1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a device stub function to a symbol for identifying kernel in host code. 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 73 llvm::FunctionCallee getSetupArgumentFn() const; 74 llvm::FunctionCallee getLaunchFn() const; 75 76 llvm::FunctionType *getRegisterGlobalsFnTy() const; 77 llvm::FunctionType *getCallbackFnTy() const; 78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 79 std::string addPrefixToName(StringRef FuncName) const; 80 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 81 82 /// Creates a function to register all kernel stubs generated in this module. 83 llvm::Function *makeRegisterGlobalsFn(); 84 85 /// Helper function that generates a constant string and returns a pointer to 86 /// the start of the string. The result of this function can be used anywhere 87 /// where the C code specifies const char*. 88 llvm::Constant *makeConstantString(const std::string &Str, 89 const std::string &Name = "", 90 const std::string &SectionName = "", 91 unsigned Alignment = 0) { 92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 93 llvm::ConstantInt::get(SizeTy, 0)}; 94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 95 llvm::GlobalVariable *GV = 96 cast<llvm::GlobalVariable>(ConstStr.getPointer()); 97 if (!SectionName.empty()) { 98 GV->setSection(SectionName); 99 // Mark the address as used which make sure that this section isn't 100 // merged and we will really have it in the object file. 101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 102 } 103 if (Alignment) 104 GV->setAlignment(llvm::Align(Alignment)); 105 106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 107 ConstStr.getPointer(), Zeros); 108 } 109 110 /// Helper function that generates an empty dummy function returning void. 111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 112 assert(FnTy->getReturnType()->isVoidTy() && 113 "Can only generate dummy functions returning void!"); 114 llvm::Function *DummyFunc = llvm::Function::Create( 115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 116 117 llvm::BasicBlock *DummyBlock = 118 llvm::BasicBlock::Create(Context, "", DummyFunc); 119 CGBuilderTy FuncBuilder(CGM, Context); 120 FuncBuilder.SetInsertPoint(DummyBlock); 121 FuncBuilder.CreateRetVoid(); 122 123 return DummyFunc; 124 } 125 126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 128 std::string getDeviceSideName(const NamedDecl *ND) override; 129 130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 131 bool Extern, bool Constant) { 132 DeviceVars.push_back({&Var, 133 VD, 134 {DeviceVarFlags::Variable, Extern, Constant, 135 VD->hasAttr<HIPManagedAttr>(), 136 /*Normalized*/ false, 0}}); 137 } 138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 139 bool Extern, int Type) { 140 DeviceVars.push_back({&Var, 141 VD, 142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 143 /*Managed*/ false, 144 /*Normalized*/ false, Type}}); 145 } 146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 147 bool Extern, int Type, bool Normalized) { 148 DeviceVars.push_back({&Var, 149 VD, 150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 151 /*Managed*/ false, Normalized, Type}}); 152 } 153 154 /// Creates module constructor function 155 llvm::Function *makeModuleCtorFunction(); 156 /// Creates module destructor function 157 llvm::Function *makeModuleDtorFunction(); 158 /// Transform managed variables for device compilation. 159 void transformManagedVars(); 160 161 public: 162 CGNVCUDARuntime(CodeGenModule &CGM); 163 164 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 165 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 166 auto Loc = KernelStubs.find(Handle); 167 assert(Loc != KernelStubs.end()); 168 return Loc->second; 169 } 170 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 171 void handleVarRegistration(const VarDecl *VD, 172 llvm::GlobalVariable &Var) override; 173 void 174 internalizeDeviceSideVar(const VarDecl *D, 175 llvm::GlobalValue::LinkageTypes &Linkage) override; 176 177 llvm::Function *finalizeModule() override; 178 }; 179 180 } // end anonymous namespace 181 182 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 183 if (CGM.getLangOpts().HIP) 184 return ((Twine("hip") + Twine(FuncName)).str()); 185 return ((Twine("cuda") + Twine(FuncName)).str()); 186 } 187 std::string 188 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 189 if (CGM.getLangOpts().HIP) 190 return ((Twine("__hip") + Twine(FuncName)).str()); 191 return ((Twine("__cuda") + Twine(FuncName)).str()); 192 } 193 194 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 195 // If the host and device have different C++ ABIs, mark it as the device 196 // mangle context so that the mangling needs to retrieve the additional 197 // device lambda mangling number instead of the regular host one. 198 if (CGM.getContext().getAuxTargetInfo() && 199 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 200 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 201 return std::unique_ptr<MangleContext>( 202 CGM.getContext().createDeviceMangleContext( 203 *CGM.getContext().getAuxTargetInfo())); 204 } 205 206 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 207 CGM.getContext().getAuxTargetInfo())); 208 } 209 210 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 211 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 212 TheModule(CGM.getModule()), 213 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), 214 DeviceMC(InitDeviceMC(CGM)) { 215 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 216 ASTContext &Ctx = CGM.getContext(); 217 218 IntTy = CGM.IntTy; 219 SizeTy = CGM.SizeTy; 220 VoidTy = CGM.VoidTy; 221 222 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 223 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 224 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 225 } 226 227 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 228 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 229 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 230 return CGM.CreateRuntimeFunction( 231 llvm::FunctionType::get(IntTy, Params, false), 232 addPrefixToName("SetupArgument")); 233 } 234 235 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 236 if (CGM.getLangOpts().HIP) { 237 // hipError_t hipLaunchByPtr(char *); 238 return CGM.CreateRuntimeFunction( 239 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 240 } 241 // cudaError_t cudaLaunch(char *); 242 return CGM.CreateRuntimeFunction( 243 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 244 } 245 246 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 247 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 248 } 249 250 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 251 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 252 } 253 254 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 255 auto *CallbackFnTy = getCallbackFnTy(); 256 auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 257 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 258 VoidPtrTy, CallbackFnTy->getPointerTo()}; 259 return llvm::FunctionType::get(VoidTy, Params, false); 260 } 261 262 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 263 GlobalDecl GD; 264 // D could be either a kernel or a variable. 265 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 266 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 267 else 268 GD = GlobalDecl(ND); 269 std::string DeviceSideName; 270 MangleContext *MC; 271 if (CGM.getLangOpts().CUDAIsDevice) 272 MC = &CGM.getCXXABI().getMangleContext(); 273 else 274 MC = DeviceMC.get(); 275 if (MC->shouldMangleDeclName(ND)) { 276 SmallString<256> Buffer; 277 llvm::raw_svector_ostream Out(Buffer); 278 MC->mangleName(GD, Out); 279 DeviceSideName = std::string(Out.str()); 280 } else 281 DeviceSideName = std::string(ND->getIdentifier()->getName()); 282 283 // Make unique name for device side static file-scope variable for HIP. 284 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 285 CGM.getLangOpts().GPURelocatableDeviceCode && 286 !CGM.getLangOpts().CUID.empty()) { 287 SmallString<256> Buffer; 288 llvm::raw_svector_ostream Out(Buffer); 289 Out << DeviceSideName; 290 CGM.printPostfixForExternalizedStaticVar(Out); 291 DeviceSideName = std::string(Out.str()); 292 } 293 return DeviceSideName; 294 } 295 296 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 297 FunctionArgList &Args) { 298 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 299 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { 300 GV->setLinkage(CGF.CurFn->getLinkage()); 301 GV->setInitializer(CGF.CurFn); 302 } 303 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 304 CudaFeature::CUDA_USES_NEW_LAUNCH) || 305 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 306 emitDeviceStubBodyNew(CGF, Args); 307 else 308 emitDeviceStubBodyLegacy(CGF, Args); 309 } 310 311 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 312 // array and kernels are launched using cudaLaunchKernel(). 313 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 314 FunctionArgList &Args) { 315 // Build the shadow stack entry at the very start of the function. 316 317 // Calculate amount of space we will need for all arguments. If we have no 318 // args, allocate a single pointer so we still have a valid pointer to the 319 // argument array that we can pass to runtime, even if it will be unused. 320 Address KernelArgs = CGF.CreateTempAlloca( 321 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 322 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 323 // Store pointers to the arguments in a locally allocated launch_args. 324 for (unsigned i = 0; i < Args.size(); ++i) { 325 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 326 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 327 CGF.Builder.CreateDefaultAlignedStore( 328 VoidVarPtr, 329 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); 330 } 331 332 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 333 334 // Lookup cudaLaunchKernel/hipLaunchKernel function. 335 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 336 // void **args, size_t sharedMem, 337 // cudaStream_t stream); 338 // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 339 // void **args, size_t sharedMem, 340 // hipStream_t stream); 341 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 342 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 343 auto LaunchKernelName = addPrefixToName("LaunchKernel"); 344 IdentifierInfo &cudaLaunchKernelII = 345 CGM.getContext().Idents.get(LaunchKernelName); 346 FunctionDecl *cudaLaunchKernelFD = nullptr; 347 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 348 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 349 cudaLaunchKernelFD = FD; 350 } 351 352 if (cudaLaunchKernelFD == nullptr) { 353 CGM.Error(CGF.CurFuncDecl->getLocation(), 354 "Can't find declaration for " + LaunchKernelName); 355 return; 356 } 357 // Create temporary dim3 grid_dim, block_dim. 358 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 359 QualType Dim3Ty = GridDimParam->getType(); 360 Address GridDim = 361 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 362 Address BlockDim = 363 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 364 Address ShmemSize = 365 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 366 Address Stream = 367 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 368 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 369 llvm::FunctionType::get(IntTy, 370 {/*gridDim=*/GridDim.getType(), 371 /*blockDim=*/BlockDim.getType(), 372 /*ShmemSize=*/ShmemSize.getType(), 373 /*Stream=*/Stream.getType()}, 374 /*isVarArg=*/false), 375 addUnderscoredPrefixToName("PopCallConfiguration")); 376 377 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 378 {GridDim.getPointer(), BlockDim.getPointer(), 379 ShmemSize.getPointer(), Stream.getPointer()}); 380 381 // Emit the call to cudaLaunch 382 llvm::Value *Kernel = 383 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); 384 CallArgList LaunchKernelArgs; 385 LaunchKernelArgs.add(RValue::get(Kernel), 386 cudaLaunchKernelFD->getParamDecl(0)->getType()); 387 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 388 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 389 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 390 cudaLaunchKernelFD->getParamDecl(3)->getType()); 391 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 392 cudaLaunchKernelFD->getParamDecl(4)->getType()); 393 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 394 cudaLaunchKernelFD->getParamDecl(5)->getType()); 395 396 QualType QT = cudaLaunchKernelFD->getType(); 397 QualType CQT = QT.getCanonicalType(); 398 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 399 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 400 401 const CGFunctionInfo &FI = 402 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 403 llvm::FunctionCallee cudaLaunchKernelFn = 404 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 405 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 406 LaunchKernelArgs); 407 CGF.EmitBranch(EndBlock); 408 409 CGF.EmitBlock(EndBlock); 410 } 411 412 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 413 FunctionArgList &Args) { 414 // Emit a call to cudaSetupArgument for each arg in Args. 415 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 416 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 417 CharUnits Offset = CharUnits::Zero(); 418 for (const VarDecl *A : Args) { 419 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 420 Offset = Offset.alignTo(TInfo.Align); 421 llvm::Value *Args[] = { 422 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 423 VoidPtrTy), 424 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 425 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 426 }; 427 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 428 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 429 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 430 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 431 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 432 CGF.EmitBlock(NextBlock); 433 Offset += TInfo.Width; 434 } 435 436 // Emit the call to cudaLaunch 437 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 438 llvm::Value *Arg = 439 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); 440 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 441 CGF.EmitBranch(EndBlock); 442 443 CGF.EmitBlock(EndBlock); 444 } 445 446 // Replace the original variable Var with the address loaded from variable 447 // ManagedVar populated by HIP runtime. 448 static void replaceManagedVar(llvm::GlobalVariable *Var, 449 llvm::GlobalVariable *ManagedVar) { 450 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 451 for (auto &&VarUse : Var->uses()) { 452 WorkList.push_back({VarUse.getUser()}); 453 } 454 while (!WorkList.empty()) { 455 auto &&WorkItem = WorkList.pop_back_val(); 456 auto *U = WorkItem.back(); 457 if (isa<llvm::ConstantExpr>(U)) { 458 for (auto &&UU : U->uses()) { 459 WorkItem.push_back(UU.getUser()); 460 WorkList.push_back(WorkItem); 461 WorkItem.pop_back(); 462 } 463 continue; 464 } 465 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 466 llvm::Value *OldV = Var; 467 llvm::Instruction *NewV = 468 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 469 llvm::Align(Var->getAlignment()), I); 470 WorkItem.pop_back(); 471 // Replace constant expressions directly or indirectly using the managed 472 // variable with instructions. 473 for (auto &&Op : WorkItem) { 474 auto *CE = cast<llvm::ConstantExpr>(Op); 475 auto *NewInst = CE->getAsInstruction(I); 476 NewInst->replaceUsesOfWith(OldV, NewV); 477 OldV = CE; 478 NewV = NewInst; 479 } 480 I->replaceUsesOfWith(OldV, NewV); 481 } else { 482 llvm_unreachable("Invalid use of managed variable"); 483 } 484 } 485 } 486 487 /// Creates a function that sets up state on the host side for CUDA objects that 488 /// have a presence on both the host and device sides. Specifically, registers 489 /// the host side of kernel functions and device global variables with the CUDA 490 /// runtime. 491 /// \code 492 /// void __cuda_register_globals(void** GpuBinaryHandle) { 493 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 494 /// ... 495 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 496 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 497 /// ... 498 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 499 /// } 500 /// \endcode 501 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 502 // No need to register anything 503 if (EmittedKernels.empty() && DeviceVars.empty()) 504 return nullptr; 505 506 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 507 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 508 addUnderscoredPrefixToName("_register_globals"), &TheModule); 509 llvm::BasicBlock *EntryBB = 510 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 511 CGBuilderTy Builder(CGM, Context); 512 Builder.SetInsertPoint(EntryBB); 513 514 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 515 // int, uint3*, uint3*, dim3*, dim3*, int*) 516 llvm::Type *RegisterFuncParams[] = { 517 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 518 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 519 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 520 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 521 addUnderscoredPrefixToName("RegisterFunction")); 522 523 // Extract GpuBinaryHandle passed as the first argument passed to 524 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 525 // each emitted kernel. 526 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 527 for (auto &&I : EmittedKernels) { 528 llvm::Constant *KernelName = 529 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 530 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 531 llvm::Value *Args[] = { 532 &GpuBinaryHandlePtr, 533 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), 534 KernelName, 535 KernelName, 536 llvm::ConstantInt::get(IntTy, -1), 537 NullPtr, 538 NullPtr, 539 NullPtr, 540 NullPtr, 541 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 542 Builder.CreateCall(RegisterFunc, Args); 543 } 544 545 llvm::Type *VarSizeTy = IntTy; 546 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 547 if (CGM.getLangOpts().HIP || 548 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 549 VarSizeTy = SizeTy; 550 551 // void __cudaRegisterVar(void **, char *, char *, const char *, 552 // int, int, int, int) 553 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 554 CharPtrTy, IntTy, VarSizeTy, 555 IntTy, IntTy}; 556 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 557 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 558 addUnderscoredPrefixToName("RegisterVar")); 559 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 560 // size_t, unsigned) 561 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 562 CharPtrTy, VarSizeTy, IntTy}; 563 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 564 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 565 addUnderscoredPrefixToName("RegisterManagedVar")); 566 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 567 // const void **, const char *, int, int); 568 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 569 llvm::FunctionType::get( 570 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 571 false), 572 addUnderscoredPrefixToName("RegisterSurface")); 573 // void __cudaRegisterTexture(void **, const struct textureReference *, 574 // const void **, const char *, int, int, int) 575 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 576 llvm::FunctionType::get( 577 VoidTy, 578 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 579 false), 580 addUnderscoredPrefixToName("RegisterTexture")); 581 for (auto &&Info : DeviceVars) { 582 llvm::GlobalVariable *Var = Info.Var; 583 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 584 "External variables should not show up here, except HIP managed " 585 "variables"); 586 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 587 switch (Info.Flags.getKind()) { 588 case DeviceVarFlags::Variable: { 589 uint64_t VarSize = 590 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 591 if (Info.Flags.isManaged()) { 592 auto *ManagedVar = new llvm::GlobalVariable( 593 CGM.getModule(), Var->getType(), 594 /*isConstant=*/false, Var->getLinkage(), 595 /*Init=*/Var->isDeclaration() 596 ? nullptr 597 : llvm::ConstantPointerNull::get(Var->getType()), 598 /*Name=*/"", /*InsertBefore=*/nullptr, 599 llvm::GlobalVariable::NotThreadLocal); 600 ManagedVar->setDSOLocal(Var->isDSOLocal()); 601 ManagedVar->setVisibility(Var->getVisibility()); 602 ManagedVar->setExternallyInitialized(true); 603 ManagedVar->takeName(Var); 604 Var->setName(Twine(ManagedVar->getName() + ".managed")); 605 replaceManagedVar(Var, ManagedVar); 606 llvm::Value *Args[] = { 607 &GpuBinaryHandlePtr, 608 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 609 Builder.CreateBitCast(Var, VoidPtrTy), 610 VarName, 611 llvm::ConstantInt::get(VarSizeTy, VarSize), 612 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 613 if (!Var->isDeclaration()) 614 Builder.CreateCall(RegisterManagedVar, Args); 615 } else { 616 llvm::Value *Args[] = { 617 &GpuBinaryHandlePtr, 618 Builder.CreateBitCast(Var, VoidPtrTy), 619 VarName, 620 VarName, 621 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 622 llvm::ConstantInt::get(VarSizeTy, VarSize), 623 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 624 llvm::ConstantInt::get(IntTy, 0)}; 625 Builder.CreateCall(RegisterVar, Args); 626 } 627 break; 628 } 629 case DeviceVarFlags::Surface: 630 Builder.CreateCall( 631 RegisterSurf, 632 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 633 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 634 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 635 break; 636 case DeviceVarFlags::Texture: 637 Builder.CreateCall( 638 RegisterTex, 639 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 640 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 641 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 642 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 643 break; 644 } 645 } 646 647 Builder.CreateRetVoid(); 648 return RegisterKernelsFunc; 649 } 650 651 /// Creates a global constructor function for the module: 652 /// 653 /// For CUDA: 654 /// \code 655 /// void __cuda_module_ctor(void*) { 656 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 657 /// __cuda_register_globals(Handle); 658 /// } 659 /// \endcode 660 /// 661 /// For HIP: 662 /// \code 663 /// void __hip_module_ctor(void*) { 664 /// if (__hip_gpubin_handle == 0) { 665 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 666 /// __hip_register_globals(__hip_gpubin_handle); 667 /// } 668 /// } 669 /// \endcode 670 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 671 bool IsHIP = CGM.getLangOpts().HIP; 672 bool IsCUDA = CGM.getLangOpts().CUDA; 673 // No need to generate ctors/dtors if there is no GPU binary. 674 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 675 if (CudaGpuBinaryFileName.empty() && !IsHIP) 676 return nullptr; 677 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 678 DeviceVars.empty()) 679 return nullptr; 680 681 // void __{cuda|hip}_register_globals(void* handle); 682 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 683 // We always need a function to pass in as callback. Create a dummy 684 // implementation if we don't need to register anything. 685 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 686 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 687 688 // void ** __{cuda|hip}RegisterFatBinary(void *); 689 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 690 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 691 addUnderscoredPrefixToName("RegisterFatBinary")); 692 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 693 llvm::StructType *FatbinWrapperTy = 694 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 695 696 // Register GPU binary with the CUDA runtime, store returned handle in a 697 // global variable and save a reference in GpuBinaryHandle to be cleaned up 698 // in destructor on exit. Then associate all known kernels with the GPU binary 699 // handle so CUDA runtime can figure out what to call on the GPU side. 700 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 701 if (!CudaGpuBinaryFileName.empty()) { 702 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 703 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 704 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 705 CGM.getDiags().Report(diag::err_cannot_open_file) 706 << CudaGpuBinaryFileName << EC.message(); 707 return nullptr; 708 } 709 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 710 } 711 712 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 713 llvm::FunctionType::get(VoidTy, VoidPtrTy, false), 714 llvm::GlobalValue::InternalLinkage, 715 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 716 llvm::BasicBlock *CtorEntryBB = 717 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 718 CGBuilderTy CtorBuilder(CGM, Context); 719 720 CtorBuilder.SetInsertPoint(CtorEntryBB); 721 722 const char *FatbinConstantName; 723 const char *FatbinSectionName; 724 const char *ModuleIDSectionName; 725 StringRef ModuleIDPrefix; 726 llvm::Constant *FatBinStr; 727 unsigned FatMagic; 728 if (IsHIP) { 729 FatbinConstantName = ".hip_fatbin"; 730 FatbinSectionName = ".hipFatBinSegment"; 731 732 ModuleIDSectionName = "__hip_module_id"; 733 ModuleIDPrefix = "__hip_"; 734 735 if (CudaGpuBinary) { 736 // If fatbin is available from early finalization, create a string 737 // literal containing the fat binary loaded from the given file. 738 const unsigned HIPCodeObjectAlign = 4096; 739 FatBinStr = 740 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 741 FatbinConstantName, HIPCodeObjectAlign); 742 } else { 743 // If fatbin is not available, create an external symbol 744 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 745 // to contain the fat binary but will be populated somewhere else, 746 // e.g. by lld through link script. 747 FatBinStr = new llvm::GlobalVariable( 748 CGM.getModule(), CGM.Int8Ty, 749 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 750 "__hip_fatbin", nullptr, 751 llvm::GlobalVariable::NotThreadLocal); 752 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 753 } 754 755 FatMagic = HIPFatMagic; 756 } else { 757 if (RelocatableDeviceCode) 758 FatbinConstantName = CGM.getTriple().isMacOSX() 759 ? "__NV_CUDA,__nv_relfatbin" 760 : "__nv_relfatbin"; 761 else 762 FatbinConstantName = 763 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 764 // NVIDIA's cuobjdump looks for fatbins in this section. 765 FatbinSectionName = 766 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 767 768 ModuleIDSectionName = CGM.getTriple().isMacOSX() 769 ? "__NV_CUDA,__nv_module_id" 770 : "__nv_module_id"; 771 ModuleIDPrefix = "__nv_"; 772 773 // For CUDA, create a string literal containing the fat binary loaded from 774 // the given file. 775 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 776 FatbinConstantName, 8); 777 FatMagic = CudaFatMagic; 778 } 779 780 // Create initialized wrapper structure that points to the loaded GPU binary 781 ConstantInitBuilder Builder(CGM); 782 auto Values = Builder.beginStruct(FatbinWrapperTy); 783 // Fatbin wrapper magic. 784 Values.addInt(IntTy, FatMagic); 785 // Fatbin version. 786 Values.addInt(IntTy, 1); 787 // Data. 788 Values.add(FatBinStr); 789 // Unused in fatbin v1. 790 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 791 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 792 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 793 /*constant*/ true); 794 FatbinWrapper->setSection(FatbinSectionName); 795 796 // There is only one HIP fat binary per linked module, however there are 797 // multiple constructor functions. Make sure the fat binary is registered 798 // only once. The constructor functions are executed by the dynamic loader 799 // before the program gains control. The dynamic loader cannot execute the 800 // constructor functions concurrently since doing that would not guarantee 801 // thread safety of the loaded program. Therefore we can assume sequential 802 // execution of constructor functions here. 803 if (IsHIP) { 804 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 805 llvm::GlobalValue::LinkOnceAnyLinkage; 806 llvm::BasicBlock *IfBlock = 807 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 808 llvm::BasicBlock *ExitBlock = 809 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 810 // The name, size, and initialization pattern of this variable is part 811 // of HIP ABI. 812 GpuBinaryHandle = new llvm::GlobalVariable( 813 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 814 Linkage, 815 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 816 "__hip_gpubin_handle"); 817 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage) 818 GpuBinaryHandle->setComdat( 819 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName())); 820 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 821 // Prevent the weak symbol in different shared libraries being merged. 822 if (Linkage != llvm::GlobalValue::InternalLinkage) 823 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 824 Address GpuBinaryAddr( 825 GpuBinaryHandle, 826 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 827 { 828 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 829 llvm::Constant *Zero = 830 llvm::Constant::getNullValue(HandleValue->getType()); 831 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 832 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 833 } 834 { 835 CtorBuilder.SetInsertPoint(IfBlock); 836 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 837 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 838 RegisterFatbinFunc, 839 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 840 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 841 CtorBuilder.CreateBr(ExitBlock); 842 } 843 { 844 CtorBuilder.SetInsertPoint(ExitBlock); 845 // Call __hip_register_globals(GpuBinaryHandle); 846 if (RegisterGlobalsFunc) { 847 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 848 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 849 } 850 } 851 } else if (!RelocatableDeviceCode) { 852 // Register binary with CUDA runtime. This is substantially different in 853 // default mode vs. separate compilation! 854 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 855 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 856 RegisterFatbinFunc, 857 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 858 GpuBinaryHandle = new llvm::GlobalVariable( 859 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 860 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 861 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 862 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 863 CGM.getPointerAlign()); 864 865 // Call __cuda_register_globals(GpuBinaryHandle); 866 if (RegisterGlobalsFunc) 867 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 868 869 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 870 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 871 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 872 // void __cudaRegisterFatBinaryEnd(void **); 873 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 874 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 875 "__cudaRegisterFatBinaryEnd"); 876 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 877 } 878 } else { 879 // Generate a unique module ID. 880 SmallString<64> ModuleID; 881 llvm::raw_svector_ostream OS(ModuleID); 882 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 883 llvm::Constant *ModuleIDConstant = makeConstantString( 884 std::string(ModuleID.str()), "", ModuleIDSectionName, 32); 885 886 // Create an alias for the FatbinWrapper that nvcc will look for. 887 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 888 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 889 890 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 891 // void *, void (*)(void **)) 892 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 893 RegisterLinkedBinaryName += ModuleID; 894 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 895 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 896 897 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 898 llvm::Value *Args[] = {RegisterGlobalsFunc, 899 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 900 ModuleIDConstant, 901 makeDummyFunction(getCallbackFnTy())}; 902 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 903 } 904 905 // Create destructor and register it with atexit() the way NVCC does it. Doing 906 // it during regular destructor phase worked in CUDA before 9.2 but results in 907 // double-free in 9.2. 908 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 909 // extern "C" int atexit(void (*f)(void)); 910 llvm::FunctionType *AtExitTy = 911 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 912 llvm::FunctionCallee AtExitFunc = 913 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 914 /*Local=*/true); 915 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 916 } 917 918 CtorBuilder.CreateRetVoid(); 919 return ModuleCtorFunc; 920 } 921 922 /// Creates a global destructor function that unregisters the GPU code blob 923 /// registered by constructor. 924 /// 925 /// For CUDA: 926 /// \code 927 /// void __cuda_module_dtor(void*) { 928 /// __cudaUnregisterFatBinary(Handle); 929 /// } 930 /// \endcode 931 /// 932 /// For HIP: 933 /// \code 934 /// void __hip_module_dtor(void*) { 935 /// if (__hip_gpubin_handle) { 936 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 937 /// __hip_gpubin_handle = 0; 938 /// } 939 /// } 940 /// \endcode 941 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 942 // No need for destructor if we don't have a handle to unregister. 943 if (!GpuBinaryHandle) 944 return nullptr; 945 946 // void __cudaUnregisterFatBinary(void ** handle); 947 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 948 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 949 addUnderscoredPrefixToName("UnregisterFatBinary")); 950 951 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 952 llvm::FunctionType::get(VoidTy, VoidPtrTy, false), 953 llvm::GlobalValue::InternalLinkage, 954 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 955 956 llvm::BasicBlock *DtorEntryBB = 957 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 958 CGBuilderTy DtorBuilder(CGM, Context); 959 DtorBuilder.SetInsertPoint(DtorEntryBB); 960 961 Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity( 962 GpuBinaryHandle->getAlignment())); 963 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 964 // There is only one HIP fat binary per linked module, however there are 965 // multiple destructor functions. Make sure the fat binary is unregistered 966 // only once. 967 if (CGM.getLangOpts().HIP) { 968 llvm::BasicBlock *IfBlock = 969 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 970 llvm::BasicBlock *ExitBlock = 971 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 972 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 973 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 974 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 975 976 DtorBuilder.SetInsertPoint(IfBlock); 977 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 978 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 979 DtorBuilder.CreateBr(ExitBlock); 980 981 DtorBuilder.SetInsertPoint(ExitBlock); 982 } else { 983 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 984 } 985 DtorBuilder.CreateRetVoid(); 986 return ModuleDtorFunc; 987 } 988 989 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 990 return new CGNVCUDARuntime(CGM); 991 } 992 993 void CGNVCUDARuntime::internalizeDeviceSideVar( 994 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 995 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 996 // global variables become internal definitions. These have to be internal in 997 // order to prevent name conflicts with global host variables with the same 998 // name in a different TUs. 999 // 1000 // For -fgpu-rdc, the shadow variables should not be internalized because 1001 // they may be accessed by different TU. 1002 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1003 return; 1004 1005 // __shared__ variables are odd. Shadows do get created, but 1006 // they are not registered with the CUDA runtime, so they 1007 // can't really be used to access their device-side 1008 // counterparts. It's not clear yet whether it's nvcc's bug or 1009 // a feature, but we've got to do the same for compatibility. 1010 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1011 D->hasAttr<CUDASharedAttr>() || 1012 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1013 D->getType()->isCUDADeviceBuiltinTextureType()) { 1014 Linkage = llvm::GlobalValue::InternalLinkage; 1015 } 1016 } 1017 1018 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1019 llvm::GlobalVariable &GV) { 1020 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1021 // Shadow variables and their properties must be registered with CUDA 1022 // runtime. Skip Extern global variables, which will be registered in 1023 // the TU where they are defined. 1024 // 1025 // Don't register a C++17 inline variable. The local symbol can be 1026 // discarded and referencing a discarded local symbol from outside the 1027 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1028 // 1029 // HIP managed variables need to be always recorded in device and host 1030 // compilations for transformation. 1031 // 1032 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1033 // added to llvm.compiler-used, therefore they are safe to be registered. 1034 if ((!D->hasExternalStorage() && !D->isInline()) || 1035 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1036 D->hasAttr<HIPManagedAttr>()) { 1037 registerDeviceVar(D, GV, !D->hasDefinition(), 1038 D->hasAttr<CUDAConstantAttr>()); 1039 } 1040 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1041 D->getType()->isCUDADeviceBuiltinTextureType()) { 1042 // Builtin surfaces and textures and their template arguments are 1043 // also registered with CUDA runtime. 1044 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1045 D->getType()->castAs<RecordType>()->getDecl()); 1046 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1047 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1048 assert(Args.size() == 2 && 1049 "Unexpected number of template arguments of CUDA device " 1050 "builtin surface type."); 1051 auto SurfType = Args[1].getAsIntegral(); 1052 if (!D->hasExternalStorage()) 1053 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1054 } else { 1055 assert(Args.size() == 3 && 1056 "Unexpected number of template arguments of CUDA device " 1057 "builtin texture type."); 1058 auto TexType = Args[1].getAsIntegral(); 1059 auto Normalized = Args[2].getAsIntegral(); 1060 if (!D->hasExternalStorage()) 1061 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1062 Normalized.getZExtValue()); 1063 } 1064 } 1065 } 1066 1067 // Transform managed variables to pointers to managed variables in device code. 1068 // Each use of the original managed variable is replaced by a load from the 1069 // transformed managed variable. The transformed managed variable contains 1070 // the address of managed memory which will be allocated by the runtime. 1071 void CGNVCUDARuntime::transformManagedVars() { 1072 for (auto &&Info : DeviceVars) { 1073 llvm::GlobalVariable *Var = Info.Var; 1074 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1075 Info.Flags.isManaged()) { 1076 auto *ManagedVar = new llvm::GlobalVariable( 1077 CGM.getModule(), Var->getType(), 1078 /*isConstant=*/false, Var->getLinkage(), 1079 /*Init=*/Var->isDeclaration() 1080 ? nullptr 1081 : llvm::ConstantPointerNull::get(Var->getType()), 1082 /*Name=*/"", /*InsertBefore=*/nullptr, 1083 llvm::GlobalVariable::NotThreadLocal, 1084 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1085 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1086 ManagedVar->setVisibility(Var->getVisibility()); 1087 ManagedVar->setExternallyInitialized(true); 1088 replaceManagedVar(Var, ManagedVar); 1089 ManagedVar->takeName(Var); 1090 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1091 // Keep managed variables even if they are not used in device code since 1092 // they need to be allocated by the runtime. 1093 if (!Var->isDeclaration()) { 1094 assert(!ManagedVar->isDeclaration()); 1095 CGM.addCompilerUsedGlobal(Var); 1096 CGM.addCompilerUsedGlobal(ManagedVar); 1097 } 1098 } 1099 } 1100 } 1101 1102 // Returns module constructor to be added. 1103 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1104 if (CGM.getLangOpts().CUDAIsDevice) { 1105 transformManagedVars(); 1106 1107 // Mark ODR-used device variables as compiler used to prevent it from being 1108 // eliminated by optimization. This is necessary for device variables 1109 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1110 // matter whether they are ODR-used by device or host functions. 1111 // 1112 // We do not need to do this if the variable has used attribute since it 1113 // has already been added. 1114 // 1115 // Static device variables have been externalized at this point, therefore 1116 // variables with LLVM private or internal linkage need not be added. 1117 for (auto &&Info : DeviceVars) { 1118 auto Kind = Info.Flags.getKind(); 1119 if (!Info.Var->isDeclaration() && 1120 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1121 (Kind == DeviceVarFlags::Variable || 1122 Kind == DeviceVarFlags::Surface || 1123 Kind == DeviceVarFlags::Texture) && 1124 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1125 CGM.addCompilerUsedGlobal(Info.Var); 1126 } 1127 } 1128 return nullptr; 1129 } 1130 return makeModuleCtorFunction(); 1131 } 1132 1133 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1134 GlobalDecl GD) { 1135 auto Loc = KernelHandles.find(F); 1136 if (Loc != KernelHandles.end()) 1137 return Loc->second; 1138 1139 if (!CGM.getLangOpts().HIP) { 1140 KernelHandles[F] = F; 1141 KernelStubs[F] = F; 1142 return F; 1143 } 1144 1145 auto *Var = new llvm::GlobalVariable( 1146 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1147 /*Initializer=*/nullptr, 1148 CGM.getMangledName( 1149 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1150 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1151 Var->setDSOLocal(F->isDSOLocal()); 1152 Var->setVisibility(F->getVisibility()); 1153 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); 1154 KernelHandles[F] = Var; 1155 KernelStubs[Var] = F; 1156 return Var; 1157 } 1158