1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Builtin calls as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "PatternInit.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/OSLog.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "llvm/ADT/APFloat.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/IntrinsicsAArch64.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/IntrinsicsARM.h" 41 #include "llvm/IR/IntrinsicsBPF.h" 42 #include "llvm/IR/IntrinsicsHexagon.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/MatrixBuilder.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ScopedPrinter.h" 54 #include "llvm/Support/X86TargetParser.h" 55 #include <sstream> 56 57 using namespace clang; 58 using namespace CodeGen; 59 using namespace llvm; 60 61 static 62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) { 63 return std::min(High, std::max(Low, Value)); 64 } 65 66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, 67 Align AlignmentInBytes) { 68 ConstantInt *Byte; 69 switch (CGF.getLangOpts().getTrivialAutoVarInit()) { 70 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 71 // Nothing to initialize. 72 return; 73 case LangOptions::TrivialAutoVarInitKind::Zero: 74 Byte = CGF.Builder.getInt8(0x00); 75 break; 76 case LangOptions::TrivialAutoVarInitKind::Pattern: { 77 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); 78 Byte = llvm::dyn_cast<llvm::ConstantInt>( 79 initializationPatternFor(CGF.CGM, Int8)); 80 break; 81 } 82 } 83 if (CGF.CGM.stopAutoInit()) 84 return; 85 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); 86 I->addAnnotationMetadata("auto-init"); 87 } 88 89 /// getBuiltinLibFunction - Given a builtin id for a function like 90 /// "__builtin_fabsf", return a Function* for "fabsf". 91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 92 unsigned BuiltinID) { 93 assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); 94 95 // Get the name, skip over the __builtin_ prefix (if necessary). 96 StringRef Name; 97 GlobalDecl D(FD); 98 99 // TODO: This list should be expanded or refactored after all GCC-compatible 100 // std libcall builtins are implemented. 101 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{ 102 {Builtin::BI__builtin_printf, "__printfieee128"}, 103 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"}, 104 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"}, 105 {Builtin::BI__builtin_sprintf, "__sprintfieee128"}, 106 {Builtin::BI__builtin_snprintf, "__snprintfieee128"}, 107 {Builtin::BI__builtin_fprintf, "__fprintfieee128"}, 108 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"}, 109 }; 110 111 // If the builtin has been declared explicitly with an assembler label, 112 // use the mangled name. This differs from the plain label on platforms 113 // that prefix labels. 114 if (FD->hasAttr<AsmLabelAttr>()) 115 Name = getMangledName(D); 116 else { 117 // TODO: This mutation should also be applied to other targets other than 118 // PPC, after backend supports IEEE 128-bit style libcalls. 119 if (getTriple().isPPC64() && 120 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() && 121 F128Builtins.find(BuiltinID) != F128Builtins.end()) 122 Name = F128Builtins[BuiltinID]; 123 else 124 Name = Context.BuiltinInfo.getName(BuiltinID) + 10; 125 } 126 127 llvm::FunctionType *Ty = 128 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 129 130 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 131 } 132 133 /// Emit the conversions required to turn the given value into an 134 /// integer of the given size. 135 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, 136 QualType T, llvm::IntegerType *IntType) { 137 V = CGF.EmitToMemory(V, T); 138 139 if (V->getType()->isPointerTy()) 140 return CGF.Builder.CreatePtrToInt(V, IntType); 141 142 assert(V->getType() == IntType); 143 return V; 144 } 145 146 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, 147 QualType T, llvm::Type *ResultType) { 148 V = CGF.EmitFromMemory(V, T); 149 150 if (ResultType->isPointerTy()) 151 return CGF.Builder.CreateIntToPtr(V, ResultType); 152 153 assert(V->getType() == ResultType); 154 return V; 155 } 156 157 /// Utility to insert an atomic instruction based on Intrinsic::ID 158 /// and the expression node. 159 static Value *MakeBinaryAtomicValue( 160 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, 161 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 162 163 QualType T = E->getType(); 164 assert(E->getArg(0)->getType()->isPointerType()); 165 assert(CGF.getContext().hasSameUnqualifiedType(T, 166 E->getArg(0)->getType()->getPointeeType())); 167 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 168 169 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 170 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 171 172 llvm::IntegerType *IntType = 173 llvm::IntegerType::get(CGF.getLLVMContext(), 174 CGF.getContext().getTypeSize(T)); 175 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 176 177 llvm::Value *Args[2]; 178 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 179 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 180 llvm::Type *ValueType = Args[1]->getType(); 181 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 182 183 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 184 Kind, Args[0], Args[1], Ordering); 185 return EmitFromInt(CGF, Result, T, ValueType); 186 } 187 188 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { 189 Value *Val = CGF.EmitScalarExpr(E->getArg(0)); 190 Value *Address = CGF.EmitScalarExpr(E->getArg(1)); 191 192 // Convert the type of the pointer to a pointer to the stored type. 193 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); 194 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace(); 195 Value *BC = CGF.Builder.CreateBitCast( 196 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast"); 197 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); 198 LV.setNontemporal(true); 199 CGF.EmitStoreOfScalar(Val, LV, false); 200 return nullptr; 201 } 202 203 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { 204 Value *Address = CGF.EmitScalarExpr(E->getArg(0)); 205 206 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); 207 LV.setNontemporal(true); 208 return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); 209 } 210 211 static RValue EmitBinaryAtomic(CodeGenFunction &CGF, 212 llvm::AtomicRMWInst::BinOp Kind, 213 const CallExpr *E) { 214 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); 215 } 216 217 /// Utility to insert an atomic instruction based Intrinsic::ID and 218 /// the expression node, where the return value is the result of the 219 /// operation. 220 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, 221 llvm::AtomicRMWInst::BinOp Kind, 222 const CallExpr *E, 223 Instruction::BinaryOps Op, 224 bool Invert = false) { 225 QualType T = E->getType(); 226 assert(E->getArg(0)->getType()->isPointerType()); 227 assert(CGF.getContext().hasSameUnqualifiedType(T, 228 E->getArg(0)->getType()->getPointeeType())); 229 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 230 231 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 232 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 233 234 llvm::IntegerType *IntType = 235 llvm::IntegerType::get(CGF.getLLVMContext(), 236 CGF.getContext().getTypeSize(T)); 237 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 238 239 llvm::Value *Args[2]; 240 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 241 llvm::Type *ValueType = Args[1]->getType(); 242 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 243 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 244 245 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 246 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); 247 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); 248 if (Invert) 249 Result = 250 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, 251 llvm::ConstantInt::getAllOnesValue(IntType)); 252 Result = EmitFromInt(CGF, Result, T, ValueType); 253 return RValue::get(Result); 254 } 255 256 /// Utility to insert an atomic cmpxchg instruction. 257 /// 258 /// @param CGF The current codegen function. 259 /// @param E Builtin call expression to convert to cmpxchg. 260 /// arg0 - address to operate on 261 /// arg1 - value to compare with 262 /// arg2 - new value 263 /// @param ReturnBool Specifies whether to return success flag of 264 /// cmpxchg result or the old value. 265 /// 266 /// @returns result of cmpxchg, according to ReturnBool 267 /// 268 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics 269 /// invoke the function EmitAtomicCmpXchgForMSIntrin. 270 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, 271 bool ReturnBool) { 272 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); 273 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 274 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 275 276 llvm::IntegerType *IntType = llvm::IntegerType::get( 277 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); 278 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 279 280 Value *Args[3]; 281 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 282 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 283 llvm::Type *ValueType = Args[1]->getType(); 284 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 285 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); 286 287 Value *Pair = CGF.Builder.CreateAtomicCmpXchg( 288 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, 289 llvm::AtomicOrdering::SequentiallyConsistent); 290 if (ReturnBool) 291 // Extract boolean success flag and zext it to int. 292 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), 293 CGF.ConvertType(E->getType())); 294 else 295 // Extract old value and emit it using the same type as compare value. 296 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, 297 ValueType); 298 } 299 300 /// This function should be invoked to emit atomic cmpxchg for Microsoft's 301 /// _InterlockedCompareExchange* intrinsics which have the following signature: 302 /// T _InterlockedCompareExchange(T volatile *Destination, 303 /// T Exchange, 304 /// T Comparand); 305 /// 306 /// Whereas the llvm 'cmpxchg' instruction has the following syntax: 307 /// cmpxchg *Destination, Comparand, Exchange. 308 /// So we need to swap Comparand and Exchange when invoking 309 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility 310 /// function MakeAtomicCmpXchgValue since it expects the arguments to be 311 /// already swapped. 312 313 static 314 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, 315 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { 316 assert(E->getArg(0)->getType()->isPointerType()); 317 assert(CGF.getContext().hasSameUnqualifiedType( 318 E->getType(), E->getArg(0)->getType()->getPointeeType())); 319 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 320 E->getArg(1)->getType())); 321 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 322 E->getArg(2)->getType())); 323 324 auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); 325 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); 326 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); 327 328 // For Release ordering, the failure ordering should be Monotonic. 329 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? 330 AtomicOrdering::Monotonic : 331 SuccessOrdering; 332 333 // The atomic instruction is marked volatile for consistency with MSVC. This 334 // blocks the few atomics optimizations that LLVM has. If we want to optimize 335 // _Interlocked* operations in the future, we will have to remove the volatile 336 // marker. 337 auto *Result = CGF.Builder.CreateAtomicCmpXchg( 338 Destination, Comparand, Exchange, 339 SuccessOrdering, FailureOrdering); 340 Result->setVolatile(true); 341 return CGF.Builder.CreateExtractValue(Result, 0); 342 } 343 344 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are 345 // prototyped like this: 346 // 347 // unsigned char _InterlockedCompareExchange128...( 348 // __int64 volatile * _Destination, 349 // __int64 _ExchangeHigh, 350 // __int64 _ExchangeLow, 351 // __int64 * _ComparandResult); 352 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, 353 const CallExpr *E, 354 AtomicOrdering SuccessOrdering) { 355 assert(E->getNumArgs() == 4); 356 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); 357 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); 358 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); 359 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); 360 361 assert(Destination->getType()->isPointerTy()); 362 assert(!ExchangeHigh->getType()->isPointerTy()); 363 assert(!ExchangeLow->getType()->isPointerTy()); 364 assert(ComparandPtr->getType()->isPointerTy()); 365 366 // For Release ordering, the failure ordering should be Monotonic. 367 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release 368 ? AtomicOrdering::Monotonic 369 : SuccessOrdering; 370 371 // Convert to i128 pointers and values. 372 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); 373 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); 374 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); 375 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), 376 CGF.getContext().toCharUnitsFromBits(128)); 377 378 // (((i128)hi) << 64) | ((i128)lo) 379 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); 380 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); 381 ExchangeHigh = 382 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); 383 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); 384 385 // Load the comparand for the instruction. 386 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); 387 388 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 389 SuccessOrdering, FailureOrdering); 390 391 // The atomic instruction is marked volatile for consistency with MSVC. This 392 // blocks the few atomics optimizations that LLVM has. If we want to optimize 393 // _Interlocked* operations in the future, we will have to remove the volatile 394 // marker. 395 CXI->setVolatile(true); 396 397 // Store the result as an outparameter. 398 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), 399 ComparandResult); 400 401 // Get the success boolean and zero extend it to i8. 402 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); 403 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); 404 } 405 406 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, 407 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 408 assert(E->getArg(0)->getType()->isPointerType()); 409 410 auto *IntTy = CGF.ConvertType(E->getType()); 411 auto *Result = CGF.Builder.CreateAtomicRMW( 412 AtomicRMWInst::Add, 413 CGF.EmitScalarExpr(E->getArg(0)), 414 ConstantInt::get(IntTy, 1), 415 Ordering); 416 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); 417 } 418 419 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, 420 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 421 assert(E->getArg(0)->getType()->isPointerType()); 422 423 auto *IntTy = CGF.ConvertType(E->getType()); 424 auto *Result = CGF.Builder.CreateAtomicRMW( 425 AtomicRMWInst::Sub, 426 CGF.EmitScalarExpr(E->getArg(0)), 427 ConstantInt::get(IntTy, 1), 428 Ordering); 429 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); 430 } 431 432 // Build a plain volatile load. 433 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { 434 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 435 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 436 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); 437 llvm::Type *ITy = 438 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); 439 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 440 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); 441 Load->setVolatile(true); 442 return Load; 443 } 444 445 // Build a plain volatile store. 446 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { 447 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 448 Value *Value = CGF.EmitScalarExpr(E->getArg(1)); 449 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 450 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); 451 llvm::Type *ITy = 452 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); 453 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 454 llvm::StoreInst *Store = 455 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); 456 Store->setVolatile(true); 457 return Store; 458 } 459 460 // Emit a simple mangled intrinsic that has 1 argument and a return type 461 // matching the argument type. Depending on mode, this may be a constrained 462 // floating-point intrinsic. 463 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 464 const CallExpr *E, unsigned IntrinsicID, 465 unsigned ConstrainedIntrinsicID) { 466 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 467 468 if (CGF.Builder.getIsFPConstrained()) { 469 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 470 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 471 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); 472 } else { 473 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 474 return CGF.Builder.CreateCall(F, Src0); 475 } 476 } 477 478 // Emit an intrinsic that has 2 operands of the same type as its result. 479 // Depending on mode, this may be a constrained floating-point intrinsic. 480 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 481 const CallExpr *E, unsigned IntrinsicID, 482 unsigned ConstrainedIntrinsicID) { 483 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 484 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 485 486 if (CGF.Builder.getIsFPConstrained()) { 487 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 488 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 489 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); 490 } else { 491 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 492 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 493 } 494 } 495 496 // Emit an intrinsic that has 3 operands of the same type as its result. 497 // Depending on mode, this may be a constrained floating-point intrinsic. 498 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 499 const CallExpr *E, unsigned IntrinsicID, 500 unsigned ConstrainedIntrinsicID) { 501 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 502 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 503 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 504 505 if (CGF.Builder.getIsFPConstrained()) { 506 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 507 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 508 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); 509 } else { 510 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 511 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 512 } 513 } 514 515 // Emit an intrinsic where all operands are of the same type as the result. 516 // Depending on mode, this may be a constrained floating-point intrinsic. 517 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 518 unsigned IntrinsicID, 519 unsigned ConstrainedIntrinsicID, 520 llvm::Type *Ty, 521 ArrayRef<Value *> Args) { 522 Function *F; 523 if (CGF.Builder.getIsFPConstrained()) 524 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); 525 else 526 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); 527 528 if (CGF.Builder.getIsFPConstrained()) 529 return CGF.Builder.CreateConstrainedFPCall(F, Args); 530 else 531 return CGF.Builder.CreateCall(F, Args); 532 } 533 534 // Emit a simple mangled intrinsic that has 1 argument and a return type 535 // matching the argument type. 536 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, 537 unsigned IntrinsicID, 538 llvm::StringRef Name = "") { 539 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 540 541 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 542 return CGF.Builder.CreateCall(F, Src0, Name); 543 } 544 545 // Emit an intrinsic that has 2 operands of the same type as its result. 546 static Value *emitBinaryBuiltin(CodeGenFunction &CGF, 547 const CallExpr *E, 548 unsigned IntrinsicID) { 549 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 550 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 551 552 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 553 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 554 } 555 556 // Emit an intrinsic that has 3 operands of the same type as its result. 557 static Value *emitTernaryBuiltin(CodeGenFunction &CGF, 558 const CallExpr *E, 559 unsigned IntrinsicID) { 560 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 561 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 562 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 563 564 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 565 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 566 } 567 568 // Emit an intrinsic that has 1 float or double operand, and 1 integer. 569 static Value *emitFPIntBuiltin(CodeGenFunction &CGF, 570 const CallExpr *E, 571 unsigned IntrinsicID) { 572 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 573 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 574 575 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 576 return CGF.Builder.CreateCall(F, {Src0, Src1}); 577 } 578 579 // Emit an intrinsic that has overloaded integer result and fp operand. 580 static Value * 581 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, 582 unsigned IntrinsicID, 583 unsigned ConstrainedIntrinsicID) { 584 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 585 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 586 587 if (CGF.Builder.getIsFPConstrained()) { 588 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 589 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, 590 {ResultType, Src0->getType()}); 591 return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); 592 } else { 593 Function *F = 594 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); 595 return CGF.Builder.CreateCall(F, Src0); 596 } 597 } 598 599 /// EmitFAbs - Emit a call to @llvm.fabs(). 600 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { 601 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); 602 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); 603 Call->setDoesNotAccessMemory(); 604 return Call; 605 } 606 607 /// Emit the computation of the sign bit for a floating point value. Returns 608 /// the i1 sign bit value. 609 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { 610 LLVMContext &C = CGF.CGM.getLLVMContext(); 611 612 llvm::Type *Ty = V->getType(); 613 int Width = Ty->getPrimitiveSizeInBits(); 614 llvm::Type *IntTy = llvm::IntegerType::get(C, Width); 615 V = CGF.Builder.CreateBitCast(V, IntTy); 616 if (Ty->isPPC_FP128Ty()) { 617 // We want the sign bit of the higher-order double. The bitcast we just 618 // did works as if the double-double was stored to memory and then 619 // read as an i128. The "store" will put the higher-order double in the 620 // lower address in both little- and big-Endian modes, but the "load" 621 // will treat those bits as a different part of the i128: the low bits in 622 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian 623 // we need to shift the high bits down to the low before truncating. 624 Width >>= 1; 625 if (CGF.getTarget().isBigEndian()) { 626 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); 627 V = CGF.Builder.CreateLShr(V, ShiftCst); 628 } 629 // We are truncating value in order to extract the higher-order 630 // double, which we will be using to extract the sign from. 631 IntTy = llvm::IntegerType::get(C, Width); 632 V = CGF.Builder.CreateTrunc(V, IntTy); 633 } 634 Value *Zero = llvm::Constant::getNullValue(IntTy); 635 return CGF.Builder.CreateICmpSLT(V, Zero); 636 } 637 638 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, 639 const CallExpr *E, llvm::Constant *calleeValue) { 640 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); 641 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); 642 } 643 644 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* 645 /// depending on IntrinsicID. 646 /// 647 /// \arg CGF The current codegen function. 648 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. 649 /// \arg X The first argument to the llvm.*.with.overflow.*. 650 /// \arg Y The second argument to the llvm.*.with.overflow.*. 651 /// \arg Carry The carry returned by the llvm.*.with.overflow.*. 652 /// \returns The result (i.e. sum/product) returned by the intrinsic. 653 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, 654 const llvm::Intrinsic::ID IntrinsicID, 655 llvm::Value *X, llvm::Value *Y, 656 llvm::Value *&Carry) { 657 // Make sure we have integers of the same width. 658 assert(X->getType() == Y->getType() && 659 "Arguments must be the same type. (Did you forget to make sure both " 660 "arguments have the same integer width?)"); 661 662 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); 663 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); 664 Carry = CGF.Builder.CreateExtractValue(Tmp, 1); 665 return CGF.Builder.CreateExtractValue(Tmp, 0); 666 } 667 668 static Value *emitRangedBuiltin(CodeGenFunction &CGF, 669 unsigned IntrinsicID, 670 int low, int high) { 671 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 672 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); 673 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); 674 llvm::Instruction *Call = CGF.Builder.CreateCall(F); 675 Call->setMetadata(llvm::LLVMContext::MD_range, RNode); 676 return Call; 677 } 678 679 namespace { 680 struct WidthAndSignedness { 681 unsigned Width; 682 bool Signed; 683 }; 684 } 685 686 static WidthAndSignedness 687 getIntegerWidthAndSignedness(const clang::ASTContext &context, 688 const clang::QualType Type) { 689 assert(Type->isIntegerType() && "Given type is not an integer."); 690 unsigned Width = Type->isBooleanType() ? 1 691 : Type->isBitIntType() ? context.getIntWidth(Type) 692 : context.getTypeInfo(Type).Width; 693 bool Signed = Type->isSignedIntegerType(); 694 return {Width, Signed}; 695 } 696 697 // Given one or more integer types, this function produces an integer type that 698 // encompasses them: any value in one of the given types could be expressed in 699 // the encompassing type. 700 static struct WidthAndSignedness 701 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { 702 assert(Types.size() > 0 && "Empty list of types."); 703 704 // If any of the given types is signed, we must return a signed type. 705 bool Signed = false; 706 for (const auto &Type : Types) { 707 Signed |= Type.Signed; 708 } 709 710 // The encompassing type must have a width greater than or equal to the width 711 // of the specified types. Additionally, if the encompassing type is signed, 712 // its width must be strictly greater than the width of any unsigned types 713 // given. 714 unsigned Width = 0; 715 for (const auto &Type : Types) { 716 unsigned MinWidth = Type.Width + (Signed && !Type.Signed); 717 if (Width < MinWidth) { 718 Width = MinWidth; 719 } 720 } 721 722 return {Width, Signed}; 723 } 724 725 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { 726 llvm::Type *DestType = Int8PtrTy; 727 if (ArgValue->getType() != DestType) 728 ArgValue = 729 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); 730 731 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; 732 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); 733 } 734 735 /// Checks if using the result of __builtin_object_size(p, @p From) in place of 736 /// __builtin_object_size(p, @p To) is correct 737 static bool areBOSTypesCompatible(int From, int To) { 738 // Note: Our __builtin_object_size implementation currently treats Type=0 and 739 // Type=2 identically. Encoding this implementation detail here may make 740 // improving __builtin_object_size difficult in the future, so it's omitted. 741 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); 742 } 743 744 static llvm::Value * 745 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { 746 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); 747 } 748 749 llvm::Value * 750 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 751 llvm::IntegerType *ResType, 752 llvm::Value *EmittedE, 753 bool IsDynamic) { 754 uint64_t ObjectSize; 755 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) 756 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); 757 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); 758 } 759 760 /// Returns a Value corresponding to the size of the given expression. 761 /// This Value may be either of the following: 762 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on 763 /// it) 764 /// - A call to the @llvm.objectsize intrinsic 765 /// 766 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null 767 /// and we wouldn't otherwise try to reference a pass_object_size parameter, 768 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. 769 llvm::Value * 770 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, 771 llvm::IntegerType *ResType, 772 llvm::Value *EmittedE, bool IsDynamic) { 773 // We need to reference an argument if the pointer is a parameter with the 774 // pass_object_size attribute. 775 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 776 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); 777 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); 778 if (Param != nullptr && PS != nullptr && 779 areBOSTypesCompatible(PS->getType(), Type)) { 780 auto Iter = SizeArguments.find(Param); 781 assert(Iter != SizeArguments.end()); 782 783 const ImplicitParamDecl *D = Iter->second; 784 auto DIter = LocalDeclMap.find(D); 785 assert(DIter != LocalDeclMap.end()); 786 787 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, 788 getContext().getSizeType(), E->getBeginLoc()); 789 } 790 } 791 792 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't 793 // evaluate E for side-effects. In either case, we shouldn't lower to 794 // @llvm.objectsize. 795 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) 796 return getDefaultBuiltinObjectSizeResult(Type, ResType); 797 798 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); 799 assert(Ptr->getType()->isPointerTy() && 800 "Non-pointer passed to __builtin_object_size?"); 801 802 Function *F = 803 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); 804 805 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. 806 Value *Min = Builder.getInt1((Type & 2) != 0); 807 // For GCC compatibility, __builtin_object_size treat NULL as unknown size. 808 Value *NullIsUnknown = Builder.getTrue(); 809 Value *Dynamic = Builder.getInt1(IsDynamic); 810 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); 811 } 812 813 namespace { 814 /// A struct to generically describe a bit test intrinsic. 815 struct BitTest { 816 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; 817 enum InterlockingKind : uint8_t { 818 Unlocked, 819 Sequential, 820 Acquire, 821 Release, 822 NoFence 823 }; 824 825 ActionKind Action; 826 InterlockingKind Interlocking; 827 bool Is64Bit; 828 829 static BitTest decodeBitTestBuiltin(unsigned BuiltinID); 830 }; 831 } // namespace 832 833 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { 834 switch (BuiltinID) { 835 // Main portable variants. 836 case Builtin::BI_bittest: 837 return {TestOnly, Unlocked, false}; 838 case Builtin::BI_bittestandcomplement: 839 return {Complement, Unlocked, false}; 840 case Builtin::BI_bittestandreset: 841 return {Reset, Unlocked, false}; 842 case Builtin::BI_bittestandset: 843 return {Set, Unlocked, false}; 844 case Builtin::BI_interlockedbittestandreset: 845 return {Reset, Sequential, false}; 846 case Builtin::BI_interlockedbittestandset: 847 return {Set, Sequential, false}; 848 849 // X86-specific 64-bit variants. 850 case Builtin::BI_bittest64: 851 return {TestOnly, Unlocked, true}; 852 case Builtin::BI_bittestandcomplement64: 853 return {Complement, Unlocked, true}; 854 case Builtin::BI_bittestandreset64: 855 return {Reset, Unlocked, true}; 856 case Builtin::BI_bittestandset64: 857 return {Set, Unlocked, true}; 858 case Builtin::BI_interlockedbittestandreset64: 859 return {Reset, Sequential, true}; 860 case Builtin::BI_interlockedbittestandset64: 861 return {Set, Sequential, true}; 862 863 // ARM/AArch64-specific ordering variants. 864 case Builtin::BI_interlockedbittestandset_acq: 865 return {Set, Acquire, false}; 866 case Builtin::BI_interlockedbittestandset_rel: 867 return {Set, Release, false}; 868 case Builtin::BI_interlockedbittestandset_nf: 869 return {Set, NoFence, false}; 870 case Builtin::BI_interlockedbittestandreset_acq: 871 return {Reset, Acquire, false}; 872 case Builtin::BI_interlockedbittestandreset_rel: 873 return {Reset, Release, false}; 874 case Builtin::BI_interlockedbittestandreset_nf: 875 return {Reset, NoFence, false}; 876 } 877 llvm_unreachable("expected only bittest intrinsics"); 878 } 879 880 static char bitActionToX86BTCode(BitTest::ActionKind A) { 881 switch (A) { 882 case BitTest::TestOnly: return '\0'; 883 case BitTest::Complement: return 'c'; 884 case BitTest::Reset: return 'r'; 885 case BitTest::Set: return 's'; 886 } 887 llvm_unreachable("invalid action"); 888 } 889 890 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, 891 BitTest BT, 892 const CallExpr *E, Value *BitBase, 893 Value *BitPos) { 894 char Action = bitActionToX86BTCode(BT.Action); 895 char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; 896 897 // Build the assembly. 898 SmallString<64> Asm; 899 raw_svector_ostream AsmOS(Asm); 900 if (BT.Interlocking != BitTest::Unlocked) 901 AsmOS << "lock "; 902 AsmOS << "bt"; 903 if (Action) 904 AsmOS << Action; 905 AsmOS << SizeSuffix << " $2, ($1)"; 906 907 // Build the constraints. FIXME: We should support immediates when possible. 908 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; 909 std::string MachineClobbers = CGF.getTarget().getClobbers(); 910 if (!MachineClobbers.empty()) { 911 Constraints += ','; 912 Constraints += MachineClobbers; 913 } 914 llvm::IntegerType *IntType = llvm::IntegerType::get( 915 CGF.getLLVMContext(), 916 CGF.getContext().getTypeSize(E->getArg(1)->getType())); 917 llvm::Type *IntPtrType = IntType->getPointerTo(); 918 llvm::FunctionType *FTy = 919 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); 920 921 llvm::InlineAsm *IA = 922 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 923 return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); 924 } 925 926 static llvm::AtomicOrdering 927 getBitTestAtomicOrdering(BitTest::InterlockingKind I) { 928 switch (I) { 929 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; 930 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; 931 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; 932 case BitTest::Release: return llvm::AtomicOrdering::Release; 933 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; 934 } 935 llvm_unreachable("invalid interlocking"); 936 } 937 938 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of 939 /// bits and a bit position and read and optionally modify the bit at that 940 /// position. The position index can be arbitrarily large, i.e. it can be larger 941 /// than 31 or 63, so we need an indexed load in the general case. 942 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, 943 unsigned BuiltinID, 944 const CallExpr *E) { 945 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); 946 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); 947 948 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); 949 950 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array 951 // indexing operation internally. Use them if possible. 952 if (CGF.getTarget().getTriple().isX86()) 953 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); 954 955 // Otherwise, use generic code to load one byte and test the bit. Use all but 956 // the bottom three bits as the array index, and the bottom three bits to form 957 // a mask. 958 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; 959 Value *ByteIndex = CGF.Builder.CreateAShr( 960 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); 961 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); 962 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, 963 ByteIndex, "bittest.byteaddr"), 964 CharUnits::One()); 965 Value *PosLow = 966 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), 967 llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); 968 969 // The updating instructions will need a mask. 970 Value *Mask = nullptr; 971 if (BT.Action != BitTest::TestOnly) { 972 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, 973 "bittest.mask"); 974 } 975 976 // Check the action and ordering of the interlocked intrinsics. 977 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); 978 979 Value *OldByte = nullptr; 980 if (Ordering != llvm::AtomicOrdering::NotAtomic) { 981 // Emit a combined atomicrmw load/store operation for the interlocked 982 // intrinsics. 983 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; 984 if (BT.Action == BitTest::Reset) { 985 Mask = CGF.Builder.CreateNot(Mask); 986 RMWOp = llvm::AtomicRMWInst::And; 987 } 988 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, 989 Ordering); 990 } else { 991 // Emit a plain load for the non-interlocked intrinsics. 992 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); 993 Value *NewByte = nullptr; 994 switch (BT.Action) { 995 case BitTest::TestOnly: 996 // Don't store anything. 997 break; 998 case BitTest::Complement: 999 NewByte = CGF.Builder.CreateXor(OldByte, Mask); 1000 break; 1001 case BitTest::Reset: 1002 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); 1003 break; 1004 case BitTest::Set: 1005 NewByte = CGF.Builder.CreateOr(OldByte, Mask); 1006 break; 1007 } 1008 if (NewByte) 1009 CGF.Builder.CreateStore(NewByte, ByteAddr); 1010 } 1011 1012 // However we loaded the old byte, either by plain load or atomicrmw, shift 1013 // the bit into the low position and mask it to 0 or 1. 1014 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); 1015 return CGF.Builder.CreateAnd( 1016 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); 1017 } 1018 1019 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, 1020 unsigned BuiltinID, 1021 const CallExpr *E) { 1022 Value *Addr = CGF.EmitScalarExpr(E->getArg(0)); 1023 1024 SmallString<64> Asm; 1025 raw_svector_ostream AsmOS(Asm); 1026 llvm::IntegerType *RetType = CGF.Int32Ty; 1027 1028 switch (BuiltinID) { 1029 case clang::PPC::BI__builtin_ppc_ldarx: 1030 AsmOS << "ldarx "; 1031 RetType = CGF.Int64Ty; 1032 break; 1033 case clang::PPC::BI__builtin_ppc_lwarx: 1034 AsmOS << "lwarx "; 1035 RetType = CGF.Int32Ty; 1036 break; 1037 case clang::PPC::BI__builtin_ppc_lharx: 1038 AsmOS << "lharx "; 1039 RetType = CGF.Int16Ty; 1040 break; 1041 case clang::PPC::BI__builtin_ppc_lbarx: 1042 AsmOS << "lbarx "; 1043 RetType = CGF.Int8Ty; 1044 break; 1045 default: 1046 llvm_unreachable("Expected only PowerPC load reserve intrinsics"); 1047 } 1048 1049 AsmOS << "$0, ${1:y}"; 1050 1051 std::string Constraints = "=r,*Z,~{memory}"; 1052 std::string MachineClobbers = CGF.getTarget().getClobbers(); 1053 if (!MachineClobbers.empty()) { 1054 Constraints += ','; 1055 Constraints += MachineClobbers; 1056 } 1057 1058 llvm::Type *IntPtrType = RetType->getPointerTo(); 1059 llvm::FunctionType *FTy = 1060 llvm::FunctionType::get(RetType, {IntPtrType}, false); 1061 1062 llvm::InlineAsm *IA = 1063 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1064 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr}); 1065 CI->addParamAttr( 1066 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType)); 1067 return CI; 1068 } 1069 1070 namespace { 1071 enum class MSVCSetJmpKind { 1072 _setjmpex, 1073 _setjmp3, 1074 _setjmp 1075 }; 1076 } 1077 1078 /// MSVC handles setjmp a bit differently on different platforms. On every 1079 /// architecture except 32-bit x86, the frame address is passed. On x86, extra 1080 /// parameters can be passed as variadic arguments, but we always pass none. 1081 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, 1082 const CallExpr *E) { 1083 llvm::Value *Arg1 = nullptr; 1084 llvm::Type *Arg1Ty = nullptr; 1085 StringRef Name; 1086 bool IsVarArg = false; 1087 if (SJKind == MSVCSetJmpKind::_setjmp3) { 1088 Name = "_setjmp3"; 1089 Arg1Ty = CGF.Int32Ty; 1090 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); 1091 IsVarArg = true; 1092 } else { 1093 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; 1094 Arg1Ty = CGF.Int8PtrTy; 1095 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { 1096 Arg1 = CGF.Builder.CreateCall( 1097 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); 1098 } else 1099 Arg1 = CGF.Builder.CreateCall( 1100 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), 1101 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 1102 } 1103 1104 // Mark the call site and declaration with ReturnsTwice. 1105 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; 1106 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( 1107 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, 1108 llvm::Attribute::ReturnsTwice); 1109 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( 1110 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, 1111 ReturnsTwiceAttr, /*Local=*/true); 1112 1113 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( 1114 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); 1115 llvm::Value *Args[] = {Buf, Arg1}; 1116 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); 1117 CB->setAttributes(ReturnsTwiceAttr); 1118 return RValue::get(CB); 1119 } 1120 1121 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, 1122 // we handle them here. 1123 enum class CodeGenFunction::MSVCIntrin { 1124 _BitScanForward, 1125 _BitScanReverse, 1126 _InterlockedAnd, 1127 _InterlockedDecrement, 1128 _InterlockedExchange, 1129 _InterlockedExchangeAdd, 1130 _InterlockedExchangeSub, 1131 _InterlockedIncrement, 1132 _InterlockedOr, 1133 _InterlockedXor, 1134 _InterlockedExchangeAdd_acq, 1135 _InterlockedExchangeAdd_rel, 1136 _InterlockedExchangeAdd_nf, 1137 _InterlockedExchange_acq, 1138 _InterlockedExchange_rel, 1139 _InterlockedExchange_nf, 1140 _InterlockedCompareExchange_acq, 1141 _InterlockedCompareExchange_rel, 1142 _InterlockedCompareExchange_nf, 1143 _InterlockedCompareExchange128, 1144 _InterlockedCompareExchange128_acq, 1145 _InterlockedCompareExchange128_rel, 1146 _InterlockedCompareExchange128_nf, 1147 _InterlockedOr_acq, 1148 _InterlockedOr_rel, 1149 _InterlockedOr_nf, 1150 _InterlockedXor_acq, 1151 _InterlockedXor_rel, 1152 _InterlockedXor_nf, 1153 _InterlockedAnd_acq, 1154 _InterlockedAnd_rel, 1155 _InterlockedAnd_nf, 1156 _InterlockedIncrement_acq, 1157 _InterlockedIncrement_rel, 1158 _InterlockedIncrement_nf, 1159 _InterlockedDecrement_acq, 1160 _InterlockedDecrement_rel, 1161 _InterlockedDecrement_nf, 1162 __fastfail, 1163 }; 1164 1165 static Optional<CodeGenFunction::MSVCIntrin> 1166 translateArmToMsvcIntrin(unsigned BuiltinID) { 1167 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1168 switch (BuiltinID) { 1169 default: 1170 return None; 1171 case ARM::BI_BitScanForward: 1172 case ARM::BI_BitScanForward64: 1173 return MSVCIntrin::_BitScanForward; 1174 case ARM::BI_BitScanReverse: 1175 case ARM::BI_BitScanReverse64: 1176 return MSVCIntrin::_BitScanReverse; 1177 case ARM::BI_InterlockedAnd64: 1178 return MSVCIntrin::_InterlockedAnd; 1179 case ARM::BI_InterlockedExchange64: 1180 return MSVCIntrin::_InterlockedExchange; 1181 case ARM::BI_InterlockedExchangeAdd64: 1182 return MSVCIntrin::_InterlockedExchangeAdd; 1183 case ARM::BI_InterlockedExchangeSub64: 1184 return MSVCIntrin::_InterlockedExchangeSub; 1185 case ARM::BI_InterlockedOr64: 1186 return MSVCIntrin::_InterlockedOr; 1187 case ARM::BI_InterlockedXor64: 1188 return MSVCIntrin::_InterlockedXor; 1189 case ARM::BI_InterlockedDecrement64: 1190 return MSVCIntrin::_InterlockedDecrement; 1191 case ARM::BI_InterlockedIncrement64: 1192 return MSVCIntrin::_InterlockedIncrement; 1193 case ARM::BI_InterlockedExchangeAdd8_acq: 1194 case ARM::BI_InterlockedExchangeAdd16_acq: 1195 case ARM::BI_InterlockedExchangeAdd_acq: 1196 case ARM::BI_InterlockedExchangeAdd64_acq: 1197 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1198 case ARM::BI_InterlockedExchangeAdd8_rel: 1199 case ARM::BI_InterlockedExchangeAdd16_rel: 1200 case ARM::BI_InterlockedExchangeAdd_rel: 1201 case ARM::BI_InterlockedExchangeAdd64_rel: 1202 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1203 case ARM::BI_InterlockedExchangeAdd8_nf: 1204 case ARM::BI_InterlockedExchangeAdd16_nf: 1205 case ARM::BI_InterlockedExchangeAdd_nf: 1206 case ARM::BI_InterlockedExchangeAdd64_nf: 1207 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1208 case ARM::BI_InterlockedExchange8_acq: 1209 case ARM::BI_InterlockedExchange16_acq: 1210 case ARM::BI_InterlockedExchange_acq: 1211 case ARM::BI_InterlockedExchange64_acq: 1212 return MSVCIntrin::_InterlockedExchange_acq; 1213 case ARM::BI_InterlockedExchange8_rel: 1214 case ARM::BI_InterlockedExchange16_rel: 1215 case ARM::BI_InterlockedExchange_rel: 1216 case ARM::BI_InterlockedExchange64_rel: 1217 return MSVCIntrin::_InterlockedExchange_rel; 1218 case ARM::BI_InterlockedExchange8_nf: 1219 case ARM::BI_InterlockedExchange16_nf: 1220 case ARM::BI_InterlockedExchange_nf: 1221 case ARM::BI_InterlockedExchange64_nf: 1222 return MSVCIntrin::_InterlockedExchange_nf; 1223 case ARM::BI_InterlockedCompareExchange8_acq: 1224 case ARM::BI_InterlockedCompareExchange16_acq: 1225 case ARM::BI_InterlockedCompareExchange_acq: 1226 case ARM::BI_InterlockedCompareExchange64_acq: 1227 return MSVCIntrin::_InterlockedCompareExchange_acq; 1228 case ARM::BI_InterlockedCompareExchange8_rel: 1229 case ARM::BI_InterlockedCompareExchange16_rel: 1230 case ARM::BI_InterlockedCompareExchange_rel: 1231 case ARM::BI_InterlockedCompareExchange64_rel: 1232 return MSVCIntrin::_InterlockedCompareExchange_rel; 1233 case ARM::BI_InterlockedCompareExchange8_nf: 1234 case ARM::BI_InterlockedCompareExchange16_nf: 1235 case ARM::BI_InterlockedCompareExchange_nf: 1236 case ARM::BI_InterlockedCompareExchange64_nf: 1237 return MSVCIntrin::_InterlockedCompareExchange_nf; 1238 case ARM::BI_InterlockedOr8_acq: 1239 case ARM::BI_InterlockedOr16_acq: 1240 case ARM::BI_InterlockedOr_acq: 1241 case ARM::BI_InterlockedOr64_acq: 1242 return MSVCIntrin::_InterlockedOr_acq; 1243 case ARM::BI_InterlockedOr8_rel: 1244 case ARM::BI_InterlockedOr16_rel: 1245 case ARM::BI_InterlockedOr_rel: 1246 case ARM::BI_InterlockedOr64_rel: 1247 return MSVCIntrin::_InterlockedOr_rel; 1248 case ARM::BI_InterlockedOr8_nf: 1249 case ARM::BI_InterlockedOr16_nf: 1250 case ARM::BI_InterlockedOr_nf: 1251 case ARM::BI_InterlockedOr64_nf: 1252 return MSVCIntrin::_InterlockedOr_nf; 1253 case ARM::BI_InterlockedXor8_acq: 1254 case ARM::BI_InterlockedXor16_acq: 1255 case ARM::BI_InterlockedXor_acq: 1256 case ARM::BI_InterlockedXor64_acq: 1257 return MSVCIntrin::_InterlockedXor_acq; 1258 case ARM::BI_InterlockedXor8_rel: 1259 case ARM::BI_InterlockedXor16_rel: 1260 case ARM::BI_InterlockedXor_rel: 1261 case ARM::BI_InterlockedXor64_rel: 1262 return MSVCIntrin::_InterlockedXor_rel; 1263 case ARM::BI_InterlockedXor8_nf: 1264 case ARM::BI_InterlockedXor16_nf: 1265 case ARM::BI_InterlockedXor_nf: 1266 case ARM::BI_InterlockedXor64_nf: 1267 return MSVCIntrin::_InterlockedXor_nf; 1268 case ARM::BI_InterlockedAnd8_acq: 1269 case ARM::BI_InterlockedAnd16_acq: 1270 case ARM::BI_InterlockedAnd_acq: 1271 case ARM::BI_InterlockedAnd64_acq: 1272 return MSVCIntrin::_InterlockedAnd_acq; 1273 case ARM::BI_InterlockedAnd8_rel: 1274 case ARM::BI_InterlockedAnd16_rel: 1275 case ARM::BI_InterlockedAnd_rel: 1276 case ARM::BI_InterlockedAnd64_rel: 1277 return MSVCIntrin::_InterlockedAnd_rel; 1278 case ARM::BI_InterlockedAnd8_nf: 1279 case ARM::BI_InterlockedAnd16_nf: 1280 case ARM::BI_InterlockedAnd_nf: 1281 case ARM::BI_InterlockedAnd64_nf: 1282 return MSVCIntrin::_InterlockedAnd_nf; 1283 case ARM::BI_InterlockedIncrement16_acq: 1284 case ARM::BI_InterlockedIncrement_acq: 1285 case ARM::BI_InterlockedIncrement64_acq: 1286 return MSVCIntrin::_InterlockedIncrement_acq; 1287 case ARM::BI_InterlockedIncrement16_rel: 1288 case ARM::BI_InterlockedIncrement_rel: 1289 case ARM::BI_InterlockedIncrement64_rel: 1290 return MSVCIntrin::_InterlockedIncrement_rel; 1291 case ARM::BI_InterlockedIncrement16_nf: 1292 case ARM::BI_InterlockedIncrement_nf: 1293 case ARM::BI_InterlockedIncrement64_nf: 1294 return MSVCIntrin::_InterlockedIncrement_nf; 1295 case ARM::BI_InterlockedDecrement16_acq: 1296 case ARM::BI_InterlockedDecrement_acq: 1297 case ARM::BI_InterlockedDecrement64_acq: 1298 return MSVCIntrin::_InterlockedDecrement_acq; 1299 case ARM::BI_InterlockedDecrement16_rel: 1300 case ARM::BI_InterlockedDecrement_rel: 1301 case ARM::BI_InterlockedDecrement64_rel: 1302 return MSVCIntrin::_InterlockedDecrement_rel; 1303 case ARM::BI_InterlockedDecrement16_nf: 1304 case ARM::BI_InterlockedDecrement_nf: 1305 case ARM::BI_InterlockedDecrement64_nf: 1306 return MSVCIntrin::_InterlockedDecrement_nf; 1307 } 1308 llvm_unreachable("must return from switch"); 1309 } 1310 1311 static Optional<CodeGenFunction::MSVCIntrin> 1312 translateAarch64ToMsvcIntrin(unsigned BuiltinID) { 1313 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1314 switch (BuiltinID) { 1315 default: 1316 return None; 1317 case AArch64::BI_BitScanForward: 1318 case AArch64::BI_BitScanForward64: 1319 return MSVCIntrin::_BitScanForward; 1320 case AArch64::BI_BitScanReverse: 1321 case AArch64::BI_BitScanReverse64: 1322 return MSVCIntrin::_BitScanReverse; 1323 case AArch64::BI_InterlockedAnd64: 1324 return MSVCIntrin::_InterlockedAnd; 1325 case AArch64::BI_InterlockedExchange64: 1326 return MSVCIntrin::_InterlockedExchange; 1327 case AArch64::BI_InterlockedExchangeAdd64: 1328 return MSVCIntrin::_InterlockedExchangeAdd; 1329 case AArch64::BI_InterlockedExchangeSub64: 1330 return MSVCIntrin::_InterlockedExchangeSub; 1331 case AArch64::BI_InterlockedOr64: 1332 return MSVCIntrin::_InterlockedOr; 1333 case AArch64::BI_InterlockedXor64: 1334 return MSVCIntrin::_InterlockedXor; 1335 case AArch64::BI_InterlockedDecrement64: 1336 return MSVCIntrin::_InterlockedDecrement; 1337 case AArch64::BI_InterlockedIncrement64: 1338 return MSVCIntrin::_InterlockedIncrement; 1339 case AArch64::BI_InterlockedExchangeAdd8_acq: 1340 case AArch64::BI_InterlockedExchangeAdd16_acq: 1341 case AArch64::BI_InterlockedExchangeAdd_acq: 1342 case AArch64::BI_InterlockedExchangeAdd64_acq: 1343 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1344 case AArch64::BI_InterlockedExchangeAdd8_rel: 1345 case AArch64::BI_InterlockedExchangeAdd16_rel: 1346 case AArch64::BI_InterlockedExchangeAdd_rel: 1347 case AArch64::BI_InterlockedExchangeAdd64_rel: 1348 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1349 case AArch64::BI_InterlockedExchangeAdd8_nf: 1350 case AArch64::BI_InterlockedExchangeAdd16_nf: 1351 case AArch64::BI_InterlockedExchangeAdd_nf: 1352 case AArch64::BI_InterlockedExchangeAdd64_nf: 1353 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1354 case AArch64::BI_InterlockedExchange8_acq: 1355 case AArch64::BI_InterlockedExchange16_acq: 1356 case AArch64::BI_InterlockedExchange_acq: 1357 case AArch64::BI_InterlockedExchange64_acq: 1358 return MSVCIntrin::_InterlockedExchange_acq; 1359 case AArch64::BI_InterlockedExchange8_rel: 1360 case AArch64::BI_InterlockedExchange16_rel: 1361 case AArch64::BI_InterlockedExchange_rel: 1362 case AArch64::BI_InterlockedExchange64_rel: 1363 return MSVCIntrin::_InterlockedExchange_rel; 1364 case AArch64::BI_InterlockedExchange8_nf: 1365 case AArch64::BI_InterlockedExchange16_nf: 1366 case AArch64::BI_InterlockedExchange_nf: 1367 case AArch64::BI_InterlockedExchange64_nf: 1368 return MSVCIntrin::_InterlockedExchange_nf; 1369 case AArch64::BI_InterlockedCompareExchange8_acq: 1370 case AArch64::BI_InterlockedCompareExchange16_acq: 1371 case AArch64::BI_InterlockedCompareExchange_acq: 1372 case AArch64::BI_InterlockedCompareExchange64_acq: 1373 return MSVCIntrin::_InterlockedCompareExchange_acq; 1374 case AArch64::BI_InterlockedCompareExchange8_rel: 1375 case AArch64::BI_InterlockedCompareExchange16_rel: 1376 case AArch64::BI_InterlockedCompareExchange_rel: 1377 case AArch64::BI_InterlockedCompareExchange64_rel: 1378 return MSVCIntrin::_InterlockedCompareExchange_rel; 1379 case AArch64::BI_InterlockedCompareExchange8_nf: 1380 case AArch64::BI_InterlockedCompareExchange16_nf: 1381 case AArch64::BI_InterlockedCompareExchange_nf: 1382 case AArch64::BI_InterlockedCompareExchange64_nf: 1383 return MSVCIntrin::_InterlockedCompareExchange_nf; 1384 case AArch64::BI_InterlockedCompareExchange128: 1385 return MSVCIntrin::_InterlockedCompareExchange128; 1386 case AArch64::BI_InterlockedCompareExchange128_acq: 1387 return MSVCIntrin::_InterlockedCompareExchange128_acq; 1388 case AArch64::BI_InterlockedCompareExchange128_nf: 1389 return MSVCIntrin::_InterlockedCompareExchange128_nf; 1390 case AArch64::BI_InterlockedCompareExchange128_rel: 1391 return MSVCIntrin::_InterlockedCompareExchange128_rel; 1392 case AArch64::BI_InterlockedOr8_acq: 1393 case AArch64::BI_InterlockedOr16_acq: 1394 case AArch64::BI_InterlockedOr_acq: 1395 case AArch64::BI_InterlockedOr64_acq: 1396 return MSVCIntrin::_InterlockedOr_acq; 1397 case AArch64::BI_InterlockedOr8_rel: 1398 case AArch64::BI_InterlockedOr16_rel: 1399 case AArch64::BI_InterlockedOr_rel: 1400 case AArch64::BI_InterlockedOr64_rel: 1401 return MSVCIntrin::_InterlockedOr_rel; 1402 case AArch64::BI_InterlockedOr8_nf: 1403 case AArch64::BI_InterlockedOr16_nf: 1404 case AArch64::BI_InterlockedOr_nf: 1405 case AArch64::BI_InterlockedOr64_nf: 1406 return MSVCIntrin::_InterlockedOr_nf; 1407 case AArch64::BI_InterlockedXor8_acq: 1408 case AArch64::BI_InterlockedXor16_acq: 1409 case AArch64::BI_InterlockedXor_acq: 1410 case AArch64::BI_InterlockedXor64_acq: 1411 return MSVCIntrin::_InterlockedXor_acq; 1412 case AArch64::BI_InterlockedXor8_rel: 1413 case AArch64::BI_InterlockedXor16_rel: 1414 case AArch64::BI_InterlockedXor_rel: 1415 case AArch64::BI_InterlockedXor64_rel: 1416 return MSVCIntrin::_InterlockedXor_rel; 1417 case AArch64::BI_InterlockedXor8_nf: 1418 case AArch64::BI_InterlockedXor16_nf: 1419 case AArch64::BI_InterlockedXor_nf: 1420 case AArch64::BI_InterlockedXor64_nf: 1421 return MSVCIntrin::_InterlockedXor_nf; 1422 case AArch64::BI_InterlockedAnd8_acq: 1423 case AArch64::BI_InterlockedAnd16_acq: 1424 case AArch64::BI_InterlockedAnd_acq: 1425 case AArch64::BI_InterlockedAnd64_acq: 1426 return MSVCIntrin::_InterlockedAnd_acq; 1427 case AArch64::BI_InterlockedAnd8_rel: 1428 case AArch64::BI_InterlockedAnd16_rel: 1429 case AArch64::BI_InterlockedAnd_rel: 1430 case AArch64::BI_InterlockedAnd64_rel: 1431 return MSVCIntrin::_InterlockedAnd_rel; 1432 case AArch64::BI_InterlockedAnd8_nf: 1433 case AArch64::BI_InterlockedAnd16_nf: 1434 case AArch64::BI_InterlockedAnd_nf: 1435 case AArch64::BI_InterlockedAnd64_nf: 1436 return MSVCIntrin::_InterlockedAnd_nf; 1437 case AArch64::BI_InterlockedIncrement16_acq: 1438 case AArch64::BI_InterlockedIncrement_acq: 1439 case AArch64::BI_InterlockedIncrement64_acq: 1440 return MSVCIntrin::_InterlockedIncrement_acq; 1441 case AArch64::BI_InterlockedIncrement16_rel: 1442 case AArch64::BI_InterlockedIncrement_rel: 1443 case AArch64::BI_InterlockedIncrement64_rel: 1444 return MSVCIntrin::_InterlockedIncrement_rel; 1445 case AArch64::BI_InterlockedIncrement16_nf: 1446 case AArch64::BI_InterlockedIncrement_nf: 1447 case AArch64::BI_InterlockedIncrement64_nf: 1448 return MSVCIntrin::_InterlockedIncrement_nf; 1449 case AArch64::BI_InterlockedDecrement16_acq: 1450 case AArch64::BI_InterlockedDecrement_acq: 1451 case AArch64::BI_InterlockedDecrement64_acq: 1452 return MSVCIntrin::_InterlockedDecrement_acq; 1453 case AArch64::BI_InterlockedDecrement16_rel: 1454 case AArch64::BI_InterlockedDecrement_rel: 1455 case AArch64::BI_InterlockedDecrement64_rel: 1456 return MSVCIntrin::_InterlockedDecrement_rel; 1457 case AArch64::BI_InterlockedDecrement16_nf: 1458 case AArch64::BI_InterlockedDecrement_nf: 1459 case AArch64::BI_InterlockedDecrement64_nf: 1460 return MSVCIntrin::_InterlockedDecrement_nf; 1461 } 1462 llvm_unreachable("must return from switch"); 1463 } 1464 1465 static Optional<CodeGenFunction::MSVCIntrin> 1466 translateX86ToMsvcIntrin(unsigned BuiltinID) { 1467 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1468 switch (BuiltinID) { 1469 default: 1470 return None; 1471 case clang::X86::BI_BitScanForward: 1472 case clang::X86::BI_BitScanForward64: 1473 return MSVCIntrin::_BitScanForward; 1474 case clang::X86::BI_BitScanReverse: 1475 case clang::X86::BI_BitScanReverse64: 1476 return MSVCIntrin::_BitScanReverse; 1477 case clang::X86::BI_InterlockedAnd64: 1478 return MSVCIntrin::_InterlockedAnd; 1479 case clang::X86::BI_InterlockedCompareExchange128: 1480 return MSVCIntrin::_InterlockedCompareExchange128; 1481 case clang::X86::BI_InterlockedExchange64: 1482 return MSVCIntrin::_InterlockedExchange; 1483 case clang::X86::BI_InterlockedExchangeAdd64: 1484 return MSVCIntrin::_InterlockedExchangeAdd; 1485 case clang::X86::BI_InterlockedExchangeSub64: 1486 return MSVCIntrin::_InterlockedExchangeSub; 1487 case clang::X86::BI_InterlockedOr64: 1488 return MSVCIntrin::_InterlockedOr; 1489 case clang::X86::BI_InterlockedXor64: 1490 return MSVCIntrin::_InterlockedXor; 1491 case clang::X86::BI_InterlockedDecrement64: 1492 return MSVCIntrin::_InterlockedDecrement; 1493 case clang::X86::BI_InterlockedIncrement64: 1494 return MSVCIntrin::_InterlockedIncrement; 1495 } 1496 llvm_unreachable("must return from switch"); 1497 } 1498 1499 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. 1500 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, 1501 const CallExpr *E) { 1502 switch (BuiltinID) { 1503 case MSVCIntrin::_BitScanForward: 1504 case MSVCIntrin::_BitScanReverse: { 1505 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); 1506 Value *ArgValue = EmitScalarExpr(E->getArg(1)); 1507 1508 llvm::Type *ArgType = ArgValue->getType(); 1509 llvm::Type *IndexType = IndexAddress.getElementType(); 1510 llvm::Type *ResultType = ConvertType(E->getType()); 1511 1512 Value *ArgZero = llvm::Constant::getNullValue(ArgType); 1513 Value *ResZero = llvm::Constant::getNullValue(ResultType); 1514 Value *ResOne = llvm::ConstantInt::get(ResultType, 1); 1515 1516 BasicBlock *Begin = Builder.GetInsertBlock(); 1517 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); 1518 Builder.SetInsertPoint(End); 1519 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); 1520 1521 Builder.SetInsertPoint(Begin); 1522 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); 1523 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); 1524 Builder.CreateCondBr(IsZero, End, NotZero); 1525 Result->addIncoming(ResZero, Begin); 1526 1527 Builder.SetInsertPoint(NotZero); 1528 1529 if (BuiltinID == MSVCIntrin::_BitScanForward) { 1530 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 1531 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1532 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1533 Builder.CreateStore(ZeroCount, IndexAddress, false); 1534 } else { 1535 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); 1536 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); 1537 1538 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1539 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1540 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1541 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); 1542 Builder.CreateStore(Index, IndexAddress, false); 1543 } 1544 Builder.CreateBr(End); 1545 Result->addIncoming(ResOne, NotZero); 1546 1547 Builder.SetInsertPoint(End); 1548 return Result; 1549 } 1550 case MSVCIntrin::_InterlockedAnd: 1551 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); 1552 case MSVCIntrin::_InterlockedExchange: 1553 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); 1554 case MSVCIntrin::_InterlockedExchangeAdd: 1555 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); 1556 case MSVCIntrin::_InterlockedExchangeSub: 1557 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); 1558 case MSVCIntrin::_InterlockedOr: 1559 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); 1560 case MSVCIntrin::_InterlockedXor: 1561 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); 1562 case MSVCIntrin::_InterlockedExchangeAdd_acq: 1563 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1564 AtomicOrdering::Acquire); 1565 case MSVCIntrin::_InterlockedExchangeAdd_rel: 1566 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1567 AtomicOrdering::Release); 1568 case MSVCIntrin::_InterlockedExchangeAdd_nf: 1569 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1570 AtomicOrdering::Monotonic); 1571 case MSVCIntrin::_InterlockedExchange_acq: 1572 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1573 AtomicOrdering::Acquire); 1574 case MSVCIntrin::_InterlockedExchange_rel: 1575 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1576 AtomicOrdering::Release); 1577 case MSVCIntrin::_InterlockedExchange_nf: 1578 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1579 AtomicOrdering::Monotonic); 1580 case MSVCIntrin::_InterlockedCompareExchange_acq: 1581 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); 1582 case MSVCIntrin::_InterlockedCompareExchange_rel: 1583 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); 1584 case MSVCIntrin::_InterlockedCompareExchange_nf: 1585 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1586 case MSVCIntrin::_InterlockedCompareExchange128: 1587 return EmitAtomicCmpXchg128ForMSIntrin( 1588 *this, E, AtomicOrdering::SequentiallyConsistent); 1589 case MSVCIntrin::_InterlockedCompareExchange128_acq: 1590 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); 1591 case MSVCIntrin::_InterlockedCompareExchange128_rel: 1592 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); 1593 case MSVCIntrin::_InterlockedCompareExchange128_nf: 1594 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1595 case MSVCIntrin::_InterlockedOr_acq: 1596 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1597 AtomicOrdering::Acquire); 1598 case MSVCIntrin::_InterlockedOr_rel: 1599 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1600 AtomicOrdering::Release); 1601 case MSVCIntrin::_InterlockedOr_nf: 1602 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1603 AtomicOrdering::Monotonic); 1604 case MSVCIntrin::_InterlockedXor_acq: 1605 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1606 AtomicOrdering::Acquire); 1607 case MSVCIntrin::_InterlockedXor_rel: 1608 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1609 AtomicOrdering::Release); 1610 case MSVCIntrin::_InterlockedXor_nf: 1611 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1612 AtomicOrdering::Monotonic); 1613 case MSVCIntrin::_InterlockedAnd_acq: 1614 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1615 AtomicOrdering::Acquire); 1616 case MSVCIntrin::_InterlockedAnd_rel: 1617 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1618 AtomicOrdering::Release); 1619 case MSVCIntrin::_InterlockedAnd_nf: 1620 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1621 AtomicOrdering::Monotonic); 1622 case MSVCIntrin::_InterlockedIncrement_acq: 1623 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); 1624 case MSVCIntrin::_InterlockedIncrement_rel: 1625 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); 1626 case MSVCIntrin::_InterlockedIncrement_nf: 1627 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); 1628 case MSVCIntrin::_InterlockedDecrement_acq: 1629 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); 1630 case MSVCIntrin::_InterlockedDecrement_rel: 1631 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); 1632 case MSVCIntrin::_InterlockedDecrement_nf: 1633 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); 1634 1635 case MSVCIntrin::_InterlockedDecrement: 1636 return EmitAtomicDecrementValue(*this, E); 1637 case MSVCIntrin::_InterlockedIncrement: 1638 return EmitAtomicIncrementValue(*this, E); 1639 1640 case MSVCIntrin::__fastfail: { 1641 // Request immediate process termination from the kernel. The instruction 1642 // sequences to do this are documented on MSDN: 1643 // https://msdn.microsoft.com/en-us/library/dn774154.aspx 1644 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); 1645 StringRef Asm, Constraints; 1646 switch (ISA) { 1647 default: 1648 ErrorUnsupported(E, "__fastfail call for this architecture"); 1649 break; 1650 case llvm::Triple::x86: 1651 case llvm::Triple::x86_64: 1652 Asm = "int $$0x29"; 1653 Constraints = "{cx}"; 1654 break; 1655 case llvm::Triple::thumb: 1656 Asm = "udf #251"; 1657 Constraints = "{r0}"; 1658 break; 1659 case llvm::Triple::aarch64: 1660 Asm = "brk #0xF003"; 1661 Constraints = "{w0}"; 1662 } 1663 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); 1664 llvm::InlineAsm *IA = 1665 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1666 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 1667 getLLVMContext(), llvm::AttributeList::FunctionIndex, 1668 llvm::Attribute::NoReturn); 1669 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); 1670 CI->setAttributes(NoReturnAttr); 1671 return CI; 1672 } 1673 } 1674 llvm_unreachable("Incorrect MSVC intrinsic!"); 1675 } 1676 1677 namespace { 1678 // ARC cleanup for __builtin_os_log_format 1679 struct CallObjCArcUse final : EHScopeStack::Cleanup { 1680 CallObjCArcUse(llvm::Value *object) : object(object) {} 1681 llvm::Value *object; 1682 1683 void Emit(CodeGenFunction &CGF, Flags flags) override { 1684 CGF.EmitARCIntrinsicUse(object); 1685 } 1686 }; 1687 } 1688 1689 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, 1690 BuiltinCheckKind Kind) { 1691 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) 1692 && "Unsupported builtin check kind"); 1693 1694 Value *ArgValue = EmitScalarExpr(E); 1695 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) 1696 return ArgValue; 1697 1698 SanitizerScope SanScope(this); 1699 Value *Cond = Builder.CreateICmpNE( 1700 ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); 1701 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), 1702 SanitizerHandler::InvalidBuiltin, 1703 {EmitCheckSourceLocation(E->getExprLoc()), 1704 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, 1705 None); 1706 return ArgValue; 1707 } 1708 1709 /// Get the argument type for arguments to os_log_helper. 1710 static CanQualType getOSLogArgType(ASTContext &C, int Size) { 1711 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); 1712 return C.getCanonicalType(UnsignedTy); 1713 } 1714 1715 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( 1716 const analyze_os_log::OSLogBufferLayout &Layout, 1717 CharUnits BufferAlignment) { 1718 ASTContext &Ctx = getContext(); 1719 1720 llvm::SmallString<64> Name; 1721 { 1722 raw_svector_ostream OS(Name); 1723 OS << "__os_log_helper"; 1724 OS << "_" << BufferAlignment.getQuantity(); 1725 OS << "_" << int(Layout.getSummaryByte()); 1726 OS << "_" << int(Layout.getNumArgsByte()); 1727 for (const auto &Item : Layout.Items) 1728 OS << "_" << int(Item.getSizeByte()) << "_" 1729 << int(Item.getDescriptorByte()); 1730 } 1731 1732 if (llvm::Function *F = CGM.getModule().getFunction(Name)) 1733 return F; 1734 1735 llvm::SmallVector<QualType, 4> ArgTys; 1736 FunctionArgList Args; 1737 Args.push_back(ImplicitParamDecl::Create( 1738 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, 1739 ImplicitParamDecl::Other)); 1740 ArgTys.emplace_back(Ctx.VoidPtrTy); 1741 1742 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { 1743 char Size = Layout.Items[I].getSizeByte(); 1744 if (!Size) 1745 continue; 1746 1747 QualType ArgTy = getOSLogArgType(Ctx, Size); 1748 Args.push_back(ImplicitParamDecl::Create( 1749 Ctx, nullptr, SourceLocation(), 1750 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, 1751 ImplicitParamDecl::Other)); 1752 ArgTys.emplace_back(ArgTy); 1753 } 1754 1755 QualType ReturnTy = Ctx.VoidTy; 1756 1757 // The helper function has linkonce_odr linkage to enable the linker to merge 1758 // identical functions. To ensure the merging always happens, 'noinline' is 1759 // attached to the function when compiling with -Oz. 1760 const CGFunctionInfo &FI = 1761 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); 1762 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); 1763 llvm::Function *Fn = llvm::Function::Create( 1764 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); 1765 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 1766 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); 1767 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); 1768 Fn->setDoesNotThrow(); 1769 1770 // Attach 'noinline' at -Oz. 1771 if (CGM.getCodeGenOpts().OptimizeSize == 2) 1772 Fn->addFnAttr(llvm::Attribute::NoInline); 1773 1774 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1775 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args); 1776 1777 // Create a scope with an artificial location for the body of this function. 1778 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1779 1780 CharUnits Offset; 1781 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), 1782 BufferAlignment); 1783 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), 1784 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); 1785 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), 1786 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); 1787 1788 unsigned I = 1; 1789 for (const auto &Item : Layout.Items) { 1790 Builder.CreateStore( 1791 Builder.getInt8(Item.getDescriptorByte()), 1792 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); 1793 Builder.CreateStore( 1794 Builder.getInt8(Item.getSizeByte()), 1795 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); 1796 1797 CharUnits Size = Item.size(); 1798 if (!Size.getQuantity()) 1799 continue; 1800 1801 Address Arg = GetAddrOfLocalVar(Args[I]); 1802 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); 1803 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), 1804 "argDataCast"); 1805 Builder.CreateStore(Builder.CreateLoad(Arg), Addr); 1806 Offset += Size; 1807 ++I; 1808 } 1809 1810 FinishFunction(); 1811 1812 return Fn; 1813 } 1814 1815 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { 1816 assert(E.getNumArgs() >= 2 && 1817 "__builtin_os_log_format takes at least 2 arguments"); 1818 ASTContext &Ctx = getContext(); 1819 analyze_os_log::OSLogBufferLayout Layout; 1820 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); 1821 Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); 1822 llvm::SmallVector<llvm::Value *, 4> RetainableOperands; 1823 1824 // Ignore argument 1, the format string. It is not currently used. 1825 CallArgList Args; 1826 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); 1827 1828 for (const auto &Item : Layout.Items) { 1829 int Size = Item.getSizeByte(); 1830 if (!Size) 1831 continue; 1832 1833 llvm::Value *ArgVal; 1834 1835 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { 1836 uint64_t Val = 0; 1837 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) 1838 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; 1839 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); 1840 } else if (const Expr *TheExpr = Item.getExpr()) { 1841 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); 1842 1843 // If a temporary object that requires destruction after the full 1844 // expression is passed, push a lifetime-extended cleanup to extend its 1845 // lifetime to the end of the enclosing block scope. 1846 auto LifetimeExtendObject = [&](const Expr *E) { 1847 E = E->IgnoreParenCasts(); 1848 // Extend lifetimes of objects returned by function calls and message 1849 // sends. 1850 1851 // FIXME: We should do this in other cases in which temporaries are 1852 // created including arguments of non-ARC types (e.g., C++ 1853 // temporaries). 1854 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) 1855 return true; 1856 return false; 1857 }; 1858 1859 if (TheExpr->getType()->isObjCRetainableType() && 1860 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { 1861 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && 1862 "Only scalar can be a ObjC retainable type"); 1863 if (!isa<Constant>(ArgVal)) { 1864 CleanupKind Cleanup = getARCCleanupKind(); 1865 QualType Ty = TheExpr->getType(); 1866 Address Alloca = Address::invalid(); 1867 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); 1868 ArgVal = EmitARCRetain(Ty, ArgVal); 1869 Builder.CreateStore(ArgVal, Addr); 1870 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, 1871 CodeGenFunction::destroyARCStrongPrecise, 1872 Cleanup & EHCleanup); 1873 1874 // Push a clang.arc.use call to ensure ARC optimizer knows that the 1875 // argument has to be alive. 1876 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 1877 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); 1878 } 1879 } 1880 } else { 1881 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); 1882 } 1883 1884 unsigned ArgValSize = 1885 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); 1886 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), 1887 ArgValSize); 1888 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); 1889 CanQualType ArgTy = getOSLogArgType(Ctx, Size); 1890 // If ArgVal has type x86_fp80, zero-extend ArgVal. 1891 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); 1892 Args.add(RValue::get(ArgVal), ArgTy); 1893 } 1894 1895 const CGFunctionInfo &FI = 1896 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); 1897 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( 1898 Layout, BufAddr.getAlignment()); 1899 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); 1900 return RValue::get(BufAddr.getPointer()); 1901 } 1902 1903 static bool isSpecialUnsignedMultiplySignedResult( 1904 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, 1905 WidthAndSignedness ResultInfo) { 1906 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1907 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && 1908 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; 1909 } 1910 1911 static RValue EmitCheckedUnsignedMultiplySignedResult( 1912 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, 1913 const clang::Expr *Op2, WidthAndSignedness Op2Info, 1914 const clang::Expr *ResultArg, QualType ResultQTy, 1915 WidthAndSignedness ResultInfo) { 1916 assert(isSpecialUnsignedMultiplySignedResult( 1917 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && 1918 "Cannot specialize this multiply"); 1919 1920 llvm::Value *V1 = CGF.EmitScalarExpr(Op1); 1921 llvm::Value *V2 = CGF.EmitScalarExpr(Op2); 1922 1923 llvm::Value *HasOverflow; 1924 llvm::Value *Result = EmitOverflowIntrinsic( 1925 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); 1926 1927 // The intrinsic call will detect overflow when the value is > UINT_MAX, 1928 // however, since the original builtin had a signed result, we need to report 1929 // an overflow when the result is greater than INT_MAX. 1930 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); 1931 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); 1932 1933 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); 1934 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); 1935 1936 bool isVolatile = 1937 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1938 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1939 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1940 isVolatile); 1941 return RValue::get(HasOverflow); 1942 } 1943 1944 /// Determine if a binop is a checked mixed-sign multiply we can specialize. 1945 static bool isSpecialMixedSignMultiply(unsigned BuiltinID, 1946 WidthAndSignedness Op1Info, 1947 WidthAndSignedness Op2Info, 1948 WidthAndSignedness ResultInfo) { 1949 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1950 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && 1951 Op1Info.Signed != Op2Info.Signed; 1952 } 1953 1954 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of 1955 /// the generic checked-binop irgen. 1956 static RValue 1957 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, 1958 WidthAndSignedness Op1Info, const clang::Expr *Op2, 1959 WidthAndSignedness Op2Info, 1960 const clang::Expr *ResultArg, QualType ResultQTy, 1961 WidthAndSignedness ResultInfo) { 1962 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, 1963 Op2Info, ResultInfo) && 1964 "Not a mixed-sign multipliction we can specialize"); 1965 1966 // Emit the signed and unsigned operands. 1967 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; 1968 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; 1969 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); 1970 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); 1971 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; 1972 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; 1973 1974 // One of the operands may be smaller than the other. If so, [s|z]ext it. 1975 if (SignedOpWidth < UnsignedOpWidth) 1976 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); 1977 if (UnsignedOpWidth < SignedOpWidth) 1978 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); 1979 1980 llvm::Type *OpTy = Signed->getType(); 1981 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); 1982 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1983 llvm::Type *ResTy = ResultPtr.getElementType(); 1984 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); 1985 1986 // Take the absolute value of the signed operand. 1987 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); 1988 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); 1989 llvm::Value *AbsSigned = 1990 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); 1991 1992 // Perform a checked unsigned multiplication. 1993 llvm::Value *UnsignedOverflow; 1994 llvm::Value *UnsignedResult = 1995 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, 1996 Unsigned, UnsignedOverflow); 1997 1998 llvm::Value *Overflow, *Result; 1999 if (ResultInfo.Signed) { 2000 // Signed overflow occurs if the result is greater than INT_MAX or lesser 2001 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). 2002 auto IntMax = 2003 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); 2004 llvm::Value *MaxResult = 2005 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), 2006 CGF.Builder.CreateZExt(IsNegative, OpTy)); 2007 llvm::Value *SignedOverflow = 2008 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); 2009 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); 2010 2011 // Prepare the signed result (possibly by negating it). 2012 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); 2013 llvm::Value *SignedResult = 2014 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); 2015 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); 2016 } else { 2017 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. 2018 llvm::Value *Underflow = CGF.Builder.CreateAnd( 2019 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); 2020 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); 2021 if (ResultInfo.Width < OpWidth) { 2022 auto IntMax = 2023 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); 2024 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( 2025 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); 2026 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); 2027 } 2028 2029 // Negate the product if it would be negative in infinite precision. 2030 Result = CGF.Builder.CreateSelect( 2031 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); 2032 2033 Result = CGF.Builder.CreateTrunc(Result, ResTy); 2034 } 2035 assert(Overflow && Result && "Missing overflow or result"); 2036 2037 bool isVolatile = 2038 ResultArg->getType()->getPointeeType().isVolatileQualified(); 2039 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 2040 isVolatile); 2041 return RValue::get(Overflow); 2042 } 2043 2044 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, 2045 Value *&RecordPtr, CharUnits Align, 2046 llvm::FunctionCallee Func, int Lvl) { 2047 ASTContext &Context = CGF.getContext(); 2048 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); 2049 std::string Pad = std::string(Lvl * 4, ' '); 2050 2051 Value *GString = 2052 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); 2053 Value *Res = CGF.Builder.CreateCall(Func, {GString}); 2054 2055 static llvm::DenseMap<QualType, const char *> Types; 2056 if (Types.empty()) { 2057 Types[Context.CharTy] = "%c"; 2058 Types[Context.BoolTy] = "%d"; 2059 Types[Context.SignedCharTy] = "%hhd"; 2060 Types[Context.UnsignedCharTy] = "%hhu"; 2061 Types[Context.IntTy] = "%d"; 2062 Types[Context.UnsignedIntTy] = "%u"; 2063 Types[Context.LongTy] = "%ld"; 2064 Types[Context.UnsignedLongTy] = "%lu"; 2065 Types[Context.LongLongTy] = "%lld"; 2066 Types[Context.UnsignedLongLongTy] = "%llu"; 2067 Types[Context.ShortTy] = "%hd"; 2068 Types[Context.UnsignedShortTy] = "%hu"; 2069 Types[Context.VoidPtrTy] = "%p"; 2070 Types[Context.FloatTy] = "%f"; 2071 Types[Context.DoubleTy] = "%f"; 2072 Types[Context.LongDoubleTy] = "%Lf"; 2073 Types[Context.getPointerType(Context.CharTy)] = "%s"; 2074 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; 2075 } 2076 2077 for (const auto *FD : RD->fields()) { 2078 Value *FieldPtr = RecordPtr; 2079 if (RD->isUnion()) 2080 FieldPtr = CGF.Builder.CreatePointerCast( 2081 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); 2082 else 2083 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, 2084 FD->getFieldIndex()); 2085 2086 GString = CGF.Builder.CreateGlobalStringPtr( 2087 llvm::Twine(Pad) 2088 .concat(FD->getType().getAsString()) 2089 .concat(llvm::Twine(' ')) 2090 .concat(FD->getNameAsString()) 2091 .concat(" : ") 2092 .str()); 2093 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2094 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2095 2096 QualType CanonicalType = 2097 FD->getType().getUnqualifiedType().getCanonicalType(); 2098 2099 // We check whether we are in a recursive type 2100 if (CanonicalType->isRecordType()) { 2101 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); 2102 Res = CGF.Builder.CreateAdd(TmpRes, Res); 2103 continue; 2104 } 2105 2106 // We try to determine the best format to print the current field 2107 llvm::Twine Format = Types.find(CanonicalType) == Types.end() 2108 ? Types[Context.VoidPtrTy] 2109 : Types[CanonicalType]; 2110 2111 Address FieldAddress = Address(FieldPtr, Align); 2112 FieldPtr = CGF.Builder.CreateLoad(FieldAddress); 2113 2114 // FIXME Need to handle bitfield here 2115 GString = CGF.Builder.CreateGlobalStringPtr( 2116 Format.concat(llvm::Twine('\n')).str()); 2117 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); 2118 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2119 } 2120 2121 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); 2122 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2123 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2124 return Res; 2125 } 2126 2127 static bool 2128 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, 2129 llvm::SmallPtrSetImpl<const Decl *> &Seen) { 2130 if (const auto *Arr = Ctx.getAsArrayType(Ty)) 2131 Ty = Ctx.getBaseElementType(Arr); 2132 2133 const auto *Record = Ty->getAsCXXRecordDecl(); 2134 if (!Record) 2135 return false; 2136 2137 // We've already checked this type, or are in the process of checking it. 2138 if (!Seen.insert(Record).second) 2139 return false; 2140 2141 assert(Record->hasDefinition() && 2142 "Incomplete types should already be diagnosed"); 2143 2144 if (Record->isDynamicClass()) 2145 return true; 2146 2147 for (FieldDecl *F : Record->fields()) { 2148 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) 2149 return true; 2150 } 2151 return false; 2152 } 2153 2154 /// Determine if the specified type requires laundering by checking if it is a 2155 /// dynamic class type or contains a subobject which is a dynamic class type. 2156 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { 2157 if (!CGM.getCodeGenOpts().StrictVTablePointers) 2158 return false; 2159 llvm::SmallPtrSet<const Decl *, 16> Seen; 2160 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); 2161 } 2162 2163 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { 2164 llvm::Value *Src = EmitScalarExpr(E->getArg(0)); 2165 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); 2166 2167 // The builtin's shift arg may have a different type than the source arg and 2168 // result, but the LLVM intrinsic uses the same type for all values. 2169 llvm::Type *Ty = Src->getType(); 2170 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); 2171 2172 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. 2173 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; 2174 Function *F = CGM.getIntrinsic(IID, Ty); 2175 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); 2176 } 2177 2178 // Map math builtins for long-double to f128 version. 2179 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { 2180 switch (BuiltinID) { 2181 #define MUTATE_LDBL(func) \ 2182 case Builtin::BI__builtin_##func##l: \ 2183 return Builtin::BI__builtin_##func##f128; 2184 MUTATE_LDBL(sqrt) 2185 MUTATE_LDBL(cbrt) 2186 MUTATE_LDBL(fabs) 2187 MUTATE_LDBL(log) 2188 MUTATE_LDBL(log2) 2189 MUTATE_LDBL(log10) 2190 MUTATE_LDBL(log1p) 2191 MUTATE_LDBL(logb) 2192 MUTATE_LDBL(exp) 2193 MUTATE_LDBL(exp2) 2194 MUTATE_LDBL(expm1) 2195 MUTATE_LDBL(fdim) 2196 MUTATE_LDBL(hypot) 2197 MUTATE_LDBL(ilogb) 2198 MUTATE_LDBL(pow) 2199 MUTATE_LDBL(fmin) 2200 MUTATE_LDBL(fmax) 2201 MUTATE_LDBL(ceil) 2202 MUTATE_LDBL(trunc) 2203 MUTATE_LDBL(rint) 2204 MUTATE_LDBL(nearbyint) 2205 MUTATE_LDBL(round) 2206 MUTATE_LDBL(floor) 2207 MUTATE_LDBL(lround) 2208 MUTATE_LDBL(llround) 2209 MUTATE_LDBL(lrint) 2210 MUTATE_LDBL(llrint) 2211 MUTATE_LDBL(fmod) 2212 MUTATE_LDBL(modf) 2213 MUTATE_LDBL(nan) 2214 MUTATE_LDBL(nans) 2215 MUTATE_LDBL(inf) 2216 MUTATE_LDBL(fma) 2217 MUTATE_LDBL(sin) 2218 MUTATE_LDBL(cos) 2219 MUTATE_LDBL(tan) 2220 MUTATE_LDBL(sinh) 2221 MUTATE_LDBL(cosh) 2222 MUTATE_LDBL(tanh) 2223 MUTATE_LDBL(asin) 2224 MUTATE_LDBL(acos) 2225 MUTATE_LDBL(atan) 2226 MUTATE_LDBL(asinh) 2227 MUTATE_LDBL(acosh) 2228 MUTATE_LDBL(atanh) 2229 MUTATE_LDBL(atan2) 2230 MUTATE_LDBL(erf) 2231 MUTATE_LDBL(erfc) 2232 MUTATE_LDBL(ldexp) 2233 MUTATE_LDBL(frexp) 2234 MUTATE_LDBL(huge_val) 2235 MUTATE_LDBL(copysign) 2236 MUTATE_LDBL(nextafter) 2237 MUTATE_LDBL(nexttoward) 2238 MUTATE_LDBL(remainder) 2239 MUTATE_LDBL(remquo) 2240 MUTATE_LDBL(scalbln) 2241 MUTATE_LDBL(scalbn) 2242 MUTATE_LDBL(tgamma) 2243 MUTATE_LDBL(lgamma) 2244 #undef MUTATE_LDBL 2245 default: 2246 return BuiltinID; 2247 } 2248 } 2249 2250 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 2251 const CallExpr *E, 2252 ReturnValueSlot ReturnValue) { 2253 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 2254 // See if we can constant fold this builtin. If so, don't emit it at all. 2255 Expr::EvalResult Result; 2256 if (E->EvaluateAsRValue(Result, CGM.getContext()) && 2257 !Result.hasSideEffects()) { 2258 if (Result.Val.isInt()) 2259 return RValue::get(llvm::ConstantInt::get(getLLVMContext(), 2260 Result.Val.getInt())); 2261 if (Result.Val.isFloat()) 2262 return RValue::get(llvm::ConstantFP::get(getLLVMContext(), 2263 Result.Val.getFloat())); 2264 } 2265 2266 // If current long-double semantics is IEEE 128-bit, replace math builtins 2267 // of long-double with f128 equivalent. 2268 // TODO: This mutation should also be applied to other targets other than PPC, 2269 // after backend supports IEEE 128-bit style libcalls. 2270 if (getTarget().getTriple().isPPC64() && 2271 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 2272 BuiltinID = mutateLongDoubleBuiltin(BuiltinID); 2273 2274 // If the builtin has been declared explicitly with an assembler label, 2275 // disable the specialized emitting below. Ideally we should communicate the 2276 // rename in IR, or at least avoid generating the intrinsic calls that are 2277 // likely to get lowered to the renamed library functions. 2278 const unsigned BuiltinIDIfNoAsmLabel = 2279 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; 2280 2281 // There are LLVM math intrinsics/instructions corresponding to math library 2282 // functions except the LLVM op will never set errno while the math library 2283 // might. Also, math builtins have the same semantics as their math library 2284 // twins. Thus, we can transform math library and builtin calls to their 2285 // LLVM counterparts if the call is marked 'const' (known to never set errno). 2286 if (FD->hasAttr<ConstAttr>()) { 2287 switch (BuiltinIDIfNoAsmLabel) { 2288 case Builtin::BIceil: 2289 case Builtin::BIceilf: 2290 case Builtin::BIceill: 2291 case Builtin::BI__builtin_ceil: 2292 case Builtin::BI__builtin_ceilf: 2293 case Builtin::BI__builtin_ceilf16: 2294 case Builtin::BI__builtin_ceill: 2295 case Builtin::BI__builtin_ceilf128: 2296 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2297 Intrinsic::ceil, 2298 Intrinsic::experimental_constrained_ceil)); 2299 2300 case Builtin::BIcopysign: 2301 case Builtin::BIcopysignf: 2302 case Builtin::BIcopysignl: 2303 case Builtin::BI__builtin_copysign: 2304 case Builtin::BI__builtin_copysignf: 2305 case Builtin::BI__builtin_copysignf16: 2306 case Builtin::BI__builtin_copysignl: 2307 case Builtin::BI__builtin_copysignf128: 2308 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); 2309 2310 case Builtin::BIcos: 2311 case Builtin::BIcosf: 2312 case Builtin::BIcosl: 2313 case Builtin::BI__builtin_cos: 2314 case Builtin::BI__builtin_cosf: 2315 case Builtin::BI__builtin_cosf16: 2316 case Builtin::BI__builtin_cosl: 2317 case Builtin::BI__builtin_cosf128: 2318 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2319 Intrinsic::cos, 2320 Intrinsic::experimental_constrained_cos)); 2321 2322 case Builtin::BIexp: 2323 case Builtin::BIexpf: 2324 case Builtin::BIexpl: 2325 case Builtin::BI__builtin_exp: 2326 case Builtin::BI__builtin_expf: 2327 case Builtin::BI__builtin_expf16: 2328 case Builtin::BI__builtin_expl: 2329 case Builtin::BI__builtin_expf128: 2330 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2331 Intrinsic::exp, 2332 Intrinsic::experimental_constrained_exp)); 2333 2334 case Builtin::BIexp2: 2335 case Builtin::BIexp2f: 2336 case Builtin::BIexp2l: 2337 case Builtin::BI__builtin_exp2: 2338 case Builtin::BI__builtin_exp2f: 2339 case Builtin::BI__builtin_exp2f16: 2340 case Builtin::BI__builtin_exp2l: 2341 case Builtin::BI__builtin_exp2f128: 2342 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2343 Intrinsic::exp2, 2344 Intrinsic::experimental_constrained_exp2)); 2345 2346 case Builtin::BIfabs: 2347 case Builtin::BIfabsf: 2348 case Builtin::BIfabsl: 2349 case Builtin::BI__builtin_fabs: 2350 case Builtin::BI__builtin_fabsf: 2351 case Builtin::BI__builtin_fabsf16: 2352 case Builtin::BI__builtin_fabsl: 2353 case Builtin::BI__builtin_fabsf128: 2354 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); 2355 2356 case Builtin::BIfloor: 2357 case Builtin::BIfloorf: 2358 case Builtin::BIfloorl: 2359 case Builtin::BI__builtin_floor: 2360 case Builtin::BI__builtin_floorf: 2361 case Builtin::BI__builtin_floorf16: 2362 case Builtin::BI__builtin_floorl: 2363 case Builtin::BI__builtin_floorf128: 2364 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2365 Intrinsic::floor, 2366 Intrinsic::experimental_constrained_floor)); 2367 2368 case Builtin::BIfma: 2369 case Builtin::BIfmaf: 2370 case Builtin::BIfmal: 2371 case Builtin::BI__builtin_fma: 2372 case Builtin::BI__builtin_fmaf: 2373 case Builtin::BI__builtin_fmaf16: 2374 case Builtin::BI__builtin_fmal: 2375 case Builtin::BI__builtin_fmaf128: 2376 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, 2377 Intrinsic::fma, 2378 Intrinsic::experimental_constrained_fma)); 2379 2380 case Builtin::BIfmax: 2381 case Builtin::BIfmaxf: 2382 case Builtin::BIfmaxl: 2383 case Builtin::BI__builtin_fmax: 2384 case Builtin::BI__builtin_fmaxf: 2385 case Builtin::BI__builtin_fmaxf16: 2386 case Builtin::BI__builtin_fmaxl: 2387 case Builtin::BI__builtin_fmaxf128: 2388 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2389 Intrinsic::maxnum, 2390 Intrinsic::experimental_constrained_maxnum)); 2391 2392 case Builtin::BIfmin: 2393 case Builtin::BIfminf: 2394 case Builtin::BIfminl: 2395 case Builtin::BI__builtin_fmin: 2396 case Builtin::BI__builtin_fminf: 2397 case Builtin::BI__builtin_fminf16: 2398 case Builtin::BI__builtin_fminl: 2399 case Builtin::BI__builtin_fminf128: 2400 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2401 Intrinsic::minnum, 2402 Intrinsic::experimental_constrained_minnum)); 2403 2404 // fmod() is a special-case. It maps to the frem instruction rather than an 2405 // LLVM intrinsic. 2406 case Builtin::BIfmod: 2407 case Builtin::BIfmodf: 2408 case Builtin::BIfmodl: 2409 case Builtin::BI__builtin_fmod: 2410 case Builtin::BI__builtin_fmodf: 2411 case Builtin::BI__builtin_fmodf16: 2412 case Builtin::BI__builtin_fmodl: 2413 case Builtin::BI__builtin_fmodf128: { 2414 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2415 Value *Arg1 = EmitScalarExpr(E->getArg(0)); 2416 Value *Arg2 = EmitScalarExpr(E->getArg(1)); 2417 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); 2418 } 2419 2420 case Builtin::BIlog: 2421 case Builtin::BIlogf: 2422 case Builtin::BIlogl: 2423 case Builtin::BI__builtin_log: 2424 case Builtin::BI__builtin_logf: 2425 case Builtin::BI__builtin_logf16: 2426 case Builtin::BI__builtin_logl: 2427 case Builtin::BI__builtin_logf128: 2428 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2429 Intrinsic::log, 2430 Intrinsic::experimental_constrained_log)); 2431 2432 case Builtin::BIlog10: 2433 case Builtin::BIlog10f: 2434 case Builtin::BIlog10l: 2435 case Builtin::BI__builtin_log10: 2436 case Builtin::BI__builtin_log10f: 2437 case Builtin::BI__builtin_log10f16: 2438 case Builtin::BI__builtin_log10l: 2439 case Builtin::BI__builtin_log10f128: 2440 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2441 Intrinsic::log10, 2442 Intrinsic::experimental_constrained_log10)); 2443 2444 case Builtin::BIlog2: 2445 case Builtin::BIlog2f: 2446 case Builtin::BIlog2l: 2447 case Builtin::BI__builtin_log2: 2448 case Builtin::BI__builtin_log2f: 2449 case Builtin::BI__builtin_log2f16: 2450 case Builtin::BI__builtin_log2l: 2451 case Builtin::BI__builtin_log2f128: 2452 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2453 Intrinsic::log2, 2454 Intrinsic::experimental_constrained_log2)); 2455 2456 case Builtin::BInearbyint: 2457 case Builtin::BInearbyintf: 2458 case Builtin::BInearbyintl: 2459 case Builtin::BI__builtin_nearbyint: 2460 case Builtin::BI__builtin_nearbyintf: 2461 case Builtin::BI__builtin_nearbyintl: 2462 case Builtin::BI__builtin_nearbyintf128: 2463 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2464 Intrinsic::nearbyint, 2465 Intrinsic::experimental_constrained_nearbyint)); 2466 2467 case Builtin::BIpow: 2468 case Builtin::BIpowf: 2469 case Builtin::BIpowl: 2470 case Builtin::BI__builtin_pow: 2471 case Builtin::BI__builtin_powf: 2472 case Builtin::BI__builtin_powf16: 2473 case Builtin::BI__builtin_powl: 2474 case Builtin::BI__builtin_powf128: 2475 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2476 Intrinsic::pow, 2477 Intrinsic::experimental_constrained_pow)); 2478 2479 case Builtin::BIrint: 2480 case Builtin::BIrintf: 2481 case Builtin::BIrintl: 2482 case Builtin::BI__builtin_rint: 2483 case Builtin::BI__builtin_rintf: 2484 case Builtin::BI__builtin_rintf16: 2485 case Builtin::BI__builtin_rintl: 2486 case Builtin::BI__builtin_rintf128: 2487 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2488 Intrinsic::rint, 2489 Intrinsic::experimental_constrained_rint)); 2490 2491 case Builtin::BIround: 2492 case Builtin::BIroundf: 2493 case Builtin::BIroundl: 2494 case Builtin::BI__builtin_round: 2495 case Builtin::BI__builtin_roundf: 2496 case Builtin::BI__builtin_roundf16: 2497 case Builtin::BI__builtin_roundl: 2498 case Builtin::BI__builtin_roundf128: 2499 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2500 Intrinsic::round, 2501 Intrinsic::experimental_constrained_round)); 2502 2503 case Builtin::BIsin: 2504 case Builtin::BIsinf: 2505 case Builtin::BIsinl: 2506 case Builtin::BI__builtin_sin: 2507 case Builtin::BI__builtin_sinf: 2508 case Builtin::BI__builtin_sinf16: 2509 case Builtin::BI__builtin_sinl: 2510 case Builtin::BI__builtin_sinf128: 2511 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2512 Intrinsic::sin, 2513 Intrinsic::experimental_constrained_sin)); 2514 2515 case Builtin::BIsqrt: 2516 case Builtin::BIsqrtf: 2517 case Builtin::BIsqrtl: 2518 case Builtin::BI__builtin_sqrt: 2519 case Builtin::BI__builtin_sqrtf: 2520 case Builtin::BI__builtin_sqrtf16: 2521 case Builtin::BI__builtin_sqrtl: 2522 case Builtin::BI__builtin_sqrtf128: 2523 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2524 Intrinsic::sqrt, 2525 Intrinsic::experimental_constrained_sqrt)); 2526 2527 case Builtin::BItrunc: 2528 case Builtin::BItruncf: 2529 case Builtin::BItruncl: 2530 case Builtin::BI__builtin_trunc: 2531 case Builtin::BI__builtin_truncf: 2532 case Builtin::BI__builtin_truncf16: 2533 case Builtin::BI__builtin_truncl: 2534 case Builtin::BI__builtin_truncf128: 2535 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2536 Intrinsic::trunc, 2537 Intrinsic::experimental_constrained_trunc)); 2538 2539 case Builtin::BIlround: 2540 case Builtin::BIlroundf: 2541 case Builtin::BIlroundl: 2542 case Builtin::BI__builtin_lround: 2543 case Builtin::BI__builtin_lroundf: 2544 case Builtin::BI__builtin_lroundl: 2545 case Builtin::BI__builtin_lroundf128: 2546 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2547 *this, E, Intrinsic::lround, 2548 Intrinsic::experimental_constrained_lround)); 2549 2550 case Builtin::BIllround: 2551 case Builtin::BIllroundf: 2552 case Builtin::BIllroundl: 2553 case Builtin::BI__builtin_llround: 2554 case Builtin::BI__builtin_llroundf: 2555 case Builtin::BI__builtin_llroundl: 2556 case Builtin::BI__builtin_llroundf128: 2557 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2558 *this, E, Intrinsic::llround, 2559 Intrinsic::experimental_constrained_llround)); 2560 2561 case Builtin::BIlrint: 2562 case Builtin::BIlrintf: 2563 case Builtin::BIlrintl: 2564 case Builtin::BI__builtin_lrint: 2565 case Builtin::BI__builtin_lrintf: 2566 case Builtin::BI__builtin_lrintl: 2567 case Builtin::BI__builtin_lrintf128: 2568 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2569 *this, E, Intrinsic::lrint, 2570 Intrinsic::experimental_constrained_lrint)); 2571 2572 case Builtin::BIllrint: 2573 case Builtin::BIllrintf: 2574 case Builtin::BIllrintl: 2575 case Builtin::BI__builtin_llrint: 2576 case Builtin::BI__builtin_llrintf: 2577 case Builtin::BI__builtin_llrintl: 2578 case Builtin::BI__builtin_llrintf128: 2579 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2580 *this, E, Intrinsic::llrint, 2581 Intrinsic::experimental_constrained_llrint)); 2582 2583 default: 2584 break; 2585 } 2586 } 2587 2588 switch (BuiltinIDIfNoAsmLabel) { 2589 default: break; 2590 case Builtin::BI__builtin___CFStringMakeConstantString: 2591 case Builtin::BI__builtin___NSStringMakeConstantString: 2592 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); 2593 case Builtin::BI__builtin_stdarg_start: 2594 case Builtin::BI__builtin_va_start: 2595 case Builtin::BI__va_start: 2596 case Builtin::BI__builtin_va_end: 2597 return RValue::get( 2598 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start 2599 ? EmitScalarExpr(E->getArg(0)) 2600 : EmitVAListRef(E->getArg(0)).getPointer(), 2601 BuiltinID != Builtin::BI__builtin_va_end)); 2602 case Builtin::BI__builtin_va_copy: { 2603 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); 2604 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); 2605 2606 llvm::Type *Type = Int8PtrTy; 2607 2608 DstPtr = Builder.CreateBitCast(DstPtr, Type); 2609 SrcPtr = Builder.CreateBitCast(SrcPtr, Type); 2610 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), 2611 {DstPtr, SrcPtr})); 2612 } 2613 case Builtin::BI__builtin_abs: 2614 case Builtin::BI__builtin_labs: 2615 case Builtin::BI__builtin_llabs: { 2616 // X < 0 ? -X : X 2617 // The negation has 'nsw' because abs of INT_MIN is undefined. 2618 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2619 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); 2620 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); 2621 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); 2622 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); 2623 return RValue::get(Result); 2624 } 2625 case Builtin::BI__builtin_complex: { 2626 Value *Real = EmitScalarExpr(E->getArg(0)); 2627 Value *Imag = EmitScalarExpr(E->getArg(1)); 2628 return RValue::getComplex({Real, Imag}); 2629 } 2630 case Builtin::BI__builtin_conj: 2631 case Builtin::BI__builtin_conjf: 2632 case Builtin::BI__builtin_conjl: 2633 case Builtin::BIconj: 2634 case Builtin::BIconjf: 2635 case Builtin::BIconjl: { 2636 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2637 Value *Real = ComplexVal.first; 2638 Value *Imag = ComplexVal.second; 2639 Imag = Builder.CreateFNeg(Imag, "neg"); 2640 return RValue::getComplex(std::make_pair(Real, Imag)); 2641 } 2642 case Builtin::BI__builtin_creal: 2643 case Builtin::BI__builtin_crealf: 2644 case Builtin::BI__builtin_creall: 2645 case Builtin::BIcreal: 2646 case Builtin::BIcrealf: 2647 case Builtin::BIcreall: { 2648 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2649 return RValue::get(ComplexVal.first); 2650 } 2651 2652 case Builtin::BI__builtin_dump_struct: { 2653 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); 2654 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( 2655 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); 2656 2657 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); 2658 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); 2659 2660 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); 2661 QualType Arg0Type = Arg0->getType()->getPointeeType(); 2662 2663 Value *RecordPtr = EmitScalarExpr(Arg0); 2664 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, 2665 {LLVMFuncType, Func}, 0); 2666 return RValue::get(Res); 2667 } 2668 2669 case Builtin::BI__builtin_preserve_access_index: { 2670 // Only enabled preserved access index region when debuginfo 2671 // is available as debuginfo is needed to preserve user-level 2672 // access pattern. 2673 if (!getDebugInfo()) { 2674 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); 2675 return RValue::get(EmitScalarExpr(E->getArg(0))); 2676 } 2677 2678 // Nested builtin_preserve_access_index() not supported 2679 if (IsInPreservedAIRegion) { 2680 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); 2681 return RValue::get(EmitScalarExpr(E->getArg(0))); 2682 } 2683 2684 IsInPreservedAIRegion = true; 2685 Value *Res = EmitScalarExpr(E->getArg(0)); 2686 IsInPreservedAIRegion = false; 2687 return RValue::get(Res); 2688 } 2689 2690 case Builtin::BI__builtin_cimag: 2691 case Builtin::BI__builtin_cimagf: 2692 case Builtin::BI__builtin_cimagl: 2693 case Builtin::BIcimag: 2694 case Builtin::BIcimagf: 2695 case Builtin::BIcimagl: { 2696 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2697 return RValue::get(ComplexVal.second); 2698 } 2699 2700 case Builtin::BI__builtin_clrsb: 2701 case Builtin::BI__builtin_clrsbl: 2702 case Builtin::BI__builtin_clrsbll: { 2703 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or 2704 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2705 2706 llvm::Type *ArgType = ArgValue->getType(); 2707 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2708 2709 llvm::Type *ResultType = ConvertType(E->getType()); 2710 Value *Zero = llvm::Constant::getNullValue(ArgType); 2711 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); 2712 Value *Inverse = Builder.CreateNot(ArgValue, "not"); 2713 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); 2714 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); 2715 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); 2716 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2717 "cast"); 2718 return RValue::get(Result); 2719 } 2720 case Builtin::BI__builtin_ctzs: 2721 case Builtin::BI__builtin_ctz: 2722 case Builtin::BI__builtin_ctzl: 2723 case Builtin::BI__builtin_ctzll: { 2724 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); 2725 2726 llvm::Type *ArgType = ArgValue->getType(); 2727 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2728 2729 llvm::Type *ResultType = ConvertType(E->getType()); 2730 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2731 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2732 if (Result->getType() != ResultType) 2733 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2734 "cast"); 2735 return RValue::get(Result); 2736 } 2737 case Builtin::BI__builtin_clzs: 2738 case Builtin::BI__builtin_clz: 2739 case Builtin::BI__builtin_clzl: 2740 case Builtin::BI__builtin_clzll: { 2741 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); 2742 2743 llvm::Type *ArgType = ArgValue->getType(); 2744 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2745 2746 llvm::Type *ResultType = ConvertType(E->getType()); 2747 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2748 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2749 if (Result->getType() != ResultType) 2750 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2751 "cast"); 2752 return RValue::get(Result); 2753 } 2754 case Builtin::BI__builtin_ffs: 2755 case Builtin::BI__builtin_ffsl: 2756 case Builtin::BI__builtin_ffsll: { 2757 // ffs(x) -> x ? cttz(x) + 1 : 0 2758 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2759 2760 llvm::Type *ArgType = ArgValue->getType(); 2761 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2762 2763 llvm::Type *ResultType = ConvertType(E->getType()); 2764 Value *Tmp = 2765 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), 2766 llvm::ConstantInt::get(ArgType, 1)); 2767 Value *Zero = llvm::Constant::getNullValue(ArgType); 2768 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); 2769 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); 2770 if (Result->getType() != ResultType) 2771 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2772 "cast"); 2773 return RValue::get(Result); 2774 } 2775 case Builtin::BI__builtin_parity: 2776 case Builtin::BI__builtin_parityl: 2777 case Builtin::BI__builtin_parityll: { 2778 // parity(x) -> ctpop(x) & 1 2779 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2780 2781 llvm::Type *ArgType = ArgValue->getType(); 2782 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2783 2784 llvm::Type *ResultType = ConvertType(E->getType()); 2785 Value *Tmp = Builder.CreateCall(F, ArgValue); 2786 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 2787 if (Result->getType() != ResultType) 2788 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2789 "cast"); 2790 return RValue::get(Result); 2791 } 2792 case Builtin::BI__lzcnt16: 2793 case Builtin::BI__lzcnt: 2794 case Builtin::BI__lzcnt64: { 2795 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2796 2797 llvm::Type *ArgType = ArgValue->getType(); 2798 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2799 2800 llvm::Type *ResultType = ConvertType(E->getType()); 2801 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); 2802 if (Result->getType() != ResultType) 2803 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2804 "cast"); 2805 return RValue::get(Result); 2806 } 2807 case Builtin::BI__popcnt16: 2808 case Builtin::BI__popcnt: 2809 case Builtin::BI__popcnt64: 2810 case Builtin::BI__builtin_popcount: 2811 case Builtin::BI__builtin_popcountl: 2812 case Builtin::BI__builtin_popcountll: { 2813 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2814 2815 llvm::Type *ArgType = ArgValue->getType(); 2816 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2817 2818 llvm::Type *ResultType = ConvertType(E->getType()); 2819 Value *Result = Builder.CreateCall(F, ArgValue); 2820 if (Result->getType() != ResultType) 2821 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2822 "cast"); 2823 return RValue::get(Result); 2824 } 2825 case Builtin::BI__builtin_unpredictable: { 2826 // Always return the argument of __builtin_unpredictable. LLVM does not 2827 // handle this builtin. Metadata for this builtin should be added directly 2828 // to instructions such as branches or switches that use it. 2829 return RValue::get(EmitScalarExpr(E->getArg(0))); 2830 } 2831 case Builtin::BI__builtin_expect: { 2832 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2833 llvm::Type *ArgType = ArgValue->getType(); 2834 2835 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2836 // Don't generate llvm.expect on -O0 as the backend won't use it for 2837 // anything. 2838 // Note, we still IRGen ExpectedValue because it could have side-effects. 2839 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2840 return RValue::get(ArgValue); 2841 2842 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); 2843 Value *Result = 2844 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); 2845 return RValue::get(Result); 2846 } 2847 case Builtin::BI__builtin_expect_with_probability: { 2848 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2849 llvm::Type *ArgType = ArgValue->getType(); 2850 2851 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2852 llvm::APFloat Probability(0.0); 2853 const Expr *ProbArg = E->getArg(2); 2854 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); 2855 assert(EvalSucceed && "probability should be able to evaluate as float"); 2856 (void)EvalSucceed; 2857 bool LoseInfo = false; 2858 Probability.convert(llvm::APFloat::IEEEdouble(), 2859 llvm::RoundingMode::Dynamic, &LoseInfo); 2860 llvm::Type *Ty = ConvertType(ProbArg->getType()); 2861 Constant *Confidence = ConstantFP::get(Ty, Probability); 2862 // Don't generate llvm.expect.with.probability on -O0 as the backend 2863 // won't use it for anything. 2864 // Note, we still IRGen ExpectedValue because it could have side-effects. 2865 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2866 return RValue::get(ArgValue); 2867 2868 Function *FnExpect = 2869 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); 2870 Value *Result = Builder.CreateCall( 2871 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); 2872 return RValue::get(Result); 2873 } 2874 case Builtin::BI__builtin_assume_aligned: { 2875 const Expr *Ptr = E->getArg(0); 2876 Value *PtrValue = EmitScalarExpr(Ptr); 2877 Value *OffsetValue = 2878 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; 2879 2880 Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); 2881 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); 2882 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 2883 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 2884 llvm::Value::MaximumAlignment); 2885 2886 emitAlignmentAssumption(PtrValue, Ptr, 2887 /*The expr loc is sufficient.*/ SourceLocation(), 2888 AlignmentCI, OffsetValue); 2889 return RValue::get(PtrValue); 2890 } 2891 case Builtin::BI__assume: 2892 case Builtin::BI__builtin_assume: { 2893 if (E->getArg(0)->HasSideEffects(getContext())) 2894 return RValue::get(nullptr); 2895 2896 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2897 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); 2898 return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); 2899 } 2900 case Builtin::BI__arithmetic_fence: { 2901 // Create the builtin call if FastMath is selected, and the target 2902 // supports the builtin, otherwise just return the argument. 2903 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2904 llvm::FastMathFlags FMF = Builder.getFastMathFlags(); 2905 bool isArithmeticFenceEnabled = 2906 FMF.allowReassoc() && 2907 getContext().getTargetInfo().checkArithmeticFenceSupported(); 2908 QualType ArgType = E->getArg(0)->getType(); 2909 if (ArgType->isComplexType()) { 2910 if (isArithmeticFenceEnabled) { 2911 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); 2912 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2913 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first, 2914 ConvertType(ElementType)); 2915 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second, 2916 ConvertType(ElementType)); 2917 return RValue::getComplex(std::make_pair(Real, Imag)); 2918 } 2919 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2920 Value *Real = ComplexVal.first; 2921 Value *Imag = ComplexVal.second; 2922 return RValue::getComplex(std::make_pair(Real, Imag)); 2923 } 2924 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2925 if (isArithmeticFenceEnabled) 2926 return RValue::get( 2927 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType))); 2928 return RValue::get(ArgValue); 2929 } 2930 case Builtin::BI__builtin_bswap16: 2931 case Builtin::BI__builtin_bswap32: 2932 case Builtin::BI__builtin_bswap64: { 2933 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); 2934 } 2935 case Builtin::BI__builtin_bitreverse8: 2936 case Builtin::BI__builtin_bitreverse16: 2937 case Builtin::BI__builtin_bitreverse32: 2938 case Builtin::BI__builtin_bitreverse64: { 2939 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); 2940 } 2941 case Builtin::BI__builtin_rotateleft8: 2942 case Builtin::BI__builtin_rotateleft16: 2943 case Builtin::BI__builtin_rotateleft32: 2944 case Builtin::BI__builtin_rotateleft64: 2945 case Builtin::BI_rotl8: // Microsoft variants of rotate left 2946 case Builtin::BI_rotl16: 2947 case Builtin::BI_rotl: 2948 case Builtin::BI_lrotl: 2949 case Builtin::BI_rotl64: 2950 return emitRotate(E, false); 2951 2952 case Builtin::BI__builtin_rotateright8: 2953 case Builtin::BI__builtin_rotateright16: 2954 case Builtin::BI__builtin_rotateright32: 2955 case Builtin::BI__builtin_rotateright64: 2956 case Builtin::BI_rotr8: // Microsoft variants of rotate right 2957 case Builtin::BI_rotr16: 2958 case Builtin::BI_rotr: 2959 case Builtin::BI_lrotr: 2960 case Builtin::BI_rotr64: 2961 return emitRotate(E, true); 2962 2963 case Builtin::BI__builtin_constant_p: { 2964 llvm::Type *ResultType = ConvertType(E->getType()); 2965 2966 const Expr *Arg = E->getArg(0); 2967 QualType ArgType = Arg->getType(); 2968 // FIXME: The allowance for Obj-C pointers and block pointers is historical 2969 // and likely a mistake. 2970 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && 2971 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) 2972 // Per the GCC documentation, only numeric constants are recognized after 2973 // inlining. 2974 return RValue::get(ConstantInt::get(ResultType, 0)); 2975 2976 if (Arg->HasSideEffects(getContext())) 2977 // The argument is unevaluated, so be conservative if it might have 2978 // side-effects. 2979 return RValue::get(ConstantInt::get(ResultType, 0)); 2980 2981 Value *ArgValue = EmitScalarExpr(Arg); 2982 if (ArgType->isObjCObjectPointerType()) { 2983 // Convert Objective-C objects to id because we cannot distinguish between 2984 // LLVM types for Obj-C classes as they are opaque. 2985 ArgType = CGM.getContext().getObjCIdType(); 2986 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); 2987 } 2988 Function *F = 2989 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); 2990 Value *Result = Builder.CreateCall(F, ArgValue); 2991 if (Result->getType() != ResultType) 2992 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); 2993 return RValue::get(Result); 2994 } 2995 case Builtin::BI__builtin_dynamic_object_size: 2996 case Builtin::BI__builtin_object_size: { 2997 unsigned Type = 2998 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); 2999 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); 3000 3001 // We pass this builtin onto the optimizer so that it can figure out the 3002 // object size in more complex cases. 3003 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; 3004 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, 3005 /*EmittedE=*/nullptr, IsDynamic)); 3006 } 3007 case Builtin::BI__builtin_prefetch: { 3008 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); 3009 // FIXME: Technically these constants should of type 'int', yes? 3010 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : 3011 llvm::ConstantInt::get(Int32Ty, 0); 3012 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : 3013 llvm::ConstantInt::get(Int32Ty, 3); 3014 Value *Data = llvm::ConstantInt::get(Int32Ty, 1); 3015 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 3016 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); 3017 } 3018 case Builtin::BI__builtin_readcyclecounter: { 3019 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); 3020 return RValue::get(Builder.CreateCall(F)); 3021 } 3022 case Builtin::BI__builtin___clear_cache: { 3023 Value *Begin = EmitScalarExpr(E->getArg(0)); 3024 Value *End = EmitScalarExpr(E->getArg(1)); 3025 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); 3026 return RValue::get(Builder.CreateCall(F, {Begin, End})); 3027 } 3028 case Builtin::BI__builtin_trap: 3029 return RValue::get(EmitTrapCall(Intrinsic::trap)); 3030 case Builtin::BI__debugbreak: 3031 return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); 3032 case Builtin::BI__builtin_unreachable: { 3033 EmitUnreachable(E->getExprLoc()); 3034 3035 // We do need to preserve an insertion point. 3036 EmitBlock(createBasicBlock("unreachable.cont")); 3037 3038 return RValue::get(nullptr); 3039 } 3040 3041 case Builtin::BI__builtin_powi: 3042 case Builtin::BI__builtin_powif: 3043 case Builtin::BI__builtin_powil: { 3044 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 3045 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 3046 3047 if (Builder.getIsFPConstrained()) { 3048 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3049 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi, 3050 Src0->getType()); 3051 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 })); 3052 } 3053 3054 Function *F = CGM.getIntrinsic(Intrinsic::powi, 3055 { Src0->getType(), Src1->getType() }); 3056 return RValue::get(Builder.CreateCall(F, { Src0, Src1 })); 3057 } 3058 case Builtin::BI__builtin_isgreater: 3059 case Builtin::BI__builtin_isgreaterequal: 3060 case Builtin::BI__builtin_isless: 3061 case Builtin::BI__builtin_islessequal: 3062 case Builtin::BI__builtin_islessgreater: 3063 case Builtin::BI__builtin_isunordered: { 3064 // Ordered comparisons: we know the arguments to these are matching scalar 3065 // floating point values. 3066 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3067 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3068 Value *LHS = EmitScalarExpr(E->getArg(0)); 3069 Value *RHS = EmitScalarExpr(E->getArg(1)); 3070 3071 switch (BuiltinID) { 3072 default: llvm_unreachable("Unknown ordered comparison"); 3073 case Builtin::BI__builtin_isgreater: 3074 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); 3075 break; 3076 case Builtin::BI__builtin_isgreaterequal: 3077 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); 3078 break; 3079 case Builtin::BI__builtin_isless: 3080 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); 3081 break; 3082 case Builtin::BI__builtin_islessequal: 3083 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); 3084 break; 3085 case Builtin::BI__builtin_islessgreater: 3086 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); 3087 break; 3088 case Builtin::BI__builtin_isunordered: 3089 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); 3090 break; 3091 } 3092 // ZExt bool to int type. 3093 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); 3094 } 3095 case Builtin::BI__builtin_isnan: { 3096 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3097 Value *V = EmitScalarExpr(E->getArg(0)); 3098 llvm::Type *Ty = V->getType(); 3099 const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); 3100 if (!Builder.getIsFPConstrained() || 3101 Builder.getDefaultConstrainedExcept() == fp::ebIgnore || 3102 !Ty->isIEEE()) { 3103 V = Builder.CreateFCmpUNO(V, V, "cmp"); 3104 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3105 } 3106 3107 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) 3108 return RValue::get(Result); 3109 3110 // NaN has all exp bits set and a non zero significand. Therefore: 3111 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0) 3112 unsigned bitsize = Ty->getScalarSizeInBits(); 3113 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); 3114 Value *IntV = Builder.CreateBitCast(V, IntTy); 3115 APInt AndMask = APInt::getSignedMaxValue(bitsize); 3116 Value *AbsV = 3117 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask)); 3118 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); 3119 Value *Sub = 3120 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV); 3121 // V = sign bit (Sub) <=> V = (Sub < 0) 3122 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1)); 3123 if (bitsize > 32) 3124 V = Builder.CreateTrunc(V, ConvertType(E->getType())); 3125 return RValue::get(V); 3126 } 3127 3128 case Builtin::BI__builtin_elementwise_abs: { 3129 Value *Result; 3130 QualType QT = E->getArg(0)->getType(); 3131 3132 if (auto *VecTy = QT->getAs<VectorType>()) 3133 QT = VecTy->getElementType(); 3134 if (QT->isIntegerType()) 3135 Result = Builder.CreateBinaryIntrinsic( 3136 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)), 3137 Builder.getFalse(), nullptr, "elt.abs"); 3138 else 3139 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs"); 3140 3141 return RValue::get(Result); 3142 } 3143 3144 case Builtin::BI__builtin_elementwise_ceil: 3145 return RValue::get( 3146 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil")); 3147 case Builtin::BI__builtin_elementwise_floor: 3148 return RValue::get( 3149 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor")); 3150 case Builtin::BI__builtin_elementwise_roundeven: 3151 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven, 3152 "elt.roundeven")); 3153 case Builtin::BI__builtin_elementwise_trunc: 3154 return RValue::get( 3155 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc")); 3156 3157 case Builtin::BI__builtin_elementwise_max: { 3158 Value *Op0 = EmitScalarExpr(E->getArg(0)); 3159 Value *Op1 = EmitScalarExpr(E->getArg(1)); 3160 Value *Result; 3161 if (Op0->getType()->isIntOrIntVectorTy()) { 3162 QualType Ty = E->getArg(0)->getType(); 3163 if (auto *VecTy = Ty->getAs<VectorType>()) 3164 Ty = VecTy->getElementType(); 3165 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() 3166 ? llvm::Intrinsic::smax 3167 : llvm::Intrinsic::umax, 3168 Op0, Op1, nullptr, "elt.max"); 3169 } else 3170 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max"); 3171 return RValue::get(Result); 3172 } 3173 case Builtin::BI__builtin_elementwise_min: { 3174 Value *Op0 = EmitScalarExpr(E->getArg(0)); 3175 Value *Op1 = EmitScalarExpr(E->getArg(1)); 3176 Value *Result; 3177 if (Op0->getType()->isIntOrIntVectorTy()) { 3178 QualType Ty = E->getArg(0)->getType(); 3179 if (auto *VecTy = Ty->getAs<VectorType>()) 3180 Ty = VecTy->getElementType(); 3181 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() 3182 ? llvm::Intrinsic::smin 3183 : llvm::Intrinsic::umin, 3184 Op0, Op1, nullptr, "elt.min"); 3185 } else 3186 Result = Builder.CreateMinNum(Op0, Op1, "elt.min"); 3187 return RValue::get(Result); 3188 } 3189 3190 case Builtin::BI__builtin_reduce_max: { 3191 auto GetIntrinsicID = [](QualType QT) { 3192 if (auto *VecTy = QT->getAs<VectorType>()) 3193 QT = VecTy->getElementType(); 3194 if (QT->isSignedIntegerType()) 3195 return llvm::Intrinsic::vector_reduce_smax; 3196 if (QT->isUnsignedIntegerType()) 3197 return llvm::Intrinsic::vector_reduce_umax; 3198 assert(QT->isFloatingType() && "must have a float here"); 3199 return llvm::Intrinsic::vector_reduce_fmax; 3200 }; 3201 return RValue::get(emitUnaryBuiltin( 3202 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min")); 3203 } 3204 3205 case Builtin::BI__builtin_reduce_min: { 3206 auto GetIntrinsicID = [](QualType QT) { 3207 if (auto *VecTy = QT->getAs<VectorType>()) 3208 QT = VecTy->getElementType(); 3209 if (QT->isSignedIntegerType()) 3210 return llvm::Intrinsic::vector_reduce_smin; 3211 if (QT->isUnsignedIntegerType()) 3212 return llvm::Intrinsic::vector_reduce_umin; 3213 assert(QT->isFloatingType() && "must have a float here"); 3214 return llvm::Intrinsic::vector_reduce_fmin; 3215 }; 3216 3217 return RValue::get(emitUnaryBuiltin( 3218 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min")); 3219 } 3220 3221 case Builtin::BI__builtin_reduce_xor: 3222 return RValue::get(emitUnaryBuiltin( 3223 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor")); 3224 case Builtin::BI__builtin_reduce_or: 3225 return RValue::get(emitUnaryBuiltin( 3226 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or")); 3227 case Builtin::BI__builtin_reduce_and: 3228 return RValue::get(emitUnaryBuiltin( 3229 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and")); 3230 3231 case Builtin::BI__builtin_matrix_transpose: { 3232 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>(); 3233 Value *MatValue = EmitScalarExpr(E->getArg(0)); 3234 MatrixBuilder<CGBuilderTy> MB(Builder); 3235 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), 3236 MatrixTy->getNumColumns()); 3237 return RValue::get(Result); 3238 } 3239 3240 case Builtin::BI__builtin_matrix_column_major_load: { 3241 MatrixBuilder<CGBuilderTy> MB(Builder); 3242 // Emit everything that isn't dependent on the first parameter type 3243 Value *Stride = EmitScalarExpr(E->getArg(3)); 3244 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); 3245 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); 3246 assert(PtrTy && "arg0 must be of pointer type"); 3247 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3248 3249 Address Src = EmitPointerWithAlignment(E->getArg(0)); 3250 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), 3251 E->getArg(0)->getExprLoc(), FD, 0); 3252 Value *Result = MB.CreateColumnMajorLoad( 3253 Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, 3254 IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), 3255 "matrix"); 3256 return RValue::get(Result); 3257 } 3258 3259 case Builtin::BI__builtin_matrix_column_major_store: { 3260 MatrixBuilder<CGBuilderTy> MB(Builder); 3261 Value *Matrix = EmitScalarExpr(E->getArg(0)); 3262 Address Dst = EmitPointerWithAlignment(E->getArg(1)); 3263 Value *Stride = EmitScalarExpr(E->getArg(2)); 3264 3265 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 3266 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); 3267 assert(PtrTy && "arg1 must be of pointer type"); 3268 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3269 3270 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), 3271 E->getArg(1)->getExprLoc(), FD, 0); 3272 Value *Result = MB.CreateColumnMajorStore( 3273 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), 3274 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); 3275 return RValue::get(Result); 3276 } 3277 3278 case Builtin::BIfinite: 3279 case Builtin::BI__finite: 3280 case Builtin::BIfinitef: 3281 case Builtin::BI__finitef: 3282 case Builtin::BIfinitel: 3283 case Builtin::BI__finitel: 3284 case Builtin::BI__builtin_isinf: 3285 case Builtin::BI__builtin_isfinite: { 3286 // isinf(x) --> fabs(x) == infinity 3287 // isfinite(x) --> fabs(x) != infinity 3288 // x != NaN via the ordered compare in either case. 3289 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3290 Value *V = EmitScalarExpr(E->getArg(0)); 3291 llvm::Type *Ty = V->getType(); 3292 if (!Builder.getIsFPConstrained() || 3293 Builder.getDefaultConstrainedExcept() == fp::ebIgnore || 3294 !Ty->isIEEE()) { 3295 Value *Fabs = EmitFAbs(*this, V); 3296 Constant *Infinity = ConstantFP::getInfinity(V->getType()); 3297 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) 3298 ? CmpInst::FCMP_OEQ 3299 : CmpInst::FCMP_ONE; 3300 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); 3301 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); 3302 } 3303 3304 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) 3305 return RValue::get(Result); 3306 3307 // Inf values have all exp bits set and a zero significand. Therefore: 3308 // isinf(V) == ((V << 1) == ((exp mask) << 1)) 3309 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison 3310 unsigned bitsize = Ty->getScalarSizeInBits(); 3311 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); 3312 Value *IntV = Builder.CreateBitCast(V, IntTy); 3313 Value *Shl1 = Builder.CreateShl(IntV, 1); 3314 const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); 3315 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); 3316 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1)); 3317 if (BuiltinID == Builtin::BI__builtin_isinf) 3318 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1); 3319 else 3320 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1); 3321 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3322 } 3323 3324 case Builtin::BI__builtin_isinf_sign: { 3325 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 3326 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3327 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3328 Value *Arg = EmitScalarExpr(E->getArg(0)); 3329 Value *AbsArg = EmitFAbs(*this, Arg); 3330 Value *IsInf = Builder.CreateFCmpOEQ( 3331 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); 3332 Value *IsNeg = EmitSignBit(*this, Arg); 3333 3334 llvm::Type *IntTy = ConvertType(E->getType()); 3335 Value *Zero = Constant::getNullValue(IntTy); 3336 Value *One = ConstantInt::get(IntTy, 1); 3337 Value *NegativeOne = ConstantInt::get(IntTy, -1); 3338 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); 3339 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); 3340 return RValue::get(Result); 3341 } 3342 3343 case Builtin::BI__builtin_isnormal: { 3344 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min 3345 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3346 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3347 Value *V = EmitScalarExpr(E->getArg(0)); 3348 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 3349 3350 Value *Abs = EmitFAbs(*this, V); 3351 Value *IsLessThanInf = 3352 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 3353 APFloat Smallest = APFloat::getSmallestNormalized( 3354 getContext().getFloatTypeSemantics(E->getArg(0)->getType())); 3355 Value *IsNormal = 3356 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), 3357 "isnormal"); 3358 V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); 3359 V = Builder.CreateAnd(V, IsNormal, "and"); 3360 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3361 } 3362 3363 case Builtin::BI__builtin_flt_rounds: { 3364 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); 3365 3366 llvm::Type *ResultType = ConvertType(E->getType()); 3367 Value *Result = Builder.CreateCall(F); 3368 if (Result->getType() != ResultType) 3369 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 3370 "cast"); 3371 return RValue::get(Result); 3372 } 3373 3374 case Builtin::BI__builtin_fpclassify: { 3375 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3376 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3377 Value *V = EmitScalarExpr(E->getArg(5)); 3378 llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); 3379 3380 // Create Result 3381 BasicBlock *Begin = Builder.GetInsertBlock(); 3382 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); 3383 Builder.SetInsertPoint(End); 3384 PHINode *Result = 3385 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, 3386 "fpclassify_result"); 3387 3388 // if (V==0) return FP_ZERO 3389 Builder.SetInsertPoint(Begin); 3390 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), 3391 "iszero"); 3392 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); 3393 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); 3394 Builder.CreateCondBr(IsZero, End, NotZero); 3395 Result->addIncoming(ZeroLiteral, Begin); 3396 3397 // if (V != V) return FP_NAN 3398 Builder.SetInsertPoint(NotZero); 3399 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); 3400 Value *NanLiteral = EmitScalarExpr(E->getArg(0)); 3401 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); 3402 Builder.CreateCondBr(IsNan, End, NotNan); 3403 Result->addIncoming(NanLiteral, NotZero); 3404 3405 // if (fabs(V) == infinity) return FP_INFINITY 3406 Builder.SetInsertPoint(NotNan); 3407 Value *VAbs = EmitFAbs(*this, V); 3408 Value *IsInf = 3409 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), 3410 "isinf"); 3411 Value *InfLiteral = EmitScalarExpr(E->getArg(1)); 3412 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); 3413 Builder.CreateCondBr(IsInf, End, NotInf); 3414 Result->addIncoming(InfLiteral, NotNan); 3415 3416 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL 3417 Builder.SetInsertPoint(NotInf); 3418 APFloat Smallest = APFloat::getSmallestNormalized( 3419 getContext().getFloatTypeSemantics(E->getArg(5)->getType())); 3420 Value *IsNormal = 3421 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), 3422 "isnormal"); 3423 Value *NormalResult = 3424 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), 3425 EmitScalarExpr(E->getArg(3))); 3426 Builder.CreateBr(End); 3427 Result->addIncoming(NormalResult, NotInf); 3428 3429 // return Result 3430 Builder.SetInsertPoint(End); 3431 return RValue::get(Result); 3432 } 3433 3434 case Builtin::BIalloca: 3435 case Builtin::BI_alloca: 3436 case Builtin::BI__builtin_alloca_uninitialized: 3437 case Builtin::BI__builtin_alloca: { 3438 Value *Size = EmitScalarExpr(E->getArg(0)); 3439 const TargetInfo &TI = getContext().getTargetInfo(); 3440 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. 3441 const Align SuitableAlignmentInBytes = 3442 CGM.getContext() 3443 .toCharUnitsFromBits(TI.getSuitableAlign()) 3444 .getAsAlign(); 3445 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3446 AI->setAlignment(SuitableAlignmentInBytes); 3447 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized) 3448 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); 3449 return RValue::get(AI); 3450 } 3451 3452 case Builtin::BI__builtin_alloca_with_align_uninitialized: 3453 case Builtin::BI__builtin_alloca_with_align: { 3454 Value *Size = EmitScalarExpr(E->getArg(0)); 3455 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); 3456 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); 3457 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); 3458 const Align AlignmentInBytes = 3459 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); 3460 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3461 AI->setAlignment(AlignmentInBytes); 3462 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized) 3463 initializeAlloca(*this, AI, Size, AlignmentInBytes); 3464 return RValue::get(AI); 3465 } 3466 3467 case Builtin::BIbzero: 3468 case Builtin::BI__builtin_bzero: { 3469 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3470 Value *SizeVal = EmitScalarExpr(E->getArg(1)); 3471 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3472 E->getArg(0)->getExprLoc(), FD, 0); 3473 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); 3474 return RValue::get(nullptr); 3475 } 3476 case Builtin::BImemcpy: 3477 case Builtin::BI__builtin_memcpy: 3478 case Builtin::BImempcpy: 3479 case Builtin::BI__builtin_mempcpy: { 3480 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3481 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3482 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3483 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3484 E->getArg(0)->getExprLoc(), FD, 0); 3485 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3486 E->getArg(1)->getExprLoc(), FD, 1); 3487 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3488 if (BuiltinID == Builtin::BImempcpy || 3489 BuiltinID == Builtin::BI__builtin_mempcpy) 3490 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(), 3491 Dest.getPointer(), SizeVal)); 3492 else 3493 return RValue::get(Dest.getPointer()); 3494 } 3495 3496 case Builtin::BI__builtin_memcpy_inline: { 3497 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3498 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3499 uint64_t Size = 3500 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); 3501 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3502 E->getArg(0)->getExprLoc(), FD, 0); 3503 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3504 E->getArg(1)->getExprLoc(), FD, 1); 3505 Builder.CreateMemCpyInline(Dest, Src, Size); 3506 return RValue::get(nullptr); 3507 } 3508 3509 case Builtin::BI__builtin_char_memchr: 3510 BuiltinID = Builtin::BI__builtin_memchr; 3511 break; 3512 3513 case Builtin::BI__builtin___memcpy_chk: { 3514 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. 3515 Expr::EvalResult SizeResult, DstSizeResult; 3516 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3517 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3518 break; 3519 llvm::APSInt Size = SizeResult.Val.getInt(); 3520 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3521 if (Size.ugt(DstSize)) 3522 break; 3523 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3524 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3525 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3526 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3527 return RValue::get(Dest.getPointer()); 3528 } 3529 3530 case Builtin::BI__builtin_objc_memmove_collectable: { 3531 Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); 3532 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); 3533 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3534 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, 3535 DestAddr, SrcAddr, SizeVal); 3536 return RValue::get(DestAddr.getPointer()); 3537 } 3538 3539 case Builtin::BI__builtin___memmove_chk: { 3540 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. 3541 Expr::EvalResult SizeResult, DstSizeResult; 3542 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3543 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3544 break; 3545 llvm::APSInt Size = SizeResult.Val.getInt(); 3546 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3547 if (Size.ugt(DstSize)) 3548 break; 3549 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3550 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3551 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3552 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3553 return RValue::get(Dest.getPointer()); 3554 } 3555 3556 case Builtin::BImemmove: 3557 case Builtin::BI__builtin_memmove: { 3558 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3559 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3560 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3561 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3562 E->getArg(0)->getExprLoc(), FD, 0); 3563 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3564 E->getArg(1)->getExprLoc(), FD, 1); 3565 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3566 return RValue::get(Dest.getPointer()); 3567 } 3568 case Builtin::BImemset: 3569 case Builtin::BI__builtin_memset: { 3570 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3571 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3572 Builder.getInt8Ty()); 3573 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3574 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3575 E->getArg(0)->getExprLoc(), FD, 0); 3576 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3577 return RValue::get(Dest.getPointer()); 3578 } 3579 case Builtin::BI__builtin___memset_chk: { 3580 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. 3581 Expr::EvalResult SizeResult, DstSizeResult; 3582 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3583 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3584 break; 3585 llvm::APSInt Size = SizeResult.Val.getInt(); 3586 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3587 if (Size.ugt(DstSize)) 3588 break; 3589 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3590 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3591 Builder.getInt8Ty()); 3592 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3593 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3594 return RValue::get(Dest.getPointer()); 3595 } 3596 case Builtin::BI__builtin_wmemchr: { 3597 // The MSVC runtime library does not provide a definition of wmemchr, so we 3598 // need an inline implementation. 3599 if (!getTarget().getTriple().isOSMSVCRT()) 3600 break; 3601 3602 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3603 Value *Str = EmitScalarExpr(E->getArg(0)); 3604 Value *Chr = EmitScalarExpr(E->getArg(1)); 3605 Value *Size = EmitScalarExpr(E->getArg(2)); 3606 3607 BasicBlock *Entry = Builder.GetInsertBlock(); 3608 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); 3609 BasicBlock *Next = createBasicBlock("wmemchr.next"); 3610 BasicBlock *Exit = createBasicBlock("wmemchr.exit"); 3611 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3612 Builder.CreateCondBr(SizeEq0, Exit, CmpEq); 3613 3614 EmitBlock(CmpEq); 3615 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); 3616 StrPhi->addIncoming(Str, Entry); 3617 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3618 SizePhi->addIncoming(Size, Entry); 3619 CharUnits WCharAlign = 3620 getContext().getTypeAlignInChars(getContext().WCharTy); 3621 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); 3622 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); 3623 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); 3624 Builder.CreateCondBr(StrEqChr, Exit, Next); 3625 3626 EmitBlock(Next); 3627 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); 3628 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3629 Value *NextSizeEq0 = 3630 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3631 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); 3632 StrPhi->addIncoming(NextStr, Next); 3633 SizePhi->addIncoming(NextSize, Next); 3634 3635 EmitBlock(Exit); 3636 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); 3637 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); 3638 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); 3639 Ret->addIncoming(FoundChr, CmpEq); 3640 return RValue::get(Ret); 3641 } 3642 case Builtin::BI__builtin_wmemcmp: { 3643 // The MSVC runtime library does not provide a definition of wmemcmp, so we 3644 // need an inline implementation. 3645 if (!getTarget().getTriple().isOSMSVCRT()) 3646 break; 3647 3648 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3649 3650 Value *Dst = EmitScalarExpr(E->getArg(0)); 3651 Value *Src = EmitScalarExpr(E->getArg(1)); 3652 Value *Size = EmitScalarExpr(E->getArg(2)); 3653 3654 BasicBlock *Entry = Builder.GetInsertBlock(); 3655 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); 3656 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); 3657 BasicBlock *Next = createBasicBlock("wmemcmp.next"); 3658 BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); 3659 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3660 Builder.CreateCondBr(SizeEq0, Exit, CmpGT); 3661 3662 EmitBlock(CmpGT); 3663 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); 3664 DstPhi->addIncoming(Dst, Entry); 3665 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); 3666 SrcPhi->addIncoming(Src, Entry); 3667 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3668 SizePhi->addIncoming(Size, Entry); 3669 CharUnits WCharAlign = 3670 getContext().getTypeAlignInChars(getContext().WCharTy); 3671 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); 3672 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); 3673 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); 3674 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); 3675 3676 EmitBlock(CmpLT); 3677 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); 3678 Builder.CreateCondBr(DstLtSrc, Exit, Next); 3679 3680 EmitBlock(Next); 3681 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); 3682 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); 3683 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3684 Value *NextSizeEq0 = 3685 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3686 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); 3687 DstPhi->addIncoming(NextDst, Next); 3688 SrcPhi->addIncoming(NextSrc, Next); 3689 SizePhi->addIncoming(NextSize, Next); 3690 3691 EmitBlock(Exit); 3692 PHINode *Ret = Builder.CreatePHI(IntTy, 4); 3693 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); 3694 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); 3695 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); 3696 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); 3697 return RValue::get(Ret); 3698 } 3699 case Builtin::BI__builtin_dwarf_cfa: { 3700 // The offset in bytes from the first argument to the CFA. 3701 // 3702 // Why on earth is this in the frontend? Is there any reason at 3703 // all that the backend can't reasonably determine this while 3704 // lowering llvm.eh.dwarf.cfa()? 3705 // 3706 // TODO: If there's a satisfactory reason, add a target hook for 3707 // this instead of hard-coding 0, which is correct for most targets. 3708 int32_t Offset = 0; 3709 3710 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); 3711 return RValue::get(Builder.CreateCall(F, 3712 llvm::ConstantInt::get(Int32Ty, Offset))); 3713 } 3714 case Builtin::BI__builtin_return_address: { 3715 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3716 getContext().UnsignedIntTy); 3717 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3718 return RValue::get(Builder.CreateCall(F, Depth)); 3719 } 3720 case Builtin::BI_ReturnAddress: { 3721 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3722 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); 3723 } 3724 case Builtin::BI__builtin_frame_address: { 3725 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3726 getContext().UnsignedIntTy); 3727 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); 3728 return RValue::get(Builder.CreateCall(F, Depth)); 3729 } 3730 case Builtin::BI__builtin_extract_return_addr: { 3731 Value *Address = EmitScalarExpr(E->getArg(0)); 3732 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); 3733 return RValue::get(Result); 3734 } 3735 case Builtin::BI__builtin_frob_return_addr: { 3736 Value *Address = EmitScalarExpr(E->getArg(0)); 3737 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); 3738 return RValue::get(Result); 3739 } 3740 case Builtin::BI__builtin_dwarf_sp_column: { 3741 llvm::IntegerType *Ty 3742 = cast<llvm::IntegerType>(ConvertType(E->getType())); 3743 int Column = getTargetHooks().getDwarfEHStackPointer(CGM); 3744 if (Column == -1) { 3745 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); 3746 return RValue::get(llvm::UndefValue::get(Ty)); 3747 } 3748 return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); 3749 } 3750 case Builtin::BI__builtin_init_dwarf_reg_size_table: { 3751 Value *Address = EmitScalarExpr(E->getArg(0)); 3752 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) 3753 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); 3754 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); 3755 } 3756 case Builtin::BI__builtin_eh_return: { 3757 Value *Int = EmitScalarExpr(E->getArg(0)); 3758 Value *Ptr = EmitScalarExpr(E->getArg(1)); 3759 3760 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); 3761 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && 3762 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); 3763 Function *F = 3764 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 3765 : Intrinsic::eh_return_i64); 3766 Builder.CreateCall(F, {Int, Ptr}); 3767 Builder.CreateUnreachable(); 3768 3769 // We do need to preserve an insertion point. 3770 EmitBlock(createBasicBlock("builtin_eh_return.cont")); 3771 3772 return RValue::get(nullptr); 3773 } 3774 case Builtin::BI__builtin_unwind_init: { 3775 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); 3776 return RValue::get(Builder.CreateCall(F)); 3777 } 3778 case Builtin::BI__builtin_extend_pointer: { 3779 // Extends a pointer to the size of an _Unwind_Word, which is 3780 // uint64_t on all platforms. Generally this gets poked into a 3781 // register and eventually used as an address, so if the 3782 // addressing registers are wider than pointers and the platform 3783 // doesn't implicitly ignore high-order bits when doing 3784 // addressing, we need to make sure we zext / sext based on 3785 // the platform's expectations. 3786 // 3787 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html 3788 3789 // Cast the pointer to intptr_t. 3790 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3791 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); 3792 3793 // If that's 64 bits, we're done. 3794 if (IntPtrTy->getBitWidth() == 64) 3795 return RValue::get(Result); 3796 3797 // Otherwise, ask the codegen data what to do. 3798 if (getTargetHooks().extendPointerWithSExt()) 3799 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); 3800 else 3801 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); 3802 } 3803 case Builtin::BI__builtin_setjmp: { 3804 // Buffer is a void**. 3805 Address Buf = EmitPointerWithAlignment(E->getArg(0)); 3806 3807 // Store the frame pointer to the setjmp buffer. 3808 Value *FrameAddr = Builder.CreateCall( 3809 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), 3810 ConstantInt::get(Int32Ty, 0)); 3811 Builder.CreateStore(FrameAddr, Buf); 3812 3813 // Store the stack pointer to the setjmp buffer. 3814 Value *StackAddr = 3815 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); 3816 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); 3817 Builder.CreateStore(StackAddr, StackSaveSlot); 3818 3819 // Call LLVM's EH setjmp, which is lightweight. 3820 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); 3821 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3822 return RValue::get(Builder.CreateCall(F, Buf.getPointer())); 3823 } 3824 case Builtin::BI__builtin_longjmp: { 3825 Value *Buf = EmitScalarExpr(E->getArg(0)); 3826 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3827 3828 // Call LLVM's EH longjmp, which is lightweight. 3829 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); 3830 3831 // longjmp doesn't return; mark this as unreachable. 3832 Builder.CreateUnreachable(); 3833 3834 // We do need to preserve an insertion point. 3835 EmitBlock(createBasicBlock("longjmp.cont")); 3836 3837 return RValue::get(nullptr); 3838 } 3839 case Builtin::BI__builtin_launder: { 3840 const Expr *Arg = E->getArg(0); 3841 QualType ArgTy = Arg->getType()->getPointeeType(); 3842 Value *Ptr = EmitScalarExpr(Arg); 3843 if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) 3844 Ptr = Builder.CreateLaunderInvariantGroup(Ptr); 3845 3846 return RValue::get(Ptr); 3847 } 3848 case Builtin::BI__sync_fetch_and_add: 3849 case Builtin::BI__sync_fetch_and_sub: 3850 case Builtin::BI__sync_fetch_and_or: 3851 case Builtin::BI__sync_fetch_and_and: 3852 case Builtin::BI__sync_fetch_and_xor: 3853 case Builtin::BI__sync_fetch_and_nand: 3854 case Builtin::BI__sync_add_and_fetch: 3855 case Builtin::BI__sync_sub_and_fetch: 3856 case Builtin::BI__sync_and_and_fetch: 3857 case Builtin::BI__sync_or_and_fetch: 3858 case Builtin::BI__sync_xor_and_fetch: 3859 case Builtin::BI__sync_nand_and_fetch: 3860 case Builtin::BI__sync_val_compare_and_swap: 3861 case Builtin::BI__sync_bool_compare_and_swap: 3862 case Builtin::BI__sync_lock_test_and_set: 3863 case Builtin::BI__sync_lock_release: 3864 case Builtin::BI__sync_swap: 3865 llvm_unreachable("Shouldn't make it through sema"); 3866 case Builtin::BI__sync_fetch_and_add_1: 3867 case Builtin::BI__sync_fetch_and_add_2: 3868 case Builtin::BI__sync_fetch_and_add_4: 3869 case Builtin::BI__sync_fetch_and_add_8: 3870 case Builtin::BI__sync_fetch_and_add_16: 3871 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); 3872 case Builtin::BI__sync_fetch_and_sub_1: 3873 case Builtin::BI__sync_fetch_and_sub_2: 3874 case Builtin::BI__sync_fetch_and_sub_4: 3875 case Builtin::BI__sync_fetch_and_sub_8: 3876 case Builtin::BI__sync_fetch_and_sub_16: 3877 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); 3878 case Builtin::BI__sync_fetch_and_or_1: 3879 case Builtin::BI__sync_fetch_and_or_2: 3880 case Builtin::BI__sync_fetch_and_or_4: 3881 case Builtin::BI__sync_fetch_and_or_8: 3882 case Builtin::BI__sync_fetch_and_or_16: 3883 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); 3884 case Builtin::BI__sync_fetch_and_and_1: 3885 case Builtin::BI__sync_fetch_and_and_2: 3886 case Builtin::BI__sync_fetch_and_and_4: 3887 case Builtin::BI__sync_fetch_and_and_8: 3888 case Builtin::BI__sync_fetch_and_and_16: 3889 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); 3890 case Builtin::BI__sync_fetch_and_xor_1: 3891 case Builtin::BI__sync_fetch_and_xor_2: 3892 case Builtin::BI__sync_fetch_and_xor_4: 3893 case Builtin::BI__sync_fetch_and_xor_8: 3894 case Builtin::BI__sync_fetch_and_xor_16: 3895 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); 3896 case Builtin::BI__sync_fetch_and_nand_1: 3897 case Builtin::BI__sync_fetch_and_nand_2: 3898 case Builtin::BI__sync_fetch_and_nand_4: 3899 case Builtin::BI__sync_fetch_and_nand_8: 3900 case Builtin::BI__sync_fetch_and_nand_16: 3901 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); 3902 3903 // Clang extensions: not overloaded yet. 3904 case Builtin::BI__sync_fetch_and_min: 3905 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); 3906 case Builtin::BI__sync_fetch_and_max: 3907 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); 3908 case Builtin::BI__sync_fetch_and_umin: 3909 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); 3910 case Builtin::BI__sync_fetch_and_umax: 3911 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); 3912 3913 case Builtin::BI__sync_add_and_fetch_1: 3914 case Builtin::BI__sync_add_and_fetch_2: 3915 case Builtin::BI__sync_add_and_fetch_4: 3916 case Builtin::BI__sync_add_and_fetch_8: 3917 case Builtin::BI__sync_add_and_fetch_16: 3918 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, 3919 llvm::Instruction::Add); 3920 case Builtin::BI__sync_sub_and_fetch_1: 3921 case Builtin::BI__sync_sub_and_fetch_2: 3922 case Builtin::BI__sync_sub_and_fetch_4: 3923 case Builtin::BI__sync_sub_and_fetch_8: 3924 case Builtin::BI__sync_sub_and_fetch_16: 3925 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, 3926 llvm::Instruction::Sub); 3927 case Builtin::BI__sync_and_and_fetch_1: 3928 case Builtin::BI__sync_and_and_fetch_2: 3929 case Builtin::BI__sync_and_and_fetch_4: 3930 case Builtin::BI__sync_and_and_fetch_8: 3931 case Builtin::BI__sync_and_and_fetch_16: 3932 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, 3933 llvm::Instruction::And); 3934 case Builtin::BI__sync_or_and_fetch_1: 3935 case Builtin::BI__sync_or_and_fetch_2: 3936 case Builtin::BI__sync_or_and_fetch_4: 3937 case Builtin::BI__sync_or_and_fetch_8: 3938 case Builtin::BI__sync_or_and_fetch_16: 3939 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, 3940 llvm::Instruction::Or); 3941 case Builtin::BI__sync_xor_and_fetch_1: 3942 case Builtin::BI__sync_xor_and_fetch_2: 3943 case Builtin::BI__sync_xor_and_fetch_4: 3944 case Builtin::BI__sync_xor_and_fetch_8: 3945 case Builtin::BI__sync_xor_and_fetch_16: 3946 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, 3947 llvm::Instruction::Xor); 3948 case Builtin::BI__sync_nand_and_fetch_1: 3949 case Builtin::BI__sync_nand_and_fetch_2: 3950 case Builtin::BI__sync_nand_and_fetch_4: 3951 case Builtin::BI__sync_nand_and_fetch_8: 3952 case Builtin::BI__sync_nand_and_fetch_16: 3953 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, 3954 llvm::Instruction::And, true); 3955 3956 case Builtin::BI__sync_val_compare_and_swap_1: 3957 case Builtin::BI__sync_val_compare_and_swap_2: 3958 case Builtin::BI__sync_val_compare_and_swap_4: 3959 case Builtin::BI__sync_val_compare_and_swap_8: 3960 case Builtin::BI__sync_val_compare_and_swap_16: 3961 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); 3962 3963 case Builtin::BI__sync_bool_compare_and_swap_1: 3964 case Builtin::BI__sync_bool_compare_and_swap_2: 3965 case Builtin::BI__sync_bool_compare_and_swap_4: 3966 case Builtin::BI__sync_bool_compare_and_swap_8: 3967 case Builtin::BI__sync_bool_compare_and_swap_16: 3968 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); 3969 3970 case Builtin::BI__sync_swap_1: 3971 case Builtin::BI__sync_swap_2: 3972 case Builtin::BI__sync_swap_4: 3973 case Builtin::BI__sync_swap_8: 3974 case Builtin::BI__sync_swap_16: 3975 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3976 3977 case Builtin::BI__sync_lock_test_and_set_1: 3978 case Builtin::BI__sync_lock_test_and_set_2: 3979 case Builtin::BI__sync_lock_test_and_set_4: 3980 case Builtin::BI__sync_lock_test_and_set_8: 3981 case Builtin::BI__sync_lock_test_and_set_16: 3982 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3983 3984 case Builtin::BI__sync_lock_release_1: 3985 case Builtin::BI__sync_lock_release_2: 3986 case Builtin::BI__sync_lock_release_4: 3987 case Builtin::BI__sync_lock_release_8: 3988 case Builtin::BI__sync_lock_release_16: { 3989 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3990 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 3991 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); 3992 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), 3993 StoreSize.getQuantity() * 8); 3994 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 3995 llvm::StoreInst *Store = 3996 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, 3997 StoreSize); 3998 Store->setAtomic(llvm::AtomicOrdering::Release); 3999 return RValue::get(nullptr); 4000 } 4001 4002 case Builtin::BI__sync_synchronize: { 4003 // We assume this is supposed to correspond to a C++0x-style 4004 // sequentially-consistent fence (i.e. this is only usable for 4005 // synchronization, not device I/O or anything like that). This intrinsic 4006 // is really badly designed in the sense that in theory, there isn't 4007 // any way to safely use it... but in practice, it mostly works 4008 // to use it with non-atomic loads and stores to get acquire/release 4009 // semantics. 4010 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); 4011 return RValue::get(nullptr); 4012 } 4013 4014 case Builtin::BI__builtin_nontemporal_load: 4015 return RValue::get(EmitNontemporalLoad(*this, E)); 4016 case Builtin::BI__builtin_nontemporal_store: 4017 return RValue::get(EmitNontemporalStore(*this, E)); 4018 case Builtin::BI__c11_atomic_is_lock_free: 4019 case Builtin::BI__atomic_is_lock_free: { 4020 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the 4021 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since 4022 // _Atomic(T) is always properly-aligned. 4023 const char *LibCallName = "__atomic_is_lock_free"; 4024 CallArgList Args; 4025 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), 4026 getContext().getSizeType()); 4027 if (BuiltinID == Builtin::BI__atomic_is_lock_free) 4028 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), 4029 getContext().VoidPtrTy); 4030 else 4031 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), 4032 getContext().VoidPtrTy); 4033 const CGFunctionInfo &FuncInfo = 4034 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); 4035 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 4036 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 4037 return EmitCall(FuncInfo, CGCallee::forDirect(Func), 4038 ReturnValueSlot(), Args); 4039 } 4040 4041 case Builtin::BI__atomic_test_and_set: { 4042 // Look at the argument type to determine whether this is a volatile 4043 // operation. The parameter type is always volatile. 4044 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 4045 bool Volatile = 4046 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 4047 4048 Value *Ptr = EmitScalarExpr(E->getArg(0)); 4049 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 4050 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 4051 Value *NewVal = Builder.getInt8(1); 4052 Value *Order = EmitScalarExpr(E->getArg(1)); 4053 if (isa<llvm::ConstantInt>(Order)) { 4054 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 4055 AtomicRMWInst *Result = nullptr; 4056 switch (ord) { 4057 case 0: // memory_order_relaxed 4058 default: // invalid order 4059 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 4060 llvm::AtomicOrdering::Monotonic); 4061 break; 4062 case 1: // memory_order_consume 4063 case 2: // memory_order_acquire 4064 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 4065 llvm::AtomicOrdering::Acquire); 4066 break; 4067 case 3: // memory_order_release 4068 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 4069 llvm::AtomicOrdering::Release); 4070 break; 4071 case 4: // memory_order_acq_rel 4072 4073 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 4074 llvm::AtomicOrdering::AcquireRelease); 4075 break; 4076 case 5: // memory_order_seq_cst 4077 Result = Builder.CreateAtomicRMW( 4078 llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 4079 llvm::AtomicOrdering::SequentiallyConsistent); 4080 break; 4081 } 4082 Result->setVolatile(Volatile); 4083 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 4084 } 4085 4086 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 4087 4088 llvm::BasicBlock *BBs[5] = { 4089 createBasicBlock("monotonic", CurFn), 4090 createBasicBlock("acquire", CurFn), 4091 createBasicBlock("release", CurFn), 4092 createBasicBlock("acqrel", CurFn), 4093 createBasicBlock("seqcst", CurFn) 4094 }; 4095 llvm::AtomicOrdering Orders[5] = { 4096 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, 4097 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, 4098 llvm::AtomicOrdering::SequentiallyConsistent}; 4099 4100 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 4101 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 4102 4103 Builder.SetInsertPoint(ContBB); 4104 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); 4105 4106 for (unsigned i = 0; i < 5; ++i) { 4107 Builder.SetInsertPoint(BBs[i]); 4108 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 4109 Ptr, NewVal, Orders[i]); 4110 RMW->setVolatile(Volatile); 4111 Result->addIncoming(RMW, BBs[i]); 4112 Builder.CreateBr(ContBB); 4113 } 4114 4115 SI->addCase(Builder.getInt32(0), BBs[0]); 4116 SI->addCase(Builder.getInt32(1), BBs[1]); 4117 SI->addCase(Builder.getInt32(2), BBs[1]); 4118 SI->addCase(Builder.getInt32(3), BBs[2]); 4119 SI->addCase(Builder.getInt32(4), BBs[3]); 4120 SI->addCase(Builder.getInt32(5), BBs[4]); 4121 4122 Builder.SetInsertPoint(ContBB); 4123 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 4124 } 4125 4126 case Builtin::BI__atomic_clear: { 4127 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 4128 bool Volatile = 4129 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 4130 4131 Address Ptr = EmitPointerWithAlignment(E->getArg(0)); 4132 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); 4133 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 4134 Value *NewVal = Builder.getInt8(0); 4135 Value *Order = EmitScalarExpr(E->getArg(1)); 4136 if (isa<llvm::ConstantInt>(Order)) { 4137 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 4138 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 4139 switch (ord) { 4140 case 0: // memory_order_relaxed 4141 default: // invalid order 4142 Store->setOrdering(llvm::AtomicOrdering::Monotonic); 4143 break; 4144 case 3: // memory_order_release 4145 Store->setOrdering(llvm::AtomicOrdering::Release); 4146 break; 4147 case 5: // memory_order_seq_cst 4148 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); 4149 break; 4150 } 4151 return RValue::get(nullptr); 4152 } 4153 4154 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 4155 4156 llvm::BasicBlock *BBs[3] = { 4157 createBasicBlock("monotonic", CurFn), 4158 createBasicBlock("release", CurFn), 4159 createBasicBlock("seqcst", CurFn) 4160 }; 4161 llvm::AtomicOrdering Orders[3] = { 4162 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, 4163 llvm::AtomicOrdering::SequentiallyConsistent}; 4164 4165 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 4166 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 4167 4168 for (unsigned i = 0; i < 3; ++i) { 4169 Builder.SetInsertPoint(BBs[i]); 4170 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 4171 Store->setOrdering(Orders[i]); 4172 Builder.CreateBr(ContBB); 4173 } 4174 4175 SI->addCase(Builder.getInt32(0), BBs[0]); 4176 SI->addCase(Builder.getInt32(3), BBs[1]); 4177 SI->addCase(Builder.getInt32(5), BBs[2]); 4178 4179 Builder.SetInsertPoint(ContBB); 4180 return RValue::get(nullptr); 4181 } 4182 4183 case Builtin::BI__atomic_thread_fence: 4184 case Builtin::BI__atomic_signal_fence: 4185 case Builtin::BI__c11_atomic_thread_fence: 4186 case Builtin::BI__c11_atomic_signal_fence: { 4187 llvm::SyncScope::ID SSID; 4188 if (BuiltinID == Builtin::BI__atomic_signal_fence || 4189 BuiltinID == Builtin::BI__c11_atomic_signal_fence) 4190 SSID = llvm::SyncScope::SingleThread; 4191 else 4192 SSID = llvm::SyncScope::System; 4193 Value *Order = EmitScalarExpr(E->getArg(0)); 4194 if (isa<llvm::ConstantInt>(Order)) { 4195 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 4196 switch (ord) { 4197 case 0: // memory_order_relaxed 4198 default: // invalid order 4199 break; 4200 case 1: // memory_order_consume 4201 case 2: // memory_order_acquire 4202 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 4203 break; 4204 case 3: // memory_order_release 4205 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 4206 break; 4207 case 4: // memory_order_acq_rel 4208 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 4209 break; 4210 case 5: // memory_order_seq_cst 4211 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 4212 break; 4213 } 4214 return RValue::get(nullptr); 4215 } 4216 4217 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; 4218 AcquireBB = createBasicBlock("acquire", CurFn); 4219 ReleaseBB = createBasicBlock("release", CurFn); 4220 AcqRelBB = createBasicBlock("acqrel", CurFn); 4221 SeqCstBB = createBasicBlock("seqcst", CurFn); 4222 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 4223 4224 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 4225 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); 4226 4227 Builder.SetInsertPoint(AcquireBB); 4228 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 4229 Builder.CreateBr(ContBB); 4230 SI->addCase(Builder.getInt32(1), AcquireBB); 4231 SI->addCase(Builder.getInt32(2), AcquireBB); 4232 4233 Builder.SetInsertPoint(ReleaseBB); 4234 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 4235 Builder.CreateBr(ContBB); 4236 SI->addCase(Builder.getInt32(3), ReleaseBB); 4237 4238 Builder.SetInsertPoint(AcqRelBB); 4239 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 4240 Builder.CreateBr(ContBB); 4241 SI->addCase(Builder.getInt32(4), AcqRelBB); 4242 4243 Builder.SetInsertPoint(SeqCstBB); 4244 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 4245 Builder.CreateBr(ContBB); 4246 SI->addCase(Builder.getInt32(5), SeqCstBB); 4247 4248 Builder.SetInsertPoint(ContBB); 4249 return RValue::get(nullptr); 4250 } 4251 4252 case Builtin::BI__builtin_signbit: 4253 case Builtin::BI__builtin_signbitf: 4254 case Builtin::BI__builtin_signbitl: { 4255 return RValue::get( 4256 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), 4257 ConvertType(E->getType()))); 4258 } 4259 case Builtin::BI__warn_memset_zero_len: 4260 return RValue::getIgnored(); 4261 case Builtin::BI__annotation: { 4262 // Re-encode each wide string to UTF8 and make an MDString. 4263 SmallVector<Metadata *, 1> Strings; 4264 for (const Expr *Arg : E->arguments()) { 4265 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); 4266 assert(Str->getCharByteWidth() == 2); 4267 StringRef WideBytes = Str->getBytes(); 4268 std::string StrUtf8; 4269 if (!convertUTF16ToUTF8String( 4270 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { 4271 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); 4272 continue; 4273 } 4274 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); 4275 } 4276 4277 // Build and MDTuple of MDStrings and emit the intrinsic call. 4278 llvm::Function *F = 4279 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); 4280 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); 4281 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); 4282 return RValue::getIgnored(); 4283 } 4284 case Builtin::BI__builtin_annotation: { 4285 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); 4286 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, 4287 AnnVal->getType()); 4288 4289 // Get the annotation string, go through casts. Sema requires this to be a 4290 // non-wide string literal, potentially casted, so the cast<> is safe. 4291 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); 4292 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); 4293 return RValue::get( 4294 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); 4295 } 4296 case Builtin::BI__builtin_addcb: 4297 case Builtin::BI__builtin_addcs: 4298 case Builtin::BI__builtin_addc: 4299 case Builtin::BI__builtin_addcl: 4300 case Builtin::BI__builtin_addcll: 4301 case Builtin::BI__builtin_subcb: 4302 case Builtin::BI__builtin_subcs: 4303 case Builtin::BI__builtin_subc: 4304 case Builtin::BI__builtin_subcl: 4305 case Builtin::BI__builtin_subcll: { 4306 4307 // We translate all of these builtins from expressions of the form: 4308 // int x = ..., y = ..., carryin = ..., carryout, result; 4309 // result = __builtin_addc(x, y, carryin, &carryout); 4310 // 4311 // to LLVM IR of the form: 4312 // 4313 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) 4314 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 4315 // %carry1 = extractvalue {i32, i1} %tmp1, 1 4316 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, 4317 // i32 %carryin) 4318 // %result = extractvalue {i32, i1} %tmp2, 0 4319 // %carry2 = extractvalue {i32, i1} %tmp2, 1 4320 // %tmp3 = or i1 %carry1, %carry2 4321 // %tmp4 = zext i1 %tmp3 to i32 4322 // store i32 %tmp4, i32* %carryout 4323 4324 // Scalarize our inputs. 4325 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4326 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4327 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); 4328 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); 4329 4330 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. 4331 llvm::Intrinsic::ID IntrinsicId; 4332 switch (BuiltinID) { 4333 default: llvm_unreachable("Unknown multiprecision builtin id."); 4334 case Builtin::BI__builtin_addcb: 4335 case Builtin::BI__builtin_addcs: 4336 case Builtin::BI__builtin_addc: 4337 case Builtin::BI__builtin_addcl: 4338 case Builtin::BI__builtin_addcll: 4339 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4340 break; 4341 case Builtin::BI__builtin_subcb: 4342 case Builtin::BI__builtin_subcs: 4343 case Builtin::BI__builtin_subc: 4344 case Builtin::BI__builtin_subcl: 4345 case Builtin::BI__builtin_subcll: 4346 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4347 break; 4348 } 4349 4350 // Construct our resulting LLVM IR expression. 4351 llvm::Value *Carry1; 4352 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, 4353 X, Y, Carry1); 4354 llvm::Value *Carry2; 4355 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, 4356 Sum1, Carryin, Carry2); 4357 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), 4358 X->getType()); 4359 Builder.CreateStore(CarryOut, CarryOutPtr); 4360 return RValue::get(Sum2); 4361 } 4362 4363 case Builtin::BI__builtin_add_overflow: 4364 case Builtin::BI__builtin_sub_overflow: 4365 case Builtin::BI__builtin_mul_overflow: { 4366 const clang::Expr *LeftArg = E->getArg(0); 4367 const clang::Expr *RightArg = E->getArg(1); 4368 const clang::Expr *ResultArg = E->getArg(2); 4369 4370 clang::QualType ResultQTy = 4371 ResultArg->getType()->castAs<PointerType>()->getPointeeType(); 4372 4373 WidthAndSignedness LeftInfo = 4374 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); 4375 WidthAndSignedness RightInfo = 4376 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); 4377 WidthAndSignedness ResultInfo = 4378 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); 4379 4380 // Handle mixed-sign multiplication as a special case, because adding 4381 // runtime or backend support for our generic irgen would be too expensive. 4382 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) 4383 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, 4384 RightInfo, ResultArg, ResultQTy, 4385 ResultInfo); 4386 4387 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, 4388 ResultInfo)) 4389 return EmitCheckedUnsignedMultiplySignedResult( 4390 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, 4391 ResultInfo); 4392 4393 WidthAndSignedness EncompassingInfo = 4394 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); 4395 4396 llvm::Type *EncompassingLLVMTy = 4397 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); 4398 4399 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); 4400 4401 llvm::Intrinsic::ID IntrinsicId; 4402 switch (BuiltinID) { 4403 default: 4404 llvm_unreachable("Unknown overflow builtin id."); 4405 case Builtin::BI__builtin_add_overflow: 4406 IntrinsicId = EncompassingInfo.Signed 4407 ? llvm::Intrinsic::sadd_with_overflow 4408 : llvm::Intrinsic::uadd_with_overflow; 4409 break; 4410 case Builtin::BI__builtin_sub_overflow: 4411 IntrinsicId = EncompassingInfo.Signed 4412 ? llvm::Intrinsic::ssub_with_overflow 4413 : llvm::Intrinsic::usub_with_overflow; 4414 break; 4415 case Builtin::BI__builtin_mul_overflow: 4416 IntrinsicId = EncompassingInfo.Signed 4417 ? llvm::Intrinsic::smul_with_overflow 4418 : llvm::Intrinsic::umul_with_overflow; 4419 break; 4420 } 4421 4422 llvm::Value *Left = EmitScalarExpr(LeftArg); 4423 llvm::Value *Right = EmitScalarExpr(RightArg); 4424 Address ResultPtr = EmitPointerWithAlignment(ResultArg); 4425 4426 // Extend each operand to the encompassing type. 4427 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); 4428 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); 4429 4430 // Perform the operation on the extended values. 4431 llvm::Value *Overflow, *Result; 4432 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); 4433 4434 if (EncompassingInfo.Width > ResultInfo.Width) { 4435 // The encompassing type is wider than the result type, so we need to 4436 // truncate it. 4437 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); 4438 4439 // To see if the truncation caused an overflow, we will extend 4440 // the result and then compare it to the original result. 4441 llvm::Value *ResultTruncExt = Builder.CreateIntCast( 4442 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); 4443 llvm::Value *TruncationOverflow = 4444 Builder.CreateICmpNE(Result, ResultTruncExt); 4445 4446 Overflow = Builder.CreateOr(Overflow, TruncationOverflow); 4447 Result = ResultTrunc; 4448 } 4449 4450 // Finally, store the result using the pointer. 4451 bool isVolatile = 4452 ResultArg->getType()->getPointeeType().isVolatileQualified(); 4453 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); 4454 4455 return RValue::get(Overflow); 4456 } 4457 4458 case Builtin::BI__builtin_uadd_overflow: 4459 case Builtin::BI__builtin_uaddl_overflow: 4460 case Builtin::BI__builtin_uaddll_overflow: 4461 case Builtin::BI__builtin_usub_overflow: 4462 case Builtin::BI__builtin_usubl_overflow: 4463 case Builtin::BI__builtin_usubll_overflow: 4464 case Builtin::BI__builtin_umul_overflow: 4465 case Builtin::BI__builtin_umull_overflow: 4466 case Builtin::BI__builtin_umulll_overflow: 4467 case Builtin::BI__builtin_sadd_overflow: 4468 case Builtin::BI__builtin_saddl_overflow: 4469 case Builtin::BI__builtin_saddll_overflow: 4470 case Builtin::BI__builtin_ssub_overflow: 4471 case Builtin::BI__builtin_ssubl_overflow: 4472 case Builtin::BI__builtin_ssubll_overflow: 4473 case Builtin::BI__builtin_smul_overflow: 4474 case Builtin::BI__builtin_smull_overflow: 4475 case Builtin::BI__builtin_smulll_overflow: { 4476 4477 // We translate all of these builtins directly to the relevant llvm IR node. 4478 4479 // Scalarize our inputs. 4480 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4481 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4482 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); 4483 4484 // Decide which of the overflow intrinsics we are lowering to: 4485 llvm::Intrinsic::ID IntrinsicId; 4486 switch (BuiltinID) { 4487 default: llvm_unreachable("Unknown overflow builtin id."); 4488 case Builtin::BI__builtin_uadd_overflow: 4489 case Builtin::BI__builtin_uaddl_overflow: 4490 case Builtin::BI__builtin_uaddll_overflow: 4491 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4492 break; 4493 case Builtin::BI__builtin_usub_overflow: 4494 case Builtin::BI__builtin_usubl_overflow: 4495 case Builtin::BI__builtin_usubll_overflow: 4496 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4497 break; 4498 case Builtin::BI__builtin_umul_overflow: 4499 case Builtin::BI__builtin_umull_overflow: 4500 case Builtin::BI__builtin_umulll_overflow: 4501 IntrinsicId = llvm::Intrinsic::umul_with_overflow; 4502 break; 4503 case Builtin::BI__builtin_sadd_overflow: 4504 case Builtin::BI__builtin_saddl_overflow: 4505 case Builtin::BI__builtin_saddll_overflow: 4506 IntrinsicId = llvm::Intrinsic::sadd_with_overflow; 4507 break; 4508 case Builtin::BI__builtin_ssub_overflow: 4509 case Builtin::BI__builtin_ssubl_overflow: 4510 case Builtin::BI__builtin_ssubll_overflow: 4511 IntrinsicId = llvm::Intrinsic::ssub_with_overflow; 4512 break; 4513 case Builtin::BI__builtin_smul_overflow: 4514 case Builtin::BI__builtin_smull_overflow: 4515 case Builtin::BI__builtin_smulll_overflow: 4516 IntrinsicId = llvm::Intrinsic::smul_with_overflow; 4517 break; 4518 } 4519 4520 4521 llvm::Value *Carry; 4522 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); 4523 Builder.CreateStore(Sum, SumOutPtr); 4524 4525 return RValue::get(Carry); 4526 } 4527 case Builtin::BI__builtin_addressof: 4528 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); 4529 case Builtin::BI__builtin_function_start: 4530 return RValue::get(CGM.GetFunctionStart( 4531 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()))); 4532 case Builtin::BI__builtin_operator_new: 4533 return EmitBuiltinNewDeleteCall( 4534 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); 4535 case Builtin::BI__builtin_operator_delete: 4536 return EmitBuiltinNewDeleteCall( 4537 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); 4538 4539 case Builtin::BI__builtin_is_aligned: 4540 return EmitBuiltinIsAligned(E); 4541 case Builtin::BI__builtin_align_up: 4542 return EmitBuiltinAlignTo(E, true); 4543 case Builtin::BI__builtin_align_down: 4544 return EmitBuiltinAlignTo(E, false); 4545 4546 case Builtin::BI__noop: 4547 // __noop always evaluates to an integer literal zero. 4548 return RValue::get(ConstantInt::get(IntTy, 0)); 4549 case Builtin::BI__builtin_call_with_static_chain: { 4550 const CallExpr *Call = cast<CallExpr>(E->getArg(0)); 4551 const Expr *Chain = E->getArg(1); 4552 return EmitCall(Call->getCallee()->getType(), 4553 EmitCallee(Call->getCallee()), Call, ReturnValue, 4554 EmitScalarExpr(Chain)); 4555 } 4556 case Builtin::BI_InterlockedExchange8: 4557 case Builtin::BI_InterlockedExchange16: 4558 case Builtin::BI_InterlockedExchange: 4559 case Builtin::BI_InterlockedExchangePointer: 4560 return RValue::get( 4561 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); 4562 case Builtin::BI_InterlockedCompareExchangePointer: 4563 case Builtin::BI_InterlockedCompareExchangePointer_nf: { 4564 llvm::Type *RTy; 4565 llvm::IntegerType *IntType = 4566 IntegerType::get(getLLVMContext(), 4567 getContext().getTypeSize(E->getType())); 4568 llvm::Type *IntPtrType = IntType->getPointerTo(); 4569 4570 llvm::Value *Destination = 4571 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); 4572 4573 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); 4574 RTy = Exchange->getType(); 4575 Exchange = Builder.CreatePtrToInt(Exchange, IntType); 4576 4577 llvm::Value *Comparand = 4578 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); 4579 4580 auto Ordering = 4581 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? 4582 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; 4583 4584 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 4585 Ordering, Ordering); 4586 Result->setVolatile(true); 4587 4588 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 4589 0), 4590 RTy)); 4591 } 4592 case Builtin::BI_InterlockedCompareExchange8: 4593 case Builtin::BI_InterlockedCompareExchange16: 4594 case Builtin::BI_InterlockedCompareExchange: 4595 case Builtin::BI_InterlockedCompareExchange64: 4596 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); 4597 case Builtin::BI_InterlockedIncrement16: 4598 case Builtin::BI_InterlockedIncrement: 4599 return RValue::get( 4600 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); 4601 case Builtin::BI_InterlockedDecrement16: 4602 case Builtin::BI_InterlockedDecrement: 4603 return RValue::get( 4604 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); 4605 case Builtin::BI_InterlockedAnd8: 4606 case Builtin::BI_InterlockedAnd16: 4607 case Builtin::BI_InterlockedAnd: 4608 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); 4609 case Builtin::BI_InterlockedExchangeAdd8: 4610 case Builtin::BI_InterlockedExchangeAdd16: 4611 case Builtin::BI_InterlockedExchangeAdd: 4612 return RValue::get( 4613 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); 4614 case Builtin::BI_InterlockedExchangeSub8: 4615 case Builtin::BI_InterlockedExchangeSub16: 4616 case Builtin::BI_InterlockedExchangeSub: 4617 return RValue::get( 4618 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); 4619 case Builtin::BI_InterlockedOr8: 4620 case Builtin::BI_InterlockedOr16: 4621 case Builtin::BI_InterlockedOr: 4622 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); 4623 case Builtin::BI_InterlockedXor8: 4624 case Builtin::BI_InterlockedXor16: 4625 case Builtin::BI_InterlockedXor: 4626 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); 4627 4628 case Builtin::BI_bittest64: 4629 case Builtin::BI_bittest: 4630 case Builtin::BI_bittestandcomplement64: 4631 case Builtin::BI_bittestandcomplement: 4632 case Builtin::BI_bittestandreset64: 4633 case Builtin::BI_bittestandreset: 4634 case Builtin::BI_bittestandset64: 4635 case Builtin::BI_bittestandset: 4636 case Builtin::BI_interlockedbittestandreset: 4637 case Builtin::BI_interlockedbittestandreset64: 4638 case Builtin::BI_interlockedbittestandset64: 4639 case Builtin::BI_interlockedbittestandset: 4640 case Builtin::BI_interlockedbittestandset_acq: 4641 case Builtin::BI_interlockedbittestandset_rel: 4642 case Builtin::BI_interlockedbittestandset_nf: 4643 case Builtin::BI_interlockedbittestandreset_acq: 4644 case Builtin::BI_interlockedbittestandreset_rel: 4645 case Builtin::BI_interlockedbittestandreset_nf: 4646 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); 4647 4648 // These builtins exist to emit regular volatile loads and stores not 4649 // affected by the -fms-volatile setting. 4650 case Builtin::BI__iso_volatile_load8: 4651 case Builtin::BI__iso_volatile_load16: 4652 case Builtin::BI__iso_volatile_load32: 4653 case Builtin::BI__iso_volatile_load64: 4654 return RValue::get(EmitISOVolatileLoad(*this, E)); 4655 case Builtin::BI__iso_volatile_store8: 4656 case Builtin::BI__iso_volatile_store16: 4657 case Builtin::BI__iso_volatile_store32: 4658 case Builtin::BI__iso_volatile_store64: 4659 return RValue::get(EmitISOVolatileStore(*this, E)); 4660 4661 case Builtin::BI__exception_code: 4662 case Builtin::BI_exception_code: 4663 return RValue::get(EmitSEHExceptionCode()); 4664 case Builtin::BI__exception_info: 4665 case Builtin::BI_exception_info: 4666 return RValue::get(EmitSEHExceptionInfo()); 4667 case Builtin::BI__abnormal_termination: 4668 case Builtin::BI_abnormal_termination: 4669 return RValue::get(EmitSEHAbnormalTermination()); 4670 case Builtin::BI_setjmpex: 4671 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4672 E->getArg(0)->getType()->isPointerType()) 4673 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4674 break; 4675 case Builtin::BI_setjmp: 4676 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4677 E->getArg(0)->getType()->isPointerType()) { 4678 if (getTarget().getTriple().getArch() == llvm::Triple::x86) 4679 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); 4680 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) 4681 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4682 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); 4683 } 4684 break; 4685 4686 case Builtin::BI__GetExceptionInfo: { 4687 if (llvm::GlobalVariable *GV = 4688 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) 4689 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); 4690 break; 4691 } 4692 4693 case Builtin::BI__fastfail: 4694 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); 4695 4696 case Builtin::BI__builtin_coro_size: { 4697 auto & Context = getContext(); 4698 auto SizeTy = Context.getSizeType(); 4699 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4700 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); 4701 return RValue::get(Builder.CreateCall(F)); 4702 } 4703 4704 case Builtin::BI__builtin_coro_id: 4705 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); 4706 case Builtin::BI__builtin_coro_promise: 4707 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); 4708 case Builtin::BI__builtin_coro_resume: 4709 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); 4710 case Builtin::BI__builtin_coro_frame: 4711 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); 4712 case Builtin::BI__builtin_coro_noop: 4713 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); 4714 case Builtin::BI__builtin_coro_free: 4715 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); 4716 case Builtin::BI__builtin_coro_destroy: 4717 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); 4718 case Builtin::BI__builtin_coro_done: 4719 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); 4720 case Builtin::BI__builtin_coro_alloc: 4721 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); 4722 case Builtin::BI__builtin_coro_begin: 4723 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); 4724 case Builtin::BI__builtin_coro_end: 4725 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); 4726 case Builtin::BI__builtin_coro_suspend: 4727 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); 4728 4729 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions 4730 case Builtin::BIread_pipe: 4731 case Builtin::BIwrite_pipe: { 4732 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4733 *Arg1 = EmitScalarExpr(E->getArg(1)); 4734 CGOpenCLRuntime OpenCLRT(CGM); 4735 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4736 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4737 4738 // Type of the generic packet parameter. 4739 unsigned GenericAS = 4740 getContext().getTargetAddressSpace(LangAS::opencl_generic); 4741 llvm::Type *I8PTy = llvm::PointerType::get( 4742 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); 4743 4744 // Testing which overloaded version we should generate the call for. 4745 if (2U == E->getNumArgs()) { 4746 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" 4747 : "__write_pipe_2"; 4748 // Creating a generic function type to be able to call with any builtin or 4749 // user defined type. 4750 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; 4751 llvm::FunctionType *FTy = llvm::FunctionType::get( 4752 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4753 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); 4754 return RValue::get( 4755 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4756 {Arg0, BCast, PacketSize, PacketAlign})); 4757 } else { 4758 assert(4 == E->getNumArgs() && 4759 "Illegal number of parameters to pipe function"); 4760 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" 4761 : "__write_pipe_4"; 4762 4763 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, 4764 Int32Ty, Int32Ty}; 4765 Value *Arg2 = EmitScalarExpr(E->getArg(2)), 4766 *Arg3 = EmitScalarExpr(E->getArg(3)); 4767 llvm::FunctionType *FTy = llvm::FunctionType::get( 4768 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4769 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); 4770 // We know the third argument is an integer type, but we may need to cast 4771 // it to i32. 4772 if (Arg2->getType() != Int32Ty) 4773 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); 4774 return RValue::get( 4775 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4776 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); 4777 } 4778 } 4779 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write 4780 // functions 4781 case Builtin::BIreserve_read_pipe: 4782 case Builtin::BIreserve_write_pipe: 4783 case Builtin::BIwork_group_reserve_read_pipe: 4784 case Builtin::BIwork_group_reserve_write_pipe: 4785 case Builtin::BIsub_group_reserve_read_pipe: 4786 case Builtin::BIsub_group_reserve_write_pipe: { 4787 // Composing the mangled name for the function. 4788 const char *Name; 4789 if (BuiltinID == Builtin::BIreserve_read_pipe) 4790 Name = "__reserve_read_pipe"; 4791 else if (BuiltinID == Builtin::BIreserve_write_pipe) 4792 Name = "__reserve_write_pipe"; 4793 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) 4794 Name = "__work_group_reserve_read_pipe"; 4795 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) 4796 Name = "__work_group_reserve_write_pipe"; 4797 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) 4798 Name = "__sub_group_reserve_read_pipe"; 4799 else 4800 Name = "__sub_group_reserve_write_pipe"; 4801 4802 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4803 *Arg1 = EmitScalarExpr(E->getArg(1)); 4804 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); 4805 CGOpenCLRuntime OpenCLRT(CGM); 4806 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4807 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4808 4809 // Building the generic function prototype. 4810 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; 4811 llvm::FunctionType *FTy = llvm::FunctionType::get( 4812 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4813 // We know the second argument is an integer type, but we may need to cast 4814 // it to i32. 4815 if (Arg1->getType() != Int32Ty) 4816 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); 4817 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4818 {Arg0, Arg1, PacketSize, PacketAlign})); 4819 } 4820 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write 4821 // functions 4822 case Builtin::BIcommit_read_pipe: 4823 case Builtin::BIcommit_write_pipe: 4824 case Builtin::BIwork_group_commit_read_pipe: 4825 case Builtin::BIwork_group_commit_write_pipe: 4826 case Builtin::BIsub_group_commit_read_pipe: 4827 case Builtin::BIsub_group_commit_write_pipe: { 4828 const char *Name; 4829 if (BuiltinID == Builtin::BIcommit_read_pipe) 4830 Name = "__commit_read_pipe"; 4831 else if (BuiltinID == Builtin::BIcommit_write_pipe) 4832 Name = "__commit_write_pipe"; 4833 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) 4834 Name = "__work_group_commit_read_pipe"; 4835 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) 4836 Name = "__work_group_commit_write_pipe"; 4837 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) 4838 Name = "__sub_group_commit_read_pipe"; 4839 else 4840 Name = "__sub_group_commit_write_pipe"; 4841 4842 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4843 *Arg1 = EmitScalarExpr(E->getArg(1)); 4844 CGOpenCLRuntime OpenCLRT(CGM); 4845 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4846 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4847 4848 // Building the generic function prototype. 4849 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; 4850 llvm::FunctionType *FTy = 4851 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 4852 llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4853 4854 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4855 {Arg0, Arg1, PacketSize, PacketAlign})); 4856 } 4857 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions 4858 case Builtin::BIget_pipe_num_packets: 4859 case Builtin::BIget_pipe_max_packets: { 4860 const char *BaseName; 4861 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); 4862 if (BuiltinID == Builtin::BIget_pipe_num_packets) 4863 BaseName = "__get_pipe_num_packets"; 4864 else 4865 BaseName = "__get_pipe_max_packets"; 4866 std::string Name = std::string(BaseName) + 4867 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); 4868 4869 // Building the generic function prototype. 4870 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 4871 CGOpenCLRuntime OpenCLRT(CGM); 4872 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4873 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4874 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; 4875 llvm::FunctionType *FTy = llvm::FunctionType::get( 4876 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4877 4878 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4879 {Arg0, PacketSize, PacketAlign})); 4880 } 4881 4882 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 4883 case Builtin::BIto_global: 4884 case Builtin::BIto_local: 4885 case Builtin::BIto_private: { 4886 auto Arg0 = EmitScalarExpr(E->getArg(0)); 4887 auto NewArgT = llvm::PointerType::get(Int8Ty, 4888 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4889 auto NewRetT = llvm::PointerType::get(Int8Ty, 4890 CGM.getContext().getTargetAddressSpace( 4891 E->getType()->getPointeeType().getAddressSpace())); 4892 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); 4893 llvm::Value *NewArg; 4894 if (Arg0->getType()->getPointerAddressSpace() != 4895 NewArgT->getPointerAddressSpace()) 4896 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); 4897 else 4898 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); 4899 auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); 4900 auto NewCall = 4901 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); 4902 return RValue::get(Builder.CreateBitOrPointerCast(NewCall, 4903 ConvertType(E->getType()))); 4904 } 4905 4906 // OpenCL v2.0, s6.13.17 - Enqueue kernel function. 4907 // It contains four different overload formats specified in Table 6.13.17.1. 4908 case Builtin::BIenqueue_kernel: { 4909 StringRef Name; // Generated function call name 4910 unsigned NumArgs = E->getNumArgs(); 4911 4912 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); 4913 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4914 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4915 4916 llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); 4917 llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); 4918 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); 4919 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); 4920 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); 4921 4922 if (NumArgs == 4) { 4923 // The most basic form of the call with parameters: 4924 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) 4925 Name = "__enqueue_kernel_basic"; 4926 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, 4927 GenericVoidPtrTy}; 4928 llvm::FunctionType *FTy = llvm::FunctionType::get( 4929 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4930 4931 auto Info = 4932 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4933 llvm::Value *Kernel = 4934 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4935 llvm::Value *Block = 4936 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4937 4938 AttrBuilder B(Builder.getContext()); 4939 B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); 4940 llvm::AttributeList ByValAttrSet = 4941 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); 4942 4943 auto RTCall = 4944 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), 4945 {Queue, Flags, Range, Kernel, Block}); 4946 RTCall->setAttributes(ByValAttrSet); 4947 return RValue::get(RTCall); 4948 } 4949 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); 4950 4951 // Create a temporary array to hold the sizes of local pointer arguments 4952 // for the block. \p First is the position of the first size argument. 4953 auto CreateArrayForSizeVar = [=](unsigned First) 4954 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { 4955 llvm::APInt ArraySize(32, NumArgs - First); 4956 QualType SizeArrayTy = getContext().getConstantArrayType( 4957 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, 4958 /*IndexTypeQuals=*/0); 4959 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); 4960 llvm::Value *TmpPtr = Tmp.getPointer(); 4961 llvm::Value *TmpSize = EmitLifetimeStart( 4962 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); 4963 llvm::Value *ElemPtr; 4964 // Each of the following arguments specifies the size of the corresponding 4965 // argument passed to the enqueued block. 4966 auto *Zero = llvm::ConstantInt::get(IntTy, 0); 4967 for (unsigned I = First; I < NumArgs; ++I) { 4968 auto *Index = llvm::ConstantInt::get(IntTy, I - First); 4969 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, 4970 {Zero, Index}); 4971 if (I == First) 4972 ElemPtr = GEP; 4973 auto *V = 4974 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); 4975 Builder.CreateAlignedStore( 4976 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); 4977 } 4978 return std::tie(ElemPtr, TmpSize, TmpPtr); 4979 }; 4980 4981 // Could have events and/or varargs. 4982 if (E->getArg(3)->getType()->isBlockPointerType()) { 4983 // No events passed, but has variadic arguments. 4984 Name = "__enqueue_kernel_varargs"; 4985 auto Info = 4986 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4987 llvm::Value *Kernel = 4988 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4989 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4990 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4991 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); 4992 4993 // Create a vector of the arguments, as well as a constant value to 4994 // express to the runtime the number of variadic arguments. 4995 llvm::Value *const Args[] = {Queue, Flags, 4996 Range, Kernel, 4997 Block, ConstantInt::get(IntTy, NumArgs - 4), 4998 ElemPtr}; 4999 llvm::Type *const ArgTys[] = { 5000 QueueTy, IntTy, RangeTy, GenericVoidPtrTy, 5001 GenericVoidPtrTy, IntTy, ElemPtr->getType()}; 5002 5003 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); 5004 auto Call = RValue::get( 5005 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); 5006 if (TmpSize) 5007 EmitLifetimeEnd(TmpSize, TmpPtr); 5008 return Call; 5009 } 5010 // Any calls now have event arguments passed. 5011 if (NumArgs >= 7) { 5012 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); 5013 llvm::PointerType *EventPtrTy = EventTy->getPointerTo( 5014 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 5015 5016 llvm::Value *NumEvents = 5017 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); 5018 5019 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments 5020 // to be a null pointer constant (including `0` literal), we can take it 5021 // into account and emit null pointer directly. 5022 llvm::Value *EventWaitList = nullptr; 5023 if (E->getArg(4)->isNullPointerConstant( 5024 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 5025 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); 5026 } else { 5027 EventWaitList = E->getArg(4)->getType()->isArrayType() 5028 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() 5029 : EmitScalarExpr(E->getArg(4)); 5030 // Convert to generic address space. 5031 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); 5032 } 5033 llvm::Value *EventRet = nullptr; 5034 if (E->getArg(5)->isNullPointerConstant( 5035 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 5036 EventRet = llvm::ConstantPointerNull::get(EventPtrTy); 5037 } else { 5038 EventRet = 5039 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); 5040 } 5041 5042 auto Info = 5043 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); 5044 llvm::Value *Kernel = 5045 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 5046 llvm::Value *Block = 5047 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 5048 5049 std::vector<llvm::Type *> ArgTys = { 5050 QueueTy, Int32Ty, RangeTy, Int32Ty, 5051 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; 5052 5053 std::vector<llvm::Value *> Args = {Queue, Flags, Range, 5054 NumEvents, EventWaitList, EventRet, 5055 Kernel, Block}; 5056 5057 if (NumArgs == 7) { 5058 // Has events but no variadics. 5059 Name = "__enqueue_kernel_basic_events"; 5060 llvm::FunctionType *FTy = llvm::FunctionType::get( 5061 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 5062 return RValue::get( 5063 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 5064 llvm::ArrayRef<llvm::Value *>(Args))); 5065 } 5066 // Has event info and variadics 5067 // Pass the number of variadics to the runtime function too. 5068 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); 5069 ArgTys.push_back(Int32Ty); 5070 Name = "__enqueue_kernel_events_varargs"; 5071 5072 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 5073 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); 5074 Args.push_back(ElemPtr); 5075 ArgTys.push_back(ElemPtr->getType()); 5076 5077 llvm::FunctionType *FTy = llvm::FunctionType::get( 5078 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 5079 auto Call = 5080 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 5081 llvm::ArrayRef<llvm::Value *>(Args))); 5082 if (TmpSize) 5083 EmitLifetimeEnd(TmpSize, TmpPtr); 5084 return Call; 5085 } 5086 LLVM_FALLTHROUGH; 5087 } 5088 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block 5089 // parameter. 5090 case Builtin::BIget_kernel_work_group_size: { 5091 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 5092 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 5093 auto Info = 5094 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 5095 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 5096 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 5097 return RValue::get(EmitRuntimeCall( 5098 CGM.CreateRuntimeFunction( 5099 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 5100 false), 5101 "__get_kernel_work_group_size_impl"), 5102 {Kernel, Arg})); 5103 } 5104 case Builtin::BIget_kernel_preferred_work_group_size_multiple: { 5105 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 5106 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 5107 auto Info = 5108 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 5109 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 5110 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 5111 return RValue::get(EmitRuntimeCall( 5112 CGM.CreateRuntimeFunction( 5113 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 5114 false), 5115 "__get_kernel_preferred_work_group_size_multiple_impl"), 5116 {Kernel, Arg})); 5117 } 5118 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 5119 case Builtin::BIget_kernel_sub_group_count_for_ndrange: { 5120 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 5121 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 5122 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); 5123 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); 5124 auto Info = 5125 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); 5126 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 5127 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 5128 const char *Name = 5129 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange 5130 ? "__get_kernel_max_sub_group_size_for_ndrange_impl" 5131 : "__get_kernel_sub_group_count_for_ndrange_impl"; 5132 return RValue::get(EmitRuntimeCall( 5133 CGM.CreateRuntimeFunction( 5134 llvm::FunctionType::get( 5135 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, 5136 false), 5137 Name), 5138 {NDRange, Kernel, Block})); 5139 } 5140 5141 case Builtin::BI__builtin_store_half: 5142 case Builtin::BI__builtin_store_halff: { 5143 Value *Val = EmitScalarExpr(E->getArg(0)); 5144 Address Address = EmitPointerWithAlignment(E->getArg(1)); 5145 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); 5146 return RValue::get(Builder.CreateStore(HalfVal, Address)); 5147 } 5148 case Builtin::BI__builtin_load_half: { 5149 Address Address = EmitPointerWithAlignment(E->getArg(0)); 5150 Value *HalfVal = Builder.CreateLoad(Address); 5151 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); 5152 } 5153 case Builtin::BI__builtin_load_halff: { 5154 Address Address = EmitPointerWithAlignment(E->getArg(0)); 5155 Value *HalfVal = Builder.CreateLoad(Address); 5156 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); 5157 } 5158 case Builtin::BIprintf: 5159 if (getTarget().getTriple().isNVPTX() || 5160 getTarget().getTriple().isAMDGCN()) { 5161 if (getLangOpts().OpenMPIsDevice) 5162 return EmitOpenMPDevicePrintfCallExpr(E); 5163 if (getTarget().getTriple().isNVPTX()) 5164 return EmitNVPTXDevicePrintfCallExpr(E); 5165 if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP) 5166 return EmitAMDGPUDevicePrintfCallExpr(E); 5167 } 5168 5169 break; 5170 case Builtin::BI__builtin_canonicalize: 5171 case Builtin::BI__builtin_canonicalizef: 5172 case Builtin::BI__builtin_canonicalizef16: 5173 case Builtin::BI__builtin_canonicalizel: 5174 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); 5175 5176 case Builtin::BI__builtin_thread_pointer: { 5177 if (!getContext().getTargetInfo().isTLSSupported()) 5178 CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); 5179 // Fall through - it's already mapped to the intrinsic by GCCBuiltin. 5180 break; 5181 } 5182 case Builtin::BI__builtin_os_log_format: 5183 return emitBuiltinOSLogFormat(*E); 5184 5185 case Builtin::BI__xray_customevent: { 5186 if (!ShouldXRayInstrumentFunction()) 5187 return RValue::getIgnored(); 5188 5189 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 5190 XRayInstrKind::Custom)) 5191 return RValue::getIgnored(); 5192 5193 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 5194 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) 5195 return RValue::getIgnored(); 5196 5197 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); 5198 auto FTy = F->getFunctionType(); 5199 auto Arg0 = E->getArg(0); 5200 auto Arg0Val = EmitScalarExpr(Arg0); 5201 auto Arg0Ty = Arg0->getType(); 5202 auto PTy0 = FTy->getParamType(0); 5203 if (PTy0 != Arg0Val->getType()) { 5204 if (Arg0Ty->isArrayType()) 5205 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); 5206 else 5207 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); 5208 } 5209 auto Arg1 = EmitScalarExpr(E->getArg(1)); 5210 auto PTy1 = FTy->getParamType(1); 5211 if (PTy1 != Arg1->getType()) 5212 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); 5213 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); 5214 } 5215 5216 case Builtin::BI__xray_typedevent: { 5217 // TODO: There should be a way to always emit events even if the current 5218 // function is not instrumented. Losing events in a stream can cripple 5219 // a trace. 5220 if (!ShouldXRayInstrumentFunction()) 5221 return RValue::getIgnored(); 5222 5223 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 5224 XRayInstrKind::Typed)) 5225 return RValue::getIgnored(); 5226 5227 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 5228 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) 5229 return RValue::getIgnored(); 5230 5231 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); 5232 auto FTy = F->getFunctionType(); 5233 auto Arg0 = EmitScalarExpr(E->getArg(0)); 5234 auto PTy0 = FTy->getParamType(0); 5235 if (PTy0 != Arg0->getType()) 5236 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); 5237 auto Arg1 = E->getArg(1); 5238 auto Arg1Val = EmitScalarExpr(Arg1); 5239 auto Arg1Ty = Arg1->getType(); 5240 auto PTy1 = FTy->getParamType(1); 5241 if (PTy1 != Arg1Val->getType()) { 5242 if (Arg1Ty->isArrayType()) 5243 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); 5244 else 5245 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); 5246 } 5247 auto Arg2 = EmitScalarExpr(E->getArg(2)); 5248 auto PTy2 = FTy->getParamType(2); 5249 if (PTy2 != Arg2->getType()) 5250 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); 5251 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); 5252 } 5253 5254 case Builtin::BI__builtin_ms_va_start: 5255 case Builtin::BI__builtin_ms_va_end: 5256 return RValue::get( 5257 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), 5258 BuiltinID == Builtin::BI__builtin_ms_va_start)); 5259 5260 case Builtin::BI__builtin_ms_va_copy: { 5261 // Lower this manually. We can't reliably determine whether or not any 5262 // given va_copy() is for a Win64 va_list from the calling convention 5263 // alone, because it's legal to do this from a System V ABI function. 5264 // With opaque pointer types, we won't have enough information in LLVM 5265 // IR to determine this from the argument types, either. Best to do it 5266 // now, while we have enough information. 5267 Address DestAddr = EmitMSVAListRef(E->getArg(0)); 5268 Address SrcAddr = EmitMSVAListRef(E->getArg(1)); 5269 5270 llvm::Type *BPP = Int8PtrPtrTy; 5271 5272 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), 5273 Int8PtrTy, DestAddr.getAlignment()); 5274 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), 5275 Int8PtrTy, SrcAddr.getAlignment()); 5276 5277 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); 5278 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); 5279 } 5280 5281 case Builtin::BI__builtin_get_device_side_mangled_name: { 5282 auto Name = CGM.getCUDARuntime().getDeviceSideName( 5283 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl()); 5284 auto Str = CGM.GetAddrOfConstantCString(Name, ""); 5285 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 5286 llvm::ConstantInt::get(SizeTy, 0)}; 5287 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(), 5288 Str.getPointer(), Zeros); 5289 return RValue::get(Ptr); 5290 } 5291 } 5292 5293 // If this is an alias for a lib function (e.g. __builtin_sin), emit 5294 // the call using the normal call path, but using the unmangled 5295 // version of the function name. 5296 if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) 5297 return emitLibraryCall(*this, FD, E, 5298 CGM.getBuiltinLibFunction(FD, BuiltinID)); 5299 5300 // If this is a predefined lib function (e.g. malloc), emit the call 5301 // using exactly the normal call path. 5302 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 5303 return emitLibraryCall(*this, FD, E, 5304 cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); 5305 5306 // Check that a call to a target specific builtin has the correct target 5307 // features. 5308 // This is down here to avoid non-target specific builtins, however, if 5309 // generic builtins start to require generic target features then we 5310 // can move this up to the beginning of the function. 5311 checkTargetFeatures(E, FD); 5312 5313 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) 5314 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); 5315 5316 // See if we have a target specific intrinsic. 5317 const char *Name = getContext().BuiltinInfo.getName(BuiltinID); 5318 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; 5319 StringRef Prefix = 5320 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); 5321 if (!Prefix.empty()) { 5322 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); 5323 // NOTE we don't need to perform a compatibility flag check here since the 5324 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the 5325 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. 5326 if (IntrinsicID == Intrinsic::not_intrinsic) 5327 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); 5328 } 5329 5330 if (IntrinsicID != Intrinsic::not_intrinsic) { 5331 SmallVector<Value*, 16> Args; 5332 5333 // Find out if any arguments are required to be integer constant 5334 // expressions. 5335 unsigned ICEArguments = 0; 5336 ASTContext::GetBuiltinTypeError Error; 5337 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 5338 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 5339 5340 Function *F = CGM.getIntrinsic(IntrinsicID); 5341 llvm::FunctionType *FTy = F->getFunctionType(); 5342 5343 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 5344 Value *ArgValue; 5345 // If this is a normal argument, just emit it as a scalar. 5346 if ((ICEArguments & (1 << i)) == 0) { 5347 ArgValue = EmitScalarExpr(E->getArg(i)); 5348 } else { 5349 // If this is required to be a constant, constant fold it so that we 5350 // know that the generated intrinsic gets a ConstantInt. 5351 ArgValue = llvm::ConstantInt::get( 5352 getLLVMContext(), 5353 *E->getArg(i)->getIntegerConstantExpr(getContext())); 5354 } 5355 5356 // If the intrinsic arg type is different from the builtin arg type 5357 // we need to do a bit cast. 5358 llvm::Type *PTy = FTy->getParamType(i); 5359 if (PTy != ArgValue->getType()) { 5360 // XXX - vector of pointers? 5361 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { 5362 if (PtrTy->getAddressSpace() != 5363 ArgValue->getType()->getPointerAddressSpace()) { 5364 ArgValue = Builder.CreateAddrSpaceCast( 5365 ArgValue, 5366 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); 5367 } 5368 } 5369 5370 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && 5371 "Must be able to losslessly bit cast to param"); 5372 ArgValue = Builder.CreateBitCast(ArgValue, PTy); 5373 } 5374 5375 Args.push_back(ArgValue); 5376 } 5377 5378 Value *V = Builder.CreateCall(F, Args); 5379 QualType BuiltinRetType = E->getType(); 5380 5381 llvm::Type *RetTy = VoidTy; 5382 if (!BuiltinRetType->isVoidType()) 5383 RetTy = ConvertType(BuiltinRetType); 5384 5385 if (RetTy != V->getType()) { 5386 // XXX - vector of pointers? 5387 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { 5388 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { 5389 V = Builder.CreateAddrSpaceCast( 5390 V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); 5391 } 5392 } 5393 5394 assert(V->getType()->canLosslesslyBitCastTo(RetTy) && 5395 "Must be able to losslessly bit cast result type"); 5396 V = Builder.CreateBitCast(V, RetTy); 5397 } 5398 5399 return RValue::get(V); 5400 } 5401 5402 // Some target-specific builtins can have aggregate return values, e.g. 5403 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force 5404 // ReturnValue to be non-null, so that the target-specific emission code can 5405 // always just emit into it. 5406 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); 5407 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { 5408 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); 5409 ReturnValue = ReturnValueSlot(DestPtr, false); 5410 } 5411 5412 // Now see if we can emit a target-specific builtin. 5413 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { 5414 switch (EvalKind) { 5415 case TEK_Scalar: 5416 return RValue::get(V); 5417 case TEK_Aggregate: 5418 return RValue::getAggregate(ReturnValue.getValue(), 5419 ReturnValue.isVolatile()); 5420 case TEK_Complex: 5421 llvm_unreachable("No current target builtin returns complex"); 5422 } 5423 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); 5424 } 5425 5426 ErrorUnsupported(E, "builtin function"); 5427 5428 // Unknown builtin, for now just dump it out and return undef. 5429 return GetUndefRValue(E->getType()); 5430 } 5431 5432 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, 5433 unsigned BuiltinID, const CallExpr *E, 5434 ReturnValueSlot ReturnValue, 5435 llvm::Triple::ArchType Arch) { 5436 switch (Arch) { 5437 case llvm::Triple::arm: 5438 case llvm::Triple::armeb: 5439 case llvm::Triple::thumb: 5440 case llvm::Triple::thumbeb: 5441 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); 5442 case llvm::Triple::aarch64: 5443 case llvm::Triple::aarch64_32: 5444 case llvm::Triple::aarch64_be: 5445 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); 5446 case llvm::Triple::bpfeb: 5447 case llvm::Triple::bpfel: 5448 return CGF->EmitBPFBuiltinExpr(BuiltinID, E); 5449 case llvm::Triple::x86: 5450 case llvm::Triple::x86_64: 5451 return CGF->EmitX86BuiltinExpr(BuiltinID, E); 5452 case llvm::Triple::ppc: 5453 case llvm::Triple::ppcle: 5454 case llvm::Triple::ppc64: 5455 case llvm::Triple::ppc64le: 5456 return CGF->EmitPPCBuiltinExpr(BuiltinID, E); 5457 case llvm::Triple::r600: 5458 case llvm::Triple::amdgcn: 5459 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); 5460 case llvm::Triple::systemz: 5461 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); 5462 case llvm::Triple::nvptx: 5463 case llvm::Triple::nvptx64: 5464 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); 5465 case llvm::Triple::wasm32: 5466 case llvm::Triple::wasm64: 5467 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); 5468 case llvm::Triple::hexagon: 5469 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); 5470 case llvm::Triple::riscv32: 5471 case llvm::Triple::riscv64: 5472 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); 5473 default: 5474 return nullptr; 5475 } 5476 } 5477 5478 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, 5479 const CallExpr *E, 5480 ReturnValueSlot ReturnValue) { 5481 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 5482 assert(getContext().getAuxTargetInfo() && "Missing aux target info"); 5483 return EmitTargetArchBuiltinExpr( 5484 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, 5485 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); 5486 } 5487 5488 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, 5489 getTarget().getTriple().getArch()); 5490 } 5491 5492 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, 5493 NeonTypeFlags TypeFlags, 5494 bool HasLegalHalfType = true, 5495 bool V1Ty = false, 5496 bool AllowBFloatArgsAndRet = true) { 5497 int IsQuad = TypeFlags.isQuad(); 5498 switch (TypeFlags.getEltType()) { 5499 case NeonTypeFlags::Int8: 5500 case NeonTypeFlags::Poly8: 5501 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); 5502 case NeonTypeFlags::Int16: 5503 case NeonTypeFlags::Poly16: 5504 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5505 case NeonTypeFlags::BFloat16: 5506 if (AllowBFloatArgsAndRet) 5507 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); 5508 else 5509 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5510 case NeonTypeFlags::Float16: 5511 if (HasLegalHalfType) 5512 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); 5513 else 5514 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5515 case NeonTypeFlags::Int32: 5516 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); 5517 case NeonTypeFlags::Int64: 5518 case NeonTypeFlags::Poly64: 5519 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); 5520 case NeonTypeFlags::Poly128: 5521 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. 5522 // There is a lot of i128 and f128 API missing. 5523 // so we use v16i8 to represent poly128 and get pattern matched. 5524 return llvm::FixedVectorType::get(CGF->Int8Ty, 16); 5525 case NeonTypeFlags::Float32: 5526 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); 5527 case NeonTypeFlags::Float64: 5528 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); 5529 } 5530 llvm_unreachable("Unknown vector element type!"); 5531 } 5532 5533 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, 5534 NeonTypeFlags IntTypeFlags) { 5535 int IsQuad = IntTypeFlags.isQuad(); 5536 switch (IntTypeFlags.getEltType()) { 5537 case NeonTypeFlags::Int16: 5538 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); 5539 case NeonTypeFlags::Int32: 5540 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); 5541 case NeonTypeFlags::Int64: 5542 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); 5543 default: 5544 llvm_unreachable("Type can't be converted to floating-point!"); 5545 } 5546 } 5547 5548 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, 5549 const ElementCount &Count) { 5550 Value *SV = llvm::ConstantVector::getSplat(Count, C); 5551 return Builder.CreateShuffleVector(V, V, SV, "lane"); 5552 } 5553 5554 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { 5555 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); 5556 return EmitNeonSplat(V, C, EC); 5557 } 5558 5559 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, 5560 const char *name, 5561 unsigned shift, bool rightshift) { 5562 unsigned j = 0; 5563 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 5564 ai != ae; ++ai, ++j) { 5565 if (F->isConstrainedFPIntrinsic()) 5566 if (ai->getType()->isMetadataTy()) 5567 continue; 5568 if (shift > 0 && shift == j) 5569 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); 5570 else 5571 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); 5572 } 5573 5574 if (F->isConstrainedFPIntrinsic()) 5575 return Builder.CreateConstrainedFPCall(F, Ops, name); 5576 else 5577 return Builder.CreateCall(F, Ops, name); 5578 } 5579 5580 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, 5581 bool neg) { 5582 int SV = cast<ConstantInt>(V)->getSExtValue(); 5583 return ConstantInt::get(Ty, neg ? -SV : SV); 5584 } 5585 5586 // Right-shift a vector by a constant. 5587 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, 5588 llvm::Type *Ty, bool usgn, 5589 const char *name) { 5590 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 5591 5592 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); 5593 int EltSize = VTy->getScalarSizeInBits(); 5594 5595 Vec = Builder.CreateBitCast(Vec, Ty); 5596 5597 // lshr/ashr are undefined when the shift amount is equal to the vector 5598 // element size. 5599 if (ShiftAmt == EltSize) { 5600 if (usgn) { 5601 // Right-shifting an unsigned value by its size yields 0. 5602 return llvm::ConstantAggregateZero::get(VTy); 5603 } else { 5604 // Right-shifting a signed value by its size is equivalent 5605 // to a shift of size-1. 5606 --ShiftAmt; 5607 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); 5608 } 5609 } 5610 5611 Shift = EmitNeonShiftVector(Shift, Ty, false); 5612 if (usgn) 5613 return Builder.CreateLShr(Vec, Shift, name); 5614 else 5615 return Builder.CreateAShr(Vec, Shift, name); 5616 } 5617 5618 enum { 5619 AddRetType = (1 << 0), 5620 Add1ArgType = (1 << 1), 5621 Add2ArgTypes = (1 << 2), 5622 5623 VectorizeRetType = (1 << 3), 5624 VectorizeArgTypes = (1 << 4), 5625 5626 InventFloatType = (1 << 5), 5627 UnsignedAlts = (1 << 6), 5628 5629 Use64BitVectors = (1 << 7), 5630 Use128BitVectors = (1 << 8), 5631 5632 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, 5633 VectorRet = AddRetType | VectorizeRetType, 5634 VectorRetGetArgs01 = 5635 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, 5636 FpCmpzModifiers = 5637 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType 5638 }; 5639 5640 namespace { 5641 struct ARMVectorIntrinsicInfo { 5642 const char *NameHint; 5643 unsigned BuiltinID; 5644 unsigned LLVMIntrinsic; 5645 unsigned AltLLVMIntrinsic; 5646 uint64_t TypeModifier; 5647 5648 bool operator<(unsigned RHSBuiltinID) const { 5649 return BuiltinID < RHSBuiltinID; 5650 } 5651 bool operator<(const ARMVectorIntrinsicInfo &TE) const { 5652 return BuiltinID < TE.BuiltinID; 5653 } 5654 }; 5655 } // end anonymous namespace 5656 5657 #define NEONMAP0(NameBase) \ 5658 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } 5659 5660 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 5661 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5662 Intrinsic::LLVMIntrinsic, 0, TypeModifier } 5663 5664 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ 5665 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5666 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ 5667 TypeModifier } 5668 5669 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { 5670 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), 5671 NEONMAP0(splat_lane_v), 5672 NEONMAP0(splat_laneq_v), 5673 NEONMAP0(splatq_lane_v), 5674 NEONMAP0(splatq_laneq_v), 5675 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5676 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5677 NEONMAP1(vabs_v, arm_neon_vabs, 0), 5678 NEONMAP1(vabsq_v, arm_neon_vabs, 0), 5679 NEONMAP0(vadd_v), 5680 NEONMAP0(vaddhn_v), 5681 NEONMAP0(vaddq_v), 5682 NEONMAP1(vaesdq_v, arm_neon_aesd, 0), 5683 NEONMAP1(vaeseq_v, arm_neon_aese, 0), 5684 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), 5685 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), 5686 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), 5687 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), 5688 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), 5689 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), 5690 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), 5691 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), 5692 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), 5693 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5694 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5695 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5696 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5697 NEONMAP1(vcage_v, arm_neon_vacge, 0), 5698 NEONMAP1(vcageq_v, arm_neon_vacge, 0), 5699 NEONMAP1(vcagt_v, arm_neon_vacgt, 0), 5700 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), 5701 NEONMAP1(vcale_v, arm_neon_vacge, 0), 5702 NEONMAP1(vcaleq_v, arm_neon_vacge, 0), 5703 NEONMAP1(vcalt_v, arm_neon_vacgt, 0), 5704 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), 5705 NEONMAP0(vceqz_v), 5706 NEONMAP0(vceqzq_v), 5707 NEONMAP0(vcgez_v), 5708 NEONMAP0(vcgezq_v), 5709 NEONMAP0(vcgtz_v), 5710 NEONMAP0(vcgtzq_v), 5711 NEONMAP0(vclez_v), 5712 NEONMAP0(vclezq_v), 5713 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), 5714 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), 5715 NEONMAP0(vcltz_v), 5716 NEONMAP0(vcltzq_v), 5717 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5718 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5719 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5720 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5721 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), 5722 NEONMAP0(vcvt_f16_v), 5723 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), 5724 NEONMAP0(vcvt_f32_v), 5725 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5726 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5727 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5728 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5729 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5730 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5731 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5732 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5733 NEONMAP0(vcvt_s16_v), 5734 NEONMAP0(vcvt_s32_v), 5735 NEONMAP0(vcvt_s64_v), 5736 NEONMAP0(vcvt_u16_v), 5737 NEONMAP0(vcvt_u32_v), 5738 NEONMAP0(vcvt_u64_v), 5739 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), 5740 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), 5741 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), 5742 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), 5743 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), 5744 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), 5745 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), 5746 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), 5747 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), 5748 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), 5749 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), 5750 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), 5751 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), 5752 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), 5753 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), 5754 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), 5755 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), 5756 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), 5757 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), 5758 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), 5759 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), 5760 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), 5761 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), 5762 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), 5763 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), 5764 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), 5765 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), 5766 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), 5767 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), 5768 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), 5769 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), 5770 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), 5771 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), 5772 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), 5773 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), 5774 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), 5775 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), 5776 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), 5777 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), 5778 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), 5779 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), 5780 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), 5781 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), 5782 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), 5783 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), 5784 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), 5785 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), 5786 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), 5787 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), 5788 NEONMAP0(vcvtq_f16_v), 5789 NEONMAP0(vcvtq_f32_v), 5790 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5791 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5792 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5793 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5794 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5795 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5796 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5797 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5798 NEONMAP0(vcvtq_s16_v), 5799 NEONMAP0(vcvtq_s32_v), 5800 NEONMAP0(vcvtq_s64_v), 5801 NEONMAP0(vcvtq_u16_v), 5802 NEONMAP0(vcvtq_u32_v), 5803 NEONMAP0(vcvtq_u64_v), 5804 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), 5805 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), 5806 NEONMAP0(vext_v), 5807 NEONMAP0(vextq_v), 5808 NEONMAP0(vfma_v), 5809 NEONMAP0(vfmaq_v), 5810 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5811 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5812 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5813 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5814 NEONMAP0(vld1_dup_v), 5815 NEONMAP1(vld1_v, arm_neon_vld1, 0), 5816 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), 5817 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), 5818 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), 5819 NEONMAP0(vld1q_dup_v), 5820 NEONMAP1(vld1q_v, arm_neon_vld1, 0), 5821 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), 5822 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), 5823 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), 5824 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), 5825 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), 5826 NEONMAP1(vld2_v, arm_neon_vld2, 0), 5827 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), 5828 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), 5829 NEONMAP1(vld2q_v, arm_neon_vld2, 0), 5830 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), 5831 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), 5832 NEONMAP1(vld3_v, arm_neon_vld3, 0), 5833 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), 5834 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), 5835 NEONMAP1(vld3q_v, arm_neon_vld3, 0), 5836 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), 5837 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), 5838 NEONMAP1(vld4_v, arm_neon_vld4, 0), 5839 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), 5840 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), 5841 NEONMAP1(vld4q_v, arm_neon_vld4, 0), 5842 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5843 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), 5844 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), 5845 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5846 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5847 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), 5848 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), 5849 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5850 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), 5851 NEONMAP0(vmovl_v), 5852 NEONMAP0(vmovn_v), 5853 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), 5854 NEONMAP0(vmull_v), 5855 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), 5856 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5857 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5858 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), 5859 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5860 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5861 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), 5862 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), 5863 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), 5864 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), 5865 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), 5866 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5867 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5868 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), 5869 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), 5870 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), 5871 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), 5872 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), 5873 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), 5874 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), 5875 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), 5876 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), 5877 NEONMAP1(vqrdmlah_v, arm_neon_vqrdmlah, Add1ArgType), 5878 NEONMAP1(vqrdmlahq_v, arm_neon_vqrdmlah, Add1ArgType), 5879 NEONMAP1(vqrdmlsh_v, arm_neon_vqrdmlsh, Add1ArgType), 5880 NEONMAP1(vqrdmlshq_v, arm_neon_vqrdmlsh, Add1ArgType), 5881 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), 5882 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), 5883 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5884 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5885 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5886 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5887 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5888 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5889 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), 5890 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), 5891 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5892 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5893 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), 5894 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5895 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5896 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), 5897 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), 5898 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5899 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5900 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), 5901 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), 5902 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), 5903 NEONMAP0(vrndi_v), 5904 NEONMAP0(vrndiq_v), 5905 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), 5906 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), 5907 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), 5908 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), 5909 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), 5910 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), 5911 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), 5912 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), 5913 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), 5914 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5915 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5916 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5917 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5918 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5919 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5920 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), 5921 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), 5922 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), 5923 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), 5924 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), 5925 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), 5926 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), 5927 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), 5928 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), 5929 NEONMAP0(vshl_n_v), 5930 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5931 NEONMAP0(vshll_n_v), 5932 NEONMAP0(vshlq_n_v), 5933 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5934 NEONMAP0(vshr_n_v), 5935 NEONMAP0(vshrn_n_v), 5936 NEONMAP0(vshrq_n_v), 5937 NEONMAP1(vst1_v, arm_neon_vst1, 0), 5938 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), 5939 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), 5940 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), 5941 NEONMAP1(vst1q_v, arm_neon_vst1, 0), 5942 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), 5943 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), 5944 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), 5945 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), 5946 NEONMAP1(vst2_v, arm_neon_vst2, 0), 5947 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), 5948 NEONMAP1(vst2q_v, arm_neon_vst2, 0), 5949 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), 5950 NEONMAP1(vst3_v, arm_neon_vst3, 0), 5951 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), 5952 NEONMAP1(vst3q_v, arm_neon_vst3, 0), 5953 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), 5954 NEONMAP1(vst4_v, arm_neon_vst4, 0), 5955 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), 5956 NEONMAP1(vst4q_v, arm_neon_vst4, 0), 5957 NEONMAP0(vsubhn_v), 5958 NEONMAP0(vtrn_v), 5959 NEONMAP0(vtrnq_v), 5960 NEONMAP0(vtst_v), 5961 NEONMAP0(vtstq_v), 5962 NEONMAP1(vusdot_v, arm_neon_usdot, 0), 5963 NEONMAP1(vusdotq_v, arm_neon_usdot, 0), 5964 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), 5965 NEONMAP0(vuzp_v), 5966 NEONMAP0(vuzpq_v), 5967 NEONMAP0(vzip_v), 5968 NEONMAP0(vzipq_v) 5969 }; 5970 5971 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { 5972 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), 5973 NEONMAP0(splat_lane_v), 5974 NEONMAP0(splat_laneq_v), 5975 NEONMAP0(splatq_lane_v), 5976 NEONMAP0(splatq_laneq_v), 5977 NEONMAP1(vabs_v, aarch64_neon_abs, 0), 5978 NEONMAP1(vabsq_v, aarch64_neon_abs, 0), 5979 NEONMAP0(vadd_v), 5980 NEONMAP0(vaddhn_v), 5981 NEONMAP0(vaddq_p128), 5982 NEONMAP0(vaddq_v), 5983 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), 5984 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), 5985 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), 5986 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), 5987 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), 5988 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), 5989 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), 5990 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), 5991 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), 5992 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), 5993 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5994 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5995 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5996 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5997 NEONMAP1(vcage_v, aarch64_neon_facge, 0), 5998 NEONMAP1(vcageq_v, aarch64_neon_facge, 0), 5999 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), 6000 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), 6001 NEONMAP1(vcale_v, aarch64_neon_facge, 0), 6002 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), 6003 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), 6004 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), 6005 NEONMAP0(vceqz_v), 6006 NEONMAP0(vceqzq_v), 6007 NEONMAP0(vcgez_v), 6008 NEONMAP0(vcgezq_v), 6009 NEONMAP0(vcgtz_v), 6010 NEONMAP0(vcgtzq_v), 6011 NEONMAP0(vclez_v), 6012 NEONMAP0(vclezq_v), 6013 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), 6014 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), 6015 NEONMAP0(vcltz_v), 6016 NEONMAP0(vcltzq_v), 6017 NEONMAP1(vclz_v, ctlz, Add1ArgType), 6018 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 6019 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 6020 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 6021 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 6022 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType), 6023 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 6024 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 6025 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 6026 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType), 6027 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 6028 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 6029 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), 6030 NEONMAP0(vcvt_f16_v), 6031 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), 6032 NEONMAP0(vcvt_f32_v), 6033 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 6034 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 6035 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 6036 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 6037 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 6038 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 6039 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 6040 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 6041 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 6042 NEONMAP0(vcvtq_f16_v), 6043 NEONMAP0(vcvtq_f32_v), 6044 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), 6045 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 6046 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 6047 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 6048 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 6049 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 6050 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 6051 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 6052 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 6053 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 6054 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), 6055 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 6056 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 6057 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), 6058 NEONMAP0(vext_v), 6059 NEONMAP0(vextq_v), 6060 NEONMAP0(vfma_v), 6061 NEONMAP0(vfmaq_v), 6062 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), 6063 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), 6064 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), 6065 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), 6066 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), 6067 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), 6068 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), 6069 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), 6070 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 6071 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 6072 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 6073 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 6074 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), 6075 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), 6076 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), 6077 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), 6078 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), 6079 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), 6080 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), 6081 NEONMAP0(vmovl_v), 6082 NEONMAP0(vmovn_v), 6083 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), 6084 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), 6085 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), 6086 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 6087 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 6088 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), 6089 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), 6090 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), 6091 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 6092 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 6093 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), 6094 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), 6095 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), 6096 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 6097 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), 6098 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), 6099 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 6100 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), 6101 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), 6102 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), 6103 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), 6104 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), 6105 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), 6106 NEONMAP1(vqrdmlah_v, aarch64_neon_sqrdmlah, Add1ArgType), 6107 NEONMAP1(vqrdmlahq_v, aarch64_neon_sqrdmlah, Add1ArgType), 6108 NEONMAP1(vqrdmlsh_v, aarch64_neon_sqrdmlsh, Add1ArgType), 6109 NEONMAP1(vqrdmlshq_v, aarch64_neon_sqrdmlsh, Add1ArgType), 6110 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), 6111 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 6112 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), 6113 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), 6114 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 6115 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), 6116 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 6117 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 6118 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), 6119 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 6120 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), 6121 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 6122 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), 6123 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), 6124 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 6125 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 6126 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), 6127 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0), 6128 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 6129 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 6130 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), 6131 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), 6132 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 6133 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 6134 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType), 6135 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType), 6136 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType), 6137 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType), 6138 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType), 6139 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType), 6140 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType), 6141 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType), 6142 NEONMAP0(vrndi_v), 6143 NEONMAP0(vrndiq_v), 6144 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 6145 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 6146 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 6147 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 6148 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 6149 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 6150 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), 6151 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), 6152 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), 6153 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), 6154 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), 6155 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), 6156 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), 6157 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), 6158 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), 6159 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0), 6160 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0), 6161 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0), 6162 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0), 6163 NEONMAP0(vshl_n_v), 6164 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 6165 NEONMAP0(vshll_n_v), 6166 NEONMAP0(vshlq_n_v), 6167 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 6168 NEONMAP0(vshr_n_v), 6169 NEONMAP0(vshrn_n_v), 6170 NEONMAP0(vshrq_n_v), 6171 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0), 6172 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0), 6173 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0), 6174 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0), 6175 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0), 6176 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0), 6177 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0), 6178 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0), 6179 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0), 6180 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), 6181 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), 6182 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), 6183 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), 6184 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), 6185 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), 6186 NEONMAP0(vsubhn_v), 6187 NEONMAP0(vtst_v), 6188 NEONMAP0(vtstq_v), 6189 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), 6190 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), 6191 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), 6192 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0), 6193 }; 6194 6195 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { 6196 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), 6197 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), 6198 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), 6199 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 6200 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 6201 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 6202 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 6203 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 6204 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 6205 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6206 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 6207 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), 6208 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 6209 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), 6210 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6211 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6212 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 6213 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 6214 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 6215 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 6216 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 6217 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 6218 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 6219 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 6220 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6221 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6222 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6223 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6224 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6225 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6226 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6227 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6228 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6229 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6230 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), 6231 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6232 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6233 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6234 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6235 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6236 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6237 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6238 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6239 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6240 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6241 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6242 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6243 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6244 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6245 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6246 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6247 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6248 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6249 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), 6250 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6251 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6252 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6253 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6254 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 6255 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 6256 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6257 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6258 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 6259 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 6260 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6261 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6262 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6263 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6264 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 6265 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 6266 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6267 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 6268 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 6269 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 6270 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), 6271 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), 6272 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), 6273 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6274 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6275 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6276 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6277 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6278 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6279 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6280 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6281 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 6282 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6283 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 6284 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), 6285 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 6286 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), 6287 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 6288 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 6289 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), 6290 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), 6291 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 6292 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 6293 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), 6294 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), 6295 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), 6296 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), 6297 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), 6298 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), 6299 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), 6300 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), 6301 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 6302 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 6303 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 6304 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 6305 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), 6306 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 6307 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 6308 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 6309 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), 6310 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 6311 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), 6312 NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors), 6313 NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType), 6314 NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors), 6315 NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType), 6316 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), 6317 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), 6318 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 6319 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 6320 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), 6321 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), 6322 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 6323 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 6324 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), 6325 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), 6326 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), 6327 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), 6328 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 6329 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 6330 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 6331 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 6332 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), 6333 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 6334 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 6335 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6336 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6337 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6338 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6339 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), 6340 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), 6341 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6342 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6343 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6344 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6345 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), 6346 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), 6347 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), 6348 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), 6349 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 6350 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 6351 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), 6352 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), 6353 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), 6354 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 6355 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 6356 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 6357 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 6358 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), 6359 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 6360 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 6361 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 6362 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 6363 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), 6364 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), 6365 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 6366 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 6367 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), 6368 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), 6369 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), 6370 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), 6371 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), 6372 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), 6373 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), 6374 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), 6375 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), 6376 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), 6377 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), 6378 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), 6379 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), 6380 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), 6381 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), 6382 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), 6383 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), 6384 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), 6385 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), 6386 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), 6387 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6388 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), 6389 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6390 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), 6391 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), 6392 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), 6393 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6394 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), 6395 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6396 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), 6397 // FP16 scalar intrinisics go here. 6398 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), 6399 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6400 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6401 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6402 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6403 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6404 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6405 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6406 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6407 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6408 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6409 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6410 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6411 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6412 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6413 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6414 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6415 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6416 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6417 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6418 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6419 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6420 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6421 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6422 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6423 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6424 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6425 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6426 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6427 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), 6428 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), 6429 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), 6430 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), 6431 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), 6432 }; 6433 6434 #undef NEONMAP0 6435 #undef NEONMAP1 6436 #undef NEONMAP2 6437 6438 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 6439 { \ 6440 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ 6441 TypeModifier \ 6442 } 6443 6444 #define SVEMAP2(NameBase, TypeModifier) \ 6445 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } 6446 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { 6447 #define GET_SVE_LLVM_INTRINSIC_MAP 6448 #include "clang/Basic/arm_sve_builtin_cg.inc" 6449 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def" 6450 #undef GET_SVE_LLVM_INTRINSIC_MAP 6451 }; 6452 6453 #undef SVEMAP1 6454 #undef SVEMAP2 6455 6456 static bool NEONSIMDIntrinsicsProvenSorted = false; 6457 6458 static bool AArch64SIMDIntrinsicsProvenSorted = false; 6459 static bool AArch64SISDIntrinsicsProvenSorted = false; 6460 static bool AArch64SVEIntrinsicsProvenSorted = false; 6461 6462 static const ARMVectorIntrinsicInfo * 6463 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap, 6464 unsigned BuiltinID, bool &MapProvenSorted) { 6465 6466 #ifndef NDEBUG 6467 if (!MapProvenSorted) { 6468 assert(llvm::is_sorted(IntrinsicMap)); 6469 MapProvenSorted = true; 6470 } 6471 #endif 6472 6473 const ARMVectorIntrinsicInfo *Builtin = 6474 llvm::lower_bound(IntrinsicMap, BuiltinID); 6475 6476 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) 6477 return Builtin; 6478 6479 return nullptr; 6480 } 6481 6482 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 6483 unsigned Modifier, 6484 llvm::Type *ArgType, 6485 const CallExpr *E) { 6486 int VectorSize = 0; 6487 if (Modifier & Use64BitVectors) 6488 VectorSize = 64; 6489 else if (Modifier & Use128BitVectors) 6490 VectorSize = 128; 6491 6492 // Return type. 6493 SmallVector<llvm::Type *, 3> Tys; 6494 if (Modifier & AddRetType) { 6495 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 6496 if (Modifier & VectorizeRetType) 6497 Ty = llvm::FixedVectorType::get( 6498 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); 6499 6500 Tys.push_back(Ty); 6501 } 6502 6503 // Arguments. 6504 if (Modifier & VectorizeArgTypes) { 6505 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; 6506 ArgType = llvm::FixedVectorType::get(ArgType, Elts); 6507 } 6508 6509 if (Modifier & (Add1ArgType | Add2ArgTypes)) 6510 Tys.push_back(ArgType); 6511 6512 if (Modifier & Add2ArgTypes) 6513 Tys.push_back(ArgType); 6514 6515 if (Modifier & InventFloatType) 6516 Tys.push_back(FloatTy); 6517 6518 return CGM.getIntrinsic(IntrinsicID, Tys); 6519 } 6520 6521 static Value *EmitCommonNeonSISDBuiltinExpr( 6522 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, 6523 SmallVectorImpl<Value *> &Ops, const CallExpr *E) { 6524 unsigned BuiltinID = SISDInfo.BuiltinID; 6525 unsigned int Int = SISDInfo.LLVMIntrinsic; 6526 unsigned Modifier = SISDInfo.TypeModifier; 6527 const char *s = SISDInfo.NameHint; 6528 6529 switch (BuiltinID) { 6530 case NEON::BI__builtin_neon_vcled_s64: 6531 case NEON::BI__builtin_neon_vcled_u64: 6532 case NEON::BI__builtin_neon_vcles_f32: 6533 case NEON::BI__builtin_neon_vcled_f64: 6534 case NEON::BI__builtin_neon_vcltd_s64: 6535 case NEON::BI__builtin_neon_vcltd_u64: 6536 case NEON::BI__builtin_neon_vclts_f32: 6537 case NEON::BI__builtin_neon_vcltd_f64: 6538 case NEON::BI__builtin_neon_vcales_f32: 6539 case NEON::BI__builtin_neon_vcaled_f64: 6540 case NEON::BI__builtin_neon_vcalts_f32: 6541 case NEON::BI__builtin_neon_vcaltd_f64: 6542 // Only one direction of comparisons actually exist, cmle is actually a cmge 6543 // with swapped operands. The table gives us the right intrinsic but we 6544 // still need to do the swap. 6545 std::swap(Ops[0], Ops[1]); 6546 break; 6547 } 6548 6549 assert(Int && "Generic code assumes a valid intrinsic"); 6550 6551 // Determine the type(s) of this overloaded AArch64 intrinsic. 6552 const Expr *Arg = E->getArg(0); 6553 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); 6554 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); 6555 6556 int j = 0; 6557 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); 6558 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 6559 ai != ae; ++ai, ++j) { 6560 llvm::Type *ArgTy = ai->getType(); 6561 if (Ops[j]->getType()->getPrimitiveSizeInBits() == 6562 ArgTy->getPrimitiveSizeInBits()) 6563 continue; 6564 6565 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); 6566 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate 6567 // it before inserting. 6568 Ops[j] = CGF.Builder.CreateTruncOrBitCast( 6569 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType()); 6570 Ops[j] = 6571 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); 6572 } 6573 6574 Value *Result = CGF.EmitNeonCall(F, Ops, s); 6575 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 6576 if (ResultType->getPrimitiveSizeInBits().getFixedSize() < 6577 Result->getType()->getPrimitiveSizeInBits().getFixedSize()) 6578 return CGF.Builder.CreateExtractElement(Result, C0); 6579 6580 return CGF.Builder.CreateBitCast(Result, ResultType, s); 6581 } 6582 6583 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( 6584 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, 6585 const char *NameHint, unsigned Modifier, const CallExpr *E, 6586 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, 6587 llvm::Triple::ArchType Arch) { 6588 // Get the last argument, which specifies the vector type. 6589 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 6590 Optional<llvm::APSInt> NeonTypeConst = 6591 Arg->getIntegerConstantExpr(getContext()); 6592 if (!NeonTypeConst) 6593 return nullptr; 6594 6595 // Determine the type of this overloaded NEON intrinsic. 6596 NeonTypeFlags Type(NeonTypeConst->getZExtValue()); 6597 bool Usgn = Type.isUnsigned(); 6598 bool Quad = Type.isQuad(); 6599 const bool HasLegalHalfType = getTarget().hasLegalHalfType(); 6600 const bool AllowBFloatArgsAndRet = 6601 getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); 6602 6603 llvm::FixedVectorType *VTy = 6604 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); 6605 llvm::Type *Ty = VTy; 6606 if (!Ty) 6607 return nullptr; 6608 6609 auto getAlignmentValue32 = [&](Address addr) -> Value* { 6610 return Builder.getInt32(addr.getAlignment().getQuantity()); 6611 }; 6612 6613 unsigned Int = LLVMIntrinsic; 6614 if ((Modifier & UnsignedAlts) && !Usgn) 6615 Int = AltLLVMIntrinsic; 6616 6617 switch (BuiltinID) { 6618 default: break; 6619 case NEON::BI__builtin_neon_splat_lane_v: 6620 case NEON::BI__builtin_neon_splat_laneq_v: 6621 case NEON::BI__builtin_neon_splatq_lane_v: 6622 case NEON::BI__builtin_neon_splatq_laneq_v: { 6623 auto NumElements = VTy->getElementCount(); 6624 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) 6625 NumElements = NumElements * 2; 6626 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) 6627 NumElements = NumElements.divideCoefficientBy(2); 6628 6629 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6630 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements); 6631 } 6632 case NEON::BI__builtin_neon_vpadd_v: 6633 case NEON::BI__builtin_neon_vpaddq_v: 6634 // We don't allow fp/int overloading of intrinsics. 6635 if (VTy->getElementType()->isFloatingPointTy() && 6636 Int == Intrinsic::aarch64_neon_addp) 6637 Int = Intrinsic::aarch64_neon_faddp; 6638 break; 6639 case NEON::BI__builtin_neon_vabs_v: 6640 case NEON::BI__builtin_neon_vabsq_v: 6641 if (VTy->getElementType()->isFloatingPointTy()) 6642 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); 6643 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); 6644 case NEON::BI__builtin_neon_vadd_v: 6645 case NEON::BI__builtin_neon_vaddq_v: { 6646 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8); 6647 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6648 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 6649 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); 6650 return Builder.CreateBitCast(Ops[0], Ty); 6651 } 6652 case NEON::BI__builtin_neon_vaddhn_v: { 6653 llvm::FixedVectorType *SrcTy = 6654 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6655 6656 // %sum = add <4 x i32> %lhs, %rhs 6657 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6658 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6659 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); 6660 6661 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6662 Constant *ShiftAmt = 6663 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6664 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); 6665 6666 // %res = trunc <4 x i32> %high to <4 x i16> 6667 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); 6668 } 6669 case NEON::BI__builtin_neon_vcale_v: 6670 case NEON::BI__builtin_neon_vcaleq_v: 6671 case NEON::BI__builtin_neon_vcalt_v: 6672 case NEON::BI__builtin_neon_vcaltq_v: 6673 std::swap(Ops[0], Ops[1]); 6674 LLVM_FALLTHROUGH; 6675 case NEON::BI__builtin_neon_vcage_v: 6676 case NEON::BI__builtin_neon_vcageq_v: 6677 case NEON::BI__builtin_neon_vcagt_v: 6678 case NEON::BI__builtin_neon_vcagtq_v: { 6679 llvm::Type *Ty; 6680 switch (VTy->getScalarSizeInBits()) { 6681 default: llvm_unreachable("unexpected type"); 6682 case 32: 6683 Ty = FloatTy; 6684 break; 6685 case 64: 6686 Ty = DoubleTy; 6687 break; 6688 case 16: 6689 Ty = HalfTy; 6690 break; 6691 } 6692 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); 6693 llvm::Type *Tys[] = { VTy, VecFlt }; 6694 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6695 return EmitNeonCall(F, Ops, NameHint); 6696 } 6697 case NEON::BI__builtin_neon_vceqz_v: 6698 case NEON::BI__builtin_neon_vceqzq_v: 6699 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, 6700 ICmpInst::ICMP_EQ, "vceqz"); 6701 case NEON::BI__builtin_neon_vcgez_v: 6702 case NEON::BI__builtin_neon_vcgezq_v: 6703 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, 6704 ICmpInst::ICMP_SGE, "vcgez"); 6705 case NEON::BI__builtin_neon_vclez_v: 6706 case NEON::BI__builtin_neon_vclezq_v: 6707 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, 6708 ICmpInst::ICMP_SLE, "vclez"); 6709 case NEON::BI__builtin_neon_vcgtz_v: 6710 case NEON::BI__builtin_neon_vcgtzq_v: 6711 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, 6712 ICmpInst::ICMP_SGT, "vcgtz"); 6713 case NEON::BI__builtin_neon_vcltz_v: 6714 case NEON::BI__builtin_neon_vcltzq_v: 6715 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, 6716 ICmpInst::ICMP_SLT, "vcltz"); 6717 case NEON::BI__builtin_neon_vclz_v: 6718 case NEON::BI__builtin_neon_vclzq_v: 6719 // We generate target-independent intrinsic, which needs a second argument 6720 // for whether or not clz of zero is undefined; on ARM it isn't. 6721 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); 6722 break; 6723 case NEON::BI__builtin_neon_vcvt_f32_v: 6724 case NEON::BI__builtin_neon_vcvtq_f32_v: 6725 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6726 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), 6727 HasLegalHalfType); 6728 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6729 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6730 case NEON::BI__builtin_neon_vcvt_f16_v: 6731 case NEON::BI__builtin_neon_vcvtq_f16_v: 6732 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6733 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), 6734 HasLegalHalfType); 6735 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6736 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6737 case NEON::BI__builtin_neon_vcvt_n_f16_v: 6738 case NEON::BI__builtin_neon_vcvt_n_f32_v: 6739 case NEON::BI__builtin_neon_vcvt_n_f64_v: 6740 case NEON::BI__builtin_neon_vcvtq_n_f16_v: 6741 case NEON::BI__builtin_neon_vcvtq_n_f32_v: 6742 case NEON::BI__builtin_neon_vcvtq_n_f64_v: { 6743 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; 6744 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6745 Function *F = CGM.getIntrinsic(Int, Tys); 6746 return EmitNeonCall(F, Ops, "vcvt_n"); 6747 } 6748 case NEON::BI__builtin_neon_vcvt_n_s16_v: 6749 case NEON::BI__builtin_neon_vcvt_n_s32_v: 6750 case NEON::BI__builtin_neon_vcvt_n_u16_v: 6751 case NEON::BI__builtin_neon_vcvt_n_u32_v: 6752 case NEON::BI__builtin_neon_vcvt_n_s64_v: 6753 case NEON::BI__builtin_neon_vcvt_n_u64_v: 6754 case NEON::BI__builtin_neon_vcvtq_n_s16_v: 6755 case NEON::BI__builtin_neon_vcvtq_n_s32_v: 6756 case NEON::BI__builtin_neon_vcvtq_n_u16_v: 6757 case NEON::BI__builtin_neon_vcvtq_n_u32_v: 6758 case NEON::BI__builtin_neon_vcvtq_n_s64_v: 6759 case NEON::BI__builtin_neon_vcvtq_n_u64_v: { 6760 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6761 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6762 return EmitNeonCall(F, Ops, "vcvt_n"); 6763 } 6764 case NEON::BI__builtin_neon_vcvt_s32_v: 6765 case NEON::BI__builtin_neon_vcvt_u32_v: 6766 case NEON::BI__builtin_neon_vcvt_s64_v: 6767 case NEON::BI__builtin_neon_vcvt_u64_v: 6768 case NEON::BI__builtin_neon_vcvt_s16_v: 6769 case NEON::BI__builtin_neon_vcvt_u16_v: 6770 case NEON::BI__builtin_neon_vcvtq_s32_v: 6771 case NEON::BI__builtin_neon_vcvtq_u32_v: 6772 case NEON::BI__builtin_neon_vcvtq_s64_v: 6773 case NEON::BI__builtin_neon_vcvtq_u64_v: 6774 case NEON::BI__builtin_neon_vcvtq_s16_v: 6775 case NEON::BI__builtin_neon_vcvtq_u16_v: { 6776 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); 6777 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") 6778 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); 6779 } 6780 case NEON::BI__builtin_neon_vcvta_s16_v: 6781 case NEON::BI__builtin_neon_vcvta_s32_v: 6782 case NEON::BI__builtin_neon_vcvta_s64_v: 6783 case NEON::BI__builtin_neon_vcvta_u16_v: 6784 case NEON::BI__builtin_neon_vcvta_u32_v: 6785 case NEON::BI__builtin_neon_vcvta_u64_v: 6786 case NEON::BI__builtin_neon_vcvtaq_s16_v: 6787 case NEON::BI__builtin_neon_vcvtaq_s32_v: 6788 case NEON::BI__builtin_neon_vcvtaq_s64_v: 6789 case NEON::BI__builtin_neon_vcvtaq_u16_v: 6790 case NEON::BI__builtin_neon_vcvtaq_u32_v: 6791 case NEON::BI__builtin_neon_vcvtaq_u64_v: 6792 case NEON::BI__builtin_neon_vcvtn_s16_v: 6793 case NEON::BI__builtin_neon_vcvtn_s32_v: 6794 case NEON::BI__builtin_neon_vcvtn_s64_v: 6795 case NEON::BI__builtin_neon_vcvtn_u16_v: 6796 case NEON::BI__builtin_neon_vcvtn_u32_v: 6797 case NEON::BI__builtin_neon_vcvtn_u64_v: 6798 case NEON::BI__builtin_neon_vcvtnq_s16_v: 6799 case NEON::BI__builtin_neon_vcvtnq_s32_v: 6800 case NEON::BI__builtin_neon_vcvtnq_s64_v: 6801 case NEON::BI__builtin_neon_vcvtnq_u16_v: 6802 case NEON::BI__builtin_neon_vcvtnq_u32_v: 6803 case NEON::BI__builtin_neon_vcvtnq_u64_v: 6804 case NEON::BI__builtin_neon_vcvtp_s16_v: 6805 case NEON::BI__builtin_neon_vcvtp_s32_v: 6806 case NEON::BI__builtin_neon_vcvtp_s64_v: 6807 case NEON::BI__builtin_neon_vcvtp_u16_v: 6808 case NEON::BI__builtin_neon_vcvtp_u32_v: 6809 case NEON::BI__builtin_neon_vcvtp_u64_v: 6810 case NEON::BI__builtin_neon_vcvtpq_s16_v: 6811 case NEON::BI__builtin_neon_vcvtpq_s32_v: 6812 case NEON::BI__builtin_neon_vcvtpq_s64_v: 6813 case NEON::BI__builtin_neon_vcvtpq_u16_v: 6814 case NEON::BI__builtin_neon_vcvtpq_u32_v: 6815 case NEON::BI__builtin_neon_vcvtpq_u64_v: 6816 case NEON::BI__builtin_neon_vcvtm_s16_v: 6817 case NEON::BI__builtin_neon_vcvtm_s32_v: 6818 case NEON::BI__builtin_neon_vcvtm_s64_v: 6819 case NEON::BI__builtin_neon_vcvtm_u16_v: 6820 case NEON::BI__builtin_neon_vcvtm_u32_v: 6821 case NEON::BI__builtin_neon_vcvtm_u64_v: 6822 case NEON::BI__builtin_neon_vcvtmq_s16_v: 6823 case NEON::BI__builtin_neon_vcvtmq_s32_v: 6824 case NEON::BI__builtin_neon_vcvtmq_s64_v: 6825 case NEON::BI__builtin_neon_vcvtmq_u16_v: 6826 case NEON::BI__builtin_neon_vcvtmq_u32_v: 6827 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 6828 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6829 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6830 } 6831 case NEON::BI__builtin_neon_vcvtx_f32_v: { 6832 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; 6833 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6834 6835 } 6836 case NEON::BI__builtin_neon_vext_v: 6837 case NEON::BI__builtin_neon_vextq_v: { 6838 int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); 6839 SmallVector<int, 16> Indices; 6840 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 6841 Indices.push_back(i+CV); 6842 6843 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6844 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6845 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); 6846 } 6847 case NEON::BI__builtin_neon_vfma_v: 6848 case NEON::BI__builtin_neon_vfmaq_v: { 6849 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6850 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6851 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6852 6853 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 6854 return emitCallMaybeConstrainedFPBuiltin( 6855 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 6856 {Ops[1], Ops[2], Ops[0]}); 6857 } 6858 case NEON::BI__builtin_neon_vld1_v: 6859 case NEON::BI__builtin_neon_vld1q_v: { 6860 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6861 Ops.push_back(getAlignmentValue32(PtrOp0)); 6862 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); 6863 } 6864 case NEON::BI__builtin_neon_vld1_x2_v: 6865 case NEON::BI__builtin_neon_vld1q_x2_v: 6866 case NEON::BI__builtin_neon_vld1_x3_v: 6867 case NEON::BI__builtin_neon_vld1q_x3_v: 6868 case NEON::BI__builtin_neon_vld1_x4_v: 6869 case NEON::BI__builtin_neon_vld1q_x4_v: { 6870 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6871 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 6872 llvm::Type *Tys[2] = { VTy, PTy }; 6873 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6874 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); 6875 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6876 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6877 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6878 } 6879 case NEON::BI__builtin_neon_vld2_v: 6880 case NEON::BI__builtin_neon_vld2q_v: 6881 case NEON::BI__builtin_neon_vld3_v: 6882 case NEON::BI__builtin_neon_vld3q_v: 6883 case NEON::BI__builtin_neon_vld4_v: 6884 case NEON::BI__builtin_neon_vld4q_v: 6885 case NEON::BI__builtin_neon_vld2_dup_v: 6886 case NEON::BI__builtin_neon_vld2q_dup_v: 6887 case NEON::BI__builtin_neon_vld3_dup_v: 6888 case NEON::BI__builtin_neon_vld3q_dup_v: 6889 case NEON::BI__builtin_neon_vld4_dup_v: 6890 case NEON::BI__builtin_neon_vld4q_dup_v: { 6891 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6892 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6893 Value *Align = getAlignmentValue32(PtrOp1); 6894 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); 6895 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6896 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6897 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6898 } 6899 case NEON::BI__builtin_neon_vld1_dup_v: 6900 case NEON::BI__builtin_neon_vld1q_dup_v: { 6901 Value *V = UndefValue::get(Ty); 6902 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 6903 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); 6904 LoadInst *Ld = Builder.CreateLoad(PtrOp0); 6905 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 6906 Ops[0] = Builder.CreateInsertElement(V, Ld, CI); 6907 return EmitNeonSplat(Ops[0], CI); 6908 } 6909 case NEON::BI__builtin_neon_vld2_lane_v: 6910 case NEON::BI__builtin_neon_vld2q_lane_v: 6911 case NEON::BI__builtin_neon_vld3_lane_v: 6912 case NEON::BI__builtin_neon_vld3q_lane_v: 6913 case NEON::BI__builtin_neon_vld4_lane_v: 6914 case NEON::BI__builtin_neon_vld4q_lane_v: { 6915 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6916 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6917 for (unsigned I = 2; I < Ops.size() - 1; ++I) 6918 Ops[I] = Builder.CreateBitCast(Ops[I], Ty); 6919 Ops.push_back(getAlignmentValue32(PtrOp1)); 6920 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); 6921 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6922 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6923 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6924 } 6925 case NEON::BI__builtin_neon_vmovl_v: { 6926 llvm::FixedVectorType *DTy = 6927 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6928 Ops[0] = Builder.CreateBitCast(Ops[0], DTy); 6929 if (Usgn) 6930 return Builder.CreateZExt(Ops[0], Ty, "vmovl"); 6931 return Builder.CreateSExt(Ops[0], Ty, "vmovl"); 6932 } 6933 case NEON::BI__builtin_neon_vmovn_v: { 6934 llvm::FixedVectorType *QTy = 6935 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6936 Ops[0] = Builder.CreateBitCast(Ops[0], QTy); 6937 return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); 6938 } 6939 case NEON::BI__builtin_neon_vmull_v: 6940 // FIXME: the integer vmull operations could be emitted in terms of pure 6941 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of 6942 // hoisting the exts outside loops. Until global ISel comes along that can 6943 // see through such movement this leads to bad CodeGen. So we need an 6944 // intrinsic for now. 6945 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; 6946 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; 6947 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 6948 case NEON::BI__builtin_neon_vpadal_v: 6949 case NEON::BI__builtin_neon_vpadalq_v: { 6950 // The source operand type has twice as many elements of half the size. 6951 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6952 llvm::Type *EltTy = 6953 llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6954 auto *NarrowTy = 6955 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6956 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6957 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6958 } 6959 case NEON::BI__builtin_neon_vpaddl_v: 6960 case NEON::BI__builtin_neon_vpaddlq_v: { 6961 // The source operand type has twice as many elements of half the size. 6962 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6963 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6964 auto *NarrowTy = 6965 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6966 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6967 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); 6968 } 6969 case NEON::BI__builtin_neon_vqdmlal_v: 6970 case NEON::BI__builtin_neon_vqdmlsl_v: { 6971 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); 6972 Ops[1] = 6973 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); 6974 Ops.resize(2); 6975 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); 6976 } 6977 case NEON::BI__builtin_neon_vqdmulhq_lane_v: 6978 case NEON::BI__builtin_neon_vqdmulh_lane_v: 6979 case NEON::BI__builtin_neon_vqrdmulhq_lane_v: 6980 case NEON::BI__builtin_neon_vqrdmulh_lane_v: { 6981 auto *RTy = cast<llvm::FixedVectorType>(Ty); 6982 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || 6983 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) 6984 RTy = llvm::FixedVectorType::get(RTy->getElementType(), 6985 RTy->getNumElements() * 2); 6986 llvm::Type *Tys[2] = { 6987 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6988 /*isQuad*/ false))}; 6989 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6990 } 6991 case NEON::BI__builtin_neon_vqdmulhq_laneq_v: 6992 case NEON::BI__builtin_neon_vqdmulh_laneq_v: 6993 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: 6994 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { 6995 llvm::Type *Tys[2] = { 6996 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6997 /*isQuad*/ true))}; 6998 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6999 } 7000 case NEON::BI__builtin_neon_vqshl_n_v: 7001 case NEON::BI__builtin_neon_vqshlq_n_v: 7002 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 7003 1, false); 7004 case NEON::BI__builtin_neon_vqshlu_n_v: 7005 case NEON::BI__builtin_neon_vqshluq_n_v: 7006 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 7007 1, false); 7008 case NEON::BI__builtin_neon_vrecpe_v: 7009 case NEON::BI__builtin_neon_vrecpeq_v: 7010 case NEON::BI__builtin_neon_vrsqrte_v: 7011 case NEON::BI__builtin_neon_vrsqrteq_v: 7012 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; 7013 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 7014 case NEON::BI__builtin_neon_vrndi_v: 7015 case NEON::BI__builtin_neon_vrndiq_v: 7016 Int = Builder.getIsFPConstrained() 7017 ? Intrinsic::experimental_constrained_nearbyint 7018 : Intrinsic::nearbyint; 7019 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 7020 case NEON::BI__builtin_neon_vrshr_n_v: 7021 case NEON::BI__builtin_neon_vrshrq_n_v: 7022 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 7023 1, true); 7024 case NEON::BI__builtin_neon_vsha512hq_v: 7025 case NEON::BI__builtin_neon_vsha512h2q_v: 7026 case NEON::BI__builtin_neon_vsha512su0q_v: 7027 case NEON::BI__builtin_neon_vsha512su1q_v: { 7028 Function *F = CGM.getIntrinsic(Int); 7029 return EmitNeonCall(F, Ops, ""); 7030 } 7031 case NEON::BI__builtin_neon_vshl_n_v: 7032 case NEON::BI__builtin_neon_vshlq_n_v: 7033 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); 7034 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], 7035 "vshl_n"); 7036 case NEON::BI__builtin_neon_vshll_n_v: { 7037 llvm::FixedVectorType *SrcTy = 7038 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 7039 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 7040 if (Usgn) 7041 Ops[0] = Builder.CreateZExt(Ops[0], VTy); 7042 else 7043 Ops[0] = Builder.CreateSExt(Ops[0], VTy); 7044 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); 7045 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); 7046 } 7047 case NEON::BI__builtin_neon_vshrn_n_v: { 7048 llvm::FixedVectorType *SrcTy = 7049 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 7050 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 7051 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); 7052 if (Usgn) 7053 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); 7054 else 7055 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); 7056 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); 7057 } 7058 case NEON::BI__builtin_neon_vshr_n_v: 7059 case NEON::BI__builtin_neon_vshrq_n_v: 7060 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); 7061 case NEON::BI__builtin_neon_vst1_v: 7062 case NEON::BI__builtin_neon_vst1q_v: 7063 case NEON::BI__builtin_neon_vst2_v: 7064 case NEON::BI__builtin_neon_vst2q_v: 7065 case NEON::BI__builtin_neon_vst3_v: 7066 case NEON::BI__builtin_neon_vst3q_v: 7067 case NEON::BI__builtin_neon_vst4_v: 7068 case NEON::BI__builtin_neon_vst4q_v: 7069 case NEON::BI__builtin_neon_vst2_lane_v: 7070 case NEON::BI__builtin_neon_vst2q_lane_v: 7071 case NEON::BI__builtin_neon_vst3_lane_v: 7072 case NEON::BI__builtin_neon_vst3q_lane_v: 7073 case NEON::BI__builtin_neon_vst4_lane_v: 7074 case NEON::BI__builtin_neon_vst4q_lane_v: { 7075 llvm::Type *Tys[] = {Int8PtrTy, Ty}; 7076 Ops.push_back(getAlignmentValue32(PtrOp0)); 7077 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); 7078 } 7079 case NEON::BI__builtin_neon_vsm3partw1q_v: 7080 case NEON::BI__builtin_neon_vsm3partw2q_v: 7081 case NEON::BI__builtin_neon_vsm3ss1q_v: 7082 case NEON::BI__builtin_neon_vsm4ekeyq_v: 7083 case NEON::BI__builtin_neon_vsm4eq_v: { 7084 Function *F = CGM.getIntrinsic(Int); 7085 return EmitNeonCall(F, Ops, ""); 7086 } 7087 case NEON::BI__builtin_neon_vsm3tt1aq_v: 7088 case NEON::BI__builtin_neon_vsm3tt1bq_v: 7089 case NEON::BI__builtin_neon_vsm3tt2aq_v: 7090 case NEON::BI__builtin_neon_vsm3tt2bq_v: { 7091 Function *F = CGM.getIntrinsic(Int); 7092 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 7093 return EmitNeonCall(F, Ops, ""); 7094 } 7095 case NEON::BI__builtin_neon_vst1_x2_v: 7096 case NEON::BI__builtin_neon_vst1q_x2_v: 7097 case NEON::BI__builtin_neon_vst1_x3_v: 7098 case NEON::BI__builtin_neon_vst1q_x3_v: 7099 case NEON::BI__builtin_neon_vst1_x4_v: 7100 case NEON::BI__builtin_neon_vst1q_x4_v: { 7101 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 7102 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas 7103 // in AArch64 it comes last. We may want to stick to one or another. 7104 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || 7105 Arch == llvm::Triple::aarch64_32) { 7106 llvm::Type *Tys[2] = { VTy, PTy }; 7107 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 7108 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 7109 } 7110 llvm::Type *Tys[2] = { PTy, VTy }; 7111 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 7112 } 7113 case NEON::BI__builtin_neon_vsubhn_v: { 7114 llvm::FixedVectorType *SrcTy = 7115 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 7116 7117 // %sum = add <4 x i32> %lhs, %rhs 7118 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 7119 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 7120 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); 7121 7122 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 7123 Constant *ShiftAmt = 7124 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 7125 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); 7126 7127 // %res = trunc <4 x i32> %high to <4 x i16> 7128 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); 7129 } 7130 case NEON::BI__builtin_neon_vtrn_v: 7131 case NEON::BI__builtin_neon_vtrnq_v: { 7132 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 7133 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7134 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 7135 Value *SV = nullptr; 7136 7137 for (unsigned vi = 0; vi != 2; ++vi) { 7138 SmallVector<int, 16> Indices; 7139 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 7140 Indices.push_back(i+vi); 7141 Indices.push_back(i+e+vi); 7142 } 7143 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 7144 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 7145 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 7146 } 7147 return SV; 7148 } 7149 case NEON::BI__builtin_neon_vtst_v: 7150 case NEON::BI__builtin_neon_vtstq_v: { 7151 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7152 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7153 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 7154 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 7155 ConstantAggregateZero::get(Ty)); 7156 return Builder.CreateSExt(Ops[0], Ty, "vtst"); 7157 } 7158 case NEON::BI__builtin_neon_vuzp_v: 7159 case NEON::BI__builtin_neon_vuzpq_v: { 7160 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 7161 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7162 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 7163 Value *SV = nullptr; 7164 7165 for (unsigned vi = 0; vi != 2; ++vi) { 7166 SmallVector<int, 16> Indices; 7167 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 7168 Indices.push_back(2*i+vi); 7169 7170 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 7171 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 7172 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 7173 } 7174 return SV; 7175 } 7176 case NEON::BI__builtin_neon_vxarq_v: { 7177 Function *F = CGM.getIntrinsic(Int); 7178 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 7179 return EmitNeonCall(F, Ops, ""); 7180 } 7181 case NEON::BI__builtin_neon_vzip_v: 7182 case NEON::BI__builtin_neon_vzipq_v: { 7183 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 7184 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7185 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 7186 Value *SV = nullptr; 7187 7188 for (unsigned vi = 0; vi != 2; ++vi) { 7189 SmallVector<int, 16> Indices; 7190 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 7191 Indices.push_back((i + vi*e) >> 1); 7192 Indices.push_back(((i + vi*e) >> 1)+e); 7193 } 7194 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 7195 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 7196 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 7197 } 7198 return SV; 7199 } 7200 case NEON::BI__builtin_neon_vdot_v: 7201 case NEON::BI__builtin_neon_vdotq_v: { 7202 auto *InputTy = 7203 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7204 llvm::Type *Tys[2] = { Ty, InputTy }; 7205 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 7206 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); 7207 } 7208 case NEON::BI__builtin_neon_vfmlal_low_v: 7209 case NEON::BI__builtin_neon_vfmlalq_low_v: { 7210 auto *InputTy = 7211 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7212 llvm::Type *Tys[2] = { Ty, InputTy }; 7213 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); 7214 } 7215 case NEON::BI__builtin_neon_vfmlsl_low_v: 7216 case NEON::BI__builtin_neon_vfmlslq_low_v: { 7217 auto *InputTy = 7218 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7219 llvm::Type *Tys[2] = { Ty, InputTy }; 7220 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); 7221 } 7222 case NEON::BI__builtin_neon_vfmlal_high_v: 7223 case NEON::BI__builtin_neon_vfmlalq_high_v: { 7224 auto *InputTy = 7225 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7226 llvm::Type *Tys[2] = { Ty, InputTy }; 7227 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); 7228 } 7229 case NEON::BI__builtin_neon_vfmlsl_high_v: 7230 case NEON::BI__builtin_neon_vfmlslq_high_v: { 7231 auto *InputTy = 7232 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7233 llvm::Type *Tys[2] = { Ty, InputTy }; 7234 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); 7235 } 7236 case NEON::BI__builtin_neon_vmmlaq_v: { 7237 auto *InputTy = 7238 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7239 llvm::Type *Tys[2] = { Ty, InputTy }; 7240 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 7241 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla"); 7242 } 7243 case NEON::BI__builtin_neon_vusmmlaq_v: { 7244 auto *InputTy = 7245 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7246 llvm::Type *Tys[2] = { Ty, InputTy }; 7247 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); 7248 } 7249 case NEON::BI__builtin_neon_vusdot_v: 7250 case NEON::BI__builtin_neon_vusdotq_v: { 7251 auto *InputTy = 7252 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7253 llvm::Type *Tys[2] = { Ty, InputTy }; 7254 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); 7255 } 7256 case NEON::BI__builtin_neon_vbfdot_v: 7257 case NEON::BI__builtin_neon_vbfdotq_v: { 7258 llvm::Type *InputTy = 7259 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16); 7260 llvm::Type *Tys[2] = { Ty, InputTy }; 7261 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); 7262 } 7263 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: { 7264 llvm::Type *Tys[1] = { Ty }; 7265 Function *F = CGM.getIntrinsic(Int, Tys); 7266 return EmitNeonCall(F, Ops, "vcvtfp2bf"); 7267 } 7268 7269 } 7270 7271 assert(Int && "Expected valid intrinsic number"); 7272 7273 // Determine the type(s) of this overloaded AArch64 intrinsic. 7274 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); 7275 7276 Value *Result = EmitNeonCall(F, Ops, NameHint); 7277 llvm::Type *ResultType = ConvertType(E->getType()); 7278 // AArch64 intrinsic one-element vector type cast to 7279 // scalar type expected by the builtin 7280 return Builder.CreateBitCast(Result, ResultType, NameHint); 7281 } 7282 7283 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( 7284 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, 7285 const CmpInst::Predicate Ip, const Twine &Name) { 7286 llvm::Type *OTy = Op->getType(); 7287 7288 // FIXME: this is utterly horrific. We should not be looking at previous 7289 // codegen context to find out what needs doing. Unfortunately TableGen 7290 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 7291 // (etc). 7292 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) 7293 OTy = BI->getOperand(0)->getType(); 7294 7295 Op = Builder.CreateBitCast(Op, OTy); 7296 if (OTy->getScalarType()->isFloatingPointTy()) { 7297 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); 7298 } else { 7299 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); 7300 } 7301 return Builder.CreateSExt(Op, Ty, Name); 7302 } 7303 7304 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 7305 Value *ExtOp, Value *IndexOp, 7306 llvm::Type *ResTy, unsigned IntID, 7307 const char *Name) { 7308 SmallVector<Value *, 2> TblOps; 7309 if (ExtOp) 7310 TblOps.push_back(ExtOp); 7311 7312 // Build a vector containing sequential number like (0, 1, 2, ..., 15) 7313 SmallVector<int, 16> Indices; 7314 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType()); 7315 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { 7316 Indices.push_back(2*i); 7317 Indices.push_back(2*i+1); 7318 } 7319 7320 int PairPos = 0, End = Ops.size() - 1; 7321 while (PairPos < End) { 7322 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 7323 Ops[PairPos+1], Indices, 7324 Name)); 7325 PairPos += 2; 7326 } 7327 7328 // If there's an odd number of 64-bit lookup table, fill the high 64-bit 7329 // of the 128-bit lookup table with zero. 7330 if (PairPos == End) { 7331 Value *ZeroTbl = ConstantAggregateZero::get(TblTy); 7332 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 7333 ZeroTbl, Indices, Name)); 7334 } 7335 7336 Function *TblF; 7337 TblOps.push_back(IndexOp); 7338 TblF = CGF.CGM.getIntrinsic(IntID, ResTy); 7339 7340 return CGF.EmitNeonCall(TblF, TblOps, Name); 7341 } 7342 7343 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { 7344 unsigned Value; 7345 switch (BuiltinID) { 7346 default: 7347 return nullptr; 7348 case ARM::BI__builtin_arm_nop: 7349 Value = 0; 7350 break; 7351 case ARM::BI__builtin_arm_yield: 7352 case ARM::BI__yield: 7353 Value = 1; 7354 break; 7355 case ARM::BI__builtin_arm_wfe: 7356 case ARM::BI__wfe: 7357 Value = 2; 7358 break; 7359 case ARM::BI__builtin_arm_wfi: 7360 case ARM::BI__wfi: 7361 Value = 3; 7362 break; 7363 case ARM::BI__builtin_arm_sev: 7364 case ARM::BI__sev: 7365 Value = 4; 7366 break; 7367 case ARM::BI__builtin_arm_sevl: 7368 case ARM::BI__sevl: 7369 Value = 5; 7370 break; 7371 } 7372 7373 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), 7374 llvm::ConstantInt::get(Int32Ty, Value)); 7375 } 7376 7377 enum SpecialRegisterAccessKind { 7378 NormalRead, 7379 VolatileRead, 7380 Write, 7381 }; 7382 7383 // Generates the IR for the read/write special register builtin, 7384 // ValueType is the type of the value that is to be written or read, 7385 // RegisterType is the type of the register being written to or read from. 7386 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, 7387 const CallExpr *E, 7388 llvm::Type *RegisterType, 7389 llvm::Type *ValueType, 7390 SpecialRegisterAccessKind AccessKind, 7391 StringRef SysReg = "") { 7392 // write and register intrinsics only support 32 and 64 bit operations. 7393 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) 7394 && "Unsupported size for register."); 7395 7396 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7397 CodeGen::CodeGenModule &CGM = CGF.CGM; 7398 LLVMContext &Context = CGM.getLLVMContext(); 7399 7400 if (SysReg.empty()) { 7401 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); 7402 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); 7403 } 7404 7405 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; 7406 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 7407 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 7408 7409 llvm::Type *Types[] = { RegisterType }; 7410 7411 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); 7412 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) 7413 && "Can't fit 64-bit value in 32-bit register"); 7414 7415 if (AccessKind != Write) { 7416 assert(AccessKind == NormalRead || AccessKind == VolatileRead); 7417 llvm::Function *F = CGM.getIntrinsic( 7418 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register 7419 : llvm::Intrinsic::read_register, 7420 Types); 7421 llvm::Value *Call = Builder.CreateCall(F, Metadata); 7422 7423 if (MixedTypes) 7424 // Read into 64 bit register and then truncate result to 32 bit. 7425 return Builder.CreateTrunc(Call, ValueType); 7426 7427 if (ValueType->isPointerTy()) 7428 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). 7429 return Builder.CreateIntToPtr(Call, ValueType); 7430 7431 return Call; 7432 } 7433 7434 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 7435 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); 7436 if (MixedTypes) { 7437 // Extend 32 bit write value to 64 bit to pass to write. 7438 ArgValue = Builder.CreateZExt(ArgValue, RegisterType); 7439 return Builder.CreateCall(F, { Metadata, ArgValue }); 7440 } 7441 7442 if (ValueType->isPointerTy()) { 7443 // Have VoidPtrTy ArgValue but want to return an i32/i64. 7444 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); 7445 return Builder.CreateCall(F, { Metadata, ArgValue }); 7446 } 7447 7448 return Builder.CreateCall(F, { Metadata, ArgValue }); 7449 } 7450 7451 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra 7452 /// argument that specifies the vector type. 7453 static bool HasExtraNeonArgument(unsigned BuiltinID) { 7454 switch (BuiltinID) { 7455 default: break; 7456 case NEON::BI__builtin_neon_vget_lane_i8: 7457 case NEON::BI__builtin_neon_vget_lane_i16: 7458 case NEON::BI__builtin_neon_vget_lane_bf16: 7459 case NEON::BI__builtin_neon_vget_lane_i32: 7460 case NEON::BI__builtin_neon_vget_lane_i64: 7461 case NEON::BI__builtin_neon_vget_lane_f32: 7462 case NEON::BI__builtin_neon_vgetq_lane_i8: 7463 case NEON::BI__builtin_neon_vgetq_lane_i16: 7464 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7465 case NEON::BI__builtin_neon_vgetq_lane_i32: 7466 case NEON::BI__builtin_neon_vgetq_lane_i64: 7467 case NEON::BI__builtin_neon_vgetq_lane_f32: 7468 case NEON::BI__builtin_neon_vduph_lane_bf16: 7469 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7470 case NEON::BI__builtin_neon_vset_lane_i8: 7471 case NEON::BI__builtin_neon_vset_lane_i16: 7472 case NEON::BI__builtin_neon_vset_lane_bf16: 7473 case NEON::BI__builtin_neon_vset_lane_i32: 7474 case NEON::BI__builtin_neon_vset_lane_i64: 7475 case NEON::BI__builtin_neon_vset_lane_f32: 7476 case NEON::BI__builtin_neon_vsetq_lane_i8: 7477 case NEON::BI__builtin_neon_vsetq_lane_i16: 7478 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7479 case NEON::BI__builtin_neon_vsetq_lane_i32: 7480 case NEON::BI__builtin_neon_vsetq_lane_i64: 7481 case NEON::BI__builtin_neon_vsetq_lane_f32: 7482 case NEON::BI__builtin_neon_vsha1h_u32: 7483 case NEON::BI__builtin_neon_vsha1cq_u32: 7484 case NEON::BI__builtin_neon_vsha1pq_u32: 7485 case NEON::BI__builtin_neon_vsha1mq_u32: 7486 case NEON::BI__builtin_neon_vcvth_bf16_f32: 7487 case clang::ARM::BI_MoveToCoprocessor: 7488 case clang::ARM::BI_MoveToCoprocessor2: 7489 return false; 7490 } 7491 return true; 7492 } 7493 7494 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, 7495 const CallExpr *E, 7496 ReturnValueSlot ReturnValue, 7497 llvm::Triple::ArchType Arch) { 7498 if (auto Hint = GetValueForARMHint(BuiltinID)) 7499 return Hint; 7500 7501 if (BuiltinID == ARM::BI__emit) { 7502 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; 7503 llvm::FunctionType *FTy = 7504 llvm::FunctionType::get(VoidTy, /*Variadic=*/false); 7505 7506 Expr::EvalResult Result; 7507 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 7508 llvm_unreachable("Sema will ensure that the parameter is constant"); 7509 7510 llvm::APSInt Value = Result.Val.getInt(); 7511 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); 7512 7513 llvm::InlineAsm *Emit = 7514 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", 7515 /*hasSideEffects=*/true) 7516 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", 7517 /*hasSideEffects=*/true); 7518 7519 return Builder.CreateCall(Emit); 7520 } 7521 7522 if (BuiltinID == ARM::BI__builtin_arm_dbg) { 7523 Value *Option = EmitScalarExpr(E->getArg(0)); 7524 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); 7525 } 7526 7527 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 7528 Value *Address = EmitScalarExpr(E->getArg(0)); 7529 Value *RW = EmitScalarExpr(E->getArg(1)); 7530 Value *IsData = EmitScalarExpr(E->getArg(2)); 7531 7532 // Locality is not supported on ARM target 7533 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); 7534 7535 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 7536 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 7537 } 7538 7539 if (BuiltinID == ARM::BI__builtin_arm_rbit) { 7540 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7541 return Builder.CreateCall( 7542 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 7543 } 7544 7545 if (BuiltinID == ARM::BI__builtin_arm_cls) { 7546 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7547 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); 7548 } 7549 if (BuiltinID == ARM::BI__builtin_arm_cls64) { 7550 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7551 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, 7552 "cls"); 7553 } 7554 7555 if (BuiltinID == ARM::BI__clear_cache) { 7556 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 7557 const FunctionDecl *FD = E->getDirectCallee(); 7558 Value *Ops[2]; 7559 for (unsigned i = 0; i < 2; i++) 7560 Ops[i] = EmitScalarExpr(E->getArg(i)); 7561 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 7562 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 7563 StringRef Name = FD->getName(); 7564 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 7565 } 7566 7567 if (BuiltinID == ARM::BI__builtin_arm_mcrr || 7568 BuiltinID == ARM::BI__builtin_arm_mcrr2) { 7569 Function *F; 7570 7571 switch (BuiltinID) { 7572 default: llvm_unreachable("unexpected builtin"); 7573 case ARM::BI__builtin_arm_mcrr: 7574 F = CGM.getIntrinsic(Intrinsic::arm_mcrr); 7575 break; 7576 case ARM::BI__builtin_arm_mcrr2: 7577 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); 7578 break; 7579 } 7580 7581 // MCRR{2} instruction has 5 operands but 7582 // the intrinsic has 4 because Rt and Rt2 7583 // are represented as a single unsigned 64 7584 // bit integer in the intrinsic definition 7585 // but internally it's represented as 2 32 7586 // bit integers. 7587 7588 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7589 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7590 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); 7591 Value *CRm = EmitScalarExpr(E->getArg(3)); 7592 7593 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7594 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); 7595 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); 7596 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); 7597 7598 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); 7599 } 7600 7601 if (BuiltinID == ARM::BI__builtin_arm_mrrc || 7602 BuiltinID == ARM::BI__builtin_arm_mrrc2) { 7603 Function *F; 7604 7605 switch (BuiltinID) { 7606 default: llvm_unreachable("unexpected builtin"); 7607 case ARM::BI__builtin_arm_mrrc: 7608 F = CGM.getIntrinsic(Intrinsic::arm_mrrc); 7609 break; 7610 case ARM::BI__builtin_arm_mrrc2: 7611 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); 7612 break; 7613 } 7614 7615 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7616 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7617 Value *CRm = EmitScalarExpr(E->getArg(2)); 7618 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); 7619 7620 // Returns an unsigned 64 bit integer, represented 7621 // as two 32 bit integers. 7622 7623 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); 7624 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); 7625 Rt = Builder.CreateZExt(Rt, Int64Ty); 7626 Rt1 = Builder.CreateZExt(Rt1, Int64Ty); 7627 7628 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); 7629 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); 7630 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); 7631 7632 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); 7633 } 7634 7635 if (BuiltinID == ARM::BI__builtin_arm_ldrexd || 7636 ((BuiltinID == ARM::BI__builtin_arm_ldrex || 7637 BuiltinID == ARM::BI__builtin_arm_ldaex) && 7638 getContext().getTypeSize(E->getType()) == 64) || 7639 BuiltinID == ARM::BI__ldrexd) { 7640 Function *F; 7641 7642 switch (BuiltinID) { 7643 default: llvm_unreachable("unexpected builtin"); 7644 case ARM::BI__builtin_arm_ldaex: 7645 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); 7646 break; 7647 case ARM::BI__builtin_arm_ldrexd: 7648 case ARM::BI__builtin_arm_ldrex: 7649 case ARM::BI__ldrexd: 7650 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); 7651 break; 7652 } 7653 7654 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 7655 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 7656 "ldrexd"); 7657 7658 Value *Val0 = Builder.CreateExtractValue(Val, 1); 7659 Value *Val1 = Builder.CreateExtractValue(Val, 0); 7660 Val0 = Builder.CreateZExt(Val0, Int64Ty); 7661 Val1 = Builder.CreateZExt(Val1, Int64Ty); 7662 7663 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); 7664 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 7665 Val = Builder.CreateOr(Val, Val1); 7666 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 7667 } 7668 7669 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 7670 BuiltinID == ARM::BI__builtin_arm_ldaex) { 7671 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 7672 7673 QualType Ty = E->getType(); 7674 llvm::Type *RealResTy = ConvertType(Ty); 7675 llvm::Type *PtrTy = llvm::IntegerType::get( 7676 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 7677 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 7678 7679 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex 7680 ? Intrinsic::arm_ldaex 7681 : Intrinsic::arm_ldrex, 7682 PtrTy); 7683 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); 7684 7685 if (RealResTy->isPointerTy()) 7686 return Builder.CreateIntToPtr(Val, RealResTy); 7687 else { 7688 llvm::Type *IntResTy = llvm::IntegerType::get( 7689 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 7690 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 7691 return Builder.CreateBitCast(Val, RealResTy); 7692 } 7693 } 7694 7695 if (BuiltinID == ARM::BI__builtin_arm_strexd || 7696 ((BuiltinID == ARM::BI__builtin_arm_stlex || 7697 BuiltinID == ARM::BI__builtin_arm_strex) && 7698 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { 7699 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7700 ? Intrinsic::arm_stlexd 7701 : Intrinsic::arm_strexd); 7702 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); 7703 7704 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 7705 Value *Val = EmitScalarExpr(E->getArg(0)); 7706 Builder.CreateStore(Val, Tmp); 7707 7708 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 7709 Val = Builder.CreateLoad(LdPtr); 7710 7711 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 7712 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 7713 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); 7714 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); 7715 } 7716 7717 if (BuiltinID == ARM::BI__builtin_arm_strex || 7718 BuiltinID == ARM::BI__builtin_arm_stlex) { 7719 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 7720 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 7721 7722 QualType Ty = E->getArg(0)->getType(); 7723 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 7724 getContext().getTypeSize(Ty)); 7725 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 7726 7727 if (StoreVal->getType()->isPointerTy()) 7728 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); 7729 else { 7730 llvm::Type *IntTy = llvm::IntegerType::get( 7731 getLLVMContext(), 7732 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 7733 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 7734 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); 7735 } 7736 7737 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7738 ? Intrinsic::arm_stlex 7739 : Intrinsic::arm_strex, 7740 StoreAddr->getType()); 7741 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); 7742 } 7743 7744 if (BuiltinID == ARM::BI__builtin_arm_clrex) { 7745 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); 7746 return Builder.CreateCall(F); 7747 } 7748 7749 // CRC32 7750 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 7751 switch (BuiltinID) { 7752 case ARM::BI__builtin_arm_crc32b: 7753 CRCIntrinsicID = Intrinsic::arm_crc32b; break; 7754 case ARM::BI__builtin_arm_crc32cb: 7755 CRCIntrinsicID = Intrinsic::arm_crc32cb; break; 7756 case ARM::BI__builtin_arm_crc32h: 7757 CRCIntrinsicID = Intrinsic::arm_crc32h; break; 7758 case ARM::BI__builtin_arm_crc32ch: 7759 CRCIntrinsicID = Intrinsic::arm_crc32ch; break; 7760 case ARM::BI__builtin_arm_crc32w: 7761 case ARM::BI__builtin_arm_crc32d: 7762 CRCIntrinsicID = Intrinsic::arm_crc32w; break; 7763 case ARM::BI__builtin_arm_crc32cw: 7764 case ARM::BI__builtin_arm_crc32cd: 7765 CRCIntrinsicID = Intrinsic::arm_crc32cw; break; 7766 } 7767 7768 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 7769 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 7770 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 7771 7772 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w 7773 // intrinsics, hence we need different codegen for these cases. 7774 if (BuiltinID == ARM::BI__builtin_arm_crc32d || 7775 BuiltinID == ARM::BI__builtin_arm_crc32cd) { 7776 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7777 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); 7778 Value *Arg1b = Builder.CreateLShr(Arg1, C1); 7779 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); 7780 7781 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7782 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); 7783 return Builder.CreateCall(F, {Res, Arg1b}); 7784 } else { 7785 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); 7786 7787 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7788 return Builder.CreateCall(F, {Arg0, Arg1}); 7789 } 7790 } 7791 7792 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7793 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7794 BuiltinID == ARM::BI__builtin_arm_rsrp || 7795 BuiltinID == ARM::BI__builtin_arm_wsr || 7796 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7797 BuiltinID == ARM::BI__builtin_arm_wsrp) { 7798 7799 SpecialRegisterAccessKind AccessKind = Write; 7800 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7801 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7802 BuiltinID == ARM::BI__builtin_arm_rsrp) 7803 AccessKind = VolatileRead; 7804 7805 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || 7806 BuiltinID == ARM::BI__builtin_arm_wsrp; 7807 7808 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7809 BuiltinID == ARM::BI__builtin_arm_wsr64; 7810 7811 llvm::Type *ValueType; 7812 llvm::Type *RegisterType; 7813 if (IsPointerBuiltin) { 7814 ValueType = VoidPtrTy; 7815 RegisterType = Int32Ty; 7816 } else if (Is64Bit) { 7817 ValueType = RegisterType = Int64Ty; 7818 } else { 7819 ValueType = RegisterType = Int32Ty; 7820 } 7821 7822 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 7823 AccessKind); 7824 } 7825 7826 // Handle MSVC intrinsics before argument evaluation to prevent double 7827 // evaluation. 7828 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID)) 7829 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 7830 7831 // Deal with MVE builtins 7832 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7833 return Result; 7834 // Handle CDE builtins 7835 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7836 return Result; 7837 7838 // Find out if any arguments are required to be integer constant 7839 // expressions. 7840 unsigned ICEArguments = 0; 7841 ASTContext::GetBuiltinTypeError Error; 7842 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 7843 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 7844 7845 auto getAlignmentValue32 = [&](Address addr) -> Value* { 7846 return Builder.getInt32(addr.getAlignment().getQuantity()); 7847 }; 7848 7849 Address PtrOp0 = Address::invalid(); 7850 Address PtrOp1 = Address::invalid(); 7851 SmallVector<Value*, 4> Ops; 7852 bool HasExtraArg = HasExtraNeonArgument(BuiltinID); 7853 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); 7854 for (unsigned i = 0, e = NumArgs; i != e; i++) { 7855 if (i == 0) { 7856 switch (BuiltinID) { 7857 case NEON::BI__builtin_neon_vld1_v: 7858 case NEON::BI__builtin_neon_vld1q_v: 7859 case NEON::BI__builtin_neon_vld1q_lane_v: 7860 case NEON::BI__builtin_neon_vld1_lane_v: 7861 case NEON::BI__builtin_neon_vld1_dup_v: 7862 case NEON::BI__builtin_neon_vld1q_dup_v: 7863 case NEON::BI__builtin_neon_vst1_v: 7864 case NEON::BI__builtin_neon_vst1q_v: 7865 case NEON::BI__builtin_neon_vst1q_lane_v: 7866 case NEON::BI__builtin_neon_vst1_lane_v: 7867 case NEON::BI__builtin_neon_vst2_v: 7868 case NEON::BI__builtin_neon_vst2q_v: 7869 case NEON::BI__builtin_neon_vst2_lane_v: 7870 case NEON::BI__builtin_neon_vst2q_lane_v: 7871 case NEON::BI__builtin_neon_vst3_v: 7872 case NEON::BI__builtin_neon_vst3q_v: 7873 case NEON::BI__builtin_neon_vst3_lane_v: 7874 case NEON::BI__builtin_neon_vst3q_lane_v: 7875 case NEON::BI__builtin_neon_vst4_v: 7876 case NEON::BI__builtin_neon_vst4q_v: 7877 case NEON::BI__builtin_neon_vst4_lane_v: 7878 case NEON::BI__builtin_neon_vst4q_lane_v: 7879 // Get the alignment for the argument in addition to the value; 7880 // we'll use it later. 7881 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 7882 Ops.push_back(PtrOp0.getPointer()); 7883 continue; 7884 } 7885 } 7886 if (i == 1) { 7887 switch (BuiltinID) { 7888 case NEON::BI__builtin_neon_vld2_v: 7889 case NEON::BI__builtin_neon_vld2q_v: 7890 case NEON::BI__builtin_neon_vld3_v: 7891 case NEON::BI__builtin_neon_vld3q_v: 7892 case NEON::BI__builtin_neon_vld4_v: 7893 case NEON::BI__builtin_neon_vld4q_v: 7894 case NEON::BI__builtin_neon_vld2_lane_v: 7895 case NEON::BI__builtin_neon_vld2q_lane_v: 7896 case NEON::BI__builtin_neon_vld3_lane_v: 7897 case NEON::BI__builtin_neon_vld3q_lane_v: 7898 case NEON::BI__builtin_neon_vld4_lane_v: 7899 case NEON::BI__builtin_neon_vld4q_lane_v: 7900 case NEON::BI__builtin_neon_vld2_dup_v: 7901 case NEON::BI__builtin_neon_vld2q_dup_v: 7902 case NEON::BI__builtin_neon_vld3_dup_v: 7903 case NEON::BI__builtin_neon_vld3q_dup_v: 7904 case NEON::BI__builtin_neon_vld4_dup_v: 7905 case NEON::BI__builtin_neon_vld4q_dup_v: 7906 // Get the alignment for the argument in addition to the value; 7907 // we'll use it later. 7908 PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); 7909 Ops.push_back(PtrOp1.getPointer()); 7910 continue; 7911 } 7912 } 7913 7914 if ((ICEArguments & (1 << i)) == 0) { 7915 Ops.push_back(EmitScalarExpr(E->getArg(i))); 7916 } else { 7917 // If this is required to be a constant, constant fold it so that we know 7918 // that the generated intrinsic gets a ConstantInt. 7919 Ops.push_back(llvm::ConstantInt::get( 7920 getLLVMContext(), 7921 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 7922 } 7923 } 7924 7925 switch (BuiltinID) { 7926 default: break; 7927 7928 case NEON::BI__builtin_neon_vget_lane_i8: 7929 case NEON::BI__builtin_neon_vget_lane_i16: 7930 case NEON::BI__builtin_neon_vget_lane_i32: 7931 case NEON::BI__builtin_neon_vget_lane_i64: 7932 case NEON::BI__builtin_neon_vget_lane_bf16: 7933 case NEON::BI__builtin_neon_vget_lane_f32: 7934 case NEON::BI__builtin_neon_vgetq_lane_i8: 7935 case NEON::BI__builtin_neon_vgetq_lane_i16: 7936 case NEON::BI__builtin_neon_vgetq_lane_i32: 7937 case NEON::BI__builtin_neon_vgetq_lane_i64: 7938 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7939 case NEON::BI__builtin_neon_vgetq_lane_f32: 7940 case NEON::BI__builtin_neon_vduph_lane_bf16: 7941 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7942 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); 7943 7944 case NEON::BI__builtin_neon_vrndns_f32: { 7945 Value *Arg = EmitScalarExpr(E->getArg(0)); 7946 llvm::Type *Tys[] = {Arg->getType()}; 7947 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); 7948 return Builder.CreateCall(F, {Arg}, "vrndn"); } 7949 7950 case NEON::BI__builtin_neon_vset_lane_i8: 7951 case NEON::BI__builtin_neon_vset_lane_i16: 7952 case NEON::BI__builtin_neon_vset_lane_i32: 7953 case NEON::BI__builtin_neon_vset_lane_i64: 7954 case NEON::BI__builtin_neon_vset_lane_bf16: 7955 case NEON::BI__builtin_neon_vset_lane_f32: 7956 case NEON::BI__builtin_neon_vsetq_lane_i8: 7957 case NEON::BI__builtin_neon_vsetq_lane_i16: 7958 case NEON::BI__builtin_neon_vsetq_lane_i32: 7959 case NEON::BI__builtin_neon_vsetq_lane_i64: 7960 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7961 case NEON::BI__builtin_neon_vsetq_lane_f32: 7962 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7963 7964 case NEON::BI__builtin_neon_vsha1h_u32: 7965 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, 7966 "vsha1h"); 7967 case NEON::BI__builtin_neon_vsha1cq_u32: 7968 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, 7969 "vsha1h"); 7970 case NEON::BI__builtin_neon_vsha1pq_u32: 7971 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, 7972 "vsha1h"); 7973 case NEON::BI__builtin_neon_vsha1mq_u32: 7974 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, 7975 "vsha1h"); 7976 7977 case NEON::BI__builtin_neon_vcvth_bf16_f32: { 7978 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, 7979 "vcvtbfp2bf"); 7980 } 7981 7982 // The ARM _MoveToCoprocessor builtins put the input register value as 7983 // the first argument, but the LLVM intrinsic expects it as the third one. 7984 case ARM::BI_MoveToCoprocessor: 7985 case ARM::BI_MoveToCoprocessor2: { 7986 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 7987 Intrinsic::arm_mcr : Intrinsic::arm_mcr2); 7988 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], 7989 Ops[3], Ops[4], Ops[5]}); 7990 } 7991 } 7992 7993 // Get the last argument, which specifies the vector type. 7994 assert(HasExtraArg); 7995 const Expr *Arg = E->getArg(E->getNumArgs()-1); 7996 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()); 7997 if (!Result) 7998 return nullptr; 7999 8000 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || 8001 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { 8002 // Determine the overloaded type of this builtin. 8003 llvm::Type *Ty; 8004 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) 8005 Ty = FloatTy; 8006 else 8007 Ty = DoubleTy; 8008 8009 // Determine whether this is an unsigned conversion or not. 8010 bool usgn = Result->getZExtValue() == 1; 8011 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; 8012 8013 // Call the appropriate intrinsic. 8014 Function *F = CGM.getIntrinsic(Int, Ty); 8015 return Builder.CreateCall(F, Ops, "vcvtr"); 8016 } 8017 8018 // Determine the type of this overloaded NEON intrinsic. 8019 NeonTypeFlags Type = Result->getZExtValue(); 8020 bool usgn = Type.isUnsigned(); 8021 bool rightShift = false; 8022 8023 llvm::FixedVectorType *VTy = 8024 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, 8025 getTarget().hasBFloat16Type()); 8026 llvm::Type *Ty = VTy; 8027 if (!Ty) 8028 return nullptr; 8029 8030 // Many NEON builtins have identical semantics and uses in ARM and 8031 // AArch64. Emit these in a single function. 8032 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); 8033 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 8034 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); 8035 if (Builtin) 8036 return EmitCommonNeonBuiltinExpr( 8037 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 8038 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); 8039 8040 unsigned Int; 8041 switch (BuiltinID) { 8042 default: return nullptr; 8043 case NEON::BI__builtin_neon_vld1q_lane_v: 8044 // Handle 64-bit integer elements as a special case. Use shuffles of 8045 // one-element vectors to avoid poor code for i64 in the backend. 8046 if (VTy->getElementType()->isIntegerTy(64)) { 8047 // Extract the other lane. 8048 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8049 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); 8050 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); 8051 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 8052 // Load the value as a one-element vector. 8053 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); 8054 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 8055 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); 8056 Value *Align = getAlignmentValue32(PtrOp0); 8057 Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); 8058 // Combine them. 8059 int Indices[] = {1 - Lane, Lane}; 8060 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); 8061 } 8062 LLVM_FALLTHROUGH; 8063 case NEON::BI__builtin_neon_vld1_lane_v: { 8064 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8065 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); 8066 Value *Ld = Builder.CreateLoad(PtrOp0); 8067 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); 8068 } 8069 case NEON::BI__builtin_neon_vqrshrn_n_v: 8070 Int = 8071 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; 8072 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 8073 1, true); 8074 case NEON::BI__builtin_neon_vqrshrun_n_v: 8075 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), 8076 Ops, "vqrshrun_n", 1, true); 8077 case NEON::BI__builtin_neon_vqshrn_n_v: 8078 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; 8079 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 8080 1, true); 8081 case NEON::BI__builtin_neon_vqshrun_n_v: 8082 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), 8083 Ops, "vqshrun_n", 1, true); 8084 case NEON::BI__builtin_neon_vrecpe_v: 8085 case NEON::BI__builtin_neon_vrecpeq_v: 8086 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), 8087 Ops, "vrecpe"); 8088 case NEON::BI__builtin_neon_vrshrn_n_v: 8089 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), 8090 Ops, "vrshrn_n", 1, true); 8091 case NEON::BI__builtin_neon_vrsra_n_v: 8092 case NEON::BI__builtin_neon_vrsraq_n_v: 8093 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 8094 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8095 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); 8096 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 8097 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); 8098 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); 8099 case NEON::BI__builtin_neon_vsri_n_v: 8100 case NEON::BI__builtin_neon_vsriq_n_v: 8101 rightShift = true; 8102 LLVM_FALLTHROUGH; 8103 case NEON::BI__builtin_neon_vsli_n_v: 8104 case NEON::BI__builtin_neon_vsliq_n_v: 8105 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); 8106 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), 8107 Ops, "vsli_n"); 8108 case NEON::BI__builtin_neon_vsra_n_v: 8109 case NEON::BI__builtin_neon_vsraq_n_v: 8110 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 8111 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 8112 return Builder.CreateAdd(Ops[0], Ops[1]); 8113 case NEON::BI__builtin_neon_vst1q_lane_v: 8114 // Handle 64-bit integer elements as a special case. Use a shuffle to get 8115 // a one-element vector and avoid poor code for i64 in the backend. 8116 if (VTy->getElementType()->isIntegerTy(64)) { 8117 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8118 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); 8119 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 8120 Ops[2] = getAlignmentValue32(PtrOp0); 8121 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; 8122 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, 8123 Tys), Ops); 8124 } 8125 LLVM_FALLTHROUGH; 8126 case NEON::BI__builtin_neon_vst1_lane_v: { 8127 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8128 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 8129 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 8130 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); 8131 return St; 8132 } 8133 case NEON::BI__builtin_neon_vtbl1_v: 8134 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), 8135 Ops, "vtbl1"); 8136 case NEON::BI__builtin_neon_vtbl2_v: 8137 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), 8138 Ops, "vtbl2"); 8139 case NEON::BI__builtin_neon_vtbl3_v: 8140 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), 8141 Ops, "vtbl3"); 8142 case NEON::BI__builtin_neon_vtbl4_v: 8143 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), 8144 Ops, "vtbl4"); 8145 case NEON::BI__builtin_neon_vtbx1_v: 8146 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), 8147 Ops, "vtbx1"); 8148 case NEON::BI__builtin_neon_vtbx2_v: 8149 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), 8150 Ops, "vtbx2"); 8151 case NEON::BI__builtin_neon_vtbx3_v: 8152 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), 8153 Ops, "vtbx3"); 8154 case NEON::BI__builtin_neon_vtbx4_v: 8155 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), 8156 Ops, "vtbx4"); 8157 } 8158 } 8159 8160 template<typename Integer> 8161 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { 8162 return E->getIntegerConstantExpr(Context)->getExtValue(); 8163 } 8164 8165 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, 8166 llvm::Type *T, bool Unsigned) { 8167 // Helper function called by Tablegen-constructed ARM MVE builtin codegen, 8168 // which finds it convenient to specify signed/unsigned as a boolean flag. 8169 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); 8170 } 8171 8172 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, 8173 uint32_t Shift, bool Unsigned) { 8174 // MVE helper function for integer shift right. This must handle signed vs 8175 // unsigned, and also deal specially with the case where the shift count is 8176 // equal to the lane size. In LLVM IR, an LShr with that parameter would be 8177 // undefined behavior, but in MVE it's legal, so we must convert it to code 8178 // that is not undefined in IR. 8179 unsigned LaneBits = cast<llvm::VectorType>(V->getType()) 8180 ->getElementType() 8181 ->getPrimitiveSizeInBits(); 8182 if (Shift == LaneBits) { 8183 // An unsigned shift of the full lane size always generates zero, so we can 8184 // simply emit a zero vector. A signed shift of the full lane size does the 8185 // same thing as shifting by one bit fewer. 8186 if (Unsigned) 8187 return llvm::Constant::getNullValue(V->getType()); 8188 else 8189 --Shift; 8190 } 8191 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); 8192 } 8193 8194 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { 8195 // MVE-specific helper function for a vector splat, which infers the element 8196 // count of the output vector by knowing that MVE vectors are all 128 bits 8197 // wide. 8198 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); 8199 return Builder.CreateVectorSplat(Elements, V); 8200 } 8201 8202 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, 8203 CodeGenFunction *CGF, 8204 llvm::Value *V, 8205 llvm::Type *DestType) { 8206 // Convert one MVE vector type into another by reinterpreting its in-register 8207 // format. 8208 // 8209 // Little-endian, this is identical to a bitcast (which reinterprets the 8210 // memory format). But big-endian, they're not necessarily the same, because 8211 // the register and memory formats map to each other differently depending on 8212 // the lane size. 8213 // 8214 // We generate a bitcast whenever we can (if we're little-endian, or if the 8215 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic 8216 // that performs the different kind of reinterpretation. 8217 if (CGF->getTarget().isBigEndian() && 8218 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { 8219 return Builder.CreateCall( 8220 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, 8221 {DestType, V->getType()}), 8222 V); 8223 } else { 8224 return Builder.CreateBitCast(V, DestType); 8225 } 8226 } 8227 8228 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { 8229 // Make a shufflevector that extracts every other element of a vector (evens 8230 // or odds, as desired). 8231 SmallVector<int, 16> Indices; 8232 unsigned InputElements = 8233 cast<llvm::FixedVectorType>(V->getType())->getNumElements(); 8234 for (unsigned i = 0; i < InputElements; i += 2) 8235 Indices.push_back(i + Odd); 8236 return Builder.CreateShuffleVector(V, Indices); 8237 } 8238 8239 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, 8240 llvm::Value *V1) { 8241 // Make a shufflevector that interleaves two vectors element by element. 8242 assert(V0->getType() == V1->getType() && "Can't zip different vector types"); 8243 SmallVector<int, 16> Indices; 8244 unsigned InputElements = 8245 cast<llvm::FixedVectorType>(V0->getType())->getNumElements(); 8246 for (unsigned i = 0; i < InputElements; i++) { 8247 Indices.push_back(i); 8248 Indices.push_back(i + InputElements); 8249 } 8250 return Builder.CreateShuffleVector(V0, V1, Indices); 8251 } 8252 8253 template<unsigned HighBit, unsigned OtherBits> 8254 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { 8255 // MVE-specific helper function to make a vector splat of a constant such as 8256 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. 8257 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType(); 8258 unsigned LaneBits = T->getPrimitiveSizeInBits(); 8259 uint32_t Value = HighBit << (LaneBits - 1); 8260 if (OtherBits) 8261 Value |= (1UL << (LaneBits - 1)) - 1; 8262 llvm::Value *Lane = llvm::ConstantInt::get(T, Value); 8263 return ARMMVEVectorSplat(Builder, Lane); 8264 } 8265 8266 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, 8267 llvm::Value *V, 8268 unsigned ReverseWidth) { 8269 // MVE-specific helper function which reverses the elements of a 8270 // vector within every (ReverseWidth)-bit collection of lanes. 8271 SmallVector<int, 16> Indices; 8272 unsigned LaneSize = V->getType()->getScalarSizeInBits(); 8273 unsigned Elements = 128 / LaneSize; 8274 unsigned Mask = ReverseWidth / LaneSize - 1; 8275 for (unsigned i = 0; i < Elements; i++) 8276 Indices.push_back(i ^ Mask); 8277 return Builder.CreateShuffleVector(V, Indices); 8278 } 8279 8280 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, 8281 const CallExpr *E, 8282 ReturnValueSlot ReturnValue, 8283 llvm::Triple::ArchType Arch) { 8284 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; 8285 Intrinsic::ID IRIntr; 8286 unsigned NumVectors; 8287 8288 // Code autogenerated by Tablegen will handle all the simple builtins. 8289 switch (BuiltinID) { 8290 #include "clang/Basic/arm_mve_builtin_cg.inc" 8291 8292 // If we didn't match an MVE builtin id at all, go back to the 8293 // main EmitARMBuiltinExpr. 8294 default: 8295 return nullptr; 8296 } 8297 8298 // Anything that breaks from that switch is an MVE builtin that 8299 // needs handwritten code to generate. 8300 8301 switch (CustomCodeGenType) { 8302 8303 case CustomCodeGen::VLD24: { 8304 llvm::SmallVector<Value *, 4> Ops; 8305 llvm::SmallVector<llvm::Type *, 4> Tys; 8306 8307 auto MvecCType = E->getType(); 8308 auto MvecLType = ConvertType(MvecCType); 8309 assert(MvecLType->isStructTy() && 8310 "Return type for vld[24]q should be a struct"); 8311 assert(MvecLType->getStructNumElements() == 1 && 8312 "Return-type struct for vld[24]q should have one element"); 8313 auto MvecLTypeInner = MvecLType->getStructElementType(0); 8314 assert(MvecLTypeInner->isArrayTy() && 8315 "Return-type struct for vld[24]q should contain an array"); 8316 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 8317 "Array member of return-type struct vld[24]q has wrong length"); 8318 auto VecLType = MvecLTypeInner->getArrayElementType(); 8319 8320 Tys.push_back(VecLType); 8321 8322 auto Addr = E->getArg(0); 8323 Ops.push_back(EmitScalarExpr(Addr)); 8324 Tys.push_back(ConvertType(Addr->getType())); 8325 8326 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 8327 Value *LoadResult = Builder.CreateCall(F, Ops); 8328 Value *MvecOut = UndefValue::get(MvecLType); 8329 for (unsigned i = 0; i < NumVectors; ++i) { 8330 Value *Vec = Builder.CreateExtractValue(LoadResult, i); 8331 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); 8332 } 8333 8334 if (ReturnValue.isNull()) 8335 return MvecOut; 8336 else 8337 return Builder.CreateStore(MvecOut, ReturnValue.getValue()); 8338 } 8339 8340 case CustomCodeGen::VST24: { 8341 llvm::SmallVector<Value *, 4> Ops; 8342 llvm::SmallVector<llvm::Type *, 4> Tys; 8343 8344 auto Addr = E->getArg(0); 8345 Ops.push_back(EmitScalarExpr(Addr)); 8346 Tys.push_back(ConvertType(Addr->getType())); 8347 8348 auto MvecCType = E->getArg(1)->getType(); 8349 auto MvecLType = ConvertType(MvecCType); 8350 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); 8351 assert(MvecLType->getStructNumElements() == 1 && 8352 "Data-type struct for vst2q should have one element"); 8353 auto MvecLTypeInner = MvecLType->getStructElementType(0); 8354 assert(MvecLTypeInner->isArrayTy() && 8355 "Data-type struct for vst2q should contain an array"); 8356 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 8357 "Array member of return-type struct vld[24]q has wrong length"); 8358 auto VecLType = MvecLTypeInner->getArrayElementType(); 8359 8360 Tys.push_back(VecLType); 8361 8362 AggValueSlot MvecSlot = CreateAggTemp(MvecCType); 8363 EmitAggExpr(E->getArg(1), MvecSlot); 8364 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); 8365 for (unsigned i = 0; i < NumVectors; i++) 8366 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); 8367 8368 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 8369 Value *ToReturn = nullptr; 8370 for (unsigned i = 0; i < NumVectors; i++) { 8371 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); 8372 ToReturn = Builder.CreateCall(F, Ops); 8373 Ops.pop_back(); 8374 } 8375 return ToReturn; 8376 } 8377 } 8378 llvm_unreachable("unknown custom codegen type."); 8379 } 8380 8381 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, 8382 const CallExpr *E, 8383 ReturnValueSlot ReturnValue, 8384 llvm::Triple::ArchType Arch) { 8385 switch (BuiltinID) { 8386 default: 8387 return nullptr; 8388 #include "clang/Basic/arm_cde_builtin_cg.inc" 8389 } 8390 } 8391 8392 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, 8393 const CallExpr *E, 8394 SmallVectorImpl<Value *> &Ops, 8395 llvm::Triple::ArchType Arch) { 8396 unsigned int Int = 0; 8397 const char *s = nullptr; 8398 8399 switch (BuiltinID) { 8400 default: 8401 return nullptr; 8402 case NEON::BI__builtin_neon_vtbl1_v: 8403 case NEON::BI__builtin_neon_vqtbl1_v: 8404 case NEON::BI__builtin_neon_vqtbl1q_v: 8405 case NEON::BI__builtin_neon_vtbl2_v: 8406 case NEON::BI__builtin_neon_vqtbl2_v: 8407 case NEON::BI__builtin_neon_vqtbl2q_v: 8408 case NEON::BI__builtin_neon_vtbl3_v: 8409 case NEON::BI__builtin_neon_vqtbl3_v: 8410 case NEON::BI__builtin_neon_vqtbl3q_v: 8411 case NEON::BI__builtin_neon_vtbl4_v: 8412 case NEON::BI__builtin_neon_vqtbl4_v: 8413 case NEON::BI__builtin_neon_vqtbl4q_v: 8414 break; 8415 case NEON::BI__builtin_neon_vtbx1_v: 8416 case NEON::BI__builtin_neon_vqtbx1_v: 8417 case NEON::BI__builtin_neon_vqtbx1q_v: 8418 case NEON::BI__builtin_neon_vtbx2_v: 8419 case NEON::BI__builtin_neon_vqtbx2_v: 8420 case NEON::BI__builtin_neon_vqtbx2q_v: 8421 case NEON::BI__builtin_neon_vtbx3_v: 8422 case NEON::BI__builtin_neon_vqtbx3_v: 8423 case NEON::BI__builtin_neon_vqtbx3q_v: 8424 case NEON::BI__builtin_neon_vtbx4_v: 8425 case NEON::BI__builtin_neon_vqtbx4_v: 8426 case NEON::BI__builtin_neon_vqtbx4q_v: 8427 break; 8428 } 8429 8430 assert(E->getNumArgs() >= 3); 8431 8432 // Get the last argument, which specifies the vector type. 8433 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 8434 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext()); 8435 if (!Result) 8436 return nullptr; 8437 8438 // Determine the type of this overloaded NEON intrinsic. 8439 NeonTypeFlags Type = Result->getZExtValue(); 8440 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type); 8441 if (!Ty) 8442 return nullptr; 8443 8444 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8445 8446 // AArch64 scalar builtins are not overloaded, they do not have an extra 8447 // argument that specifies the vector type, need to handle each case. 8448 switch (BuiltinID) { 8449 case NEON::BI__builtin_neon_vtbl1_v: { 8450 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, 8451 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, 8452 "vtbl1"); 8453 } 8454 case NEON::BI__builtin_neon_vtbl2_v: { 8455 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, 8456 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, 8457 "vtbl1"); 8458 } 8459 case NEON::BI__builtin_neon_vtbl3_v: { 8460 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, 8461 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, 8462 "vtbl2"); 8463 } 8464 case NEON::BI__builtin_neon_vtbl4_v: { 8465 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, 8466 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, 8467 "vtbl2"); 8468 } 8469 case NEON::BI__builtin_neon_vtbx1_v: { 8470 Value *TblRes = 8471 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], 8472 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); 8473 8474 llvm::Constant *EightV = ConstantInt::get(Ty, 8); 8475 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); 8476 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8477 8478 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8479 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8480 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8481 } 8482 case NEON::BI__builtin_neon_vtbx2_v: { 8483 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], 8484 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, 8485 "vtbx1"); 8486 } 8487 case NEON::BI__builtin_neon_vtbx3_v: { 8488 Value *TblRes = 8489 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], 8490 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); 8491 8492 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); 8493 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], 8494 TwentyFourV); 8495 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8496 8497 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8498 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8499 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8500 } 8501 case NEON::BI__builtin_neon_vtbx4_v: { 8502 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], 8503 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, 8504 "vtbx2"); 8505 } 8506 case NEON::BI__builtin_neon_vqtbl1_v: 8507 case NEON::BI__builtin_neon_vqtbl1q_v: 8508 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; 8509 case NEON::BI__builtin_neon_vqtbl2_v: 8510 case NEON::BI__builtin_neon_vqtbl2q_v: { 8511 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; 8512 case NEON::BI__builtin_neon_vqtbl3_v: 8513 case NEON::BI__builtin_neon_vqtbl3q_v: 8514 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; 8515 case NEON::BI__builtin_neon_vqtbl4_v: 8516 case NEON::BI__builtin_neon_vqtbl4q_v: 8517 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; 8518 case NEON::BI__builtin_neon_vqtbx1_v: 8519 case NEON::BI__builtin_neon_vqtbx1q_v: 8520 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; 8521 case NEON::BI__builtin_neon_vqtbx2_v: 8522 case NEON::BI__builtin_neon_vqtbx2q_v: 8523 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; 8524 case NEON::BI__builtin_neon_vqtbx3_v: 8525 case NEON::BI__builtin_neon_vqtbx3q_v: 8526 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; 8527 case NEON::BI__builtin_neon_vqtbx4_v: 8528 case NEON::BI__builtin_neon_vqtbx4q_v: 8529 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; 8530 } 8531 } 8532 8533 if (!Int) 8534 return nullptr; 8535 8536 Function *F = CGF.CGM.getIntrinsic(Int, Ty); 8537 return CGF.EmitNeonCall(F, Ops, s); 8538 } 8539 8540 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { 8541 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); 8542 Op = Builder.CreateBitCast(Op, Int16Ty); 8543 Value *V = UndefValue::get(VTy); 8544 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 8545 Op = Builder.CreateInsertElement(V, Op, CI); 8546 return Op; 8547 } 8548 8549 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 8550 /// access builtin. Only required if it can't be inferred from the base pointer 8551 /// operand. 8552 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) { 8553 switch (TypeFlags.getMemEltType()) { 8554 case SVETypeFlags::MemEltTyDefault: 8555 return getEltType(TypeFlags); 8556 case SVETypeFlags::MemEltTyInt8: 8557 return Builder.getInt8Ty(); 8558 case SVETypeFlags::MemEltTyInt16: 8559 return Builder.getInt16Ty(); 8560 case SVETypeFlags::MemEltTyInt32: 8561 return Builder.getInt32Ty(); 8562 case SVETypeFlags::MemEltTyInt64: 8563 return Builder.getInt64Ty(); 8564 } 8565 llvm_unreachable("Unknown MemEltType"); 8566 } 8567 8568 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) { 8569 switch (TypeFlags.getEltType()) { 8570 default: 8571 llvm_unreachable("Invalid SVETypeFlag!"); 8572 8573 case SVETypeFlags::EltTyInt8: 8574 return Builder.getInt8Ty(); 8575 case SVETypeFlags::EltTyInt16: 8576 return Builder.getInt16Ty(); 8577 case SVETypeFlags::EltTyInt32: 8578 return Builder.getInt32Ty(); 8579 case SVETypeFlags::EltTyInt64: 8580 return Builder.getInt64Ty(); 8581 8582 case SVETypeFlags::EltTyFloat16: 8583 return Builder.getHalfTy(); 8584 case SVETypeFlags::EltTyFloat32: 8585 return Builder.getFloatTy(); 8586 case SVETypeFlags::EltTyFloat64: 8587 return Builder.getDoubleTy(); 8588 8589 case SVETypeFlags::EltTyBFloat16: 8590 return Builder.getBFloatTy(); 8591 8592 case SVETypeFlags::EltTyBool8: 8593 case SVETypeFlags::EltTyBool16: 8594 case SVETypeFlags::EltTyBool32: 8595 case SVETypeFlags::EltTyBool64: 8596 return Builder.getInt1Ty(); 8597 } 8598 } 8599 8600 // Return the llvm predicate vector type corresponding to the specified element 8601 // TypeFlags. 8602 llvm::ScalableVectorType * 8603 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) { 8604 switch (TypeFlags.getEltType()) { 8605 default: llvm_unreachable("Unhandled SVETypeFlag!"); 8606 8607 case SVETypeFlags::EltTyInt8: 8608 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8609 case SVETypeFlags::EltTyInt16: 8610 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8611 case SVETypeFlags::EltTyInt32: 8612 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8613 case SVETypeFlags::EltTyInt64: 8614 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8615 8616 case SVETypeFlags::EltTyBFloat16: 8617 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8618 case SVETypeFlags::EltTyFloat16: 8619 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8620 case SVETypeFlags::EltTyFloat32: 8621 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8622 case SVETypeFlags::EltTyFloat64: 8623 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8624 8625 case SVETypeFlags::EltTyBool8: 8626 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8627 case SVETypeFlags::EltTyBool16: 8628 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8629 case SVETypeFlags::EltTyBool32: 8630 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8631 case SVETypeFlags::EltTyBool64: 8632 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8633 } 8634 } 8635 8636 // Return the llvm vector type corresponding to the specified element TypeFlags. 8637 llvm::ScalableVectorType * 8638 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { 8639 switch (TypeFlags.getEltType()) { 8640 default: 8641 llvm_unreachable("Invalid SVETypeFlag!"); 8642 8643 case SVETypeFlags::EltTyInt8: 8644 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); 8645 case SVETypeFlags::EltTyInt16: 8646 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); 8647 case SVETypeFlags::EltTyInt32: 8648 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); 8649 case SVETypeFlags::EltTyInt64: 8650 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); 8651 8652 case SVETypeFlags::EltTyFloat16: 8653 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); 8654 case SVETypeFlags::EltTyBFloat16: 8655 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); 8656 case SVETypeFlags::EltTyFloat32: 8657 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); 8658 case SVETypeFlags::EltTyFloat64: 8659 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); 8660 8661 case SVETypeFlags::EltTyBool8: 8662 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8663 case SVETypeFlags::EltTyBool16: 8664 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8665 case SVETypeFlags::EltTyBool32: 8666 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8667 case SVETypeFlags::EltTyBool64: 8668 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8669 } 8670 } 8671 8672 llvm::Value * 8673 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) { 8674 Function *Ptrue = 8675 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); 8676 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); 8677 } 8678 8679 constexpr unsigned SVEBitsPerBlock = 128; 8680 8681 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { 8682 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); 8683 return llvm::ScalableVectorType::get(EltTy, NumElts); 8684 } 8685 8686 // Reinterpret the input predicate so that it can be used to correctly isolate 8687 // the elements of the specified datatype. 8688 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, 8689 llvm::ScalableVectorType *VTy) { 8690 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); 8691 if (Pred->getType() == RTy) 8692 return Pred; 8693 8694 unsigned IntID; 8695 llvm::Type *IntrinsicTy; 8696 switch (VTy->getMinNumElements()) { 8697 default: 8698 llvm_unreachable("unsupported element count!"); 8699 case 2: 8700 case 4: 8701 case 8: 8702 IntID = Intrinsic::aarch64_sve_convert_from_svbool; 8703 IntrinsicTy = RTy; 8704 break; 8705 case 16: 8706 IntID = Intrinsic::aarch64_sve_convert_to_svbool; 8707 IntrinsicTy = Pred->getType(); 8708 break; 8709 } 8710 8711 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); 8712 Value *C = Builder.CreateCall(F, Pred); 8713 assert(C->getType() == RTy && "Unexpected return type!"); 8714 return C; 8715 } 8716 8717 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 8718 SmallVectorImpl<Value *> &Ops, 8719 unsigned IntID) { 8720 auto *ResultTy = getSVEType(TypeFlags); 8721 auto *OverloadedTy = 8722 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); 8723 8724 // At the ACLE level there's only one predicate type, svbool_t, which is 8725 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8726 // actual type being loaded. For example, when loading doubles (i64) the 8727 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8728 // the predicate and the data being loaded must match. Cast accordingly. 8729 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8730 8731 Function *F = nullptr; 8732 if (Ops[1]->getType()->isVectorTy()) 8733 // This is the "vector base, scalar offset" case. In order to uniquely 8734 // map this built-in to an LLVM IR intrinsic, we need both the return type 8735 // and the type of the vector base. 8736 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); 8737 else 8738 // This is the "scalar base, vector offset case". The type of the offset 8739 // is encoded in the name of the intrinsic. We only need to specify the 8740 // return type in order to uniquely map this built-in to an LLVM IR 8741 // intrinsic. 8742 F = CGM.getIntrinsic(IntID, OverloadedTy); 8743 8744 // Pass 0 when the offset is missing. This can only be applied when using 8745 // the "vector base" addressing mode for which ACLE allows no offset. The 8746 // corresponding LLVM IR always requires an offset. 8747 if (Ops.size() == 2) { 8748 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8749 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8750 } 8751 8752 // For "vector base, scalar index" scale the index so that it becomes a 8753 // scalar offset. 8754 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { 8755 unsigned BytesPerElt = 8756 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8757 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8758 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8759 } 8760 8761 Value *Call = Builder.CreateCall(F, Ops); 8762 8763 // The following sext/zext is only needed when ResultTy != OverloadedTy. In 8764 // other cases it's folded into a nop. 8765 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) 8766 : Builder.CreateSExt(Call, ResultTy); 8767 } 8768 8769 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 8770 SmallVectorImpl<Value *> &Ops, 8771 unsigned IntID) { 8772 auto *SrcDataTy = getSVEType(TypeFlags); 8773 auto *OverloadedTy = 8774 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); 8775 8776 // In ACLE the source data is passed in the last argument, whereas in LLVM IR 8777 // it's the first argument. Move it accordingly. 8778 Ops.insert(Ops.begin(), Ops.pop_back_val()); 8779 8780 Function *F = nullptr; 8781 if (Ops[2]->getType()->isVectorTy()) 8782 // This is the "vector base, scalar offset" case. In order to uniquely 8783 // map this built-in to an LLVM IR intrinsic, we need both the return type 8784 // and the type of the vector base. 8785 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); 8786 else 8787 // This is the "scalar base, vector offset case". The type of the offset 8788 // is encoded in the name of the intrinsic. We only need to specify the 8789 // return type in order to uniquely map this built-in to an LLVM IR 8790 // intrinsic. 8791 F = CGM.getIntrinsic(IntID, OverloadedTy); 8792 8793 // Pass 0 when the offset is missing. This can only be applied when using 8794 // the "vector base" addressing mode for which ACLE allows no offset. The 8795 // corresponding LLVM IR always requires an offset. 8796 if (Ops.size() == 3) { 8797 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8798 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8799 } 8800 8801 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's 8802 // folded into a nop. 8803 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); 8804 8805 // At the ACLE level there's only one predicate type, svbool_t, which is 8806 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8807 // actual type being stored. For example, when storing doubles (i64) the 8808 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8809 // the predicate and the data being stored must match. Cast accordingly. 8810 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy); 8811 8812 // For "vector base, scalar index" scale the index so that it becomes a 8813 // scalar offset. 8814 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { 8815 unsigned BytesPerElt = 8816 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8817 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8818 Ops[3] = Builder.CreateMul(Ops[3], Scale); 8819 } 8820 8821 return Builder.CreateCall(F, Ops); 8822 } 8823 8824 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 8825 SmallVectorImpl<Value *> &Ops, 8826 unsigned IntID) { 8827 // The gather prefetches are overloaded on the vector input - this can either 8828 // be the vector of base addresses or vector of offsets. 8829 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType()); 8830 if (!OverloadedTy) 8831 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType()); 8832 8833 // Cast the predicate from svbool_t to the right number of elements. 8834 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8835 8836 // vector + imm addressing modes 8837 if (Ops[1]->getType()->isVectorTy()) { 8838 if (Ops.size() == 3) { 8839 // Pass 0 for 'vector+imm' when the index is omitted. 8840 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8841 8842 // The sv_prfop is the last operand in the builtin and IR intrinsic. 8843 std::swap(Ops[2], Ops[3]); 8844 } else { 8845 // Index needs to be passed as scaled offset. 8846 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8847 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; 8848 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8849 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8850 } 8851 } 8852 8853 Function *F = CGM.getIntrinsic(IntID, OverloadedTy); 8854 return Builder.CreateCall(F, Ops); 8855 } 8856 8857 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 8858 SmallVectorImpl<Value*> &Ops, 8859 unsigned IntID) { 8860 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8861 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8862 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8863 8864 unsigned N; 8865 switch (IntID) { 8866 case Intrinsic::aarch64_sve_ld2: 8867 N = 2; 8868 break; 8869 case Intrinsic::aarch64_sve_ld3: 8870 N = 3; 8871 break; 8872 case Intrinsic::aarch64_sve_ld4: 8873 N = 4; 8874 break; 8875 default: 8876 llvm_unreachable("unknown intrinsic!"); 8877 } 8878 auto RetTy = llvm::VectorType::get(VTy->getElementType(), 8879 VTy->getElementCount() * N); 8880 8881 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8882 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy); 8883 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8884 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8885 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8886 8887 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()}); 8888 return Builder.CreateCall(F, { Predicate, BasePtr }); 8889 } 8890 8891 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags, 8892 SmallVectorImpl<Value*> &Ops, 8893 unsigned IntID) { 8894 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8895 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8896 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8897 8898 unsigned N; 8899 switch (IntID) { 8900 case Intrinsic::aarch64_sve_st2: 8901 N = 2; 8902 break; 8903 case Intrinsic::aarch64_sve_st3: 8904 N = 3; 8905 break; 8906 case Intrinsic::aarch64_sve_st4: 8907 N = 4; 8908 break; 8909 default: 8910 llvm_unreachable("unknown intrinsic!"); 8911 } 8912 auto TupleTy = 8913 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); 8914 8915 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8916 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy); 8917 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0); 8918 Value *Val = Ops.back(); 8919 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8920 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8921 8922 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we 8923 // need to break up the tuple vector. 8924 SmallVector<llvm::Value*, 5> Operands; 8925 Function *FExtr = 8926 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 8927 for (unsigned I = 0; I < N; ++I) 8928 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)})); 8929 Operands.append({Predicate, BasePtr}); 8930 8931 Function *F = CGM.getIntrinsic(IntID, { VTy }); 8932 return Builder.CreateCall(F, Operands); 8933 } 8934 8935 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and 8936 // svpmullt_pair intrinsics, with the exception that their results are bitcast 8937 // to a wider type. 8938 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags, 8939 SmallVectorImpl<Value *> &Ops, 8940 unsigned BuiltinID) { 8941 // Splat scalar operand to vector (intrinsics with _n infix) 8942 if (TypeFlags.hasSplatOperand()) { 8943 unsigned OpNo = TypeFlags.getSplatOperand(); 8944 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 8945 } 8946 8947 // The pair-wise function has a narrower overloaded type. 8948 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); 8949 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); 8950 8951 // Now bitcast to the wider result type. 8952 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); 8953 return EmitSVEReinterpret(Call, Ty); 8954 } 8955 8956 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags, 8957 ArrayRef<Value *> Ops, unsigned BuiltinID) { 8958 llvm::Type *OverloadedTy = getSVEType(TypeFlags); 8959 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); 8960 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); 8961 } 8962 8963 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 8964 SmallVectorImpl<Value *> &Ops, 8965 unsigned BuiltinID) { 8966 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8967 auto *VectorTy = getSVEVectorForElementType(MemEltTy); 8968 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8969 8970 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8971 Value *BasePtr = Ops[1]; 8972 8973 // Implement the index operand if not omitted. 8974 if (Ops.size() > 3) { 8975 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo()); 8976 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); 8977 } 8978 8979 // Prefetch intriniscs always expect an i8* 8980 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty)); 8981 Value *PrfOp = Ops.back(); 8982 8983 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); 8984 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); 8985 } 8986 8987 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, 8988 llvm::Type *ReturnTy, 8989 SmallVectorImpl<Value *> &Ops, 8990 unsigned BuiltinID, 8991 bool IsZExtReturn) { 8992 QualType LangPTy = E->getArg(1)->getType(); 8993 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8994 LangPTy->castAs<PointerType>()->getPointeeType()); 8995 8996 // The vector type that is returned may be different from the 8997 // eventual type loaded from memory. 8998 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy); 8999 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 9000 9001 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 9002 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 9003 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 9004 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 9005 9006 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 9007 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 9008 Value *Load = Builder.CreateCall(F, {Predicate, BasePtr}); 9009 9010 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) 9011 : Builder.CreateSExt(Load, VectorTy); 9012 } 9013 9014 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, 9015 SmallVectorImpl<Value *> &Ops, 9016 unsigned BuiltinID) { 9017 QualType LangPTy = E->getArg(1)->getType(); 9018 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 9019 LangPTy->castAs<PointerType>()->getPointeeType()); 9020 9021 // The vector type that is stored may be different from the 9022 // eventual type stored to memory. 9023 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType()); 9024 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 9025 9026 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 9027 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 9028 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0); 9029 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 9030 9031 // Last value is always the data 9032 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy); 9033 9034 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 9035 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 9036 return Builder.CreateCall(F, {Val, Predicate, BasePtr}); 9037 } 9038 9039 // Limit the usage of scalable llvm IR generated by the ACLE by using the 9040 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. 9041 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { 9042 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty); 9043 return Builder.CreateCall(F, Scalar); 9044 } 9045 9046 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) { 9047 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); 9048 } 9049 9050 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { 9051 // FIXME: For big endian this needs an additional REV, or needs a separate 9052 // intrinsic that is code-generated as a no-op, because the LLVM bitcast 9053 // instruction is defined as 'bitwise' equivalent from memory point of 9054 // view (when storing/reloading), whereas the svreinterpret builtin 9055 // implements bitwise equivalent cast from register point of view. 9056 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. 9057 return Builder.CreateBitCast(Val, Ty); 9058 } 9059 9060 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, 9061 SmallVectorImpl<Value *> &Ops) { 9062 auto *SplatZero = Constant::getNullValue(Ty); 9063 Ops.insert(Ops.begin(), SplatZero); 9064 } 9065 9066 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, 9067 SmallVectorImpl<Value *> &Ops) { 9068 auto *SplatUndef = UndefValue::get(Ty); 9069 Ops.insert(Ops.begin(), SplatUndef); 9070 } 9071 9072 SmallVector<llvm::Type *, 2> 9073 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags, 9074 llvm::Type *ResultType, 9075 ArrayRef<Value *> Ops) { 9076 if (TypeFlags.isOverloadNone()) 9077 return {}; 9078 9079 llvm::Type *DefaultType = getSVEType(TypeFlags); 9080 9081 if (TypeFlags.isOverloadWhile()) 9082 return {DefaultType, Ops[1]->getType()}; 9083 9084 if (TypeFlags.isOverloadWhileRW()) 9085 return {getSVEPredType(TypeFlags), Ops[0]->getType()}; 9086 9087 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet()) 9088 return {Ops[0]->getType(), Ops.back()->getType()}; 9089 9090 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet()) 9091 return {ResultType, Ops[0]->getType()}; 9092 9093 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); 9094 return {DefaultType}; 9095 } 9096 9097 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, 9098 const CallExpr *E) { 9099 // Find out if any arguments are required to be integer constant expressions. 9100 unsigned ICEArguments = 0; 9101 ASTContext::GetBuiltinTypeError Error; 9102 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 9103 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 9104 9105 llvm::Type *Ty = ConvertType(E->getType()); 9106 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && 9107 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) { 9108 Value *Val = EmitScalarExpr(E->getArg(0)); 9109 return EmitSVEReinterpret(Val, Ty); 9110 } 9111 9112 llvm::SmallVector<Value *, 4> Ops; 9113 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 9114 if ((ICEArguments & (1 << i)) == 0) 9115 Ops.push_back(EmitScalarExpr(E->getArg(i))); 9116 else { 9117 // If this is required to be a constant, constant fold it so that we know 9118 // that the generated intrinsic gets a ConstantInt. 9119 Optional<llvm::APSInt> Result = 9120 E->getArg(i)->getIntegerConstantExpr(getContext()); 9121 assert(Result && "Expected argument to be a constant"); 9122 9123 // Immediates for SVE llvm intrinsics are always 32bit. We can safely 9124 // truncate because the immediate has been range checked and no valid 9125 // immediate requires more than a handful of bits. 9126 *Result = Result->extOrTrunc(32); 9127 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result)); 9128 } 9129 } 9130 9131 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, 9132 AArch64SVEIntrinsicsProvenSorted); 9133 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9134 if (TypeFlags.isLoad()) 9135 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, 9136 TypeFlags.isZExtReturn()); 9137 else if (TypeFlags.isStore()) 9138 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); 9139 else if (TypeFlags.isGatherLoad()) 9140 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9141 else if (TypeFlags.isScatterStore()) 9142 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9143 else if (TypeFlags.isPrefetch()) 9144 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9145 else if (TypeFlags.isGatherPrefetch()) 9146 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9147 else if (TypeFlags.isStructLoad()) 9148 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9149 else if (TypeFlags.isStructStore()) 9150 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9151 else if (TypeFlags.isUndef()) 9152 return UndefValue::get(Ty); 9153 else if (Builtin->LLVMIntrinsic != 0) { 9154 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) 9155 InsertExplicitZeroOperand(Builder, Ty, Ops); 9156 9157 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) 9158 InsertExplicitUndefOperand(Builder, Ty, Ops); 9159 9160 // Some ACLE builtins leave out the argument to specify the predicate 9161 // pattern, which is expected to be expanded to an SV_ALL pattern. 9162 if (TypeFlags.isAppendSVALL()) 9163 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); 9164 if (TypeFlags.isInsertOp1SVALL()) 9165 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); 9166 9167 // Predicates must match the main datatype. 9168 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 9169 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) 9170 if (PredTy->getElementType()->isIntegerTy(1)) 9171 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); 9172 9173 // Splat scalar operand to vector (intrinsics with _n infix) 9174 if (TypeFlags.hasSplatOperand()) { 9175 unsigned OpNo = TypeFlags.getSplatOperand(); 9176 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 9177 } 9178 9179 if (TypeFlags.isReverseCompare()) 9180 std::swap(Ops[1], Ops[2]); 9181 9182 if (TypeFlags.isReverseUSDOT()) 9183 std::swap(Ops[1], Ops[2]); 9184 9185 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. 9186 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { 9187 llvm::Type *OpndTy = Ops[1]->getType(); 9188 auto *SplatZero = Constant::getNullValue(OpndTy); 9189 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy); 9190 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero}); 9191 } 9192 9193 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, 9194 getSVEOverloadTypes(TypeFlags, Ty, Ops)); 9195 Value *Call = Builder.CreateCall(F, Ops); 9196 9197 // Predicate results must be converted to svbool_t. 9198 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType())) 9199 if (PredTy->getScalarType()->isIntegerTy(1)) 9200 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 9201 9202 return Call; 9203 } 9204 9205 switch (BuiltinID) { 9206 default: 9207 return nullptr; 9208 9209 case SVE::BI__builtin_sve_svmov_b_z: { 9210 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) 9211 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9212 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 9213 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); 9214 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); 9215 } 9216 9217 case SVE::BI__builtin_sve_svnot_b_z: { 9218 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) 9219 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9220 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 9221 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); 9222 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); 9223 } 9224 9225 case SVE::BI__builtin_sve_svmovlb_u16: 9226 case SVE::BI__builtin_sve_svmovlb_u32: 9227 case SVE::BI__builtin_sve_svmovlb_u64: 9228 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); 9229 9230 case SVE::BI__builtin_sve_svmovlb_s16: 9231 case SVE::BI__builtin_sve_svmovlb_s32: 9232 case SVE::BI__builtin_sve_svmovlb_s64: 9233 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); 9234 9235 case SVE::BI__builtin_sve_svmovlt_u16: 9236 case SVE::BI__builtin_sve_svmovlt_u32: 9237 case SVE::BI__builtin_sve_svmovlt_u64: 9238 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); 9239 9240 case SVE::BI__builtin_sve_svmovlt_s16: 9241 case SVE::BI__builtin_sve_svmovlt_s32: 9242 case SVE::BI__builtin_sve_svmovlt_s64: 9243 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); 9244 9245 case SVE::BI__builtin_sve_svpmullt_u16: 9246 case SVE::BI__builtin_sve_svpmullt_u64: 9247 case SVE::BI__builtin_sve_svpmullt_n_u16: 9248 case SVE::BI__builtin_sve_svpmullt_n_u64: 9249 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); 9250 9251 case SVE::BI__builtin_sve_svpmullb_u16: 9252 case SVE::BI__builtin_sve_svpmullb_u64: 9253 case SVE::BI__builtin_sve_svpmullb_n_u16: 9254 case SVE::BI__builtin_sve_svpmullb_n_u64: 9255 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); 9256 9257 case SVE::BI__builtin_sve_svdup_n_b8: 9258 case SVE::BI__builtin_sve_svdup_n_b16: 9259 case SVE::BI__builtin_sve_svdup_n_b32: 9260 case SVE::BI__builtin_sve_svdup_n_b64: { 9261 Value *CmpNE = 9262 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); 9263 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); 9264 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); 9265 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty)); 9266 } 9267 9268 case SVE::BI__builtin_sve_svdupq_n_b8: 9269 case SVE::BI__builtin_sve_svdupq_n_b16: 9270 case SVE::BI__builtin_sve_svdupq_n_b32: 9271 case SVE::BI__builtin_sve_svdupq_n_b64: 9272 case SVE::BI__builtin_sve_svdupq_n_u8: 9273 case SVE::BI__builtin_sve_svdupq_n_s8: 9274 case SVE::BI__builtin_sve_svdupq_n_u64: 9275 case SVE::BI__builtin_sve_svdupq_n_f64: 9276 case SVE::BI__builtin_sve_svdupq_n_s64: 9277 case SVE::BI__builtin_sve_svdupq_n_u16: 9278 case SVE::BI__builtin_sve_svdupq_n_f16: 9279 case SVE::BI__builtin_sve_svdupq_n_bf16: 9280 case SVE::BI__builtin_sve_svdupq_n_s16: 9281 case SVE::BI__builtin_sve_svdupq_n_u32: 9282 case SVE::BI__builtin_sve_svdupq_n_f32: 9283 case SVE::BI__builtin_sve_svdupq_n_s32: { 9284 // These builtins are implemented by storing each element to an array and using 9285 // ld1rq to materialize a vector. 9286 unsigned NumOpnds = Ops.size(); 9287 9288 bool IsBoolTy = 9289 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1); 9290 9291 // For svdupq_n_b* the element type of is an integer of type 128/numelts, 9292 // so that the compare can use the width that is natural for the expected 9293 // number of predicate lanes. 9294 llvm::Type *EltTy = Ops[0]->getType(); 9295 if (IsBoolTy) 9296 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); 9297 9298 SmallVector<llvm::Value *, 16> VecOps; 9299 for (unsigned I = 0; I < NumOpnds; ++I) 9300 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy)); 9301 Value *Vec = BuildVector(VecOps); 9302 9303 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9304 Value *Pred = EmitSVEAllTruePred(TypeFlags); 9305 9306 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); 9307 Value *InsertSubVec = Builder.CreateInsertVector( 9308 OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0)); 9309 9310 Function *F = 9311 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy); 9312 Value *DupQLane = 9313 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)}); 9314 9315 if (!IsBoolTy) 9316 return DupQLane; 9317 9318 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. 9319 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne 9320 : Intrinsic::aarch64_sve_cmpne_wide, 9321 OverloadedTy); 9322 Value *Call = Builder.CreateCall( 9323 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))}); 9324 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 9325 } 9326 9327 case SVE::BI__builtin_sve_svpfalse_b: 9328 return ConstantInt::getFalse(Ty); 9329 9330 case SVE::BI__builtin_sve_svlen_bf16: 9331 case SVE::BI__builtin_sve_svlen_f16: 9332 case SVE::BI__builtin_sve_svlen_f32: 9333 case SVE::BI__builtin_sve_svlen_f64: 9334 case SVE::BI__builtin_sve_svlen_s8: 9335 case SVE::BI__builtin_sve_svlen_s16: 9336 case SVE::BI__builtin_sve_svlen_s32: 9337 case SVE::BI__builtin_sve_svlen_s64: 9338 case SVE::BI__builtin_sve_svlen_u8: 9339 case SVE::BI__builtin_sve_svlen_u16: 9340 case SVE::BI__builtin_sve_svlen_u32: 9341 case SVE::BI__builtin_sve_svlen_u64: { 9342 SVETypeFlags TF(Builtin->TypeModifier); 9343 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 9344 auto *NumEls = 9345 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue()); 9346 9347 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); 9348 return Builder.CreateMul(NumEls, Builder.CreateCall(F)); 9349 } 9350 9351 case SVE::BI__builtin_sve_svtbl2_u8: 9352 case SVE::BI__builtin_sve_svtbl2_s8: 9353 case SVE::BI__builtin_sve_svtbl2_u16: 9354 case SVE::BI__builtin_sve_svtbl2_s16: 9355 case SVE::BI__builtin_sve_svtbl2_u32: 9356 case SVE::BI__builtin_sve_svtbl2_s32: 9357 case SVE::BI__builtin_sve_svtbl2_u64: 9358 case SVE::BI__builtin_sve_svtbl2_s64: 9359 case SVE::BI__builtin_sve_svtbl2_f16: 9360 case SVE::BI__builtin_sve_svtbl2_bf16: 9361 case SVE::BI__builtin_sve_svtbl2_f32: 9362 case SVE::BI__builtin_sve_svtbl2_f64: { 9363 SVETypeFlags TF(Builtin->TypeModifier); 9364 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 9365 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy); 9366 Function *FExtr = 9367 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 9368 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)}); 9369 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)}); 9370 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); 9371 return Builder.CreateCall(F, {V0, V1, Ops[1]}); 9372 } 9373 9374 case SVE::BI__builtin_sve_svset_neonq_s8: 9375 case SVE::BI__builtin_sve_svset_neonq_s16: 9376 case SVE::BI__builtin_sve_svset_neonq_s32: 9377 case SVE::BI__builtin_sve_svset_neonq_s64: 9378 case SVE::BI__builtin_sve_svset_neonq_u8: 9379 case SVE::BI__builtin_sve_svset_neonq_u16: 9380 case SVE::BI__builtin_sve_svset_neonq_u32: 9381 case SVE::BI__builtin_sve_svset_neonq_u64: 9382 case SVE::BI__builtin_sve_svset_neonq_f16: 9383 case SVE::BI__builtin_sve_svset_neonq_f32: 9384 case SVE::BI__builtin_sve_svset_neonq_f64: 9385 case SVE::BI__builtin_sve_svset_neonq_bf16: { 9386 return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0)); 9387 } 9388 9389 case SVE::BI__builtin_sve_svget_neonq_s8: 9390 case SVE::BI__builtin_sve_svget_neonq_s16: 9391 case SVE::BI__builtin_sve_svget_neonq_s32: 9392 case SVE::BI__builtin_sve_svget_neonq_s64: 9393 case SVE::BI__builtin_sve_svget_neonq_u8: 9394 case SVE::BI__builtin_sve_svget_neonq_u16: 9395 case SVE::BI__builtin_sve_svget_neonq_u32: 9396 case SVE::BI__builtin_sve_svget_neonq_u64: 9397 case SVE::BI__builtin_sve_svget_neonq_f16: 9398 case SVE::BI__builtin_sve_svget_neonq_f32: 9399 case SVE::BI__builtin_sve_svget_neonq_f64: 9400 case SVE::BI__builtin_sve_svget_neonq_bf16: { 9401 return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0)); 9402 } 9403 9404 case SVE::BI__builtin_sve_svdup_neonq_s8: 9405 case SVE::BI__builtin_sve_svdup_neonq_s16: 9406 case SVE::BI__builtin_sve_svdup_neonq_s32: 9407 case SVE::BI__builtin_sve_svdup_neonq_s64: 9408 case SVE::BI__builtin_sve_svdup_neonq_u8: 9409 case SVE::BI__builtin_sve_svdup_neonq_u16: 9410 case SVE::BI__builtin_sve_svdup_neonq_u32: 9411 case SVE::BI__builtin_sve_svdup_neonq_u64: 9412 case SVE::BI__builtin_sve_svdup_neonq_f16: 9413 case SVE::BI__builtin_sve_svdup_neonq_f32: 9414 case SVE::BI__builtin_sve_svdup_neonq_f64: 9415 case SVE::BI__builtin_sve_svdup_neonq_bf16: { 9416 Value *Insert = Builder.CreateInsertVector(Ty, UndefValue::get(Ty), Ops[0], 9417 Builder.getInt64(0)); 9418 return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty}, 9419 {Insert, Builder.getInt64(0)}); 9420 } 9421 } 9422 9423 /// Should not happen 9424 return nullptr; 9425 } 9426 9427 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, 9428 const CallExpr *E, 9429 llvm::Triple::ArchType Arch) { 9430 if (BuiltinID >= AArch64::FirstSVEBuiltin && 9431 BuiltinID <= AArch64::LastSVEBuiltin) 9432 return EmitAArch64SVEBuiltinExpr(BuiltinID, E); 9433 9434 unsigned HintID = static_cast<unsigned>(-1); 9435 switch (BuiltinID) { 9436 default: break; 9437 case AArch64::BI__builtin_arm_nop: 9438 HintID = 0; 9439 break; 9440 case AArch64::BI__builtin_arm_yield: 9441 case AArch64::BI__yield: 9442 HintID = 1; 9443 break; 9444 case AArch64::BI__builtin_arm_wfe: 9445 case AArch64::BI__wfe: 9446 HintID = 2; 9447 break; 9448 case AArch64::BI__builtin_arm_wfi: 9449 case AArch64::BI__wfi: 9450 HintID = 3; 9451 break; 9452 case AArch64::BI__builtin_arm_sev: 9453 case AArch64::BI__sev: 9454 HintID = 4; 9455 break; 9456 case AArch64::BI__builtin_arm_sevl: 9457 case AArch64::BI__sevl: 9458 HintID = 5; 9459 break; 9460 } 9461 9462 if (HintID != static_cast<unsigned>(-1)) { 9463 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); 9464 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); 9465 } 9466 9467 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 9468 Value *Address = EmitScalarExpr(E->getArg(0)); 9469 Value *RW = EmitScalarExpr(E->getArg(1)); 9470 Value *CacheLevel = EmitScalarExpr(E->getArg(2)); 9471 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); 9472 Value *IsData = EmitScalarExpr(E->getArg(4)); 9473 9474 Value *Locality = nullptr; 9475 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { 9476 // Temporal fetch, needs to convert cache level to locality. 9477 Locality = llvm::ConstantInt::get(Int32Ty, 9478 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); 9479 } else { 9480 // Streaming fetch. 9481 Locality = llvm::ConstantInt::get(Int32Ty, 0); 9482 } 9483 9484 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify 9485 // PLDL3STRM or PLDL2STRM. 9486 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 9487 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 9488 } 9489 9490 if (BuiltinID == AArch64::BI__builtin_arm_rbit) { 9491 assert((getContext().getTypeSize(E->getType()) == 32) && 9492 "rbit of unusual size!"); 9493 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9494 return Builder.CreateCall( 9495 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9496 } 9497 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { 9498 assert((getContext().getTypeSize(E->getType()) == 64) && 9499 "rbit of unusual size!"); 9500 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9501 return Builder.CreateCall( 9502 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9503 } 9504 9505 if (BuiltinID == AArch64::BI__builtin_arm_cls) { 9506 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9507 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, 9508 "cls"); 9509 } 9510 if (BuiltinID == AArch64::BI__builtin_arm_cls64) { 9511 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9512 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, 9513 "cls"); 9514 } 9515 9516 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf || 9517 BuiltinID == AArch64::BI__builtin_arm_frint32z) { 9518 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9519 llvm::Type *Ty = Arg->getType(); 9520 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty), 9521 Arg, "frint32z"); 9522 } 9523 9524 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf || 9525 BuiltinID == AArch64::BI__builtin_arm_frint64z) { 9526 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9527 llvm::Type *Ty = Arg->getType(); 9528 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty), 9529 Arg, "frint64z"); 9530 } 9531 9532 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf || 9533 BuiltinID == AArch64::BI__builtin_arm_frint32x) { 9534 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9535 llvm::Type *Ty = Arg->getType(); 9536 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty), 9537 Arg, "frint32x"); 9538 } 9539 9540 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf || 9541 BuiltinID == AArch64::BI__builtin_arm_frint64x) { 9542 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9543 llvm::Type *Ty = Arg->getType(); 9544 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty), 9545 Arg, "frint64x"); 9546 } 9547 9548 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { 9549 assert((getContext().getTypeSize(E->getType()) == 32) && 9550 "__jcvt of unusual size!"); 9551 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9552 return Builder.CreateCall( 9553 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); 9554 } 9555 9556 if (BuiltinID == AArch64::BI__builtin_arm_ld64b || 9557 BuiltinID == AArch64::BI__builtin_arm_st64b || 9558 BuiltinID == AArch64::BI__builtin_arm_st64bv || 9559 BuiltinID == AArch64::BI__builtin_arm_st64bv0) { 9560 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0)); 9561 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1)); 9562 9563 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) { 9564 // Load from the address via an LLVM intrinsic, receiving a 9565 // tuple of 8 i64 words, and store each one to ValPtr. 9566 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b); 9567 llvm::Value *Val = Builder.CreateCall(F, MemAddr); 9568 llvm::Value *ToRet; 9569 for (size_t i = 0; i < 8; i++) { 9570 llvm::Value *ValOffsetPtr = 9571 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); 9572 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9573 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr); 9574 } 9575 return ToRet; 9576 } else { 9577 // Load 8 i64 words from ValPtr, and store them to the address 9578 // via an LLVM intrinsic. 9579 SmallVector<llvm::Value *, 9> Args; 9580 Args.push_back(MemAddr); 9581 for (size_t i = 0; i < 8; i++) { 9582 llvm::Value *ValOffsetPtr = 9583 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); 9584 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9585 Args.push_back(Builder.CreateLoad(Addr)); 9586 } 9587 9588 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b 9589 ? Intrinsic::aarch64_st64b 9590 : BuiltinID == AArch64::BI__builtin_arm_st64bv 9591 ? Intrinsic::aarch64_st64bv 9592 : Intrinsic::aarch64_st64bv0); 9593 Function *F = CGM.getIntrinsic(Intr); 9594 return Builder.CreateCall(F, Args); 9595 } 9596 } 9597 9598 if (BuiltinID == AArch64::BI__builtin_arm_rndr || 9599 BuiltinID == AArch64::BI__builtin_arm_rndrrs) { 9600 9601 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr 9602 ? Intrinsic::aarch64_rndr 9603 : Intrinsic::aarch64_rndrrs); 9604 Function *F = CGM.getIntrinsic(Intr); 9605 llvm::Value *Val = Builder.CreateCall(F); 9606 Value *RandomValue = Builder.CreateExtractValue(Val, 0); 9607 Value *Status = Builder.CreateExtractValue(Val, 1); 9608 9609 Address MemAddress = EmitPointerWithAlignment(E->getArg(0)); 9610 Builder.CreateStore(RandomValue, MemAddress); 9611 Status = Builder.CreateZExt(Status, Int32Ty); 9612 return Status; 9613 } 9614 9615 if (BuiltinID == AArch64::BI__clear_cache) { 9616 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 9617 const FunctionDecl *FD = E->getDirectCallee(); 9618 Value *Ops[2]; 9619 for (unsigned i = 0; i < 2; i++) 9620 Ops[i] = EmitScalarExpr(E->getArg(i)); 9621 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 9622 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 9623 StringRef Name = FD->getName(); 9624 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 9625 } 9626 9627 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || 9628 BuiltinID == AArch64::BI__builtin_arm_ldaex) && 9629 getContext().getTypeSize(E->getType()) == 128) { 9630 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9631 ? Intrinsic::aarch64_ldaxp 9632 : Intrinsic::aarch64_ldxp); 9633 9634 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 9635 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 9636 "ldxp"); 9637 9638 Value *Val0 = Builder.CreateExtractValue(Val, 1); 9639 Value *Val1 = Builder.CreateExtractValue(Val, 0); 9640 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 9641 Val0 = Builder.CreateZExt(Val0, Int128Ty); 9642 Val1 = Builder.CreateZExt(Val1, Int128Ty); 9643 9644 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); 9645 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 9646 Val = Builder.CreateOr(Val, Val1); 9647 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 9648 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 9649 BuiltinID == AArch64::BI__builtin_arm_ldaex) { 9650 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 9651 9652 QualType Ty = E->getType(); 9653 llvm::Type *RealResTy = ConvertType(Ty); 9654 llvm::Type *PtrTy = llvm::IntegerType::get( 9655 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 9656 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 9657 9658 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9659 ? Intrinsic::aarch64_ldaxr 9660 : Intrinsic::aarch64_ldxr, 9661 PtrTy); 9662 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); 9663 9664 if (RealResTy->isPointerTy()) 9665 return Builder.CreateIntToPtr(Val, RealResTy); 9666 9667 llvm::Type *IntResTy = llvm::IntegerType::get( 9668 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 9669 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 9670 return Builder.CreateBitCast(Val, RealResTy); 9671 } 9672 9673 if ((BuiltinID == AArch64::BI__builtin_arm_strex || 9674 BuiltinID == AArch64::BI__builtin_arm_stlex) && 9675 getContext().getTypeSize(E->getArg(0)->getType()) == 128) { 9676 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9677 ? Intrinsic::aarch64_stlxp 9678 : Intrinsic::aarch64_stxp); 9679 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); 9680 9681 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 9682 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); 9683 9684 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); 9685 llvm::Value *Val = Builder.CreateLoad(Tmp); 9686 9687 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 9688 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 9689 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), 9690 Int8PtrTy); 9691 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); 9692 } 9693 9694 if (BuiltinID == AArch64::BI__builtin_arm_strex || 9695 BuiltinID == AArch64::BI__builtin_arm_stlex) { 9696 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 9697 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 9698 9699 QualType Ty = E->getArg(0)->getType(); 9700 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 9701 getContext().getTypeSize(Ty)); 9702 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 9703 9704 if (StoreVal->getType()->isPointerTy()) 9705 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); 9706 else { 9707 llvm::Type *IntTy = llvm::IntegerType::get( 9708 getLLVMContext(), 9709 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 9710 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 9711 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); 9712 } 9713 9714 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9715 ? Intrinsic::aarch64_stlxr 9716 : Intrinsic::aarch64_stxr, 9717 StoreAddr->getType()); 9718 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); 9719 } 9720 9721 if (BuiltinID == AArch64::BI__getReg) { 9722 Expr::EvalResult Result; 9723 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 9724 llvm_unreachable("Sema will ensure that the parameter is constant"); 9725 9726 llvm::APSInt Value = Result.Val.getInt(); 9727 LLVMContext &Context = CGM.getLLVMContext(); 9728 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10); 9729 9730 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; 9731 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9732 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9733 9734 llvm::Function *F = 9735 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); 9736 return Builder.CreateCall(F, Metadata); 9737 } 9738 9739 if (BuiltinID == AArch64::BI__builtin_arm_clrex) { 9740 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); 9741 return Builder.CreateCall(F); 9742 } 9743 9744 if (BuiltinID == AArch64::BI_ReadWriteBarrier) 9745 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 9746 llvm::SyncScope::SingleThread); 9747 9748 // CRC32 9749 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 9750 switch (BuiltinID) { 9751 case AArch64::BI__builtin_arm_crc32b: 9752 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; 9753 case AArch64::BI__builtin_arm_crc32cb: 9754 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; 9755 case AArch64::BI__builtin_arm_crc32h: 9756 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; 9757 case AArch64::BI__builtin_arm_crc32ch: 9758 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; 9759 case AArch64::BI__builtin_arm_crc32w: 9760 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; 9761 case AArch64::BI__builtin_arm_crc32cw: 9762 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; 9763 case AArch64::BI__builtin_arm_crc32d: 9764 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; 9765 case AArch64::BI__builtin_arm_crc32cd: 9766 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; 9767 } 9768 9769 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 9770 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 9771 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 9772 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 9773 9774 llvm::Type *DataTy = F->getFunctionType()->getParamType(1); 9775 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); 9776 9777 return Builder.CreateCall(F, {Arg0, Arg1}); 9778 } 9779 9780 // Memory Operations (MOPS) 9781 if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) { 9782 Value *Dst = EmitScalarExpr(E->getArg(0)); 9783 Value *Val = EmitScalarExpr(E->getArg(1)); 9784 Value *Size = EmitScalarExpr(E->getArg(2)); 9785 Dst = Builder.CreatePointerCast(Dst, Int8PtrTy); 9786 Val = Builder.CreateTrunc(Val, Int8Ty); 9787 Size = Builder.CreateIntCast(Size, Int64Ty, false); 9788 return Builder.CreateCall( 9789 CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size}); 9790 } 9791 9792 // Memory Tagging Extensions (MTE) Intrinsics 9793 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; 9794 switch (BuiltinID) { 9795 case AArch64::BI__builtin_arm_irg: 9796 MTEIntrinsicID = Intrinsic::aarch64_irg; break; 9797 case AArch64::BI__builtin_arm_addg: 9798 MTEIntrinsicID = Intrinsic::aarch64_addg; break; 9799 case AArch64::BI__builtin_arm_gmi: 9800 MTEIntrinsicID = Intrinsic::aarch64_gmi; break; 9801 case AArch64::BI__builtin_arm_ldg: 9802 MTEIntrinsicID = Intrinsic::aarch64_ldg; break; 9803 case AArch64::BI__builtin_arm_stg: 9804 MTEIntrinsicID = Intrinsic::aarch64_stg; break; 9805 case AArch64::BI__builtin_arm_subp: 9806 MTEIntrinsicID = Intrinsic::aarch64_subp; break; 9807 } 9808 9809 if (MTEIntrinsicID != Intrinsic::not_intrinsic) { 9810 llvm::Type *T = ConvertType(E->getType()); 9811 9812 if (MTEIntrinsicID == Intrinsic::aarch64_irg) { 9813 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9814 Value *Mask = EmitScalarExpr(E->getArg(1)); 9815 9816 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9817 Mask = Builder.CreateZExt(Mask, Int64Ty); 9818 Value *RV = Builder.CreateCall( 9819 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); 9820 return Builder.CreatePointerCast(RV, T); 9821 } 9822 if (MTEIntrinsicID == Intrinsic::aarch64_addg) { 9823 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9824 Value *TagOffset = EmitScalarExpr(E->getArg(1)); 9825 9826 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9827 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); 9828 Value *RV = Builder.CreateCall( 9829 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); 9830 return Builder.CreatePointerCast(RV, T); 9831 } 9832 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { 9833 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9834 Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); 9835 9836 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); 9837 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9838 return Builder.CreateCall( 9839 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); 9840 } 9841 // Although it is possible to supply a different return 9842 // address (first arg) to this intrinsic, for now we set 9843 // return address same as input address. 9844 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { 9845 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9846 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9847 Value *RV = Builder.CreateCall( 9848 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9849 return Builder.CreatePointerCast(RV, T); 9850 } 9851 // Although it is possible to supply a different tag (to set) 9852 // to this intrinsic (as first arg), for now we supply 9853 // the tag that is in input address arg (common use case). 9854 if (MTEIntrinsicID == Intrinsic::aarch64_stg) { 9855 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9856 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9857 return Builder.CreateCall( 9858 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9859 } 9860 if (MTEIntrinsicID == Intrinsic::aarch64_subp) { 9861 Value *PointerA = EmitScalarExpr(E->getArg(0)); 9862 Value *PointerB = EmitScalarExpr(E->getArg(1)); 9863 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); 9864 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); 9865 return Builder.CreateCall( 9866 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); 9867 } 9868 } 9869 9870 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9871 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9872 BuiltinID == AArch64::BI__builtin_arm_rsrp || 9873 BuiltinID == AArch64::BI__builtin_arm_wsr || 9874 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 9875 BuiltinID == AArch64::BI__builtin_arm_wsrp) { 9876 9877 SpecialRegisterAccessKind AccessKind = Write; 9878 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9879 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9880 BuiltinID == AArch64::BI__builtin_arm_rsrp) 9881 AccessKind = VolatileRead; 9882 9883 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || 9884 BuiltinID == AArch64::BI__builtin_arm_wsrp; 9885 9886 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && 9887 BuiltinID != AArch64::BI__builtin_arm_wsr; 9888 9889 llvm::Type *ValueType; 9890 llvm::Type *RegisterType = Int64Ty; 9891 if (IsPointerBuiltin) { 9892 ValueType = VoidPtrTy; 9893 } else if (Is64Bit) { 9894 ValueType = Int64Ty; 9895 } else { 9896 ValueType = Int32Ty; 9897 } 9898 9899 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 9900 AccessKind); 9901 } 9902 9903 if (BuiltinID == AArch64::BI_ReadStatusReg || 9904 BuiltinID == AArch64::BI_WriteStatusReg) { 9905 LLVMContext &Context = CGM.getLLVMContext(); 9906 9907 unsigned SysReg = 9908 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); 9909 9910 std::string SysRegStr; 9911 llvm::raw_string_ostream(SysRegStr) << 9912 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << 9913 ((SysReg >> 11) & 7) << ":" << 9914 ((SysReg >> 7) & 15) << ":" << 9915 ((SysReg >> 3) & 15) << ":" << 9916 ( SysReg & 7); 9917 9918 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; 9919 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9920 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9921 9922 llvm::Type *RegisterType = Int64Ty; 9923 llvm::Type *Types[] = { RegisterType }; 9924 9925 if (BuiltinID == AArch64::BI_ReadStatusReg) { 9926 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 9927 9928 return Builder.CreateCall(F, Metadata); 9929 } 9930 9931 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 9932 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); 9933 9934 return Builder.CreateCall(F, { Metadata, ArgValue }); 9935 } 9936 9937 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { 9938 llvm::Function *F = 9939 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 9940 return Builder.CreateCall(F); 9941 } 9942 9943 if (BuiltinID == AArch64::BI__builtin_sponentry) { 9944 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); 9945 return Builder.CreateCall(F); 9946 } 9947 9948 if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) { 9949 llvm::Type *ResType = ConvertType(E->getType()); 9950 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 9951 9952 bool IsSigned = BuiltinID == AArch64::BI__mulh; 9953 Value *LHS = 9954 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned); 9955 Value *RHS = 9956 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned); 9957 9958 Value *MulResult, *HigherBits; 9959 if (IsSigned) { 9960 MulResult = Builder.CreateNSWMul(LHS, RHS); 9961 HigherBits = Builder.CreateAShr(MulResult, 64); 9962 } else { 9963 MulResult = Builder.CreateNUWMul(LHS, RHS); 9964 HigherBits = Builder.CreateLShr(MulResult, 64); 9965 } 9966 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 9967 9968 return HigherBits; 9969 } 9970 9971 // Handle MSVC intrinsics before argument evaluation to prevent double 9972 // evaluation. 9973 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID)) 9974 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 9975 9976 // Find out if any arguments are required to be integer constant 9977 // expressions. 9978 unsigned ICEArguments = 0; 9979 ASTContext::GetBuiltinTypeError Error; 9980 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 9981 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 9982 9983 llvm::SmallVector<Value*, 4> Ops; 9984 Address PtrOp0 = Address::invalid(); 9985 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { 9986 if (i == 0) { 9987 switch (BuiltinID) { 9988 case NEON::BI__builtin_neon_vld1_v: 9989 case NEON::BI__builtin_neon_vld1q_v: 9990 case NEON::BI__builtin_neon_vld1_dup_v: 9991 case NEON::BI__builtin_neon_vld1q_dup_v: 9992 case NEON::BI__builtin_neon_vld1_lane_v: 9993 case NEON::BI__builtin_neon_vld1q_lane_v: 9994 case NEON::BI__builtin_neon_vst1_v: 9995 case NEON::BI__builtin_neon_vst1q_v: 9996 case NEON::BI__builtin_neon_vst1_lane_v: 9997 case NEON::BI__builtin_neon_vst1q_lane_v: 9998 // Get the alignment for the argument in addition to the value; 9999 // we'll use it later. 10000 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 10001 Ops.push_back(PtrOp0.getPointer()); 10002 continue; 10003 } 10004 } 10005 if ((ICEArguments & (1 << i)) == 0) { 10006 Ops.push_back(EmitScalarExpr(E->getArg(i))); 10007 } else { 10008 // If this is required to be a constant, constant fold it so that we know 10009 // that the generated intrinsic gets a ConstantInt. 10010 Ops.push_back(llvm::ConstantInt::get( 10011 getLLVMContext(), 10012 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 10013 } 10014 } 10015 10016 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); 10017 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 10018 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); 10019 10020 if (Builtin) { 10021 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); 10022 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); 10023 assert(Result && "SISD intrinsic should have been handled"); 10024 return Result; 10025 } 10026 10027 const Expr *Arg = E->getArg(E->getNumArgs()-1); 10028 NeonTypeFlags Type(0); 10029 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext())) 10030 // Determine the type of this overloaded NEON intrinsic. 10031 Type = NeonTypeFlags(Result->getZExtValue()); 10032 10033 bool usgn = Type.isUnsigned(); 10034 bool quad = Type.isQuad(); 10035 10036 // Handle non-overloaded intrinsics first. 10037 switch (BuiltinID) { 10038 default: break; 10039 case NEON::BI__builtin_neon_vabsh_f16: 10040 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10041 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); 10042 case NEON::BI__builtin_neon_vaddq_p128: { 10043 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128); 10044 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10045 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10046 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10047 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); 10048 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 10049 return Builder.CreateBitCast(Ops[0], Int128Ty); 10050 } 10051 case NEON::BI__builtin_neon_vldrq_p128: { 10052 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 10053 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); 10054 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); 10055 return Builder.CreateAlignedLoad(Int128Ty, Ptr, 10056 CharUnits::fromQuantity(16)); 10057 } 10058 case NEON::BI__builtin_neon_vstrq_p128: { 10059 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 10060 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); 10061 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); 10062 } 10063 case NEON::BI__builtin_neon_vcvts_f32_u32: 10064 case NEON::BI__builtin_neon_vcvtd_f64_u64: 10065 usgn = true; 10066 LLVM_FALLTHROUGH; 10067 case NEON::BI__builtin_neon_vcvts_f32_s32: 10068 case NEON::BI__builtin_neon_vcvtd_f64_s64: { 10069 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10070 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 10071 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 10072 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 10073 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 10074 if (usgn) 10075 return Builder.CreateUIToFP(Ops[0], FTy); 10076 return Builder.CreateSIToFP(Ops[0], FTy); 10077 } 10078 case NEON::BI__builtin_neon_vcvth_f16_u16: 10079 case NEON::BI__builtin_neon_vcvth_f16_u32: 10080 case NEON::BI__builtin_neon_vcvth_f16_u64: 10081 usgn = true; 10082 LLVM_FALLTHROUGH; 10083 case NEON::BI__builtin_neon_vcvth_f16_s16: 10084 case NEON::BI__builtin_neon_vcvth_f16_s32: 10085 case NEON::BI__builtin_neon_vcvth_f16_s64: { 10086 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10087 llvm::Type *FTy = HalfTy; 10088 llvm::Type *InTy; 10089 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) 10090 InTy = Int64Ty; 10091 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) 10092 InTy = Int32Ty; 10093 else 10094 InTy = Int16Ty; 10095 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 10096 if (usgn) 10097 return Builder.CreateUIToFP(Ops[0], FTy); 10098 return Builder.CreateSIToFP(Ops[0], FTy); 10099 } 10100 case NEON::BI__builtin_neon_vcvtah_u16_f16: 10101 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 10102 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 10103 case NEON::BI__builtin_neon_vcvtph_u16_f16: 10104 case NEON::BI__builtin_neon_vcvth_u16_f16: 10105 case NEON::BI__builtin_neon_vcvtah_s16_f16: 10106 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 10107 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 10108 case NEON::BI__builtin_neon_vcvtph_s16_f16: 10109 case NEON::BI__builtin_neon_vcvth_s16_f16: { 10110 unsigned Int; 10111 llvm::Type* InTy = Int32Ty; 10112 llvm::Type* FTy = HalfTy; 10113 llvm::Type *Tys[2] = {InTy, FTy}; 10114 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10115 switch (BuiltinID) { 10116 default: llvm_unreachable("missing builtin ID in switch!"); 10117 case NEON::BI__builtin_neon_vcvtah_u16_f16: 10118 Int = Intrinsic::aarch64_neon_fcvtau; break; 10119 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 10120 Int = Intrinsic::aarch64_neon_fcvtmu; break; 10121 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 10122 Int = Intrinsic::aarch64_neon_fcvtnu; break; 10123 case NEON::BI__builtin_neon_vcvtph_u16_f16: 10124 Int = Intrinsic::aarch64_neon_fcvtpu; break; 10125 case NEON::BI__builtin_neon_vcvth_u16_f16: 10126 Int = Intrinsic::aarch64_neon_fcvtzu; break; 10127 case NEON::BI__builtin_neon_vcvtah_s16_f16: 10128 Int = Intrinsic::aarch64_neon_fcvtas; break; 10129 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 10130 Int = Intrinsic::aarch64_neon_fcvtms; break; 10131 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 10132 Int = Intrinsic::aarch64_neon_fcvtns; break; 10133 case NEON::BI__builtin_neon_vcvtph_s16_f16: 10134 Int = Intrinsic::aarch64_neon_fcvtps; break; 10135 case NEON::BI__builtin_neon_vcvth_s16_f16: 10136 Int = Intrinsic::aarch64_neon_fcvtzs; break; 10137 } 10138 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); 10139 return Builder.CreateTrunc(Ops[0], Int16Ty); 10140 } 10141 case NEON::BI__builtin_neon_vcaleh_f16: 10142 case NEON::BI__builtin_neon_vcalth_f16: 10143 case NEON::BI__builtin_neon_vcageh_f16: 10144 case NEON::BI__builtin_neon_vcagth_f16: { 10145 unsigned Int; 10146 llvm::Type* InTy = Int32Ty; 10147 llvm::Type* FTy = HalfTy; 10148 llvm::Type *Tys[2] = {InTy, FTy}; 10149 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10150 switch (BuiltinID) { 10151 default: llvm_unreachable("missing builtin ID in switch!"); 10152 case NEON::BI__builtin_neon_vcageh_f16: 10153 Int = Intrinsic::aarch64_neon_facge; break; 10154 case NEON::BI__builtin_neon_vcagth_f16: 10155 Int = Intrinsic::aarch64_neon_facgt; break; 10156 case NEON::BI__builtin_neon_vcaleh_f16: 10157 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; 10158 case NEON::BI__builtin_neon_vcalth_f16: 10159 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; 10160 } 10161 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); 10162 return Builder.CreateTrunc(Ops[0], Int16Ty); 10163 } 10164 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 10165 case NEON::BI__builtin_neon_vcvth_n_u16_f16: { 10166 unsigned Int; 10167 llvm::Type* InTy = Int32Ty; 10168 llvm::Type* FTy = HalfTy; 10169 llvm::Type *Tys[2] = {InTy, FTy}; 10170 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10171 switch (BuiltinID) { 10172 default: llvm_unreachable("missing builtin ID in switch!"); 10173 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 10174 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; 10175 case NEON::BI__builtin_neon_vcvth_n_u16_f16: 10176 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; 10177 } 10178 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 10179 return Builder.CreateTrunc(Ops[0], Int16Ty); 10180 } 10181 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 10182 case NEON::BI__builtin_neon_vcvth_n_f16_u16: { 10183 unsigned Int; 10184 llvm::Type* FTy = HalfTy; 10185 llvm::Type* InTy = Int32Ty; 10186 llvm::Type *Tys[2] = {FTy, InTy}; 10187 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10188 switch (BuiltinID) { 10189 default: llvm_unreachable("missing builtin ID in switch!"); 10190 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 10191 Int = Intrinsic::aarch64_neon_vcvtfxs2fp; 10192 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); 10193 break; 10194 case NEON::BI__builtin_neon_vcvth_n_f16_u16: 10195 Int = Intrinsic::aarch64_neon_vcvtfxu2fp; 10196 Ops[0] = Builder.CreateZExt(Ops[0], InTy); 10197 break; 10198 } 10199 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 10200 } 10201 case NEON::BI__builtin_neon_vpaddd_s64: { 10202 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); 10203 Value *Vec = EmitScalarExpr(E->getArg(0)); 10204 // The vector is v2f64, so make sure it's bitcast to that. 10205 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); 10206 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 10207 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 10208 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 10209 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 10210 // Pairwise addition of a v2f64 into a scalar f64. 10211 return Builder.CreateAdd(Op0, Op1, "vpaddd"); 10212 } 10213 case NEON::BI__builtin_neon_vpaddd_f64: { 10214 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); 10215 Value *Vec = EmitScalarExpr(E->getArg(0)); 10216 // The vector is v2f64, so make sure it's bitcast to that. 10217 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); 10218 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 10219 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 10220 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 10221 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 10222 // Pairwise addition of a v2f64 into a scalar f64. 10223 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 10224 } 10225 case NEON::BI__builtin_neon_vpadds_f32: { 10226 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); 10227 Value *Vec = EmitScalarExpr(E->getArg(0)); 10228 // The vector is v2f32, so make sure it's bitcast to that. 10229 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); 10230 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 10231 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 10232 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 10233 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 10234 // Pairwise addition of a v2f32 into a scalar f32. 10235 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 10236 } 10237 case NEON::BI__builtin_neon_vceqzd_s64: 10238 case NEON::BI__builtin_neon_vceqzd_f64: 10239 case NEON::BI__builtin_neon_vceqzs_f32: 10240 case NEON::BI__builtin_neon_vceqzh_f16: 10241 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10242 return EmitAArch64CompareBuiltinExpr( 10243 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10244 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); 10245 case NEON::BI__builtin_neon_vcgezd_s64: 10246 case NEON::BI__builtin_neon_vcgezd_f64: 10247 case NEON::BI__builtin_neon_vcgezs_f32: 10248 case NEON::BI__builtin_neon_vcgezh_f16: 10249 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10250 return EmitAArch64CompareBuiltinExpr( 10251 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10252 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); 10253 case NEON::BI__builtin_neon_vclezd_s64: 10254 case NEON::BI__builtin_neon_vclezd_f64: 10255 case NEON::BI__builtin_neon_vclezs_f32: 10256 case NEON::BI__builtin_neon_vclezh_f16: 10257 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10258 return EmitAArch64CompareBuiltinExpr( 10259 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10260 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); 10261 case NEON::BI__builtin_neon_vcgtzd_s64: 10262 case NEON::BI__builtin_neon_vcgtzd_f64: 10263 case NEON::BI__builtin_neon_vcgtzs_f32: 10264 case NEON::BI__builtin_neon_vcgtzh_f16: 10265 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10266 return EmitAArch64CompareBuiltinExpr( 10267 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10268 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); 10269 case NEON::BI__builtin_neon_vcltzd_s64: 10270 case NEON::BI__builtin_neon_vcltzd_f64: 10271 case NEON::BI__builtin_neon_vcltzs_f32: 10272 case NEON::BI__builtin_neon_vcltzh_f16: 10273 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10274 return EmitAArch64CompareBuiltinExpr( 10275 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10276 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); 10277 10278 case NEON::BI__builtin_neon_vceqzd_u64: { 10279 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10280 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10281 Ops[0] = 10282 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); 10283 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); 10284 } 10285 case NEON::BI__builtin_neon_vceqd_f64: 10286 case NEON::BI__builtin_neon_vcled_f64: 10287 case NEON::BI__builtin_neon_vcltd_f64: 10288 case NEON::BI__builtin_neon_vcged_f64: 10289 case NEON::BI__builtin_neon_vcgtd_f64: { 10290 llvm::CmpInst::Predicate P; 10291 switch (BuiltinID) { 10292 default: llvm_unreachable("missing builtin ID in switch!"); 10293 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; 10294 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; 10295 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; 10296 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; 10297 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; 10298 } 10299 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10300 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10301 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 10302 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10303 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); 10304 } 10305 case NEON::BI__builtin_neon_vceqs_f32: 10306 case NEON::BI__builtin_neon_vcles_f32: 10307 case NEON::BI__builtin_neon_vclts_f32: 10308 case NEON::BI__builtin_neon_vcges_f32: 10309 case NEON::BI__builtin_neon_vcgts_f32: { 10310 llvm::CmpInst::Predicate P; 10311 switch (BuiltinID) { 10312 default: llvm_unreachable("missing builtin ID in switch!"); 10313 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; 10314 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; 10315 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; 10316 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; 10317 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; 10318 } 10319 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10320 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 10321 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); 10322 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10323 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); 10324 } 10325 case NEON::BI__builtin_neon_vceqh_f16: 10326 case NEON::BI__builtin_neon_vcleh_f16: 10327 case NEON::BI__builtin_neon_vclth_f16: 10328 case NEON::BI__builtin_neon_vcgeh_f16: 10329 case NEON::BI__builtin_neon_vcgth_f16: { 10330 llvm::CmpInst::Predicate P; 10331 switch (BuiltinID) { 10332 default: llvm_unreachable("missing builtin ID in switch!"); 10333 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; 10334 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; 10335 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; 10336 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; 10337 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; 10338 } 10339 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10340 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 10341 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); 10342 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10343 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); 10344 } 10345 case NEON::BI__builtin_neon_vceqd_s64: 10346 case NEON::BI__builtin_neon_vceqd_u64: 10347 case NEON::BI__builtin_neon_vcgtd_s64: 10348 case NEON::BI__builtin_neon_vcgtd_u64: 10349 case NEON::BI__builtin_neon_vcltd_s64: 10350 case NEON::BI__builtin_neon_vcltd_u64: 10351 case NEON::BI__builtin_neon_vcged_u64: 10352 case NEON::BI__builtin_neon_vcged_s64: 10353 case NEON::BI__builtin_neon_vcled_u64: 10354 case NEON::BI__builtin_neon_vcled_s64: { 10355 llvm::CmpInst::Predicate P; 10356 switch (BuiltinID) { 10357 default: llvm_unreachable("missing builtin ID in switch!"); 10358 case NEON::BI__builtin_neon_vceqd_s64: 10359 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; 10360 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; 10361 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; 10362 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; 10363 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; 10364 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; 10365 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; 10366 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; 10367 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; 10368 } 10369 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10370 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10371 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10372 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); 10373 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); 10374 } 10375 case NEON::BI__builtin_neon_vtstd_s64: 10376 case NEON::BI__builtin_neon_vtstd_u64: { 10377 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10378 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10379 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10380 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 10381 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 10382 llvm::Constant::getNullValue(Int64Ty)); 10383 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); 10384 } 10385 case NEON::BI__builtin_neon_vset_lane_i8: 10386 case NEON::BI__builtin_neon_vset_lane_i16: 10387 case NEON::BI__builtin_neon_vset_lane_i32: 10388 case NEON::BI__builtin_neon_vset_lane_i64: 10389 case NEON::BI__builtin_neon_vset_lane_bf16: 10390 case NEON::BI__builtin_neon_vset_lane_f32: 10391 case NEON::BI__builtin_neon_vsetq_lane_i8: 10392 case NEON::BI__builtin_neon_vsetq_lane_i16: 10393 case NEON::BI__builtin_neon_vsetq_lane_i32: 10394 case NEON::BI__builtin_neon_vsetq_lane_i64: 10395 case NEON::BI__builtin_neon_vsetq_lane_bf16: 10396 case NEON::BI__builtin_neon_vsetq_lane_f32: 10397 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10398 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10399 case NEON::BI__builtin_neon_vset_lane_f64: 10400 // The vector type needs a cast for the v1f64 variant. 10401 Ops[1] = 10402 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); 10403 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10404 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10405 case NEON::BI__builtin_neon_vsetq_lane_f64: 10406 // The vector type needs a cast for the v2f64 variant. 10407 Ops[1] = 10408 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); 10409 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10410 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10411 10412 case NEON::BI__builtin_neon_vget_lane_i8: 10413 case NEON::BI__builtin_neon_vdupb_lane_i8: 10414 Ops[0] = 10415 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); 10416 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10417 "vget_lane"); 10418 case NEON::BI__builtin_neon_vgetq_lane_i8: 10419 case NEON::BI__builtin_neon_vdupb_laneq_i8: 10420 Ops[0] = 10421 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); 10422 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10423 "vgetq_lane"); 10424 case NEON::BI__builtin_neon_vget_lane_i16: 10425 case NEON::BI__builtin_neon_vduph_lane_i16: 10426 Ops[0] = 10427 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); 10428 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10429 "vget_lane"); 10430 case NEON::BI__builtin_neon_vgetq_lane_i16: 10431 case NEON::BI__builtin_neon_vduph_laneq_i16: 10432 Ops[0] = 10433 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); 10434 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10435 "vgetq_lane"); 10436 case NEON::BI__builtin_neon_vget_lane_i32: 10437 case NEON::BI__builtin_neon_vdups_lane_i32: 10438 Ops[0] = 10439 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); 10440 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10441 "vget_lane"); 10442 case NEON::BI__builtin_neon_vdups_lane_f32: 10443 Ops[0] = 10444 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 10445 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10446 "vdups_lane"); 10447 case NEON::BI__builtin_neon_vgetq_lane_i32: 10448 case NEON::BI__builtin_neon_vdups_laneq_i32: 10449 Ops[0] = 10450 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 10451 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10452 "vgetq_lane"); 10453 case NEON::BI__builtin_neon_vget_lane_i64: 10454 case NEON::BI__builtin_neon_vdupd_lane_i64: 10455 Ops[0] = 10456 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); 10457 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10458 "vget_lane"); 10459 case NEON::BI__builtin_neon_vdupd_lane_f64: 10460 Ops[0] = 10461 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 10462 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10463 "vdupd_lane"); 10464 case NEON::BI__builtin_neon_vgetq_lane_i64: 10465 case NEON::BI__builtin_neon_vdupd_laneq_i64: 10466 Ops[0] = 10467 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 10468 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10469 "vgetq_lane"); 10470 case NEON::BI__builtin_neon_vget_lane_f32: 10471 Ops[0] = 10472 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 10473 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10474 "vget_lane"); 10475 case NEON::BI__builtin_neon_vget_lane_f64: 10476 Ops[0] = 10477 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 10478 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10479 "vget_lane"); 10480 case NEON::BI__builtin_neon_vgetq_lane_f32: 10481 case NEON::BI__builtin_neon_vdups_laneq_f32: 10482 Ops[0] = 10483 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); 10484 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10485 "vgetq_lane"); 10486 case NEON::BI__builtin_neon_vgetq_lane_f64: 10487 case NEON::BI__builtin_neon_vdupd_laneq_f64: 10488 Ops[0] = 10489 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); 10490 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10491 "vgetq_lane"); 10492 case NEON::BI__builtin_neon_vaddh_f16: 10493 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10494 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); 10495 case NEON::BI__builtin_neon_vsubh_f16: 10496 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10497 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); 10498 case NEON::BI__builtin_neon_vmulh_f16: 10499 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10500 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); 10501 case NEON::BI__builtin_neon_vdivh_f16: 10502 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10503 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); 10504 case NEON::BI__builtin_neon_vfmah_f16: 10505 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 10506 return emitCallMaybeConstrainedFPBuiltin( 10507 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 10508 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); 10509 case NEON::BI__builtin_neon_vfmsh_f16: { 10510 // FIXME: This should be an fneg instruction: 10511 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); 10512 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); 10513 10514 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 10515 return emitCallMaybeConstrainedFPBuiltin( 10516 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 10517 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); 10518 } 10519 case NEON::BI__builtin_neon_vaddd_s64: 10520 case NEON::BI__builtin_neon_vaddd_u64: 10521 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); 10522 case NEON::BI__builtin_neon_vsubd_s64: 10523 case NEON::BI__builtin_neon_vsubd_u64: 10524 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); 10525 case NEON::BI__builtin_neon_vqdmlalh_s16: 10526 case NEON::BI__builtin_neon_vqdmlslh_s16: { 10527 SmallVector<Value *, 2> ProductOps; 10528 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10529 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); 10530 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10531 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10532 ProductOps, "vqdmlXl"); 10533 Constant *CI = ConstantInt::get(SizeTy, 0); 10534 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10535 10536 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 10537 ? Intrinsic::aarch64_neon_sqadd 10538 : Intrinsic::aarch64_neon_sqsub; 10539 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); 10540 } 10541 case NEON::BI__builtin_neon_vqshlud_n_s64: { 10542 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10543 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 10544 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), 10545 Ops, "vqshlu_n"); 10546 } 10547 case NEON::BI__builtin_neon_vqshld_n_u64: 10548 case NEON::BI__builtin_neon_vqshld_n_s64: { 10549 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 10550 ? Intrinsic::aarch64_neon_uqshl 10551 : Intrinsic::aarch64_neon_sqshl; 10552 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10553 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 10554 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); 10555 } 10556 case NEON::BI__builtin_neon_vrshrd_n_u64: 10557 case NEON::BI__builtin_neon_vrshrd_n_s64: { 10558 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 10559 ? Intrinsic::aarch64_neon_urshl 10560 : Intrinsic::aarch64_neon_srshl; 10561 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10562 int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); 10563 Ops[1] = ConstantInt::get(Int64Ty, -SV); 10564 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); 10565 } 10566 case NEON::BI__builtin_neon_vrsrad_n_u64: 10567 case NEON::BI__builtin_neon_vrsrad_n_s64: { 10568 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 10569 ? Intrinsic::aarch64_neon_urshl 10570 : Intrinsic::aarch64_neon_srshl; 10571 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10572 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); 10573 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), 10574 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); 10575 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); 10576 } 10577 case NEON::BI__builtin_neon_vshld_n_s64: 10578 case NEON::BI__builtin_neon_vshld_n_u64: { 10579 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10580 return Builder.CreateShl( 10581 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); 10582 } 10583 case NEON::BI__builtin_neon_vshrd_n_s64: { 10584 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10585 return Builder.CreateAShr( 10586 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10587 Amt->getZExtValue())), 10588 "shrd_n"); 10589 } 10590 case NEON::BI__builtin_neon_vshrd_n_u64: { 10591 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10592 uint64_t ShiftAmt = Amt->getZExtValue(); 10593 // Right-shifting an unsigned value by its size yields 0. 10594 if (ShiftAmt == 64) 10595 return ConstantInt::get(Int64Ty, 0); 10596 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), 10597 "shrd_n"); 10598 } 10599 case NEON::BI__builtin_neon_vsrad_n_s64: { 10600 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10601 Ops[1] = Builder.CreateAShr( 10602 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10603 Amt->getZExtValue())), 10604 "shrd_n"); 10605 return Builder.CreateAdd(Ops[0], Ops[1]); 10606 } 10607 case NEON::BI__builtin_neon_vsrad_n_u64: { 10608 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10609 uint64_t ShiftAmt = Amt->getZExtValue(); 10610 // Right-shifting an unsigned value by its size yields 0. 10611 // As Op + 0 = Op, return Ops[0] directly. 10612 if (ShiftAmt == 64) 10613 return Ops[0]; 10614 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), 10615 "shrd_n"); 10616 return Builder.CreateAdd(Ops[0], Ops[1]); 10617 } 10618 case NEON::BI__builtin_neon_vqdmlalh_lane_s16: 10619 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: 10620 case NEON::BI__builtin_neon_vqdmlslh_lane_s16: 10621 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { 10622 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10623 "lane"); 10624 SmallVector<Value *, 2> ProductOps; 10625 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10626 ProductOps.push_back(vectorWrapScalar16(Ops[2])); 10627 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10628 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10629 ProductOps, "vqdmlXl"); 10630 Constant *CI = ConstantInt::get(SizeTy, 0); 10631 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10632 Ops.pop_back(); 10633 10634 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || 10635 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) 10636 ? Intrinsic::aarch64_neon_sqadd 10637 : Intrinsic::aarch64_neon_sqsub; 10638 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); 10639 } 10640 case NEON::BI__builtin_neon_vqdmlals_s32: 10641 case NEON::BI__builtin_neon_vqdmlsls_s32: { 10642 SmallVector<Value *, 2> ProductOps; 10643 ProductOps.push_back(Ops[1]); 10644 ProductOps.push_back(EmitScalarExpr(E->getArg(2))); 10645 Ops[1] = 10646 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10647 ProductOps, "vqdmlXl"); 10648 10649 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 10650 ? Intrinsic::aarch64_neon_sqadd 10651 : Intrinsic::aarch64_neon_sqsub; 10652 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); 10653 } 10654 case NEON::BI__builtin_neon_vqdmlals_lane_s32: 10655 case NEON::BI__builtin_neon_vqdmlals_laneq_s32: 10656 case NEON::BI__builtin_neon_vqdmlsls_lane_s32: 10657 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { 10658 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10659 "lane"); 10660 SmallVector<Value *, 2> ProductOps; 10661 ProductOps.push_back(Ops[1]); 10662 ProductOps.push_back(Ops[2]); 10663 Ops[1] = 10664 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10665 ProductOps, "vqdmlXl"); 10666 Ops.pop_back(); 10667 10668 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || 10669 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) 10670 ? Intrinsic::aarch64_neon_sqadd 10671 : Intrinsic::aarch64_neon_sqsub; 10672 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); 10673 } 10674 case NEON::BI__builtin_neon_vget_lane_bf16: 10675 case NEON::BI__builtin_neon_vduph_lane_bf16: 10676 case NEON::BI__builtin_neon_vduph_lane_f16: { 10677 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10678 "vget_lane"); 10679 } 10680 case NEON::BI__builtin_neon_vgetq_lane_bf16: 10681 case NEON::BI__builtin_neon_vduph_laneq_bf16: 10682 case NEON::BI__builtin_neon_vduph_laneq_f16: { 10683 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10684 "vgetq_lane"); 10685 } 10686 10687 case AArch64::BI_InterlockedAdd: { 10688 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 10689 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 10690 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 10691 AtomicRMWInst::Add, Arg0, Arg1, 10692 llvm::AtomicOrdering::SequentiallyConsistent); 10693 return Builder.CreateAdd(RMWI, Arg1); 10694 } 10695 } 10696 10697 llvm::FixedVectorType *VTy = GetNeonType(this, Type); 10698 llvm::Type *Ty = VTy; 10699 if (!Ty) 10700 return nullptr; 10701 10702 // Not all intrinsics handled by the common case work for AArch64 yet, so only 10703 // defer to common code if it's been added to our special map. 10704 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, 10705 AArch64SIMDIntrinsicsProvenSorted); 10706 10707 if (Builtin) 10708 return EmitCommonNeonBuiltinExpr( 10709 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 10710 Builtin->NameHint, Builtin->TypeModifier, E, Ops, 10711 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); 10712 10713 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) 10714 return V; 10715 10716 unsigned Int; 10717 switch (BuiltinID) { 10718 default: return nullptr; 10719 case NEON::BI__builtin_neon_vbsl_v: 10720 case NEON::BI__builtin_neon_vbslq_v: { 10721 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); 10722 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); 10723 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); 10724 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); 10725 10726 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); 10727 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); 10728 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); 10729 return Builder.CreateBitCast(Ops[0], Ty); 10730 } 10731 case NEON::BI__builtin_neon_vfma_lane_v: 10732 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types 10733 // The ARM builtins (and instructions) have the addend as the first 10734 // operand, but the 'fma' intrinsics have it last. Swap it around here. 10735 Value *Addend = Ops[0]; 10736 Value *Multiplicand = Ops[1]; 10737 Value *LaneSource = Ops[2]; 10738 Ops[0] = Multiplicand; 10739 Ops[1] = LaneSource; 10740 Ops[2] = Addend; 10741 10742 // Now adjust things to handle the lane access. 10743 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v 10744 ? llvm::FixedVectorType::get(VTy->getElementType(), 10745 VTy->getNumElements() / 2) 10746 : VTy; 10747 llvm::Constant *cst = cast<Constant>(Ops[3]); 10748 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); 10749 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); 10750 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); 10751 10752 Ops.pop_back(); 10753 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma 10754 : Intrinsic::fma; 10755 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); 10756 } 10757 case NEON::BI__builtin_neon_vfma_laneq_v: { 10758 auto *VTy = cast<llvm::FixedVectorType>(Ty); 10759 // v1f64 fma should be mapped to Neon scalar f64 fma 10760 if (VTy && VTy->getElementType() == DoubleTy) { 10761 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10762 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 10763 llvm::FixedVectorType *VTy = 10764 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); 10765 Ops[2] = Builder.CreateBitCast(Ops[2], VTy); 10766 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10767 Value *Result; 10768 Result = emitCallMaybeConstrainedFPBuiltin( 10769 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, 10770 DoubleTy, {Ops[1], Ops[2], Ops[0]}); 10771 return Builder.CreateBitCast(Result, Ty); 10772 } 10773 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10774 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10775 10776 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), 10777 VTy->getNumElements() * 2); 10778 Ops[2] = Builder.CreateBitCast(Ops[2], STy); 10779 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), 10780 cast<ConstantInt>(Ops[3])); 10781 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); 10782 10783 return emitCallMaybeConstrainedFPBuiltin( 10784 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10785 {Ops[2], Ops[1], Ops[0]}); 10786 } 10787 case NEON::BI__builtin_neon_vfmaq_laneq_v: { 10788 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10789 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10790 10791 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 10792 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); 10793 return emitCallMaybeConstrainedFPBuiltin( 10794 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10795 {Ops[2], Ops[1], Ops[0]}); 10796 } 10797 case NEON::BI__builtin_neon_vfmah_lane_f16: 10798 case NEON::BI__builtin_neon_vfmas_lane_f32: 10799 case NEON::BI__builtin_neon_vfmah_laneq_f16: 10800 case NEON::BI__builtin_neon_vfmas_laneq_f32: 10801 case NEON::BI__builtin_neon_vfmad_lane_f64: 10802 case NEON::BI__builtin_neon_vfmad_laneq_f64: { 10803 Ops.push_back(EmitScalarExpr(E->getArg(3))); 10804 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 10805 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10806 return emitCallMaybeConstrainedFPBuiltin( 10807 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10808 {Ops[1], Ops[2], Ops[0]}); 10809 } 10810 case NEON::BI__builtin_neon_vmull_v: 10811 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10812 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; 10813 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; 10814 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 10815 case NEON::BI__builtin_neon_vmax_v: 10816 case NEON::BI__builtin_neon_vmaxq_v: 10817 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10818 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; 10819 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; 10820 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); 10821 case NEON::BI__builtin_neon_vmaxh_f16: { 10822 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10823 Int = Intrinsic::aarch64_neon_fmax; 10824 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); 10825 } 10826 case NEON::BI__builtin_neon_vmin_v: 10827 case NEON::BI__builtin_neon_vminq_v: 10828 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10829 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; 10830 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; 10831 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); 10832 case NEON::BI__builtin_neon_vminh_f16: { 10833 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10834 Int = Intrinsic::aarch64_neon_fmin; 10835 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); 10836 } 10837 case NEON::BI__builtin_neon_vabd_v: 10838 case NEON::BI__builtin_neon_vabdq_v: 10839 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10840 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; 10841 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; 10842 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); 10843 case NEON::BI__builtin_neon_vpadal_v: 10844 case NEON::BI__builtin_neon_vpadalq_v: { 10845 unsigned ArgElts = VTy->getNumElements(); 10846 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); 10847 unsigned BitWidth = EltTy->getBitWidth(); 10848 auto *ArgTy = llvm::FixedVectorType::get( 10849 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); 10850 llvm::Type* Tys[2] = { VTy, ArgTy }; 10851 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; 10852 SmallVector<llvm::Value*, 1> TmpOps; 10853 TmpOps.push_back(Ops[1]); 10854 Function *F = CGM.getIntrinsic(Int, Tys); 10855 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); 10856 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); 10857 return Builder.CreateAdd(tmp, addend); 10858 } 10859 case NEON::BI__builtin_neon_vpmin_v: 10860 case NEON::BI__builtin_neon_vpminq_v: 10861 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10862 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; 10863 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; 10864 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); 10865 case NEON::BI__builtin_neon_vpmax_v: 10866 case NEON::BI__builtin_neon_vpmaxq_v: 10867 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10868 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; 10869 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; 10870 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); 10871 case NEON::BI__builtin_neon_vminnm_v: 10872 case NEON::BI__builtin_neon_vminnmq_v: 10873 Int = Intrinsic::aarch64_neon_fminnm; 10874 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); 10875 case NEON::BI__builtin_neon_vminnmh_f16: 10876 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10877 Int = Intrinsic::aarch64_neon_fminnm; 10878 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); 10879 case NEON::BI__builtin_neon_vmaxnm_v: 10880 case NEON::BI__builtin_neon_vmaxnmq_v: 10881 Int = Intrinsic::aarch64_neon_fmaxnm; 10882 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); 10883 case NEON::BI__builtin_neon_vmaxnmh_f16: 10884 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10885 Int = Intrinsic::aarch64_neon_fmaxnm; 10886 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); 10887 case NEON::BI__builtin_neon_vrecpss_f32: { 10888 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10889 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), 10890 Ops, "vrecps"); 10891 } 10892 case NEON::BI__builtin_neon_vrecpsd_f64: 10893 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10894 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), 10895 Ops, "vrecps"); 10896 case NEON::BI__builtin_neon_vrecpsh_f16: 10897 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10898 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), 10899 Ops, "vrecps"); 10900 case NEON::BI__builtin_neon_vqshrun_n_v: 10901 Int = Intrinsic::aarch64_neon_sqshrun; 10902 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); 10903 case NEON::BI__builtin_neon_vqrshrun_n_v: 10904 Int = Intrinsic::aarch64_neon_sqrshrun; 10905 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); 10906 case NEON::BI__builtin_neon_vqshrn_n_v: 10907 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; 10908 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); 10909 case NEON::BI__builtin_neon_vrshrn_n_v: 10910 Int = Intrinsic::aarch64_neon_rshrn; 10911 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); 10912 case NEON::BI__builtin_neon_vqrshrn_n_v: 10913 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; 10914 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); 10915 case NEON::BI__builtin_neon_vrndah_f16: { 10916 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10917 Int = Builder.getIsFPConstrained() 10918 ? Intrinsic::experimental_constrained_round 10919 : Intrinsic::round; 10920 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); 10921 } 10922 case NEON::BI__builtin_neon_vrnda_v: 10923 case NEON::BI__builtin_neon_vrndaq_v: { 10924 Int = Builder.getIsFPConstrained() 10925 ? Intrinsic::experimental_constrained_round 10926 : Intrinsic::round; 10927 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); 10928 } 10929 case NEON::BI__builtin_neon_vrndih_f16: { 10930 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10931 Int = Builder.getIsFPConstrained() 10932 ? Intrinsic::experimental_constrained_nearbyint 10933 : Intrinsic::nearbyint; 10934 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); 10935 } 10936 case NEON::BI__builtin_neon_vrndmh_f16: { 10937 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10938 Int = Builder.getIsFPConstrained() 10939 ? Intrinsic::experimental_constrained_floor 10940 : Intrinsic::floor; 10941 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); 10942 } 10943 case NEON::BI__builtin_neon_vrndm_v: 10944 case NEON::BI__builtin_neon_vrndmq_v: { 10945 Int = Builder.getIsFPConstrained() 10946 ? Intrinsic::experimental_constrained_floor 10947 : Intrinsic::floor; 10948 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); 10949 } 10950 case NEON::BI__builtin_neon_vrndnh_f16: { 10951 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10952 Int = Builder.getIsFPConstrained() 10953 ? Intrinsic::experimental_constrained_roundeven 10954 : Intrinsic::roundeven; 10955 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); 10956 } 10957 case NEON::BI__builtin_neon_vrndn_v: 10958 case NEON::BI__builtin_neon_vrndnq_v: { 10959 Int = Builder.getIsFPConstrained() 10960 ? Intrinsic::experimental_constrained_roundeven 10961 : Intrinsic::roundeven; 10962 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); 10963 } 10964 case NEON::BI__builtin_neon_vrndns_f32: { 10965 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10966 Int = Builder.getIsFPConstrained() 10967 ? Intrinsic::experimental_constrained_roundeven 10968 : Intrinsic::roundeven; 10969 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); 10970 } 10971 case NEON::BI__builtin_neon_vrndph_f16: { 10972 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10973 Int = Builder.getIsFPConstrained() 10974 ? Intrinsic::experimental_constrained_ceil 10975 : Intrinsic::ceil; 10976 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); 10977 } 10978 case NEON::BI__builtin_neon_vrndp_v: 10979 case NEON::BI__builtin_neon_vrndpq_v: { 10980 Int = Builder.getIsFPConstrained() 10981 ? Intrinsic::experimental_constrained_ceil 10982 : Intrinsic::ceil; 10983 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); 10984 } 10985 case NEON::BI__builtin_neon_vrndxh_f16: { 10986 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10987 Int = Builder.getIsFPConstrained() 10988 ? Intrinsic::experimental_constrained_rint 10989 : Intrinsic::rint; 10990 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); 10991 } 10992 case NEON::BI__builtin_neon_vrndx_v: 10993 case NEON::BI__builtin_neon_vrndxq_v: { 10994 Int = Builder.getIsFPConstrained() 10995 ? Intrinsic::experimental_constrained_rint 10996 : Intrinsic::rint; 10997 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); 10998 } 10999 case NEON::BI__builtin_neon_vrndh_f16: { 11000 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11001 Int = Builder.getIsFPConstrained() 11002 ? Intrinsic::experimental_constrained_trunc 11003 : Intrinsic::trunc; 11004 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); 11005 } 11006 case NEON::BI__builtin_neon_vrnd32x_v: 11007 case NEON::BI__builtin_neon_vrnd32xq_v: { 11008 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11009 Int = Intrinsic::aarch64_neon_frint32x; 11010 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x"); 11011 } 11012 case NEON::BI__builtin_neon_vrnd32z_v: 11013 case NEON::BI__builtin_neon_vrnd32zq_v: { 11014 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11015 Int = Intrinsic::aarch64_neon_frint32z; 11016 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z"); 11017 } 11018 case NEON::BI__builtin_neon_vrnd64x_v: 11019 case NEON::BI__builtin_neon_vrnd64xq_v: { 11020 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11021 Int = Intrinsic::aarch64_neon_frint64x; 11022 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x"); 11023 } 11024 case NEON::BI__builtin_neon_vrnd64z_v: 11025 case NEON::BI__builtin_neon_vrnd64zq_v: { 11026 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11027 Int = Intrinsic::aarch64_neon_frint64z; 11028 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z"); 11029 } 11030 case NEON::BI__builtin_neon_vrnd_v: 11031 case NEON::BI__builtin_neon_vrndq_v: { 11032 Int = Builder.getIsFPConstrained() 11033 ? Intrinsic::experimental_constrained_trunc 11034 : Intrinsic::trunc; 11035 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); 11036 } 11037 case NEON::BI__builtin_neon_vcvt_f64_v: 11038 case NEON::BI__builtin_neon_vcvtq_f64_v: 11039 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11040 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); 11041 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 11042 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 11043 case NEON::BI__builtin_neon_vcvt_f64_f32: { 11044 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && 11045 "unexpected vcvt_f64_f32 builtin"); 11046 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); 11047 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 11048 11049 return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); 11050 } 11051 case NEON::BI__builtin_neon_vcvt_f32_f64: { 11052 assert(Type.getEltType() == NeonTypeFlags::Float32 && 11053 "unexpected vcvt_f32_f64 builtin"); 11054 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); 11055 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 11056 11057 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); 11058 } 11059 case NEON::BI__builtin_neon_vcvt_s32_v: 11060 case NEON::BI__builtin_neon_vcvt_u32_v: 11061 case NEON::BI__builtin_neon_vcvt_s64_v: 11062 case NEON::BI__builtin_neon_vcvt_u64_v: 11063 case NEON::BI__builtin_neon_vcvt_s16_v: 11064 case NEON::BI__builtin_neon_vcvt_u16_v: 11065 case NEON::BI__builtin_neon_vcvtq_s32_v: 11066 case NEON::BI__builtin_neon_vcvtq_u32_v: 11067 case NEON::BI__builtin_neon_vcvtq_s64_v: 11068 case NEON::BI__builtin_neon_vcvtq_u64_v: 11069 case NEON::BI__builtin_neon_vcvtq_s16_v: 11070 case NEON::BI__builtin_neon_vcvtq_u16_v: { 11071 Int = 11072 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs; 11073 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)}; 11074 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz"); 11075 } 11076 case NEON::BI__builtin_neon_vcvta_s16_v: 11077 case NEON::BI__builtin_neon_vcvta_u16_v: 11078 case NEON::BI__builtin_neon_vcvta_s32_v: 11079 case NEON::BI__builtin_neon_vcvtaq_s16_v: 11080 case NEON::BI__builtin_neon_vcvtaq_s32_v: 11081 case NEON::BI__builtin_neon_vcvta_u32_v: 11082 case NEON::BI__builtin_neon_vcvtaq_u16_v: 11083 case NEON::BI__builtin_neon_vcvtaq_u32_v: 11084 case NEON::BI__builtin_neon_vcvta_s64_v: 11085 case NEON::BI__builtin_neon_vcvtaq_s64_v: 11086 case NEON::BI__builtin_neon_vcvta_u64_v: 11087 case NEON::BI__builtin_neon_vcvtaq_u64_v: { 11088 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; 11089 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 11090 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); 11091 } 11092 case NEON::BI__builtin_neon_vcvtm_s16_v: 11093 case NEON::BI__builtin_neon_vcvtm_s32_v: 11094 case NEON::BI__builtin_neon_vcvtmq_s16_v: 11095 case NEON::BI__builtin_neon_vcvtmq_s32_v: 11096 case NEON::BI__builtin_neon_vcvtm_u16_v: 11097 case NEON::BI__builtin_neon_vcvtm_u32_v: 11098 case NEON::BI__builtin_neon_vcvtmq_u16_v: 11099 case NEON::BI__builtin_neon_vcvtmq_u32_v: 11100 case NEON::BI__builtin_neon_vcvtm_s64_v: 11101 case NEON::BI__builtin_neon_vcvtmq_s64_v: 11102 case NEON::BI__builtin_neon_vcvtm_u64_v: 11103 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 11104 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; 11105 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 11106 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); 11107 } 11108 case NEON::BI__builtin_neon_vcvtn_s16_v: 11109 case NEON::BI__builtin_neon_vcvtn_s32_v: 11110 case NEON::BI__builtin_neon_vcvtnq_s16_v: 11111 case NEON::BI__builtin_neon_vcvtnq_s32_v: 11112 case NEON::BI__builtin_neon_vcvtn_u16_v: 11113 case NEON::BI__builtin_neon_vcvtn_u32_v: 11114 case NEON::BI__builtin_neon_vcvtnq_u16_v: 11115 case NEON::BI__builtin_neon_vcvtnq_u32_v: 11116 case NEON::BI__builtin_neon_vcvtn_s64_v: 11117 case NEON::BI__builtin_neon_vcvtnq_s64_v: 11118 case NEON::BI__builtin_neon_vcvtn_u64_v: 11119 case NEON::BI__builtin_neon_vcvtnq_u64_v: { 11120 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; 11121 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 11122 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); 11123 } 11124 case NEON::BI__builtin_neon_vcvtp_s16_v: 11125 case NEON::BI__builtin_neon_vcvtp_s32_v: 11126 case NEON::BI__builtin_neon_vcvtpq_s16_v: 11127 case NEON::BI__builtin_neon_vcvtpq_s32_v: 11128 case NEON::BI__builtin_neon_vcvtp_u16_v: 11129 case NEON::BI__builtin_neon_vcvtp_u32_v: 11130 case NEON::BI__builtin_neon_vcvtpq_u16_v: 11131 case NEON::BI__builtin_neon_vcvtpq_u32_v: 11132 case NEON::BI__builtin_neon_vcvtp_s64_v: 11133 case NEON::BI__builtin_neon_vcvtpq_s64_v: 11134 case NEON::BI__builtin_neon_vcvtp_u64_v: 11135 case NEON::BI__builtin_neon_vcvtpq_u64_v: { 11136 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; 11137 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 11138 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); 11139 } 11140 case NEON::BI__builtin_neon_vmulx_v: 11141 case NEON::BI__builtin_neon_vmulxq_v: { 11142 Int = Intrinsic::aarch64_neon_fmulx; 11143 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); 11144 } 11145 case NEON::BI__builtin_neon_vmulxh_lane_f16: 11146 case NEON::BI__builtin_neon_vmulxh_laneq_f16: { 11147 // vmulx_lane should be mapped to Neon scalar mulx after 11148 // extracting the scalar element 11149 Ops.push_back(EmitScalarExpr(E->getArg(2))); 11150 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 11151 Ops.pop_back(); 11152 Int = Intrinsic::aarch64_neon_fmulx; 11153 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); 11154 } 11155 case NEON::BI__builtin_neon_vmul_lane_v: 11156 case NEON::BI__builtin_neon_vmul_laneq_v: { 11157 // v1f64 vmul_lane should be mapped to Neon scalar mul lane 11158 bool Quad = false; 11159 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) 11160 Quad = true; 11161 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 11162 llvm::FixedVectorType *VTy = 11163 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); 11164 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 11165 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 11166 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); 11167 return Builder.CreateBitCast(Result, Ty); 11168 } 11169 case NEON::BI__builtin_neon_vnegd_s64: 11170 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); 11171 case NEON::BI__builtin_neon_vnegh_f16: 11172 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); 11173 case NEON::BI__builtin_neon_vpmaxnm_v: 11174 case NEON::BI__builtin_neon_vpmaxnmq_v: { 11175 Int = Intrinsic::aarch64_neon_fmaxnmp; 11176 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); 11177 } 11178 case NEON::BI__builtin_neon_vpminnm_v: 11179 case NEON::BI__builtin_neon_vpminnmq_v: { 11180 Int = Intrinsic::aarch64_neon_fminnmp; 11181 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); 11182 } 11183 case NEON::BI__builtin_neon_vsqrth_f16: { 11184 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11185 Int = Builder.getIsFPConstrained() 11186 ? Intrinsic::experimental_constrained_sqrt 11187 : Intrinsic::sqrt; 11188 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); 11189 } 11190 case NEON::BI__builtin_neon_vsqrt_v: 11191 case NEON::BI__builtin_neon_vsqrtq_v: { 11192 Int = Builder.getIsFPConstrained() 11193 ? Intrinsic::experimental_constrained_sqrt 11194 : Intrinsic::sqrt; 11195 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11196 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); 11197 } 11198 case NEON::BI__builtin_neon_vrbit_v: 11199 case NEON::BI__builtin_neon_vrbitq_v: { 11200 Int = Intrinsic::bitreverse; 11201 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); 11202 } 11203 case NEON::BI__builtin_neon_vaddv_u8: 11204 // FIXME: These are handled by the AArch64 scalar code. 11205 usgn = true; 11206 LLVM_FALLTHROUGH; 11207 case NEON::BI__builtin_neon_vaddv_s8: { 11208 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11209 Ty = Int32Ty; 11210 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11211 llvm::Type *Tys[2] = { Ty, VTy }; 11212 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11213 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11214 return Builder.CreateTrunc(Ops[0], Int8Ty); 11215 } 11216 case NEON::BI__builtin_neon_vaddv_u16: 11217 usgn = true; 11218 LLVM_FALLTHROUGH; 11219 case NEON::BI__builtin_neon_vaddv_s16: { 11220 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11221 Ty = Int32Ty; 11222 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11223 llvm::Type *Tys[2] = { Ty, VTy }; 11224 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11225 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11226 return Builder.CreateTrunc(Ops[0], Int16Ty); 11227 } 11228 case NEON::BI__builtin_neon_vaddvq_u8: 11229 usgn = true; 11230 LLVM_FALLTHROUGH; 11231 case NEON::BI__builtin_neon_vaddvq_s8: { 11232 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11233 Ty = Int32Ty; 11234 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11235 llvm::Type *Tys[2] = { Ty, VTy }; 11236 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11237 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11238 return Builder.CreateTrunc(Ops[0], Int8Ty); 11239 } 11240 case NEON::BI__builtin_neon_vaddvq_u16: 11241 usgn = true; 11242 LLVM_FALLTHROUGH; 11243 case NEON::BI__builtin_neon_vaddvq_s16: { 11244 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11245 Ty = Int32Ty; 11246 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11247 llvm::Type *Tys[2] = { Ty, VTy }; 11248 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11249 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11250 return Builder.CreateTrunc(Ops[0], Int16Ty); 11251 } 11252 case NEON::BI__builtin_neon_vmaxv_u8: { 11253 Int = Intrinsic::aarch64_neon_umaxv; 11254 Ty = Int32Ty; 11255 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11256 llvm::Type *Tys[2] = { Ty, VTy }; 11257 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11258 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11259 return Builder.CreateTrunc(Ops[0], Int8Ty); 11260 } 11261 case NEON::BI__builtin_neon_vmaxv_u16: { 11262 Int = Intrinsic::aarch64_neon_umaxv; 11263 Ty = Int32Ty; 11264 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11265 llvm::Type *Tys[2] = { Ty, VTy }; 11266 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11267 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11268 return Builder.CreateTrunc(Ops[0], Int16Ty); 11269 } 11270 case NEON::BI__builtin_neon_vmaxvq_u8: { 11271 Int = Intrinsic::aarch64_neon_umaxv; 11272 Ty = Int32Ty; 11273 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11274 llvm::Type *Tys[2] = { Ty, VTy }; 11275 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11276 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11277 return Builder.CreateTrunc(Ops[0], Int8Ty); 11278 } 11279 case NEON::BI__builtin_neon_vmaxvq_u16: { 11280 Int = Intrinsic::aarch64_neon_umaxv; 11281 Ty = Int32Ty; 11282 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11283 llvm::Type *Tys[2] = { Ty, VTy }; 11284 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11285 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11286 return Builder.CreateTrunc(Ops[0], Int16Ty); 11287 } 11288 case NEON::BI__builtin_neon_vmaxv_s8: { 11289 Int = Intrinsic::aarch64_neon_smaxv; 11290 Ty = Int32Ty; 11291 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11292 llvm::Type *Tys[2] = { Ty, VTy }; 11293 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11294 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11295 return Builder.CreateTrunc(Ops[0], Int8Ty); 11296 } 11297 case NEON::BI__builtin_neon_vmaxv_s16: { 11298 Int = Intrinsic::aarch64_neon_smaxv; 11299 Ty = Int32Ty; 11300 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11301 llvm::Type *Tys[2] = { Ty, VTy }; 11302 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11303 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11304 return Builder.CreateTrunc(Ops[0], Int16Ty); 11305 } 11306 case NEON::BI__builtin_neon_vmaxvq_s8: { 11307 Int = Intrinsic::aarch64_neon_smaxv; 11308 Ty = Int32Ty; 11309 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11310 llvm::Type *Tys[2] = { Ty, VTy }; 11311 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11312 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11313 return Builder.CreateTrunc(Ops[0], Int8Ty); 11314 } 11315 case NEON::BI__builtin_neon_vmaxvq_s16: { 11316 Int = Intrinsic::aarch64_neon_smaxv; 11317 Ty = Int32Ty; 11318 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11319 llvm::Type *Tys[2] = { Ty, VTy }; 11320 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11321 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11322 return Builder.CreateTrunc(Ops[0], Int16Ty); 11323 } 11324 case NEON::BI__builtin_neon_vmaxv_f16: { 11325 Int = Intrinsic::aarch64_neon_fmaxv; 11326 Ty = HalfTy; 11327 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11328 llvm::Type *Tys[2] = { Ty, VTy }; 11329 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11330 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11331 return Builder.CreateTrunc(Ops[0], HalfTy); 11332 } 11333 case NEON::BI__builtin_neon_vmaxvq_f16: { 11334 Int = Intrinsic::aarch64_neon_fmaxv; 11335 Ty = HalfTy; 11336 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11337 llvm::Type *Tys[2] = { Ty, VTy }; 11338 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11339 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11340 return Builder.CreateTrunc(Ops[0], HalfTy); 11341 } 11342 case NEON::BI__builtin_neon_vminv_u8: { 11343 Int = Intrinsic::aarch64_neon_uminv; 11344 Ty = Int32Ty; 11345 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11346 llvm::Type *Tys[2] = { Ty, VTy }; 11347 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11348 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11349 return Builder.CreateTrunc(Ops[0], Int8Ty); 11350 } 11351 case NEON::BI__builtin_neon_vminv_u16: { 11352 Int = Intrinsic::aarch64_neon_uminv; 11353 Ty = Int32Ty; 11354 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11355 llvm::Type *Tys[2] = { Ty, VTy }; 11356 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11357 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11358 return Builder.CreateTrunc(Ops[0], Int16Ty); 11359 } 11360 case NEON::BI__builtin_neon_vminvq_u8: { 11361 Int = Intrinsic::aarch64_neon_uminv; 11362 Ty = Int32Ty; 11363 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11364 llvm::Type *Tys[2] = { Ty, VTy }; 11365 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11366 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11367 return Builder.CreateTrunc(Ops[0], Int8Ty); 11368 } 11369 case NEON::BI__builtin_neon_vminvq_u16: { 11370 Int = Intrinsic::aarch64_neon_uminv; 11371 Ty = Int32Ty; 11372 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11373 llvm::Type *Tys[2] = { Ty, VTy }; 11374 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11375 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11376 return Builder.CreateTrunc(Ops[0], Int16Ty); 11377 } 11378 case NEON::BI__builtin_neon_vminv_s8: { 11379 Int = Intrinsic::aarch64_neon_sminv; 11380 Ty = Int32Ty; 11381 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11382 llvm::Type *Tys[2] = { Ty, VTy }; 11383 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11384 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11385 return Builder.CreateTrunc(Ops[0], Int8Ty); 11386 } 11387 case NEON::BI__builtin_neon_vminv_s16: { 11388 Int = Intrinsic::aarch64_neon_sminv; 11389 Ty = Int32Ty; 11390 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11391 llvm::Type *Tys[2] = { Ty, VTy }; 11392 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11393 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11394 return Builder.CreateTrunc(Ops[0], Int16Ty); 11395 } 11396 case NEON::BI__builtin_neon_vminvq_s8: { 11397 Int = Intrinsic::aarch64_neon_sminv; 11398 Ty = Int32Ty; 11399 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11400 llvm::Type *Tys[2] = { Ty, VTy }; 11401 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11402 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11403 return Builder.CreateTrunc(Ops[0], Int8Ty); 11404 } 11405 case NEON::BI__builtin_neon_vminvq_s16: { 11406 Int = Intrinsic::aarch64_neon_sminv; 11407 Ty = Int32Ty; 11408 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11409 llvm::Type *Tys[2] = { Ty, VTy }; 11410 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11411 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11412 return Builder.CreateTrunc(Ops[0], Int16Ty); 11413 } 11414 case NEON::BI__builtin_neon_vminv_f16: { 11415 Int = Intrinsic::aarch64_neon_fminv; 11416 Ty = HalfTy; 11417 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11418 llvm::Type *Tys[2] = { Ty, VTy }; 11419 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11420 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11421 return Builder.CreateTrunc(Ops[0], HalfTy); 11422 } 11423 case NEON::BI__builtin_neon_vminvq_f16: { 11424 Int = Intrinsic::aarch64_neon_fminv; 11425 Ty = HalfTy; 11426 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11427 llvm::Type *Tys[2] = { Ty, VTy }; 11428 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11429 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11430 return Builder.CreateTrunc(Ops[0], HalfTy); 11431 } 11432 case NEON::BI__builtin_neon_vmaxnmv_f16: { 11433 Int = Intrinsic::aarch64_neon_fmaxnmv; 11434 Ty = HalfTy; 11435 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11436 llvm::Type *Tys[2] = { Ty, VTy }; 11437 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11438 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 11439 return Builder.CreateTrunc(Ops[0], HalfTy); 11440 } 11441 case NEON::BI__builtin_neon_vmaxnmvq_f16: { 11442 Int = Intrinsic::aarch64_neon_fmaxnmv; 11443 Ty = HalfTy; 11444 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11445 llvm::Type *Tys[2] = { Ty, VTy }; 11446 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11447 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 11448 return Builder.CreateTrunc(Ops[0], HalfTy); 11449 } 11450 case NEON::BI__builtin_neon_vminnmv_f16: { 11451 Int = Intrinsic::aarch64_neon_fminnmv; 11452 Ty = HalfTy; 11453 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11454 llvm::Type *Tys[2] = { Ty, VTy }; 11455 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11456 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 11457 return Builder.CreateTrunc(Ops[0], HalfTy); 11458 } 11459 case NEON::BI__builtin_neon_vminnmvq_f16: { 11460 Int = Intrinsic::aarch64_neon_fminnmv; 11461 Ty = HalfTy; 11462 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11463 llvm::Type *Tys[2] = { Ty, VTy }; 11464 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11465 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 11466 return Builder.CreateTrunc(Ops[0], HalfTy); 11467 } 11468 case NEON::BI__builtin_neon_vmul_n_f64: { 11469 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 11470 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); 11471 return Builder.CreateFMul(Ops[0], RHS); 11472 } 11473 case NEON::BI__builtin_neon_vaddlv_u8: { 11474 Int = Intrinsic::aarch64_neon_uaddlv; 11475 Ty = Int32Ty; 11476 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11477 llvm::Type *Tys[2] = { Ty, VTy }; 11478 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11479 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11480 return Builder.CreateTrunc(Ops[0], Int16Ty); 11481 } 11482 case NEON::BI__builtin_neon_vaddlv_u16: { 11483 Int = Intrinsic::aarch64_neon_uaddlv; 11484 Ty = Int32Ty; 11485 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11486 llvm::Type *Tys[2] = { Ty, VTy }; 11487 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11488 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11489 } 11490 case NEON::BI__builtin_neon_vaddlvq_u8: { 11491 Int = Intrinsic::aarch64_neon_uaddlv; 11492 Ty = Int32Ty; 11493 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11494 llvm::Type *Tys[2] = { Ty, VTy }; 11495 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11496 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11497 return Builder.CreateTrunc(Ops[0], Int16Ty); 11498 } 11499 case NEON::BI__builtin_neon_vaddlvq_u16: { 11500 Int = Intrinsic::aarch64_neon_uaddlv; 11501 Ty = Int32Ty; 11502 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11503 llvm::Type *Tys[2] = { Ty, VTy }; 11504 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11505 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11506 } 11507 case NEON::BI__builtin_neon_vaddlv_s8: { 11508 Int = Intrinsic::aarch64_neon_saddlv; 11509 Ty = Int32Ty; 11510 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11511 llvm::Type *Tys[2] = { Ty, VTy }; 11512 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11513 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11514 return Builder.CreateTrunc(Ops[0], Int16Ty); 11515 } 11516 case NEON::BI__builtin_neon_vaddlv_s16: { 11517 Int = Intrinsic::aarch64_neon_saddlv; 11518 Ty = Int32Ty; 11519 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11520 llvm::Type *Tys[2] = { Ty, VTy }; 11521 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11522 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11523 } 11524 case NEON::BI__builtin_neon_vaddlvq_s8: { 11525 Int = Intrinsic::aarch64_neon_saddlv; 11526 Ty = Int32Ty; 11527 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11528 llvm::Type *Tys[2] = { Ty, VTy }; 11529 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11530 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11531 return Builder.CreateTrunc(Ops[0], Int16Ty); 11532 } 11533 case NEON::BI__builtin_neon_vaddlvq_s16: { 11534 Int = Intrinsic::aarch64_neon_saddlv; 11535 Ty = Int32Ty; 11536 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11537 llvm::Type *Tys[2] = { Ty, VTy }; 11538 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11539 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11540 } 11541 case NEON::BI__builtin_neon_vsri_n_v: 11542 case NEON::BI__builtin_neon_vsriq_n_v: { 11543 Int = Intrinsic::aarch64_neon_vsri; 11544 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 11545 return EmitNeonCall(Intrin, Ops, "vsri_n"); 11546 } 11547 case NEON::BI__builtin_neon_vsli_n_v: 11548 case NEON::BI__builtin_neon_vsliq_n_v: { 11549 Int = Intrinsic::aarch64_neon_vsli; 11550 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 11551 return EmitNeonCall(Intrin, Ops, "vsli_n"); 11552 } 11553 case NEON::BI__builtin_neon_vsra_n_v: 11554 case NEON::BI__builtin_neon_vsraq_n_v: 11555 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11556 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 11557 return Builder.CreateAdd(Ops[0], Ops[1]); 11558 case NEON::BI__builtin_neon_vrsra_n_v: 11559 case NEON::BI__builtin_neon_vrsraq_n_v: { 11560 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 11561 SmallVector<llvm::Value*,2> TmpOps; 11562 TmpOps.push_back(Ops[1]); 11563 TmpOps.push_back(Ops[2]); 11564 Function* F = CGM.getIntrinsic(Int, Ty); 11565 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); 11566 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 11567 return Builder.CreateAdd(Ops[0], tmp); 11568 } 11569 case NEON::BI__builtin_neon_vld1_v: 11570 case NEON::BI__builtin_neon_vld1q_v: { 11571 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 11572 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); 11573 } 11574 case NEON::BI__builtin_neon_vst1_v: 11575 case NEON::BI__builtin_neon_vst1q_v: 11576 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 11577 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 11578 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); 11579 case NEON::BI__builtin_neon_vld1_lane_v: 11580 case NEON::BI__builtin_neon_vld1q_lane_v: { 11581 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11582 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11583 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11584 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11585 PtrOp0.getAlignment()); 11586 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); 11587 } 11588 case NEON::BI__builtin_neon_vld1_dup_v: 11589 case NEON::BI__builtin_neon_vld1q_dup_v: { 11590 Value *V = UndefValue::get(Ty); 11591 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11592 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11593 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11594 PtrOp0.getAlignment()); 11595 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 11596 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); 11597 return EmitNeonSplat(Ops[0], CI); 11598 } 11599 case NEON::BI__builtin_neon_vst1_lane_v: 11600 case NEON::BI__builtin_neon_vst1q_lane_v: 11601 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11602 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 11603 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11604 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty), 11605 PtrOp0.getAlignment()); 11606 case NEON::BI__builtin_neon_vld2_v: 11607 case NEON::BI__builtin_neon_vld2q_v: { 11608 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11609 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11610 llvm::Type *Tys[2] = { VTy, PTy }; 11611 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); 11612 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11613 Ops[0] = Builder.CreateBitCast(Ops[0], 11614 llvm::PointerType::getUnqual(Ops[1]->getType())); 11615 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11616 } 11617 case NEON::BI__builtin_neon_vld3_v: 11618 case NEON::BI__builtin_neon_vld3q_v: { 11619 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11620 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11621 llvm::Type *Tys[2] = { VTy, PTy }; 11622 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); 11623 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11624 Ops[0] = Builder.CreateBitCast(Ops[0], 11625 llvm::PointerType::getUnqual(Ops[1]->getType())); 11626 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11627 } 11628 case NEON::BI__builtin_neon_vld4_v: 11629 case NEON::BI__builtin_neon_vld4q_v: { 11630 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11631 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11632 llvm::Type *Tys[2] = { VTy, PTy }; 11633 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); 11634 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11635 Ops[0] = Builder.CreateBitCast(Ops[0], 11636 llvm::PointerType::getUnqual(Ops[1]->getType())); 11637 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11638 } 11639 case NEON::BI__builtin_neon_vld2_dup_v: 11640 case NEON::BI__builtin_neon_vld2q_dup_v: { 11641 llvm::Type *PTy = 11642 llvm::PointerType::getUnqual(VTy->getElementType()); 11643 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11644 llvm::Type *Tys[2] = { VTy, PTy }; 11645 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); 11646 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11647 Ops[0] = Builder.CreateBitCast(Ops[0], 11648 llvm::PointerType::getUnqual(Ops[1]->getType())); 11649 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11650 } 11651 case NEON::BI__builtin_neon_vld3_dup_v: 11652 case NEON::BI__builtin_neon_vld3q_dup_v: { 11653 llvm::Type *PTy = 11654 llvm::PointerType::getUnqual(VTy->getElementType()); 11655 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11656 llvm::Type *Tys[2] = { VTy, PTy }; 11657 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); 11658 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11659 Ops[0] = Builder.CreateBitCast(Ops[0], 11660 llvm::PointerType::getUnqual(Ops[1]->getType())); 11661 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11662 } 11663 case NEON::BI__builtin_neon_vld4_dup_v: 11664 case NEON::BI__builtin_neon_vld4q_dup_v: { 11665 llvm::Type *PTy = 11666 llvm::PointerType::getUnqual(VTy->getElementType()); 11667 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11668 llvm::Type *Tys[2] = { VTy, PTy }; 11669 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); 11670 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11671 Ops[0] = Builder.CreateBitCast(Ops[0], 11672 llvm::PointerType::getUnqual(Ops[1]->getType())); 11673 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11674 } 11675 case NEON::BI__builtin_neon_vld2_lane_v: 11676 case NEON::BI__builtin_neon_vld2q_lane_v: { 11677 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11678 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); 11679 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11680 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11681 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11682 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11683 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); 11684 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11685 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11686 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11687 } 11688 case NEON::BI__builtin_neon_vld3_lane_v: 11689 case NEON::BI__builtin_neon_vld3q_lane_v: { 11690 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11691 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); 11692 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11693 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11694 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11695 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11696 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11697 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); 11698 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11699 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11700 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11701 } 11702 case NEON::BI__builtin_neon_vld4_lane_v: 11703 case NEON::BI__builtin_neon_vld4q_lane_v: { 11704 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11705 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); 11706 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11707 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11708 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11709 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11710 Ops[4] = Builder.CreateBitCast(Ops[4], Ty); 11711 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); 11712 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); 11713 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11714 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11715 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11716 } 11717 case NEON::BI__builtin_neon_vst2_v: 11718 case NEON::BI__builtin_neon_vst2q_v: { 11719 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11720 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; 11721 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), 11722 Ops, ""); 11723 } 11724 case NEON::BI__builtin_neon_vst2_lane_v: 11725 case NEON::BI__builtin_neon_vst2q_lane_v: { 11726 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11727 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 11728 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11729 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), 11730 Ops, ""); 11731 } 11732 case NEON::BI__builtin_neon_vst3_v: 11733 case NEON::BI__builtin_neon_vst3q_v: { 11734 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11735 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11736 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), 11737 Ops, ""); 11738 } 11739 case NEON::BI__builtin_neon_vst3_lane_v: 11740 case NEON::BI__builtin_neon_vst3q_lane_v: { 11741 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11742 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11743 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11744 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), 11745 Ops, ""); 11746 } 11747 case NEON::BI__builtin_neon_vst4_v: 11748 case NEON::BI__builtin_neon_vst4q_v: { 11749 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11750 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11751 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), 11752 Ops, ""); 11753 } 11754 case NEON::BI__builtin_neon_vst4_lane_v: 11755 case NEON::BI__builtin_neon_vst4q_lane_v: { 11756 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11757 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11758 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; 11759 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), 11760 Ops, ""); 11761 } 11762 case NEON::BI__builtin_neon_vtrn_v: 11763 case NEON::BI__builtin_neon_vtrnq_v: { 11764 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11765 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11766 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11767 Value *SV = nullptr; 11768 11769 for (unsigned vi = 0; vi != 2; ++vi) { 11770 SmallVector<int, 16> Indices; 11771 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11772 Indices.push_back(i+vi); 11773 Indices.push_back(i+e+vi); 11774 } 11775 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11776 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 11777 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11778 } 11779 return SV; 11780 } 11781 case NEON::BI__builtin_neon_vuzp_v: 11782 case NEON::BI__builtin_neon_vuzpq_v: { 11783 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11784 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11785 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11786 Value *SV = nullptr; 11787 11788 for (unsigned vi = 0; vi != 2; ++vi) { 11789 SmallVector<int, 16> Indices; 11790 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 11791 Indices.push_back(2*i+vi); 11792 11793 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11794 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 11795 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11796 } 11797 return SV; 11798 } 11799 case NEON::BI__builtin_neon_vzip_v: 11800 case NEON::BI__builtin_neon_vzipq_v: { 11801 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11802 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11803 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11804 Value *SV = nullptr; 11805 11806 for (unsigned vi = 0; vi != 2; ++vi) { 11807 SmallVector<int, 16> Indices; 11808 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11809 Indices.push_back((i + vi*e) >> 1); 11810 Indices.push_back(((i + vi*e) >> 1)+e); 11811 } 11812 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11813 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 11814 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11815 } 11816 return SV; 11817 } 11818 case NEON::BI__builtin_neon_vqtbl1q_v: { 11819 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), 11820 Ops, "vtbl1"); 11821 } 11822 case NEON::BI__builtin_neon_vqtbl2q_v: { 11823 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), 11824 Ops, "vtbl2"); 11825 } 11826 case NEON::BI__builtin_neon_vqtbl3q_v: { 11827 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), 11828 Ops, "vtbl3"); 11829 } 11830 case NEON::BI__builtin_neon_vqtbl4q_v: { 11831 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), 11832 Ops, "vtbl4"); 11833 } 11834 case NEON::BI__builtin_neon_vqtbx1q_v: { 11835 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), 11836 Ops, "vtbx1"); 11837 } 11838 case NEON::BI__builtin_neon_vqtbx2q_v: { 11839 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), 11840 Ops, "vtbx2"); 11841 } 11842 case NEON::BI__builtin_neon_vqtbx3q_v: { 11843 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), 11844 Ops, "vtbx3"); 11845 } 11846 case NEON::BI__builtin_neon_vqtbx4q_v: { 11847 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), 11848 Ops, "vtbx4"); 11849 } 11850 case NEON::BI__builtin_neon_vsqadd_v: 11851 case NEON::BI__builtin_neon_vsqaddq_v: { 11852 Int = Intrinsic::aarch64_neon_usqadd; 11853 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); 11854 } 11855 case NEON::BI__builtin_neon_vuqadd_v: 11856 case NEON::BI__builtin_neon_vuqaddq_v: { 11857 Int = Intrinsic::aarch64_neon_suqadd; 11858 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); 11859 } 11860 } 11861 } 11862 11863 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, 11864 const CallExpr *E) { 11865 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 11866 BuiltinID == BPF::BI__builtin_btf_type_id || 11867 BuiltinID == BPF::BI__builtin_preserve_type_info || 11868 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 11869 "unexpected BPF builtin"); 11870 11871 // A sequence number, injected into IR builtin functions, to 11872 // prevent CSE given the only difference of the funciton 11873 // may just be the debuginfo metadata. 11874 static uint32_t BuiltinSeqNum; 11875 11876 switch (BuiltinID) { 11877 default: 11878 llvm_unreachable("Unexpected BPF builtin"); 11879 case BPF::BI__builtin_preserve_field_info: { 11880 const Expr *Arg = E->getArg(0); 11881 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; 11882 11883 if (!getDebugInfo()) { 11884 CGM.Error(E->getExprLoc(), 11885 "using __builtin_preserve_field_info() without -g"); 11886 return IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11887 : EmitLValue(Arg).getPointer(*this); 11888 } 11889 11890 // Enable underlying preserve_*_access_index() generation. 11891 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; 11892 IsInPreservedAIRegion = true; 11893 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11894 : EmitLValue(Arg).getPointer(*this); 11895 IsInPreservedAIRegion = OldIsInPreservedAIRegion; 11896 11897 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11898 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); 11899 11900 // Built the IR for the preserve_field_info intrinsic. 11901 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( 11902 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, 11903 {FieldAddr->getType()}); 11904 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); 11905 } 11906 case BPF::BI__builtin_btf_type_id: 11907 case BPF::BI__builtin_preserve_type_info: { 11908 if (!getDebugInfo()) { 11909 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11910 return nullptr; 11911 } 11912 11913 const Expr *Arg0 = E->getArg(0); 11914 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11915 Arg0->getType(), Arg0->getExprLoc()); 11916 11917 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11918 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11919 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11920 11921 llvm::Function *FnDecl; 11922 if (BuiltinID == BPF::BI__builtin_btf_type_id) 11923 FnDecl = llvm::Intrinsic::getDeclaration( 11924 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {}); 11925 else 11926 FnDecl = llvm::Intrinsic::getDeclaration( 11927 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {}); 11928 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue}); 11929 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11930 return Fn; 11931 } 11932 case BPF::BI__builtin_preserve_enum_value: { 11933 if (!getDebugInfo()) { 11934 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11935 return nullptr; 11936 } 11937 11938 const Expr *Arg0 = E->getArg(0); 11939 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11940 Arg0->getType(), Arg0->getExprLoc()); 11941 11942 // Find enumerator 11943 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens()); 11944 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr()); 11945 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr()); 11946 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl()); 11947 11948 auto &InitVal = Enumerator->getInitVal(); 11949 std::string InitValStr; 11950 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX)) 11951 InitValStr = std::to_string(InitVal.getSExtValue()); 11952 else 11953 InitValStr = std::to_string(InitVal.getZExtValue()); 11954 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr; 11955 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr); 11956 11957 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11958 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11959 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11960 11961 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration( 11962 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {}); 11963 CallInst *Fn = 11964 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue}); 11965 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11966 return Fn; 11967 } 11968 } 11969 } 11970 11971 llvm::Value *CodeGenFunction:: 11972 BuildVector(ArrayRef<llvm::Value*> Ops) { 11973 assert((Ops.size() & (Ops.size() - 1)) == 0 && 11974 "Not a power-of-two sized vector!"); 11975 bool AllConstants = true; 11976 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) 11977 AllConstants &= isa<Constant>(Ops[i]); 11978 11979 // If this is a constant vector, create a ConstantVector. 11980 if (AllConstants) { 11981 SmallVector<llvm::Constant*, 16> CstOps; 11982 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11983 CstOps.push_back(cast<Constant>(Ops[i])); 11984 return llvm::ConstantVector::get(CstOps); 11985 } 11986 11987 // Otherwise, insertelement the values to build the vector. 11988 Value *Result = llvm::UndefValue::get( 11989 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size())); 11990 11991 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11992 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); 11993 11994 return Result; 11995 } 11996 11997 // Convert the mask from an integer type to a vector of i1. 11998 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, 11999 unsigned NumElts) { 12000 12001 auto *MaskTy = llvm::FixedVectorType::get( 12002 CGF.Builder.getInt1Ty(), 12003 cast<IntegerType>(Mask->getType())->getBitWidth()); 12004 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); 12005 12006 // If we have less than 8 elements, then the starting mask was an i8 and 12007 // we need to extract down to the right number of elements. 12008 if (NumElts < 8) { 12009 int Indices[4]; 12010 for (unsigned i = 0; i != NumElts; ++i) 12011 Indices[i] = i; 12012 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, 12013 makeArrayRef(Indices, NumElts), 12014 "extract"); 12015 } 12016 return MaskVec; 12017 } 12018 12019 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 12020 Align Alignment) { 12021 // Cast the pointer to right type. 12022 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 12023 llvm::PointerType::getUnqual(Ops[1]->getType())); 12024 12025 Value *MaskVec = getMaskVecValue( 12026 CGF, Ops[2], 12027 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); 12028 12029 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec); 12030 } 12031 12032 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 12033 Align Alignment) { 12034 // Cast the pointer to right type. 12035 llvm::Type *Ty = Ops[1]->getType(); 12036 Value *Ptr = 12037 CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 12038 12039 Value *MaskVec = getMaskVecValue( 12040 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements()); 12041 12042 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]); 12043 } 12044 12045 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, 12046 ArrayRef<Value *> Ops) { 12047 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType()); 12048 llvm::Type *PtrTy = ResultTy->getElementType(); 12049 12050 // Cast the pointer to element type. 12051 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 12052 llvm::PointerType::getUnqual(PtrTy)); 12053 12054 Value *MaskVec = getMaskVecValue( 12055 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements()); 12056 12057 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, 12058 ResultTy); 12059 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); 12060 } 12061 12062 static Value *EmitX86CompressExpand(CodeGenFunction &CGF, 12063 ArrayRef<Value *> Ops, 12064 bool IsCompress) { 12065 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 12066 12067 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 12068 12069 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress 12070 : Intrinsic::x86_avx512_mask_expand; 12071 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); 12072 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); 12073 } 12074 12075 static Value *EmitX86CompressStore(CodeGenFunction &CGF, 12076 ArrayRef<Value *> Ops) { 12077 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 12078 llvm::Type *PtrTy = ResultTy->getElementType(); 12079 12080 // Cast the pointer to element type. 12081 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 12082 llvm::PointerType::getUnqual(PtrTy)); 12083 12084 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 12085 12086 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, 12087 ResultTy); 12088 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); 12089 } 12090 12091 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, 12092 ArrayRef<Value *> Ops, 12093 bool InvertLHS = false) { 12094 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 12095 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); 12096 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); 12097 12098 if (InvertLHS) 12099 LHS = CGF.Builder.CreateNot(LHS); 12100 12101 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), 12102 Ops[0]->getType()); 12103 } 12104 12105 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, 12106 Value *Amt, bool IsRight) { 12107 llvm::Type *Ty = Op0->getType(); 12108 12109 // Amount may be scalar immediate, in which case create a splat vector. 12110 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so 12111 // we only care about the lowest log2 bits anyway. 12112 if (Amt->getType() != Ty) { 12113 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements(); 12114 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); 12115 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); 12116 } 12117 12118 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; 12119 Function *F = CGF.CGM.getIntrinsic(IID, Ty); 12120 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); 12121 } 12122 12123 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 12124 bool IsSigned) { 12125 Value *Op0 = Ops[0]; 12126 Value *Op1 = Ops[1]; 12127 llvm::Type *Ty = Op0->getType(); 12128 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 12129 12130 CmpInst::Predicate Pred; 12131 switch (Imm) { 12132 case 0x0: 12133 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12134 break; 12135 case 0x1: 12136 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 12137 break; 12138 case 0x2: 12139 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12140 break; 12141 case 0x3: 12142 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12143 break; 12144 case 0x4: 12145 Pred = ICmpInst::ICMP_EQ; 12146 break; 12147 case 0x5: 12148 Pred = ICmpInst::ICMP_NE; 12149 break; 12150 case 0x6: 12151 return llvm::Constant::getNullValue(Ty); // FALSE 12152 case 0x7: 12153 return llvm::Constant::getAllOnesValue(Ty); // TRUE 12154 default: 12155 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); 12156 } 12157 12158 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); 12159 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); 12160 return Res; 12161 } 12162 12163 static Value *EmitX86Select(CodeGenFunction &CGF, 12164 Value *Mask, Value *Op0, Value *Op1) { 12165 12166 // If the mask is all ones just return first argument. 12167 if (const auto *C = dyn_cast<Constant>(Mask)) 12168 if (C->isAllOnesValue()) 12169 return Op0; 12170 12171 Mask = getMaskVecValue( 12172 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements()); 12173 12174 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 12175 } 12176 12177 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, 12178 Value *Mask, Value *Op0, Value *Op1) { 12179 // If the mask is all ones just return first argument. 12180 if (const auto *C = dyn_cast<Constant>(Mask)) 12181 if (C->isAllOnesValue()) 12182 return Op0; 12183 12184 auto *MaskTy = llvm::FixedVectorType::get( 12185 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); 12186 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); 12187 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); 12188 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 12189 } 12190 12191 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, 12192 unsigned NumElts, Value *MaskIn) { 12193 if (MaskIn) { 12194 const auto *C = dyn_cast<Constant>(MaskIn); 12195 if (!C || !C->isAllOnesValue()) 12196 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); 12197 } 12198 12199 if (NumElts < 8) { 12200 int Indices[8]; 12201 for (unsigned i = 0; i != NumElts; ++i) 12202 Indices[i] = i; 12203 for (unsigned i = NumElts; i != 8; ++i) 12204 Indices[i] = i % NumElts + NumElts; 12205 Cmp = CGF.Builder.CreateShuffleVector( 12206 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); 12207 } 12208 12209 return CGF.Builder.CreateBitCast(Cmp, 12210 IntegerType::get(CGF.getLLVMContext(), 12211 std::max(NumElts, 8U))); 12212 } 12213 12214 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, 12215 bool Signed, ArrayRef<Value *> Ops) { 12216 assert((Ops.size() == 2 || Ops.size() == 4) && 12217 "Unexpected number of arguments"); 12218 unsigned NumElts = 12219 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12220 Value *Cmp; 12221 12222 if (CC == 3) { 12223 Cmp = Constant::getNullValue( 12224 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 12225 } else if (CC == 7) { 12226 Cmp = Constant::getAllOnesValue( 12227 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 12228 } else { 12229 ICmpInst::Predicate Pred; 12230 switch (CC) { 12231 default: llvm_unreachable("Unknown condition code"); 12232 case 0: Pred = ICmpInst::ICMP_EQ; break; 12233 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; 12234 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; 12235 case 4: Pred = ICmpInst::ICMP_NE; break; 12236 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; 12237 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; 12238 } 12239 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); 12240 } 12241 12242 Value *MaskIn = nullptr; 12243 if (Ops.size() == 4) 12244 MaskIn = Ops[3]; 12245 12246 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); 12247 } 12248 12249 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { 12250 Value *Zero = Constant::getNullValue(In->getType()); 12251 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); 12252 } 12253 12254 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E, 12255 ArrayRef<Value *> Ops, bool IsSigned) { 12256 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); 12257 llvm::Type *Ty = Ops[1]->getType(); 12258 12259 Value *Res; 12260 if (Rnd != 4) { 12261 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round 12262 : Intrinsic::x86_avx512_uitofp_round; 12263 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); 12264 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); 12265 } else { 12266 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12267 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) 12268 : CGF.Builder.CreateUIToFP(Ops[0], Ty); 12269 } 12270 12271 return EmitX86Select(CGF, Ops[2], Res, Ops[1]); 12272 } 12273 12274 // Lowers X86 FMA intrinsics to IR. 12275 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E, 12276 ArrayRef<Value *> Ops, unsigned BuiltinID, 12277 bool IsAddSub) { 12278 12279 bool Subtract = false; 12280 Intrinsic::ID IID = Intrinsic::not_intrinsic; 12281 switch (BuiltinID) { 12282 default: break; 12283 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3: 12284 Subtract = true; 12285 LLVM_FALLTHROUGH; 12286 case clang::X86::BI__builtin_ia32_vfmaddph512_mask: 12287 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz: 12288 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3: 12289 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512; 12290 break; 12291 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3: 12292 Subtract = true; 12293 LLVM_FALLTHROUGH; 12294 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask: 12295 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz: 12296 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3: 12297 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512; 12298 break; 12299 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 12300 Subtract = true; 12301 LLVM_FALLTHROUGH; 12302 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 12303 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 12304 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 12305 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; 12306 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 12307 Subtract = true; 12308 LLVM_FALLTHROUGH; 12309 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 12310 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 12311 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 12312 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; 12313 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12314 Subtract = true; 12315 LLVM_FALLTHROUGH; 12316 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 12317 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12318 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12319 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; 12320 break; 12321 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12322 Subtract = true; 12323 LLVM_FALLTHROUGH; 12324 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12325 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12326 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12327 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; 12328 break; 12329 } 12330 12331 Value *A = Ops[0]; 12332 Value *B = Ops[1]; 12333 Value *C = Ops[2]; 12334 12335 if (Subtract) 12336 C = CGF.Builder.CreateFNeg(C); 12337 12338 Value *Res; 12339 12340 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). 12341 if (IID != Intrinsic::not_intrinsic && 12342 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 || 12343 IsAddSub)) { 12344 Function *Intr = CGF.CGM.getIntrinsic(IID); 12345 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); 12346 } else { 12347 llvm::Type *Ty = A->getType(); 12348 Function *FMA; 12349 if (CGF.Builder.getIsFPConstrained()) { 12350 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12351 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty); 12352 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C}); 12353 } else { 12354 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); 12355 Res = CGF.Builder.CreateCall(FMA, {A, B, C}); 12356 } 12357 } 12358 12359 // Handle any required masking. 12360 Value *MaskFalseVal = nullptr; 12361 switch (BuiltinID) { 12362 case clang::X86::BI__builtin_ia32_vfmaddph512_mask: 12363 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 12364 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 12365 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask: 12366 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 12367 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12368 MaskFalseVal = Ops[0]; 12369 break; 12370 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz: 12371 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 12372 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 12373 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz: 12374 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12375 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12376 MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); 12377 break; 12378 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3: 12379 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3: 12380 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 12381 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 12382 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 12383 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 12384 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3: 12385 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3: 12386 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12387 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12388 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12389 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12390 MaskFalseVal = Ops[2]; 12391 break; 12392 } 12393 12394 if (MaskFalseVal) 12395 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); 12396 12397 return Res; 12398 } 12399 12400 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E, 12401 MutableArrayRef<Value *> Ops, Value *Upper, 12402 bool ZeroMask = false, unsigned PTIdx = 0, 12403 bool NegAcc = false) { 12404 unsigned Rnd = 4; 12405 if (Ops.size() > 4) 12406 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 12407 12408 if (NegAcc) 12409 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); 12410 12411 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); 12412 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); 12413 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); 12414 Value *Res; 12415 if (Rnd != 4) { 12416 Intrinsic::ID IID; 12417 12418 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) { 12419 case 16: 12420 IID = Intrinsic::x86_avx512fp16_vfmadd_f16; 12421 break; 12422 case 32: 12423 IID = Intrinsic::x86_avx512_vfmadd_f32; 12424 break; 12425 case 64: 12426 IID = Intrinsic::x86_avx512_vfmadd_f64; 12427 break; 12428 default: 12429 llvm_unreachable("Unexpected size"); 12430 } 12431 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 12432 {Ops[0], Ops[1], Ops[2], Ops[4]}); 12433 } else if (CGF.Builder.getIsFPConstrained()) { 12434 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12435 Function *FMA = CGF.CGM.getIntrinsic( 12436 Intrinsic::experimental_constrained_fma, Ops[0]->getType()); 12437 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3)); 12438 } else { 12439 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); 12440 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); 12441 } 12442 // If we have more than 3 arguments, we need to do masking. 12443 if (Ops.size() > 3) { 12444 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) 12445 : Ops[PTIdx]; 12446 12447 // If we negated the accumulator and the its the PassThru value we need to 12448 // bypass the negate. Conveniently Upper should be the same thing in this 12449 // case. 12450 if (NegAcc && PTIdx == 2) 12451 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); 12452 12453 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); 12454 } 12455 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); 12456 } 12457 12458 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, 12459 ArrayRef<Value *> Ops) { 12460 llvm::Type *Ty = Ops[0]->getType(); 12461 // Arguments have a vXi32 type so cast to vXi64. 12462 Ty = llvm::FixedVectorType::get(CGF.Int64Ty, 12463 Ty->getPrimitiveSizeInBits() / 64); 12464 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); 12465 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); 12466 12467 if (IsSigned) { 12468 // Shift left then arithmetic shift right. 12469 Constant *ShiftAmt = ConstantInt::get(Ty, 32); 12470 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); 12471 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); 12472 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); 12473 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); 12474 } else { 12475 // Clear the upper bits. 12476 Constant *Mask = ConstantInt::get(Ty, 0xffffffff); 12477 LHS = CGF.Builder.CreateAnd(LHS, Mask); 12478 RHS = CGF.Builder.CreateAnd(RHS, Mask); 12479 } 12480 12481 return CGF.Builder.CreateMul(LHS, RHS); 12482 } 12483 12484 // Emit a masked pternlog intrinsic. This only exists because the header has to 12485 // use a macro and we aren't able to pass the input argument to a pternlog 12486 // builtin and a select builtin without evaluating it twice. 12487 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, 12488 ArrayRef<Value *> Ops) { 12489 llvm::Type *Ty = Ops[0]->getType(); 12490 12491 unsigned VecWidth = Ty->getPrimitiveSizeInBits(); 12492 unsigned EltWidth = Ty->getScalarSizeInBits(); 12493 Intrinsic::ID IID; 12494 if (VecWidth == 128 && EltWidth == 32) 12495 IID = Intrinsic::x86_avx512_pternlog_d_128; 12496 else if (VecWidth == 256 && EltWidth == 32) 12497 IID = Intrinsic::x86_avx512_pternlog_d_256; 12498 else if (VecWidth == 512 && EltWidth == 32) 12499 IID = Intrinsic::x86_avx512_pternlog_d_512; 12500 else if (VecWidth == 128 && EltWidth == 64) 12501 IID = Intrinsic::x86_avx512_pternlog_q_128; 12502 else if (VecWidth == 256 && EltWidth == 64) 12503 IID = Intrinsic::x86_avx512_pternlog_q_256; 12504 else if (VecWidth == 512 && EltWidth == 64) 12505 IID = Intrinsic::x86_avx512_pternlog_q_512; 12506 else 12507 llvm_unreachable("Unexpected intrinsic"); 12508 12509 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 12510 Ops.drop_back()); 12511 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; 12512 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); 12513 } 12514 12515 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, 12516 llvm::Type *DstTy) { 12517 unsigned NumberOfElements = 12518 cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 12519 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); 12520 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); 12521 } 12522 12523 // Emit binary intrinsic with the same type used in result/args. 12524 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF, 12525 ArrayRef<Value *> Ops, Intrinsic::ID IID) { 12526 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); 12527 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); 12528 } 12529 12530 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { 12531 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); 12532 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); 12533 return EmitX86CpuIs(CPUStr); 12534 } 12535 12536 // Convert F16 halfs to floats. 12537 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF, 12538 ArrayRef<Value *> Ops, 12539 llvm::Type *DstTy) { 12540 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && 12541 "Unknown cvtph2ps intrinsic"); 12542 12543 // If the SAE intrinsic doesn't use default rounding then we can't upgrade. 12544 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) { 12545 Function *F = 12546 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512); 12547 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]}); 12548 } 12549 12550 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 12551 Value *Src = Ops[0]; 12552 12553 // Extract the subvector. 12554 if (NumDstElts != 12555 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) { 12556 assert(NumDstElts == 4 && "Unexpected vector size"); 12557 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3}); 12558 } 12559 12560 // Bitcast from vXi16 to vXf16. 12561 auto *HalfTy = llvm::FixedVectorType::get( 12562 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts); 12563 Src = CGF.Builder.CreateBitCast(Src, HalfTy); 12564 12565 // Perform the fp-extension. 12566 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps"); 12567 12568 if (Ops.size() >= 3) 12569 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]); 12570 return Res; 12571 } 12572 12573 // Convert a BF16 to a float. 12574 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, 12575 const CallExpr *E, 12576 ArrayRef<Value *> Ops) { 12577 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); 12578 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); 12579 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); 12580 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 12581 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); 12582 return BitCast; 12583 } 12584 12585 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { 12586 12587 llvm::Type *Int32Ty = Builder.getInt32Ty(); 12588 12589 // Matching the struct layout from the compiler-rt/libgcc structure that is 12590 // filled in: 12591 // unsigned int __cpu_vendor; 12592 // unsigned int __cpu_type; 12593 // unsigned int __cpu_subtype; 12594 // unsigned int __cpu_features[1]; 12595 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12596 llvm::ArrayType::get(Int32Ty, 1)); 12597 12598 // Grab the global __cpu_model. 12599 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12600 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12601 12602 // Calculate the index needed to access the correct field based on the 12603 // range. Also adjust the expected value. 12604 unsigned Index; 12605 unsigned Value; 12606 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) 12607 #define X86_VENDOR(ENUM, STRING) \ 12608 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) 12609 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \ 12610 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 12611 #define X86_CPU_TYPE(ENUM, STR) \ 12612 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 12613 #define X86_CPU_SUBTYPE(ENUM, STR) \ 12614 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) 12615 #include "llvm/Support/X86TargetParser.def" 12616 .Default({0, 0}); 12617 assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); 12618 12619 // Grab the appropriate field from __cpu_model. 12620 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), 12621 ConstantInt::get(Int32Ty, Index)}; 12622 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); 12623 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue, 12624 CharUnits::fromQuantity(4)); 12625 12626 // Check the value of the field against the requested value. 12627 return Builder.CreateICmpEQ(CpuValue, 12628 llvm::ConstantInt::get(Int32Ty, Value)); 12629 } 12630 12631 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { 12632 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); 12633 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); 12634 return EmitX86CpuSupports(FeatureStr); 12635 } 12636 12637 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { 12638 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs)); 12639 } 12640 12641 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { 12642 uint32_t Features1 = Lo_32(FeaturesMask); 12643 uint32_t Features2 = Hi_32(FeaturesMask); 12644 12645 Value *Result = Builder.getTrue(); 12646 12647 if (Features1 != 0) { 12648 // Matching the struct layout from the compiler-rt/libgcc structure that is 12649 // filled in: 12650 // unsigned int __cpu_vendor; 12651 // unsigned int __cpu_type; 12652 // unsigned int __cpu_subtype; 12653 // unsigned int __cpu_features[1]; 12654 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12655 llvm::ArrayType::get(Int32Ty, 1)); 12656 12657 // Grab the global __cpu_model. 12658 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12659 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12660 12661 // Grab the first (0th) element from the field __cpu_features off of the 12662 // global in the struct STy. 12663 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), 12664 Builder.getInt32(0)}; 12665 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); 12666 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures, 12667 CharUnits::fromQuantity(4)); 12668 12669 // Check the value of the bit corresponding to the feature requested. 12670 Value *Mask = Builder.getInt32(Features1); 12671 Value *Bitset = Builder.CreateAnd(Features, Mask); 12672 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12673 Result = Builder.CreateAnd(Result, Cmp); 12674 } 12675 12676 if (Features2 != 0) { 12677 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, 12678 "__cpu_features2"); 12679 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); 12680 12681 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2, 12682 CharUnits::fromQuantity(4)); 12683 12684 // Check the value of the bit corresponding to the feature requested. 12685 Value *Mask = Builder.getInt32(Features2); 12686 Value *Bitset = Builder.CreateAnd(Features, Mask); 12687 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12688 Result = Builder.CreateAnd(Result, Cmp); 12689 } 12690 12691 return Result; 12692 } 12693 12694 Value *CodeGenFunction::EmitX86CpuInit() { 12695 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, 12696 /*Variadic*/ false); 12697 llvm::FunctionCallee Func = 12698 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); 12699 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); 12700 cast<llvm::GlobalValue>(Func.getCallee()) 12701 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 12702 return Builder.CreateCall(Func); 12703 } 12704 12705 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, 12706 const CallExpr *E) { 12707 if (BuiltinID == X86::BI__builtin_cpu_is) 12708 return EmitX86CpuIs(E); 12709 if (BuiltinID == X86::BI__builtin_cpu_supports) 12710 return EmitX86CpuSupports(E); 12711 if (BuiltinID == X86::BI__builtin_cpu_init) 12712 return EmitX86CpuInit(); 12713 12714 // Handle MSVC intrinsics before argument evaluation to prevent double 12715 // evaluation. 12716 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID)) 12717 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 12718 12719 SmallVector<Value*, 4> Ops; 12720 bool IsMaskFCmp = false; 12721 bool IsConjFMA = false; 12722 12723 // Find out if any arguments are required to be integer constant expressions. 12724 unsigned ICEArguments = 0; 12725 ASTContext::GetBuiltinTypeError Error; 12726 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 12727 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 12728 12729 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 12730 // If this is a normal argument, just emit it as a scalar. 12731 if ((ICEArguments & (1 << i)) == 0) { 12732 Ops.push_back(EmitScalarExpr(E->getArg(i))); 12733 continue; 12734 } 12735 12736 // If this is required to be a constant, constant fold it so that we know 12737 // that the generated intrinsic gets a ConstantInt. 12738 Ops.push_back(llvm::ConstantInt::get( 12739 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext()))); 12740 } 12741 12742 // These exist so that the builtin that takes an immediate can be bounds 12743 // checked by clang to avoid passing bad immediates to the backend. Since 12744 // AVX has a larger immediate than SSE we would need separate builtins to 12745 // do the different bounds checking. Rather than create a clang specific 12746 // SSE only builtin, this implements eight separate builtins to match gcc 12747 // implementation. 12748 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { 12749 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); 12750 llvm::Function *F = CGM.getIntrinsic(ID); 12751 return Builder.CreateCall(F, Ops); 12752 }; 12753 12754 // For the vector forms of FP comparisons, translate the builtins directly to 12755 // IR. 12756 // TODO: The builtins could be removed if the SSE header files used vector 12757 // extension comparisons directly (vector ordered/unordered may need 12758 // additional support via __builtin_isnan()). 12759 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred, 12760 bool IsSignaling) { 12761 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 12762 Value *Cmp; 12763 if (IsSignaling) 12764 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 12765 else 12766 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 12767 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); 12768 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); 12769 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); 12770 return Builder.CreateBitCast(Sext, FPVecTy); 12771 }; 12772 12773 switch (BuiltinID) { 12774 default: return nullptr; 12775 case X86::BI_mm_prefetch: { 12776 Value *Address = Ops[0]; 12777 ConstantInt *C = cast<ConstantInt>(Ops[1]); 12778 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); 12779 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); 12780 Value *Data = ConstantInt::get(Int32Ty, 1); 12781 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 12782 return Builder.CreateCall(F, {Address, RW, Locality, Data}); 12783 } 12784 case X86::BI_mm_clflush: { 12785 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), 12786 Ops[0]); 12787 } 12788 case X86::BI_mm_lfence: { 12789 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); 12790 } 12791 case X86::BI_mm_mfence: { 12792 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); 12793 } 12794 case X86::BI_mm_sfence: { 12795 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); 12796 } 12797 case X86::BI_mm_pause: { 12798 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); 12799 } 12800 case X86::BI__rdtsc: { 12801 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); 12802 } 12803 case X86::BI__builtin_ia32_rdtscp: { 12804 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); 12805 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 12806 Ops[0]); 12807 return Builder.CreateExtractValue(Call, 0); 12808 } 12809 case X86::BI__builtin_ia32_lzcnt_u16: 12810 case X86::BI__builtin_ia32_lzcnt_u32: 12811 case X86::BI__builtin_ia32_lzcnt_u64: { 12812 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 12813 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12814 } 12815 case X86::BI__builtin_ia32_tzcnt_u16: 12816 case X86::BI__builtin_ia32_tzcnt_u32: 12817 case X86::BI__builtin_ia32_tzcnt_u64: { 12818 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); 12819 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12820 } 12821 case X86::BI__builtin_ia32_undef128: 12822 case X86::BI__builtin_ia32_undef256: 12823 case X86::BI__builtin_ia32_undef512: 12824 // The x86 definition of "undef" is not the same as the LLVM definition 12825 // (PR32176). We leave optimizing away an unnecessary zero constant to the 12826 // IR optimizer and backend. 12827 // TODO: If we had a "freeze" IR instruction to generate a fixed undef 12828 // value, we should use that here instead of a zero. 12829 return llvm::Constant::getNullValue(ConvertType(E->getType())); 12830 case X86::BI__builtin_ia32_vec_init_v8qi: 12831 case X86::BI__builtin_ia32_vec_init_v4hi: 12832 case X86::BI__builtin_ia32_vec_init_v2si: 12833 return Builder.CreateBitCast(BuildVector(Ops), 12834 llvm::Type::getX86_MMXTy(getLLVMContext())); 12835 case X86::BI__builtin_ia32_vec_ext_v2si: 12836 case X86::BI__builtin_ia32_vec_ext_v16qi: 12837 case X86::BI__builtin_ia32_vec_ext_v8hi: 12838 case X86::BI__builtin_ia32_vec_ext_v4si: 12839 case X86::BI__builtin_ia32_vec_ext_v4sf: 12840 case X86::BI__builtin_ia32_vec_ext_v2di: 12841 case X86::BI__builtin_ia32_vec_ext_v32qi: 12842 case X86::BI__builtin_ia32_vec_ext_v16hi: 12843 case X86::BI__builtin_ia32_vec_ext_v8si: 12844 case X86::BI__builtin_ia32_vec_ext_v4di: { 12845 unsigned NumElts = 12846 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12847 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 12848 Index &= NumElts - 1; 12849 // These builtins exist so we can ensure the index is an ICE and in range. 12850 // Otherwise we could just do this in the header file. 12851 return Builder.CreateExtractElement(Ops[0], Index); 12852 } 12853 case X86::BI__builtin_ia32_vec_set_v16qi: 12854 case X86::BI__builtin_ia32_vec_set_v8hi: 12855 case X86::BI__builtin_ia32_vec_set_v4si: 12856 case X86::BI__builtin_ia32_vec_set_v2di: 12857 case X86::BI__builtin_ia32_vec_set_v32qi: 12858 case X86::BI__builtin_ia32_vec_set_v16hi: 12859 case X86::BI__builtin_ia32_vec_set_v8si: 12860 case X86::BI__builtin_ia32_vec_set_v4di: { 12861 unsigned NumElts = 12862 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12863 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 12864 Index &= NumElts - 1; 12865 // These builtins exist so we can ensure the index is an ICE and in range. 12866 // Otherwise we could just do this in the header file. 12867 return Builder.CreateInsertElement(Ops[0], Ops[1], Index); 12868 } 12869 case X86::BI_mm_setcsr: 12870 case X86::BI__builtin_ia32_ldmxcsr: { 12871 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 12872 Builder.CreateStore(Ops[0], Tmp); 12873 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), 12874 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12875 } 12876 case X86::BI_mm_getcsr: 12877 case X86::BI__builtin_ia32_stmxcsr: { 12878 Address Tmp = CreateMemTemp(E->getType()); 12879 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), 12880 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12881 return Builder.CreateLoad(Tmp, "stmxcsr"); 12882 } 12883 case X86::BI__builtin_ia32_xsave: 12884 case X86::BI__builtin_ia32_xsave64: 12885 case X86::BI__builtin_ia32_xrstor: 12886 case X86::BI__builtin_ia32_xrstor64: 12887 case X86::BI__builtin_ia32_xsaveopt: 12888 case X86::BI__builtin_ia32_xsaveopt64: 12889 case X86::BI__builtin_ia32_xrstors: 12890 case X86::BI__builtin_ia32_xrstors64: 12891 case X86::BI__builtin_ia32_xsavec: 12892 case X86::BI__builtin_ia32_xsavec64: 12893 case X86::BI__builtin_ia32_xsaves: 12894 case X86::BI__builtin_ia32_xsaves64: 12895 case X86::BI__builtin_ia32_xsetbv: 12896 case X86::BI_xsetbv: { 12897 Intrinsic::ID ID; 12898 #define INTRINSIC_X86_XSAVE_ID(NAME) \ 12899 case X86::BI__builtin_ia32_##NAME: \ 12900 ID = Intrinsic::x86_##NAME; \ 12901 break 12902 switch (BuiltinID) { 12903 default: llvm_unreachable("Unsupported intrinsic!"); 12904 INTRINSIC_X86_XSAVE_ID(xsave); 12905 INTRINSIC_X86_XSAVE_ID(xsave64); 12906 INTRINSIC_X86_XSAVE_ID(xrstor); 12907 INTRINSIC_X86_XSAVE_ID(xrstor64); 12908 INTRINSIC_X86_XSAVE_ID(xsaveopt); 12909 INTRINSIC_X86_XSAVE_ID(xsaveopt64); 12910 INTRINSIC_X86_XSAVE_ID(xrstors); 12911 INTRINSIC_X86_XSAVE_ID(xrstors64); 12912 INTRINSIC_X86_XSAVE_ID(xsavec); 12913 INTRINSIC_X86_XSAVE_ID(xsavec64); 12914 INTRINSIC_X86_XSAVE_ID(xsaves); 12915 INTRINSIC_X86_XSAVE_ID(xsaves64); 12916 INTRINSIC_X86_XSAVE_ID(xsetbv); 12917 case X86::BI_xsetbv: 12918 ID = Intrinsic::x86_xsetbv; 12919 break; 12920 } 12921 #undef INTRINSIC_X86_XSAVE_ID 12922 Value *Mhi = Builder.CreateTrunc( 12923 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); 12924 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); 12925 Ops[1] = Mhi; 12926 Ops.push_back(Mlo); 12927 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 12928 } 12929 case X86::BI__builtin_ia32_xgetbv: 12930 case X86::BI_xgetbv: 12931 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); 12932 case X86::BI__builtin_ia32_storedqudi128_mask: 12933 case X86::BI__builtin_ia32_storedqusi128_mask: 12934 case X86::BI__builtin_ia32_storedquhi128_mask: 12935 case X86::BI__builtin_ia32_storedquqi128_mask: 12936 case X86::BI__builtin_ia32_storeupd128_mask: 12937 case X86::BI__builtin_ia32_storeups128_mask: 12938 case X86::BI__builtin_ia32_storedqudi256_mask: 12939 case X86::BI__builtin_ia32_storedqusi256_mask: 12940 case X86::BI__builtin_ia32_storedquhi256_mask: 12941 case X86::BI__builtin_ia32_storedquqi256_mask: 12942 case X86::BI__builtin_ia32_storeupd256_mask: 12943 case X86::BI__builtin_ia32_storeups256_mask: 12944 case X86::BI__builtin_ia32_storedqudi512_mask: 12945 case X86::BI__builtin_ia32_storedqusi512_mask: 12946 case X86::BI__builtin_ia32_storedquhi512_mask: 12947 case X86::BI__builtin_ia32_storedquqi512_mask: 12948 case X86::BI__builtin_ia32_storeupd512_mask: 12949 case X86::BI__builtin_ia32_storeups512_mask: 12950 return EmitX86MaskedStore(*this, Ops, Align(1)); 12951 12952 case X86::BI__builtin_ia32_storesh128_mask: 12953 case X86::BI__builtin_ia32_storess128_mask: 12954 case X86::BI__builtin_ia32_storesd128_mask: 12955 return EmitX86MaskedStore(*this, Ops, Align(1)); 12956 12957 case X86::BI__builtin_ia32_vpopcntb_128: 12958 case X86::BI__builtin_ia32_vpopcntd_128: 12959 case X86::BI__builtin_ia32_vpopcntq_128: 12960 case X86::BI__builtin_ia32_vpopcntw_128: 12961 case X86::BI__builtin_ia32_vpopcntb_256: 12962 case X86::BI__builtin_ia32_vpopcntd_256: 12963 case X86::BI__builtin_ia32_vpopcntq_256: 12964 case X86::BI__builtin_ia32_vpopcntw_256: 12965 case X86::BI__builtin_ia32_vpopcntb_512: 12966 case X86::BI__builtin_ia32_vpopcntd_512: 12967 case X86::BI__builtin_ia32_vpopcntq_512: 12968 case X86::BI__builtin_ia32_vpopcntw_512: { 12969 llvm::Type *ResultType = ConvertType(E->getType()); 12970 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 12971 return Builder.CreateCall(F, Ops); 12972 } 12973 case X86::BI__builtin_ia32_cvtmask2b128: 12974 case X86::BI__builtin_ia32_cvtmask2b256: 12975 case X86::BI__builtin_ia32_cvtmask2b512: 12976 case X86::BI__builtin_ia32_cvtmask2w128: 12977 case X86::BI__builtin_ia32_cvtmask2w256: 12978 case X86::BI__builtin_ia32_cvtmask2w512: 12979 case X86::BI__builtin_ia32_cvtmask2d128: 12980 case X86::BI__builtin_ia32_cvtmask2d256: 12981 case X86::BI__builtin_ia32_cvtmask2d512: 12982 case X86::BI__builtin_ia32_cvtmask2q128: 12983 case X86::BI__builtin_ia32_cvtmask2q256: 12984 case X86::BI__builtin_ia32_cvtmask2q512: 12985 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); 12986 12987 case X86::BI__builtin_ia32_cvtb2mask128: 12988 case X86::BI__builtin_ia32_cvtb2mask256: 12989 case X86::BI__builtin_ia32_cvtb2mask512: 12990 case X86::BI__builtin_ia32_cvtw2mask128: 12991 case X86::BI__builtin_ia32_cvtw2mask256: 12992 case X86::BI__builtin_ia32_cvtw2mask512: 12993 case X86::BI__builtin_ia32_cvtd2mask128: 12994 case X86::BI__builtin_ia32_cvtd2mask256: 12995 case X86::BI__builtin_ia32_cvtd2mask512: 12996 case X86::BI__builtin_ia32_cvtq2mask128: 12997 case X86::BI__builtin_ia32_cvtq2mask256: 12998 case X86::BI__builtin_ia32_cvtq2mask512: 12999 return EmitX86ConvertToMask(*this, Ops[0]); 13000 13001 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 13002 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 13003 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 13004 case X86::BI__builtin_ia32_vcvtw2ph512_mask: 13005 case X86::BI__builtin_ia32_vcvtdq2ph512_mask: 13006 case X86::BI__builtin_ia32_vcvtqq2ph512_mask: 13007 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true); 13008 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 13009 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 13010 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 13011 case X86::BI__builtin_ia32_vcvtuw2ph512_mask: 13012 case X86::BI__builtin_ia32_vcvtudq2ph512_mask: 13013 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: 13014 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false); 13015 13016 case X86::BI__builtin_ia32_vfmaddss3: 13017 case X86::BI__builtin_ia32_vfmaddsd3: 13018 case X86::BI__builtin_ia32_vfmaddsh3_mask: 13019 case X86::BI__builtin_ia32_vfmaddss3_mask: 13020 case X86::BI__builtin_ia32_vfmaddsd3_mask: 13021 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]); 13022 case X86::BI__builtin_ia32_vfmaddss: 13023 case X86::BI__builtin_ia32_vfmaddsd: 13024 return EmitScalarFMAExpr(*this, E, Ops, 13025 Constant::getNullValue(Ops[0]->getType())); 13026 case X86::BI__builtin_ia32_vfmaddsh3_maskz: 13027 case X86::BI__builtin_ia32_vfmaddss3_maskz: 13028 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 13029 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true); 13030 case X86::BI__builtin_ia32_vfmaddsh3_mask3: 13031 case X86::BI__builtin_ia32_vfmaddss3_mask3: 13032 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 13033 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2); 13034 case X86::BI__builtin_ia32_vfmsubsh3_mask3: 13035 case X86::BI__builtin_ia32_vfmsubss3_mask3: 13036 case X86::BI__builtin_ia32_vfmsubsd3_mask3: 13037 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2, 13038 /*NegAcc*/ true); 13039 case X86::BI__builtin_ia32_vfmaddph: 13040 case X86::BI__builtin_ia32_vfmaddps: 13041 case X86::BI__builtin_ia32_vfmaddpd: 13042 case X86::BI__builtin_ia32_vfmaddph256: 13043 case X86::BI__builtin_ia32_vfmaddps256: 13044 case X86::BI__builtin_ia32_vfmaddpd256: 13045 case X86::BI__builtin_ia32_vfmaddph512_mask: 13046 case X86::BI__builtin_ia32_vfmaddph512_maskz: 13047 case X86::BI__builtin_ia32_vfmaddph512_mask3: 13048 case X86::BI__builtin_ia32_vfmaddps512_mask: 13049 case X86::BI__builtin_ia32_vfmaddps512_maskz: 13050 case X86::BI__builtin_ia32_vfmaddps512_mask3: 13051 case X86::BI__builtin_ia32_vfmsubps512_mask3: 13052 case X86::BI__builtin_ia32_vfmaddpd512_mask: 13053 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 13054 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 13055 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 13056 case X86::BI__builtin_ia32_vfmsubph512_mask3: 13057 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false); 13058 case X86::BI__builtin_ia32_vfmaddsubph512_mask: 13059 case X86::BI__builtin_ia32_vfmaddsubph512_maskz: 13060 case X86::BI__builtin_ia32_vfmaddsubph512_mask3: 13061 case X86::BI__builtin_ia32_vfmsubaddph512_mask3: 13062 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 13063 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 13064 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 13065 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 13066 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 13067 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 13068 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 13069 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 13070 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true); 13071 13072 case X86::BI__builtin_ia32_movdqa32store128_mask: 13073 case X86::BI__builtin_ia32_movdqa64store128_mask: 13074 case X86::BI__builtin_ia32_storeaps128_mask: 13075 case X86::BI__builtin_ia32_storeapd128_mask: 13076 case X86::BI__builtin_ia32_movdqa32store256_mask: 13077 case X86::BI__builtin_ia32_movdqa64store256_mask: 13078 case X86::BI__builtin_ia32_storeaps256_mask: 13079 case X86::BI__builtin_ia32_storeapd256_mask: 13080 case X86::BI__builtin_ia32_movdqa32store512_mask: 13081 case X86::BI__builtin_ia32_movdqa64store512_mask: 13082 case X86::BI__builtin_ia32_storeaps512_mask: 13083 case X86::BI__builtin_ia32_storeapd512_mask: 13084 return EmitX86MaskedStore( 13085 *this, Ops, 13086 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 13087 13088 case X86::BI__builtin_ia32_loadups128_mask: 13089 case X86::BI__builtin_ia32_loadups256_mask: 13090 case X86::BI__builtin_ia32_loadups512_mask: 13091 case X86::BI__builtin_ia32_loadupd128_mask: 13092 case X86::BI__builtin_ia32_loadupd256_mask: 13093 case X86::BI__builtin_ia32_loadupd512_mask: 13094 case X86::BI__builtin_ia32_loaddquqi128_mask: 13095 case X86::BI__builtin_ia32_loaddquqi256_mask: 13096 case X86::BI__builtin_ia32_loaddquqi512_mask: 13097 case X86::BI__builtin_ia32_loaddquhi128_mask: 13098 case X86::BI__builtin_ia32_loaddquhi256_mask: 13099 case X86::BI__builtin_ia32_loaddquhi512_mask: 13100 case X86::BI__builtin_ia32_loaddqusi128_mask: 13101 case X86::BI__builtin_ia32_loaddqusi256_mask: 13102 case X86::BI__builtin_ia32_loaddqusi512_mask: 13103 case X86::BI__builtin_ia32_loaddqudi128_mask: 13104 case X86::BI__builtin_ia32_loaddqudi256_mask: 13105 case X86::BI__builtin_ia32_loaddqudi512_mask: 13106 return EmitX86MaskedLoad(*this, Ops, Align(1)); 13107 13108 case X86::BI__builtin_ia32_loadsh128_mask: 13109 case X86::BI__builtin_ia32_loadss128_mask: 13110 case X86::BI__builtin_ia32_loadsd128_mask: 13111 return EmitX86MaskedLoad(*this, Ops, Align(1)); 13112 13113 case X86::BI__builtin_ia32_loadaps128_mask: 13114 case X86::BI__builtin_ia32_loadaps256_mask: 13115 case X86::BI__builtin_ia32_loadaps512_mask: 13116 case X86::BI__builtin_ia32_loadapd128_mask: 13117 case X86::BI__builtin_ia32_loadapd256_mask: 13118 case X86::BI__builtin_ia32_loadapd512_mask: 13119 case X86::BI__builtin_ia32_movdqa32load128_mask: 13120 case X86::BI__builtin_ia32_movdqa32load256_mask: 13121 case X86::BI__builtin_ia32_movdqa32load512_mask: 13122 case X86::BI__builtin_ia32_movdqa64load128_mask: 13123 case X86::BI__builtin_ia32_movdqa64load256_mask: 13124 case X86::BI__builtin_ia32_movdqa64load512_mask: 13125 return EmitX86MaskedLoad( 13126 *this, Ops, 13127 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 13128 13129 case X86::BI__builtin_ia32_expandloaddf128_mask: 13130 case X86::BI__builtin_ia32_expandloaddf256_mask: 13131 case X86::BI__builtin_ia32_expandloaddf512_mask: 13132 case X86::BI__builtin_ia32_expandloadsf128_mask: 13133 case X86::BI__builtin_ia32_expandloadsf256_mask: 13134 case X86::BI__builtin_ia32_expandloadsf512_mask: 13135 case X86::BI__builtin_ia32_expandloaddi128_mask: 13136 case X86::BI__builtin_ia32_expandloaddi256_mask: 13137 case X86::BI__builtin_ia32_expandloaddi512_mask: 13138 case X86::BI__builtin_ia32_expandloadsi128_mask: 13139 case X86::BI__builtin_ia32_expandloadsi256_mask: 13140 case X86::BI__builtin_ia32_expandloadsi512_mask: 13141 case X86::BI__builtin_ia32_expandloadhi128_mask: 13142 case X86::BI__builtin_ia32_expandloadhi256_mask: 13143 case X86::BI__builtin_ia32_expandloadhi512_mask: 13144 case X86::BI__builtin_ia32_expandloadqi128_mask: 13145 case X86::BI__builtin_ia32_expandloadqi256_mask: 13146 case X86::BI__builtin_ia32_expandloadqi512_mask: 13147 return EmitX86ExpandLoad(*this, Ops); 13148 13149 case X86::BI__builtin_ia32_compressstoredf128_mask: 13150 case X86::BI__builtin_ia32_compressstoredf256_mask: 13151 case X86::BI__builtin_ia32_compressstoredf512_mask: 13152 case X86::BI__builtin_ia32_compressstoresf128_mask: 13153 case X86::BI__builtin_ia32_compressstoresf256_mask: 13154 case X86::BI__builtin_ia32_compressstoresf512_mask: 13155 case X86::BI__builtin_ia32_compressstoredi128_mask: 13156 case X86::BI__builtin_ia32_compressstoredi256_mask: 13157 case X86::BI__builtin_ia32_compressstoredi512_mask: 13158 case X86::BI__builtin_ia32_compressstoresi128_mask: 13159 case X86::BI__builtin_ia32_compressstoresi256_mask: 13160 case X86::BI__builtin_ia32_compressstoresi512_mask: 13161 case X86::BI__builtin_ia32_compressstorehi128_mask: 13162 case X86::BI__builtin_ia32_compressstorehi256_mask: 13163 case X86::BI__builtin_ia32_compressstorehi512_mask: 13164 case X86::BI__builtin_ia32_compressstoreqi128_mask: 13165 case X86::BI__builtin_ia32_compressstoreqi256_mask: 13166 case X86::BI__builtin_ia32_compressstoreqi512_mask: 13167 return EmitX86CompressStore(*this, Ops); 13168 13169 case X86::BI__builtin_ia32_expanddf128_mask: 13170 case X86::BI__builtin_ia32_expanddf256_mask: 13171 case X86::BI__builtin_ia32_expanddf512_mask: 13172 case X86::BI__builtin_ia32_expandsf128_mask: 13173 case X86::BI__builtin_ia32_expandsf256_mask: 13174 case X86::BI__builtin_ia32_expandsf512_mask: 13175 case X86::BI__builtin_ia32_expanddi128_mask: 13176 case X86::BI__builtin_ia32_expanddi256_mask: 13177 case X86::BI__builtin_ia32_expanddi512_mask: 13178 case X86::BI__builtin_ia32_expandsi128_mask: 13179 case X86::BI__builtin_ia32_expandsi256_mask: 13180 case X86::BI__builtin_ia32_expandsi512_mask: 13181 case X86::BI__builtin_ia32_expandhi128_mask: 13182 case X86::BI__builtin_ia32_expandhi256_mask: 13183 case X86::BI__builtin_ia32_expandhi512_mask: 13184 case X86::BI__builtin_ia32_expandqi128_mask: 13185 case X86::BI__builtin_ia32_expandqi256_mask: 13186 case X86::BI__builtin_ia32_expandqi512_mask: 13187 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); 13188 13189 case X86::BI__builtin_ia32_compressdf128_mask: 13190 case X86::BI__builtin_ia32_compressdf256_mask: 13191 case X86::BI__builtin_ia32_compressdf512_mask: 13192 case X86::BI__builtin_ia32_compresssf128_mask: 13193 case X86::BI__builtin_ia32_compresssf256_mask: 13194 case X86::BI__builtin_ia32_compresssf512_mask: 13195 case X86::BI__builtin_ia32_compressdi128_mask: 13196 case X86::BI__builtin_ia32_compressdi256_mask: 13197 case X86::BI__builtin_ia32_compressdi512_mask: 13198 case X86::BI__builtin_ia32_compresssi128_mask: 13199 case X86::BI__builtin_ia32_compresssi256_mask: 13200 case X86::BI__builtin_ia32_compresssi512_mask: 13201 case X86::BI__builtin_ia32_compresshi128_mask: 13202 case X86::BI__builtin_ia32_compresshi256_mask: 13203 case X86::BI__builtin_ia32_compresshi512_mask: 13204 case X86::BI__builtin_ia32_compressqi128_mask: 13205 case X86::BI__builtin_ia32_compressqi256_mask: 13206 case X86::BI__builtin_ia32_compressqi512_mask: 13207 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); 13208 13209 case X86::BI__builtin_ia32_gather3div2df: 13210 case X86::BI__builtin_ia32_gather3div2di: 13211 case X86::BI__builtin_ia32_gather3div4df: 13212 case X86::BI__builtin_ia32_gather3div4di: 13213 case X86::BI__builtin_ia32_gather3div4sf: 13214 case X86::BI__builtin_ia32_gather3div4si: 13215 case X86::BI__builtin_ia32_gather3div8sf: 13216 case X86::BI__builtin_ia32_gather3div8si: 13217 case X86::BI__builtin_ia32_gather3siv2df: 13218 case X86::BI__builtin_ia32_gather3siv2di: 13219 case X86::BI__builtin_ia32_gather3siv4df: 13220 case X86::BI__builtin_ia32_gather3siv4di: 13221 case X86::BI__builtin_ia32_gather3siv4sf: 13222 case X86::BI__builtin_ia32_gather3siv4si: 13223 case X86::BI__builtin_ia32_gather3siv8sf: 13224 case X86::BI__builtin_ia32_gather3siv8si: 13225 case X86::BI__builtin_ia32_gathersiv8df: 13226 case X86::BI__builtin_ia32_gathersiv16sf: 13227 case X86::BI__builtin_ia32_gatherdiv8df: 13228 case X86::BI__builtin_ia32_gatherdiv16sf: 13229 case X86::BI__builtin_ia32_gathersiv8di: 13230 case X86::BI__builtin_ia32_gathersiv16si: 13231 case X86::BI__builtin_ia32_gatherdiv8di: 13232 case X86::BI__builtin_ia32_gatherdiv16si: { 13233 Intrinsic::ID IID; 13234 switch (BuiltinID) { 13235 default: llvm_unreachable("Unexpected builtin"); 13236 case X86::BI__builtin_ia32_gather3div2df: 13237 IID = Intrinsic::x86_avx512_mask_gather3div2_df; 13238 break; 13239 case X86::BI__builtin_ia32_gather3div2di: 13240 IID = Intrinsic::x86_avx512_mask_gather3div2_di; 13241 break; 13242 case X86::BI__builtin_ia32_gather3div4df: 13243 IID = Intrinsic::x86_avx512_mask_gather3div4_df; 13244 break; 13245 case X86::BI__builtin_ia32_gather3div4di: 13246 IID = Intrinsic::x86_avx512_mask_gather3div4_di; 13247 break; 13248 case X86::BI__builtin_ia32_gather3div4sf: 13249 IID = Intrinsic::x86_avx512_mask_gather3div4_sf; 13250 break; 13251 case X86::BI__builtin_ia32_gather3div4si: 13252 IID = Intrinsic::x86_avx512_mask_gather3div4_si; 13253 break; 13254 case X86::BI__builtin_ia32_gather3div8sf: 13255 IID = Intrinsic::x86_avx512_mask_gather3div8_sf; 13256 break; 13257 case X86::BI__builtin_ia32_gather3div8si: 13258 IID = Intrinsic::x86_avx512_mask_gather3div8_si; 13259 break; 13260 case X86::BI__builtin_ia32_gather3siv2df: 13261 IID = Intrinsic::x86_avx512_mask_gather3siv2_df; 13262 break; 13263 case X86::BI__builtin_ia32_gather3siv2di: 13264 IID = Intrinsic::x86_avx512_mask_gather3siv2_di; 13265 break; 13266 case X86::BI__builtin_ia32_gather3siv4df: 13267 IID = Intrinsic::x86_avx512_mask_gather3siv4_df; 13268 break; 13269 case X86::BI__builtin_ia32_gather3siv4di: 13270 IID = Intrinsic::x86_avx512_mask_gather3siv4_di; 13271 break; 13272 case X86::BI__builtin_ia32_gather3siv4sf: 13273 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; 13274 break; 13275 case X86::BI__builtin_ia32_gather3siv4si: 13276 IID = Intrinsic::x86_avx512_mask_gather3siv4_si; 13277 break; 13278 case X86::BI__builtin_ia32_gather3siv8sf: 13279 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; 13280 break; 13281 case X86::BI__builtin_ia32_gather3siv8si: 13282 IID = Intrinsic::x86_avx512_mask_gather3siv8_si; 13283 break; 13284 case X86::BI__builtin_ia32_gathersiv8df: 13285 IID = Intrinsic::x86_avx512_mask_gather_dpd_512; 13286 break; 13287 case X86::BI__builtin_ia32_gathersiv16sf: 13288 IID = Intrinsic::x86_avx512_mask_gather_dps_512; 13289 break; 13290 case X86::BI__builtin_ia32_gatherdiv8df: 13291 IID = Intrinsic::x86_avx512_mask_gather_qpd_512; 13292 break; 13293 case X86::BI__builtin_ia32_gatherdiv16sf: 13294 IID = Intrinsic::x86_avx512_mask_gather_qps_512; 13295 break; 13296 case X86::BI__builtin_ia32_gathersiv8di: 13297 IID = Intrinsic::x86_avx512_mask_gather_dpq_512; 13298 break; 13299 case X86::BI__builtin_ia32_gathersiv16si: 13300 IID = Intrinsic::x86_avx512_mask_gather_dpi_512; 13301 break; 13302 case X86::BI__builtin_ia32_gatherdiv8di: 13303 IID = Intrinsic::x86_avx512_mask_gather_qpq_512; 13304 break; 13305 case X86::BI__builtin_ia32_gatherdiv16si: 13306 IID = Intrinsic::x86_avx512_mask_gather_qpi_512; 13307 break; 13308 } 13309 13310 unsigned MinElts = std::min( 13311 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(), 13312 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements()); 13313 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); 13314 Function *Intr = CGM.getIntrinsic(IID); 13315 return Builder.CreateCall(Intr, Ops); 13316 } 13317 13318 case X86::BI__builtin_ia32_scattersiv8df: 13319 case X86::BI__builtin_ia32_scattersiv16sf: 13320 case X86::BI__builtin_ia32_scatterdiv8df: 13321 case X86::BI__builtin_ia32_scatterdiv16sf: 13322 case X86::BI__builtin_ia32_scattersiv8di: 13323 case X86::BI__builtin_ia32_scattersiv16si: 13324 case X86::BI__builtin_ia32_scatterdiv8di: 13325 case X86::BI__builtin_ia32_scatterdiv16si: 13326 case X86::BI__builtin_ia32_scatterdiv2df: 13327 case X86::BI__builtin_ia32_scatterdiv2di: 13328 case X86::BI__builtin_ia32_scatterdiv4df: 13329 case X86::BI__builtin_ia32_scatterdiv4di: 13330 case X86::BI__builtin_ia32_scatterdiv4sf: 13331 case X86::BI__builtin_ia32_scatterdiv4si: 13332 case X86::BI__builtin_ia32_scatterdiv8sf: 13333 case X86::BI__builtin_ia32_scatterdiv8si: 13334 case X86::BI__builtin_ia32_scattersiv2df: 13335 case X86::BI__builtin_ia32_scattersiv2di: 13336 case X86::BI__builtin_ia32_scattersiv4df: 13337 case X86::BI__builtin_ia32_scattersiv4di: 13338 case X86::BI__builtin_ia32_scattersiv4sf: 13339 case X86::BI__builtin_ia32_scattersiv4si: 13340 case X86::BI__builtin_ia32_scattersiv8sf: 13341 case X86::BI__builtin_ia32_scattersiv8si: { 13342 Intrinsic::ID IID; 13343 switch (BuiltinID) { 13344 default: llvm_unreachable("Unexpected builtin"); 13345 case X86::BI__builtin_ia32_scattersiv8df: 13346 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; 13347 break; 13348 case X86::BI__builtin_ia32_scattersiv16sf: 13349 IID = Intrinsic::x86_avx512_mask_scatter_dps_512; 13350 break; 13351 case X86::BI__builtin_ia32_scatterdiv8df: 13352 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; 13353 break; 13354 case X86::BI__builtin_ia32_scatterdiv16sf: 13355 IID = Intrinsic::x86_avx512_mask_scatter_qps_512; 13356 break; 13357 case X86::BI__builtin_ia32_scattersiv8di: 13358 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; 13359 break; 13360 case X86::BI__builtin_ia32_scattersiv16si: 13361 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; 13362 break; 13363 case X86::BI__builtin_ia32_scatterdiv8di: 13364 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; 13365 break; 13366 case X86::BI__builtin_ia32_scatterdiv16si: 13367 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; 13368 break; 13369 case X86::BI__builtin_ia32_scatterdiv2df: 13370 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; 13371 break; 13372 case X86::BI__builtin_ia32_scatterdiv2di: 13373 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; 13374 break; 13375 case X86::BI__builtin_ia32_scatterdiv4df: 13376 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; 13377 break; 13378 case X86::BI__builtin_ia32_scatterdiv4di: 13379 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; 13380 break; 13381 case X86::BI__builtin_ia32_scatterdiv4sf: 13382 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; 13383 break; 13384 case X86::BI__builtin_ia32_scatterdiv4si: 13385 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; 13386 break; 13387 case X86::BI__builtin_ia32_scatterdiv8sf: 13388 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; 13389 break; 13390 case X86::BI__builtin_ia32_scatterdiv8si: 13391 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; 13392 break; 13393 case X86::BI__builtin_ia32_scattersiv2df: 13394 IID = Intrinsic::x86_avx512_mask_scattersiv2_df; 13395 break; 13396 case X86::BI__builtin_ia32_scattersiv2di: 13397 IID = Intrinsic::x86_avx512_mask_scattersiv2_di; 13398 break; 13399 case X86::BI__builtin_ia32_scattersiv4df: 13400 IID = Intrinsic::x86_avx512_mask_scattersiv4_df; 13401 break; 13402 case X86::BI__builtin_ia32_scattersiv4di: 13403 IID = Intrinsic::x86_avx512_mask_scattersiv4_di; 13404 break; 13405 case X86::BI__builtin_ia32_scattersiv4sf: 13406 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; 13407 break; 13408 case X86::BI__builtin_ia32_scattersiv4si: 13409 IID = Intrinsic::x86_avx512_mask_scattersiv4_si; 13410 break; 13411 case X86::BI__builtin_ia32_scattersiv8sf: 13412 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; 13413 break; 13414 case X86::BI__builtin_ia32_scattersiv8si: 13415 IID = Intrinsic::x86_avx512_mask_scattersiv8_si; 13416 break; 13417 } 13418 13419 unsigned MinElts = std::min( 13420 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(), 13421 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements()); 13422 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); 13423 Function *Intr = CGM.getIntrinsic(IID); 13424 return Builder.CreateCall(Intr, Ops); 13425 } 13426 13427 case X86::BI__builtin_ia32_vextractf128_pd256: 13428 case X86::BI__builtin_ia32_vextractf128_ps256: 13429 case X86::BI__builtin_ia32_vextractf128_si256: 13430 case X86::BI__builtin_ia32_extract128i256: 13431 case X86::BI__builtin_ia32_extractf64x4_mask: 13432 case X86::BI__builtin_ia32_extractf32x4_mask: 13433 case X86::BI__builtin_ia32_extracti64x4_mask: 13434 case X86::BI__builtin_ia32_extracti32x4_mask: 13435 case X86::BI__builtin_ia32_extractf32x8_mask: 13436 case X86::BI__builtin_ia32_extracti32x8_mask: 13437 case X86::BI__builtin_ia32_extractf32x4_256_mask: 13438 case X86::BI__builtin_ia32_extracti32x4_256_mask: 13439 case X86::BI__builtin_ia32_extractf64x2_256_mask: 13440 case X86::BI__builtin_ia32_extracti64x2_256_mask: 13441 case X86::BI__builtin_ia32_extractf64x2_512_mask: 13442 case X86::BI__builtin_ia32_extracti64x2_512_mask: { 13443 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType())); 13444 unsigned NumElts = DstTy->getNumElements(); 13445 unsigned SrcNumElts = 13446 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13447 unsigned SubVectors = SrcNumElts / NumElts; 13448 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 13449 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 13450 Index &= SubVectors - 1; // Remove any extra bits. 13451 Index *= NumElts; 13452 13453 int Indices[16]; 13454 for (unsigned i = 0; i != NumElts; ++i) 13455 Indices[i] = i + Index; 13456 13457 Value *Res = Builder.CreateShuffleVector(Ops[0], 13458 makeArrayRef(Indices, NumElts), 13459 "extract"); 13460 13461 if (Ops.size() == 4) 13462 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); 13463 13464 return Res; 13465 } 13466 case X86::BI__builtin_ia32_vinsertf128_pd256: 13467 case X86::BI__builtin_ia32_vinsertf128_ps256: 13468 case X86::BI__builtin_ia32_vinsertf128_si256: 13469 case X86::BI__builtin_ia32_insert128i256: 13470 case X86::BI__builtin_ia32_insertf64x4: 13471 case X86::BI__builtin_ia32_insertf32x4: 13472 case X86::BI__builtin_ia32_inserti64x4: 13473 case X86::BI__builtin_ia32_inserti32x4: 13474 case X86::BI__builtin_ia32_insertf32x8: 13475 case X86::BI__builtin_ia32_inserti32x8: 13476 case X86::BI__builtin_ia32_insertf32x4_256: 13477 case X86::BI__builtin_ia32_inserti32x4_256: 13478 case X86::BI__builtin_ia32_insertf64x2_256: 13479 case X86::BI__builtin_ia32_inserti64x2_256: 13480 case X86::BI__builtin_ia32_insertf64x2_512: 13481 case X86::BI__builtin_ia32_inserti64x2_512: { 13482 unsigned DstNumElts = 13483 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13484 unsigned SrcNumElts = 13485 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements(); 13486 unsigned SubVectors = DstNumElts / SrcNumElts; 13487 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 13488 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 13489 Index &= SubVectors - 1; // Remove any extra bits. 13490 Index *= SrcNumElts; 13491 13492 int Indices[16]; 13493 for (unsigned i = 0; i != DstNumElts; ++i) 13494 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; 13495 13496 Value *Op1 = Builder.CreateShuffleVector(Ops[1], 13497 makeArrayRef(Indices, DstNumElts), 13498 "widen"); 13499 13500 for (unsigned i = 0; i != DstNumElts; ++i) { 13501 if (i >= Index && i < (Index + SrcNumElts)) 13502 Indices[i] = (i - Index) + DstNumElts; 13503 else 13504 Indices[i] = i; 13505 } 13506 13507 return Builder.CreateShuffleVector(Ops[0], Op1, 13508 makeArrayRef(Indices, DstNumElts), 13509 "insert"); 13510 } 13511 case X86::BI__builtin_ia32_pmovqd512_mask: 13512 case X86::BI__builtin_ia32_pmovwb512_mask: { 13513 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 13514 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 13515 } 13516 case X86::BI__builtin_ia32_pmovdb512_mask: 13517 case X86::BI__builtin_ia32_pmovdw512_mask: 13518 case X86::BI__builtin_ia32_pmovqw512_mask: { 13519 if (const auto *C = dyn_cast<Constant>(Ops[2])) 13520 if (C->isAllOnesValue()) 13521 return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 13522 13523 Intrinsic::ID IID; 13524 switch (BuiltinID) { 13525 default: llvm_unreachable("Unsupported intrinsic!"); 13526 case X86::BI__builtin_ia32_pmovdb512_mask: 13527 IID = Intrinsic::x86_avx512_mask_pmov_db_512; 13528 break; 13529 case X86::BI__builtin_ia32_pmovdw512_mask: 13530 IID = Intrinsic::x86_avx512_mask_pmov_dw_512; 13531 break; 13532 case X86::BI__builtin_ia32_pmovqw512_mask: 13533 IID = Intrinsic::x86_avx512_mask_pmov_qw_512; 13534 break; 13535 } 13536 13537 Function *Intr = CGM.getIntrinsic(IID); 13538 return Builder.CreateCall(Intr, Ops); 13539 } 13540 case X86::BI__builtin_ia32_pblendw128: 13541 case X86::BI__builtin_ia32_blendpd: 13542 case X86::BI__builtin_ia32_blendps: 13543 case X86::BI__builtin_ia32_blendpd256: 13544 case X86::BI__builtin_ia32_blendps256: 13545 case X86::BI__builtin_ia32_pblendw256: 13546 case X86::BI__builtin_ia32_pblendd128: 13547 case X86::BI__builtin_ia32_pblendd256: { 13548 unsigned NumElts = 13549 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13550 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13551 13552 int Indices[16]; 13553 // If there are more than 8 elements, the immediate is used twice so make 13554 // sure we handle that. 13555 for (unsigned i = 0; i != NumElts; ++i) 13556 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; 13557 13558 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13559 makeArrayRef(Indices, NumElts), 13560 "blend"); 13561 } 13562 case X86::BI__builtin_ia32_pshuflw: 13563 case X86::BI__builtin_ia32_pshuflw256: 13564 case X86::BI__builtin_ia32_pshuflw512: { 13565 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13566 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13567 unsigned NumElts = Ty->getNumElements(); 13568 13569 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13570 Imm = (Imm & 0xff) * 0x01010101; 13571 13572 int Indices[32]; 13573 for (unsigned l = 0; l != NumElts; l += 8) { 13574 for (unsigned i = 0; i != 4; ++i) { 13575 Indices[l + i] = l + (Imm & 3); 13576 Imm >>= 2; 13577 } 13578 for (unsigned i = 4; i != 8; ++i) 13579 Indices[l + i] = l + i; 13580 } 13581 13582 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13583 "pshuflw"); 13584 } 13585 case X86::BI__builtin_ia32_pshufhw: 13586 case X86::BI__builtin_ia32_pshufhw256: 13587 case X86::BI__builtin_ia32_pshufhw512: { 13588 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13589 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13590 unsigned NumElts = Ty->getNumElements(); 13591 13592 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13593 Imm = (Imm & 0xff) * 0x01010101; 13594 13595 int Indices[32]; 13596 for (unsigned l = 0; l != NumElts; l += 8) { 13597 for (unsigned i = 0; i != 4; ++i) 13598 Indices[l + i] = l + i; 13599 for (unsigned i = 4; i != 8; ++i) { 13600 Indices[l + i] = l + 4 + (Imm & 3); 13601 Imm >>= 2; 13602 } 13603 } 13604 13605 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13606 "pshufhw"); 13607 } 13608 case X86::BI__builtin_ia32_pshufd: 13609 case X86::BI__builtin_ia32_pshufd256: 13610 case X86::BI__builtin_ia32_pshufd512: 13611 case X86::BI__builtin_ia32_vpermilpd: 13612 case X86::BI__builtin_ia32_vpermilps: 13613 case X86::BI__builtin_ia32_vpermilpd256: 13614 case X86::BI__builtin_ia32_vpermilps256: 13615 case X86::BI__builtin_ia32_vpermilpd512: 13616 case X86::BI__builtin_ia32_vpermilps512: { 13617 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13618 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13619 unsigned NumElts = Ty->getNumElements(); 13620 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13621 unsigned NumLaneElts = NumElts / NumLanes; 13622 13623 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13624 Imm = (Imm & 0xff) * 0x01010101; 13625 13626 int Indices[16]; 13627 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13628 for (unsigned i = 0; i != NumLaneElts; ++i) { 13629 Indices[i + l] = (Imm % NumLaneElts) + l; 13630 Imm /= NumLaneElts; 13631 } 13632 } 13633 13634 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13635 "permil"); 13636 } 13637 case X86::BI__builtin_ia32_shufpd: 13638 case X86::BI__builtin_ia32_shufpd256: 13639 case X86::BI__builtin_ia32_shufpd512: 13640 case X86::BI__builtin_ia32_shufps: 13641 case X86::BI__builtin_ia32_shufps256: 13642 case X86::BI__builtin_ia32_shufps512: { 13643 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13644 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13645 unsigned NumElts = Ty->getNumElements(); 13646 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13647 unsigned NumLaneElts = NumElts / NumLanes; 13648 13649 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13650 Imm = (Imm & 0xff) * 0x01010101; 13651 13652 int Indices[16]; 13653 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13654 for (unsigned i = 0; i != NumLaneElts; ++i) { 13655 unsigned Index = Imm % NumLaneElts; 13656 Imm /= NumLaneElts; 13657 if (i >= (NumLaneElts / 2)) 13658 Index += NumElts; 13659 Indices[l + i] = l + Index; 13660 } 13661 } 13662 13663 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13664 makeArrayRef(Indices, NumElts), 13665 "shufp"); 13666 } 13667 case X86::BI__builtin_ia32_permdi256: 13668 case X86::BI__builtin_ia32_permdf256: 13669 case X86::BI__builtin_ia32_permdi512: 13670 case X86::BI__builtin_ia32_permdf512: { 13671 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13672 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13673 unsigned NumElts = Ty->getNumElements(); 13674 13675 // These intrinsics operate on 256-bit lanes of four 64-bit elements. 13676 int Indices[8]; 13677 for (unsigned l = 0; l != NumElts; l += 4) 13678 for (unsigned i = 0; i != 4; ++i) 13679 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); 13680 13681 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13682 "perm"); 13683 } 13684 case X86::BI__builtin_ia32_palignr128: 13685 case X86::BI__builtin_ia32_palignr256: 13686 case X86::BI__builtin_ia32_palignr512: { 13687 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13688 13689 unsigned NumElts = 13690 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13691 assert(NumElts % 16 == 0); 13692 13693 // If palignr is shifting the pair of vectors more than the size of two 13694 // lanes, emit zero. 13695 if (ShiftVal >= 32) 13696 return llvm::Constant::getNullValue(ConvertType(E->getType())); 13697 13698 // If palignr is shifting the pair of input vectors more than one lane, 13699 // but less than two lanes, convert to shifting in zeroes. 13700 if (ShiftVal > 16) { 13701 ShiftVal -= 16; 13702 Ops[1] = Ops[0]; 13703 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); 13704 } 13705 13706 int Indices[64]; 13707 // 256-bit palignr operates on 128-bit lanes so we need to handle that 13708 for (unsigned l = 0; l != NumElts; l += 16) { 13709 for (unsigned i = 0; i != 16; ++i) { 13710 unsigned Idx = ShiftVal + i; 13711 if (Idx >= 16) 13712 Idx += NumElts - 16; // End of lane, switch operand. 13713 Indices[l + i] = Idx + l; 13714 } 13715 } 13716 13717 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13718 makeArrayRef(Indices, NumElts), 13719 "palignr"); 13720 } 13721 case X86::BI__builtin_ia32_alignd128: 13722 case X86::BI__builtin_ia32_alignd256: 13723 case X86::BI__builtin_ia32_alignd512: 13724 case X86::BI__builtin_ia32_alignq128: 13725 case X86::BI__builtin_ia32_alignq256: 13726 case X86::BI__builtin_ia32_alignq512: { 13727 unsigned NumElts = 13728 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13729 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13730 13731 // Mask the shift amount to width of a vector. 13732 ShiftVal &= NumElts - 1; 13733 13734 int Indices[16]; 13735 for (unsigned i = 0; i != NumElts; ++i) 13736 Indices[i] = i + ShiftVal; 13737 13738 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13739 makeArrayRef(Indices, NumElts), 13740 "valign"); 13741 } 13742 case X86::BI__builtin_ia32_shuf_f32x4_256: 13743 case X86::BI__builtin_ia32_shuf_f64x2_256: 13744 case X86::BI__builtin_ia32_shuf_i32x4_256: 13745 case X86::BI__builtin_ia32_shuf_i64x2_256: 13746 case X86::BI__builtin_ia32_shuf_f32x4: 13747 case X86::BI__builtin_ia32_shuf_f64x2: 13748 case X86::BI__builtin_ia32_shuf_i32x4: 13749 case X86::BI__builtin_ia32_shuf_i64x2: { 13750 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13751 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13752 unsigned NumElts = Ty->getNumElements(); 13753 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; 13754 unsigned NumLaneElts = NumElts / NumLanes; 13755 13756 int Indices[16]; 13757 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13758 unsigned Index = (Imm % NumLanes) * NumLaneElts; 13759 Imm /= NumLanes; // Discard the bits we just used. 13760 if (l >= (NumElts / 2)) 13761 Index += NumElts; // Switch to other source. 13762 for (unsigned i = 0; i != NumLaneElts; ++i) { 13763 Indices[l + i] = Index + i; 13764 } 13765 } 13766 13767 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13768 makeArrayRef(Indices, NumElts), 13769 "shuf"); 13770 } 13771 13772 case X86::BI__builtin_ia32_vperm2f128_pd256: 13773 case X86::BI__builtin_ia32_vperm2f128_ps256: 13774 case X86::BI__builtin_ia32_vperm2f128_si256: 13775 case X86::BI__builtin_ia32_permti256: { 13776 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13777 unsigned NumElts = 13778 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13779 13780 // This takes a very simple approach since there are two lanes and a 13781 // shuffle can have 2 inputs. So we reserve the first input for the first 13782 // lane and the second input for the second lane. This may result in 13783 // duplicate sources, but this can be dealt with in the backend. 13784 13785 Value *OutOps[2]; 13786 int Indices[8]; 13787 for (unsigned l = 0; l != 2; ++l) { 13788 // Determine the source for this lane. 13789 if (Imm & (1 << ((l * 4) + 3))) 13790 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); 13791 else if (Imm & (1 << ((l * 4) + 1))) 13792 OutOps[l] = Ops[1]; 13793 else 13794 OutOps[l] = Ops[0]; 13795 13796 for (unsigned i = 0; i != NumElts/2; ++i) { 13797 // Start with ith element of the source for this lane. 13798 unsigned Idx = (l * NumElts) + i; 13799 // If bit 0 of the immediate half is set, switch to the high half of 13800 // the source. 13801 if (Imm & (1 << (l * 4))) 13802 Idx += NumElts/2; 13803 Indices[(l * (NumElts/2)) + i] = Idx; 13804 } 13805 } 13806 13807 return Builder.CreateShuffleVector(OutOps[0], OutOps[1], 13808 makeArrayRef(Indices, NumElts), 13809 "vperm"); 13810 } 13811 13812 case X86::BI__builtin_ia32_pslldqi128_byteshift: 13813 case X86::BI__builtin_ia32_pslldqi256_byteshift: 13814 case X86::BI__builtin_ia32_pslldqi512_byteshift: { 13815 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13816 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13817 // Builtin type is vXi64 so multiply by 8 to get bytes. 13818 unsigned NumElts = ResultType->getNumElements() * 8; 13819 13820 // If pslldq is shifting the vector more than 15 bytes, emit zero. 13821 if (ShiftVal >= 16) 13822 return llvm::Constant::getNullValue(ResultType); 13823 13824 int Indices[64]; 13825 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that 13826 for (unsigned l = 0; l != NumElts; l += 16) { 13827 for (unsigned i = 0; i != 16; ++i) { 13828 unsigned Idx = NumElts + i - ShiftVal; 13829 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. 13830 Indices[l + i] = Idx + l; 13831 } 13832 } 13833 13834 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13835 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13836 Value *Zero = llvm::Constant::getNullValue(VecTy); 13837 Value *SV = Builder.CreateShuffleVector(Zero, Cast, 13838 makeArrayRef(Indices, NumElts), 13839 "pslldq"); 13840 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); 13841 } 13842 case X86::BI__builtin_ia32_psrldqi128_byteshift: 13843 case X86::BI__builtin_ia32_psrldqi256_byteshift: 13844 case X86::BI__builtin_ia32_psrldqi512_byteshift: { 13845 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13846 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13847 // Builtin type is vXi64 so multiply by 8 to get bytes. 13848 unsigned NumElts = ResultType->getNumElements() * 8; 13849 13850 // If psrldq is shifting the vector more than 15 bytes, emit zero. 13851 if (ShiftVal >= 16) 13852 return llvm::Constant::getNullValue(ResultType); 13853 13854 int Indices[64]; 13855 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that 13856 for (unsigned l = 0; l != NumElts; l += 16) { 13857 for (unsigned i = 0; i != 16; ++i) { 13858 unsigned Idx = i + ShiftVal; 13859 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. 13860 Indices[l + i] = Idx + l; 13861 } 13862 } 13863 13864 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13865 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13866 Value *Zero = llvm::Constant::getNullValue(VecTy); 13867 Value *SV = Builder.CreateShuffleVector(Cast, Zero, 13868 makeArrayRef(Indices, NumElts), 13869 "psrldq"); 13870 return Builder.CreateBitCast(SV, ResultType, "cast"); 13871 } 13872 case X86::BI__builtin_ia32_kshiftliqi: 13873 case X86::BI__builtin_ia32_kshiftlihi: 13874 case X86::BI__builtin_ia32_kshiftlisi: 13875 case X86::BI__builtin_ia32_kshiftlidi: { 13876 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13877 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13878 13879 if (ShiftVal >= NumElts) 13880 return llvm::Constant::getNullValue(Ops[0]->getType()); 13881 13882 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13883 13884 int Indices[64]; 13885 for (unsigned i = 0; i != NumElts; ++i) 13886 Indices[i] = NumElts + i - ShiftVal; 13887 13888 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13889 Value *SV = Builder.CreateShuffleVector(Zero, In, 13890 makeArrayRef(Indices, NumElts), 13891 "kshiftl"); 13892 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13893 } 13894 case X86::BI__builtin_ia32_kshiftriqi: 13895 case X86::BI__builtin_ia32_kshiftrihi: 13896 case X86::BI__builtin_ia32_kshiftrisi: 13897 case X86::BI__builtin_ia32_kshiftridi: { 13898 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13899 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13900 13901 if (ShiftVal >= NumElts) 13902 return llvm::Constant::getNullValue(Ops[0]->getType()); 13903 13904 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13905 13906 int Indices[64]; 13907 for (unsigned i = 0; i != NumElts; ++i) 13908 Indices[i] = i + ShiftVal; 13909 13910 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13911 Value *SV = Builder.CreateShuffleVector(In, Zero, 13912 makeArrayRef(Indices, NumElts), 13913 "kshiftr"); 13914 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13915 } 13916 case X86::BI__builtin_ia32_movnti: 13917 case X86::BI__builtin_ia32_movnti64: 13918 case X86::BI__builtin_ia32_movntsd: 13919 case X86::BI__builtin_ia32_movntss: { 13920 llvm::MDNode *Node = llvm::MDNode::get( 13921 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 13922 13923 Value *Ptr = Ops[0]; 13924 Value *Src = Ops[1]; 13925 13926 // Extract the 0'th element of the source vector. 13927 if (BuiltinID == X86::BI__builtin_ia32_movntsd || 13928 BuiltinID == X86::BI__builtin_ia32_movntss) 13929 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); 13930 13931 // Convert the type of the pointer to a pointer to the stored type. 13932 Value *BC = Builder.CreateBitCast( 13933 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); 13934 13935 // Unaligned nontemporal store of the scalar value. 13936 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); 13937 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 13938 SI->setAlignment(llvm::Align(1)); 13939 return SI; 13940 } 13941 // Rotate is a special case of funnel shift - 1st 2 args are the same. 13942 case X86::BI__builtin_ia32_vprotb: 13943 case X86::BI__builtin_ia32_vprotw: 13944 case X86::BI__builtin_ia32_vprotd: 13945 case X86::BI__builtin_ia32_vprotq: 13946 case X86::BI__builtin_ia32_vprotbi: 13947 case X86::BI__builtin_ia32_vprotwi: 13948 case X86::BI__builtin_ia32_vprotdi: 13949 case X86::BI__builtin_ia32_vprotqi: 13950 case X86::BI__builtin_ia32_prold128: 13951 case X86::BI__builtin_ia32_prold256: 13952 case X86::BI__builtin_ia32_prold512: 13953 case X86::BI__builtin_ia32_prolq128: 13954 case X86::BI__builtin_ia32_prolq256: 13955 case X86::BI__builtin_ia32_prolq512: 13956 case X86::BI__builtin_ia32_prolvd128: 13957 case X86::BI__builtin_ia32_prolvd256: 13958 case X86::BI__builtin_ia32_prolvd512: 13959 case X86::BI__builtin_ia32_prolvq128: 13960 case X86::BI__builtin_ia32_prolvq256: 13961 case X86::BI__builtin_ia32_prolvq512: 13962 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); 13963 case X86::BI__builtin_ia32_prord128: 13964 case X86::BI__builtin_ia32_prord256: 13965 case X86::BI__builtin_ia32_prord512: 13966 case X86::BI__builtin_ia32_prorq128: 13967 case X86::BI__builtin_ia32_prorq256: 13968 case X86::BI__builtin_ia32_prorq512: 13969 case X86::BI__builtin_ia32_prorvd128: 13970 case X86::BI__builtin_ia32_prorvd256: 13971 case X86::BI__builtin_ia32_prorvd512: 13972 case X86::BI__builtin_ia32_prorvq128: 13973 case X86::BI__builtin_ia32_prorvq256: 13974 case X86::BI__builtin_ia32_prorvq512: 13975 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); 13976 case X86::BI__builtin_ia32_selectb_128: 13977 case X86::BI__builtin_ia32_selectb_256: 13978 case X86::BI__builtin_ia32_selectb_512: 13979 case X86::BI__builtin_ia32_selectw_128: 13980 case X86::BI__builtin_ia32_selectw_256: 13981 case X86::BI__builtin_ia32_selectw_512: 13982 case X86::BI__builtin_ia32_selectd_128: 13983 case X86::BI__builtin_ia32_selectd_256: 13984 case X86::BI__builtin_ia32_selectd_512: 13985 case X86::BI__builtin_ia32_selectq_128: 13986 case X86::BI__builtin_ia32_selectq_256: 13987 case X86::BI__builtin_ia32_selectq_512: 13988 case X86::BI__builtin_ia32_selectph_128: 13989 case X86::BI__builtin_ia32_selectph_256: 13990 case X86::BI__builtin_ia32_selectph_512: 13991 case X86::BI__builtin_ia32_selectps_128: 13992 case X86::BI__builtin_ia32_selectps_256: 13993 case X86::BI__builtin_ia32_selectps_512: 13994 case X86::BI__builtin_ia32_selectpd_128: 13995 case X86::BI__builtin_ia32_selectpd_256: 13996 case X86::BI__builtin_ia32_selectpd_512: 13997 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); 13998 case X86::BI__builtin_ia32_selectsh_128: 13999 case X86::BI__builtin_ia32_selectss_128: 14000 case X86::BI__builtin_ia32_selectsd_128: { 14001 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 14002 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 14003 A = EmitX86ScalarSelect(*this, Ops[0], A, B); 14004 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); 14005 } 14006 case X86::BI__builtin_ia32_cmpb128_mask: 14007 case X86::BI__builtin_ia32_cmpb256_mask: 14008 case X86::BI__builtin_ia32_cmpb512_mask: 14009 case X86::BI__builtin_ia32_cmpw128_mask: 14010 case X86::BI__builtin_ia32_cmpw256_mask: 14011 case X86::BI__builtin_ia32_cmpw512_mask: 14012 case X86::BI__builtin_ia32_cmpd128_mask: 14013 case X86::BI__builtin_ia32_cmpd256_mask: 14014 case X86::BI__builtin_ia32_cmpd512_mask: 14015 case X86::BI__builtin_ia32_cmpq128_mask: 14016 case X86::BI__builtin_ia32_cmpq256_mask: 14017 case X86::BI__builtin_ia32_cmpq512_mask: { 14018 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 14019 return EmitX86MaskedCompare(*this, CC, true, Ops); 14020 } 14021 case X86::BI__builtin_ia32_ucmpb128_mask: 14022 case X86::BI__builtin_ia32_ucmpb256_mask: 14023 case X86::BI__builtin_ia32_ucmpb512_mask: 14024 case X86::BI__builtin_ia32_ucmpw128_mask: 14025 case X86::BI__builtin_ia32_ucmpw256_mask: 14026 case X86::BI__builtin_ia32_ucmpw512_mask: 14027 case X86::BI__builtin_ia32_ucmpd128_mask: 14028 case X86::BI__builtin_ia32_ucmpd256_mask: 14029 case X86::BI__builtin_ia32_ucmpd512_mask: 14030 case X86::BI__builtin_ia32_ucmpq128_mask: 14031 case X86::BI__builtin_ia32_ucmpq256_mask: 14032 case X86::BI__builtin_ia32_ucmpq512_mask: { 14033 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 14034 return EmitX86MaskedCompare(*this, CC, false, Ops); 14035 } 14036 case X86::BI__builtin_ia32_vpcomb: 14037 case X86::BI__builtin_ia32_vpcomw: 14038 case X86::BI__builtin_ia32_vpcomd: 14039 case X86::BI__builtin_ia32_vpcomq: 14040 return EmitX86vpcom(*this, Ops, true); 14041 case X86::BI__builtin_ia32_vpcomub: 14042 case X86::BI__builtin_ia32_vpcomuw: 14043 case X86::BI__builtin_ia32_vpcomud: 14044 case X86::BI__builtin_ia32_vpcomuq: 14045 return EmitX86vpcom(*this, Ops, false); 14046 14047 case X86::BI__builtin_ia32_kortestcqi: 14048 case X86::BI__builtin_ia32_kortestchi: 14049 case X86::BI__builtin_ia32_kortestcsi: 14050 case X86::BI__builtin_ia32_kortestcdi: { 14051 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 14052 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); 14053 Value *Cmp = Builder.CreateICmpEQ(Or, C); 14054 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 14055 } 14056 case X86::BI__builtin_ia32_kortestzqi: 14057 case X86::BI__builtin_ia32_kortestzhi: 14058 case X86::BI__builtin_ia32_kortestzsi: 14059 case X86::BI__builtin_ia32_kortestzdi: { 14060 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 14061 Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); 14062 Value *Cmp = Builder.CreateICmpEQ(Or, C); 14063 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 14064 } 14065 14066 case X86::BI__builtin_ia32_ktestcqi: 14067 case X86::BI__builtin_ia32_ktestzqi: 14068 case X86::BI__builtin_ia32_ktestchi: 14069 case X86::BI__builtin_ia32_ktestzhi: 14070 case X86::BI__builtin_ia32_ktestcsi: 14071 case X86::BI__builtin_ia32_ktestzsi: 14072 case X86::BI__builtin_ia32_ktestcdi: 14073 case X86::BI__builtin_ia32_ktestzdi: { 14074 Intrinsic::ID IID; 14075 switch (BuiltinID) { 14076 default: llvm_unreachable("Unsupported intrinsic!"); 14077 case X86::BI__builtin_ia32_ktestcqi: 14078 IID = Intrinsic::x86_avx512_ktestc_b; 14079 break; 14080 case X86::BI__builtin_ia32_ktestzqi: 14081 IID = Intrinsic::x86_avx512_ktestz_b; 14082 break; 14083 case X86::BI__builtin_ia32_ktestchi: 14084 IID = Intrinsic::x86_avx512_ktestc_w; 14085 break; 14086 case X86::BI__builtin_ia32_ktestzhi: 14087 IID = Intrinsic::x86_avx512_ktestz_w; 14088 break; 14089 case X86::BI__builtin_ia32_ktestcsi: 14090 IID = Intrinsic::x86_avx512_ktestc_d; 14091 break; 14092 case X86::BI__builtin_ia32_ktestzsi: 14093 IID = Intrinsic::x86_avx512_ktestz_d; 14094 break; 14095 case X86::BI__builtin_ia32_ktestcdi: 14096 IID = Intrinsic::x86_avx512_ktestc_q; 14097 break; 14098 case X86::BI__builtin_ia32_ktestzdi: 14099 IID = Intrinsic::x86_avx512_ktestz_q; 14100 break; 14101 } 14102 14103 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 14104 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 14105 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 14106 Function *Intr = CGM.getIntrinsic(IID); 14107 return Builder.CreateCall(Intr, {LHS, RHS}); 14108 } 14109 14110 case X86::BI__builtin_ia32_kaddqi: 14111 case X86::BI__builtin_ia32_kaddhi: 14112 case X86::BI__builtin_ia32_kaddsi: 14113 case X86::BI__builtin_ia32_kadddi: { 14114 Intrinsic::ID IID; 14115 switch (BuiltinID) { 14116 default: llvm_unreachable("Unsupported intrinsic!"); 14117 case X86::BI__builtin_ia32_kaddqi: 14118 IID = Intrinsic::x86_avx512_kadd_b; 14119 break; 14120 case X86::BI__builtin_ia32_kaddhi: 14121 IID = Intrinsic::x86_avx512_kadd_w; 14122 break; 14123 case X86::BI__builtin_ia32_kaddsi: 14124 IID = Intrinsic::x86_avx512_kadd_d; 14125 break; 14126 case X86::BI__builtin_ia32_kadddi: 14127 IID = Intrinsic::x86_avx512_kadd_q; 14128 break; 14129 } 14130 14131 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 14132 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 14133 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 14134 Function *Intr = CGM.getIntrinsic(IID); 14135 Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); 14136 return Builder.CreateBitCast(Res, Ops[0]->getType()); 14137 } 14138 case X86::BI__builtin_ia32_kandqi: 14139 case X86::BI__builtin_ia32_kandhi: 14140 case X86::BI__builtin_ia32_kandsi: 14141 case X86::BI__builtin_ia32_kanddi: 14142 return EmitX86MaskLogic(*this, Instruction::And, Ops); 14143 case X86::BI__builtin_ia32_kandnqi: 14144 case X86::BI__builtin_ia32_kandnhi: 14145 case X86::BI__builtin_ia32_kandnsi: 14146 case X86::BI__builtin_ia32_kandndi: 14147 return EmitX86MaskLogic(*this, Instruction::And, Ops, true); 14148 case X86::BI__builtin_ia32_korqi: 14149 case X86::BI__builtin_ia32_korhi: 14150 case X86::BI__builtin_ia32_korsi: 14151 case X86::BI__builtin_ia32_kordi: 14152 return EmitX86MaskLogic(*this, Instruction::Or, Ops); 14153 case X86::BI__builtin_ia32_kxnorqi: 14154 case X86::BI__builtin_ia32_kxnorhi: 14155 case X86::BI__builtin_ia32_kxnorsi: 14156 case X86::BI__builtin_ia32_kxnordi: 14157 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); 14158 case X86::BI__builtin_ia32_kxorqi: 14159 case X86::BI__builtin_ia32_kxorhi: 14160 case X86::BI__builtin_ia32_kxorsi: 14161 case X86::BI__builtin_ia32_kxordi: 14162 return EmitX86MaskLogic(*this, Instruction::Xor, Ops); 14163 case X86::BI__builtin_ia32_knotqi: 14164 case X86::BI__builtin_ia32_knothi: 14165 case X86::BI__builtin_ia32_knotsi: 14166 case X86::BI__builtin_ia32_knotdi: { 14167 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 14168 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 14169 return Builder.CreateBitCast(Builder.CreateNot(Res), 14170 Ops[0]->getType()); 14171 } 14172 case X86::BI__builtin_ia32_kmovb: 14173 case X86::BI__builtin_ia32_kmovw: 14174 case X86::BI__builtin_ia32_kmovd: 14175 case X86::BI__builtin_ia32_kmovq: { 14176 // Bitcast to vXi1 type and then back to integer. This gets the mask 14177 // register type into the IR, but might be optimized out depending on 14178 // what's around it. 14179 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 14180 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 14181 return Builder.CreateBitCast(Res, Ops[0]->getType()); 14182 } 14183 14184 case X86::BI__builtin_ia32_kunpckdi: 14185 case X86::BI__builtin_ia32_kunpcksi: 14186 case X86::BI__builtin_ia32_kunpckhi: { 14187 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 14188 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 14189 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 14190 int Indices[64]; 14191 for (unsigned i = 0; i != NumElts; ++i) 14192 Indices[i] = i; 14193 14194 // First extract half of each vector. This gives better codegen than 14195 // doing it in a single shuffle. 14196 LHS = Builder.CreateShuffleVector(LHS, LHS, 14197 makeArrayRef(Indices, NumElts / 2)); 14198 RHS = Builder.CreateShuffleVector(RHS, RHS, 14199 makeArrayRef(Indices, NumElts / 2)); 14200 // Concat the vectors. 14201 // NOTE: Operands are swapped to match the intrinsic definition. 14202 Value *Res = Builder.CreateShuffleVector(RHS, LHS, 14203 makeArrayRef(Indices, NumElts)); 14204 return Builder.CreateBitCast(Res, Ops[0]->getType()); 14205 } 14206 14207 case X86::BI__builtin_ia32_vplzcntd_128: 14208 case X86::BI__builtin_ia32_vplzcntd_256: 14209 case X86::BI__builtin_ia32_vplzcntd_512: 14210 case X86::BI__builtin_ia32_vplzcntq_128: 14211 case X86::BI__builtin_ia32_vplzcntq_256: 14212 case X86::BI__builtin_ia32_vplzcntq_512: { 14213 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 14214 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); 14215 } 14216 case X86::BI__builtin_ia32_sqrtss: 14217 case X86::BI__builtin_ia32_sqrtsd: { 14218 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); 14219 Function *F; 14220 if (Builder.getIsFPConstrained()) { 14221 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14222 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 14223 A->getType()); 14224 A = Builder.CreateConstrainedFPCall(F, {A}); 14225 } else { 14226 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 14227 A = Builder.CreateCall(F, {A}); 14228 } 14229 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 14230 } 14231 case X86::BI__builtin_ia32_sqrtsh_round_mask: 14232 case X86::BI__builtin_ia32_sqrtsd_round_mask: 14233 case X86::BI__builtin_ia32_sqrtss_round_mask: { 14234 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 14235 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 14236 // otherwise keep the intrinsic. 14237 if (CC != 4) { 14238 Intrinsic::ID IID; 14239 14240 switch (BuiltinID) { 14241 default: 14242 llvm_unreachable("Unsupported intrinsic!"); 14243 case X86::BI__builtin_ia32_sqrtsh_round_mask: 14244 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh; 14245 break; 14246 case X86::BI__builtin_ia32_sqrtsd_round_mask: 14247 IID = Intrinsic::x86_avx512_mask_sqrt_sd; 14248 break; 14249 case X86::BI__builtin_ia32_sqrtss_round_mask: 14250 IID = Intrinsic::x86_avx512_mask_sqrt_ss; 14251 break; 14252 } 14253 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14254 } 14255 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 14256 Function *F; 14257 if (Builder.getIsFPConstrained()) { 14258 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14259 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 14260 A->getType()); 14261 A = Builder.CreateConstrainedFPCall(F, A); 14262 } else { 14263 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 14264 A = Builder.CreateCall(F, A); 14265 } 14266 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 14267 A = EmitX86ScalarSelect(*this, Ops[3], A, Src); 14268 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 14269 } 14270 case X86::BI__builtin_ia32_sqrtpd256: 14271 case X86::BI__builtin_ia32_sqrtpd: 14272 case X86::BI__builtin_ia32_sqrtps256: 14273 case X86::BI__builtin_ia32_sqrtps: 14274 case X86::BI__builtin_ia32_sqrtph256: 14275 case X86::BI__builtin_ia32_sqrtph: 14276 case X86::BI__builtin_ia32_sqrtph512: 14277 case X86::BI__builtin_ia32_sqrtps512: 14278 case X86::BI__builtin_ia32_sqrtpd512: { 14279 if (Ops.size() == 2) { 14280 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 14281 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 14282 // otherwise keep the intrinsic. 14283 if (CC != 4) { 14284 Intrinsic::ID IID; 14285 14286 switch (BuiltinID) { 14287 default: 14288 llvm_unreachable("Unsupported intrinsic!"); 14289 case X86::BI__builtin_ia32_sqrtph512: 14290 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512; 14291 break; 14292 case X86::BI__builtin_ia32_sqrtps512: 14293 IID = Intrinsic::x86_avx512_sqrt_ps_512; 14294 break; 14295 case X86::BI__builtin_ia32_sqrtpd512: 14296 IID = Intrinsic::x86_avx512_sqrt_pd_512; 14297 break; 14298 } 14299 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14300 } 14301 } 14302 if (Builder.getIsFPConstrained()) { 14303 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14304 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 14305 Ops[0]->getType()); 14306 return Builder.CreateConstrainedFPCall(F, Ops[0]); 14307 } else { 14308 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); 14309 return Builder.CreateCall(F, Ops[0]); 14310 } 14311 } 14312 14313 case X86::BI__builtin_ia32_pmuludq128: 14314 case X86::BI__builtin_ia32_pmuludq256: 14315 case X86::BI__builtin_ia32_pmuludq512: 14316 return EmitX86Muldq(*this, /*IsSigned*/false, Ops); 14317 14318 case X86::BI__builtin_ia32_pmuldq128: 14319 case X86::BI__builtin_ia32_pmuldq256: 14320 case X86::BI__builtin_ia32_pmuldq512: 14321 return EmitX86Muldq(*this, /*IsSigned*/true, Ops); 14322 14323 case X86::BI__builtin_ia32_pternlogd512_mask: 14324 case X86::BI__builtin_ia32_pternlogq512_mask: 14325 case X86::BI__builtin_ia32_pternlogd128_mask: 14326 case X86::BI__builtin_ia32_pternlogd256_mask: 14327 case X86::BI__builtin_ia32_pternlogq128_mask: 14328 case X86::BI__builtin_ia32_pternlogq256_mask: 14329 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); 14330 14331 case X86::BI__builtin_ia32_pternlogd512_maskz: 14332 case X86::BI__builtin_ia32_pternlogq512_maskz: 14333 case X86::BI__builtin_ia32_pternlogd128_maskz: 14334 case X86::BI__builtin_ia32_pternlogd256_maskz: 14335 case X86::BI__builtin_ia32_pternlogq128_maskz: 14336 case X86::BI__builtin_ia32_pternlogq256_maskz: 14337 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); 14338 14339 case X86::BI__builtin_ia32_vpshldd128: 14340 case X86::BI__builtin_ia32_vpshldd256: 14341 case X86::BI__builtin_ia32_vpshldd512: 14342 case X86::BI__builtin_ia32_vpshldq128: 14343 case X86::BI__builtin_ia32_vpshldq256: 14344 case X86::BI__builtin_ia32_vpshldq512: 14345 case X86::BI__builtin_ia32_vpshldw128: 14346 case X86::BI__builtin_ia32_vpshldw256: 14347 case X86::BI__builtin_ia32_vpshldw512: 14348 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 14349 14350 case X86::BI__builtin_ia32_vpshrdd128: 14351 case X86::BI__builtin_ia32_vpshrdd256: 14352 case X86::BI__builtin_ia32_vpshrdd512: 14353 case X86::BI__builtin_ia32_vpshrdq128: 14354 case X86::BI__builtin_ia32_vpshrdq256: 14355 case X86::BI__builtin_ia32_vpshrdq512: 14356 case X86::BI__builtin_ia32_vpshrdw128: 14357 case X86::BI__builtin_ia32_vpshrdw256: 14358 case X86::BI__builtin_ia32_vpshrdw512: 14359 // Ops 0 and 1 are swapped. 14360 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 14361 14362 case X86::BI__builtin_ia32_vpshldvd128: 14363 case X86::BI__builtin_ia32_vpshldvd256: 14364 case X86::BI__builtin_ia32_vpshldvd512: 14365 case X86::BI__builtin_ia32_vpshldvq128: 14366 case X86::BI__builtin_ia32_vpshldvq256: 14367 case X86::BI__builtin_ia32_vpshldvq512: 14368 case X86::BI__builtin_ia32_vpshldvw128: 14369 case X86::BI__builtin_ia32_vpshldvw256: 14370 case X86::BI__builtin_ia32_vpshldvw512: 14371 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 14372 14373 case X86::BI__builtin_ia32_vpshrdvd128: 14374 case X86::BI__builtin_ia32_vpshrdvd256: 14375 case X86::BI__builtin_ia32_vpshrdvd512: 14376 case X86::BI__builtin_ia32_vpshrdvq128: 14377 case X86::BI__builtin_ia32_vpshrdvq256: 14378 case X86::BI__builtin_ia32_vpshrdvq512: 14379 case X86::BI__builtin_ia32_vpshrdvw128: 14380 case X86::BI__builtin_ia32_vpshrdvw256: 14381 case X86::BI__builtin_ia32_vpshrdvw512: 14382 // Ops 0 and 1 are swapped. 14383 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 14384 14385 // Reductions 14386 case X86::BI__builtin_ia32_reduce_add_d512: 14387 case X86::BI__builtin_ia32_reduce_add_q512: { 14388 Function *F = 14389 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType()); 14390 return Builder.CreateCall(F, {Ops[0]}); 14391 } 14392 case X86::BI__builtin_ia32_reduce_fadd_pd512: 14393 case X86::BI__builtin_ia32_reduce_fadd_ps512: 14394 case X86::BI__builtin_ia32_reduce_fadd_ph512: 14395 case X86::BI__builtin_ia32_reduce_fadd_ph256: 14396 case X86::BI__builtin_ia32_reduce_fadd_ph128: { 14397 Function *F = 14398 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType()); 14399 Builder.getFastMathFlags().setAllowReassoc(); 14400 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 14401 } 14402 case X86::BI__builtin_ia32_reduce_fmul_pd512: 14403 case X86::BI__builtin_ia32_reduce_fmul_ps512: 14404 case X86::BI__builtin_ia32_reduce_fmul_ph512: 14405 case X86::BI__builtin_ia32_reduce_fmul_ph256: 14406 case X86::BI__builtin_ia32_reduce_fmul_ph128: { 14407 Function *F = 14408 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType()); 14409 Builder.getFastMathFlags().setAllowReassoc(); 14410 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 14411 } 14412 case X86::BI__builtin_ia32_reduce_fmax_pd512: 14413 case X86::BI__builtin_ia32_reduce_fmax_ps512: 14414 case X86::BI__builtin_ia32_reduce_fmax_ph512: 14415 case X86::BI__builtin_ia32_reduce_fmax_ph256: 14416 case X86::BI__builtin_ia32_reduce_fmax_ph128: { 14417 Function *F = 14418 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType()); 14419 Builder.getFastMathFlags().setNoNaNs(); 14420 return Builder.CreateCall(F, {Ops[0]}); 14421 } 14422 case X86::BI__builtin_ia32_reduce_fmin_pd512: 14423 case X86::BI__builtin_ia32_reduce_fmin_ps512: 14424 case X86::BI__builtin_ia32_reduce_fmin_ph512: 14425 case X86::BI__builtin_ia32_reduce_fmin_ph256: 14426 case X86::BI__builtin_ia32_reduce_fmin_ph128: { 14427 Function *F = 14428 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType()); 14429 Builder.getFastMathFlags().setNoNaNs(); 14430 return Builder.CreateCall(F, {Ops[0]}); 14431 } 14432 case X86::BI__builtin_ia32_reduce_mul_d512: 14433 case X86::BI__builtin_ia32_reduce_mul_q512: { 14434 Function *F = 14435 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType()); 14436 return Builder.CreateCall(F, {Ops[0]}); 14437 } 14438 14439 // 3DNow! 14440 case X86::BI__builtin_ia32_pswapdsf: 14441 case X86::BI__builtin_ia32_pswapdsi: { 14442 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); 14443 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); 14444 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); 14445 return Builder.CreateCall(F, Ops, "pswapd"); 14446 } 14447 case X86::BI__builtin_ia32_rdrand16_step: 14448 case X86::BI__builtin_ia32_rdrand32_step: 14449 case X86::BI__builtin_ia32_rdrand64_step: 14450 case X86::BI__builtin_ia32_rdseed16_step: 14451 case X86::BI__builtin_ia32_rdseed32_step: 14452 case X86::BI__builtin_ia32_rdseed64_step: { 14453 Intrinsic::ID ID; 14454 switch (BuiltinID) { 14455 default: llvm_unreachable("Unsupported intrinsic!"); 14456 case X86::BI__builtin_ia32_rdrand16_step: 14457 ID = Intrinsic::x86_rdrand_16; 14458 break; 14459 case X86::BI__builtin_ia32_rdrand32_step: 14460 ID = Intrinsic::x86_rdrand_32; 14461 break; 14462 case X86::BI__builtin_ia32_rdrand64_step: 14463 ID = Intrinsic::x86_rdrand_64; 14464 break; 14465 case X86::BI__builtin_ia32_rdseed16_step: 14466 ID = Intrinsic::x86_rdseed_16; 14467 break; 14468 case X86::BI__builtin_ia32_rdseed32_step: 14469 ID = Intrinsic::x86_rdseed_32; 14470 break; 14471 case X86::BI__builtin_ia32_rdseed64_step: 14472 ID = Intrinsic::x86_rdseed_64; 14473 break; 14474 } 14475 14476 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); 14477 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), 14478 Ops[0]); 14479 return Builder.CreateExtractValue(Call, 1); 14480 } 14481 case X86::BI__builtin_ia32_addcarryx_u32: 14482 case X86::BI__builtin_ia32_addcarryx_u64: 14483 case X86::BI__builtin_ia32_subborrow_u32: 14484 case X86::BI__builtin_ia32_subborrow_u64: { 14485 Intrinsic::ID IID; 14486 switch (BuiltinID) { 14487 default: llvm_unreachable("Unsupported intrinsic!"); 14488 case X86::BI__builtin_ia32_addcarryx_u32: 14489 IID = Intrinsic::x86_addcarry_32; 14490 break; 14491 case X86::BI__builtin_ia32_addcarryx_u64: 14492 IID = Intrinsic::x86_addcarry_64; 14493 break; 14494 case X86::BI__builtin_ia32_subborrow_u32: 14495 IID = Intrinsic::x86_subborrow_32; 14496 break; 14497 case X86::BI__builtin_ia32_subborrow_u64: 14498 IID = Intrinsic::x86_subborrow_64; 14499 break; 14500 } 14501 14502 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), 14503 { Ops[0], Ops[1], Ops[2] }); 14504 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 14505 Ops[3]); 14506 return Builder.CreateExtractValue(Call, 0); 14507 } 14508 14509 case X86::BI__builtin_ia32_fpclassps128_mask: 14510 case X86::BI__builtin_ia32_fpclassps256_mask: 14511 case X86::BI__builtin_ia32_fpclassps512_mask: 14512 case X86::BI__builtin_ia32_fpclassph128_mask: 14513 case X86::BI__builtin_ia32_fpclassph256_mask: 14514 case X86::BI__builtin_ia32_fpclassph512_mask: 14515 case X86::BI__builtin_ia32_fpclasspd128_mask: 14516 case X86::BI__builtin_ia32_fpclasspd256_mask: 14517 case X86::BI__builtin_ia32_fpclasspd512_mask: { 14518 unsigned NumElts = 14519 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14520 Value *MaskIn = Ops[2]; 14521 Ops.erase(&Ops[2]); 14522 14523 Intrinsic::ID ID; 14524 switch (BuiltinID) { 14525 default: llvm_unreachable("Unsupported intrinsic!"); 14526 case X86::BI__builtin_ia32_fpclassph128_mask: 14527 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128; 14528 break; 14529 case X86::BI__builtin_ia32_fpclassph256_mask: 14530 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256; 14531 break; 14532 case X86::BI__builtin_ia32_fpclassph512_mask: 14533 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512; 14534 break; 14535 case X86::BI__builtin_ia32_fpclassps128_mask: 14536 ID = Intrinsic::x86_avx512_fpclass_ps_128; 14537 break; 14538 case X86::BI__builtin_ia32_fpclassps256_mask: 14539 ID = Intrinsic::x86_avx512_fpclass_ps_256; 14540 break; 14541 case X86::BI__builtin_ia32_fpclassps512_mask: 14542 ID = Intrinsic::x86_avx512_fpclass_ps_512; 14543 break; 14544 case X86::BI__builtin_ia32_fpclasspd128_mask: 14545 ID = Intrinsic::x86_avx512_fpclass_pd_128; 14546 break; 14547 case X86::BI__builtin_ia32_fpclasspd256_mask: 14548 ID = Intrinsic::x86_avx512_fpclass_pd_256; 14549 break; 14550 case X86::BI__builtin_ia32_fpclasspd512_mask: 14551 ID = Intrinsic::x86_avx512_fpclass_pd_512; 14552 break; 14553 } 14554 14555 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14556 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); 14557 } 14558 14559 case X86::BI__builtin_ia32_vp2intersect_q_512: 14560 case X86::BI__builtin_ia32_vp2intersect_q_256: 14561 case X86::BI__builtin_ia32_vp2intersect_q_128: 14562 case X86::BI__builtin_ia32_vp2intersect_d_512: 14563 case X86::BI__builtin_ia32_vp2intersect_d_256: 14564 case X86::BI__builtin_ia32_vp2intersect_d_128: { 14565 unsigned NumElts = 14566 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14567 Intrinsic::ID ID; 14568 14569 switch (BuiltinID) { 14570 default: llvm_unreachable("Unsupported intrinsic!"); 14571 case X86::BI__builtin_ia32_vp2intersect_q_512: 14572 ID = Intrinsic::x86_avx512_vp2intersect_q_512; 14573 break; 14574 case X86::BI__builtin_ia32_vp2intersect_q_256: 14575 ID = Intrinsic::x86_avx512_vp2intersect_q_256; 14576 break; 14577 case X86::BI__builtin_ia32_vp2intersect_q_128: 14578 ID = Intrinsic::x86_avx512_vp2intersect_q_128; 14579 break; 14580 case X86::BI__builtin_ia32_vp2intersect_d_512: 14581 ID = Intrinsic::x86_avx512_vp2intersect_d_512; 14582 break; 14583 case X86::BI__builtin_ia32_vp2intersect_d_256: 14584 ID = Intrinsic::x86_avx512_vp2intersect_d_256; 14585 break; 14586 case X86::BI__builtin_ia32_vp2intersect_d_128: 14587 ID = Intrinsic::x86_avx512_vp2intersect_d_128; 14588 break; 14589 } 14590 14591 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); 14592 Value *Result = Builder.CreateExtractValue(Call, 0); 14593 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 14594 Builder.CreateDefaultAlignedStore(Result, Ops[2]); 14595 14596 Result = Builder.CreateExtractValue(Call, 1); 14597 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 14598 return Builder.CreateDefaultAlignedStore(Result, Ops[3]); 14599 } 14600 14601 case X86::BI__builtin_ia32_vpmultishiftqb128: 14602 case X86::BI__builtin_ia32_vpmultishiftqb256: 14603 case X86::BI__builtin_ia32_vpmultishiftqb512: { 14604 Intrinsic::ID ID; 14605 switch (BuiltinID) { 14606 default: llvm_unreachable("Unsupported intrinsic!"); 14607 case X86::BI__builtin_ia32_vpmultishiftqb128: 14608 ID = Intrinsic::x86_avx512_pmultishift_qb_128; 14609 break; 14610 case X86::BI__builtin_ia32_vpmultishiftqb256: 14611 ID = Intrinsic::x86_avx512_pmultishift_qb_256; 14612 break; 14613 case X86::BI__builtin_ia32_vpmultishiftqb512: 14614 ID = Intrinsic::x86_avx512_pmultishift_qb_512; 14615 break; 14616 } 14617 14618 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14619 } 14620 14621 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14622 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14623 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { 14624 unsigned NumElts = 14625 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14626 Value *MaskIn = Ops[2]; 14627 Ops.erase(&Ops[2]); 14628 14629 Intrinsic::ID ID; 14630 switch (BuiltinID) { 14631 default: llvm_unreachable("Unsupported intrinsic!"); 14632 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14633 ID = Intrinsic::x86_avx512_vpshufbitqmb_128; 14634 break; 14635 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14636 ID = Intrinsic::x86_avx512_vpshufbitqmb_256; 14637 break; 14638 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: 14639 ID = Intrinsic::x86_avx512_vpshufbitqmb_512; 14640 break; 14641 } 14642 14643 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14644 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); 14645 } 14646 14647 // packed comparison intrinsics 14648 case X86::BI__builtin_ia32_cmpeqps: 14649 case X86::BI__builtin_ia32_cmpeqpd: 14650 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false); 14651 case X86::BI__builtin_ia32_cmpltps: 14652 case X86::BI__builtin_ia32_cmpltpd: 14653 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true); 14654 case X86::BI__builtin_ia32_cmpleps: 14655 case X86::BI__builtin_ia32_cmplepd: 14656 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true); 14657 case X86::BI__builtin_ia32_cmpunordps: 14658 case X86::BI__builtin_ia32_cmpunordpd: 14659 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false); 14660 case X86::BI__builtin_ia32_cmpneqps: 14661 case X86::BI__builtin_ia32_cmpneqpd: 14662 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false); 14663 case X86::BI__builtin_ia32_cmpnltps: 14664 case X86::BI__builtin_ia32_cmpnltpd: 14665 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true); 14666 case X86::BI__builtin_ia32_cmpnleps: 14667 case X86::BI__builtin_ia32_cmpnlepd: 14668 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true); 14669 case X86::BI__builtin_ia32_cmpordps: 14670 case X86::BI__builtin_ia32_cmpordpd: 14671 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false); 14672 case X86::BI__builtin_ia32_cmpph128_mask: 14673 case X86::BI__builtin_ia32_cmpph256_mask: 14674 case X86::BI__builtin_ia32_cmpph512_mask: 14675 case X86::BI__builtin_ia32_cmpps128_mask: 14676 case X86::BI__builtin_ia32_cmpps256_mask: 14677 case X86::BI__builtin_ia32_cmpps512_mask: 14678 case X86::BI__builtin_ia32_cmppd128_mask: 14679 case X86::BI__builtin_ia32_cmppd256_mask: 14680 case X86::BI__builtin_ia32_cmppd512_mask: 14681 IsMaskFCmp = true; 14682 LLVM_FALLTHROUGH; 14683 case X86::BI__builtin_ia32_cmpps: 14684 case X86::BI__builtin_ia32_cmpps256: 14685 case X86::BI__builtin_ia32_cmppd: 14686 case X86::BI__builtin_ia32_cmppd256: { 14687 // Lowering vector comparisons to fcmp instructions, while 14688 // ignoring signalling behaviour requested 14689 // ignoring rounding mode requested 14690 // This is only possible if fp-model is not strict and FENV_ACCESS is off. 14691 14692 // The third argument is the comparison condition, and integer in the 14693 // range [0, 31] 14694 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; 14695 14696 // Lowering to IR fcmp instruction. 14697 // Ignoring requested signaling behaviour, 14698 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. 14699 FCmpInst::Predicate Pred; 14700 bool IsSignaling; 14701 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling 14702 // behavior is inverted. We'll handle that after the switch. 14703 switch (CC & 0xf) { 14704 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break; 14705 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break; 14706 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break; 14707 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break; 14708 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break; 14709 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break; 14710 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break; 14711 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break; 14712 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break; 14713 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break; 14714 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break; 14715 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break; 14716 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break; 14717 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break; 14718 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break; 14719 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break; 14720 default: llvm_unreachable("Unhandled CC"); 14721 } 14722 14723 // Invert the signalling behavior for 16-31. 14724 if (CC & 0x10) 14725 IsSignaling = !IsSignaling; 14726 14727 // If the predicate is true or false and we're using constrained intrinsics, 14728 // we don't have a compare intrinsic we can use. Just use the legacy X86 14729 // specific intrinsic. 14730 // If the intrinsic is mask enabled and we're using constrained intrinsics, 14731 // use the legacy X86 specific intrinsic. 14732 if (Builder.getIsFPConstrained() && 14733 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE || 14734 IsMaskFCmp)) { 14735 14736 Intrinsic::ID IID; 14737 switch (BuiltinID) { 14738 default: llvm_unreachable("Unexpected builtin"); 14739 case X86::BI__builtin_ia32_cmpps: 14740 IID = Intrinsic::x86_sse_cmp_ps; 14741 break; 14742 case X86::BI__builtin_ia32_cmpps256: 14743 IID = Intrinsic::x86_avx_cmp_ps_256; 14744 break; 14745 case X86::BI__builtin_ia32_cmppd: 14746 IID = Intrinsic::x86_sse2_cmp_pd; 14747 break; 14748 case X86::BI__builtin_ia32_cmppd256: 14749 IID = Intrinsic::x86_avx_cmp_pd_256; 14750 break; 14751 case X86::BI__builtin_ia32_cmpps512_mask: 14752 IID = Intrinsic::x86_avx512_mask_cmp_ps_512; 14753 break; 14754 case X86::BI__builtin_ia32_cmppd512_mask: 14755 IID = Intrinsic::x86_avx512_mask_cmp_pd_512; 14756 break; 14757 case X86::BI__builtin_ia32_cmpps128_mask: 14758 IID = Intrinsic::x86_avx512_mask_cmp_ps_128; 14759 break; 14760 case X86::BI__builtin_ia32_cmpps256_mask: 14761 IID = Intrinsic::x86_avx512_mask_cmp_ps_256; 14762 break; 14763 case X86::BI__builtin_ia32_cmppd128_mask: 14764 IID = Intrinsic::x86_avx512_mask_cmp_pd_128; 14765 break; 14766 case X86::BI__builtin_ia32_cmppd256_mask: 14767 IID = Intrinsic::x86_avx512_mask_cmp_pd_256; 14768 break; 14769 } 14770 14771 Function *Intr = CGM.getIntrinsic(IID); 14772 if (IsMaskFCmp) { 14773 unsigned NumElts = 14774 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14775 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts); 14776 Value *Cmp = Builder.CreateCall(Intr, Ops); 14777 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr); 14778 } 14779 14780 return Builder.CreateCall(Intr, Ops); 14781 } 14782 14783 // Builtins without the _mask suffix return a vector of integers 14784 // of the same width as the input vectors 14785 if (IsMaskFCmp) { 14786 // We ignore SAE if strict FP is disabled. We only keep precise 14787 // exception behavior under strict FP. 14788 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII 14789 // object will be required. 14790 unsigned NumElts = 14791 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14792 Value *Cmp; 14793 if (IsSignaling) 14794 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 14795 else 14796 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 14797 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); 14798 } 14799 14800 return getVectorFCmpIR(Pred, IsSignaling); 14801 } 14802 14803 // SSE scalar comparison intrinsics 14804 case X86::BI__builtin_ia32_cmpeqss: 14805 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); 14806 case X86::BI__builtin_ia32_cmpltss: 14807 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); 14808 case X86::BI__builtin_ia32_cmpless: 14809 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); 14810 case X86::BI__builtin_ia32_cmpunordss: 14811 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); 14812 case X86::BI__builtin_ia32_cmpneqss: 14813 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); 14814 case X86::BI__builtin_ia32_cmpnltss: 14815 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); 14816 case X86::BI__builtin_ia32_cmpnless: 14817 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); 14818 case X86::BI__builtin_ia32_cmpordss: 14819 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); 14820 case X86::BI__builtin_ia32_cmpeqsd: 14821 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); 14822 case X86::BI__builtin_ia32_cmpltsd: 14823 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); 14824 case X86::BI__builtin_ia32_cmplesd: 14825 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); 14826 case X86::BI__builtin_ia32_cmpunordsd: 14827 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); 14828 case X86::BI__builtin_ia32_cmpneqsd: 14829 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); 14830 case X86::BI__builtin_ia32_cmpnltsd: 14831 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); 14832 case X86::BI__builtin_ia32_cmpnlesd: 14833 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); 14834 case X86::BI__builtin_ia32_cmpordsd: 14835 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); 14836 14837 // f16c half2float intrinsics 14838 case X86::BI__builtin_ia32_vcvtph2ps: 14839 case X86::BI__builtin_ia32_vcvtph2ps256: 14840 case X86::BI__builtin_ia32_vcvtph2ps_mask: 14841 case X86::BI__builtin_ia32_vcvtph2ps256_mask: 14842 case X86::BI__builtin_ia32_vcvtph2ps512_mask: { 14843 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14844 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType())); 14845 } 14846 14847 // AVX512 bf16 intrinsics 14848 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { 14849 Ops[2] = getMaskVecValue( 14850 *this, Ops[2], 14851 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements()); 14852 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; 14853 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14854 } 14855 case X86::BI__builtin_ia32_cvtsbf162ss_32: 14856 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); 14857 14858 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14859 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { 14860 Intrinsic::ID IID; 14861 switch (BuiltinID) { 14862 default: llvm_unreachable("Unsupported intrinsic!"); 14863 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14864 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; 14865 break; 14866 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: 14867 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; 14868 break; 14869 } 14870 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); 14871 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 14872 } 14873 14874 case X86::BI__emul: 14875 case X86::BI__emulu: { 14876 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); 14877 bool isSigned = (BuiltinID == X86::BI__emul); 14878 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); 14879 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); 14880 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); 14881 } 14882 case X86::BI__mulh: 14883 case X86::BI__umulh: 14884 case X86::BI_mul128: 14885 case X86::BI_umul128: { 14886 llvm::Type *ResType = ConvertType(E->getType()); 14887 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 14888 14889 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); 14890 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); 14891 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); 14892 14893 Value *MulResult, *HigherBits; 14894 if (IsSigned) { 14895 MulResult = Builder.CreateNSWMul(LHS, RHS); 14896 HigherBits = Builder.CreateAShr(MulResult, 64); 14897 } else { 14898 MulResult = Builder.CreateNUWMul(LHS, RHS); 14899 HigherBits = Builder.CreateLShr(MulResult, 64); 14900 } 14901 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 14902 14903 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) 14904 return HigherBits; 14905 14906 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); 14907 Builder.CreateStore(HigherBits, HighBitsAddress); 14908 return Builder.CreateIntCast(MulResult, ResType, IsSigned); 14909 } 14910 14911 case X86::BI__faststorefence: { 14912 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14913 llvm::SyncScope::System); 14914 } 14915 case X86::BI__shiftleft128: 14916 case X86::BI__shiftright128: { 14917 llvm::Function *F = CGM.getIntrinsic( 14918 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, 14919 Int64Ty); 14920 // Flip low/high ops and zero-extend amount to matching type. 14921 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt) 14922 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt) 14923 std::swap(Ops[0], Ops[1]); 14924 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 14925 return Builder.CreateCall(F, Ops); 14926 } 14927 case X86::BI_ReadWriteBarrier: 14928 case X86::BI_ReadBarrier: 14929 case X86::BI_WriteBarrier: { 14930 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14931 llvm::SyncScope::SingleThread); 14932 } 14933 14934 case X86::BI_AddressOfReturnAddress: { 14935 Function *F = 14936 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 14937 return Builder.CreateCall(F); 14938 } 14939 case X86::BI__stosb: { 14940 // We treat __stosb as a volatile memset - it may not generate "rep stosb" 14941 // instruction, but it will create a memset that won't be optimized away. 14942 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true); 14943 } 14944 case X86::BI__ud2: 14945 // llvm.trap makes a ud2a instruction on x86. 14946 return EmitTrapCall(Intrinsic::trap); 14947 case X86::BI__int2c: { 14948 // This syscall signals a driver assertion failure in x86 NT kernels. 14949 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 14950 llvm::InlineAsm *IA = 14951 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); 14952 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 14953 getLLVMContext(), llvm::AttributeList::FunctionIndex, 14954 llvm::Attribute::NoReturn); 14955 llvm::CallInst *CI = Builder.CreateCall(IA); 14956 CI->setAttributes(NoReturnAttr); 14957 return CI; 14958 } 14959 case X86::BI__readfsbyte: 14960 case X86::BI__readfsword: 14961 case X86::BI__readfsdword: 14962 case X86::BI__readfsqword: { 14963 llvm::Type *IntTy = ConvertType(E->getType()); 14964 Value *Ptr = 14965 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); 14966 LoadInst *Load = Builder.CreateAlignedLoad( 14967 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14968 Load->setVolatile(true); 14969 return Load; 14970 } 14971 case X86::BI__readgsbyte: 14972 case X86::BI__readgsword: 14973 case X86::BI__readgsdword: 14974 case X86::BI__readgsqword: { 14975 llvm::Type *IntTy = ConvertType(E->getType()); 14976 Value *Ptr = 14977 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); 14978 LoadInst *Load = Builder.CreateAlignedLoad( 14979 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14980 Load->setVolatile(true); 14981 return Load; 14982 } 14983 case X86::BI__builtin_ia32_paddsb512: 14984 case X86::BI__builtin_ia32_paddsw512: 14985 case X86::BI__builtin_ia32_paddsb256: 14986 case X86::BI__builtin_ia32_paddsw256: 14987 case X86::BI__builtin_ia32_paddsb128: 14988 case X86::BI__builtin_ia32_paddsw128: 14989 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat); 14990 case X86::BI__builtin_ia32_paddusb512: 14991 case X86::BI__builtin_ia32_paddusw512: 14992 case X86::BI__builtin_ia32_paddusb256: 14993 case X86::BI__builtin_ia32_paddusw256: 14994 case X86::BI__builtin_ia32_paddusb128: 14995 case X86::BI__builtin_ia32_paddusw128: 14996 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat); 14997 case X86::BI__builtin_ia32_psubsb512: 14998 case X86::BI__builtin_ia32_psubsw512: 14999 case X86::BI__builtin_ia32_psubsb256: 15000 case X86::BI__builtin_ia32_psubsw256: 15001 case X86::BI__builtin_ia32_psubsb128: 15002 case X86::BI__builtin_ia32_psubsw128: 15003 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat); 15004 case X86::BI__builtin_ia32_psubusb512: 15005 case X86::BI__builtin_ia32_psubusw512: 15006 case X86::BI__builtin_ia32_psubusb256: 15007 case X86::BI__builtin_ia32_psubusw256: 15008 case X86::BI__builtin_ia32_psubusb128: 15009 case X86::BI__builtin_ia32_psubusw128: 15010 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat); 15011 case X86::BI__builtin_ia32_encodekey128_u32: { 15012 Intrinsic::ID IID = Intrinsic::x86_encodekey128; 15013 15014 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]}); 15015 15016 for (int i = 0; i < 3; ++i) { 15017 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 15018 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16); 15019 Ptr = Builder.CreateBitCast( 15020 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 15021 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 15022 } 15023 15024 return Builder.CreateExtractValue(Call, 0); 15025 } 15026 case X86::BI__builtin_ia32_encodekey256_u32: { 15027 Intrinsic::ID IID = Intrinsic::x86_encodekey256; 15028 15029 Value *Call = 15030 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]}); 15031 15032 for (int i = 0; i < 4; ++i) { 15033 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 15034 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16); 15035 Ptr = Builder.CreateBitCast( 15036 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 15037 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 15038 } 15039 15040 return Builder.CreateExtractValue(Call, 0); 15041 } 15042 case X86::BI__builtin_ia32_aesenc128kl_u8: 15043 case X86::BI__builtin_ia32_aesdec128kl_u8: 15044 case X86::BI__builtin_ia32_aesenc256kl_u8: 15045 case X86::BI__builtin_ia32_aesdec256kl_u8: { 15046 Intrinsic::ID IID; 15047 StringRef BlockName; 15048 switch (BuiltinID) { 15049 default: 15050 llvm_unreachable("Unexpected builtin"); 15051 case X86::BI__builtin_ia32_aesenc128kl_u8: 15052 IID = Intrinsic::x86_aesenc128kl; 15053 BlockName = "aesenc128kl"; 15054 break; 15055 case X86::BI__builtin_ia32_aesdec128kl_u8: 15056 IID = Intrinsic::x86_aesdec128kl; 15057 BlockName = "aesdec128kl"; 15058 break; 15059 case X86::BI__builtin_ia32_aesenc256kl_u8: 15060 IID = Intrinsic::x86_aesenc256kl; 15061 BlockName = "aesenc256kl"; 15062 break; 15063 case X86::BI__builtin_ia32_aesdec256kl_u8: 15064 IID = Intrinsic::x86_aesdec256kl; 15065 BlockName = "aesdec256kl"; 15066 break; 15067 } 15068 15069 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]}); 15070 15071 BasicBlock *NoError = 15072 createBasicBlock(BlockName + "_no_error", this->CurFn); 15073 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn); 15074 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn); 15075 15076 Value *Ret = Builder.CreateExtractValue(Call, 0); 15077 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty()); 15078 Value *Out = Builder.CreateExtractValue(Call, 1); 15079 Builder.CreateCondBr(Succ, NoError, Error); 15080 15081 Builder.SetInsertPoint(NoError); 15082 Builder.CreateDefaultAlignedStore(Out, Ops[0]); 15083 Builder.CreateBr(End); 15084 15085 Builder.SetInsertPoint(Error); 15086 Constant *Zero = llvm::Constant::getNullValue(Out->getType()); 15087 Builder.CreateDefaultAlignedStore(Zero, Ops[0]); 15088 Builder.CreateBr(End); 15089 15090 Builder.SetInsertPoint(End); 15091 return Builder.CreateExtractValue(Call, 0); 15092 } 15093 case X86::BI__builtin_ia32_aesencwide128kl_u8: 15094 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 15095 case X86::BI__builtin_ia32_aesencwide256kl_u8: 15096 case X86::BI__builtin_ia32_aesdecwide256kl_u8: { 15097 Intrinsic::ID IID; 15098 StringRef BlockName; 15099 switch (BuiltinID) { 15100 case X86::BI__builtin_ia32_aesencwide128kl_u8: 15101 IID = Intrinsic::x86_aesencwide128kl; 15102 BlockName = "aesencwide128kl"; 15103 break; 15104 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 15105 IID = Intrinsic::x86_aesdecwide128kl; 15106 BlockName = "aesdecwide128kl"; 15107 break; 15108 case X86::BI__builtin_ia32_aesencwide256kl_u8: 15109 IID = Intrinsic::x86_aesencwide256kl; 15110 BlockName = "aesencwide256kl"; 15111 break; 15112 case X86::BI__builtin_ia32_aesdecwide256kl_u8: 15113 IID = Intrinsic::x86_aesdecwide256kl; 15114 BlockName = "aesdecwide256kl"; 15115 break; 15116 } 15117 15118 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2); 15119 Value *InOps[9]; 15120 InOps[0] = Ops[2]; 15121 for (int i = 0; i != 8; ++i) { 15122 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i); 15123 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16)); 15124 } 15125 15126 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps); 15127 15128 BasicBlock *NoError = 15129 createBasicBlock(BlockName + "_no_error", this->CurFn); 15130 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn); 15131 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn); 15132 15133 Value *Ret = Builder.CreateExtractValue(Call, 0); 15134 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty()); 15135 Builder.CreateCondBr(Succ, NoError, Error); 15136 15137 Builder.SetInsertPoint(NoError); 15138 for (int i = 0; i != 8; ++i) { 15139 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 15140 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i); 15141 Builder.CreateAlignedStore(Extract, Ptr, Align(16)); 15142 } 15143 Builder.CreateBr(End); 15144 15145 Builder.SetInsertPoint(Error); 15146 for (int i = 0; i != 8; ++i) { 15147 Value *Out = Builder.CreateExtractValue(Call, i + 1); 15148 Constant *Zero = llvm::Constant::getNullValue(Out->getType()); 15149 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i); 15150 Builder.CreateAlignedStore(Zero, Ptr, Align(16)); 15151 } 15152 Builder.CreateBr(End); 15153 15154 Builder.SetInsertPoint(End); 15155 return Builder.CreateExtractValue(Call, 0); 15156 } 15157 case X86::BI__builtin_ia32_vfcmaddcph512_mask: 15158 IsConjFMA = true; 15159 LLVM_FALLTHROUGH; 15160 case X86::BI__builtin_ia32_vfmaddcph512_mask: { 15161 Intrinsic::ID IID = IsConjFMA 15162 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512 15163 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512; 15164 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 15165 return EmitX86Select(*this, Ops[3], Call, Ops[0]); 15166 } 15167 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask: 15168 IsConjFMA = true; 15169 LLVM_FALLTHROUGH; 15170 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: { 15171 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh 15172 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh; 15173 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 15174 Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1)); 15175 return EmitX86Select(*this, And, Call, Ops[0]); 15176 } 15177 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3: 15178 IsConjFMA = true; 15179 LLVM_FALLTHROUGH; 15180 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: { 15181 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh 15182 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh; 15183 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 15184 static constexpr int Mask[] = {0, 5, 6, 7}; 15185 return Builder.CreateShuffleVector(Call, Ops[2], Mask); 15186 } 15187 } 15188 } 15189 15190 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, 15191 const CallExpr *E) { 15192 SmallVector<Value*, 4> Ops; 15193 15194 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 15195 if (E->getArg(i)->getType()->isArrayType()) 15196 Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer()); 15197 else 15198 Ops.push_back(EmitScalarExpr(E->getArg(i))); 15199 } 15200 15201 Intrinsic::ID ID = Intrinsic::not_intrinsic; 15202 15203 switch (BuiltinID) { 15204 default: return nullptr; 15205 15206 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we 15207 // call __builtin_readcyclecounter. 15208 case PPC::BI__builtin_ppc_get_timebase: 15209 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); 15210 15211 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr 15212 case PPC::BI__builtin_altivec_lvx: 15213 case PPC::BI__builtin_altivec_lvxl: 15214 case PPC::BI__builtin_altivec_lvebx: 15215 case PPC::BI__builtin_altivec_lvehx: 15216 case PPC::BI__builtin_altivec_lvewx: 15217 case PPC::BI__builtin_altivec_lvsl: 15218 case PPC::BI__builtin_altivec_lvsr: 15219 case PPC::BI__builtin_vsx_lxvd2x: 15220 case PPC::BI__builtin_vsx_lxvw4x: 15221 case PPC::BI__builtin_vsx_lxvd2x_be: 15222 case PPC::BI__builtin_vsx_lxvw4x_be: 15223 case PPC::BI__builtin_vsx_lxvl: 15224 case PPC::BI__builtin_vsx_lxvll: 15225 { 15226 if(BuiltinID == PPC::BI__builtin_vsx_lxvl || 15227 BuiltinID == PPC::BI__builtin_vsx_lxvll){ 15228 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 15229 }else { 15230 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15231 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]); 15232 Ops.pop_back(); 15233 } 15234 15235 switch (BuiltinID) { 15236 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); 15237 case PPC::BI__builtin_altivec_lvx: 15238 ID = Intrinsic::ppc_altivec_lvx; 15239 break; 15240 case PPC::BI__builtin_altivec_lvxl: 15241 ID = Intrinsic::ppc_altivec_lvxl; 15242 break; 15243 case PPC::BI__builtin_altivec_lvebx: 15244 ID = Intrinsic::ppc_altivec_lvebx; 15245 break; 15246 case PPC::BI__builtin_altivec_lvehx: 15247 ID = Intrinsic::ppc_altivec_lvehx; 15248 break; 15249 case PPC::BI__builtin_altivec_lvewx: 15250 ID = Intrinsic::ppc_altivec_lvewx; 15251 break; 15252 case PPC::BI__builtin_altivec_lvsl: 15253 ID = Intrinsic::ppc_altivec_lvsl; 15254 break; 15255 case PPC::BI__builtin_altivec_lvsr: 15256 ID = Intrinsic::ppc_altivec_lvsr; 15257 break; 15258 case PPC::BI__builtin_vsx_lxvd2x: 15259 ID = Intrinsic::ppc_vsx_lxvd2x; 15260 break; 15261 case PPC::BI__builtin_vsx_lxvw4x: 15262 ID = Intrinsic::ppc_vsx_lxvw4x; 15263 break; 15264 case PPC::BI__builtin_vsx_lxvd2x_be: 15265 ID = Intrinsic::ppc_vsx_lxvd2x_be; 15266 break; 15267 case PPC::BI__builtin_vsx_lxvw4x_be: 15268 ID = Intrinsic::ppc_vsx_lxvw4x_be; 15269 break; 15270 case PPC::BI__builtin_vsx_lxvl: 15271 ID = Intrinsic::ppc_vsx_lxvl; 15272 break; 15273 case PPC::BI__builtin_vsx_lxvll: 15274 ID = Intrinsic::ppc_vsx_lxvll; 15275 break; 15276 } 15277 llvm::Function *F = CGM.getIntrinsic(ID); 15278 return Builder.CreateCall(F, Ops, ""); 15279 } 15280 15281 // vec_st, vec_xst_be 15282 case PPC::BI__builtin_altivec_stvx: 15283 case PPC::BI__builtin_altivec_stvxl: 15284 case PPC::BI__builtin_altivec_stvebx: 15285 case PPC::BI__builtin_altivec_stvehx: 15286 case PPC::BI__builtin_altivec_stvewx: 15287 case PPC::BI__builtin_vsx_stxvd2x: 15288 case PPC::BI__builtin_vsx_stxvw4x: 15289 case PPC::BI__builtin_vsx_stxvd2x_be: 15290 case PPC::BI__builtin_vsx_stxvw4x_be: 15291 case PPC::BI__builtin_vsx_stxvl: 15292 case PPC::BI__builtin_vsx_stxvll: 15293 { 15294 if(BuiltinID == PPC::BI__builtin_vsx_stxvl || 15295 BuiltinID == PPC::BI__builtin_vsx_stxvll ){ 15296 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15297 }else { 15298 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 15299 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]); 15300 Ops.pop_back(); 15301 } 15302 15303 switch (BuiltinID) { 15304 default: llvm_unreachable("Unsupported st intrinsic!"); 15305 case PPC::BI__builtin_altivec_stvx: 15306 ID = Intrinsic::ppc_altivec_stvx; 15307 break; 15308 case PPC::BI__builtin_altivec_stvxl: 15309 ID = Intrinsic::ppc_altivec_stvxl; 15310 break; 15311 case PPC::BI__builtin_altivec_stvebx: 15312 ID = Intrinsic::ppc_altivec_stvebx; 15313 break; 15314 case PPC::BI__builtin_altivec_stvehx: 15315 ID = Intrinsic::ppc_altivec_stvehx; 15316 break; 15317 case PPC::BI__builtin_altivec_stvewx: 15318 ID = Intrinsic::ppc_altivec_stvewx; 15319 break; 15320 case PPC::BI__builtin_vsx_stxvd2x: 15321 ID = Intrinsic::ppc_vsx_stxvd2x; 15322 break; 15323 case PPC::BI__builtin_vsx_stxvw4x: 15324 ID = Intrinsic::ppc_vsx_stxvw4x; 15325 break; 15326 case PPC::BI__builtin_vsx_stxvd2x_be: 15327 ID = Intrinsic::ppc_vsx_stxvd2x_be; 15328 break; 15329 case PPC::BI__builtin_vsx_stxvw4x_be: 15330 ID = Intrinsic::ppc_vsx_stxvw4x_be; 15331 break; 15332 case PPC::BI__builtin_vsx_stxvl: 15333 ID = Intrinsic::ppc_vsx_stxvl; 15334 break; 15335 case PPC::BI__builtin_vsx_stxvll: 15336 ID = Intrinsic::ppc_vsx_stxvll; 15337 break; 15338 } 15339 llvm::Function *F = CGM.getIntrinsic(ID); 15340 return Builder.CreateCall(F, Ops, ""); 15341 } 15342 case PPC::BI__builtin_vsx_ldrmb: { 15343 // Essentially boils down to performing an unaligned VMX load sequence so 15344 // as to avoid crossing a page boundary and then shuffling the elements 15345 // into the right side of the vector register. 15346 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue(); 15347 llvm::Type *ResTy = ConvertType(E->getType()); 15348 bool IsLE = getTarget().isLittleEndian(); 15349 15350 // If the user wants the entire vector, just load the entire vector. 15351 if (NumBytes == 16) { 15352 Value *BC = Builder.CreateBitCast(Ops[0], ResTy->getPointerTo()); 15353 Value *LD = 15354 Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1))); 15355 if (!IsLE) 15356 return LD; 15357 15358 // Reverse the bytes on LE. 15359 SmallVector<int, 16> RevMask; 15360 for (int Idx = 0; Idx < 16; Idx++) 15361 RevMask.push_back(15 - Idx); 15362 return Builder.CreateShuffleVector(LD, LD, RevMask); 15363 } 15364 15365 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx); 15366 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr 15367 : Intrinsic::ppc_altivec_lvsl); 15368 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm); 15369 Value *HiMem = Builder.CreateGEP( 15370 Int8Ty, Ops[0], ConstantInt::get(Ops[1]->getType(), NumBytes - 1)); 15371 Value *LoLd = Builder.CreateCall(Lvx, Ops[0], "ld.lo"); 15372 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi"); 15373 Value *Mask1 = Builder.CreateCall(Lvs, Ops[0], "mask1"); 15374 15375 Ops.clear(); 15376 Ops.push_back(IsLE ? HiLd : LoLd); 15377 Ops.push_back(IsLE ? LoLd : HiLd); 15378 Ops.push_back(Mask1); 15379 Value *AllElts = Builder.CreateCall(Vperm, Ops, "shuffle1"); 15380 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType()); 15381 15382 if (IsLE) { 15383 SmallVector<int, 16> Consts; 15384 for (int Idx = 0; Idx < 16; Idx++) { 15385 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1) 15386 : 16 - (NumBytes - Idx); 15387 Consts.push_back(Val); 15388 } 15389 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy), 15390 Zero, Consts); 15391 } 15392 SmallVector<Constant *, 16> Consts; 15393 for (int Idx = 0; Idx < 16; Idx++) 15394 Consts.push_back(Builder.getInt8(NumBytes + Idx)); 15395 Value *Mask2 = ConstantVector::get(Consts); 15396 return Builder.CreateBitCast( 15397 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy); 15398 } 15399 case PPC::BI__builtin_vsx_strmb: { 15400 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue(); 15401 bool IsLE = getTarget().isLittleEndian(); 15402 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) { 15403 // Storing the whole vector, simply store it on BE and reverse bytes and 15404 // store on LE. 15405 if (Width == 16) { 15406 Value *BC = 15407 Builder.CreateBitCast(Ops[0], Ops[2]->getType()->getPointerTo()); 15408 Value *StVec = Ops[2]; 15409 if (IsLE) { 15410 SmallVector<int, 16> RevMask; 15411 for (int Idx = 0; Idx < 16; Idx++) 15412 RevMask.push_back(15 - Idx); 15413 StVec = Builder.CreateShuffleVector(Ops[2], Ops[2], RevMask); 15414 } 15415 return Builder.CreateStore( 15416 StVec, Address(BC, Ops[2]->getType(), CharUnits::fromQuantity(1))); 15417 } 15418 auto *ConvTy = Int64Ty; 15419 unsigned NumElts = 0; 15420 switch (Width) { 15421 default: 15422 llvm_unreachable("width for stores must be a power of 2"); 15423 case 8: 15424 ConvTy = Int64Ty; 15425 NumElts = 2; 15426 break; 15427 case 4: 15428 ConvTy = Int32Ty; 15429 NumElts = 4; 15430 break; 15431 case 2: 15432 ConvTy = Int16Ty; 15433 NumElts = 8; 15434 break; 15435 case 1: 15436 ConvTy = Int8Ty; 15437 NumElts = 16; 15438 break; 15439 } 15440 Value *Vec = Builder.CreateBitCast( 15441 Ops[2], llvm::FixedVectorType::get(ConvTy, NumElts)); 15442 Value *Ptr = Builder.CreateGEP(Int8Ty, Ops[0], 15443 ConstantInt::get(Int64Ty, Offset)); 15444 Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo()); 15445 Value *Elt = Builder.CreateExtractElement(Vec, EltNo); 15446 if (IsLE && Width > 1) { 15447 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy); 15448 Elt = Builder.CreateCall(F, Elt); 15449 } 15450 return Builder.CreateStore( 15451 Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1))); 15452 }; 15453 unsigned Stored = 0; 15454 unsigned RemainingBytes = NumBytes; 15455 Value *Result; 15456 if (NumBytes == 16) 15457 return StoreSubVec(16, 0, 0); 15458 if (NumBytes >= 8) { 15459 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1); 15460 RemainingBytes -= 8; 15461 Stored += 8; 15462 } 15463 if (RemainingBytes >= 4) { 15464 Result = StoreSubVec(4, NumBytes - Stored - 4, 15465 IsLE ? (Stored >> 2) : 3 - (Stored >> 2)); 15466 RemainingBytes -= 4; 15467 Stored += 4; 15468 } 15469 if (RemainingBytes >= 2) { 15470 Result = StoreSubVec(2, NumBytes - Stored - 2, 15471 IsLE ? (Stored >> 1) : 7 - (Stored >> 1)); 15472 RemainingBytes -= 2; 15473 Stored += 2; 15474 } 15475 if (RemainingBytes) 15476 Result = 15477 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored); 15478 return Result; 15479 } 15480 // Square root 15481 case PPC::BI__builtin_vsx_xvsqrtsp: 15482 case PPC::BI__builtin_vsx_xvsqrtdp: { 15483 llvm::Type *ResultType = ConvertType(E->getType()); 15484 Value *X = EmitScalarExpr(E->getArg(0)); 15485 if (Builder.getIsFPConstrained()) { 15486 llvm::Function *F = CGM.getIntrinsic( 15487 Intrinsic::experimental_constrained_sqrt, ResultType); 15488 return Builder.CreateConstrainedFPCall(F, X); 15489 } else { 15490 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15491 return Builder.CreateCall(F, X); 15492 } 15493 } 15494 // Count leading zeros 15495 case PPC::BI__builtin_altivec_vclzb: 15496 case PPC::BI__builtin_altivec_vclzh: 15497 case PPC::BI__builtin_altivec_vclzw: 15498 case PPC::BI__builtin_altivec_vclzd: { 15499 llvm::Type *ResultType = ConvertType(E->getType()); 15500 Value *X = EmitScalarExpr(E->getArg(0)); 15501 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15502 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 15503 return Builder.CreateCall(F, {X, Undef}); 15504 } 15505 case PPC::BI__builtin_altivec_vctzb: 15506 case PPC::BI__builtin_altivec_vctzh: 15507 case PPC::BI__builtin_altivec_vctzw: 15508 case PPC::BI__builtin_altivec_vctzd: { 15509 llvm::Type *ResultType = ConvertType(E->getType()); 15510 Value *X = EmitScalarExpr(E->getArg(0)); 15511 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15512 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 15513 return Builder.CreateCall(F, {X, Undef}); 15514 } 15515 case PPC::BI__builtin_altivec_vec_replace_elt: 15516 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 15517 // The third argument of vec_replace_elt and vec_replace_unaligned must 15518 // be a compile time constant and will be emitted either to the vinsw 15519 // or vinsd instruction. 15520 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15521 assert(ArgCI && 15522 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"); 15523 llvm::Type *ResultType = ConvertType(E->getType()); 15524 llvm::Function *F = nullptr; 15525 Value *Call = nullptr; 15526 int64_t ConstArg = ArgCI->getSExtValue(); 15527 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits(); 15528 bool Is32Bit = false; 15529 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width"); 15530 // The input to vec_replace_elt is an element index, not a byte index. 15531 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt) 15532 ConstArg *= ArgWidth / 8; 15533 if (ArgWidth == 32) { 15534 Is32Bit = true; 15535 // When the second argument is 32 bits, it can either be an integer or 15536 // a float. The vinsw intrinsic is used in this case. 15537 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw); 15538 // Fix the constant according to endianess. 15539 if (getTarget().isLittleEndian()) 15540 ConstArg = 12 - ConstArg; 15541 } else { 15542 // When the second argument is 64 bits, it can either be a long long or 15543 // a double. The vinsd intrinsic is used in this case. 15544 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd); 15545 // Fix the constant for little endian. 15546 if (getTarget().isLittleEndian()) 15547 ConstArg = 8 - ConstArg; 15548 } 15549 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg); 15550 // Depending on ArgWidth, the input vector could be a float or a double. 15551 // If the input vector is a float type, bitcast the inputs to integers. Or, 15552 // if the input vector is a double, bitcast the inputs to 64-bit integers. 15553 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) { 15554 Ops[0] = Builder.CreateBitCast( 15555 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4) 15556 : llvm::FixedVectorType::get(Int64Ty, 2)); 15557 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty); 15558 } 15559 // Emit the call to vinsw or vinsd. 15560 Call = Builder.CreateCall(F, Ops); 15561 // Depending on the builtin, bitcast to the approriate result type. 15562 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 15563 !Ops[1]->getType()->isIntegerTy()) 15564 return Builder.CreateBitCast(Call, ResultType); 15565 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 15566 Ops[1]->getType()->isIntegerTy()) 15567 return Call; 15568 else 15569 return Builder.CreateBitCast(Call, 15570 llvm::FixedVectorType::get(Int8Ty, 16)); 15571 } 15572 case PPC::BI__builtin_altivec_vpopcntb: 15573 case PPC::BI__builtin_altivec_vpopcnth: 15574 case PPC::BI__builtin_altivec_vpopcntw: 15575 case PPC::BI__builtin_altivec_vpopcntd: { 15576 llvm::Type *ResultType = ConvertType(E->getType()); 15577 Value *X = EmitScalarExpr(E->getArg(0)); 15578 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 15579 return Builder.CreateCall(F, X); 15580 } 15581 case PPC::BI__builtin_altivec_vadduqm: 15582 case PPC::BI__builtin_altivec_vsubuqm: { 15583 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 15584 Ops[0] = 15585 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1)); 15586 Ops[1] = 15587 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1)); 15588 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm) 15589 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm"); 15590 else 15591 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm"); 15592 } 15593 // Rotate and insert under mask operation. 15594 // __rldimi(rs, is, shift, mask) 15595 // (rotl64(rs, shift) & mask) | (is & ~mask) 15596 // __rlwimi(rs, is, shift, mask) 15597 // (rotl(rs, shift) & mask) | (is & ~mask) 15598 case PPC::BI__builtin_ppc_rldimi: 15599 case PPC::BI__builtin_ppc_rlwimi: { 15600 llvm::Type *Ty = Ops[0]->getType(); 15601 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); 15602 if (BuiltinID == PPC::BI__builtin_ppc_rldimi) 15603 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 15604 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[2]}); 15605 Value *X = Builder.CreateAnd(Shift, Ops[3]); 15606 Value *Y = Builder.CreateAnd(Ops[1], Builder.CreateNot(Ops[3])); 15607 return Builder.CreateOr(X, Y); 15608 } 15609 // Rotate and insert under mask operation. 15610 // __rlwnm(rs, shift, mask) 15611 // rotl(rs, shift) & mask 15612 case PPC::BI__builtin_ppc_rlwnm: { 15613 llvm::Type *Ty = Ops[0]->getType(); 15614 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); 15615 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[1]}); 15616 return Builder.CreateAnd(Shift, Ops[2]); 15617 } 15618 case PPC::BI__builtin_ppc_poppar4: 15619 case PPC::BI__builtin_ppc_poppar8: { 15620 llvm::Type *ArgType = Ops[0]->getType(); 15621 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 15622 Value *Tmp = Builder.CreateCall(F, Ops[0]); 15623 15624 llvm::Type *ResultType = ConvertType(E->getType()); 15625 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 15626 if (Result->getType() != ResultType) 15627 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 15628 "cast"); 15629 return Result; 15630 } 15631 case PPC::BI__builtin_ppc_cmpb: { 15632 if (getTarget().getTriple().isPPC64()) { 15633 Function *F = 15634 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty}); 15635 return Builder.CreateCall(F, Ops, "cmpb"); 15636 } 15637 // For 32 bit, emit the code as below: 15638 // %conv = trunc i64 %a to i32 15639 // %conv1 = trunc i64 %b to i32 15640 // %shr = lshr i64 %a, 32 15641 // %conv2 = trunc i64 %shr to i32 15642 // %shr3 = lshr i64 %b, 32 15643 // %conv4 = trunc i64 %shr3 to i32 15644 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1) 15645 // %conv5 = zext i32 %0 to i64 15646 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4) 15647 // %conv614 = zext i32 %1 to i64 15648 // %shl = shl nuw i64 %conv614, 32 15649 // %or = or i64 %shl, %conv5 15650 // ret i64 %or 15651 Function *F = 15652 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty}); 15653 Value *ArgOneLo = Builder.CreateTrunc(Ops[0], Int32Ty); 15654 Value *ArgTwoLo = Builder.CreateTrunc(Ops[1], Int32Ty); 15655 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32); 15656 Value *ArgOneHi = 15657 Builder.CreateTrunc(Builder.CreateLShr(Ops[0], ShiftAmt), Int32Ty); 15658 Value *ArgTwoHi = 15659 Builder.CreateTrunc(Builder.CreateLShr(Ops[1], ShiftAmt), Int32Ty); 15660 Value *ResLo = Builder.CreateZExt( 15661 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty); 15662 Value *ResHiShift = Builder.CreateZExt( 15663 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty); 15664 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt); 15665 return Builder.CreateOr(ResLo, ResHi); 15666 } 15667 // Copy sign 15668 case PPC::BI__builtin_vsx_xvcpsgnsp: 15669 case PPC::BI__builtin_vsx_xvcpsgndp: { 15670 llvm::Type *ResultType = ConvertType(E->getType()); 15671 Value *X = EmitScalarExpr(E->getArg(0)); 15672 Value *Y = EmitScalarExpr(E->getArg(1)); 15673 ID = Intrinsic::copysign; 15674 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 15675 return Builder.CreateCall(F, {X, Y}); 15676 } 15677 // Rounding/truncation 15678 case PPC::BI__builtin_vsx_xvrspip: 15679 case PPC::BI__builtin_vsx_xvrdpip: 15680 case PPC::BI__builtin_vsx_xvrdpim: 15681 case PPC::BI__builtin_vsx_xvrspim: 15682 case PPC::BI__builtin_vsx_xvrdpi: 15683 case PPC::BI__builtin_vsx_xvrspi: 15684 case PPC::BI__builtin_vsx_xvrdpic: 15685 case PPC::BI__builtin_vsx_xvrspic: 15686 case PPC::BI__builtin_vsx_xvrdpiz: 15687 case PPC::BI__builtin_vsx_xvrspiz: { 15688 llvm::Type *ResultType = ConvertType(E->getType()); 15689 Value *X = EmitScalarExpr(E->getArg(0)); 15690 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || 15691 BuiltinID == PPC::BI__builtin_vsx_xvrspim) 15692 ID = Builder.getIsFPConstrained() 15693 ? Intrinsic::experimental_constrained_floor 15694 : Intrinsic::floor; 15695 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || 15696 BuiltinID == PPC::BI__builtin_vsx_xvrspi) 15697 ID = Builder.getIsFPConstrained() 15698 ? Intrinsic::experimental_constrained_round 15699 : Intrinsic::round; 15700 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || 15701 BuiltinID == PPC::BI__builtin_vsx_xvrspic) 15702 ID = Builder.getIsFPConstrained() 15703 ? Intrinsic::experimental_constrained_rint 15704 : Intrinsic::rint; 15705 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || 15706 BuiltinID == PPC::BI__builtin_vsx_xvrspip) 15707 ID = Builder.getIsFPConstrained() 15708 ? Intrinsic::experimental_constrained_ceil 15709 : Intrinsic::ceil; 15710 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || 15711 BuiltinID == PPC::BI__builtin_vsx_xvrspiz) 15712 ID = Builder.getIsFPConstrained() 15713 ? Intrinsic::experimental_constrained_trunc 15714 : Intrinsic::trunc; 15715 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 15716 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X) 15717 : Builder.CreateCall(F, X); 15718 } 15719 15720 // Absolute value 15721 case PPC::BI__builtin_vsx_xvabsdp: 15722 case PPC::BI__builtin_vsx_xvabssp: { 15723 llvm::Type *ResultType = ConvertType(E->getType()); 15724 Value *X = EmitScalarExpr(E->getArg(0)); 15725 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15726 return Builder.CreateCall(F, X); 15727 } 15728 15729 // Fastmath by default 15730 case PPC::BI__builtin_ppc_recipdivf: 15731 case PPC::BI__builtin_ppc_recipdivd: 15732 case PPC::BI__builtin_ppc_rsqrtf: 15733 case PPC::BI__builtin_ppc_rsqrtd: { 15734 FastMathFlags FMF = Builder.getFastMathFlags(); 15735 Builder.getFastMathFlags().setFast(); 15736 llvm::Type *ResultType = ConvertType(E->getType()); 15737 Value *X = EmitScalarExpr(E->getArg(0)); 15738 15739 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf || 15740 BuiltinID == PPC::BI__builtin_ppc_recipdivd) { 15741 Value *Y = EmitScalarExpr(E->getArg(1)); 15742 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv"); 15743 Builder.getFastMathFlags() &= (FMF); 15744 return FDiv; 15745 } 15746 auto *One = ConstantFP::get(ResultType, 1.0); 15747 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15748 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt"); 15749 Builder.getFastMathFlags() &= (FMF); 15750 return FDiv; 15751 } 15752 case PPC::BI__builtin_ppc_alignx: { 15753 ConstantInt *AlignmentCI = cast<ConstantInt>(Ops[0]); 15754 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 15755 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 15756 llvm::Value::MaximumAlignment); 15757 15758 emitAlignmentAssumption(Ops[1], E->getArg(1), 15759 /*The expr loc is sufficient.*/ SourceLocation(), 15760 AlignmentCI, nullptr); 15761 return Ops[1]; 15762 } 15763 case PPC::BI__builtin_ppc_rdlam: { 15764 llvm::Type *Ty = Ops[0]->getType(); 15765 Value *ShiftAmt = Builder.CreateIntCast(Ops[1], Ty, false); 15766 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); 15767 Value *Rotate = Builder.CreateCall(F, {Ops[0], Ops[0], ShiftAmt}); 15768 return Builder.CreateAnd(Rotate, Ops[2]); 15769 } 15770 case PPC::BI__builtin_ppc_load2r: { 15771 Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r); 15772 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 15773 Value *LoadIntrinsic = Builder.CreateCall(F, Ops); 15774 return Builder.CreateTrunc(LoadIntrinsic, Int16Ty); 15775 } 15776 // FMA variations 15777 case PPC::BI__builtin_vsx_xvmaddadp: 15778 case PPC::BI__builtin_vsx_xvmaddasp: 15779 case PPC::BI__builtin_vsx_xvnmaddadp: 15780 case PPC::BI__builtin_vsx_xvnmaddasp: 15781 case PPC::BI__builtin_vsx_xvmsubadp: 15782 case PPC::BI__builtin_vsx_xvmsubasp: 15783 case PPC::BI__builtin_vsx_xvnmsubadp: 15784 case PPC::BI__builtin_vsx_xvnmsubasp: { 15785 llvm::Type *ResultType = ConvertType(E->getType()); 15786 Value *X = EmitScalarExpr(E->getArg(0)); 15787 Value *Y = EmitScalarExpr(E->getArg(1)); 15788 Value *Z = EmitScalarExpr(E->getArg(2)); 15789 llvm::Function *F; 15790 if (Builder.getIsFPConstrained()) 15791 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15792 else 15793 F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15794 switch (BuiltinID) { 15795 case PPC::BI__builtin_vsx_xvmaddadp: 15796 case PPC::BI__builtin_vsx_xvmaddasp: 15797 if (Builder.getIsFPConstrained()) 15798 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 15799 else 15800 return Builder.CreateCall(F, {X, Y, Z}); 15801 case PPC::BI__builtin_vsx_xvnmaddadp: 15802 case PPC::BI__builtin_vsx_xvnmaddasp: 15803 if (Builder.getIsFPConstrained()) 15804 return Builder.CreateFNeg( 15805 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 15806 else 15807 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 15808 case PPC::BI__builtin_vsx_xvmsubadp: 15809 case PPC::BI__builtin_vsx_xvmsubasp: 15810 if (Builder.getIsFPConstrained()) 15811 return Builder.CreateConstrainedFPCall( 15812 F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15813 else 15814 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15815 case PPC::BI__builtin_vsx_xvnmsubadp: 15816 case PPC::BI__builtin_vsx_xvnmsubasp: 15817 if (Builder.getIsFPConstrained()) 15818 return Builder.CreateFNeg( 15819 Builder.CreateConstrainedFPCall( 15820 F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 15821 "neg"); 15822 else 15823 return Builder.CreateFNeg( 15824 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 15825 "neg"); 15826 } 15827 llvm_unreachable("Unknown FMA operation"); 15828 return nullptr; // Suppress no-return warning 15829 } 15830 15831 case PPC::BI__builtin_vsx_insertword: { 15832 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); 15833 15834 // Third argument is a compile time constant int. It must be clamped to 15835 // to the range [0, 12]. 15836 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15837 assert(ArgCI && 15838 "Third arg to xxinsertw intrinsic must be constant integer"); 15839 const int64_t MaxIndex = 12; 15840 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 15841 15842 // The builtin semantics don't exactly match the xxinsertw instructions 15843 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the 15844 // word from the first argument, and inserts it in the second argument. The 15845 // instruction extracts the word from its second input register and inserts 15846 // it into its first input register, so swap the first and second arguments. 15847 std::swap(Ops[0], Ops[1]); 15848 15849 // Need to cast the second argument from a vector of unsigned int to a 15850 // vector of long long. 15851 Ops[1] = 15852 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 15853 15854 if (getTarget().isLittleEndian()) { 15855 // Reverse the double words in the vector we will extract from. 15856 Ops[0] = 15857 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15858 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0}); 15859 15860 // Reverse the index. 15861 Index = MaxIndex - Index; 15862 } 15863 15864 // Intrinsic expects the first arg to be a vector of int. 15865 Ops[0] = 15866 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 15867 Ops[2] = ConstantInt::getSigned(Int32Ty, Index); 15868 return Builder.CreateCall(F, Ops); 15869 } 15870 15871 case PPC::BI__builtin_vsx_extractuword: { 15872 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); 15873 15874 // Intrinsic expects the first argument to be a vector of doublewords. 15875 Ops[0] = 15876 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15877 15878 // The second argument is a compile time constant int that needs to 15879 // be clamped to the range [0, 12]. 15880 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); 15881 assert(ArgCI && 15882 "Second Arg to xxextractuw intrinsic must be a constant integer!"); 15883 const int64_t MaxIndex = 12; 15884 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 15885 15886 if (getTarget().isLittleEndian()) { 15887 // Reverse the index. 15888 Index = MaxIndex - Index; 15889 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 15890 15891 // Emit the call, then reverse the double words of the results vector. 15892 Value *Call = Builder.CreateCall(F, Ops); 15893 15894 Value *ShuffleCall = 15895 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0}); 15896 return ShuffleCall; 15897 } else { 15898 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 15899 return Builder.CreateCall(F, Ops); 15900 } 15901 } 15902 15903 case PPC::BI__builtin_vsx_xxpermdi: { 15904 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15905 assert(ArgCI && "Third arg must be constant integer!"); 15906 15907 unsigned Index = ArgCI->getZExtValue(); 15908 Ops[0] = 15909 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15910 Ops[1] = 15911 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 15912 15913 // Account for endianness by treating this as just a shuffle. So we use the 15914 // same indices for both LE and BE in order to produce expected results in 15915 // both cases. 15916 int ElemIdx0 = (Index & 2) >> 1; 15917 int ElemIdx1 = 2 + (Index & 1); 15918 15919 int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; 15920 Value *ShuffleCall = 15921 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 15922 QualType BIRetType = E->getType(); 15923 auto RetTy = ConvertType(BIRetType); 15924 return Builder.CreateBitCast(ShuffleCall, RetTy); 15925 } 15926 15927 case PPC::BI__builtin_vsx_xxsldwi: { 15928 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15929 assert(ArgCI && "Third argument must be a compile time constant"); 15930 unsigned Index = ArgCI->getZExtValue() & 0x3; 15931 Ops[0] = 15932 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 15933 Ops[1] = 15934 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4)); 15935 15936 // Create a shuffle mask 15937 int ElemIdx0; 15938 int ElemIdx1; 15939 int ElemIdx2; 15940 int ElemIdx3; 15941 if (getTarget().isLittleEndian()) { 15942 // Little endian element N comes from element 8+N-Index of the 15943 // concatenated wide vector (of course, using modulo arithmetic on 15944 // the total number of elements). 15945 ElemIdx0 = (8 - Index) % 8; 15946 ElemIdx1 = (9 - Index) % 8; 15947 ElemIdx2 = (10 - Index) % 8; 15948 ElemIdx3 = (11 - Index) % 8; 15949 } else { 15950 // Big endian ElemIdx<N> = Index + N 15951 ElemIdx0 = Index; 15952 ElemIdx1 = Index + 1; 15953 ElemIdx2 = Index + 2; 15954 ElemIdx3 = Index + 3; 15955 } 15956 15957 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; 15958 Value *ShuffleCall = 15959 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 15960 QualType BIRetType = E->getType(); 15961 auto RetTy = ConvertType(BIRetType); 15962 return Builder.CreateBitCast(ShuffleCall, RetTy); 15963 } 15964 15965 case PPC::BI__builtin_pack_vector_int128: { 15966 bool isLittleEndian = getTarget().isLittleEndian(); 15967 Value *UndefValue = 15968 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2)); 15969 Value *Res = Builder.CreateInsertElement( 15970 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); 15971 Res = Builder.CreateInsertElement(Res, Ops[1], 15972 (uint64_t)(isLittleEndian ? 0 : 1)); 15973 return Builder.CreateBitCast(Res, ConvertType(E->getType())); 15974 } 15975 15976 case PPC::BI__builtin_unpack_vector_int128: { 15977 ConstantInt *Index = cast<ConstantInt>(Ops[1]); 15978 Value *Unpacked = Builder.CreateBitCast( 15979 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2)); 15980 15981 if (getTarget().isLittleEndian()) 15982 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); 15983 15984 return Builder.CreateExtractElement(Unpacked, Index); 15985 } 15986 15987 case PPC::BI__builtin_ppc_sthcx: { 15988 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx); 15989 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 15990 Ops[1] = Builder.CreateSExt(Ops[1], Int32Ty); 15991 return Builder.CreateCall(F, Ops); 15992 } 15993 15994 // The PPC MMA builtins take a pointer to a __vector_quad as an argument. 15995 // Some of the MMA instructions accumulate their result into an existing 15996 // accumulator whereas the others generate a new accumulator. So we need to 15997 // use custom code generation to expand a builtin call with a pointer to a 15998 // load (if the corresponding instruction accumulates its result) followed by 15999 // the call to the intrinsic and a store of the result. 16000 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \ 16001 case PPC::BI__builtin_##Name: 16002 #include "clang/Basic/BuiltinsPPC.def" 16003 { 16004 // The first argument of these two builtins is a pointer used to store their 16005 // result. However, the llvm intrinsics return their result in multiple 16006 // return values. So, here we emit code extracting these values from the 16007 // intrinsic results and storing them using that pointer. 16008 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc || 16009 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair || 16010 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) { 16011 unsigned NumVecs = 2; 16012 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair; 16013 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) { 16014 NumVecs = 4; 16015 Intrinsic = Intrinsic::ppc_mma_disassemble_acc; 16016 } 16017 llvm::Function *F = CGM.getIntrinsic(Intrinsic); 16018 Address Addr = EmitPointerWithAlignment(E->getArg(1)); 16019 Value *Vec = Builder.CreateLoad(Addr); 16020 Value *Call = Builder.CreateCall(F, {Vec}); 16021 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16); 16022 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo()); 16023 for (unsigned i=0; i<NumVecs; i++) { 16024 Value *Vec = Builder.CreateExtractValue(Call, i); 16025 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i); 16026 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index); 16027 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16)); 16028 } 16029 return Call; 16030 } 16031 if (BuiltinID == PPC::BI__builtin_vsx_build_pair || 16032 BuiltinID == PPC::BI__builtin_mma_build_acc) { 16033 // Reverse the order of the operands for LE, so the 16034 // same builtin call can be used on both LE and BE 16035 // without the need for the programmer to swap operands. 16036 // The operands are reversed starting from the second argument, 16037 // the first operand is the pointer to the pair/accumulator 16038 // that is being built. 16039 if (getTarget().isLittleEndian()) 16040 std::reverse(Ops.begin() + 1, Ops.end()); 16041 } 16042 bool Accumulate; 16043 switch (BuiltinID) { 16044 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 16045 case PPC::BI__builtin_##Name: \ 16046 ID = Intrinsic::ppc_##Intr; \ 16047 Accumulate = Acc; \ 16048 break; 16049 #include "clang/Basic/BuiltinsPPC.def" 16050 } 16051 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 16052 BuiltinID == PPC::BI__builtin_vsx_stxvp || 16053 BuiltinID == PPC::BI__builtin_mma_lxvp || 16054 BuiltinID == PPC::BI__builtin_mma_stxvp) { 16055 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 16056 BuiltinID == PPC::BI__builtin_mma_lxvp) { 16057 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 16058 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]); 16059 } else { 16060 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 16061 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]); 16062 } 16063 Ops.pop_back(); 16064 llvm::Function *F = CGM.getIntrinsic(ID); 16065 return Builder.CreateCall(F, Ops, ""); 16066 } 16067 SmallVector<Value*, 4> CallOps; 16068 if (Accumulate) { 16069 Address Addr = EmitPointerWithAlignment(E->getArg(0)); 16070 Value *Acc = Builder.CreateLoad(Addr); 16071 CallOps.push_back(Acc); 16072 } 16073 for (unsigned i=1; i<Ops.size(); i++) 16074 CallOps.push_back(Ops[i]); 16075 llvm::Function *F = CGM.getIntrinsic(ID); 16076 Value *Call = Builder.CreateCall(F, CallOps); 16077 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64)); 16078 } 16079 16080 case PPC::BI__builtin_ppc_compare_and_swap: 16081 case PPC::BI__builtin_ppc_compare_and_swaplp: { 16082 Address Addr = EmitPointerWithAlignment(E->getArg(0)); 16083 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1)); 16084 Value *OldVal = Builder.CreateLoad(OldValAddr); 16085 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType(); 16086 LValue LV = MakeAddrLValue(Addr, AtomicTy); 16087 auto Pair = EmitAtomicCompareExchange( 16088 LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(), 16089 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true); 16090 // Unlike c11's atomic_compare_exchange, accroding to 16091 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp 16092 // > In either case, the contents of the memory location specified by addr 16093 // > are copied into the memory location specified by old_val_addr. 16094 // But it hasn't specified storing to OldValAddr is atomic or not and 16095 // which order to use. Now following XL's codegen, treat it as a normal 16096 // store. 16097 Value *LoadedVal = Pair.first.getScalarVal(); 16098 Builder.CreateStore(LoadedVal, OldValAddr); 16099 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty()); 16100 } 16101 case PPC::BI__builtin_ppc_fetch_and_add: 16102 case PPC::BI__builtin_ppc_fetch_and_addlp: { 16103 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 16104 llvm::AtomicOrdering::Monotonic); 16105 } 16106 case PPC::BI__builtin_ppc_fetch_and_and: 16107 case PPC::BI__builtin_ppc_fetch_and_andlp: { 16108 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 16109 llvm::AtomicOrdering::Monotonic); 16110 } 16111 16112 case PPC::BI__builtin_ppc_fetch_and_or: 16113 case PPC::BI__builtin_ppc_fetch_and_orlp: { 16114 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 16115 llvm::AtomicOrdering::Monotonic); 16116 } 16117 case PPC::BI__builtin_ppc_fetch_and_swap: 16118 case PPC::BI__builtin_ppc_fetch_and_swaplp: { 16119 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 16120 llvm::AtomicOrdering::Monotonic); 16121 } 16122 case PPC::BI__builtin_ppc_ldarx: 16123 case PPC::BI__builtin_ppc_lwarx: 16124 case PPC::BI__builtin_ppc_lharx: 16125 case PPC::BI__builtin_ppc_lbarx: 16126 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E); 16127 case PPC::BI__builtin_ppc_mfspr: { 16128 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32 16129 ? Int32Ty 16130 : Int64Ty; 16131 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType); 16132 return Builder.CreateCall(F, Ops); 16133 } 16134 case PPC::BI__builtin_ppc_mtspr: { 16135 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32 16136 ? Int32Ty 16137 : Int64Ty; 16138 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType); 16139 return Builder.CreateCall(F, Ops); 16140 } 16141 case PPC::BI__builtin_ppc_popcntb: { 16142 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 16143 llvm::Type *ArgType = ArgValue->getType(); 16144 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType}); 16145 return Builder.CreateCall(F, Ops, "popcntb"); 16146 } 16147 case PPC::BI__builtin_ppc_mtfsf: { 16148 // The builtin takes a uint32 that needs to be cast to an 16149 // f64 to be passed to the intrinsic. 16150 Value *Cast = Builder.CreateUIToFP(Ops[1], DoubleTy); 16151 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf); 16152 return Builder.CreateCall(F, {Ops[0], Cast}, ""); 16153 } 16154 16155 case PPC::BI__builtin_ppc_swdiv_nochk: 16156 case PPC::BI__builtin_ppc_swdivs_nochk: { 16157 FastMathFlags FMF = Builder.getFastMathFlags(); 16158 Builder.getFastMathFlags().setFast(); 16159 Value *FDiv = Builder.CreateFDiv(Ops[0], Ops[1], "swdiv_nochk"); 16160 Builder.getFastMathFlags() &= (FMF); 16161 return FDiv; 16162 } 16163 case PPC::BI__builtin_ppc_fric: 16164 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16165 *this, E, Intrinsic::rint, 16166 Intrinsic::experimental_constrained_rint)) 16167 .getScalarVal(); 16168 case PPC::BI__builtin_ppc_frim: 16169 case PPC::BI__builtin_ppc_frims: 16170 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16171 *this, E, Intrinsic::floor, 16172 Intrinsic::experimental_constrained_floor)) 16173 .getScalarVal(); 16174 case PPC::BI__builtin_ppc_frin: 16175 case PPC::BI__builtin_ppc_frins: 16176 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16177 *this, E, Intrinsic::round, 16178 Intrinsic::experimental_constrained_round)) 16179 .getScalarVal(); 16180 case PPC::BI__builtin_ppc_frip: 16181 case PPC::BI__builtin_ppc_frips: 16182 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16183 *this, E, Intrinsic::ceil, 16184 Intrinsic::experimental_constrained_ceil)) 16185 .getScalarVal(); 16186 case PPC::BI__builtin_ppc_friz: 16187 case PPC::BI__builtin_ppc_frizs: 16188 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16189 *this, E, Intrinsic::trunc, 16190 Intrinsic::experimental_constrained_trunc)) 16191 .getScalarVal(); 16192 case PPC::BI__builtin_ppc_fsqrt: 16193 case PPC::BI__builtin_ppc_fsqrts: 16194 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16195 *this, E, Intrinsic::sqrt, 16196 Intrinsic::experimental_constrained_sqrt)) 16197 .getScalarVal(); 16198 case PPC::BI__builtin_ppc_test_data_class: { 16199 llvm::Type *ArgType = EmitScalarExpr(E->getArg(0))->getType(); 16200 unsigned IntrinsicID; 16201 if (ArgType->isDoubleTy()) 16202 IntrinsicID = Intrinsic::ppc_test_data_class_d; 16203 else if (ArgType->isFloatTy()) 16204 IntrinsicID = Intrinsic::ppc_test_data_class_f; 16205 else 16206 llvm_unreachable("Invalid Argument Type"); 16207 return Builder.CreateCall(CGM.getIntrinsic(IntrinsicID), Ops, 16208 "test_data_class"); 16209 } 16210 case PPC::BI__builtin_ppc_swdiv: 16211 case PPC::BI__builtin_ppc_swdivs: 16212 return Builder.CreateFDiv(Ops[0], Ops[1], "swdiv"); 16213 } 16214 } 16215 16216 namespace { 16217 // If \p E is not null pointer, insert address space cast to match return 16218 // type of \p E if necessary. 16219 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF, 16220 const CallExpr *E = nullptr) { 16221 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr); 16222 auto *Call = CGF.Builder.CreateCall(F); 16223 Call->addRetAttr( 16224 Attribute::getWithDereferenceableBytes(Call->getContext(), 64)); 16225 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4))); 16226 if (!E) 16227 return Call; 16228 QualType BuiltinRetType = E->getType(); 16229 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType)); 16230 if (RetTy == Call->getType()) 16231 return Call; 16232 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy); 16233 } 16234 16235 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 16236 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) { 16237 const unsigned XOffset = 4; 16238 auto *DP = EmitAMDGPUDispatchPtr(CGF); 16239 // Indexing the HSA kernel_dispatch_packet struct. 16240 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2); 16241 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset); 16242 auto *DstTy = 16243 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 16244 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 16245 auto *LD = CGF.Builder.CreateLoad( 16246 Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2))); 16247 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 16248 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1), 16249 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1)); 16250 LD->setMetadata(llvm::LLVMContext::MD_range, RNode); 16251 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 16252 llvm::MDNode::get(CGF.getLLVMContext(), None)); 16253 return LD; 16254 } 16255 16256 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 16257 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) { 16258 const unsigned XOffset = 12; 16259 auto *DP = EmitAMDGPUDispatchPtr(CGF); 16260 // Indexing the HSA kernel_dispatch_packet struct. 16261 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4); 16262 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset); 16263 auto *DstTy = 16264 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 16265 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 16266 auto *LD = CGF.Builder.CreateLoad( 16267 Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4))); 16268 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 16269 llvm::MDNode::get(CGF.getLLVMContext(), None)); 16270 return LD; 16271 } 16272 } // namespace 16273 16274 // For processing memory ordering and memory scope arguments of various 16275 // amdgcn builtins. 16276 // \p Order takes a C++11 comptabile memory-ordering specifier and converts 16277 // it into LLVM's memory ordering specifier using atomic C ABI, and writes 16278 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN 16279 // specific SyncScopeID and writes it to \p SSID. 16280 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope, 16281 llvm::AtomicOrdering &AO, 16282 llvm::SyncScope::ID &SSID) { 16283 if (isa<llvm::ConstantInt>(Order)) { 16284 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 16285 16286 // Map C11/C++11 memory ordering to LLVM memory ordering 16287 assert(llvm::isValidAtomicOrderingCABI(ord)); 16288 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 16289 case llvm::AtomicOrderingCABI::acquire: 16290 case llvm::AtomicOrderingCABI::consume: 16291 AO = llvm::AtomicOrdering::Acquire; 16292 break; 16293 case llvm::AtomicOrderingCABI::release: 16294 AO = llvm::AtomicOrdering::Release; 16295 break; 16296 case llvm::AtomicOrderingCABI::acq_rel: 16297 AO = llvm::AtomicOrdering::AcquireRelease; 16298 break; 16299 case llvm::AtomicOrderingCABI::seq_cst: 16300 AO = llvm::AtomicOrdering::SequentiallyConsistent; 16301 break; 16302 case llvm::AtomicOrderingCABI::relaxed: 16303 AO = llvm::AtomicOrdering::Monotonic; 16304 break; 16305 } 16306 16307 StringRef scp; 16308 llvm::getConstantStringInfo(Scope, scp); 16309 SSID = getLLVMContext().getOrInsertSyncScopeID(scp); 16310 return true; 16311 } 16312 return false; 16313 } 16314 16315 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, 16316 const CallExpr *E) { 16317 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent; 16318 llvm::SyncScope::ID SSID; 16319 switch (BuiltinID) { 16320 case AMDGPU::BI__builtin_amdgcn_div_scale: 16321 case AMDGPU::BI__builtin_amdgcn_div_scalef: { 16322 // Translate from the intrinsics's struct return to the builtin's out 16323 // argument. 16324 16325 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); 16326 16327 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 16328 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 16329 llvm::Value *Z = EmitScalarExpr(E->getArg(2)); 16330 16331 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, 16332 X->getType()); 16333 16334 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); 16335 16336 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); 16337 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); 16338 16339 llvm::Type *RealFlagType = FlagOutPtr.getElementType(); 16340 16341 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); 16342 Builder.CreateStore(FlagExt, FlagOutPtr); 16343 return Result; 16344 } 16345 case AMDGPU::BI__builtin_amdgcn_div_fmas: 16346 case AMDGPU::BI__builtin_amdgcn_div_fmasf: { 16347 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16348 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16349 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16350 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 16351 16352 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, 16353 Src0->getType()); 16354 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); 16355 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); 16356 } 16357 16358 case AMDGPU::BI__builtin_amdgcn_ds_swizzle: 16359 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); 16360 case AMDGPU::BI__builtin_amdgcn_mov_dpp8: 16361 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); 16362 case AMDGPU::BI__builtin_amdgcn_mov_dpp: 16363 case AMDGPU::BI__builtin_amdgcn_update_dpp: { 16364 llvm::SmallVector<llvm::Value *, 6> Args; 16365 for (unsigned I = 0; I != E->getNumArgs(); ++I) 16366 Args.push_back(EmitScalarExpr(E->getArg(I))); 16367 assert(Args.size() == 5 || Args.size() == 6); 16368 if (Args.size() == 5) 16369 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); 16370 Function *F = 16371 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); 16372 return Builder.CreateCall(F, Args); 16373 } 16374 case AMDGPU::BI__builtin_amdgcn_div_fixup: 16375 case AMDGPU::BI__builtin_amdgcn_div_fixupf: 16376 case AMDGPU::BI__builtin_amdgcn_div_fixuph: 16377 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); 16378 case AMDGPU::BI__builtin_amdgcn_trig_preop: 16379 case AMDGPU::BI__builtin_amdgcn_trig_preopf: 16380 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); 16381 case AMDGPU::BI__builtin_amdgcn_rcp: 16382 case AMDGPU::BI__builtin_amdgcn_rcpf: 16383 case AMDGPU::BI__builtin_amdgcn_rcph: 16384 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); 16385 case AMDGPU::BI__builtin_amdgcn_sqrt: 16386 case AMDGPU::BI__builtin_amdgcn_sqrtf: 16387 case AMDGPU::BI__builtin_amdgcn_sqrth: 16388 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt); 16389 case AMDGPU::BI__builtin_amdgcn_rsq: 16390 case AMDGPU::BI__builtin_amdgcn_rsqf: 16391 case AMDGPU::BI__builtin_amdgcn_rsqh: 16392 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); 16393 case AMDGPU::BI__builtin_amdgcn_rsq_clamp: 16394 case AMDGPU::BI__builtin_amdgcn_rsq_clampf: 16395 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); 16396 case AMDGPU::BI__builtin_amdgcn_sinf: 16397 case AMDGPU::BI__builtin_amdgcn_sinh: 16398 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); 16399 case AMDGPU::BI__builtin_amdgcn_cosf: 16400 case AMDGPU::BI__builtin_amdgcn_cosh: 16401 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); 16402 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr: 16403 return EmitAMDGPUDispatchPtr(*this, E); 16404 case AMDGPU::BI__builtin_amdgcn_log_clampf: 16405 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); 16406 case AMDGPU::BI__builtin_amdgcn_ldexp: 16407 case AMDGPU::BI__builtin_amdgcn_ldexpf: 16408 case AMDGPU::BI__builtin_amdgcn_ldexph: 16409 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); 16410 case AMDGPU::BI__builtin_amdgcn_frexp_mant: 16411 case AMDGPU::BI__builtin_amdgcn_frexp_mantf: 16412 case AMDGPU::BI__builtin_amdgcn_frexp_manth: 16413 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); 16414 case AMDGPU::BI__builtin_amdgcn_frexp_exp: 16415 case AMDGPU::BI__builtin_amdgcn_frexp_expf: { 16416 Value *Src0 = EmitScalarExpr(E->getArg(0)); 16417 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 16418 { Builder.getInt32Ty(), Src0->getType() }); 16419 return Builder.CreateCall(F, Src0); 16420 } 16421 case AMDGPU::BI__builtin_amdgcn_frexp_exph: { 16422 Value *Src0 = EmitScalarExpr(E->getArg(0)); 16423 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 16424 { Builder.getInt16Ty(), Src0->getType() }); 16425 return Builder.CreateCall(F, Src0); 16426 } 16427 case AMDGPU::BI__builtin_amdgcn_fract: 16428 case AMDGPU::BI__builtin_amdgcn_fractf: 16429 case AMDGPU::BI__builtin_amdgcn_fracth: 16430 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); 16431 case AMDGPU::BI__builtin_amdgcn_lerp: 16432 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); 16433 case AMDGPU::BI__builtin_amdgcn_ubfe: 16434 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); 16435 case AMDGPU::BI__builtin_amdgcn_sbfe: 16436 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); 16437 case AMDGPU::BI__builtin_amdgcn_uicmp: 16438 case AMDGPU::BI__builtin_amdgcn_uicmpl: 16439 case AMDGPU::BI__builtin_amdgcn_sicmp: 16440 case AMDGPU::BI__builtin_amdgcn_sicmpl: { 16441 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16442 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16443 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16444 16445 // FIXME-GFX10: How should 32 bit mask be handled? 16446 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, 16447 { Builder.getInt64Ty(), Src0->getType() }); 16448 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 16449 } 16450 case AMDGPU::BI__builtin_amdgcn_fcmp: 16451 case AMDGPU::BI__builtin_amdgcn_fcmpf: { 16452 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16453 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16454 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16455 16456 // FIXME-GFX10: How should 32 bit mask be handled? 16457 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, 16458 { Builder.getInt64Ty(), Src0->getType() }); 16459 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 16460 } 16461 case AMDGPU::BI__builtin_amdgcn_class: 16462 case AMDGPU::BI__builtin_amdgcn_classf: 16463 case AMDGPU::BI__builtin_amdgcn_classh: 16464 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); 16465 case AMDGPU::BI__builtin_amdgcn_fmed3f: 16466 case AMDGPU::BI__builtin_amdgcn_fmed3h: 16467 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); 16468 case AMDGPU::BI__builtin_amdgcn_ds_append: 16469 case AMDGPU::BI__builtin_amdgcn_ds_consume: { 16470 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? 16471 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; 16472 Value *Src0 = EmitScalarExpr(E->getArg(0)); 16473 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); 16474 return Builder.CreateCall(F, { Src0, Builder.getFalse() }); 16475 } 16476 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 16477 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 16478 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: { 16479 Intrinsic::ID Intrin; 16480 switch (BuiltinID) { 16481 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 16482 Intrin = Intrinsic::amdgcn_ds_fadd; 16483 break; 16484 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 16485 Intrin = Intrinsic::amdgcn_ds_fmin; 16486 break; 16487 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: 16488 Intrin = Intrinsic::amdgcn_ds_fmax; 16489 break; 16490 } 16491 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16492 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16493 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16494 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 16495 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4)); 16496 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() }); 16497 llvm::FunctionType *FTy = F->getFunctionType(); 16498 llvm::Type *PTy = FTy->getParamType(0); 16499 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy); 16500 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 }); 16501 } 16502 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64: 16503 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32: 16504 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16: 16505 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64: 16506 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64: 16507 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64: 16508 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64: 16509 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: { 16510 Intrinsic::ID IID; 16511 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext()); 16512 switch (BuiltinID) { 16513 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32: 16514 ArgTy = llvm::Type::getFloatTy(getLLVMContext()); 16515 IID = Intrinsic::amdgcn_global_atomic_fadd; 16516 break; 16517 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16: 16518 ArgTy = llvm::FixedVectorType::get( 16519 llvm::Type::getHalfTy(getLLVMContext()), 2); 16520 IID = Intrinsic::amdgcn_global_atomic_fadd; 16521 break; 16522 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64: 16523 IID = Intrinsic::amdgcn_global_atomic_fadd; 16524 break; 16525 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64: 16526 IID = Intrinsic::amdgcn_global_atomic_fmin; 16527 break; 16528 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64: 16529 IID = Intrinsic::amdgcn_global_atomic_fmax; 16530 break; 16531 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64: 16532 IID = Intrinsic::amdgcn_flat_atomic_fadd; 16533 break; 16534 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64: 16535 IID = Intrinsic::amdgcn_flat_atomic_fmin; 16536 break; 16537 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: 16538 IID = Intrinsic::amdgcn_flat_atomic_fmax; 16539 break; 16540 } 16541 llvm::Value *Addr = EmitScalarExpr(E->getArg(0)); 16542 llvm::Value *Val = EmitScalarExpr(E->getArg(1)); 16543 llvm::Function *F = 16544 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()}); 16545 return Builder.CreateCall(F, {Addr, Val}); 16546 } 16547 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64: 16548 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: { 16549 Intrinsic::ID IID; 16550 llvm::Type *ArgTy; 16551 switch (BuiltinID) { 16552 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: 16553 ArgTy = llvm::Type::getFloatTy(getLLVMContext()); 16554 IID = Intrinsic::amdgcn_ds_fadd; 16555 break; 16556 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64: 16557 ArgTy = llvm::Type::getDoubleTy(getLLVMContext()); 16558 IID = Intrinsic::amdgcn_ds_fadd; 16559 break; 16560 } 16561 llvm::Value *Addr = EmitScalarExpr(E->getArg(0)); 16562 llvm::Value *Val = EmitScalarExpr(E->getArg(1)); 16563 llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue( 16564 llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true)); 16565 llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue( 16566 llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0)); 16567 llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy}); 16568 return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1}); 16569 } 16570 case AMDGPU::BI__builtin_amdgcn_read_exec: { 16571 CallInst *CI = cast<CallInst>( 16572 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec")); 16573 CI->setConvergent(); 16574 return CI; 16575 } 16576 case AMDGPU::BI__builtin_amdgcn_read_exec_lo: 16577 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { 16578 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? 16579 "exec_lo" : "exec_hi"; 16580 CallInst *CI = cast<CallInst>( 16581 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName)); 16582 CI->setConvergent(); 16583 return CI; 16584 } 16585 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray: 16586 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h: 16587 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l: 16588 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: { 16589 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0)); 16590 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1)); 16591 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2)); 16592 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3)); 16593 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4)); 16594 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5)); 16595 16596 // The builtins take these arguments as vec4 where the last element is 16597 // ignored. The intrinsic takes them as vec3. 16598 RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin, 16599 ArrayRef<int>{0, 1, 2}); 16600 RayDir = 16601 Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2}); 16602 RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir, 16603 ArrayRef<int>{0, 1, 2}); 16604 16605 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray, 16606 {NodePtr->getType(), RayDir->getType()}); 16607 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir, 16608 RayInverseDir, TextureDescr}); 16609 } 16610 16611 // amdgcn workitem 16612 case AMDGPU::BI__builtin_amdgcn_workitem_id_x: 16613 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); 16614 case AMDGPU::BI__builtin_amdgcn_workitem_id_y: 16615 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); 16616 case AMDGPU::BI__builtin_amdgcn_workitem_id_z: 16617 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); 16618 16619 // amdgcn workgroup size 16620 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x: 16621 return EmitAMDGPUWorkGroupSize(*this, 0); 16622 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y: 16623 return EmitAMDGPUWorkGroupSize(*this, 1); 16624 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z: 16625 return EmitAMDGPUWorkGroupSize(*this, 2); 16626 16627 // amdgcn grid size 16628 case AMDGPU::BI__builtin_amdgcn_grid_size_x: 16629 return EmitAMDGPUGridSize(*this, 0); 16630 case AMDGPU::BI__builtin_amdgcn_grid_size_y: 16631 return EmitAMDGPUGridSize(*this, 1); 16632 case AMDGPU::BI__builtin_amdgcn_grid_size_z: 16633 return EmitAMDGPUGridSize(*this, 2); 16634 16635 // r600 intrinsics 16636 case AMDGPU::BI__builtin_r600_recipsqrt_ieee: 16637 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: 16638 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); 16639 case AMDGPU::BI__builtin_r600_read_tidig_x: 16640 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); 16641 case AMDGPU::BI__builtin_r600_read_tidig_y: 16642 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); 16643 case AMDGPU::BI__builtin_r600_read_tidig_z: 16644 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); 16645 case AMDGPU::BI__builtin_amdgcn_alignbit: { 16646 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16647 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16648 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16649 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType()); 16650 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 16651 } 16652 16653 case AMDGPU::BI__builtin_amdgcn_fence: { 16654 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)), 16655 EmitScalarExpr(E->getArg(1)), AO, SSID)) 16656 return Builder.CreateFence(AO, SSID); 16657 LLVM_FALLTHROUGH; 16658 } 16659 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 16660 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 16661 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 16662 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: { 16663 unsigned BuiltinAtomicOp; 16664 llvm::Type *ResultType = ConvertType(E->getType()); 16665 16666 switch (BuiltinID) { 16667 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 16668 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 16669 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc; 16670 break; 16671 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 16672 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 16673 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec; 16674 break; 16675 } 16676 16677 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16678 Value *Val = EmitScalarExpr(E->getArg(1)); 16679 16680 llvm::Function *F = 16681 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()}); 16682 16683 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)), 16684 EmitScalarExpr(E->getArg(3)), AO, SSID)) { 16685 16686 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and 16687 // scope as unsigned values 16688 Value *MemOrder = Builder.getInt32(static_cast<int>(AO)); 16689 Value *MemScope = Builder.getInt32(static_cast<int>(SSID)); 16690 16691 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 16692 bool Volatile = 16693 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 16694 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile)); 16695 16696 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile}); 16697 } 16698 LLVM_FALLTHROUGH; 16699 } 16700 default: 16701 return nullptr; 16702 } 16703 } 16704 16705 /// Handle a SystemZ function in which the final argument is a pointer 16706 /// to an int that receives the post-instruction CC value. At the LLVM level 16707 /// this is represented as a function that returns a {result, cc} pair. 16708 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, 16709 unsigned IntrinsicID, 16710 const CallExpr *E) { 16711 unsigned NumArgs = E->getNumArgs() - 1; 16712 SmallVector<Value *, 8> Args(NumArgs); 16713 for (unsigned I = 0; I < NumArgs; ++I) 16714 Args[I] = CGF.EmitScalarExpr(E->getArg(I)); 16715 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); 16716 Function *F = CGF.CGM.getIntrinsic(IntrinsicID); 16717 Value *Call = CGF.Builder.CreateCall(F, Args); 16718 Value *CC = CGF.Builder.CreateExtractValue(Call, 1); 16719 CGF.Builder.CreateStore(CC, CCPtr); 16720 return CGF.Builder.CreateExtractValue(Call, 0); 16721 } 16722 16723 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, 16724 const CallExpr *E) { 16725 switch (BuiltinID) { 16726 case SystemZ::BI__builtin_tbegin: { 16727 Value *TDB = EmitScalarExpr(E->getArg(0)); 16728 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 16729 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); 16730 return Builder.CreateCall(F, {TDB, Control}); 16731 } 16732 case SystemZ::BI__builtin_tbegin_nofloat: { 16733 Value *TDB = EmitScalarExpr(E->getArg(0)); 16734 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 16735 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); 16736 return Builder.CreateCall(F, {TDB, Control}); 16737 } 16738 case SystemZ::BI__builtin_tbeginc: { 16739 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); 16740 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); 16741 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); 16742 return Builder.CreateCall(F, {TDB, Control}); 16743 } 16744 case SystemZ::BI__builtin_tabort: { 16745 Value *Data = EmitScalarExpr(E->getArg(0)); 16746 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); 16747 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); 16748 } 16749 case SystemZ::BI__builtin_non_tx_store: { 16750 Value *Address = EmitScalarExpr(E->getArg(0)); 16751 Value *Data = EmitScalarExpr(E->getArg(1)); 16752 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); 16753 return Builder.CreateCall(F, {Data, Address}); 16754 } 16755 16756 // Vector builtins. Note that most vector builtins are mapped automatically 16757 // to target-specific LLVM intrinsics. The ones handled specially here can 16758 // be represented via standard LLVM IR, which is preferable to enable common 16759 // LLVM optimizations. 16760 16761 case SystemZ::BI__builtin_s390_vpopctb: 16762 case SystemZ::BI__builtin_s390_vpopcth: 16763 case SystemZ::BI__builtin_s390_vpopctf: 16764 case SystemZ::BI__builtin_s390_vpopctg: { 16765 llvm::Type *ResultType = ConvertType(E->getType()); 16766 Value *X = EmitScalarExpr(E->getArg(0)); 16767 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 16768 return Builder.CreateCall(F, X); 16769 } 16770 16771 case SystemZ::BI__builtin_s390_vclzb: 16772 case SystemZ::BI__builtin_s390_vclzh: 16773 case SystemZ::BI__builtin_s390_vclzf: 16774 case SystemZ::BI__builtin_s390_vclzg: { 16775 llvm::Type *ResultType = ConvertType(E->getType()); 16776 Value *X = EmitScalarExpr(E->getArg(0)); 16777 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 16778 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 16779 return Builder.CreateCall(F, {X, Undef}); 16780 } 16781 16782 case SystemZ::BI__builtin_s390_vctzb: 16783 case SystemZ::BI__builtin_s390_vctzh: 16784 case SystemZ::BI__builtin_s390_vctzf: 16785 case SystemZ::BI__builtin_s390_vctzg: { 16786 llvm::Type *ResultType = ConvertType(E->getType()); 16787 Value *X = EmitScalarExpr(E->getArg(0)); 16788 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 16789 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 16790 return Builder.CreateCall(F, {X, Undef}); 16791 } 16792 16793 case SystemZ::BI__builtin_s390_vfsqsb: 16794 case SystemZ::BI__builtin_s390_vfsqdb: { 16795 llvm::Type *ResultType = ConvertType(E->getType()); 16796 Value *X = EmitScalarExpr(E->getArg(0)); 16797 if (Builder.getIsFPConstrained()) { 16798 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType); 16799 return Builder.CreateConstrainedFPCall(F, { X }); 16800 } else { 16801 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 16802 return Builder.CreateCall(F, X); 16803 } 16804 } 16805 case SystemZ::BI__builtin_s390_vfmasb: 16806 case SystemZ::BI__builtin_s390_vfmadb: { 16807 llvm::Type *ResultType = ConvertType(E->getType()); 16808 Value *X = EmitScalarExpr(E->getArg(0)); 16809 Value *Y = EmitScalarExpr(E->getArg(1)); 16810 Value *Z = EmitScalarExpr(E->getArg(2)); 16811 if (Builder.getIsFPConstrained()) { 16812 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16813 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 16814 } else { 16815 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16816 return Builder.CreateCall(F, {X, Y, Z}); 16817 } 16818 } 16819 case SystemZ::BI__builtin_s390_vfmssb: 16820 case SystemZ::BI__builtin_s390_vfmsdb: { 16821 llvm::Type *ResultType = ConvertType(E->getType()); 16822 Value *X = EmitScalarExpr(E->getArg(0)); 16823 Value *Y = EmitScalarExpr(E->getArg(1)); 16824 Value *Z = EmitScalarExpr(E->getArg(2)); 16825 if (Builder.getIsFPConstrained()) { 16826 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16827 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 16828 } else { 16829 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16830 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 16831 } 16832 } 16833 case SystemZ::BI__builtin_s390_vfnmasb: 16834 case SystemZ::BI__builtin_s390_vfnmadb: { 16835 llvm::Type *ResultType = ConvertType(E->getType()); 16836 Value *X = EmitScalarExpr(E->getArg(0)); 16837 Value *Y = EmitScalarExpr(E->getArg(1)); 16838 Value *Z = EmitScalarExpr(E->getArg(2)); 16839 if (Builder.getIsFPConstrained()) { 16840 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16841 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 16842 } else { 16843 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16844 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 16845 } 16846 } 16847 case SystemZ::BI__builtin_s390_vfnmssb: 16848 case SystemZ::BI__builtin_s390_vfnmsdb: { 16849 llvm::Type *ResultType = ConvertType(E->getType()); 16850 Value *X = EmitScalarExpr(E->getArg(0)); 16851 Value *Y = EmitScalarExpr(E->getArg(1)); 16852 Value *Z = EmitScalarExpr(E->getArg(2)); 16853 if (Builder.getIsFPConstrained()) { 16854 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16855 Value *NegZ = Builder.CreateFNeg(Z, "sub"); 16856 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ})); 16857 } else { 16858 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16859 Value *NegZ = Builder.CreateFNeg(Z, "neg"); 16860 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ})); 16861 } 16862 } 16863 case SystemZ::BI__builtin_s390_vflpsb: 16864 case SystemZ::BI__builtin_s390_vflpdb: { 16865 llvm::Type *ResultType = ConvertType(E->getType()); 16866 Value *X = EmitScalarExpr(E->getArg(0)); 16867 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 16868 return Builder.CreateCall(F, X); 16869 } 16870 case SystemZ::BI__builtin_s390_vflnsb: 16871 case SystemZ::BI__builtin_s390_vflndb: { 16872 llvm::Type *ResultType = ConvertType(E->getType()); 16873 Value *X = EmitScalarExpr(E->getArg(0)); 16874 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 16875 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg"); 16876 } 16877 case SystemZ::BI__builtin_s390_vfisb: 16878 case SystemZ::BI__builtin_s390_vfidb: { 16879 llvm::Type *ResultType = ConvertType(E->getType()); 16880 Value *X = EmitScalarExpr(E->getArg(0)); 16881 // Constant-fold the M4 and M5 mask arguments. 16882 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext()); 16883 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16884 // Check whether this instance can be represented via a LLVM standard 16885 // intrinsic. We only support some combinations of M4 and M5. 16886 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16887 Intrinsic::ID CI; 16888 switch (M4.getZExtValue()) { 16889 default: break; 16890 case 0: // IEEE-inexact exception allowed 16891 switch (M5.getZExtValue()) { 16892 default: break; 16893 case 0: ID = Intrinsic::rint; 16894 CI = Intrinsic::experimental_constrained_rint; break; 16895 } 16896 break; 16897 case 4: // IEEE-inexact exception suppressed 16898 switch (M5.getZExtValue()) { 16899 default: break; 16900 case 0: ID = Intrinsic::nearbyint; 16901 CI = Intrinsic::experimental_constrained_nearbyint; break; 16902 case 1: ID = Intrinsic::round; 16903 CI = Intrinsic::experimental_constrained_round; break; 16904 case 5: ID = Intrinsic::trunc; 16905 CI = Intrinsic::experimental_constrained_trunc; break; 16906 case 6: ID = Intrinsic::ceil; 16907 CI = Intrinsic::experimental_constrained_ceil; break; 16908 case 7: ID = Intrinsic::floor; 16909 CI = Intrinsic::experimental_constrained_floor; break; 16910 } 16911 break; 16912 } 16913 if (ID != Intrinsic::not_intrinsic) { 16914 if (Builder.getIsFPConstrained()) { 16915 Function *F = CGM.getIntrinsic(CI, ResultType); 16916 return Builder.CreateConstrainedFPCall(F, X); 16917 } else { 16918 Function *F = CGM.getIntrinsic(ID, ResultType); 16919 return Builder.CreateCall(F, X); 16920 } 16921 } 16922 switch (BuiltinID) { // FIXME: constrained version? 16923 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; 16924 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; 16925 default: llvm_unreachable("Unknown BuiltinID"); 16926 } 16927 Function *F = CGM.getIntrinsic(ID); 16928 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16929 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); 16930 return Builder.CreateCall(F, {X, M4Value, M5Value}); 16931 } 16932 case SystemZ::BI__builtin_s390_vfmaxsb: 16933 case SystemZ::BI__builtin_s390_vfmaxdb: { 16934 llvm::Type *ResultType = ConvertType(E->getType()); 16935 Value *X = EmitScalarExpr(E->getArg(0)); 16936 Value *Y = EmitScalarExpr(E->getArg(1)); 16937 // Constant-fold the M4 mask argument. 16938 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16939 // Check whether this instance can be represented via a LLVM standard 16940 // intrinsic. We only support some values of M4. 16941 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16942 Intrinsic::ID CI; 16943 switch (M4.getZExtValue()) { 16944 default: break; 16945 case 4: ID = Intrinsic::maxnum; 16946 CI = Intrinsic::experimental_constrained_maxnum; break; 16947 } 16948 if (ID != Intrinsic::not_intrinsic) { 16949 if (Builder.getIsFPConstrained()) { 16950 Function *F = CGM.getIntrinsic(CI, ResultType); 16951 return Builder.CreateConstrainedFPCall(F, {X, Y}); 16952 } else { 16953 Function *F = CGM.getIntrinsic(ID, ResultType); 16954 return Builder.CreateCall(F, {X, Y}); 16955 } 16956 } 16957 switch (BuiltinID) { 16958 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; 16959 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; 16960 default: llvm_unreachable("Unknown BuiltinID"); 16961 } 16962 Function *F = CGM.getIntrinsic(ID); 16963 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16964 return Builder.CreateCall(F, {X, Y, M4Value}); 16965 } 16966 case SystemZ::BI__builtin_s390_vfminsb: 16967 case SystemZ::BI__builtin_s390_vfmindb: { 16968 llvm::Type *ResultType = ConvertType(E->getType()); 16969 Value *X = EmitScalarExpr(E->getArg(0)); 16970 Value *Y = EmitScalarExpr(E->getArg(1)); 16971 // Constant-fold the M4 mask argument. 16972 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16973 // Check whether this instance can be represented via a LLVM standard 16974 // intrinsic. We only support some values of M4. 16975 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16976 Intrinsic::ID CI; 16977 switch (M4.getZExtValue()) { 16978 default: break; 16979 case 4: ID = Intrinsic::minnum; 16980 CI = Intrinsic::experimental_constrained_minnum; break; 16981 } 16982 if (ID != Intrinsic::not_intrinsic) { 16983 if (Builder.getIsFPConstrained()) { 16984 Function *F = CGM.getIntrinsic(CI, ResultType); 16985 return Builder.CreateConstrainedFPCall(F, {X, Y}); 16986 } else { 16987 Function *F = CGM.getIntrinsic(ID, ResultType); 16988 return Builder.CreateCall(F, {X, Y}); 16989 } 16990 } 16991 switch (BuiltinID) { 16992 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; 16993 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; 16994 default: llvm_unreachable("Unknown BuiltinID"); 16995 } 16996 Function *F = CGM.getIntrinsic(ID); 16997 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16998 return Builder.CreateCall(F, {X, Y, M4Value}); 16999 } 17000 17001 case SystemZ::BI__builtin_s390_vlbrh: 17002 case SystemZ::BI__builtin_s390_vlbrf: 17003 case SystemZ::BI__builtin_s390_vlbrg: { 17004 llvm::Type *ResultType = ConvertType(E->getType()); 17005 Value *X = EmitScalarExpr(E->getArg(0)); 17006 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); 17007 return Builder.CreateCall(F, X); 17008 } 17009 17010 // Vector intrinsics that output the post-instruction CC value. 17011 17012 #define INTRINSIC_WITH_CC(NAME) \ 17013 case SystemZ::BI__builtin_##NAME: \ 17014 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) 17015 17016 INTRINSIC_WITH_CC(s390_vpkshs); 17017 INTRINSIC_WITH_CC(s390_vpksfs); 17018 INTRINSIC_WITH_CC(s390_vpksgs); 17019 17020 INTRINSIC_WITH_CC(s390_vpklshs); 17021 INTRINSIC_WITH_CC(s390_vpklsfs); 17022 INTRINSIC_WITH_CC(s390_vpklsgs); 17023 17024 INTRINSIC_WITH_CC(s390_vceqbs); 17025 INTRINSIC_WITH_CC(s390_vceqhs); 17026 INTRINSIC_WITH_CC(s390_vceqfs); 17027 INTRINSIC_WITH_CC(s390_vceqgs); 17028 17029 INTRINSIC_WITH_CC(s390_vchbs); 17030 INTRINSIC_WITH_CC(s390_vchhs); 17031 INTRINSIC_WITH_CC(s390_vchfs); 17032 INTRINSIC_WITH_CC(s390_vchgs); 17033 17034 INTRINSIC_WITH_CC(s390_vchlbs); 17035 INTRINSIC_WITH_CC(s390_vchlhs); 17036 INTRINSIC_WITH_CC(s390_vchlfs); 17037 INTRINSIC_WITH_CC(s390_vchlgs); 17038 17039 INTRINSIC_WITH_CC(s390_vfaebs); 17040 INTRINSIC_WITH_CC(s390_vfaehs); 17041 INTRINSIC_WITH_CC(s390_vfaefs); 17042 17043 INTRINSIC_WITH_CC(s390_vfaezbs); 17044 INTRINSIC_WITH_CC(s390_vfaezhs); 17045 INTRINSIC_WITH_CC(s390_vfaezfs); 17046 17047 INTRINSIC_WITH_CC(s390_vfeebs); 17048 INTRINSIC_WITH_CC(s390_vfeehs); 17049 INTRINSIC_WITH_CC(s390_vfeefs); 17050 17051 INTRINSIC_WITH_CC(s390_vfeezbs); 17052 INTRINSIC_WITH_CC(s390_vfeezhs); 17053 INTRINSIC_WITH_CC(s390_vfeezfs); 17054 17055 INTRINSIC_WITH_CC(s390_vfenebs); 17056 INTRINSIC_WITH_CC(s390_vfenehs); 17057 INTRINSIC_WITH_CC(s390_vfenefs); 17058 17059 INTRINSIC_WITH_CC(s390_vfenezbs); 17060 INTRINSIC_WITH_CC(s390_vfenezhs); 17061 INTRINSIC_WITH_CC(s390_vfenezfs); 17062 17063 INTRINSIC_WITH_CC(s390_vistrbs); 17064 INTRINSIC_WITH_CC(s390_vistrhs); 17065 INTRINSIC_WITH_CC(s390_vistrfs); 17066 17067 INTRINSIC_WITH_CC(s390_vstrcbs); 17068 INTRINSIC_WITH_CC(s390_vstrchs); 17069 INTRINSIC_WITH_CC(s390_vstrcfs); 17070 17071 INTRINSIC_WITH_CC(s390_vstrczbs); 17072 INTRINSIC_WITH_CC(s390_vstrczhs); 17073 INTRINSIC_WITH_CC(s390_vstrczfs); 17074 17075 INTRINSIC_WITH_CC(s390_vfcesbs); 17076 INTRINSIC_WITH_CC(s390_vfcedbs); 17077 INTRINSIC_WITH_CC(s390_vfchsbs); 17078 INTRINSIC_WITH_CC(s390_vfchdbs); 17079 INTRINSIC_WITH_CC(s390_vfchesbs); 17080 INTRINSIC_WITH_CC(s390_vfchedbs); 17081 17082 INTRINSIC_WITH_CC(s390_vftcisb); 17083 INTRINSIC_WITH_CC(s390_vftcidb); 17084 17085 INTRINSIC_WITH_CC(s390_vstrsb); 17086 INTRINSIC_WITH_CC(s390_vstrsh); 17087 INTRINSIC_WITH_CC(s390_vstrsf); 17088 17089 INTRINSIC_WITH_CC(s390_vstrszb); 17090 INTRINSIC_WITH_CC(s390_vstrszh); 17091 INTRINSIC_WITH_CC(s390_vstrszf); 17092 17093 #undef INTRINSIC_WITH_CC 17094 17095 default: 17096 return nullptr; 17097 } 17098 } 17099 17100 namespace { 17101 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. 17102 struct NVPTXMmaLdstInfo { 17103 unsigned NumResults; // Number of elements to load/store 17104 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. 17105 unsigned IID_col; 17106 unsigned IID_row; 17107 }; 17108 17109 #define MMA_INTR(geom_op_type, layout) \ 17110 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride 17111 #define MMA_LDST(n, geom_op_type) \ 17112 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } 17113 17114 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { 17115 switch (BuiltinID) { 17116 // FP MMA loads 17117 case NVPTX::BI__hmma_m16n16k16_ld_a: 17118 return MMA_LDST(8, m16n16k16_load_a_f16); 17119 case NVPTX::BI__hmma_m16n16k16_ld_b: 17120 return MMA_LDST(8, m16n16k16_load_b_f16); 17121 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 17122 return MMA_LDST(4, m16n16k16_load_c_f16); 17123 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 17124 return MMA_LDST(8, m16n16k16_load_c_f32); 17125 case NVPTX::BI__hmma_m32n8k16_ld_a: 17126 return MMA_LDST(8, m32n8k16_load_a_f16); 17127 case NVPTX::BI__hmma_m32n8k16_ld_b: 17128 return MMA_LDST(8, m32n8k16_load_b_f16); 17129 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 17130 return MMA_LDST(4, m32n8k16_load_c_f16); 17131 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 17132 return MMA_LDST(8, m32n8k16_load_c_f32); 17133 case NVPTX::BI__hmma_m8n32k16_ld_a: 17134 return MMA_LDST(8, m8n32k16_load_a_f16); 17135 case NVPTX::BI__hmma_m8n32k16_ld_b: 17136 return MMA_LDST(8, m8n32k16_load_b_f16); 17137 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 17138 return MMA_LDST(4, m8n32k16_load_c_f16); 17139 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 17140 return MMA_LDST(8, m8n32k16_load_c_f32); 17141 17142 // Integer MMA loads 17143 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 17144 return MMA_LDST(2, m16n16k16_load_a_s8); 17145 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 17146 return MMA_LDST(2, m16n16k16_load_a_u8); 17147 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 17148 return MMA_LDST(2, m16n16k16_load_b_s8); 17149 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 17150 return MMA_LDST(2, m16n16k16_load_b_u8); 17151 case NVPTX::BI__imma_m16n16k16_ld_c: 17152 return MMA_LDST(8, m16n16k16_load_c_s32); 17153 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 17154 return MMA_LDST(4, m32n8k16_load_a_s8); 17155 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 17156 return MMA_LDST(4, m32n8k16_load_a_u8); 17157 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 17158 return MMA_LDST(1, m32n8k16_load_b_s8); 17159 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 17160 return MMA_LDST(1, m32n8k16_load_b_u8); 17161 case NVPTX::BI__imma_m32n8k16_ld_c: 17162 return MMA_LDST(8, m32n8k16_load_c_s32); 17163 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 17164 return MMA_LDST(1, m8n32k16_load_a_s8); 17165 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 17166 return MMA_LDST(1, m8n32k16_load_a_u8); 17167 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 17168 return MMA_LDST(4, m8n32k16_load_b_s8); 17169 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 17170 return MMA_LDST(4, m8n32k16_load_b_u8); 17171 case NVPTX::BI__imma_m8n32k16_ld_c: 17172 return MMA_LDST(8, m8n32k16_load_c_s32); 17173 17174 // Sub-integer MMA loads. 17175 // Only row/col layout is supported by A/B fragments. 17176 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 17177 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; 17178 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 17179 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; 17180 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 17181 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; 17182 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 17183 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; 17184 case NVPTX::BI__imma_m8n8k32_ld_c: 17185 return MMA_LDST(2, m8n8k32_load_c_s32); 17186 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 17187 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; 17188 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 17189 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; 17190 case NVPTX::BI__bmma_m8n8k128_ld_c: 17191 return MMA_LDST(2, m8n8k128_load_c_s32); 17192 17193 // Double MMA loads 17194 case NVPTX::BI__dmma_m8n8k4_ld_a: 17195 return MMA_LDST(1, m8n8k4_load_a_f64); 17196 case NVPTX::BI__dmma_m8n8k4_ld_b: 17197 return MMA_LDST(1, m8n8k4_load_b_f64); 17198 case NVPTX::BI__dmma_m8n8k4_ld_c: 17199 return MMA_LDST(2, m8n8k4_load_c_f64); 17200 17201 // Alternate float MMA loads 17202 case NVPTX::BI__mma_bf16_m16n16k16_ld_a: 17203 return MMA_LDST(4, m16n16k16_load_a_bf16); 17204 case NVPTX::BI__mma_bf16_m16n16k16_ld_b: 17205 return MMA_LDST(4, m16n16k16_load_b_bf16); 17206 case NVPTX::BI__mma_bf16_m8n32k16_ld_a: 17207 return MMA_LDST(2, m8n32k16_load_a_bf16); 17208 case NVPTX::BI__mma_bf16_m8n32k16_ld_b: 17209 return MMA_LDST(8, m8n32k16_load_b_bf16); 17210 case NVPTX::BI__mma_bf16_m32n8k16_ld_a: 17211 return MMA_LDST(8, m32n8k16_load_a_bf16); 17212 case NVPTX::BI__mma_bf16_m32n8k16_ld_b: 17213 return MMA_LDST(2, m32n8k16_load_b_bf16); 17214 case NVPTX::BI__mma_tf32_m16n16k8_ld_a: 17215 return MMA_LDST(4, m16n16k8_load_a_tf32); 17216 case NVPTX::BI__mma_tf32_m16n16k8_ld_b: 17217 return MMA_LDST(4, m16n16k8_load_b_tf32); 17218 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: 17219 return MMA_LDST(8, m16n16k8_load_c_f32); 17220 17221 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike 17222 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always 17223 // use fragment C for both loads and stores. 17224 // FP MMA stores. 17225 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 17226 return MMA_LDST(4, m16n16k16_store_d_f16); 17227 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 17228 return MMA_LDST(8, m16n16k16_store_d_f32); 17229 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 17230 return MMA_LDST(4, m32n8k16_store_d_f16); 17231 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 17232 return MMA_LDST(8, m32n8k16_store_d_f32); 17233 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 17234 return MMA_LDST(4, m8n32k16_store_d_f16); 17235 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 17236 return MMA_LDST(8, m8n32k16_store_d_f32); 17237 17238 // Integer and sub-integer MMA stores. 17239 // Another naming quirk. Unlike other MMA builtins that use PTX types in the 17240 // name, integer loads/stores use LLVM's i32. 17241 case NVPTX::BI__imma_m16n16k16_st_c_i32: 17242 return MMA_LDST(8, m16n16k16_store_d_s32); 17243 case NVPTX::BI__imma_m32n8k16_st_c_i32: 17244 return MMA_LDST(8, m32n8k16_store_d_s32); 17245 case NVPTX::BI__imma_m8n32k16_st_c_i32: 17246 return MMA_LDST(8, m8n32k16_store_d_s32); 17247 case NVPTX::BI__imma_m8n8k32_st_c_i32: 17248 return MMA_LDST(2, m8n8k32_store_d_s32); 17249 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 17250 return MMA_LDST(2, m8n8k128_store_d_s32); 17251 17252 // Double MMA store 17253 case NVPTX::BI__dmma_m8n8k4_st_c_f64: 17254 return MMA_LDST(2, m8n8k4_store_d_f64); 17255 17256 // Alternate float MMA store 17257 case NVPTX::BI__mma_m16n16k8_st_c_f32: 17258 return MMA_LDST(8, m16n16k8_store_d_f32); 17259 17260 default: 17261 llvm_unreachable("Unknown MMA builtin"); 17262 } 17263 } 17264 #undef MMA_LDST 17265 #undef MMA_INTR 17266 17267 17268 struct NVPTXMmaInfo { 17269 unsigned NumEltsA; 17270 unsigned NumEltsB; 17271 unsigned NumEltsC; 17272 unsigned NumEltsD; 17273 17274 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority 17275 // over 'col' for layout. The index of non-satf variants is expected to match 17276 // the undocumented layout constants used by CUDA's mma.hpp. 17277 std::array<unsigned, 8> Variants; 17278 17279 unsigned getMMAIntrinsic(int Layout, bool Satf) { 17280 unsigned Index = Layout + 4 * Satf; 17281 if (Index >= Variants.size()) 17282 return 0; 17283 return Variants[Index]; 17284 } 17285 }; 17286 17287 // Returns an intrinsic that matches Layout and Satf for valid combinations of 17288 // Layout and Satf, 0 otherwise. 17289 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { 17290 // clang-format off 17291 #define MMA_VARIANTS(geom, type) \ 17292 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ 17293 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 17294 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ 17295 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type 17296 #define MMA_SATF_VARIANTS(geom, type) \ 17297 MMA_VARIANTS(geom, type), \ 17298 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ 17299 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 17300 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ 17301 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite 17302 // Sub-integer MMA only supports row.col layout. 17303 #define MMA_VARIANTS_I4(geom, type) \ 17304 0, \ 17305 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 17306 0, \ 17307 0, \ 17308 0, \ 17309 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 17310 0, \ 17311 0 17312 // b1 MMA does not support .satfinite. 17313 #define MMA_VARIANTS_B1_XOR(geom, type) \ 17314 0, \ 17315 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \ 17316 0, \ 17317 0, \ 17318 0, \ 17319 0, \ 17320 0, \ 17321 0 17322 #define MMA_VARIANTS_B1_AND(geom, type) \ 17323 0, \ 17324 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \ 17325 0, \ 17326 0, \ 17327 0, \ 17328 0, \ 17329 0, \ 17330 0 17331 // clang-format on 17332 switch (BuiltinID) { 17333 // FP MMA 17334 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while 17335 // NumEltsN of return value are ordered as A,B,C,D. 17336 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 17337 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}}; 17338 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 17339 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}}; 17340 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 17341 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}}; 17342 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 17343 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}}; 17344 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 17345 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}}; 17346 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 17347 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}}; 17348 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 17349 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}}; 17350 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 17351 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}}; 17352 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 17353 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}}; 17354 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 17355 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}}; 17356 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 17357 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}}; 17358 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 17359 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}}; 17360 17361 // Integer MMA 17362 case NVPTX::BI__imma_m16n16k16_mma_s8: 17363 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}}; 17364 case NVPTX::BI__imma_m16n16k16_mma_u8: 17365 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}}; 17366 case NVPTX::BI__imma_m32n8k16_mma_s8: 17367 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}}; 17368 case NVPTX::BI__imma_m32n8k16_mma_u8: 17369 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}}; 17370 case NVPTX::BI__imma_m8n32k16_mma_s8: 17371 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}}; 17372 case NVPTX::BI__imma_m8n32k16_mma_u8: 17373 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}}; 17374 17375 // Sub-integer MMA 17376 case NVPTX::BI__imma_m8n8k32_mma_s4: 17377 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}}; 17378 case NVPTX::BI__imma_m8n8k32_mma_u4: 17379 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}}; 17380 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 17381 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}}; 17382 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1: 17383 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}}; 17384 17385 // Double MMA 17386 case NVPTX::BI__dmma_m8n8k4_mma_f64: 17387 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}}; 17388 17389 // Alternate FP MMA 17390 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32: 17391 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}}; 17392 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32: 17393 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}}; 17394 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32: 17395 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}}; 17396 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: 17397 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}}; 17398 default: 17399 llvm_unreachable("Unexpected builtin ID."); 17400 } 17401 #undef MMA_VARIANTS 17402 #undef MMA_SATF_VARIANTS 17403 #undef MMA_VARIANTS_I4 17404 #undef MMA_VARIANTS_B1_AND 17405 #undef MMA_VARIANTS_B1_XOR 17406 } 17407 17408 } // namespace 17409 17410 Value * 17411 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { 17412 auto MakeLdg = [&](unsigned IntrinsicID) { 17413 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17414 clang::CharUnits Align = 17415 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); 17416 return Builder.CreateCall( 17417 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 17418 Ptr->getType()}), 17419 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); 17420 }; 17421 auto MakeScopedAtomic = [&](unsigned IntrinsicID) { 17422 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17423 return Builder.CreateCall( 17424 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 17425 Ptr->getType()}), 17426 {Ptr, EmitScalarExpr(E->getArg(1))}); 17427 }; 17428 switch (BuiltinID) { 17429 case NVPTX::BI__nvvm_atom_add_gen_i: 17430 case NVPTX::BI__nvvm_atom_add_gen_l: 17431 case NVPTX::BI__nvvm_atom_add_gen_ll: 17432 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); 17433 17434 case NVPTX::BI__nvvm_atom_sub_gen_i: 17435 case NVPTX::BI__nvvm_atom_sub_gen_l: 17436 case NVPTX::BI__nvvm_atom_sub_gen_ll: 17437 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); 17438 17439 case NVPTX::BI__nvvm_atom_and_gen_i: 17440 case NVPTX::BI__nvvm_atom_and_gen_l: 17441 case NVPTX::BI__nvvm_atom_and_gen_ll: 17442 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); 17443 17444 case NVPTX::BI__nvvm_atom_or_gen_i: 17445 case NVPTX::BI__nvvm_atom_or_gen_l: 17446 case NVPTX::BI__nvvm_atom_or_gen_ll: 17447 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); 17448 17449 case NVPTX::BI__nvvm_atom_xor_gen_i: 17450 case NVPTX::BI__nvvm_atom_xor_gen_l: 17451 case NVPTX::BI__nvvm_atom_xor_gen_ll: 17452 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); 17453 17454 case NVPTX::BI__nvvm_atom_xchg_gen_i: 17455 case NVPTX::BI__nvvm_atom_xchg_gen_l: 17456 case NVPTX::BI__nvvm_atom_xchg_gen_ll: 17457 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); 17458 17459 case NVPTX::BI__nvvm_atom_max_gen_i: 17460 case NVPTX::BI__nvvm_atom_max_gen_l: 17461 case NVPTX::BI__nvvm_atom_max_gen_ll: 17462 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); 17463 17464 case NVPTX::BI__nvvm_atom_max_gen_ui: 17465 case NVPTX::BI__nvvm_atom_max_gen_ul: 17466 case NVPTX::BI__nvvm_atom_max_gen_ull: 17467 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); 17468 17469 case NVPTX::BI__nvvm_atom_min_gen_i: 17470 case NVPTX::BI__nvvm_atom_min_gen_l: 17471 case NVPTX::BI__nvvm_atom_min_gen_ll: 17472 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); 17473 17474 case NVPTX::BI__nvvm_atom_min_gen_ui: 17475 case NVPTX::BI__nvvm_atom_min_gen_ul: 17476 case NVPTX::BI__nvvm_atom_min_gen_ull: 17477 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); 17478 17479 case NVPTX::BI__nvvm_atom_cas_gen_i: 17480 case NVPTX::BI__nvvm_atom_cas_gen_l: 17481 case NVPTX::BI__nvvm_atom_cas_gen_ll: 17482 // __nvvm_atom_cas_gen_* should return the old value rather than the 17483 // success flag. 17484 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); 17485 17486 case NVPTX::BI__nvvm_atom_add_gen_f: 17487 case NVPTX::BI__nvvm_atom_add_gen_d: { 17488 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17489 Value *Val = EmitScalarExpr(E->getArg(1)); 17490 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, 17491 AtomicOrdering::SequentiallyConsistent); 17492 } 17493 17494 case NVPTX::BI__nvvm_atom_inc_gen_ui: { 17495 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17496 Value *Val = EmitScalarExpr(E->getArg(1)); 17497 Function *FnALI32 = 17498 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); 17499 return Builder.CreateCall(FnALI32, {Ptr, Val}); 17500 } 17501 17502 case NVPTX::BI__nvvm_atom_dec_gen_ui: { 17503 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17504 Value *Val = EmitScalarExpr(E->getArg(1)); 17505 Function *FnALD32 = 17506 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); 17507 return Builder.CreateCall(FnALD32, {Ptr, Val}); 17508 } 17509 17510 case NVPTX::BI__nvvm_ldg_c: 17511 case NVPTX::BI__nvvm_ldg_c2: 17512 case NVPTX::BI__nvvm_ldg_c4: 17513 case NVPTX::BI__nvvm_ldg_s: 17514 case NVPTX::BI__nvvm_ldg_s2: 17515 case NVPTX::BI__nvvm_ldg_s4: 17516 case NVPTX::BI__nvvm_ldg_i: 17517 case NVPTX::BI__nvvm_ldg_i2: 17518 case NVPTX::BI__nvvm_ldg_i4: 17519 case NVPTX::BI__nvvm_ldg_l: 17520 case NVPTX::BI__nvvm_ldg_ll: 17521 case NVPTX::BI__nvvm_ldg_ll2: 17522 case NVPTX::BI__nvvm_ldg_uc: 17523 case NVPTX::BI__nvvm_ldg_uc2: 17524 case NVPTX::BI__nvvm_ldg_uc4: 17525 case NVPTX::BI__nvvm_ldg_us: 17526 case NVPTX::BI__nvvm_ldg_us2: 17527 case NVPTX::BI__nvvm_ldg_us4: 17528 case NVPTX::BI__nvvm_ldg_ui: 17529 case NVPTX::BI__nvvm_ldg_ui2: 17530 case NVPTX::BI__nvvm_ldg_ui4: 17531 case NVPTX::BI__nvvm_ldg_ul: 17532 case NVPTX::BI__nvvm_ldg_ull: 17533 case NVPTX::BI__nvvm_ldg_ull2: 17534 // PTX Interoperability section 2.2: "For a vector with an even number of 17535 // elements, its alignment is set to number of elements times the alignment 17536 // of its member: n*alignof(t)." 17537 return MakeLdg(Intrinsic::nvvm_ldg_global_i); 17538 case NVPTX::BI__nvvm_ldg_f: 17539 case NVPTX::BI__nvvm_ldg_f2: 17540 case NVPTX::BI__nvvm_ldg_f4: 17541 case NVPTX::BI__nvvm_ldg_d: 17542 case NVPTX::BI__nvvm_ldg_d2: 17543 return MakeLdg(Intrinsic::nvvm_ldg_global_f); 17544 17545 case NVPTX::BI__nvvm_atom_cta_add_gen_i: 17546 case NVPTX::BI__nvvm_atom_cta_add_gen_l: 17547 case NVPTX::BI__nvvm_atom_cta_add_gen_ll: 17548 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); 17549 case NVPTX::BI__nvvm_atom_sys_add_gen_i: 17550 case NVPTX::BI__nvvm_atom_sys_add_gen_l: 17551 case NVPTX::BI__nvvm_atom_sys_add_gen_ll: 17552 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); 17553 case NVPTX::BI__nvvm_atom_cta_add_gen_f: 17554 case NVPTX::BI__nvvm_atom_cta_add_gen_d: 17555 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); 17556 case NVPTX::BI__nvvm_atom_sys_add_gen_f: 17557 case NVPTX::BI__nvvm_atom_sys_add_gen_d: 17558 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); 17559 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: 17560 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: 17561 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: 17562 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); 17563 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: 17564 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: 17565 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: 17566 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); 17567 case NVPTX::BI__nvvm_atom_cta_max_gen_i: 17568 case NVPTX::BI__nvvm_atom_cta_max_gen_ui: 17569 case NVPTX::BI__nvvm_atom_cta_max_gen_l: 17570 case NVPTX::BI__nvvm_atom_cta_max_gen_ul: 17571 case NVPTX::BI__nvvm_atom_cta_max_gen_ll: 17572 case NVPTX::BI__nvvm_atom_cta_max_gen_ull: 17573 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); 17574 case NVPTX::BI__nvvm_atom_sys_max_gen_i: 17575 case NVPTX::BI__nvvm_atom_sys_max_gen_ui: 17576 case NVPTX::BI__nvvm_atom_sys_max_gen_l: 17577 case NVPTX::BI__nvvm_atom_sys_max_gen_ul: 17578 case NVPTX::BI__nvvm_atom_sys_max_gen_ll: 17579 case NVPTX::BI__nvvm_atom_sys_max_gen_ull: 17580 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); 17581 case NVPTX::BI__nvvm_atom_cta_min_gen_i: 17582 case NVPTX::BI__nvvm_atom_cta_min_gen_ui: 17583 case NVPTX::BI__nvvm_atom_cta_min_gen_l: 17584 case NVPTX::BI__nvvm_atom_cta_min_gen_ul: 17585 case NVPTX::BI__nvvm_atom_cta_min_gen_ll: 17586 case NVPTX::BI__nvvm_atom_cta_min_gen_ull: 17587 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); 17588 case NVPTX::BI__nvvm_atom_sys_min_gen_i: 17589 case NVPTX::BI__nvvm_atom_sys_min_gen_ui: 17590 case NVPTX::BI__nvvm_atom_sys_min_gen_l: 17591 case NVPTX::BI__nvvm_atom_sys_min_gen_ul: 17592 case NVPTX::BI__nvvm_atom_sys_min_gen_ll: 17593 case NVPTX::BI__nvvm_atom_sys_min_gen_ull: 17594 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); 17595 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: 17596 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); 17597 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: 17598 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); 17599 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: 17600 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); 17601 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: 17602 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); 17603 case NVPTX::BI__nvvm_atom_cta_and_gen_i: 17604 case NVPTX::BI__nvvm_atom_cta_and_gen_l: 17605 case NVPTX::BI__nvvm_atom_cta_and_gen_ll: 17606 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); 17607 case NVPTX::BI__nvvm_atom_sys_and_gen_i: 17608 case NVPTX::BI__nvvm_atom_sys_and_gen_l: 17609 case NVPTX::BI__nvvm_atom_sys_and_gen_ll: 17610 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); 17611 case NVPTX::BI__nvvm_atom_cta_or_gen_i: 17612 case NVPTX::BI__nvvm_atom_cta_or_gen_l: 17613 case NVPTX::BI__nvvm_atom_cta_or_gen_ll: 17614 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); 17615 case NVPTX::BI__nvvm_atom_sys_or_gen_i: 17616 case NVPTX::BI__nvvm_atom_sys_or_gen_l: 17617 case NVPTX::BI__nvvm_atom_sys_or_gen_ll: 17618 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); 17619 case NVPTX::BI__nvvm_atom_cta_xor_gen_i: 17620 case NVPTX::BI__nvvm_atom_cta_xor_gen_l: 17621 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: 17622 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); 17623 case NVPTX::BI__nvvm_atom_sys_xor_gen_i: 17624 case NVPTX::BI__nvvm_atom_sys_xor_gen_l: 17625 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: 17626 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); 17627 case NVPTX::BI__nvvm_atom_cta_cas_gen_i: 17628 case NVPTX::BI__nvvm_atom_cta_cas_gen_l: 17629 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { 17630 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17631 return Builder.CreateCall( 17632 CGM.getIntrinsic( 17633 Intrinsic::nvvm_atomic_cas_gen_i_cta, 17634 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 17635 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 17636 } 17637 case NVPTX::BI__nvvm_atom_sys_cas_gen_i: 17638 case NVPTX::BI__nvvm_atom_sys_cas_gen_l: 17639 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { 17640 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17641 return Builder.CreateCall( 17642 CGM.getIntrinsic( 17643 Intrinsic::nvvm_atomic_cas_gen_i_sys, 17644 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 17645 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 17646 } 17647 case NVPTX::BI__nvvm_match_all_sync_i32p: 17648 case NVPTX::BI__nvvm_match_all_sync_i64p: { 17649 Value *Mask = EmitScalarExpr(E->getArg(0)); 17650 Value *Val = EmitScalarExpr(E->getArg(1)); 17651 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); 17652 Value *ResultPair = Builder.CreateCall( 17653 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p 17654 ? Intrinsic::nvvm_match_all_sync_i32p 17655 : Intrinsic::nvvm_match_all_sync_i64p), 17656 {Mask, Val}); 17657 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), 17658 PredOutPtr.getElementType()); 17659 Builder.CreateStore(Pred, PredOutPtr); 17660 return Builder.CreateExtractValue(ResultPair, 0); 17661 } 17662 17663 // FP MMA loads 17664 case NVPTX::BI__hmma_m16n16k16_ld_a: 17665 case NVPTX::BI__hmma_m16n16k16_ld_b: 17666 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 17667 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 17668 case NVPTX::BI__hmma_m32n8k16_ld_a: 17669 case NVPTX::BI__hmma_m32n8k16_ld_b: 17670 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 17671 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 17672 case NVPTX::BI__hmma_m8n32k16_ld_a: 17673 case NVPTX::BI__hmma_m8n32k16_ld_b: 17674 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 17675 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 17676 // Integer MMA loads. 17677 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 17678 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 17679 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 17680 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 17681 case NVPTX::BI__imma_m16n16k16_ld_c: 17682 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 17683 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 17684 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 17685 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 17686 case NVPTX::BI__imma_m32n8k16_ld_c: 17687 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 17688 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 17689 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 17690 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 17691 case NVPTX::BI__imma_m8n32k16_ld_c: 17692 // Sub-integer MMA loads. 17693 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 17694 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 17695 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 17696 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 17697 case NVPTX::BI__imma_m8n8k32_ld_c: 17698 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 17699 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 17700 case NVPTX::BI__bmma_m8n8k128_ld_c: 17701 // Double MMA loads. 17702 case NVPTX::BI__dmma_m8n8k4_ld_a: 17703 case NVPTX::BI__dmma_m8n8k4_ld_b: 17704 case NVPTX::BI__dmma_m8n8k4_ld_c: 17705 // Alternate float MMA loads. 17706 case NVPTX::BI__mma_bf16_m16n16k16_ld_a: 17707 case NVPTX::BI__mma_bf16_m16n16k16_ld_b: 17708 case NVPTX::BI__mma_bf16_m8n32k16_ld_a: 17709 case NVPTX::BI__mma_bf16_m8n32k16_ld_b: 17710 case NVPTX::BI__mma_bf16_m32n8k16_ld_a: 17711 case NVPTX::BI__mma_bf16_m32n8k16_ld_b: 17712 case NVPTX::BI__mma_tf32_m16n16k8_ld_a: 17713 case NVPTX::BI__mma_tf32_m16n16k8_ld_b: 17714 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: { 17715 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 17716 Value *Src = EmitScalarExpr(E->getArg(1)); 17717 Value *Ldm = EmitScalarExpr(E->getArg(2)); 17718 Optional<llvm::APSInt> isColMajorArg = 17719 E->getArg(3)->getIntegerConstantExpr(getContext()); 17720 if (!isColMajorArg) 17721 return nullptr; 17722 bool isColMajor = isColMajorArg->getSExtValue(); 17723 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 17724 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 17725 if (IID == 0) 17726 return nullptr; 17727 17728 Value *Result = 17729 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); 17730 17731 // Save returned values. 17732 assert(II.NumResults); 17733 if (II.NumResults == 1) { 17734 Builder.CreateAlignedStore(Result, Dst.getPointer(), 17735 CharUnits::fromQuantity(4)); 17736 } else { 17737 for (unsigned i = 0; i < II.NumResults; ++i) { 17738 Builder.CreateAlignedStore( 17739 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), 17740 Dst.getElementType()), 17741 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(), 17742 llvm::ConstantInt::get(IntTy, i)), 17743 CharUnits::fromQuantity(4)); 17744 } 17745 } 17746 return Result; 17747 } 17748 17749 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 17750 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 17751 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 17752 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 17753 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 17754 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 17755 case NVPTX::BI__imma_m16n16k16_st_c_i32: 17756 case NVPTX::BI__imma_m32n8k16_st_c_i32: 17757 case NVPTX::BI__imma_m8n32k16_st_c_i32: 17758 case NVPTX::BI__imma_m8n8k32_st_c_i32: 17759 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 17760 case NVPTX::BI__dmma_m8n8k4_st_c_f64: 17761 case NVPTX::BI__mma_m16n16k8_st_c_f32: { 17762 Value *Dst = EmitScalarExpr(E->getArg(0)); 17763 Address Src = EmitPointerWithAlignment(E->getArg(1)); 17764 Value *Ldm = EmitScalarExpr(E->getArg(2)); 17765 Optional<llvm::APSInt> isColMajorArg = 17766 E->getArg(3)->getIntegerConstantExpr(getContext()); 17767 if (!isColMajorArg) 17768 return nullptr; 17769 bool isColMajor = isColMajorArg->getSExtValue(); 17770 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 17771 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 17772 if (IID == 0) 17773 return nullptr; 17774 Function *Intrinsic = 17775 CGM.getIntrinsic(IID, Dst->getType()); 17776 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); 17777 SmallVector<Value *, 10> Values = {Dst}; 17778 for (unsigned i = 0; i < II.NumResults; ++i) { 17779 Value *V = Builder.CreateAlignedLoad( 17780 Src.getElementType(), 17781 Builder.CreateGEP(Src.getElementType(), Src.getPointer(), 17782 llvm::ConstantInt::get(IntTy, i)), 17783 CharUnits::fromQuantity(4)); 17784 Values.push_back(Builder.CreateBitCast(V, ParamType)); 17785 } 17786 Values.push_back(Ldm); 17787 Value *Result = Builder.CreateCall(Intrinsic, Values); 17788 return Result; 17789 } 17790 17791 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> 17792 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> 17793 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 17794 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 17795 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 17796 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 17797 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 17798 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 17799 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 17800 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 17801 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 17802 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 17803 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 17804 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 17805 case NVPTX::BI__imma_m16n16k16_mma_s8: 17806 case NVPTX::BI__imma_m16n16k16_mma_u8: 17807 case NVPTX::BI__imma_m32n8k16_mma_s8: 17808 case NVPTX::BI__imma_m32n8k16_mma_u8: 17809 case NVPTX::BI__imma_m8n32k16_mma_s8: 17810 case NVPTX::BI__imma_m8n32k16_mma_u8: 17811 case NVPTX::BI__imma_m8n8k32_mma_s4: 17812 case NVPTX::BI__imma_m8n8k32_mma_u4: 17813 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 17814 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1: 17815 case NVPTX::BI__dmma_m8n8k4_mma_f64: 17816 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32: 17817 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32: 17818 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32: 17819 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: { 17820 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 17821 Address SrcA = EmitPointerWithAlignment(E->getArg(1)); 17822 Address SrcB = EmitPointerWithAlignment(E->getArg(2)); 17823 Address SrcC = EmitPointerWithAlignment(E->getArg(3)); 17824 Optional<llvm::APSInt> LayoutArg = 17825 E->getArg(4)->getIntegerConstantExpr(getContext()); 17826 if (!LayoutArg) 17827 return nullptr; 17828 int Layout = LayoutArg->getSExtValue(); 17829 if (Layout < 0 || Layout > 3) 17830 return nullptr; 17831 llvm::APSInt SatfArg; 17832 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 || 17833 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1) 17834 SatfArg = 0; // .b1 does not have satf argument. 17835 else if (Optional<llvm::APSInt> OptSatfArg = 17836 E->getArg(5)->getIntegerConstantExpr(getContext())) 17837 SatfArg = *OptSatfArg; 17838 else 17839 return nullptr; 17840 bool Satf = SatfArg.getSExtValue(); 17841 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); 17842 unsigned IID = MI.getMMAIntrinsic(Layout, Satf); 17843 if (IID == 0) // Unsupported combination of Layout/Satf. 17844 return nullptr; 17845 17846 SmallVector<Value *, 24> Values; 17847 Function *Intrinsic = CGM.getIntrinsic(IID); 17848 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); 17849 // Load A 17850 for (unsigned i = 0; i < MI.NumEltsA; ++i) { 17851 Value *V = Builder.CreateAlignedLoad( 17852 SrcA.getElementType(), 17853 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(), 17854 llvm::ConstantInt::get(IntTy, i)), 17855 CharUnits::fromQuantity(4)); 17856 Values.push_back(Builder.CreateBitCast(V, AType)); 17857 } 17858 // Load B 17859 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); 17860 for (unsigned i = 0; i < MI.NumEltsB; ++i) { 17861 Value *V = Builder.CreateAlignedLoad( 17862 SrcB.getElementType(), 17863 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(), 17864 llvm::ConstantInt::get(IntTy, i)), 17865 CharUnits::fromQuantity(4)); 17866 Values.push_back(Builder.CreateBitCast(V, BType)); 17867 } 17868 // Load C 17869 llvm::Type *CType = 17870 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); 17871 for (unsigned i = 0; i < MI.NumEltsC; ++i) { 17872 Value *V = Builder.CreateAlignedLoad( 17873 SrcC.getElementType(), 17874 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(), 17875 llvm::ConstantInt::get(IntTy, i)), 17876 CharUnits::fromQuantity(4)); 17877 Values.push_back(Builder.CreateBitCast(V, CType)); 17878 } 17879 Value *Result = Builder.CreateCall(Intrinsic, Values); 17880 llvm::Type *DType = Dst.getElementType(); 17881 for (unsigned i = 0; i < MI.NumEltsD; ++i) 17882 Builder.CreateAlignedStore( 17883 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), 17884 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(), 17885 llvm::ConstantInt::get(IntTy, i)), 17886 CharUnits::fromQuantity(4)); 17887 return Result; 17888 } 17889 default: 17890 return nullptr; 17891 } 17892 } 17893 17894 namespace { 17895 struct BuiltinAlignArgs { 17896 llvm::Value *Src = nullptr; 17897 llvm::Type *SrcType = nullptr; 17898 llvm::Value *Alignment = nullptr; 17899 llvm::Value *Mask = nullptr; 17900 llvm::IntegerType *IntType = nullptr; 17901 17902 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { 17903 QualType AstType = E->getArg(0)->getType(); 17904 if (AstType->isArrayType()) 17905 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer(); 17906 else 17907 Src = CGF.EmitScalarExpr(E->getArg(0)); 17908 SrcType = Src->getType(); 17909 if (SrcType->isPointerTy()) { 17910 IntType = IntegerType::get( 17911 CGF.getLLVMContext(), 17912 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType)); 17913 } else { 17914 assert(SrcType->isIntegerTy()); 17915 IntType = cast<llvm::IntegerType>(SrcType); 17916 } 17917 Alignment = CGF.EmitScalarExpr(E->getArg(1)); 17918 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment"); 17919 auto *One = llvm::ConstantInt::get(IntType, 1); 17920 Mask = CGF.Builder.CreateSub(Alignment, One, "mask"); 17921 } 17922 }; 17923 } // namespace 17924 17925 /// Generate (x & (y-1)) == 0. 17926 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { 17927 BuiltinAlignArgs Args(E, *this); 17928 llvm::Value *SrcAddress = Args.Src; 17929 if (Args.SrcType->isPointerTy()) 17930 SrcAddress = 17931 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr"); 17932 return RValue::get(Builder.CreateICmpEQ( 17933 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"), 17934 llvm::Constant::getNullValue(Args.IntType), "is_aligned")); 17935 } 17936 17937 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. 17938 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the 17939 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case). 17940 /// TODO: actually use ptrmask once most optimization passes know about it. 17941 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { 17942 BuiltinAlignArgs Args(E, *this); 17943 llvm::Value *SrcAddr = Args.Src; 17944 if (Args.Src->getType()->isPointerTy()) 17945 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr"); 17946 llvm::Value *SrcForMask = SrcAddr; 17947 if (AlignUp) { 17948 // When aligning up we have to first add the mask to ensure we go over the 17949 // next alignment value and then align down to the next valid multiple. 17950 // By adding the mask, we ensure that align_up on an already aligned 17951 // value will not change the value. 17952 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary"); 17953 } 17954 // Invert the mask to only clear the lower bits. 17955 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask"); 17956 llvm::Value *Result = 17957 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result"); 17958 if (Args.Src->getType()->isPointerTy()) { 17959 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well. 17960 // Result = Builder.CreateIntrinsic( 17961 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType}, 17962 // {SrcForMask, NegatedMask}, nullptr, "aligned_result"); 17963 Result->setName("aligned_intptr"); 17964 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff"); 17965 // The result must point to the same underlying allocation. This means we 17966 // can use an inbounds GEP to enable better optimization. 17967 Value *Base = EmitCastToVoidPtr(Args.Src); 17968 if (getLangOpts().isSignedOverflowDefined()) 17969 Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result"); 17970 else 17971 Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference, 17972 /*SignedIndices=*/true, 17973 /*isSubtraction=*/!AlignUp, 17974 E->getExprLoc(), "aligned_result"); 17975 Result = Builder.CreatePointerCast(Result, Args.SrcType); 17976 // Emit an alignment assumption to ensure that the new alignment is 17977 // propagated to loads/stores, etc. 17978 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment); 17979 } 17980 assert(Result->getType() == Args.SrcType); 17981 return RValue::get(Result); 17982 } 17983 17984 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 17985 const CallExpr *E) { 17986 switch (BuiltinID) { 17987 case WebAssembly::BI__builtin_wasm_memory_size: { 17988 llvm::Type *ResultType = ConvertType(E->getType()); 17989 Value *I = EmitScalarExpr(E->getArg(0)); 17990 Function *Callee = 17991 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); 17992 return Builder.CreateCall(Callee, I); 17993 } 17994 case WebAssembly::BI__builtin_wasm_memory_grow: { 17995 llvm::Type *ResultType = ConvertType(E->getType()); 17996 Value *Args[] = {EmitScalarExpr(E->getArg(0)), 17997 EmitScalarExpr(E->getArg(1))}; 17998 Function *Callee = 17999 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); 18000 return Builder.CreateCall(Callee, Args); 18001 } 18002 case WebAssembly::BI__builtin_wasm_tls_size: { 18003 llvm::Type *ResultType = ConvertType(E->getType()); 18004 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); 18005 return Builder.CreateCall(Callee); 18006 } 18007 case WebAssembly::BI__builtin_wasm_tls_align: { 18008 llvm::Type *ResultType = ConvertType(E->getType()); 18009 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); 18010 return Builder.CreateCall(Callee); 18011 } 18012 case WebAssembly::BI__builtin_wasm_tls_base: { 18013 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); 18014 return Builder.CreateCall(Callee); 18015 } 18016 case WebAssembly::BI__builtin_wasm_throw: { 18017 Value *Tag = EmitScalarExpr(E->getArg(0)); 18018 Value *Obj = EmitScalarExpr(E->getArg(1)); 18019 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); 18020 return Builder.CreateCall(Callee, {Tag, Obj}); 18021 } 18022 case WebAssembly::BI__builtin_wasm_rethrow: { 18023 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); 18024 return Builder.CreateCall(Callee); 18025 } 18026 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: { 18027 Value *Addr = EmitScalarExpr(E->getArg(0)); 18028 Value *Expected = EmitScalarExpr(E->getArg(1)); 18029 Value *Timeout = EmitScalarExpr(E->getArg(2)); 18030 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32); 18031 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 18032 } 18033 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: { 18034 Value *Addr = EmitScalarExpr(E->getArg(0)); 18035 Value *Expected = EmitScalarExpr(E->getArg(1)); 18036 Value *Timeout = EmitScalarExpr(E->getArg(2)); 18037 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64); 18038 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 18039 } 18040 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: { 18041 Value *Addr = EmitScalarExpr(E->getArg(0)); 18042 Value *Count = EmitScalarExpr(E->getArg(1)); 18043 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify); 18044 return Builder.CreateCall(Callee, {Addr, Count}); 18045 } 18046 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: 18047 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: 18048 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: 18049 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { 18050 Value *Src = EmitScalarExpr(E->getArg(0)); 18051 llvm::Type *ResT = ConvertType(E->getType()); 18052 Function *Callee = 18053 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); 18054 return Builder.CreateCall(Callee, {Src}); 18055 } 18056 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: 18057 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: 18058 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: 18059 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { 18060 Value *Src = EmitScalarExpr(E->getArg(0)); 18061 llvm::Type *ResT = ConvertType(E->getType()); 18062 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, 18063 {ResT, Src->getType()}); 18064 return Builder.CreateCall(Callee, {Src}); 18065 } 18066 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: 18067 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: 18068 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: 18069 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: 18070 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: { 18071 Value *Src = EmitScalarExpr(E->getArg(0)); 18072 llvm::Type *ResT = ConvertType(E->getType()); 18073 Function *Callee = 18074 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()}); 18075 return Builder.CreateCall(Callee, {Src}); 18076 } 18077 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: 18078 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: 18079 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: 18080 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: 18081 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: { 18082 Value *Src = EmitScalarExpr(E->getArg(0)); 18083 llvm::Type *ResT = ConvertType(E->getType()); 18084 Function *Callee = 18085 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()}); 18086 return Builder.CreateCall(Callee, {Src}); 18087 } 18088 case WebAssembly::BI__builtin_wasm_min_f32: 18089 case WebAssembly::BI__builtin_wasm_min_f64: 18090 case WebAssembly::BI__builtin_wasm_min_f32x4: 18091 case WebAssembly::BI__builtin_wasm_min_f64x2: { 18092 Value *LHS = EmitScalarExpr(E->getArg(0)); 18093 Value *RHS = EmitScalarExpr(E->getArg(1)); 18094 Function *Callee = 18095 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType())); 18096 return Builder.CreateCall(Callee, {LHS, RHS}); 18097 } 18098 case WebAssembly::BI__builtin_wasm_max_f32: 18099 case WebAssembly::BI__builtin_wasm_max_f64: 18100 case WebAssembly::BI__builtin_wasm_max_f32x4: 18101 case WebAssembly::BI__builtin_wasm_max_f64x2: { 18102 Value *LHS = EmitScalarExpr(E->getArg(0)); 18103 Value *RHS = EmitScalarExpr(E->getArg(1)); 18104 Function *Callee = 18105 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType())); 18106 return Builder.CreateCall(Callee, {LHS, RHS}); 18107 } 18108 case WebAssembly::BI__builtin_wasm_pmin_f32x4: 18109 case WebAssembly::BI__builtin_wasm_pmin_f64x2: { 18110 Value *LHS = EmitScalarExpr(E->getArg(0)); 18111 Value *RHS = EmitScalarExpr(E->getArg(1)); 18112 Function *Callee = 18113 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType())); 18114 return Builder.CreateCall(Callee, {LHS, RHS}); 18115 } 18116 case WebAssembly::BI__builtin_wasm_pmax_f32x4: 18117 case WebAssembly::BI__builtin_wasm_pmax_f64x2: { 18118 Value *LHS = EmitScalarExpr(E->getArg(0)); 18119 Value *RHS = EmitScalarExpr(E->getArg(1)); 18120 Function *Callee = 18121 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType())); 18122 return Builder.CreateCall(Callee, {LHS, RHS}); 18123 } 18124 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 18125 case WebAssembly::BI__builtin_wasm_floor_f32x4: 18126 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 18127 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 18128 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 18129 case WebAssembly::BI__builtin_wasm_floor_f64x2: 18130 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 18131 case WebAssembly::BI__builtin_wasm_nearest_f64x2: { 18132 unsigned IntNo; 18133 switch (BuiltinID) { 18134 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 18135 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 18136 IntNo = Intrinsic::ceil; 18137 break; 18138 case WebAssembly::BI__builtin_wasm_floor_f32x4: 18139 case WebAssembly::BI__builtin_wasm_floor_f64x2: 18140 IntNo = Intrinsic::floor; 18141 break; 18142 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 18143 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 18144 IntNo = Intrinsic::trunc; 18145 break; 18146 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 18147 case WebAssembly::BI__builtin_wasm_nearest_f64x2: 18148 IntNo = Intrinsic::nearbyint; 18149 break; 18150 default: 18151 llvm_unreachable("unexpected builtin ID"); 18152 } 18153 Value *Value = EmitScalarExpr(E->getArg(0)); 18154 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 18155 return Builder.CreateCall(Callee, Value); 18156 } 18157 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: { 18158 Value *Src = EmitScalarExpr(E->getArg(0)); 18159 Value *Indices = EmitScalarExpr(E->getArg(1)); 18160 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); 18161 return Builder.CreateCall(Callee, {Src, Indices}); 18162 } 18163 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16: 18164 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16: 18165 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8: 18166 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8: 18167 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16: 18168 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16: 18169 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8: 18170 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: { 18171 unsigned IntNo; 18172 switch (BuiltinID) { 18173 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16: 18174 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8: 18175 IntNo = Intrinsic::sadd_sat; 18176 break; 18177 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16: 18178 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8: 18179 IntNo = Intrinsic::uadd_sat; 18180 break; 18181 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16: 18182 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8: 18183 IntNo = Intrinsic::wasm_sub_sat_signed; 18184 break; 18185 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16: 18186 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: 18187 IntNo = Intrinsic::wasm_sub_sat_unsigned; 18188 break; 18189 default: 18190 llvm_unreachable("unexpected builtin ID"); 18191 } 18192 Value *LHS = EmitScalarExpr(E->getArg(0)); 18193 Value *RHS = EmitScalarExpr(E->getArg(1)); 18194 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 18195 return Builder.CreateCall(Callee, {LHS, RHS}); 18196 } 18197 case WebAssembly::BI__builtin_wasm_abs_i8x16: 18198 case WebAssembly::BI__builtin_wasm_abs_i16x8: 18199 case WebAssembly::BI__builtin_wasm_abs_i32x4: 18200 case WebAssembly::BI__builtin_wasm_abs_i64x2: { 18201 Value *Vec = EmitScalarExpr(E->getArg(0)); 18202 Value *Neg = Builder.CreateNeg(Vec, "neg"); 18203 Constant *Zero = llvm::Constant::getNullValue(Vec->getType()); 18204 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond"); 18205 return Builder.CreateSelect(ICmp, Neg, Vec, "abs"); 18206 } 18207 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 18208 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 18209 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 18210 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 18211 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 18212 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 18213 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 18214 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 18215 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 18216 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 18217 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 18218 case WebAssembly::BI__builtin_wasm_max_u_i32x4: { 18219 Value *LHS = EmitScalarExpr(E->getArg(0)); 18220 Value *RHS = EmitScalarExpr(E->getArg(1)); 18221 Value *ICmp; 18222 switch (BuiltinID) { 18223 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 18224 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 18225 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 18226 ICmp = Builder.CreateICmpSLT(LHS, RHS); 18227 break; 18228 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 18229 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 18230 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 18231 ICmp = Builder.CreateICmpULT(LHS, RHS); 18232 break; 18233 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 18234 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 18235 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 18236 ICmp = Builder.CreateICmpSGT(LHS, RHS); 18237 break; 18238 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 18239 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 18240 case WebAssembly::BI__builtin_wasm_max_u_i32x4: 18241 ICmp = Builder.CreateICmpUGT(LHS, RHS); 18242 break; 18243 default: 18244 llvm_unreachable("unexpected builtin ID"); 18245 } 18246 return Builder.CreateSelect(ICmp, LHS, RHS); 18247 } 18248 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16: 18249 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: { 18250 Value *LHS = EmitScalarExpr(E->getArg(0)); 18251 Value *RHS = EmitScalarExpr(E->getArg(1)); 18252 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned, 18253 ConvertType(E->getType())); 18254 return Builder.CreateCall(Callee, {LHS, RHS}); 18255 } 18256 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: { 18257 Value *LHS = EmitScalarExpr(E->getArg(0)); 18258 Value *RHS = EmitScalarExpr(E->getArg(1)); 18259 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed); 18260 return Builder.CreateCall(Callee, {LHS, RHS}); 18261 } 18262 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 18263 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 18264 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 18265 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: { 18266 Value *Vec = EmitScalarExpr(E->getArg(0)); 18267 unsigned IntNo; 18268 switch (BuiltinID) { 18269 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 18270 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 18271 IntNo = Intrinsic::wasm_extadd_pairwise_signed; 18272 break; 18273 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 18274 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: 18275 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned; 18276 break; 18277 default: 18278 llvm_unreachable("unexptected builtin ID"); 18279 } 18280 18281 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 18282 return Builder.CreateCall(Callee, Vec); 18283 } 18284 case WebAssembly::BI__builtin_wasm_bitselect: { 18285 Value *V1 = EmitScalarExpr(E->getArg(0)); 18286 Value *V2 = EmitScalarExpr(E->getArg(1)); 18287 Value *C = EmitScalarExpr(E->getArg(2)); 18288 Function *Callee = 18289 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType())); 18290 return Builder.CreateCall(Callee, {V1, V2, C}); 18291 } 18292 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { 18293 Value *LHS = EmitScalarExpr(E->getArg(0)); 18294 Value *RHS = EmitScalarExpr(E->getArg(1)); 18295 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); 18296 return Builder.CreateCall(Callee, {LHS, RHS}); 18297 } 18298 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: { 18299 Value *Vec = EmitScalarExpr(E->getArg(0)); 18300 Function *Callee = 18301 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType())); 18302 return Builder.CreateCall(Callee, {Vec}); 18303 } 18304 case WebAssembly::BI__builtin_wasm_any_true_v128: 18305 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 18306 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 18307 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 18308 case WebAssembly::BI__builtin_wasm_all_true_i64x2: { 18309 unsigned IntNo; 18310 switch (BuiltinID) { 18311 case WebAssembly::BI__builtin_wasm_any_true_v128: 18312 IntNo = Intrinsic::wasm_anytrue; 18313 break; 18314 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 18315 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 18316 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 18317 case WebAssembly::BI__builtin_wasm_all_true_i64x2: 18318 IntNo = Intrinsic::wasm_alltrue; 18319 break; 18320 default: 18321 llvm_unreachable("unexpected builtin ID"); 18322 } 18323 Value *Vec = EmitScalarExpr(E->getArg(0)); 18324 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); 18325 return Builder.CreateCall(Callee, {Vec}); 18326 } 18327 case WebAssembly::BI__builtin_wasm_bitmask_i8x16: 18328 case WebAssembly::BI__builtin_wasm_bitmask_i16x8: 18329 case WebAssembly::BI__builtin_wasm_bitmask_i32x4: 18330 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: { 18331 Value *Vec = EmitScalarExpr(E->getArg(0)); 18332 Function *Callee = 18333 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType()); 18334 return Builder.CreateCall(Callee, {Vec}); 18335 } 18336 case WebAssembly::BI__builtin_wasm_abs_f32x4: 18337 case WebAssembly::BI__builtin_wasm_abs_f64x2: { 18338 Value *Vec = EmitScalarExpr(E->getArg(0)); 18339 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); 18340 return Builder.CreateCall(Callee, {Vec}); 18341 } 18342 case WebAssembly::BI__builtin_wasm_sqrt_f32x4: 18343 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { 18344 Value *Vec = EmitScalarExpr(E->getArg(0)); 18345 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); 18346 return Builder.CreateCall(Callee, {Vec}); 18347 } 18348 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 18349 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 18350 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 18351 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { 18352 Value *Low = EmitScalarExpr(E->getArg(0)); 18353 Value *High = EmitScalarExpr(E->getArg(1)); 18354 unsigned IntNo; 18355 switch (BuiltinID) { 18356 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 18357 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 18358 IntNo = Intrinsic::wasm_narrow_signed; 18359 break; 18360 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 18361 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: 18362 IntNo = Intrinsic::wasm_narrow_unsigned; 18363 break; 18364 default: 18365 llvm_unreachable("unexpected builtin ID"); 18366 } 18367 Function *Callee = 18368 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); 18369 return Builder.CreateCall(Callee, {Low, High}); 18370 } 18371 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4: 18372 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: { 18373 Value *Vec = EmitScalarExpr(E->getArg(0)); 18374 unsigned IntNo; 18375 switch (BuiltinID) { 18376 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4: 18377 IntNo = Intrinsic::fptosi_sat; 18378 break; 18379 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: 18380 IntNo = Intrinsic::fptoui_sat; 18381 break; 18382 default: 18383 llvm_unreachable("unexpected builtin ID"); 18384 } 18385 llvm::Type *SrcT = Vec->getType(); 18386 llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty()); 18387 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT}); 18388 Value *Trunc = Builder.CreateCall(Callee, Vec); 18389 Value *Splat = Constant::getNullValue(TruncT); 18390 return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3}); 18391 } 18392 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: { 18393 Value *Ops[18]; 18394 size_t OpIdx = 0; 18395 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0)); 18396 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1)); 18397 while (OpIdx < 18) { 18398 Optional<llvm::APSInt> LaneConst = 18399 E->getArg(OpIdx)->getIntegerConstantExpr(getContext()); 18400 assert(LaneConst && "Constant arg isn't actually constant?"); 18401 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst); 18402 } 18403 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle); 18404 return Builder.CreateCall(Callee, Ops); 18405 } 18406 case WebAssembly::BI__builtin_wasm_fma_f32x4: 18407 case WebAssembly::BI__builtin_wasm_fms_f32x4: 18408 case WebAssembly::BI__builtin_wasm_fma_f64x2: 18409 case WebAssembly::BI__builtin_wasm_fms_f64x2: { 18410 Value *A = EmitScalarExpr(E->getArg(0)); 18411 Value *B = EmitScalarExpr(E->getArg(1)); 18412 Value *C = EmitScalarExpr(E->getArg(2)); 18413 unsigned IntNo; 18414 switch (BuiltinID) { 18415 case WebAssembly::BI__builtin_wasm_fma_f32x4: 18416 case WebAssembly::BI__builtin_wasm_fma_f64x2: 18417 IntNo = Intrinsic::wasm_fma; 18418 break; 18419 case WebAssembly::BI__builtin_wasm_fms_f32x4: 18420 case WebAssembly::BI__builtin_wasm_fms_f64x2: 18421 IntNo = Intrinsic::wasm_fms; 18422 break; 18423 default: 18424 llvm_unreachable("unexpected builtin ID"); 18425 } 18426 Function *Callee = CGM.getIntrinsic(IntNo, A->getType()); 18427 return Builder.CreateCall(Callee, {A, B, C}); 18428 } 18429 case WebAssembly::BI__builtin_wasm_laneselect_i8x16: 18430 case WebAssembly::BI__builtin_wasm_laneselect_i16x8: 18431 case WebAssembly::BI__builtin_wasm_laneselect_i32x4: 18432 case WebAssembly::BI__builtin_wasm_laneselect_i64x2: { 18433 Value *A = EmitScalarExpr(E->getArg(0)); 18434 Value *B = EmitScalarExpr(E->getArg(1)); 18435 Value *C = EmitScalarExpr(E->getArg(2)); 18436 Function *Callee = 18437 CGM.getIntrinsic(Intrinsic::wasm_laneselect, A->getType()); 18438 return Builder.CreateCall(Callee, {A, B, C}); 18439 } 18440 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: { 18441 Value *Src = EmitScalarExpr(E->getArg(0)); 18442 Value *Indices = EmitScalarExpr(E->getArg(1)); 18443 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle); 18444 return Builder.CreateCall(Callee, {Src, Indices}); 18445 } 18446 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4: 18447 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4: 18448 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2: 18449 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: { 18450 Value *LHS = EmitScalarExpr(E->getArg(0)); 18451 Value *RHS = EmitScalarExpr(E->getArg(1)); 18452 unsigned IntNo; 18453 switch (BuiltinID) { 18454 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4: 18455 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2: 18456 IntNo = Intrinsic::wasm_relaxed_min; 18457 break; 18458 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4: 18459 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: 18460 IntNo = Intrinsic::wasm_relaxed_max; 18461 break; 18462 default: 18463 llvm_unreachable("unexpected builtin ID"); 18464 } 18465 Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType()); 18466 return Builder.CreateCall(Callee, {LHS, RHS}); 18467 } 18468 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4: 18469 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4: 18470 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_s_i32x4_f64x2: 18471 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_u_i32x4_f64x2: { 18472 Value *Vec = EmitScalarExpr(E->getArg(0)); 18473 unsigned IntNo; 18474 switch (BuiltinID) { 18475 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4: 18476 IntNo = Intrinsic::wasm_relaxed_trunc_signed; 18477 break; 18478 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4: 18479 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned; 18480 break; 18481 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_s_i32x4_f64x2: 18482 IntNo = Intrinsic::wasm_relaxed_trunc_zero_signed; 18483 break; 18484 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_u_i32x4_f64x2: 18485 IntNo = Intrinsic::wasm_relaxed_trunc_zero_unsigned; 18486 break; 18487 default: 18488 llvm_unreachable("unexpected builtin ID"); 18489 } 18490 Function *Callee = CGM.getIntrinsic(IntNo); 18491 return Builder.CreateCall(Callee, {Vec}); 18492 } 18493 default: 18494 return nullptr; 18495 } 18496 } 18497 18498 static std::pair<Intrinsic::ID, unsigned> 18499 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) { 18500 struct Info { 18501 unsigned BuiltinID; 18502 Intrinsic::ID IntrinsicID; 18503 unsigned VecLen; 18504 }; 18505 Info Infos[] = { 18506 #define CUSTOM_BUILTIN_MAPPING(x,s) \ 18507 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s }, 18508 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0) 18509 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0) 18510 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0) 18511 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0) 18512 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0) 18513 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0) 18514 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0) 18515 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0) 18516 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0) 18517 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0) 18518 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0) 18519 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0) 18520 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0) 18521 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0) 18522 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0) 18523 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0) 18524 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0) 18525 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0) 18526 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0) 18527 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0) 18528 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0) 18529 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0) 18530 // Legacy builtins that take a vector in place of a vector predicate. 18531 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64) 18532 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64) 18533 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64) 18534 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64) 18535 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128) 18536 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128) 18537 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128) 18538 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128) 18539 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def" 18540 #undef CUSTOM_BUILTIN_MAPPING 18541 }; 18542 18543 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; }; 18544 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true); 18545 (void)SortOnce; 18546 18547 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos), 18548 Info{BuiltinID, 0, 0}, CmpInfo); 18549 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 18550 return {Intrinsic::not_intrinsic, 0}; 18551 18552 return {F->IntrinsicID, F->VecLen}; 18553 } 18554 18555 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, 18556 const CallExpr *E) { 18557 Intrinsic::ID ID; 18558 unsigned VecLen; 18559 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID); 18560 18561 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) { 18562 // The base pointer is passed by address, so it needs to be loaded. 18563 Address A = EmitPointerWithAlignment(E->getArg(0)); 18564 Address BP = Address(Builder.CreateBitCast( 18565 A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment()); 18566 llvm::Value *Base = Builder.CreateLoad(BP); 18567 // The treatment of both loads and stores is the same: the arguments for 18568 // the builtin are the same as the arguments for the intrinsic. 18569 // Load: 18570 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start) 18571 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start) 18572 // Store: 18573 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start) 18574 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start) 18575 SmallVector<llvm::Value*,5> Ops = { Base }; 18576 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i) 18577 Ops.push_back(EmitScalarExpr(E->getArg(i))); 18578 18579 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 18580 // The load intrinsics generate two results (Value, NewBase), stores 18581 // generate one (NewBase). The new base address needs to be stored. 18582 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1) 18583 : Result; 18584 llvm::Value *LV = Builder.CreateBitCast( 18585 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo()); 18586 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 18587 llvm::Value *RetVal = 18588 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); 18589 if (IsLoad) 18590 RetVal = Builder.CreateExtractValue(Result, 0); 18591 return RetVal; 18592 }; 18593 18594 // Handle the conversion of bit-reverse load intrinsics to bit code. 18595 // The intrinsic call after this function only reads from memory and the 18596 // write to memory is dealt by the store instruction. 18597 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) { 18598 // The intrinsic generates one result, which is the new value for the base 18599 // pointer. It needs to be returned. The result of the load instruction is 18600 // passed to intrinsic by address, so the value needs to be stored. 18601 llvm::Value *BaseAddress = 18602 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); 18603 18604 // Expressions like &(*pt++) will be incremented per evaluation. 18605 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression 18606 // per call. 18607 Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); 18608 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), 18609 Int8Ty, DestAddr.getAlignment()); 18610 llvm::Value *DestAddress = DestAddr.getPointer(); 18611 18612 // Operands are Base, Dest, Modifier. 18613 // The intrinsic format in LLVM IR is defined as 18614 // { ValueType, i8* } (i8*, i32). 18615 llvm::Value *Result = Builder.CreateCall( 18616 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))}); 18617 18618 // The value needs to be stored as the variable is passed by reference. 18619 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); 18620 18621 // The store needs to be truncated to fit the destination type. 18622 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs 18623 // to be handled with stores of respective destination type. 18624 DestVal = Builder.CreateTrunc(DestVal, DestTy); 18625 18626 llvm::Value *DestForStore = 18627 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); 18628 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); 18629 // The updated value of the base pointer is returned. 18630 return Builder.CreateExtractValue(Result, 1); 18631 }; 18632 18633 auto V2Q = [this, VecLen] (llvm::Value *Vec) { 18634 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B 18635 : Intrinsic::hexagon_V6_vandvrt; 18636 return Builder.CreateCall(CGM.getIntrinsic(ID), 18637 {Vec, Builder.getInt32(-1)}); 18638 }; 18639 auto Q2V = [this, VecLen] (llvm::Value *Pred) { 18640 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B 18641 : Intrinsic::hexagon_V6_vandqrt; 18642 return Builder.CreateCall(CGM.getIntrinsic(ID), 18643 {Pred, Builder.getInt32(-1)}); 18644 }; 18645 18646 switch (BuiltinID) { 18647 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR, 18648 // and the corresponding C/C++ builtins use loads/stores to update 18649 // the predicate. 18650 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: 18651 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: 18652 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: 18653 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { 18654 // Get the type from the 0-th argument. 18655 llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); 18656 Address PredAddr = Builder.CreateElementBitCast( 18657 EmitPointerWithAlignment(E->getArg(2)), VecType); 18658 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr)); 18659 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), 18660 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn}); 18661 18662 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); 18663 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(), 18664 PredAddr.getAlignment()); 18665 return Builder.CreateExtractValue(Result, 0); 18666 } 18667 18668 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq: 18669 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq: 18670 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq: 18671 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq: 18672 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B: 18673 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B: 18674 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B: 18675 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: { 18676 SmallVector<llvm::Value*,4> Ops; 18677 const Expr *PredOp = E->getArg(0); 18678 // There will be an implicit cast to a boolean vector. Strip it. 18679 if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) { 18680 if (Cast->getCastKind() == CK_BitCast) 18681 PredOp = Cast->getSubExpr(); 18682 Ops.push_back(V2Q(EmitScalarExpr(PredOp))); 18683 } 18684 for (int i = 1, e = E->getNumArgs(); i != e; ++i) 18685 Ops.push_back(EmitScalarExpr(E->getArg(i))); 18686 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 18687 } 18688 18689 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: 18690 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: 18691 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: 18692 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: 18693 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: 18694 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: 18695 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: 18696 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: 18697 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: 18698 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: 18699 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: 18700 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: 18701 return MakeCircOp(ID, /*IsLoad=*/true); 18702 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: 18703 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: 18704 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: 18705 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: 18706 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: 18707 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: 18708 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: 18709 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: 18710 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: 18711 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: 18712 return MakeCircOp(ID, /*IsLoad=*/false); 18713 case Hexagon::BI__builtin_brev_ldub: 18714 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); 18715 case Hexagon::BI__builtin_brev_ldb: 18716 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); 18717 case Hexagon::BI__builtin_brev_lduh: 18718 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); 18719 case Hexagon::BI__builtin_brev_ldh: 18720 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); 18721 case Hexagon::BI__builtin_brev_ldw: 18722 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); 18723 case Hexagon::BI__builtin_brev_ldd: 18724 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); 18725 } // switch 18726 18727 return nullptr; 18728 } 18729 18730 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID, 18731 const CallExpr *E, 18732 ReturnValueSlot ReturnValue) { 18733 SmallVector<Value *, 4> Ops; 18734 llvm::Type *ResultType = ConvertType(E->getType()); 18735 18736 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 18737 Ops.push_back(EmitScalarExpr(E->getArg(i))); 18738 18739 Intrinsic::ID ID = Intrinsic::not_intrinsic; 18740 unsigned NF = 1; 18741 constexpr unsigned TAIL_UNDISTURBED = 0; 18742 18743 // Required for overloaded intrinsics. 18744 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes; 18745 switch (BuiltinID) { 18746 default: llvm_unreachable("unexpected builtin ID"); 18747 case RISCV::BI__builtin_riscv_orc_b_32: 18748 case RISCV::BI__builtin_riscv_orc_b_64: 18749 case RISCV::BI__builtin_riscv_clmul: 18750 case RISCV::BI__builtin_riscv_clmulh: 18751 case RISCV::BI__builtin_riscv_clmulr: 18752 case RISCV::BI__builtin_riscv_bcompress_32: 18753 case RISCV::BI__builtin_riscv_bcompress_64: 18754 case RISCV::BI__builtin_riscv_bdecompress_32: 18755 case RISCV::BI__builtin_riscv_bdecompress_64: 18756 case RISCV::BI__builtin_riscv_bfp_32: 18757 case RISCV::BI__builtin_riscv_bfp_64: 18758 case RISCV::BI__builtin_riscv_grev_32: 18759 case RISCV::BI__builtin_riscv_grev_64: 18760 case RISCV::BI__builtin_riscv_gorc_32: 18761 case RISCV::BI__builtin_riscv_gorc_64: 18762 case RISCV::BI__builtin_riscv_shfl_32: 18763 case RISCV::BI__builtin_riscv_shfl_64: 18764 case RISCV::BI__builtin_riscv_unshfl_32: 18765 case RISCV::BI__builtin_riscv_unshfl_64: 18766 case RISCV::BI__builtin_riscv_xperm_n: 18767 case RISCV::BI__builtin_riscv_xperm_b: 18768 case RISCV::BI__builtin_riscv_xperm_h: 18769 case RISCV::BI__builtin_riscv_xperm_w: 18770 case RISCV::BI__builtin_riscv_crc32_b: 18771 case RISCV::BI__builtin_riscv_crc32_h: 18772 case RISCV::BI__builtin_riscv_crc32_w: 18773 case RISCV::BI__builtin_riscv_crc32_d: 18774 case RISCV::BI__builtin_riscv_crc32c_b: 18775 case RISCV::BI__builtin_riscv_crc32c_h: 18776 case RISCV::BI__builtin_riscv_crc32c_w: 18777 case RISCV::BI__builtin_riscv_crc32c_d: 18778 case RISCV::BI__builtin_riscv_fsl_32: 18779 case RISCV::BI__builtin_riscv_fsr_32: 18780 case RISCV::BI__builtin_riscv_fsl_64: 18781 case RISCV::BI__builtin_riscv_fsr_64: { 18782 switch (BuiltinID) { 18783 default: llvm_unreachable("unexpected builtin ID"); 18784 // Zbb 18785 case RISCV::BI__builtin_riscv_orc_b_32: 18786 case RISCV::BI__builtin_riscv_orc_b_64: 18787 ID = Intrinsic::riscv_orc_b; 18788 break; 18789 18790 // Zbc 18791 case RISCV::BI__builtin_riscv_clmul: 18792 ID = Intrinsic::riscv_clmul; 18793 break; 18794 case RISCV::BI__builtin_riscv_clmulh: 18795 ID = Intrinsic::riscv_clmulh; 18796 break; 18797 case RISCV::BI__builtin_riscv_clmulr: 18798 ID = Intrinsic::riscv_clmulr; 18799 break; 18800 18801 // Zbe 18802 case RISCV::BI__builtin_riscv_bcompress_32: 18803 case RISCV::BI__builtin_riscv_bcompress_64: 18804 ID = Intrinsic::riscv_bcompress; 18805 break; 18806 case RISCV::BI__builtin_riscv_bdecompress_32: 18807 case RISCV::BI__builtin_riscv_bdecompress_64: 18808 ID = Intrinsic::riscv_bdecompress; 18809 break; 18810 18811 // Zbf 18812 case RISCV::BI__builtin_riscv_bfp_32: 18813 case RISCV::BI__builtin_riscv_bfp_64: 18814 ID = Intrinsic::riscv_bfp; 18815 break; 18816 18817 // Zbp 18818 case RISCV::BI__builtin_riscv_grev_32: 18819 case RISCV::BI__builtin_riscv_grev_64: 18820 ID = Intrinsic::riscv_grev; 18821 break; 18822 case RISCV::BI__builtin_riscv_gorc_32: 18823 case RISCV::BI__builtin_riscv_gorc_64: 18824 ID = Intrinsic::riscv_gorc; 18825 break; 18826 case RISCV::BI__builtin_riscv_shfl_32: 18827 case RISCV::BI__builtin_riscv_shfl_64: 18828 ID = Intrinsic::riscv_shfl; 18829 break; 18830 case RISCV::BI__builtin_riscv_unshfl_32: 18831 case RISCV::BI__builtin_riscv_unshfl_64: 18832 ID = Intrinsic::riscv_unshfl; 18833 break; 18834 case RISCV::BI__builtin_riscv_xperm_n: 18835 ID = Intrinsic::riscv_xperm_n; 18836 break; 18837 case RISCV::BI__builtin_riscv_xperm_b: 18838 ID = Intrinsic::riscv_xperm_b; 18839 break; 18840 case RISCV::BI__builtin_riscv_xperm_h: 18841 ID = Intrinsic::riscv_xperm_h; 18842 break; 18843 case RISCV::BI__builtin_riscv_xperm_w: 18844 ID = Intrinsic::riscv_xperm_w; 18845 break; 18846 18847 // Zbr 18848 case RISCV::BI__builtin_riscv_crc32_b: 18849 ID = Intrinsic::riscv_crc32_b; 18850 break; 18851 case RISCV::BI__builtin_riscv_crc32_h: 18852 ID = Intrinsic::riscv_crc32_h; 18853 break; 18854 case RISCV::BI__builtin_riscv_crc32_w: 18855 ID = Intrinsic::riscv_crc32_w; 18856 break; 18857 case RISCV::BI__builtin_riscv_crc32_d: 18858 ID = Intrinsic::riscv_crc32_d; 18859 break; 18860 case RISCV::BI__builtin_riscv_crc32c_b: 18861 ID = Intrinsic::riscv_crc32c_b; 18862 break; 18863 case RISCV::BI__builtin_riscv_crc32c_h: 18864 ID = Intrinsic::riscv_crc32c_h; 18865 break; 18866 case RISCV::BI__builtin_riscv_crc32c_w: 18867 ID = Intrinsic::riscv_crc32c_w; 18868 break; 18869 case RISCV::BI__builtin_riscv_crc32c_d: 18870 ID = Intrinsic::riscv_crc32c_d; 18871 break; 18872 18873 // Zbt 18874 case RISCV::BI__builtin_riscv_fsl_32: 18875 case RISCV::BI__builtin_riscv_fsl_64: 18876 ID = Intrinsic::riscv_fsl; 18877 break; 18878 case RISCV::BI__builtin_riscv_fsr_32: 18879 case RISCV::BI__builtin_riscv_fsr_64: 18880 ID = Intrinsic::riscv_fsr; 18881 break; 18882 } 18883 18884 IntrinsicTypes = {ResultType}; 18885 break; 18886 } 18887 // Vector builtins are handled from here. 18888 #include "clang/Basic/riscv_vector_builtin_cg.inc" 18889 } 18890 18891 assert(ID != Intrinsic::not_intrinsic); 18892 18893 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes); 18894 return Builder.CreateCall(F, Ops, ""); 18895 } 18896