1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a device stub function to a symbol for identifying kernel in host code. 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 73 llvm::FunctionCallee getSetupArgumentFn() const; 74 llvm::FunctionCallee getLaunchFn() const; 75 76 llvm::FunctionType *getRegisterGlobalsFnTy() const; 77 llvm::FunctionType *getCallbackFnTy() const; 78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 79 std::string addPrefixToName(StringRef FuncName) const; 80 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 81 82 /// Creates a function to register all kernel stubs generated in this module. 83 llvm::Function *makeRegisterGlobalsFn(); 84 85 /// Helper function that generates a constant string and returns a pointer to 86 /// the start of the string. The result of this function can be used anywhere 87 /// where the C code specifies const char*. 88 llvm::Constant *makeConstantString(const std::string &Str, 89 const std::string &Name = "", 90 const std::string &SectionName = "", 91 unsigned Alignment = 0) { 92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 93 llvm::ConstantInt::get(SizeTy, 0)}; 94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 95 llvm::GlobalVariable *GV = 96 cast<llvm::GlobalVariable>(ConstStr.getPointer()); 97 if (!SectionName.empty()) { 98 GV->setSection(SectionName); 99 // Mark the address as used which make sure that this section isn't 100 // merged and we will really have it in the object file. 101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 102 } 103 if (Alignment) 104 GV->setAlignment(llvm::Align(Alignment)); 105 106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 107 ConstStr.getPointer(), Zeros); 108 } 109 110 /// Helper function that generates an empty dummy function returning void. 111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 112 assert(FnTy->getReturnType()->isVoidTy() && 113 "Can only generate dummy functions returning void!"); 114 llvm::Function *DummyFunc = llvm::Function::Create( 115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 116 117 llvm::BasicBlock *DummyBlock = 118 llvm::BasicBlock::Create(Context, "", DummyFunc); 119 CGBuilderTy FuncBuilder(CGM, Context); 120 FuncBuilder.SetInsertPoint(DummyBlock); 121 FuncBuilder.CreateRetVoid(); 122 123 return DummyFunc; 124 } 125 126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 128 std::string getDeviceSideName(const NamedDecl *ND) override; 129 130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 131 bool Extern, bool Constant) { 132 DeviceVars.push_back({&Var, 133 VD, 134 {DeviceVarFlags::Variable, Extern, Constant, 135 VD->hasAttr<HIPManagedAttr>(), 136 /*Normalized*/ false, 0}}); 137 } 138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 139 bool Extern, int Type) { 140 DeviceVars.push_back({&Var, 141 VD, 142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 143 /*Managed*/ false, 144 /*Normalized*/ false, Type}}); 145 } 146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 147 bool Extern, int Type, bool Normalized) { 148 DeviceVars.push_back({&Var, 149 VD, 150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 151 /*Managed*/ false, Normalized, Type}}); 152 } 153 154 /// Creates module constructor function 155 llvm::Function *makeModuleCtorFunction(); 156 /// Creates module destructor function 157 llvm::Function *makeModuleDtorFunction(); 158 /// Transform managed variables for device compilation. 159 void transformManagedVars(); 160 161 public: 162 CGNVCUDARuntime(CodeGenModule &CGM); 163 164 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 165 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 166 auto Loc = KernelStubs.find(Handle); 167 assert(Loc != KernelStubs.end()); 168 return Loc->second; 169 } 170 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 171 void handleVarRegistration(const VarDecl *VD, 172 llvm::GlobalVariable &Var) override; 173 void 174 internalizeDeviceSideVar(const VarDecl *D, 175 llvm::GlobalValue::LinkageTypes &Linkage) override; 176 177 llvm::Function *finalizeModule() override; 178 }; 179 180 } 181 182 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 183 if (CGM.getLangOpts().HIP) 184 return ((Twine("hip") + Twine(FuncName)).str()); 185 return ((Twine("cuda") + Twine(FuncName)).str()); 186 } 187 std::string 188 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 189 if (CGM.getLangOpts().HIP) 190 return ((Twine("__hip") + Twine(FuncName)).str()); 191 return ((Twine("__cuda") + Twine(FuncName)).str()); 192 } 193 194 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 195 // If the host and device have different C++ ABIs, mark it as the device 196 // mangle context so that the mangling needs to retrieve the additional 197 // device lambda mangling number instead of the regular host one. 198 if (CGM.getContext().getAuxTargetInfo() && 199 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 200 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 201 return std::unique_ptr<MangleContext>( 202 CGM.getContext().createDeviceMangleContext( 203 *CGM.getContext().getAuxTargetInfo())); 204 } 205 206 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 207 CGM.getContext().getAuxTargetInfo())); 208 } 209 210 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 211 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 212 TheModule(CGM.getModule()), 213 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), 214 DeviceMC(InitDeviceMC(CGM)) { 215 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 216 ASTContext &Ctx = CGM.getContext(); 217 218 IntTy = CGM.IntTy; 219 SizeTy = CGM.SizeTy; 220 VoidTy = CGM.VoidTy; 221 222 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 223 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 224 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 225 } 226 227 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 228 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 229 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 230 return CGM.CreateRuntimeFunction( 231 llvm::FunctionType::get(IntTy, Params, false), 232 addPrefixToName("SetupArgument")); 233 } 234 235 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 236 if (CGM.getLangOpts().HIP) { 237 // hipError_t hipLaunchByPtr(char *); 238 return CGM.CreateRuntimeFunction( 239 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 240 } else { 241 // cudaError_t cudaLaunch(char *); 242 return CGM.CreateRuntimeFunction( 243 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 244 } 245 } 246 247 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 248 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 249 } 250 251 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 252 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 253 } 254 255 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 256 auto CallbackFnTy = getCallbackFnTy(); 257 auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 258 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 259 VoidPtrTy, CallbackFnTy->getPointerTo()}; 260 return llvm::FunctionType::get(VoidTy, Params, false); 261 } 262 263 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 264 GlobalDecl GD; 265 // D could be either a kernel or a variable. 266 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 267 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 268 else 269 GD = GlobalDecl(ND); 270 std::string DeviceSideName; 271 MangleContext *MC; 272 if (CGM.getLangOpts().CUDAIsDevice) 273 MC = &CGM.getCXXABI().getMangleContext(); 274 else 275 MC = DeviceMC.get(); 276 if (MC->shouldMangleDeclName(ND)) { 277 SmallString<256> Buffer; 278 llvm::raw_svector_ostream Out(Buffer); 279 MC->mangleName(GD, Out); 280 DeviceSideName = std::string(Out.str()); 281 } else 282 DeviceSideName = std::string(ND->getIdentifier()->getName()); 283 284 // Make unique name for device side static file-scope variable for HIP. 285 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 286 CGM.getLangOpts().GPURelocatableDeviceCode && 287 !CGM.getLangOpts().CUID.empty()) { 288 SmallString<256> Buffer; 289 llvm::raw_svector_ostream Out(Buffer); 290 Out << DeviceSideName; 291 CGM.printPostfixForExternalizedStaticVar(Out); 292 DeviceSideName = std::string(Out.str()); 293 } 294 return DeviceSideName; 295 } 296 297 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 298 FunctionArgList &Args) { 299 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 300 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { 301 GV->setLinkage(CGF.CurFn->getLinkage()); 302 GV->setInitializer(CGF.CurFn); 303 } 304 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 305 CudaFeature::CUDA_USES_NEW_LAUNCH) || 306 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 307 emitDeviceStubBodyNew(CGF, Args); 308 else 309 emitDeviceStubBodyLegacy(CGF, Args); 310 } 311 312 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 313 // array and kernels are launched using cudaLaunchKernel(). 314 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 315 FunctionArgList &Args) { 316 // Build the shadow stack entry at the very start of the function. 317 318 // Calculate amount of space we will need for all arguments. If we have no 319 // args, allocate a single pointer so we still have a valid pointer to the 320 // argument array that we can pass to runtime, even if it will be unused. 321 Address KernelArgs = CGF.CreateTempAlloca( 322 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 323 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 324 // Store pointers to the arguments in a locally allocated launch_args. 325 for (unsigned i = 0; i < Args.size(); ++i) { 326 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 327 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 328 CGF.Builder.CreateDefaultAlignedStore( 329 VoidVarPtr, 330 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); 331 } 332 333 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 334 335 // Lookup cudaLaunchKernel/hipLaunchKernel function. 336 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 337 // void **args, size_t sharedMem, 338 // cudaStream_t stream); 339 // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 340 // void **args, size_t sharedMem, 341 // hipStream_t stream); 342 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 343 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 344 auto LaunchKernelName = addPrefixToName("LaunchKernel"); 345 IdentifierInfo &cudaLaunchKernelII = 346 CGM.getContext().Idents.get(LaunchKernelName); 347 FunctionDecl *cudaLaunchKernelFD = nullptr; 348 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 349 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 350 cudaLaunchKernelFD = FD; 351 } 352 353 if (cudaLaunchKernelFD == nullptr) { 354 CGM.Error(CGF.CurFuncDecl->getLocation(), 355 "Can't find declaration for " + LaunchKernelName); 356 return; 357 } 358 // Create temporary dim3 grid_dim, block_dim. 359 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 360 QualType Dim3Ty = GridDimParam->getType(); 361 Address GridDim = 362 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 363 Address BlockDim = 364 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 365 Address ShmemSize = 366 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 367 Address Stream = 368 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 369 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 370 llvm::FunctionType::get(IntTy, 371 {/*gridDim=*/GridDim.getType(), 372 /*blockDim=*/BlockDim.getType(), 373 /*ShmemSize=*/ShmemSize.getType(), 374 /*Stream=*/Stream.getType()}, 375 /*isVarArg=*/false), 376 addUnderscoredPrefixToName("PopCallConfiguration")); 377 378 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 379 {GridDim.getPointer(), BlockDim.getPointer(), 380 ShmemSize.getPointer(), Stream.getPointer()}); 381 382 // Emit the call to cudaLaunch 383 llvm::Value *Kernel = 384 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); 385 CallArgList LaunchKernelArgs; 386 LaunchKernelArgs.add(RValue::get(Kernel), 387 cudaLaunchKernelFD->getParamDecl(0)->getType()); 388 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 389 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 390 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 391 cudaLaunchKernelFD->getParamDecl(3)->getType()); 392 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 393 cudaLaunchKernelFD->getParamDecl(4)->getType()); 394 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 395 cudaLaunchKernelFD->getParamDecl(5)->getType()); 396 397 QualType QT = cudaLaunchKernelFD->getType(); 398 QualType CQT = QT.getCanonicalType(); 399 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 400 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty); 401 402 const CGFunctionInfo &FI = 403 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 404 llvm::FunctionCallee cudaLaunchKernelFn = 405 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 406 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 407 LaunchKernelArgs); 408 CGF.EmitBranch(EndBlock); 409 410 CGF.EmitBlock(EndBlock); 411 } 412 413 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 414 FunctionArgList &Args) { 415 // Emit a call to cudaSetupArgument for each arg in Args. 416 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 417 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 418 CharUnits Offset = CharUnits::Zero(); 419 for (const VarDecl *A : Args) { 420 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 421 Offset = Offset.alignTo(TInfo.Align); 422 llvm::Value *Args[] = { 423 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 424 VoidPtrTy), 425 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 426 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 427 }; 428 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 429 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 430 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 431 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 432 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 433 CGF.EmitBlock(NextBlock); 434 Offset += TInfo.Width; 435 } 436 437 // Emit the call to cudaLaunch 438 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 439 llvm::Value *Arg = 440 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); 441 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 442 CGF.EmitBranch(EndBlock); 443 444 CGF.EmitBlock(EndBlock); 445 } 446 447 // Replace the original variable Var with the address loaded from variable 448 // ManagedVar populated by HIP runtime. 449 static void replaceManagedVar(llvm::GlobalVariable *Var, 450 llvm::GlobalVariable *ManagedVar) { 451 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 452 for (auto &&VarUse : Var->uses()) { 453 WorkList.push_back({VarUse.getUser()}); 454 } 455 while (!WorkList.empty()) { 456 auto &&WorkItem = WorkList.pop_back_val(); 457 auto *U = WorkItem.back(); 458 if (isa<llvm::ConstantExpr>(U)) { 459 for (auto &&UU : U->uses()) { 460 WorkItem.push_back(UU.getUser()); 461 WorkList.push_back(WorkItem); 462 WorkItem.pop_back(); 463 } 464 continue; 465 } 466 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 467 llvm::Value *OldV = Var; 468 llvm::Instruction *NewV = 469 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 470 llvm::Align(Var->getAlignment()), I); 471 WorkItem.pop_back(); 472 // Replace constant expressions directly or indirectly using the managed 473 // variable with instructions. 474 for (auto &&Op : WorkItem) { 475 auto *CE = cast<llvm::ConstantExpr>(Op); 476 auto *NewInst = llvm::createReplacementInstr(CE, I); 477 NewInst->replaceUsesOfWith(OldV, NewV); 478 OldV = CE; 479 NewV = NewInst; 480 } 481 I->replaceUsesOfWith(OldV, NewV); 482 } else { 483 llvm_unreachable("Invalid use of managed variable"); 484 } 485 } 486 } 487 488 /// Creates a function that sets up state on the host side for CUDA objects that 489 /// have a presence on both the host and device sides. Specifically, registers 490 /// the host side of kernel functions and device global variables with the CUDA 491 /// runtime. 492 /// \code 493 /// void __cuda_register_globals(void** GpuBinaryHandle) { 494 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 495 /// ... 496 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 497 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 498 /// ... 499 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 500 /// } 501 /// \endcode 502 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 503 // No need to register anything 504 if (EmittedKernels.empty() && DeviceVars.empty()) 505 return nullptr; 506 507 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 508 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 509 addUnderscoredPrefixToName("_register_globals"), &TheModule); 510 llvm::BasicBlock *EntryBB = 511 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 512 CGBuilderTy Builder(CGM, Context); 513 Builder.SetInsertPoint(EntryBB); 514 515 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 516 // int, uint3*, uint3*, dim3*, dim3*, int*) 517 llvm::Type *RegisterFuncParams[] = { 518 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 519 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 520 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 521 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 522 addUnderscoredPrefixToName("RegisterFunction")); 523 524 // Extract GpuBinaryHandle passed as the first argument passed to 525 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 526 // each emitted kernel. 527 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 528 for (auto &&I : EmittedKernels) { 529 llvm::Constant *KernelName = 530 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 531 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 532 llvm::Value *Args[] = { 533 &GpuBinaryHandlePtr, 534 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), 535 KernelName, 536 KernelName, 537 llvm::ConstantInt::get(IntTy, -1), 538 NullPtr, 539 NullPtr, 540 NullPtr, 541 NullPtr, 542 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 543 Builder.CreateCall(RegisterFunc, Args); 544 } 545 546 llvm::Type *VarSizeTy = IntTy; 547 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 548 if (CGM.getLangOpts().HIP || 549 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 550 VarSizeTy = SizeTy; 551 552 // void __cudaRegisterVar(void **, char *, char *, const char *, 553 // int, int, int, int) 554 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 555 CharPtrTy, IntTy, VarSizeTy, 556 IntTy, IntTy}; 557 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 559 addUnderscoredPrefixToName("RegisterVar")); 560 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 561 // size_t, unsigned) 562 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 563 CharPtrTy, VarSizeTy, IntTy}; 564 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 565 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 566 addUnderscoredPrefixToName("RegisterManagedVar")); 567 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 568 // const void **, const char *, int, int); 569 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 570 llvm::FunctionType::get( 571 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 572 false), 573 addUnderscoredPrefixToName("RegisterSurface")); 574 // void __cudaRegisterTexture(void **, const struct textureReference *, 575 // const void **, const char *, int, int, int) 576 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 577 llvm::FunctionType::get( 578 VoidTy, 579 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 580 false), 581 addUnderscoredPrefixToName("RegisterTexture")); 582 for (auto &&Info : DeviceVars) { 583 llvm::GlobalVariable *Var = Info.Var; 584 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 585 "External variables should not show up here, except HIP managed " 586 "variables"); 587 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 588 switch (Info.Flags.getKind()) { 589 case DeviceVarFlags::Variable: { 590 uint64_t VarSize = 591 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 592 if (Info.Flags.isManaged()) { 593 auto ManagedVar = new llvm::GlobalVariable( 594 CGM.getModule(), Var->getType(), 595 /*isConstant=*/false, Var->getLinkage(), 596 /*Init=*/Var->isDeclaration() 597 ? nullptr 598 : llvm::ConstantPointerNull::get(Var->getType()), 599 /*Name=*/"", /*InsertBefore=*/nullptr, 600 llvm::GlobalVariable::NotThreadLocal); 601 ManagedVar->setDSOLocal(Var->isDSOLocal()); 602 ManagedVar->setVisibility(Var->getVisibility()); 603 ManagedVar->setExternallyInitialized(true); 604 ManagedVar->takeName(Var); 605 Var->setName(Twine(ManagedVar->getName() + ".managed")); 606 replaceManagedVar(Var, ManagedVar); 607 llvm::Value *Args[] = { 608 &GpuBinaryHandlePtr, 609 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 610 Builder.CreateBitCast(Var, VoidPtrTy), 611 VarName, 612 llvm::ConstantInt::get(VarSizeTy, VarSize), 613 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 614 if (!Var->isDeclaration()) 615 Builder.CreateCall(RegisterManagedVar, Args); 616 } else { 617 llvm::Value *Args[] = { 618 &GpuBinaryHandlePtr, 619 Builder.CreateBitCast(Var, VoidPtrTy), 620 VarName, 621 VarName, 622 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 623 llvm::ConstantInt::get(VarSizeTy, VarSize), 624 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 625 llvm::ConstantInt::get(IntTy, 0)}; 626 Builder.CreateCall(RegisterVar, Args); 627 } 628 break; 629 } 630 case DeviceVarFlags::Surface: 631 Builder.CreateCall( 632 RegisterSurf, 633 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 634 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 635 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 636 break; 637 case DeviceVarFlags::Texture: 638 Builder.CreateCall( 639 RegisterTex, 640 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 641 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 642 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 643 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 644 break; 645 } 646 } 647 648 Builder.CreateRetVoid(); 649 return RegisterKernelsFunc; 650 } 651 652 /// Creates a global constructor function for the module: 653 /// 654 /// For CUDA: 655 /// \code 656 /// void __cuda_module_ctor(void*) { 657 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 658 /// __cuda_register_globals(Handle); 659 /// } 660 /// \endcode 661 /// 662 /// For HIP: 663 /// \code 664 /// void __hip_module_ctor(void*) { 665 /// if (__hip_gpubin_handle == 0) { 666 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 667 /// __hip_register_globals(__hip_gpubin_handle); 668 /// } 669 /// } 670 /// \endcode 671 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 672 bool IsHIP = CGM.getLangOpts().HIP; 673 bool IsCUDA = CGM.getLangOpts().CUDA; 674 // No need to generate ctors/dtors if there is no GPU binary. 675 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 676 if (CudaGpuBinaryFileName.empty() && !IsHIP) 677 return nullptr; 678 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 679 DeviceVars.empty()) 680 return nullptr; 681 682 // void __{cuda|hip}_register_globals(void* handle); 683 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 684 // We always need a function to pass in as callback. Create a dummy 685 // implementation if we don't need to register anything. 686 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 687 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 688 689 // void ** __{cuda|hip}RegisterFatBinary(void *); 690 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 691 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 692 addUnderscoredPrefixToName("RegisterFatBinary")); 693 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 694 llvm::StructType *FatbinWrapperTy = 695 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 696 697 // Register GPU binary with the CUDA runtime, store returned handle in a 698 // global variable and save a reference in GpuBinaryHandle to be cleaned up 699 // in destructor on exit. Then associate all known kernels with the GPU binary 700 // handle so CUDA runtime can figure out what to call on the GPU side. 701 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 702 if (!CudaGpuBinaryFileName.empty()) { 703 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 704 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 705 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 706 CGM.getDiags().Report(diag::err_cannot_open_file) 707 << CudaGpuBinaryFileName << EC.message(); 708 return nullptr; 709 } 710 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 711 } 712 713 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 714 llvm::FunctionType::get(VoidTy, VoidPtrTy, false), 715 llvm::GlobalValue::InternalLinkage, 716 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 717 llvm::BasicBlock *CtorEntryBB = 718 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 719 CGBuilderTy CtorBuilder(CGM, Context); 720 721 CtorBuilder.SetInsertPoint(CtorEntryBB); 722 723 const char *FatbinConstantName; 724 const char *FatbinSectionName; 725 const char *ModuleIDSectionName; 726 StringRef ModuleIDPrefix; 727 llvm::Constant *FatBinStr; 728 unsigned FatMagic; 729 if (IsHIP) { 730 FatbinConstantName = ".hip_fatbin"; 731 FatbinSectionName = ".hipFatBinSegment"; 732 733 ModuleIDSectionName = "__hip_module_id"; 734 ModuleIDPrefix = "__hip_"; 735 736 if (CudaGpuBinary) { 737 // If fatbin is available from early finalization, create a string 738 // literal containing the fat binary loaded from the given file. 739 const unsigned HIPCodeObjectAlign = 4096; 740 FatBinStr = 741 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 742 FatbinConstantName, HIPCodeObjectAlign); 743 } else { 744 // If fatbin is not available, create an external symbol 745 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 746 // to contain the fat binary but will be populated somewhere else, 747 // e.g. by lld through link script. 748 FatBinStr = new llvm::GlobalVariable( 749 CGM.getModule(), CGM.Int8Ty, 750 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 751 "__hip_fatbin", nullptr, 752 llvm::GlobalVariable::NotThreadLocal); 753 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 754 } 755 756 FatMagic = HIPFatMagic; 757 } else { 758 if (RelocatableDeviceCode) 759 FatbinConstantName = CGM.getTriple().isMacOSX() 760 ? "__NV_CUDA,__nv_relfatbin" 761 : "__nv_relfatbin"; 762 else 763 FatbinConstantName = 764 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 765 // NVIDIA's cuobjdump looks for fatbins in this section. 766 FatbinSectionName = 767 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 768 769 ModuleIDSectionName = CGM.getTriple().isMacOSX() 770 ? "__NV_CUDA,__nv_module_id" 771 : "__nv_module_id"; 772 ModuleIDPrefix = "__nv_"; 773 774 // For CUDA, create a string literal containing the fat binary loaded from 775 // the given file. 776 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 777 FatbinConstantName, 8); 778 FatMagic = CudaFatMagic; 779 } 780 781 // Create initialized wrapper structure that points to the loaded GPU binary 782 ConstantInitBuilder Builder(CGM); 783 auto Values = Builder.beginStruct(FatbinWrapperTy); 784 // Fatbin wrapper magic. 785 Values.addInt(IntTy, FatMagic); 786 // Fatbin version. 787 Values.addInt(IntTy, 1); 788 // Data. 789 Values.add(FatBinStr); 790 // Unused in fatbin v1. 791 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 792 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 793 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 794 /*constant*/ true); 795 FatbinWrapper->setSection(FatbinSectionName); 796 797 // There is only one HIP fat binary per linked module, however there are 798 // multiple constructor functions. Make sure the fat binary is registered 799 // only once. The constructor functions are executed by the dynamic loader 800 // before the program gains control. The dynamic loader cannot execute the 801 // constructor functions concurrently since doing that would not guarantee 802 // thread safety of the loaded program. Therefore we can assume sequential 803 // execution of constructor functions here. 804 if (IsHIP) { 805 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 806 llvm::GlobalValue::LinkOnceAnyLinkage; 807 llvm::BasicBlock *IfBlock = 808 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 809 llvm::BasicBlock *ExitBlock = 810 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 811 // The name, size, and initialization pattern of this variable is part 812 // of HIP ABI. 813 GpuBinaryHandle = new llvm::GlobalVariable( 814 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 815 Linkage, 816 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 817 "__hip_gpubin_handle"); 818 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 819 // Prevent the weak symbol in different shared libraries being merged. 820 if (Linkage != llvm::GlobalValue::InternalLinkage) 821 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 822 Address GpuBinaryAddr( 823 GpuBinaryHandle, 824 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 825 { 826 auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 827 llvm::Constant *Zero = 828 llvm::Constant::getNullValue(HandleValue->getType()); 829 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 830 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 831 } 832 { 833 CtorBuilder.SetInsertPoint(IfBlock); 834 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 835 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 836 RegisterFatbinFunc, 837 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 838 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 839 CtorBuilder.CreateBr(ExitBlock); 840 } 841 { 842 CtorBuilder.SetInsertPoint(ExitBlock); 843 // Call __hip_register_globals(GpuBinaryHandle); 844 if (RegisterGlobalsFunc) { 845 auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 846 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 847 } 848 } 849 } else if (!RelocatableDeviceCode) { 850 // Register binary with CUDA runtime. This is substantially different in 851 // default mode vs. separate compilation! 852 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 853 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 854 RegisterFatbinFunc, 855 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 856 GpuBinaryHandle = new llvm::GlobalVariable( 857 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 858 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 859 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 860 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 861 CGM.getPointerAlign()); 862 863 // Call __cuda_register_globals(GpuBinaryHandle); 864 if (RegisterGlobalsFunc) 865 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 866 867 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 868 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 869 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 870 // void __cudaRegisterFatBinaryEnd(void **); 871 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 872 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 873 "__cudaRegisterFatBinaryEnd"); 874 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 875 } 876 } else { 877 // Generate a unique module ID. 878 SmallString<64> ModuleID; 879 llvm::raw_svector_ostream OS(ModuleID); 880 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 881 llvm::Constant *ModuleIDConstant = makeConstantString( 882 std::string(ModuleID.str()), "", ModuleIDSectionName, 32); 883 884 // Create an alias for the FatbinWrapper that nvcc will look for. 885 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 886 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 887 888 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 889 // void *, void (*)(void **)) 890 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 891 RegisterLinkedBinaryName += ModuleID; 892 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 893 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 894 895 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 896 llvm::Value *Args[] = {RegisterGlobalsFunc, 897 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 898 ModuleIDConstant, 899 makeDummyFunction(getCallbackFnTy())}; 900 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 901 } 902 903 // Create destructor and register it with atexit() the way NVCC does it. Doing 904 // it during regular destructor phase worked in CUDA before 9.2 but results in 905 // double-free in 9.2. 906 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 907 // extern "C" int atexit(void (*f)(void)); 908 llvm::FunctionType *AtExitTy = 909 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 910 llvm::FunctionCallee AtExitFunc = 911 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 912 /*Local=*/true); 913 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 914 } 915 916 CtorBuilder.CreateRetVoid(); 917 return ModuleCtorFunc; 918 } 919 920 /// Creates a global destructor function that unregisters the GPU code blob 921 /// registered by constructor. 922 /// 923 /// For CUDA: 924 /// \code 925 /// void __cuda_module_dtor(void*) { 926 /// __cudaUnregisterFatBinary(Handle); 927 /// } 928 /// \endcode 929 /// 930 /// For HIP: 931 /// \code 932 /// void __hip_module_dtor(void*) { 933 /// if (__hip_gpubin_handle) { 934 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 935 /// __hip_gpubin_handle = 0; 936 /// } 937 /// } 938 /// \endcode 939 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 940 // No need for destructor if we don't have a handle to unregister. 941 if (!GpuBinaryHandle) 942 return nullptr; 943 944 // void __cudaUnregisterFatBinary(void ** handle); 945 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 946 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 947 addUnderscoredPrefixToName("UnregisterFatBinary")); 948 949 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 950 llvm::FunctionType::get(VoidTy, VoidPtrTy, false), 951 llvm::GlobalValue::InternalLinkage, 952 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 953 954 llvm::BasicBlock *DtorEntryBB = 955 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 956 CGBuilderTy DtorBuilder(CGM, Context); 957 DtorBuilder.SetInsertPoint(DtorEntryBB); 958 959 Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity( 960 GpuBinaryHandle->getAlignment())); 961 auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 962 // There is only one HIP fat binary per linked module, however there are 963 // multiple destructor functions. Make sure the fat binary is unregistered 964 // only once. 965 if (CGM.getLangOpts().HIP) { 966 llvm::BasicBlock *IfBlock = 967 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 968 llvm::BasicBlock *ExitBlock = 969 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 970 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 971 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 972 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 973 974 DtorBuilder.SetInsertPoint(IfBlock); 975 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 976 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 977 DtorBuilder.CreateBr(ExitBlock); 978 979 DtorBuilder.SetInsertPoint(ExitBlock); 980 } else { 981 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 982 } 983 DtorBuilder.CreateRetVoid(); 984 return ModuleDtorFunc; 985 } 986 987 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 988 return new CGNVCUDARuntime(CGM); 989 } 990 991 void CGNVCUDARuntime::internalizeDeviceSideVar( 992 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 993 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 994 // global variables become internal definitions. These have to be internal in 995 // order to prevent name conflicts with global host variables with the same 996 // name in a different TUs. 997 // 998 // For -fgpu-rdc, the shadow variables should not be internalized because 999 // they may be accessed by different TU. 1000 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1001 return; 1002 1003 // __shared__ variables are odd. Shadows do get created, but 1004 // they are not registered with the CUDA runtime, so they 1005 // can't really be used to access their device-side 1006 // counterparts. It's not clear yet whether it's nvcc's bug or 1007 // a feature, but we've got to do the same for compatibility. 1008 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1009 D->hasAttr<CUDASharedAttr>() || 1010 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1011 D->getType()->isCUDADeviceBuiltinTextureType()) { 1012 Linkage = llvm::GlobalValue::InternalLinkage; 1013 } 1014 } 1015 1016 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1017 llvm::GlobalVariable &GV) { 1018 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1019 // Shadow variables and their properties must be registered with CUDA 1020 // runtime. Skip Extern global variables, which will be registered in 1021 // the TU where they are defined. 1022 // 1023 // Don't register a C++17 inline variable. The local symbol can be 1024 // discarded and referencing a discarded local symbol from outside the 1025 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1026 // 1027 // HIP managed variables need to be always recorded in device and host 1028 // compilations for transformation. 1029 // 1030 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1031 // added to llvm.compiler-used, therefore they are safe to be registered. 1032 if ((!D->hasExternalStorage() && !D->isInline()) || 1033 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1034 D->hasAttr<HIPManagedAttr>()) { 1035 registerDeviceVar(D, GV, !D->hasDefinition(), 1036 D->hasAttr<CUDAConstantAttr>()); 1037 } 1038 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1039 D->getType()->isCUDADeviceBuiltinTextureType()) { 1040 // Builtin surfaces and textures and their template arguments are 1041 // also registered with CUDA runtime. 1042 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1043 D->getType()->castAs<RecordType>()->getDecl()); 1044 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1045 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1046 assert(Args.size() == 2 && 1047 "Unexpected number of template arguments of CUDA device " 1048 "builtin surface type."); 1049 auto SurfType = Args[1].getAsIntegral(); 1050 if (!D->hasExternalStorage()) 1051 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1052 } else { 1053 assert(Args.size() == 3 && 1054 "Unexpected number of template arguments of CUDA device " 1055 "builtin texture type."); 1056 auto TexType = Args[1].getAsIntegral(); 1057 auto Normalized = Args[2].getAsIntegral(); 1058 if (!D->hasExternalStorage()) 1059 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1060 Normalized.getZExtValue()); 1061 } 1062 } 1063 } 1064 1065 // Transform managed variables to pointers to managed variables in device code. 1066 // Each use of the original managed variable is replaced by a load from the 1067 // transformed managed variable. The transformed managed variable contains 1068 // the address of managed memory which will be allocated by the runtime. 1069 void CGNVCUDARuntime::transformManagedVars() { 1070 for (auto &&Info : DeviceVars) { 1071 llvm::GlobalVariable *Var = Info.Var; 1072 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1073 Info.Flags.isManaged()) { 1074 auto ManagedVar = new llvm::GlobalVariable( 1075 CGM.getModule(), Var->getType(), 1076 /*isConstant=*/false, Var->getLinkage(), 1077 /*Init=*/Var->isDeclaration() 1078 ? nullptr 1079 : llvm::ConstantPointerNull::get(Var->getType()), 1080 /*Name=*/"", /*InsertBefore=*/nullptr, 1081 llvm::GlobalVariable::NotThreadLocal, 1082 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1083 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1084 ManagedVar->setVisibility(Var->getVisibility()); 1085 ManagedVar->setExternallyInitialized(true); 1086 replaceManagedVar(Var, ManagedVar); 1087 ManagedVar->takeName(Var); 1088 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1089 // Keep managed variables even if they are not used in device code since 1090 // they need to be allocated by the runtime. 1091 if (!Var->isDeclaration()) { 1092 assert(!ManagedVar->isDeclaration()); 1093 CGM.addCompilerUsedGlobal(Var); 1094 CGM.addCompilerUsedGlobal(ManagedVar); 1095 } 1096 } 1097 } 1098 } 1099 1100 // Returns module constructor to be added. 1101 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1102 if (CGM.getLangOpts().CUDAIsDevice) { 1103 transformManagedVars(); 1104 1105 // Mark ODR-used device variables as compiler used to prevent it from being 1106 // eliminated by optimization. This is necessary for device variables 1107 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1108 // matter whether they are ODR-used by device or host functions. 1109 // 1110 // We do not need to do this if the variable has used attribute since it 1111 // has already been added. 1112 // 1113 // Static device variables have been externalized at this point, therefore 1114 // variables with LLVM private or internal linkage need not be added. 1115 for (auto &&Info : DeviceVars) { 1116 auto Kind = Info.Flags.getKind(); 1117 if (!Info.Var->isDeclaration() && 1118 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1119 (Kind == DeviceVarFlags::Variable || 1120 Kind == DeviceVarFlags::Surface || 1121 Kind == DeviceVarFlags::Texture) && 1122 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1123 CGM.addCompilerUsedGlobal(Info.Var); 1124 } 1125 } 1126 return nullptr; 1127 } 1128 return makeModuleCtorFunction(); 1129 } 1130 1131 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1132 GlobalDecl GD) { 1133 auto Loc = KernelHandles.find(F); 1134 if (Loc != KernelHandles.end()) 1135 return Loc->second; 1136 1137 if (!CGM.getLangOpts().HIP) { 1138 KernelHandles[F] = F; 1139 KernelStubs[F] = F; 1140 return F; 1141 } 1142 1143 auto *Var = new llvm::GlobalVariable( 1144 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1145 /*Initializer=*/nullptr, 1146 CGM.getMangledName( 1147 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1148 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1149 Var->setDSOLocal(F->isDSOLocal()); 1150 Var->setVisibility(F->getVisibility()); 1151 KernelHandles[F] = Var; 1152 KernelStubs[Var] = F; 1153 return Var; 1154 } 1155