDeviceStubBodyLegacy(CGF, Args); 310 } 311 312 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 313 // array and kernels are launched using cudaLaunchKernel(). 314 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 315 FunctionArgList &Args) { 316 // Build the shadow stack entry at the very start of the function. 317 318 // Calculate amount of space we will need for all arguments. If we have no 319 // args, allocate a single pointer so we still have a valid pointer to the 320 // argument array that we can pass to runtime, even if it will be unused. 321 Address KernelArgs = CGF.CreateTempAlloca( 322 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 323 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 324 // Store pointers to the arguments in a locally allocated launch_args. 325 for (unsigned i = 0; i < Args.size(); ++i) { 326 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 327 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 328 CGF.Builder.CreateDefaultAlignedStore( 329 VoidVarPtr, 330 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); 331 } 332 333 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 334 335 // Lookup cudaLaunchKernel/hipLaunchKernel function. 336 // HIP kernel launching API name depends on -fgpu-default-stream option. For 337 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread', 338 // it is hipLaunchKernel_spt. 339 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 340 // void **args, size_t sharedMem, 341 // cudaStream_t stream); 342 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim, 343 // dim3 blockDim, void **args, 344 // size_t sharedMem, hipStream_t stream); 345 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 346 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 347 std::string KernelLaunchAPI = "LaunchKernel"; 348 if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream == 349 LangOptions::GPUDefaultStreamKind::PerThread) 350 KernelLaunchAPI = KernelLaunchAPI + "_spt"; 351 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI); 352 IdentifierInfo &cudaLaunchKernelII = 353 CGM.getContext().Idents.get(LaunchKernelName); 354 FunctionDecl *cudaLaunchKernelFD = nullptr; 355 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 356 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 357 cudaLaunchKernelFD = FD; 358 } 359 360 if (cudaLaunchKernelFD == nullptr) { 361 CGM.Error(CGF.CurFuncDecl->getLocation(), 362 "Can't find declaration for " + LaunchKernelName); 363 return; 364 } 365 // Create temporary dim3 grid_dim, block_dim. 366 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 367 QualType Dim3Ty = GridDimParam->getType(); 368 Address GridDim = 369 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 370 Address BlockDim = 371 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 372 Address ShmemSize = 373 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 374 Address Stream = 375 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 376 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 377 llvm::FunctionType::get(IntTy, 378 {/*gridDim=*/GridDim.getType(), 379 /*blockDim=*/BlockDim.getType(), 380 /*ShmemSize=*/ShmemSize.getType(), 381 /*Stream=*/Stream.getType()}, 382 /*isVarArg=*/false), 383 addUnderscoredPrefixToName("PopCallConfiguration")); 384 385 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 386 {GridDim.getPointer(), BlockDim.getPointer(), 387 ShmemSize.getPointer(), Stream.getPointer()}); 388 389 // Emit the call to cudaLaunch 390 llvm::Value *Kernel = 391 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); 392 CallArgList LaunchKernelArgs; 393 LaunchKernelArgs.add(RValue::get(Kernel), 394 cudaLaunchKernelFD->getParamDecl(0)->getType()); 395 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 396 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 397 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 398 cudaLaunchKernelFD->getParamDecl(3)->getType()); 399 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 400 cudaLaunchKernelFD->getParamDecl(4)->getType()); 401 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 402 cudaLaunchKernelFD->getParamDecl(5)->getType()); 403 404 QualType QT = cudaLaunchKernelFD->getType(); 405 QualType CQT = QT.getCanonicalType(); 406 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 407 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 408 409 const CGFunctionInfo &FI = 410 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 411 llvm::FunctionCallee cudaLaunchKernelFn = 412 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 413 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 414 LaunchKernelArgs); 415 CGF.EmitBranch(EndBlock); 416 417 CGF.EmitBlock(EndBlock); 418 } 419 420 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 421 FunctionArgList &Args) { 422 // Emit a call to cudaSetupArgument for each arg in Args. 423 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 424 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 425 CharUnits Offset = CharUnits::Zero(); 426 for (const VarDecl *A : Args) { 427 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 428 Offset = Offset.alignTo(TInfo.Align); 429 llvm::Value *Args[] = { 430 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 431 VoidPtrTy), 432 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 433 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 434 }; 435 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 436 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 437 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 438 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 439 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 440 CGF.EmitBlock(NextBlock); 441 Offset += TInfo.Width; 442 } 443 444 // Emit the call to cudaLaunch 445 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 446 llvm::Value *Arg = 447 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); 448 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 449 CGF.EmitBranch(EndBlock); 450 451 CGF.EmitBlock(EndBlock); 452 } 453 454 // Replace the original variable Var with the address loaded from variable 455 // ManagedVar populated by HIP runtime. 456 static void replaceManagedVar(llvm::GlobalVariable *Var, 457 llvm::GlobalVariable *ManagedVar) { 458 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 459 for (auto &&VarUse : Var->uses()) { 460 WorkList.push_back({VarUse.getUser()}); 461 } 462 while (!WorkList.empty()) { 463 auto &&WorkItem = WorkList.pop_back_val(); 464 auto *U = WorkItem.back(); 465 if (isa<llvm::ConstantExpr>(U)) { 466 for (auto &&UU : U->uses()) { 467 WorkItem.push_back(UU.getUser()); 468 WorkList.push_back(WorkItem); 469 WorkItem.pop_back(); 470 } 471 continue; 472 } 473 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 474 llvm::Value *OldV = Var; 475 llvm::Instruction *NewV = 476 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 477 llvm::Align(Var->getAlignment()), I); 478 WorkItem.pop_back(); 479 // Replace constant expressions directly or indirectly using the managed 480 // variable with instructions. 481 for (auto &&Op : WorkItem) { 482 auto *CE = cast<llvm::ConstantExpr>(Op); 483 auto *NewInst = CE->getAsInstruction(I); 484 NewInst->replaceUsesOfWith(OldV, NewV); 485 OldV = CE; 486 NewV = NewInst; 487 } 488 I->replaceUsesOfWith(OldV, NewV); 489 } else { 490 llvm_unreachable("Invalid use of managed variable"); 491 } 492 } 493 } 494 495 /// Creates a function that sets up state on the host side for CUDA objects that 496 /// have a presence on both the host and device sides. Specifically, registers 497 /// the host side of kernel functions and device global variables with the CUDA 498 /// runtime. 499 /// \code 500 /// void __cuda_register_globals(void** GpuBinaryHandle) { 501 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 502 /// ... 503 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 504 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 505 /// ... 506 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 507 /// } 508 /// \endcode 509 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 510 // No need to register anything 511 if (EmittedKernels.empty() && DeviceVars.empty()) 512 return nullptr; 513 514 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 515 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 516 addUnderscoredPrefixToName("_register_globals"), &TheModule); 517 llvm::BasicBlock *EntryBB = 518 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 519 CGBuilderTy Builder(CGM, Context); 520 Builder.SetInsertPoint(EntryBB); 521 522 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 523 // int, uint3*, uint3*, dim3*, dim3*, int*) 524 llvm::Type *RegisterFuncParams[] = { 525 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 526 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 527 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 528 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 529 addUnderscoredPrefixToName("RegisterFunction")); 530 531 // Extract GpuBinaryHandle passed as the first argument passed to 532 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 533 // each emitted kernel. 534 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 535 for (auto &&I : EmittedKernels) { 536 llvm::Constant *KernelName = 537 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 538 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 539 llvm::Value *Args[] = { 540 &GpuBinaryHandlePtr, 541 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), 542 KernelName, 543 KernelName, 544 llvm::ConstantInt::get(IntTy, -1), 545 NullPtr, 546 NullPtr, 547 NullPtr, 548 NullPtr, 549 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 550 Builder.CreateCall(RegisterFunc, Args); 551 } 552 553 llvm::Type *VarSizeTy = IntTy; 554 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 555 if (CGM.getLangOpts().HIP || 556 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 557 VarSizeTy = SizeTy; 558 559 // void __cudaRegisterVar(void **, char *, char *, const char *, 560 // int, int, int, int) 561 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 562 CharPtrTy, IntTy, VarSizeTy, 563 IntTy, IntTy}; 564 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 565 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 566 addUnderscoredPrefixToName("RegisterVar")); 567 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 568 // size_t, unsigned) 569 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 570 CharPtrTy, VarSizeTy, IntTy}; 571 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 572 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 573 addUnderscoredPrefixToName("RegisterManagedVar")); 574 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 575 // const void **, const char *, int, int); 576 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 577 llvm::FunctionType::get( 578 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 579 false), 580 addUnderscoredPrefixToName("RegisterSurface")); 581 // void __cudaRegisterTexture(void **, const struct textureReference *, 582 // const void **, const char *, int, int, int) 583 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 584 llvm::FunctionType::get( 585 VoidTy, 586 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 587 false), 588 addUnderscoredPrefixToName("RegisterTexture")); 589 for (auto &&Info : DeviceVars) { 590 llvm::GlobalVariable *Var = Info.Var; 591 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 592 "External variables should not show up here, except HIP managed " 593 "variables"); 594 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 595 switch (Info.Flags.getKind()) { 596 case DeviceVarFlags::Variable: { 597 uint64_t VarSize = 598 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 599 if (Info.Flags.isManaged()) { 600 auto *ManagedVar = new llvm::GlobalVariable( 601 CGM.getModule(), Var->getType(), 602 /*isConstant=*/false, Var->getLinkage(), 603 /*Init=*/Var->isDeclaration() 604 ? nullptr 605 : llvm::ConstantPointerNull::get(Var->getType()), 606 /*Name=*/"", /*InsertBefore=*/nullptr, 607 llvm::GlobalVariable::NotThreadLocal); 608 ManagedVar->setDSOLocal(Var->isDSOLocal()); 609 ManagedVar->setVisibility(Var->getVisibility()); 610 ManagedVar->setExternallyInitialized(true); 611 ManagedVar->takeName(Var); 612 Var->setName(Twine(ManagedVar->getName() + ".managed")); 613 replaceManagedVar(Var, ManagedVar); 614 llvm::Value *Args[] = { 615 &GpuBinaryHandlePtr, 616 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 617 Builder.CreateBitCast(Var, VoidPtrTy), 618 VarName, 619 llvm::ConstantInt::get(VarSizeTy, VarSize), 620 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 621 if (!Var->isDeclaration()) 622 Builder.CreateCall(RegisterManagedVar, Args); 623 } else { 624 llvm::Value *Args[] = { 625 &GpuBinaryHandlePtr, 626 Builder.CreateBitCast(Var, VoidPtrTy), 627 VarName, 628 VarName, 629 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 630 llvm::ConstantInt::get(VarSizeTy, VarSize), 631 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 632 llvm::ConstantInt::get(IntTy, 0)}; 633 Builder.CreateCall(RegisterVar, Args); 634 } 635 break; 636 } 637 case DeviceVarFlags::Surface: 638 Builder.CreateCall( 639 RegisterSurf, 640 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 641 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 642 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 643 break; 644 case DeviceVarFlags::Texture: 645 Builder.CreateCall( 646 RegisterTex, 647 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 648 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 649 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 650 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 651 break; 652 } 653 } 654 655 Builder.CreateRetVoid(); 656 return RegisterKernelsFunc; 657 } 658 659 /// Creates a global constructor function for the module: 660 /// 661 /// For CUDA: 662 /// \code 663 /// void __cuda_module_ctor() { 664 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 665 /// __cuda_register_globals(Handle); 666 /// } 667 /// \endcode 668 /// 669 /// For HIP: 670 /// \code 671 /// void __hip_module_ctor() { 672 /// if (__hip_gpubin_handle == 0) { 673 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 674 /// __hip_register_globals(__hip_gpubin_handle); 675 /// } 676 /// } 677 /// \endcode 678 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 679 bool IsHIP = CGM.getLangOpts().HIP; 680 bool IsCUDA = CGM.getLangOpts().CUDA; 681 // No need to generate ctors/dtors if there is no GPU binary. 682 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 683 if (CudaGpuBinaryFileName.empty() && !IsHIP) 684 return nullptr; 685 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 686 DeviceVars.empty()) 687 return nullptr; 688 689 // void __{cuda|hip}_register_globals(void* handle); 690 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 691 // We always need a function to pass in as callback. Create a dummy 692 // implementation if we don't need to register anything. 693 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 694 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 695 696 // void ** __{cuda|hip}RegisterFatBinary(void *); 697 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 698 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 699 addUnderscoredPrefixToName("RegisterFatBinary")); 700 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 701 llvm::StructType *FatbinWrapperTy = 702 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 703 704 // Register GPU binary with the CUDA runtime, store returned handle in a 705 // global variable and save a reference in GpuBinaryHandle to be cleaned up 706 // in destructor on exit. Then associate all known kernels with the GPU binary 707 // handle so CUDA runtime can figure out what to call on the GPU side. 708 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 709 if (!CudaGpuBinaryFileName.empty()) { 710 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 711 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 712 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 713 CGM.getDiags().Report(diag::err_cannot_open_file) 714 << CudaGpuBinaryFileName << EC.message(); 715 return nullptr; 716 } 717 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 718 } 719 720 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 721 llvm::FunctionType::get(VoidTy, false), 722 llvm::GlobalValue::InternalLinkage, 723 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 724 llvm::BasicBlock *CtorEntryBB = 725 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 726 CGBuilderTy CtorBuilder(CGM, Context); 727 728 CtorBuilder.SetInsertPoint(CtorEntryBB); 729 730 const char *FatbinConstantName; 731 const char *FatbinSectionName; 732 const char *ModuleIDSectionName; 733 StringRef ModuleIDPrefix; 734 llvm::Constant *FatBinStr; 735 unsigned FatMagic; 736 if (IsHIP) { 737 FatbinConstantName = ".hip_fatbin"; 738 FatbinSectionName = ".hipFatBinSegment"; 739 740 ModuleIDSectionName = "__hip_module_id"; 741 ModuleIDPrefix = "__hip_"; 742 743 if (CudaGpuBinary) { 744 // If fatbin is available from early finalization, create a string 745 // literal containing the fat binary loaded from the given file. 746 const unsigned HIPCodeObjectAlign = 4096; 747 FatBinStr = 748 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 749 FatbinConstantName, HIPCodeObjectAlign); 750 } else { 751 // If fatbin is not available, create an external symbol 752 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 753 // to contain the fat binary but will be populated somewhere else, 754 // e.g. by lld through link script. 755 FatBinStr = new llvm::GlobalVariable( 756 CGM.getModule(), CGM.Int8Ty, 757 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 758 "__hip_fatbin", nullptr, 759 llvm::GlobalVariable::NotThreadLocal); 760 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 761 } 762 763 FatMagic = HIPFatMagic; 764 } else { 765 if (RelocatableDeviceCode) 766 FatbinConstantName = CGM.getTriple().isMacOSX() 767 ? "__NV_CUDA,__nv_relfatbin" 768 : "__nv_relfatbin"; 769 else 770 FatbinConstantName = 771 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 772 // NVIDIA's cuobjdump looks for fatbins in this section. 773 FatbinSectionName = 774 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 775 776 ModuleIDSectionName = CGM.getTriple().isMacOSX() 777 ? "__NV_CUDA,__nv_module_id" 778 : "__nv_module_id"; 779 ModuleIDPrefix = "__nv_"; 780 781 // For CUDA, create a string literal containing the fat binary loaded from 782 // the given file. 783 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 784 FatbinConstantName, 8); 785 FatMagic = CudaFatMagic; 786 } 787 788 // Create initialized wrapper structure that points to the loaded GPU binary 789 ConstantInitBuilder Builder(CGM); 790 auto Values = Builder.beginStruct(FatbinWrapperTy); 791 // Fatbin wrapper magic. 792 Values.addInt(IntTy, FatMagic); 793 // Fatbin version. 794 Values.addInt(IntTy, 1); 795 // Data. 796 Values.add(FatBinStr); 797 // Unused in fatbin v1. 798 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 799 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 800 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 801 /*constant*/ true); 802 FatbinWrapper->setSection(FatbinSectionName); 803 804 // There is only one HIP fat binary per linked module, however there are 805 // multiple constructor functions. Make sure the fat binary is registered 806 // only once. The constructor functions are executed by the dynamic loader 807 // before the program gains control. The dynamic loader cannot execute the 808 // constructor functions concurrently since doing that would not guarantee 809 // thread safety of the loaded program. Therefore we can assume sequential 810 // execution of constructor functions here. 811 if (IsHIP) { 812 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 813 llvm::GlobalValue::LinkOnceAnyLinkage; 814 llvm::BasicBlock *IfBlock = 815 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 816 llvm::BasicBlock *ExitBlock = 817 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 818 // The name, size, and initialization pattern of this variable is part 819 // of HIP ABI. 820 GpuBinaryHandle = new llvm::GlobalVariable( 821 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 822 Linkage, 823 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 824 "__hip_gpubin_handle"); 825 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage) 826 GpuBinaryHandle->setComdat( 827 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName())); 828 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 829 // Prevent the weak symbol in different shared libraries being merged. 830 if (Linkage != llvm::GlobalValue::InternalLinkage) 831 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 832 Address GpuBinaryAddr( 833 GpuBinaryHandle, VoidPtrPtrTy, 834 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 835 { 836 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 837 llvm::Constant *Zero = 838 llvm::Constant::getNullValue(HandleValue->getType()); 839 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 840 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 841 } 842 { 843 CtorBuilder.SetInsertPoint(IfBlock); 844 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 845 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 846 RegisterFatbinFunc, 847 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 848 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 849 CtorBuilder.CreateBr(ExitBlock); 850 } 851 { 852 CtorBuilder.SetInsertPoint(ExitBlock); 853 // Call __hip_register_globals(GpuBinaryHandle); 854 if (RegisterGlobalsFunc) { 855 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 856 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 857 } 858 } 859 } else if (!RelocatableDeviceCode) { 860 // Register binary with CUDA runtime. This is substantially different in 861 // default mode vs. separate compilation! 862 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 863 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 864 RegisterFatbinFunc, 865 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 866 GpuBinaryHandle = new llvm::GlobalVariable( 867 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 868 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 869 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 870 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 871 CGM.getPointerAlign()); 872 873 // Call __cuda_register_globals(GpuBinaryHandle); 874 if (RegisterGlobalsFunc) 875 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 876 877 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 878 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 879 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 880 // void __cudaRegisterFatBinaryEnd(void **); 881 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 882 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 883 "__cudaRegisterFatBinaryEnd"); 884 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 885 } 886 } else { 887 // Generate a unique module ID. 888 SmallString<64> ModuleID; 889 llvm::raw_svector_ostream OS(ModuleID); 890 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 891 llvm::Constant *ModuleIDConstant = makeConstantString( 892 std::string(ModuleID.str()), "", ModuleIDSectionName, 32); 893 894 // Create an alias for the FatbinWrapper that nvcc will look for. 895 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 896 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 897 898 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 899 // void *, void (*)(void **)) 900 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 901 RegisterLinkedBinaryName += ModuleID; 902 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 903 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 904 905 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 906 llvm::Value *Args[] = {RegisterGlobalsFunc, 907 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 908 ModuleIDConstant, 909 makeDummyFunction(getCallbackFnTy())}; 910 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 911 } 912 913 // Create destructor and register it with atexit() the way NVCC does it. Doing 914 // it during regular destructor phase worked in CUDA before 9.2 but results in 915 // double-free in 9.2. 916 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 917 // extern "C" int atexit(void (*f)(void)); 918 llvm::FunctionType *AtExitTy = 919 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 920 llvm::FunctionCallee AtExitFunc = 921 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 922 /*Local=*/true); 923 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 924 } 925 926 CtorBuilder.CreateRetVoid(); 927 return ModuleCtorFunc; 928 } 929 930 /// Creates a global destructor function that unregisters the GPU code blob 931 /// registered by constructor. 932 /// 933 /// For CUDA: 934 /// \code 935 /// void __cuda_module_dtor() { 936 /// __cudaUnregisterFatBinary(Handle); 937 /// } 938 /// \endcode 939 /// 940 /// For HIP: 941 /// \code 942 /// void __hip_module_dtor() { 943 /// if (__hip_gpubin_handle) { 944 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 945 /// __hip_gpubin_handle = 0; 946 /// } 947 /// } 948 /// \endcode 949 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 950 // No need for destructor if we don't have a handle to unregister. 951 if (!GpuBinaryHandle) 952 return nullptr; 953 954 // void __cudaUnregisterFatBinary(void ** handle); 955 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 956 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 957 addUnderscoredPrefixToName("UnregisterFatBinary")); 958 959 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 960 llvm::FunctionType::get(VoidTy, false), 961 llvm::GlobalValue::InternalLinkage, 962 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 963 964 llvm::BasicBlock *DtorEntryBB = 965 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 966 CGBuilderTy DtorBuilder(CGM, Context); 967 DtorBuilder.SetInsertPoint(DtorEntryBB); 968 969 Address GpuBinaryAddr( 970 GpuBinaryHandle, GpuBinaryHandle->getValueType(), 971 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 972 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 973 // There is only one HIP fat binary per linked module, however there are 974 // multiple destructor functions. Make sure the fat binary is unregistered 975 // only once. 976 if (CGM.getLangOpts().HIP) { 977 llvm::BasicBlock *IfBlock = 978 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 979 llvm::BasicBlock *ExitBlock = 980 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 981 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 982 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 983 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 984 985 DtorBuilder.SetInsertPoint(IfBlock); 986 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 987 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 988 DtorBuilder.CreateBr(ExitBlock); 989 990 DtorBuilder.SetInsertPoint(ExitBlock); 991 } else { 992 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 993 } 994 DtorBuilder.CreateRetVoid(); 995 return ModuleDtorFunc; 996 } 997 998 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 999 return new CGNVCUDARuntime(CGM); 1000 } 1001 1002 void CGNVCUDARuntime::internalizeDeviceSideVar( 1003 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 1004 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 1005 // global variables become internal definitions. These have to be internal in 1006 // order to prevent name conflicts with global host variables with the same 1007 // name in a different TUs. 1008 // 1009 // For -fgpu-rdc, the shadow variables should not be internalized because 1010 // they may be accessed by different TU. 1011 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1012 return; 1013 1014 // __shared__ variables are odd. Shadows do get created, but 1015 // they are not registered with the CUDA runtime, so they 1016 // can't really be used to access their device-side 1017 // counterparts. It's not clear yet whether it's nvcc's bug or 1018 // a feature, but we've got to do the same for compatibility. 1019 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1020 D->hasAttr<CUDASharedAttr>() || 1021 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1022 D->getType()->isCUDADeviceBuiltinTextureType()) { 1023 Linkage = llvm::GlobalValue::InternalLinkage; 1024 } 1025 } 1026 1027 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1028 llvm::GlobalVariable &GV) { 1029 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1030 // Shadow variables and their properties must be registered with CUDA 1031 // runtime. Skip Extern global variables, which will be registered in 1032 // the TU where they are defined. 1033 // 1034 // Don't register a C++17 inline variable. The local symbol can be 1035 // discarded and referencing a discarded local symbol from outside the 1036 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1037 // 1038 // HIP managed variables need to be always recorded in device and host 1039 // compilations for transformation. 1040 // 1041 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1042 // added to llvm.compiler-used, therefore they are safe to be registered. 1043 if ((!D->hasExternalStorage() && !D->isInline()) || 1044 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1045 D->hasAttr<HIPManagedAttr>()) { 1046 registerDeviceVar(D, GV, !D->hasDefinition(), 1047 D->hasAttr<CUDAConstantAttr>()); 1048 } 1049 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1050 D->getType()->isCUDADeviceBuiltinTextureType()) { 1051 // Builtin surfaces and textures and their template arguments are 1052 // also registered with CUDA runtime. 1053 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1054 D->getType()->castAs<RecordType>()->getDecl()); 1055 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1056 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1057 assert(Args.size() == 2 && 1058 "Unexpected number of template arguments of CUDA device " 1059 "builtin surface type."); 1060 auto SurfType = Args[1].getAsIntegral(); 1061 if (!D->hasExternalStorage()) 1062 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1063 } else { 1064 assert(Args.size() == 3 && 1065 "Unexpected number of template arguments of CUDA device " 1066 "builtin texture type."); 1067 auto TexType = Args[1].getAsIntegral(); 1068 auto Normalized = Args[2].getAsIntegral(); 1069 if (!D->hasExternalStorage()) 1070 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1071 Normalized.getZExtValue()); 1072 } 1073 } 1074 } 1075 1076 // Transform managed variables to pointers to managed variables in device code. 1077 // Each use of the original managed variable is replaced by a load from the 1078 // transformed managed variable. The transformed managed variable contains 1079 // the address of managed memory which will be allocated by the runtime. 1080 void CGNVCUDARuntime::transformManagedVars() { 1081 for (auto &&Info : DeviceVars) { 1082 llvm::GlobalVariable *Var = Info.Var; 1083 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1084 Info.Flags.isManaged()) { 1085 auto *ManagedVar = new llvm::GlobalVariable( 1086 CGM.getModule(), Var->getType(), 1087 /*isConstant=*/false, Var->getLinkage(), 1088 /*Init=*/Var->isDeclaration() 1089 ? nullptr 1090 : llvm::ConstantPointerNull::get(Var->getType()), 1091 /*Name=*/"", /*InsertBefore=*/nullptr, 1092 llvm::GlobalVariable::NotThreadLocal, 1093 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1094 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1095 ManagedVar->setVisibility(Var->getVisibility()); 1096 ManagedVar->setExternallyInitialized(true); 1097 replaceManagedVar(Var, ManagedVar); 1098 ManagedVar->takeName(Var); 1099 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1100 // Keep managed variables even if they are not used in device code since 1101 // they need to be allocated by the runtime. 1102 if (!Var->isDeclaration()) { 1103 assert(!ManagedVar->isDeclaration()); 1104 CGM.addCompilerUsedGlobal(Var); 1105 CGM.addCompilerUsedGlobal(ManagedVar); 1106 } 1107 } 1108 } 1109 } 1110 1111 // Creates offloading entries for all the kernels and globals that must be 1112 // registered. The linker will provide a pointer to this section so we can 1113 // register the symbols with the linked device image. 1114 void CGNVCUDARuntime::createOffloadingEntries() { 1115 llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule()); 1116 OMPBuilder.initialize(); 1117 1118 StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries" 1119 : "cuda_offloading_entries"; 1120 for (KernelInfo &I : EmittedKernels) 1121 OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel], 1122 getDeviceSideName(cast<NamedDecl>(I.D)), 0, 1123 DeviceVarFlags::OffloadGlobalEntry, Section); 1124 1125 for (VarInfo &I : DeviceVars) { 1126 uint64_t VarSize = 1127 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType()); 1128 if (I.Flags.getKind() == DeviceVarFlags::Variable) { 1129 OMPBuilder.emitOffloadingEntry( 1130 I.Var, getDeviceSideName(I.D), VarSize, 1131 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry 1132 : DeviceVarFlags::OffloadGlobalEntry, 1133 Section); 1134 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) { 1135 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1136 DeviceVarFlags::OffloadGlobalSurfaceEntry, 1137 Section); 1138 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) { 1139 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1140 DeviceVarFlags::OffloadGlobalTextureEntry, 1141 Section); 1142 } 1143 } 1144 } 1145 1146 // Returns module constructor to be added. 1147 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1148 if (CGM.getLangOpts().CUDAIsDevice) { 1149 transformManagedVars(); 1150 1151 // Mark ODR-used device variables as compiler used to prevent it from being 1152 // eliminated by optimization. This is necessary for device variables 1153 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1154 // matter whether they are ODR-used by device or host functions. 1155 // 1156 // We do not need to do this if the variable has used attribute since it 1157 // has already been added. 1158 // 1159 // Static device variables have been externalized at this point, therefore 1160 // variables with LLVM private or internal linkage need not be added. 1161 for (auto &&Info : DeviceVars) { 1162 auto Kind = Info.Flags.getKind(); 1163 if (!Info.Var->isDeclaration() && 1164 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1165 (Kind == DeviceVarFlags::Variable || 1166 Kind == DeviceVarFlags::Surface || 1167 Kind == DeviceVarFlags::Texture) && 1168 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1169 CGM.addCompilerUsedGlobal(Info.Var); 1170 } 1171 } 1172 return nullptr; 1173 } 1174 if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode) 1175 createOffloadingEntries(); 1176 else 1177 return makeModuleCtorFunction(); 1178 1179 return nullptr; 1180 } 1181 1182 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1183 GlobalDecl GD) { 1184 auto Loc = KernelHandles.find(F); 1185 if (Loc != KernelHandles.end()) 1186 return Loc->second; 1187 1188 if (!CGM.getLangOpts().HIP) { 1189 KernelHandles[F] = F; 1190 KernelStubs[F] = F; 1191 return F; 1192 } 1193 1194 auto *Var = new llvm::GlobalVariable( 1195 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1196 /*Initializer=*/nullptr, 1197 CGM.getMangledName( 1198 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1199 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1200 Var->setDSOLocal(F->isDSOLocal()); 1201 Var->setVisibility(F->getVisibility()); 1202 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); 1203 KernelHandles[F] = Var; 1204 KernelStubs[Var] = F; 1205 return Var; 1206 } 1207