xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGCUDANV.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/ReplaceConstant.h"
26 #include "llvm/Support/Format.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 namespace {
32 constexpr unsigned CudaFatMagic = 0x466243b1;
33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
34 
35 class CGNVCUDARuntime : public CGCUDARuntime {
36 
37 private:
38   llvm::IntegerType *IntTy, *SizeTy;
39   llvm::Type *VoidTy;
40   llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
41 
42   /// Convenience reference to LLVM Context
43   llvm::LLVMContext &Context;
44   /// Convenience reference to the current module
45   llvm::Module &TheModule;
46   /// Keeps track of kernel launch stubs and handles emitted in this module
47   struct KernelInfo {
48     llvm::Function *Kernel; // stub function to help launch kernel
49     const Decl *D;
50   };
51   llvm::SmallVector<KernelInfo, 16> EmittedKernels;
52   // Map a device stub function to a symbol for identifying kernel in host code.
53   // For CUDA, the symbol for identifying the kernel is the same as the device
54   // stub function. For HIP, they are different.
55   llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
56   // Map a kernel handle to the kernel stub.
57   llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
58   struct VarInfo {
59     llvm::GlobalVariable *Var;
60     const VarDecl *D;
61     DeviceVarFlags Flags;
62   };
63   llvm::SmallVector<VarInfo, 16> DeviceVars;
64   /// Keeps track of variable containing handle of GPU binary. Populated by
65   /// ModuleCtorFunction() and used to create corresponding cleanup calls in
66   /// ModuleDtorFunction()
67   llvm::GlobalVariable *GpuBinaryHandle = nullptr;
68   /// Whether we generate relocatable device code.
69   bool RelocatableDeviceCode;
70   /// Mangle context for device.
71   std::unique_ptr<MangleContext> DeviceMC;
72 
73   llvm::FunctionCallee getSetupArgumentFn() const;
74   llvm::FunctionCallee getLaunchFn() const;
75 
76   llvm::FunctionType *getRegisterGlobalsFnTy() const;
77   llvm::FunctionType *getCallbackFnTy() const;
78   llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
79   std::string addPrefixToName(StringRef FuncName) const;
80   std::string addUnderscoredPrefixToName(StringRef FuncName) const;
81 
82   /// Creates a function to register all kernel stubs generated in this module.
83   llvm::Function *makeRegisterGlobalsFn();
84 
85   /// Helper function that generates a constant string and returns a pointer to
86   /// the start of the string.  The result of this function can be used anywhere
87   /// where the C code specifies const char*.
88   llvm::Constant *makeConstantString(const std::string &Str,
89                                      const std::string &Name = "",
90                                      const std::string &SectionName = "",
91                                      unsigned Alignment = 0) {
92     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
93                                llvm::ConstantInt::get(SizeTy, 0)};
94     auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
95     llvm::GlobalVariable *GV =
96         cast<llvm::GlobalVariable>(ConstStr.getPointer());
97     if (!SectionName.empty()) {
98       GV->setSection(SectionName);
99       // Mark the address as used which make sure that this section isn't
100       // merged and we will really have it in the object file.
101       GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
102     }
103     if (Alignment)
104       GV->setAlignment(llvm::Align(Alignment));
105 
106     return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
107                                                 ConstStr.getPointer(), Zeros);
108   }
109 
110   /// Helper function that generates an empty dummy function returning void.
111   llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
112     assert(FnTy->getReturnType()->isVoidTy() &&
113            "Can only generate dummy functions returning void!");
114     llvm::Function *DummyFunc = llvm::Function::Create(
115         FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
116 
117     llvm::BasicBlock *DummyBlock =
118         llvm::BasicBlock::Create(Context, "", DummyFunc);
119     CGBuilderTy FuncBuilder(CGM, Context);
120     FuncBuilder.SetInsertPoint(DummyBlock);
121     FuncBuilder.CreateRetVoid();
122 
123     return DummyFunc;
124   }
125 
126   void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
127   void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
128   std::string getDeviceSideName(const NamedDecl *ND) override;
129 
130   void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
131                          bool Extern, bool Constant) {
132     DeviceVars.push_back({&Var,
133                           VD,
134                           {DeviceVarFlags::Variable, Extern, Constant,
135                            VD->hasAttr<HIPManagedAttr>(),
136                            /*Normalized*/ false, 0}});
137   }
138   void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
139                           bool Extern, int Type) {
140     DeviceVars.push_back({&Var,
141                           VD,
142                           {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
143                            /*Managed*/ false,
144                            /*Normalized*/ false, Type}});
145   }
146   void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
147                          bool Extern, int Type, bool Normalized) {
148     DeviceVars.push_back({&Var,
149                           VD,
150                           {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
151                            /*Managed*/ false, Normalized, Type}});
152   }
153 
154   /// Creates module constructor function
155   llvm::Function *makeModuleCtorFunction();
156   /// Creates module destructor function
157   llvm::Function *makeModuleDtorFunction();
158   /// Transform managed variables for device compilation.
159   void transformManagedVars();
160 
161 public:
162   CGNVCUDARuntime(CodeGenModule &CGM);
163 
164   llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
165   llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
166     auto Loc = KernelStubs.find(Handle);
167     assert(Loc != KernelStubs.end());
168     return Loc->second;
169   }
170   void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
171   void handleVarRegistration(const VarDecl *VD,
172                              llvm::GlobalVariable &Var) override;
173   void
174   internalizeDeviceSideVar(const VarDecl *D,
175                            llvm::GlobalValue::LinkageTypes &Linkage) override;
176 
177   llvm::Function *finalizeModule() override;
178 };
179 
180 }
181 
182 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
183   if (CGM.getLangOpts().HIP)
184     return ((Twine("hip") + Twine(FuncName)).str());
185   return ((Twine("cuda") + Twine(FuncName)).str());
186 }
187 std::string
188 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
189   if (CGM.getLangOpts().HIP)
190     return ((Twine("__hip") + Twine(FuncName)).str());
191   return ((Twine("__cuda") + Twine(FuncName)).str());
192 }
193 
194 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
195   // If the host and device have different C++ ABIs, mark it as the device
196   // mangle context so that the mangling needs to retrieve the additional
197   // device lambda mangling number instead of the regular host one.
198   if (CGM.getContext().getAuxTargetInfo() &&
199       CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
200       CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
201     return std::unique_ptr<MangleContext>(
202         CGM.getContext().createDeviceMangleContext(
203             *CGM.getContext().getAuxTargetInfo()));
204   }
205 
206   return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
207       CGM.getContext().getAuxTargetInfo()));
208 }
209 
210 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
211     : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
212       TheModule(CGM.getModule()),
213       RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
214       DeviceMC(InitDeviceMC(CGM)) {
215   CodeGen::CodeGenTypes &Types = CGM.getTypes();
216   ASTContext &Ctx = CGM.getContext();
217 
218   IntTy = CGM.IntTy;
219   SizeTy = CGM.SizeTy;
220   VoidTy = CGM.VoidTy;
221 
222   CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
223   VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
224   VoidPtrPtrTy = VoidPtrTy->getPointerTo();
225 }
226 
227 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
228   // cudaError_t cudaSetupArgument(void *, size_t, size_t)
229   llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
230   return CGM.CreateRuntimeFunction(
231       llvm::FunctionType::get(IntTy, Params, false),
232       addPrefixToName("SetupArgument"));
233 }
234 
235 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
236   if (CGM.getLangOpts().HIP) {
237     // hipError_t hipLaunchByPtr(char *);
238     return CGM.CreateRuntimeFunction(
239         llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
240   } else {
241     // cudaError_t cudaLaunch(char *);
242     return CGM.CreateRuntimeFunction(
243         llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
244   }
245 }
246 
247 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
248   return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
249 }
250 
251 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
252   return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
253 }
254 
255 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
256   auto CallbackFnTy = getCallbackFnTy();
257   auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
258   llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
259                           VoidPtrTy, CallbackFnTy->getPointerTo()};
260   return llvm::FunctionType::get(VoidTy, Params, false);
261 }
262 
263 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
264   GlobalDecl GD;
265   // D could be either a kernel or a variable.
266   if (auto *FD = dyn_cast<FunctionDecl>(ND))
267     GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
268   else
269     GD = GlobalDecl(ND);
270   std::string DeviceSideName;
271   MangleContext *MC;
272   if (CGM.getLangOpts().CUDAIsDevice)
273     MC = &CGM.getCXXABI().getMangleContext();
274   else
275     MC = DeviceMC.get();
276   if (MC->shouldMangleDeclName(ND)) {
277     SmallString<256> Buffer;
278     llvm::raw_svector_ostream Out(Buffer);
279     MC->mangleName(GD, Out);
280     DeviceSideName = std::string(Out.str());
281   } else
282     DeviceSideName = std::string(ND->getIdentifier()->getName());
283 
284   // Make unique name for device side static file-scope variable for HIP.
285   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
286       CGM.getLangOpts().GPURelocatableDeviceCode &&
287       !CGM.getLangOpts().CUID.empty()) {
288     SmallString<256> Buffer;
289     llvm::raw_svector_ostream Out(Buffer);
290     Out << DeviceSideName;
291     CGM.printPostfixForExternalizedStaticVar(Out);
292     DeviceSideName = std::string(Out.str());
293   }
294   return DeviceSideName;
295 }
296 
297 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
298                                      FunctionArgList &Args) {
299   EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
300   if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
301     GV->setLinkage(CGF.CurFn->getLinkage());
302     GV->setInitializer(CGF.CurFn);
303   }
304   if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
305                          CudaFeature::CUDA_USES_NEW_LAUNCH) ||
306       (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
307     emitDeviceStubBodyNew(CGF, Args);
308   else
309     emitDeviceStubBodyLegacy(CGF, Args);
310 }
311 
312 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
313 // array and kernels are launched using cudaLaunchKernel().
314 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
315                                             FunctionArgList &Args) {
316   // Build the shadow stack entry at the very start of the function.
317 
318   // Calculate amount of space we will need for all arguments.  If we have no
319   // args, allocate a single pointer so we still have a valid pointer to the
320   // argument array that we can pass to runtime, even if it will be unused.
321   Address KernelArgs = CGF.CreateTempAlloca(
322       VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
323       llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
324   // Store pointers to the arguments in a locally allocated launch_args.
325   for (unsigned i = 0; i < Args.size(); ++i) {
326     llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
327     llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
328     CGF.Builder.CreateDefaultAlignedStore(
329         VoidVarPtr,
330         CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
331   }
332 
333   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
334 
335   // Lookup cudaLaunchKernel/hipLaunchKernel function.
336   // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
337   //                              void **args, size_t sharedMem,
338   //                              cudaStream_t stream);
339   // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
340   //                            void **args, size_t sharedMem,
341   //                            hipStream_t stream);
342   TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
343   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
344   auto LaunchKernelName = addPrefixToName("LaunchKernel");
345   IdentifierInfo &cudaLaunchKernelII =
346       CGM.getContext().Idents.get(LaunchKernelName);
347   FunctionDecl *cudaLaunchKernelFD = nullptr;
348   for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
349     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
350       cudaLaunchKernelFD = FD;
351   }
352 
353   if (cudaLaunchKernelFD == nullptr) {
354     CGM.Error(CGF.CurFuncDecl->getLocation(),
355               "Can't find declaration for " + LaunchKernelName);
356     return;
357   }
358   // Create temporary dim3 grid_dim, block_dim.
359   ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
360   QualType Dim3Ty = GridDimParam->getType();
361   Address GridDim =
362       CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
363   Address BlockDim =
364       CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
365   Address ShmemSize =
366       CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
367   Address Stream =
368       CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
369   llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
370       llvm::FunctionType::get(IntTy,
371                               {/*gridDim=*/GridDim.getType(),
372                                /*blockDim=*/BlockDim.getType(),
373                                /*ShmemSize=*/ShmemSize.getType(),
374                                /*Stream=*/Stream.getType()},
375                               /*isVarArg=*/false),
376       addUnderscoredPrefixToName("PopCallConfiguration"));
377 
378   CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
379                               {GridDim.getPointer(), BlockDim.getPointer(),
380                                ShmemSize.getPointer(), Stream.getPointer()});
381 
382   // Emit the call to cudaLaunch
383   llvm::Value *Kernel =
384       CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
385   CallArgList LaunchKernelArgs;
386   LaunchKernelArgs.add(RValue::get(Kernel),
387                        cudaLaunchKernelFD->getParamDecl(0)->getType());
388   LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
389   LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
390   LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
391                        cudaLaunchKernelFD->getParamDecl(3)->getType());
392   LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
393                        cudaLaunchKernelFD->getParamDecl(4)->getType());
394   LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
395                        cudaLaunchKernelFD->getParamDecl(5)->getType());
396 
397   QualType QT = cudaLaunchKernelFD->getType();
398   QualType CQT = QT.getCanonicalType();
399   llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
400   llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty);
401 
402   const CGFunctionInfo &FI =
403       CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
404   llvm::FunctionCallee cudaLaunchKernelFn =
405       CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
406   CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
407                LaunchKernelArgs);
408   CGF.EmitBranch(EndBlock);
409 
410   CGF.EmitBlock(EndBlock);
411 }
412 
413 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
414                                                FunctionArgList &Args) {
415   // Emit a call to cudaSetupArgument for each arg in Args.
416   llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
417   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
418   CharUnits Offset = CharUnits::Zero();
419   for (const VarDecl *A : Args) {
420     auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
421     Offset = Offset.alignTo(TInfo.Align);
422     llvm::Value *Args[] = {
423         CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
424                                       VoidPtrTy),
425         llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
426         llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
427     };
428     llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
429     llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
430     llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
431     llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
432     CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
433     CGF.EmitBlock(NextBlock);
434     Offset += TInfo.Width;
435   }
436 
437   // Emit the call to cudaLaunch
438   llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
439   llvm::Value *Arg =
440       CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
441   CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
442   CGF.EmitBranch(EndBlock);
443 
444   CGF.EmitBlock(EndBlock);
445 }
446 
447 // Replace the original variable Var with the address loaded from variable
448 // ManagedVar populated by HIP runtime.
449 static void replaceManagedVar(llvm::GlobalVariable *Var,
450                               llvm::GlobalVariable *ManagedVar) {
451   SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
452   for (auto &&VarUse : Var->uses()) {
453     WorkList.push_back({VarUse.getUser()});
454   }
455   while (!WorkList.empty()) {
456     auto &&WorkItem = WorkList.pop_back_val();
457     auto *U = WorkItem.back();
458     if (isa<llvm::ConstantExpr>(U)) {
459       for (auto &&UU : U->uses()) {
460         WorkItem.push_back(UU.getUser());
461         WorkList.push_back(WorkItem);
462         WorkItem.pop_back();
463       }
464       continue;
465     }
466     if (auto *I = dyn_cast<llvm::Instruction>(U)) {
467       llvm::Value *OldV = Var;
468       llvm::Instruction *NewV =
469           new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
470                              llvm::Align(Var->getAlignment()), I);
471       WorkItem.pop_back();
472       // Replace constant expressions directly or indirectly using the managed
473       // variable with instructions.
474       for (auto &&Op : WorkItem) {
475         auto *CE = cast<llvm::ConstantExpr>(Op);
476         auto *NewInst = llvm::createReplacementInstr(CE, I);
477         NewInst->replaceUsesOfWith(OldV, NewV);
478         OldV = CE;
479         NewV = NewInst;
480       }
481       I->replaceUsesOfWith(OldV, NewV);
482     } else {
483       llvm_unreachable("Invalid use of managed variable");
484     }
485   }
486 }
487 
488 /// Creates a function that sets up state on the host side for CUDA objects that
489 /// have a presence on both the host and device sides. Specifically, registers
490 /// the host side of kernel functions and device global variables with the CUDA
491 /// runtime.
492 /// \code
493 /// void __cuda_register_globals(void** GpuBinaryHandle) {
494 ///    __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
495 ///    ...
496 ///    __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
497 ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
498 ///    ...
499 ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
500 /// }
501 /// \endcode
502 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
503   // No need to register anything
504   if (EmittedKernels.empty() && DeviceVars.empty())
505     return nullptr;
506 
507   llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
508       getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
509       addUnderscoredPrefixToName("_register_globals"), &TheModule);
510   llvm::BasicBlock *EntryBB =
511       llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
512   CGBuilderTy Builder(CGM, Context);
513   Builder.SetInsertPoint(EntryBB);
514 
515   // void __cudaRegisterFunction(void **, const char *, char *, const char *,
516   //                             int, uint3*, uint3*, dim3*, dim3*, int*)
517   llvm::Type *RegisterFuncParams[] = {
518       VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
519       VoidPtrTy,    VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
520   llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
521       llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
522       addUnderscoredPrefixToName("RegisterFunction"));
523 
524   // Extract GpuBinaryHandle passed as the first argument passed to
525   // __cuda_register_globals() and generate __cudaRegisterFunction() call for
526   // each emitted kernel.
527   llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
528   for (auto &&I : EmittedKernels) {
529     llvm::Constant *KernelName =
530         makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
531     llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
532     llvm::Value *Args[] = {
533         &GpuBinaryHandlePtr,
534         Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
535         KernelName,
536         KernelName,
537         llvm::ConstantInt::get(IntTy, -1),
538         NullPtr,
539         NullPtr,
540         NullPtr,
541         NullPtr,
542         llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
543     Builder.CreateCall(RegisterFunc, Args);
544   }
545 
546   llvm::Type *VarSizeTy = IntTy;
547   // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
548   if (CGM.getLangOpts().HIP ||
549       ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
550     VarSizeTy = SizeTy;
551 
552   // void __cudaRegisterVar(void **, char *, char *, const char *,
553   //                        int, int, int, int)
554   llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
555                                      CharPtrTy,    IntTy,     VarSizeTy,
556                                      IntTy,        IntTy};
557   llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
558       llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
559       addUnderscoredPrefixToName("RegisterVar"));
560   // void __hipRegisterManagedVar(void **, char *, char *, const char *,
561   //                              size_t, unsigned)
562   llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
563                                             CharPtrTy,    VarSizeTy, IntTy};
564   llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
565       llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
566       addUnderscoredPrefixToName("RegisterManagedVar"));
567   // void __cudaRegisterSurface(void **, const struct surfaceReference *,
568   //                            const void **, const char *, int, int);
569   llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
570       llvm::FunctionType::get(
571           VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
572           false),
573       addUnderscoredPrefixToName("RegisterSurface"));
574   // void __cudaRegisterTexture(void **, const struct textureReference *,
575   //                            const void **, const char *, int, int, int)
576   llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
577       llvm::FunctionType::get(
578           VoidTy,
579           {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
580           false),
581       addUnderscoredPrefixToName("RegisterTexture"));
582   for (auto &&Info : DeviceVars) {
583     llvm::GlobalVariable *Var = Info.Var;
584     assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
585            "External variables should not show up here, except HIP managed "
586            "variables");
587     llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
588     switch (Info.Flags.getKind()) {
589     case DeviceVarFlags::Variable: {
590       uint64_t VarSize =
591           CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
592       if (Info.Flags.isManaged()) {
593         auto ManagedVar = new llvm::GlobalVariable(
594             CGM.getModule(), Var->getType(),
595             /*isConstant=*/false, Var->getLinkage(),
596             /*Init=*/Var->isDeclaration()
597                 ? nullptr
598                 : llvm::ConstantPointerNull::get(Var->getType()),
599             /*Name=*/"", /*InsertBefore=*/nullptr,
600             llvm::GlobalVariable::NotThreadLocal);
601         ManagedVar->setDSOLocal(Var->isDSOLocal());
602         ManagedVar->setVisibility(Var->getVisibility());
603         ManagedVar->setExternallyInitialized(true);
604         ManagedVar->takeName(Var);
605         Var->setName(Twine(ManagedVar->getName() + ".managed"));
606         replaceManagedVar(Var, ManagedVar);
607         llvm::Value *Args[] = {
608             &GpuBinaryHandlePtr,
609             Builder.CreateBitCast(ManagedVar, VoidPtrTy),
610             Builder.CreateBitCast(Var, VoidPtrTy),
611             VarName,
612             llvm::ConstantInt::get(VarSizeTy, VarSize),
613             llvm::ConstantInt::get(IntTy, Var->getAlignment())};
614         if (!Var->isDeclaration())
615           Builder.CreateCall(RegisterManagedVar, Args);
616       } else {
617         llvm::Value *Args[] = {
618             &GpuBinaryHandlePtr,
619             Builder.CreateBitCast(Var, VoidPtrTy),
620             VarName,
621             VarName,
622             llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
623             llvm::ConstantInt::get(VarSizeTy, VarSize),
624             llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
625             llvm::ConstantInt::get(IntTy, 0)};
626         Builder.CreateCall(RegisterVar, Args);
627       }
628       break;
629     }
630     case DeviceVarFlags::Surface:
631       Builder.CreateCall(
632           RegisterSurf,
633           {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
634            VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
635            llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
636       break;
637     case DeviceVarFlags::Texture:
638       Builder.CreateCall(
639           RegisterTex,
640           {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
641            VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
642            llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
643            llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
644       break;
645     }
646   }
647 
648   Builder.CreateRetVoid();
649   return RegisterKernelsFunc;
650 }
651 
652 /// Creates a global constructor function for the module:
653 ///
654 /// For CUDA:
655 /// \code
656 /// void __cuda_module_ctor(void*) {
657 ///     Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
658 ///     __cuda_register_globals(Handle);
659 /// }
660 /// \endcode
661 ///
662 /// For HIP:
663 /// \code
664 /// void __hip_module_ctor(void*) {
665 ///     if (__hip_gpubin_handle == 0) {
666 ///         __hip_gpubin_handle  = __hipRegisterFatBinary(GpuBinaryBlob);
667 ///         __hip_register_globals(__hip_gpubin_handle);
668 ///     }
669 /// }
670 /// \endcode
671 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
672   bool IsHIP = CGM.getLangOpts().HIP;
673   bool IsCUDA = CGM.getLangOpts().CUDA;
674   // No need to generate ctors/dtors if there is no GPU binary.
675   StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
676   if (CudaGpuBinaryFileName.empty() && !IsHIP)
677     return nullptr;
678   if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
679       DeviceVars.empty())
680     return nullptr;
681 
682   // void __{cuda|hip}_register_globals(void* handle);
683   llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
684   // We always need a function to pass in as callback. Create a dummy
685   // implementation if we don't need to register anything.
686   if (RelocatableDeviceCode && !RegisterGlobalsFunc)
687     RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
688 
689   // void ** __{cuda|hip}RegisterFatBinary(void *);
690   llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
691       llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
692       addUnderscoredPrefixToName("RegisterFatBinary"));
693   // struct { int magic, int version, void * gpu_binary, void * dont_care };
694   llvm::StructType *FatbinWrapperTy =
695       llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
696 
697   // Register GPU binary with the CUDA runtime, store returned handle in a
698   // global variable and save a reference in GpuBinaryHandle to be cleaned up
699   // in destructor on exit. Then associate all known kernels with the GPU binary
700   // handle so CUDA runtime can figure out what to call on the GPU side.
701   std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
702   if (!CudaGpuBinaryFileName.empty()) {
703     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
704         llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
705     if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
706       CGM.getDiags().Report(diag::err_cannot_open_file)
707           << CudaGpuBinaryFileName << EC.message();
708       return nullptr;
709     }
710     CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
711   }
712 
713   llvm::Function *ModuleCtorFunc = llvm::Function::Create(
714       llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
715       llvm::GlobalValue::InternalLinkage,
716       addUnderscoredPrefixToName("_module_ctor"), &TheModule);
717   llvm::BasicBlock *CtorEntryBB =
718       llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
719   CGBuilderTy CtorBuilder(CGM, Context);
720 
721   CtorBuilder.SetInsertPoint(CtorEntryBB);
722 
723   const char *FatbinConstantName;
724   const char *FatbinSectionName;
725   const char *ModuleIDSectionName;
726   StringRef ModuleIDPrefix;
727   llvm::Constant *FatBinStr;
728   unsigned FatMagic;
729   if (IsHIP) {
730     FatbinConstantName = ".hip_fatbin";
731     FatbinSectionName = ".hipFatBinSegment";
732 
733     ModuleIDSectionName = "__hip_module_id";
734     ModuleIDPrefix = "__hip_";
735 
736     if (CudaGpuBinary) {
737       // If fatbin is available from early finalization, create a string
738       // literal containing the fat binary loaded from the given file.
739       const unsigned HIPCodeObjectAlign = 4096;
740       FatBinStr =
741           makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
742                              FatbinConstantName, HIPCodeObjectAlign);
743     } else {
744       // If fatbin is not available, create an external symbol
745       // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
746       // to contain the fat binary but will be populated somewhere else,
747       // e.g. by lld through link script.
748       FatBinStr = new llvm::GlobalVariable(
749         CGM.getModule(), CGM.Int8Ty,
750         /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
751         "__hip_fatbin", nullptr,
752         llvm::GlobalVariable::NotThreadLocal);
753       cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
754     }
755 
756     FatMagic = HIPFatMagic;
757   } else {
758     if (RelocatableDeviceCode)
759       FatbinConstantName = CGM.getTriple().isMacOSX()
760                                ? "__NV_CUDA,__nv_relfatbin"
761                                : "__nv_relfatbin";
762     else
763       FatbinConstantName =
764           CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
765     // NVIDIA's cuobjdump looks for fatbins in this section.
766     FatbinSectionName =
767         CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
768 
769     ModuleIDSectionName = CGM.getTriple().isMacOSX()
770                               ? "__NV_CUDA,__nv_module_id"
771                               : "__nv_module_id";
772     ModuleIDPrefix = "__nv_";
773 
774     // For CUDA, create a string literal containing the fat binary loaded from
775     // the given file.
776     FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
777                                    FatbinConstantName, 8);
778     FatMagic = CudaFatMagic;
779   }
780 
781   // Create initialized wrapper structure that points to the loaded GPU binary
782   ConstantInitBuilder Builder(CGM);
783   auto Values = Builder.beginStruct(FatbinWrapperTy);
784   // Fatbin wrapper magic.
785   Values.addInt(IntTy, FatMagic);
786   // Fatbin version.
787   Values.addInt(IntTy, 1);
788   // Data.
789   Values.add(FatBinStr);
790   // Unused in fatbin v1.
791   Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
792   llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
793       addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
794       /*constant*/ true);
795   FatbinWrapper->setSection(FatbinSectionName);
796 
797   // There is only one HIP fat binary per linked module, however there are
798   // multiple constructor functions. Make sure the fat binary is registered
799   // only once. The constructor functions are executed by the dynamic loader
800   // before the program gains control. The dynamic loader cannot execute the
801   // constructor functions concurrently since doing that would not guarantee
802   // thread safety of the loaded program. Therefore we can assume sequential
803   // execution of constructor functions here.
804   if (IsHIP) {
805     auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
806         llvm::GlobalValue::LinkOnceAnyLinkage;
807     llvm::BasicBlock *IfBlock =
808         llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
809     llvm::BasicBlock *ExitBlock =
810         llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
811     // The name, size, and initialization pattern of this variable is part
812     // of HIP ABI.
813     GpuBinaryHandle = new llvm::GlobalVariable(
814         TheModule, VoidPtrPtrTy, /*isConstant=*/false,
815         Linkage,
816         /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
817         "__hip_gpubin_handle");
818     GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
819     // Prevent the weak symbol in different shared libraries being merged.
820     if (Linkage != llvm::GlobalValue::InternalLinkage)
821       GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
822     Address GpuBinaryAddr(
823         GpuBinaryHandle,
824         CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
825     {
826       auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
827       llvm::Constant *Zero =
828           llvm::Constant::getNullValue(HandleValue->getType());
829       llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
830       CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
831     }
832     {
833       CtorBuilder.SetInsertPoint(IfBlock);
834       // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
835       llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
836           RegisterFatbinFunc,
837           CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
838       CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
839       CtorBuilder.CreateBr(ExitBlock);
840     }
841     {
842       CtorBuilder.SetInsertPoint(ExitBlock);
843       // Call __hip_register_globals(GpuBinaryHandle);
844       if (RegisterGlobalsFunc) {
845         auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
846         CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
847       }
848     }
849   } else if (!RelocatableDeviceCode) {
850     // Register binary with CUDA runtime. This is substantially different in
851     // default mode vs. separate compilation!
852     // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
853     llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
854         RegisterFatbinFunc,
855         CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
856     GpuBinaryHandle = new llvm::GlobalVariable(
857         TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
858         llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
859     GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
860     CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
861                                    CGM.getPointerAlign());
862 
863     // Call __cuda_register_globals(GpuBinaryHandle);
864     if (RegisterGlobalsFunc)
865       CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
866 
867     // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
868     if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
869                            CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
870       // void __cudaRegisterFatBinaryEnd(void **);
871       llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
872           llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
873           "__cudaRegisterFatBinaryEnd");
874       CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
875     }
876   } else {
877     // Generate a unique module ID.
878     SmallString<64> ModuleID;
879     llvm::raw_svector_ostream OS(ModuleID);
880     OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
881     llvm::Constant *ModuleIDConstant = makeConstantString(
882         std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
883 
884     // Create an alias for the FatbinWrapper that nvcc will look for.
885     llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
886                               Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
887 
888     // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
889     // void *, void (*)(void **))
890     SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
891     RegisterLinkedBinaryName += ModuleID;
892     llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
893         getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
894 
895     assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
896     llvm::Value *Args[] = {RegisterGlobalsFunc,
897                            CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
898                            ModuleIDConstant,
899                            makeDummyFunction(getCallbackFnTy())};
900     CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
901   }
902 
903   // Create destructor and register it with atexit() the way NVCC does it. Doing
904   // it during regular destructor phase worked in CUDA before 9.2 but results in
905   // double-free in 9.2.
906   if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
907     // extern "C" int atexit(void (*f)(void));
908     llvm::FunctionType *AtExitTy =
909         llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
910     llvm::FunctionCallee AtExitFunc =
911         CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
912                                   /*Local=*/true);
913     CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
914   }
915 
916   CtorBuilder.CreateRetVoid();
917   return ModuleCtorFunc;
918 }
919 
920 /// Creates a global destructor function that unregisters the GPU code blob
921 /// registered by constructor.
922 ///
923 /// For CUDA:
924 /// \code
925 /// void __cuda_module_dtor(void*) {
926 ///     __cudaUnregisterFatBinary(Handle);
927 /// }
928 /// \endcode
929 ///
930 /// For HIP:
931 /// \code
932 /// void __hip_module_dtor(void*) {
933 ///     if (__hip_gpubin_handle) {
934 ///         __hipUnregisterFatBinary(__hip_gpubin_handle);
935 ///         __hip_gpubin_handle = 0;
936 ///     }
937 /// }
938 /// \endcode
939 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
940   // No need for destructor if we don't have a handle to unregister.
941   if (!GpuBinaryHandle)
942     return nullptr;
943 
944   // void __cudaUnregisterFatBinary(void ** handle);
945   llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
946       llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
947       addUnderscoredPrefixToName("UnregisterFatBinary"));
948 
949   llvm::Function *ModuleDtorFunc = llvm::Function::Create(
950       llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
951       llvm::GlobalValue::InternalLinkage,
952       addUnderscoredPrefixToName("_module_dtor"), &TheModule);
953 
954   llvm::BasicBlock *DtorEntryBB =
955       llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
956   CGBuilderTy DtorBuilder(CGM, Context);
957   DtorBuilder.SetInsertPoint(DtorEntryBB);
958 
959   Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
960                                              GpuBinaryHandle->getAlignment()));
961   auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
962   // There is only one HIP fat binary per linked module, however there are
963   // multiple destructor functions. Make sure the fat binary is unregistered
964   // only once.
965   if (CGM.getLangOpts().HIP) {
966     llvm::BasicBlock *IfBlock =
967         llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
968     llvm::BasicBlock *ExitBlock =
969         llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
970     llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
971     llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
972     DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
973 
974     DtorBuilder.SetInsertPoint(IfBlock);
975     DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
976     DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
977     DtorBuilder.CreateBr(ExitBlock);
978 
979     DtorBuilder.SetInsertPoint(ExitBlock);
980   } else {
981     DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
982   }
983   DtorBuilder.CreateRetVoid();
984   return ModuleDtorFunc;
985 }
986 
987 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
988   return new CGNVCUDARuntime(CGM);
989 }
990 
991 void CGNVCUDARuntime::internalizeDeviceSideVar(
992     const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
993   // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
994   // global variables become internal definitions. These have to be internal in
995   // order to prevent name conflicts with global host variables with the same
996   // name in a different TUs.
997   //
998   // For -fgpu-rdc, the shadow variables should not be internalized because
999   // they may be accessed by different TU.
1000   if (CGM.getLangOpts().GPURelocatableDeviceCode)
1001     return;
1002 
1003   // __shared__ variables are odd. Shadows do get created, but
1004   // they are not registered with the CUDA runtime, so they
1005   // can't really be used to access their device-side
1006   // counterparts. It's not clear yet whether it's nvcc's bug or
1007   // a feature, but we've got to do the same for compatibility.
1008   if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1009       D->hasAttr<CUDASharedAttr>() ||
1010       D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1011       D->getType()->isCUDADeviceBuiltinTextureType()) {
1012     Linkage = llvm::GlobalValue::InternalLinkage;
1013   }
1014 }
1015 
1016 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1017                                             llvm::GlobalVariable &GV) {
1018   if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1019     // Shadow variables and their properties must be registered with CUDA
1020     // runtime. Skip Extern global variables, which will be registered in
1021     // the TU where they are defined.
1022     //
1023     // Don't register a C++17 inline variable. The local symbol can be
1024     // discarded and referencing a discarded local symbol from outside the
1025     // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1026     //
1027     // HIP managed variables need to be always recorded in device and host
1028     // compilations for transformation.
1029     //
1030     // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1031     // added to llvm.compiler-used, therefore they are safe to be registered.
1032     if ((!D->hasExternalStorage() && !D->isInline()) ||
1033         CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
1034         D->hasAttr<HIPManagedAttr>()) {
1035       registerDeviceVar(D, GV, !D->hasDefinition(),
1036                         D->hasAttr<CUDAConstantAttr>());
1037     }
1038   } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1039              D->getType()->isCUDADeviceBuiltinTextureType()) {
1040     // Builtin surfaces and textures and their template arguments are
1041     // also registered with CUDA runtime.
1042     const auto *TD = cast<ClassTemplateSpecializationDecl>(
1043         D->getType()->castAs<RecordType>()->getDecl());
1044     const TemplateArgumentList &Args = TD->getTemplateArgs();
1045     if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1046       assert(Args.size() == 2 &&
1047              "Unexpected number of template arguments of CUDA device "
1048              "builtin surface type.");
1049       auto SurfType = Args[1].getAsIntegral();
1050       if (!D->hasExternalStorage())
1051         registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1052     } else {
1053       assert(Args.size() == 3 &&
1054              "Unexpected number of template arguments of CUDA device "
1055              "builtin texture type.");
1056       auto TexType = Args[1].getAsIntegral();
1057       auto Normalized = Args[2].getAsIntegral();
1058       if (!D->hasExternalStorage())
1059         registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1060                           Normalized.getZExtValue());
1061     }
1062   }
1063 }
1064 
1065 // Transform managed variables to pointers to managed variables in device code.
1066 // Each use of the original managed variable is replaced by a load from the
1067 // transformed managed variable. The transformed managed variable contains
1068 // the address of managed memory which will be allocated by the runtime.
1069 void CGNVCUDARuntime::transformManagedVars() {
1070   for (auto &&Info : DeviceVars) {
1071     llvm::GlobalVariable *Var = Info.Var;
1072     if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1073         Info.Flags.isManaged()) {
1074       auto ManagedVar = new llvm::GlobalVariable(
1075           CGM.getModule(), Var->getType(),
1076           /*isConstant=*/false, Var->getLinkage(),
1077           /*Init=*/Var->isDeclaration()
1078               ? nullptr
1079               : llvm::ConstantPointerNull::get(Var->getType()),
1080           /*Name=*/"", /*InsertBefore=*/nullptr,
1081           llvm::GlobalVariable::NotThreadLocal,
1082           CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1083       ManagedVar->setDSOLocal(Var->isDSOLocal());
1084       ManagedVar->setVisibility(Var->getVisibility());
1085       ManagedVar->setExternallyInitialized(true);
1086       replaceManagedVar(Var, ManagedVar);
1087       ManagedVar->takeName(Var);
1088       Var->setName(Twine(ManagedVar->getName()) + ".managed");
1089       // Keep managed variables even if they are not used in device code since
1090       // they need to be allocated by the runtime.
1091       if (!Var->isDeclaration()) {
1092         assert(!ManagedVar->isDeclaration());
1093         CGM.addCompilerUsedGlobal(Var);
1094         CGM.addCompilerUsedGlobal(ManagedVar);
1095       }
1096     }
1097   }
1098 }
1099 
1100 // Returns module constructor to be added.
1101 llvm::Function *CGNVCUDARuntime::finalizeModule() {
1102   if (CGM.getLangOpts().CUDAIsDevice) {
1103     transformManagedVars();
1104 
1105     // Mark ODR-used device variables as compiler used to prevent it from being
1106     // eliminated by optimization. This is necessary for device variables
1107     // ODR-used by host functions. Sema correctly marks them as ODR-used no
1108     // matter whether they are ODR-used by device or host functions.
1109     //
1110     // We do not need to do this if the variable has used attribute since it
1111     // has already been added.
1112     //
1113     // Static device variables have been externalized at this point, therefore
1114     // variables with LLVM private or internal linkage need not be added.
1115     for (auto &&Info : DeviceVars) {
1116       auto Kind = Info.Flags.getKind();
1117       if (!Info.Var->isDeclaration() &&
1118           !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
1119           (Kind == DeviceVarFlags::Variable ||
1120            Kind == DeviceVarFlags::Surface ||
1121            Kind == DeviceVarFlags::Texture) &&
1122           Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
1123         CGM.addCompilerUsedGlobal(Info.Var);
1124       }
1125     }
1126     return nullptr;
1127   }
1128   return makeModuleCtorFunction();
1129 }
1130 
1131 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1132                                                     GlobalDecl GD) {
1133   auto Loc = KernelHandles.find(F);
1134   if (Loc != KernelHandles.end())
1135     return Loc->second;
1136 
1137   if (!CGM.getLangOpts().HIP) {
1138     KernelHandles[F] = F;
1139     KernelStubs[F] = F;
1140     return F;
1141   }
1142 
1143   auto *Var = new llvm::GlobalVariable(
1144       TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1145       /*Initializer=*/nullptr,
1146       CGM.getMangledName(
1147           GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1148   Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1149   Var->setDSOLocal(F->isDSOLocal());
1150   Var->setVisibility(F->getVisibility());
1151   KernelHandles[F] = Var;
1152   KernelStubs[Var] = F;
1153   return Var;
1154 }
1155