xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGOpenCLRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "PatternInit.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/OSLog.h"
25 #include "clang/Basic/TargetBuiltins.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/ScopedPrinter.h"
36 #include "llvm/Support/TargetParser.h"
37 #include <sstream>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using namespace llvm;
42 
43 static
44 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
45   return std::min(High, std::max(Low, Value));
46 }
47 
48 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
49   ConstantInt *Byte;
50   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
51   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
52     // Nothing to initialize.
53     return;
54   case LangOptions::TrivialAutoVarInitKind::Zero:
55     Byte = CGF.Builder.getInt8(0x00);
56     break;
57   case LangOptions::TrivialAutoVarInitKind::Pattern: {
58     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
59     Byte = llvm::dyn_cast<llvm::ConstantInt>(
60         initializationPatternFor(CGF.CGM, Int8));
61     break;
62   }
63   }
64   CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
65 }
66 
67 /// getBuiltinLibFunction - Given a builtin id for a function like
68 /// "__builtin_fabsf", return a Function* for "fabsf".
69 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
70                                                      unsigned BuiltinID) {
71   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
72 
73   // Get the name, skip over the __builtin_ prefix (if necessary).
74   StringRef Name;
75   GlobalDecl D(FD);
76 
77   // If the builtin has been declared explicitly with an assembler label,
78   // use the mangled name. This differs from the plain label on platforms
79   // that prefix labels.
80   if (FD->hasAttr<AsmLabelAttr>())
81     Name = getMangledName(D);
82   else
83     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
84 
85   llvm::FunctionType *Ty =
86     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
87 
88   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
89 }
90 
91 /// Emit the conversions required to turn the given value into an
92 /// integer of the given size.
93 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
94                         QualType T, llvm::IntegerType *IntType) {
95   V = CGF.EmitToMemory(V, T);
96 
97   if (V->getType()->isPointerTy())
98     return CGF.Builder.CreatePtrToInt(V, IntType);
99 
100   assert(V->getType() == IntType);
101   return V;
102 }
103 
104 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
105                           QualType T, llvm::Type *ResultType) {
106   V = CGF.EmitFromMemory(V, T);
107 
108   if (ResultType->isPointerTy())
109     return CGF.Builder.CreateIntToPtr(V, ResultType);
110 
111   assert(V->getType() == ResultType);
112   return V;
113 }
114 
115 /// Utility to insert an atomic instruction based on Intrinsic::ID
116 /// and the expression node.
117 static Value *MakeBinaryAtomicValue(
118     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
119     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
120   QualType T = E->getType();
121   assert(E->getArg(0)->getType()->isPointerType());
122   assert(CGF.getContext().hasSameUnqualifiedType(T,
123                                   E->getArg(0)->getType()->getPointeeType()));
124   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
125 
126   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
127   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
128 
129   llvm::IntegerType *IntType =
130     llvm::IntegerType::get(CGF.getLLVMContext(),
131                            CGF.getContext().getTypeSize(T));
132   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
133 
134   llvm::Value *Args[2];
135   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
137   llvm::Type *ValueType = Args[1]->getType();
138   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
139 
140   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
141       Kind, Args[0], Args[1], Ordering);
142   return EmitFromInt(CGF, Result, T, ValueType);
143 }
144 
145 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
146   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
147   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
148 
149   // Convert the type of the pointer to a pointer to the stored type.
150   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
151   Value *BC = CGF.Builder.CreateBitCast(
152       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
153   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
154   LV.setNontemporal(true);
155   CGF.EmitStoreOfScalar(Val, LV, false);
156   return nullptr;
157 }
158 
159 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
160   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
161 
162   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
163   LV.setNontemporal(true);
164   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
165 }
166 
167 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
168                                llvm::AtomicRMWInst::BinOp Kind,
169                                const CallExpr *E) {
170   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
171 }
172 
173 /// Utility to insert an atomic instruction based Intrinsic::ID and
174 /// the expression node, where the return value is the result of the
175 /// operation.
176 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
177                                    llvm::AtomicRMWInst::BinOp Kind,
178                                    const CallExpr *E,
179                                    Instruction::BinaryOps Op,
180                                    bool Invert = false) {
181   QualType T = E->getType();
182   assert(E->getArg(0)->getType()->isPointerType());
183   assert(CGF.getContext().hasSameUnqualifiedType(T,
184                                   E->getArg(0)->getType()->getPointeeType()));
185   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
186 
187   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
188   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
189 
190   llvm::IntegerType *IntType =
191     llvm::IntegerType::get(CGF.getLLVMContext(),
192                            CGF.getContext().getTypeSize(T));
193   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
194 
195   llvm::Value *Args[2];
196   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
197   llvm::Type *ValueType = Args[1]->getType();
198   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
199   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
200 
201   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
202       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
203   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
204   if (Invert)
205     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
206                                      llvm::ConstantInt::get(IntType, -1));
207   Result = EmitFromInt(CGF, Result, T, ValueType);
208   return RValue::get(Result);
209 }
210 
211 /// Utility to insert an atomic cmpxchg instruction.
212 ///
213 /// @param CGF The current codegen function.
214 /// @param E   Builtin call expression to convert to cmpxchg.
215 ///            arg0 - address to operate on
216 ///            arg1 - value to compare with
217 ///            arg2 - new value
218 /// @param ReturnBool Specifies whether to return success flag of
219 ///                   cmpxchg result or the old value.
220 ///
221 /// @returns result of cmpxchg, according to ReturnBool
222 ///
223 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
224 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
225 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
226                                      bool ReturnBool) {
227   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
228   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
229   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
230 
231   llvm::IntegerType *IntType = llvm::IntegerType::get(
232       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
233   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
234 
235   Value *Args[3];
236   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
237   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
238   llvm::Type *ValueType = Args[1]->getType();
239   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
240   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
241 
242   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
243       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
244       llvm::AtomicOrdering::SequentiallyConsistent);
245   if (ReturnBool)
246     // Extract boolean success flag and zext it to int.
247     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
248                                   CGF.ConvertType(E->getType()));
249   else
250     // Extract old value and emit it using the same type as compare value.
251     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
252                        ValueType);
253 }
254 
255 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
256 /// _InterlockedCompareExchange* intrinsics which have the following signature:
257 /// T _InterlockedCompareExchange(T volatile *Destination,
258 ///                               T Exchange,
259 ///                               T Comparand);
260 ///
261 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
262 /// cmpxchg *Destination, Comparand, Exchange.
263 /// So we need to swap Comparand and Exchange when invoking
264 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
265 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
266 /// already swapped.
267 
268 static
269 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
270     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
271   assert(E->getArg(0)->getType()->isPointerType());
272   assert(CGF.getContext().hasSameUnqualifiedType(
273       E->getType(), E->getArg(0)->getType()->getPointeeType()));
274   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
275                                                  E->getArg(1)->getType()));
276   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
277                                                  E->getArg(2)->getType()));
278 
279   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
280   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
281   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
282 
283   // For Release ordering, the failure ordering should be Monotonic.
284   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
285                          AtomicOrdering::Monotonic :
286                          SuccessOrdering;
287 
288   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
289                    Destination, Comparand, Exchange,
290                    SuccessOrdering, FailureOrdering);
291   Result->setVolatile(true);
292   return CGF.Builder.CreateExtractValue(Result, 0);
293 }
294 
295 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
296     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
297   assert(E->getArg(0)->getType()->isPointerType());
298 
299   auto *IntTy = CGF.ConvertType(E->getType());
300   auto *Result = CGF.Builder.CreateAtomicRMW(
301                    AtomicRMWInst::Add,
302                    CGF.EmitScalarExpr(E->getArg(0)),
303                    ConstantInt::get(IntTy, 1),
304                    Ordering);
305   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
306 }
307 
308 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
309     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
310   assert(E->getArg(0)->getType()->isPointerType());
311 
312   auto *IntTy = CGF.ConvertType(E->getType());
313   auto *Result = CGF.Builder.CreateAtomicRMW(
314                    AtomicRMWInst::Sub,
315                    CGF.EmitScalarExpr(E->getArg(0)),
316                    ConstantInt::get(IntTy, 1),
317                    Ordering);
318   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
319 }
320 
321 // Build a plain volatile load.
322 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
323   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
324   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
325   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
326   llvm::Type *ITy =
327       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
328   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
329   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
330   Load->setVolatile(true);
331   return Load;
332 }
333 
334 // Build a plain volatile store.
335 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
336   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
337   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
338   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
339   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
340   llvm::Type *ITy =
341       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
342   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
343   llvm::StoreInst *Store =
344       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
345   Store->setVolatile(true);
346   return Store;
347 }
348 
349 // Emit a simple mangled intrinsic that has 1 argument and a return type
350 // matching the argument type.
351 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
352                                const CallExpr *E,
353                                unsigned IntrinsicID) {
354   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
355 
356   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
357   return CGF.Builder.CreateCall(F, Src0);
358 }
359 
360 // Emit an intrinsic that has 2 operands of the same type as its result.
361 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
362                                 const CallExpr *E,
363                                 unsigned IntrinsicID) {
364   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
365   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
366 
367   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
368   return CGF.Builder.CreateCall(F, { Src0, Src1 });
369 }
370 
371 // Emit an intrinsic that has 3 operands of the same type as its result.
372 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
373                                  const CallExpr *E,
374                                  unsigned IntrinsicID) {
375   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
376   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
377   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
378 
379   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
381 }
382 
383 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
384 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
385                                const CallExpr *E,
386                                unsigned IntrinsicID) {
387   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
388   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
389 
390   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
391   return CGF.Builder.CreateCall(F, {Src0, Src1});
392 }
393 
394 // Emit an intrinsic that has overloaded integer result and fp operand.
395 static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
396                                       const CallExpr *E,
397                                       unsigned IntrinsicID) {
398    llvm::Type *ResultType = CGF.ConvertType(E->getType());
399    llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
400 
401    Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
402                                       {ResultType, Src0->getType()});
403    return CGF.Builder.CreateCall(F, Src0);
404 }
405 
406 /// EmitFAbs - Emit a call to @llvm.fabs().
407 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
408   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
409   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
410   Call->setDoesNotAccessMemory();
411   return Call;
412 }
413 
414 /// Emit the computation of the sign bit for a floating point value. Returns
415 /// the i1 sign bit value.
416 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
417   LLVMContext &C = CGF.CGM.getLLVMContext();
418 
419   llvm::Type *Ty = V->getType();
420   int Width = Ty->getPrimitiveSizeInBits();
421   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
422   V = CGF.Builder.CreateBitCast(V, IntTy);
423   if (Ty->isPPC_FP128Ty()) {
424     // We want the sign bit of the higher-order double. The bitcast we just
425     // did works as if the double-double was stored to memory and then
426     // read as an i128. The "store" will put the higher-order double in the
427     // lower address in both little- and big-Endian modes, but the "load"
428     // will treat those bits as a different part of the i128: the low bits in
429     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
430     // we need to shift the high bits down to the low before truncating.
431     Width >>= 1;
432     if (CGF.getTarget().isBigEndian()) {
433       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
434       V = CGF.Builder.CreateLShr(V, ShiftCst);
435     }
436     // We are truncating value in order to extract the higher-order
437     // double, which we will be using to extract the sign from.
438     IntTy = llvm::IntegerType::get(C, Width);
439     V = CGF.Builder.CreateTrunc(V, IntTy);
440   }
441   Value *Zero = llvm::Constant::getNullValue(IntTy);
442   return CGF.Builder.CreateICmpSLT(V, Zero);
443 }
444 
445 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
446                               const CallExpr *E, llvm::Constant *calleeValue) {
447   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
448   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
449 }
450 
451 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
452 /// depending on IntrinsicID.
453 ///
454 /// \arg CGF The current codegen function.
455 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
456 /// \arg X The first argument to the llvm.*.with.overflow.*.
457 /// \arg Y The second argument to the llvm.*.with.overflow.*.
458 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
459 /// \returns The result (i.e. sum/product) returned by the intrinsic.
460 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
461                                           const llvm::Intrinsic::ID IntrinsicID,
462                                           llvm::Value *X, llvm::Value *Y,
463                                           llvm::Value *&Carry) {
464   // Make sure we have integers of the same width.
465   assert(X->getType() == Y->getType() &&
466          "Arguments must be the same type. (Did you forget to make sure both "
467          "arguments have the same integer width?)");
468 
469   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
470   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
471   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
472   return CGF.Builder.CreateExtractValue(Tmp, 0);
473 }
474 
475 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
476                                 unsigned IntrinsicID,
477                                 int low, int high) {
478     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
479     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
480     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
481     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
482     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
483     return Call;
484 }
485 
486 namespace {
487   struct WidthAndSignedness {
488     unsigned Width;
489     bool Signed;
490   };
491 }
492 
493 static WidthAndSignedness
494 getIntegerWidthAndSignedness(const clang::ASTContext &context,
495                              const clang::QualType Type) {
496   assert(Type->isIntegerType() && "Given type is not an integer.");
497   unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
498   bool Signed = Type->isSignedIntegerType();
499   return {Width, Signed};
500 }
501 
502 // Given one or more integer types, this function produces an integer type that
503 // encompasses them: any value in one of the given types could be expressed in
504 // the encompassing type.
505 static struct WidthAndSignedness
506 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
507   assert(Types.size() > 0 && "Empty list of types.");
508 
509   // If any of the given types is signed, we must return a signed type.
510   bool Signed = false;
511   for (const auto &Type : Types) {
512     Signed |= Type.Signed;
513   }
514 
515   // The encompassing type must have a width greater than or equal to the width
516   // of the specified types.  Additionally, if the encompassing type is signed,
517   // its width must be strictly greater than the width of any unsigned types
518   // given.
519   unsigned Width = 0;
520   for (const auto &Type : Types) {
521     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
522     if (Width < MinWidth) {
523       Width = MinWidth;
524     }
525   }
526 
527   return {Width, Signed};
528 }
529 
530 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
531   llvm::Type *DestType = Int8PtrTy;
532   if (ArgValue->getType() != DestType)
533     ArgValue =
534         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
535 
536   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
537   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
538 }
539 
540 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
541 /// __builtin_object_size(p, @p To) is correct
542 static bool areBOSTypesCompatible(int From, int To) {
543   // Note: Our __builtin_object_size implementation currently treats Type=0 and
544   // Type=2 identically. Encoding this implementation detail here may make
545   // improving __builtin_object_size difficult in the future, so it's omitted.
546   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
547 }
548 
549 static llvm::Value *
550 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
551   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
552 }
553 
554 llvm::Value *
555 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
556                                                  llvm::IntegerType *ResType,
557                                                  llvm::Value *EmittedE,
558                                                  bool IsDynamic) {
559   uint64_t ObjectSize;
560   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
561     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
562   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
563 }
564 
565 /// Returns a Value corresponding to the size of the given expression.
566 /// This Value may be either of the following:
567 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
568 ///     it)
569 ///   - A call to the @llvm.objectsize intrinsic
570 ///
571 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
572 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
573 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
574 llvm::Value *
575 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
576                                        llvm::IntegerType *ResType,
577                                        llvm::Value *EmittedE, bool IsDynamic) {
578   // We need to reference an argument if the pointer is a parameter with the
579   // pass_object_size attribute.
580   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
581     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
582     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
583     if (Param != nullptr && PS != nullptr &&
584         areBOSTypesCompatible(PS->getType(), Type)) {
585       auto Iter = SizeArguments.find(Param);
586       assert(Iter != SizeArguments.end());
587 
588       const ImplicitParamDecl *D = Iter->second;
589       auto DIter = LocalDeclMap.find(D);
590       assert(DIter != LocalDeclMap.end());
591 
592       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
593                               getContext().getSizeType(), E->getBeginLoc());
594     }
595   }
596 
597   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
598   // evaluate E for side-effects. In either case, we shouldn't lower to
599   // @llvm.objectsize.
600   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
601     return getDefaultBuiltinObjectSizeResult(Type, ResType);
602 
603   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
604   assert(Ptr->getType()->isPointerTy() &&
605          "Non-pointer passed to __builtin_object_size?");
606 
607   Function *F =
608       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
609 
610   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
611   Value *Min = Builder.getInt1((Type & 2) != 0);
612   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
613   Value *NullIsUnknown = Builder.getTrue();
614   Value *Dynamic = Builder.getInt1(IsDynamic);
615   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
616 }
617 
618 namespace {
619 /// A struct to generically describe a bit test intrinsic.
620 struct BitTest {
621   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
622   enum InterlockingKind : uint8_t {
623     Unlocked,
624     Sequential,
625     Acquire,
626     Release,
627     NoFence
628   };
629 
630   ActionKind Action;
631   InterlockingKind Interlocking;
632   bool Is64Bit;
633 
634   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
635 };
636 } // namespace
637 
638 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
639   switch (BuiltinID) {
640     // Main portable variants.
641   case Builtin::BI_bittest:
642     return {TestOnly, Unlocked, false};
643   case Builtin::BI_bittestandcomplement:
644     return {Complement, Unlocked, false};
645   case Builtin::BI_bittestandreset:
646     return {Reset, Unlocked, false};
647   case Builtin::BI_bittestandset:
648     return {Set, Unlocked, false};
649   case Builtin::BI_interlockedbittestandreset:
650     return {Reset, Sequential, false};
651   case Builtin::BI_interlockedbittestandset:
652     return {Set, Sequential, false};
653 
654     // X86-specific 64-bit variants.
655   case Builtin::BI_bittest64:
656     return {TestOnly, Unlocked, true};
657   case Builtin::BI_bittestandcomplement64:
658     return {Complement, Unlocked, true};
659   case Builtin::BI_bittestandreset64:
660     return {Reset, Unlocked, true};
661   case Builtin::BI_bittestandset64:
662     return {Set, Unlocked, true};
663   case Builtin::BI_interlockedbittestandreset64:
664     return {Reset, Sequential, true};
665   case Builtin::BI_interlockedbittestandset64:
666     return {Set, Sequential, true};
667 
668     // ARM/AArch64-specific ordering variants.
669   case Builtin::BI_interlockedbittestandset_acq:
670     return {Set, Acquire, false};
671   case Builtin::BI_interlockedbittestandset_rel:
672     return {Set, Release, false};
673   case Builtin::BI_interlockedbittestandset_nf:
674     return {Set, NoFence, false};
675   case Builtin::BI_interlockedbittestandreset_acq:
676     return {Reset, Acquire, false};
677   case Builtin::BI_interlockedbittestandreset_rel:
678     return {Reset, Release, false};
679   case Builtin::BI_interlockedbittestandreset_nf:
680     return {Reset, NoFence, false};
681   }
682   llvm_unreachable("expected only bittest intrinsics");
683 }
684 
685 static char bitActionToX86BTCode(BitTest::ActionKind A) {
686   switch (A) {
687   case BitTest::TestOnly:   return '\0';
688   case BitTest::Complement: return 'c';
689   case BitTest::Reset:      return 'r';
690   case BitTest::Set:        return 's';
691   }
692   llvm_unreachable("invalid action");
693 }
694 
695 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
696                                             BitTest BT,
697                                             const CallExpr *E, Value *BitBase,
698                                             Value *BitPos) {
699   char Action = bitActionToX86BTCode(BT.Action);
700   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
701 
702   // Build the assembly.
703   SmallString<64> Asm;
704   raw_svector_ostream AsmOS(Asm);
705   if (BT.Interlocking != BitTest::Unlocked)
706     AsmOS << "lock ";
707   AsmOS << "bt";
708   if (Action)
709     AsmOS << Action;
710   AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
711 
712   // Build the constraints. FIXME: We should support immediates when possible.
713   std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
714   llvm::IntegerType *IntType = llvm::IntegerType::get(
715       CGF.getLLVMContext(),
716       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
717   llvm::Type *IntPtrType = IntType->getPointerTo();
718   llvm::FunctionType *FTy =
719       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
720 
721   llvm::InlineAsm *IA =
722       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
723   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
724 }
725 
726 static llvm::AtomicOrdering
727 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
728   switch (I) {
729   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
730   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
731   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
732   case BitTest::Release:    return llvm::AtomicOrdering::Release;
733   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
734   }
735   llvm_unreachable("invalid interlocking");
736 }
737 
738 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
739 /// bits and a bit position and read and optionally modify the bit at that
740 /// position. The position index can be arbitrarily large, i.e. it can be larger
741 /// than 31 or 63, so we need an indexed load in the general case.
742 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
743                                          unsigned BuiltinID,
744                                          const CallExpr *E) {
745   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
746   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
747 
748   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
749 
750   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
751   // indexing operation internally. Use them if possible.
752   llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
753   if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
754     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
755 
756   // Otherwise, use generic code to load one byte and test the bit. Use all but
757   // the bottom three bits as the array index, and the bottom three bits to form
758   // a mask.
759   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
760   Value *ByteIndex = CGF.Builder.CreateAShr(
761       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
762   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
763   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
764                                                  ByteIndex, "bittest.byteaddr"),
765                    CharUnits::One());
766   Value *PosLow =
767       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
768                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
769 
770   // The updating instructions will need a mask.
771   Value *Mask = nullptr;
772   if (BT.Action != BitTest::TestOnly) {
773     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
774                                  "bittest.mask");
775   }
776 
777   // Check the action and ordering of the interlocked intrinsics.
778   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
779 
780   Value *OldByte = nullptr;
781   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
782     // Emit a combined atomicrmw load/store operation for the interlocked
783     // intrinsics.
784     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
785     if (BT.Action == BitTest::Reset) {
786       Mask = CGF.Builder.CreateNot(Mask);
787       RMWOp = llvm::AtomicRMWInst::And;
788     }
789     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
790                                           Ordering);
791   } else {
792     // Emit a plain load for the non-interlocked intrinsics.
793     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
794     Value *NewByte = nullptr;
795     switch (BT.Action) {
796     case BitTest::TestOnly:
797       // Don't store anything.
798       break;
799     case BitTest::Complement:
800       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
801       break;
802     case BitTest::Reset:
803       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
804       break;
805     case BitTest::Set:
806       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
807       break;
808     }
809     if (NewByte)
810       CGF.Builder.CreateStore(NewByte, ByteAddr);
811   }
812 
813   // However we loaded the old byte, either by plain load or atomicrmw, shift
814   // the bit into the low position and mask it to 0 or 1.
815   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
816   return CGF.Builder.CreateAnd(
817       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
818 }
819 
820 namespace {
821 enum class MSVCSetJmpKind {
822   _setjmpex,
823   _setjmp3,
824   _setjmp
825 };
826 }
827 
828 /// MSVC handles setjmp a bit differently on different platforms. On every
829 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
830 /// parameters can be passed as variadic arguments, but we always pass none.
831 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
832                                const CallExpr *E) {
833   llvm::Value *Arg1 = nullptr;
834   llvm::Type *Arg1Ty = nullptr;
835   StringRef Name;
836   bool IsVarArg = false;
837   if (SJKind == MSVCSetJmpKind::_setjmp3) {
838     Name = "_setjmp3";
839     Arg1Ty = CGF.Int32Ty;
840     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
841     IsVarArg = true;
842   } else {
843     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
844     Arg1Ty = CGF.Int8PtrTy;
845     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
846       Arg1 = CGF.Builder.CreateCall(
847           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
848     } else
849       Arg1 = CGF.Builder.CreateCall(
850           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
851           llvm::ConstantInt::get(CGF.Int32Ty, 0));
852   }
853 
854   // Mark the call site and declaration with ReturnsTwice.
855   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
856   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
857       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
858       llvm::Attribute::ReturnsTwice);
859   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
860       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
861       ReturnsTwiceAttr, /*Local=*/true);
862 
863   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
864       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
865   llvm::Value *Args[] = {Buf, Arg1};
866   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
867   CB->setAttributes(ReturnsTwiceAttr);
868   return RValue::get(CB);
869 }
870 
871 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
872 // we handle them here.
873 enum class CodeGenFunction::MSVCIntrin {
874   _BitScanForward,
875   _BitScanReverse,
876   _InterlockedAnd,
877   _InterlockedDecrement,
878   _InterlockedExchange,
879   _InterlockedExchangeAdd,
880   _InterlockedExchangeSub,
881   _InterlockedIncrement,
882   _InterlockedOr,
883   _InterlockedXor,
884   _InterlockedExchangeAdd_acq,
885   _InterlockedExchangeAdd_rel,
886   _InterlockedExchangeAdd_nf,
887   _InterlockedExchange_acq,
888   _InterlockedExchange_rel,
889   _InterlockedExchange_nf,
890   _InterlockedCompareExchange_acq,
891   _InterlockedCompareExchange_rel,
892   _InterlockedCompareExchange_nf,
893   _InterlockedOr_acq,
894   _InterlockedOr_rel,
895   _InterlockedOr_nf,
896   _InterlockedXor_acq,
897   _InterlockedXor_rel,
898   _InterlockedXor_nf,
899   _InterlockedAnd_acq,
900   _InterlockedAnd_rel,
901   _InterlockedAnd_nf,
902   _InterlockedIncrement_acq,
903   _InterlockedIncrement_rel,
904   _InterlockedIncrement_nf,
905   _InterlockedDecrement_acq,
906   _InterlockedDecrement_rel,
907   _InterlockedDecrement_nf,
908   __fastfail,
909 };
910 
911 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
912                                             const CallExpr *E) {
913   switch (BuiltinID) {
914   case MSVCIntrin::_BitScanForward:
915   case MSVCIntrin::_BitScanReverse: {
916     Value *ArgValue = EmitScalarExpr(E->getArg(1));
917 
918     llvm::Type *ArgType = ArgValue->getType();
919     llvm::Type *IndexType =
920       EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
921     llvm::Type *ResultType = ConvertType(E->getType());
922 
923     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
924     Value *ResZero = llvm::Constant::getNullValue(ResultType);
925     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
926 
927     BasicBlock *Begin = Builder.GetInsertBlock();
928     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
929     Builder.SetInsertPoint(End);
930     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
931 
932     Builder.SetInsertPoint(Begin);
933     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
934     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
935     Builder.CreateCondBr(IsZero, End, NotZero);
936     Result->addIncoming(ResZero, Begin);
937 
938     Builder.SetInsertPoint(NotZero);
939     Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
940 
941     if (BuiltinID == MSVCIntrin::_BitScanForward) {
942       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
943       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
944       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
945       Builder.CreateStore(ZeroCount, IndexAddress, false);
946     } else {
947       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
948       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
949 
950       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
951       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
952       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
953       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
954       Builder.CreateStore(Index, IndexAddress, false);
955     }
956     Builder.CreateBr(End);
957     Result->addIncoming(ResOne, NotZero);
958 
959     Builder.SetInsertPoint(End);
960     return Result;
961   }
962   case MSVCIntrin::_InterlockedAnd:
963     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
964   case MSVCIntrin::_InterlockedExchange:
965     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
966   case MSVCIntrin::_InterlockedExchangeAdd:
967     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
968   case MSVCIntrin::_InterlockedExchangeSub:
969     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
970   case MSVCIntrin::_InterlockedOr:
971     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
972   case MSVCIntrin::_InterlockedXor:
973     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
974   case MSVCIntrin::_InterlockedExchangeAdd_acq:
975     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
976                                  AtomicOrdering::Acquire);
977   case MSVCIntrin::_InterlockedExchangeAdd_rel:
978     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
979                                  AtomicOrdering::Release);
980   case MSVCIntrin::_InterlockedExchangeAdd_nf:
981     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
982                                  AtomicOrdering::Monotonic);
983   case MSVCIntrin::_InterlockedExchange_acq:
984     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
985                                  AtomicOrdering::Acquire);
986   case MSVCIntrin::_InterlockedExchange_rel:
987     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
988                                  AtomicOrdering::Release);
989   case MSVCIntrin::_InterlockedExchange_nf:
990     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
991                                  AtomicOrdering::Monotonic);
992   case MSVCIntrin::_InterlockedCompareExchange_acq:
993     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
994   case MSVCIntrin::_InterlockedCompareExchange_rel:
995     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
996   case MSVCIntrin::_InterlockedCompareExchange_nf:
997     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
998   case MSVCIntrin::_InterlockedOr_acq:
999     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1000                                  AtomicOrdering::Acquire);
1001   case MSVCIntrin::_InterlockedOr_rel:
1002     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1003                                  AtomicOrdering::Release);
1004   case MSVCIntrin::_InterlockedOr_nf:
1005     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1006                                  AtomicOrdering::Monotonic);
1007   case MSVCIntrin::_InterlockedXor_acq:
1008     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1009                                  AtomicOrdering::Acquire);
1010   case MSVCIntrin::_InterlockedXor_rel:
1011     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1012                                  AtomicOrdering::Release);
1013   case MSVCIntrin::_InterlockedXor_nf:
1014     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1015                                  AtomicOrdering::Monotonic);
1016   case MSVCIntrin::_InterlockedAnd_acq:
1017     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1018                                  AtomicOrdering::Acquire);
1019   case MSVCIntrin::_InterlockedAnd_rel:
1020     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1021                                  AtomicOrdering::Release);
1022   case MSVCIntrin::_InterlockedAnd_nf:
1023     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1024                                  AtomicOrdering::Monotonic);
1025   case MSVCIntrin::_InterlockedIncrement_acq:
1026     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1027   case MSVCIntrin::_InterlockedIncrement_rel:
1028     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1029   case MSVCIntrin::_InterlockedIncrement_nf:
1030     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1031   case MSVCIntrin::_InterlockedDecrement_acq:
1032     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1033   case MSVCIntrin::_InterlockedDecrement_rel:
1034     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1035   case MSVCIntrin::_InterlockedDecrement_nf:
1036     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1037 
1038   case MSVCIntrin::_InterlockedDecrement:
1039     return EmitAtomicDecrementValue(*this, E);
1040   case MSVCIntrin::_InterlockedIncrement:
1041     return EmitAtomicIncrementValue(*this, E);
1042 
1043   case MSVCIntrin::__fastfail: {
1044     // Request immediate process termination from the kernel. The instruction
1045     // sequences to do this are documented on MSDN:
1046     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1047     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1048     StringRef Asm, Constraints;
1049     switch (ISA) {
1050     default:
1051       ErrorUnsupported(E, "__fastfail call for this architecture");
1052       break;
1053     case llvm::Triple::x86:
1054     case llvm::Triple::x86_64:
1055       Asm = "int $$0x29";
1056       Constraints = "{cx}";
1057       break;
1058     case llvm::Triple::thumb:
1059       Asm = "udf #251";
1060       Constraints = "{r0}";
1061       break;
1062     case llvm::Triple::aarch64:
1063       Asm = "brk #0xF003";
1064       Constraints = "{w0}";
1065     }
1066     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1067     llvm::InlineAsm *IA =
1068         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1069     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1070         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1071         llvm::Attribute::NoReturn);
1072     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1073     CI->setAttributes(NoReturnAttr);
1074     return CI;
1075   }
1076   }
1077   llvm_unreachable("Incorrect MSVC intrinsic!");
1078 }
1079 
1080 namespace {
1081 // ARC cleanup for __builtin_os_log_format
1082 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1083   CallObjCArcUse(llvm::Value *object) : object(object) {}
1084   llvm::Value *object;
1085 
1086   void Emit(CodeGenFunction &CGF, Flags flags) override {
1087     CGF.EmitARCIntrinsicUse(object);
1088   }
1089 };
1090 }
1091 
1092 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1093                                                  BuiltinCheckKind Kind) {
1094   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1095           && "Unsupported builtin check kind");
1096 
1097   Value *ArgValue = EmitScalarExpr(E);
1098   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1099     return ArgValue;
1100 
1101   SanitizerScope SanScope(this);
1102   Value *Cond = Builder.CreateICmpNE(
1103       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1104   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1105             SanitizerHandler::InvalidBuiltin,
1106             {EmitCheckSourceLocation(E->getExprLoc()),
1107              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1108             None);
1109   return ArgValue;
1110 }
1111 
1112 /// Get the argument type for arguments to os_log_helper.
1113 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1114   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1115   return C.getCanonicalType(UnsignedTy);
1116 }
1117 
1118 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1119     const analyze_os_log::OSLogBufferLayout &Layout,
1120     CharUnits BufferAlignment) {
1121   ASTContext &Ctx = getContext();
1122 
1123   llvm::SmallString<64> Name;
1124   {
1125     raw_svector_ostream OS(Name);
1126     OS << "__os_log_helper";
1127     OS << "_" << BufferAlignment.getQuantity();
1128     OS << "_" << int(Layout.getSummaryByte());
1129     OS << "_" << int(Layout.getNumArgsByte());
1130     for (const auto &Item : Layout.Items)
1131       OS << "_" << int(Item.getSizeByte()) << "_"
1132          << int(Item.getDescriptorByte());
1133   }
1134 
1135   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1136     return F;
1137 
1138   llvm::SmallVector<QualType, 4> ArgTys;
1139   FunctionArgList Args;
1140   Args.push_back(ImplicitParamDecl::Create(
1141       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1142       ImplicitParamDecl::Other));
1143   ArgTys.emplace_back(Ctx.VoidPtrTy);
1144 
1145   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1146     char Size = Layout.Items[I].getSizeByte();
1147     if (!Size)
1148       continue;
1149 
1150     QualType ArgTy = getOSLogArgType(Ctx, Size);
1151     Args.push_back(ImplicitParamDecl::Create(
1152         Ctx, nullptr, SourceLocation(),
1153         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1154         ImplicitParamDecl::Other));
1155     ArgTys.emplace_back(ArgTy);
1156   }
1157 
1158   QualType ReturnTy = Ctx.VoidTy;
1159   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1160 
1161   // The helper function has linkonce_odr linkage to enable the linker to merge
1162   // identical functions. To ensure the merging always happens, 'noinline' is
1163   // attached to the function when compiling with -Oz.
1164   const CGFunctionInfo &FI =
1165       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1166   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1167   llvm::Function *Fn = llvm::Function::Create(
1168       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1169   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1170   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1171   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1172   Fn->setDoesNotThrow();
1173 
1174   // Attach 'noinline' at -Oz.
1175   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1176     Fn->addFnAttr(llvm::Attribute::NoInline);
1177 
1178   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1179   IdentifierInfo *II = &Ctx.Idents.get(Name);
1180   FunctionDecl *FD = FunctionDecl::Create(
1181       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1182       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1183 
1184   StartFunction(FD, ReturnTy, Fn, FI, Args);
1185 
1186   // Create a scope with an artificial location for the body of this function.
1187   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1188 
1189   CharUnits Offset;
1190   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1191                   BufferAlignment);
1192   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1193                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1194   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1195                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1196 
1197   unsigned I = 1;
1198   for (const auto &Item : Layout.Items) {
1199     Builder.CreateStore(
1200         Builder.getInt8(Item.getDescriptorByte()),
1201         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1202     Builder.CreateStore(
1203         Builder.getInt8(Item.getSizeByte()),
1204         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1205 
1206     CharUnits Size = Item.size();
1207     if (!Size.getQuantity())
1208       continue;
1209 
1210     Address Arg = GetAddrOfLocalVar(Args[I]);
1211     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1212     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1213                                  "argDataCast");
1214     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1215     Offset += Size;
1216     ++I;
1217   }
1218 
1219   FinishFunction();
1220 
1221   return Fn;
1222 }
1223 
1224 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1225   assert(E.getNumArgs() >= 2 &&
1226          "__builtin_os_log_format takes at least 2 arguments");
1227   ASTContext &Ctx = getContext();
1228   analyze_os_log::OSLogBufferLayout Layout;
1229   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1230   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1231   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1232 
1233   // Ignore argument 1, the format string. It is not currently used.
1234   CallArgList Args;
1235   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1236 
1237   for (const auto &Item : Layout.Items) {
1238     int Size = Item.getSizeByte();
1239     if (!Size)
1240       continue;
1241 
1242     llvm::Value *ArgVal;
1243 
1244     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1245       uint64_t Val = 0;
1246       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1247         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1248       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1249     } else if (const Expr *TheExpr = Item.getExpr()) {
1250       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1251 
1252       // Check if this is a retainable type.
1253       if (TheExpr->getType()->isObjCRetainableType()) {
1254         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1255                "Only scalar can be a ObjC retainable type");
1256         // Check if the object is constant, if not, save it in
1257         // RetainableOperands.
1258         if (!isa<Constant>(ArgVal))
1259           RetainableOperands.push_back(ArgVal);
1260       }
1261     } else {
1262       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1263     }
1264 
1265     unsigned ArgValSize =
1266         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1267     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1268                                                      ArgValSize);
1269     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1270     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1271     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1272     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1273     Args.add(RValue::get(ArgVal), ArgTy);
1274   }
1275 
1276   const CGFunctionInfo &FI =
1277       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1278   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1279       Layout, BufAddr.getAlignment());
1280   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1281 
1282   // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1283   // cleanup will cause the use to appear after the final log call, keeping
1284   // the object valid while it’s held in the log buffer.  Note that if there’s
1285   // a release cleanup on the object, it will already be active; since
1286   // cleanups are emitted in reverse order, the use will occur before the
1287   // object is released.
1288   if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1289       CGM.getCodeGenOpts().OptimizationLevel != 0)
1290     for (llvm::Value *Object : RetainableOperands)
1291       pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1292 
1293   return RValue::get(BufAddr.getPointer());
1294 }
1295 
1296 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1297 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1298                                        WidthAndSignedness Op1Info,
1299                                        WidthAndSignedness Op2Info,
1300                                        WidthAndSignedness ResultInfo) {
1301   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1302          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1303          Op1Info.Signed != Op2Info.Signed;
1304 }
1305 
1306 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1307 /// the generic checked-binop irgen.
1308 static RValue
1309 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1310                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1311                              WidthAndSignedness Op2Info,
1312                              const clang::Expr *ResultArg, QualType ResultQTy,
1313                              WidthAndSignedness ResultInfo) {
1314   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1315                                     Op2Info, ResultInfo) &&
1316          "Not a mixed-sign multipliction we can specialize");
1317 
1318   // Emit the signed and unsigned operands.
1319   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1320   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1321   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1322   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1323   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1324   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1325 
1326   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1327   if (SignedOpWidth < UnsignedOpWidth)
1328     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1329   if (UnsignedOpWidth < SignedOpWidth)
1330     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1331 
1332   llvm::Type *OpTy = Signed->getType();
1333   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1334   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1335   llvm::Type *ResTy = ResultPtr.getElementType();
1336   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1337 
1338   // Take the absolute value of the signed operand.
1339   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1340   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1341   llvm::Value *AbsSigned =
1342       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1343 
1344   // Perform a checked unsigned multiplication.
1345   llvm::Value *UnsignedOverflow;
1346   llvm::Value *UnsignedResult =
1347       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1348                             Unsigned, UnsignedOverflow);
1349 
1350   llvm::Value *Overflow, *Result;
1351   if (ResultInfo.Signed) {
1352     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1353     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1354     auto IntMax =
1355         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1356     llvm::Value *MaxResult =
1357         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1358                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1359     llvm::Value *SignedOverflow =
1360         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1361     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1362 
1363     // Prepare the signed result (possibly by negating it).
1364     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1365     llvm::Value *SignedResult =
1366         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1367     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1368   } else {
1369     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1370     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1371         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1372     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1373     if (ResultInfo.Width < OpWidth) {
1374       auto IntMax =
1375           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1376       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1377           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1378       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1379     }
1380 
1381     // Negate the product if it would be negative in infinite precision.
1382     Result = CGF.Builder.CreateSelect(
1383         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1384 
1385     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1386   }
1387   assert(Overflow && Result && "Missing overflow or result");
1388 
1389   bool isVolatile =
1390       ResultArg->getType()->getPointeeType().isVolatileQualified();
1391   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1392                           isVolatile);
1393   return RValue::get(Overflow);
1394 }
1395 
1396 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1397                                Value *&RecordPtr, CharUnits Align,
1398                                llvm::FunctionCallee Func, int Lvl) {
1399   ASTContext &Context = CGF.getContext();
1400   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1401   std::string Pad = std::string(Lvl * 4, ' ');
1402 
1403   Value *GString =
1404       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1405   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1406 
1407   static llvm::DenseMap<QualType, const char *> Types;
1408   if (Types.empty()) {
1409     Types[Context.CharTy] = "%c";
1410     Types[Context.BoolTy] = "%d";
1411     Types[Context.SignedCharTy] = "%hhd";
1412     Types[Context.UnsignedCharTy] = "%hhu";
1413     Types[Context.IntTy] = "%d";
1414     Types[Context.UnsignedIntTy] = "%u";
1415     Types[Context.LongTy] = "%ld";
1416     Types[Context.UnsignedLongTy] = "%lu";
1417     Types[Context.LongLongTy] = "%lld";
1418     Types[Context.UnsignedLongLongTy] = "%llu";
1419     Types[Context.ShortTy] = "%hd";
1420     Types[Context.UnsignedShortTy] = "%hu";
1421     Types[Context.VoidPtrTy] = "%p";
1422     Types[Context.FloatTy] = "%f";
1423     Types[Context.DoubleTy] = "%f";
1424     Types[Context.LongDoubleTy] = "%Lf";
1425     Types[Context.getPointerType(Context.CharTy)] = "%s";
1426     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1427   }
1428 
1429   for (const auto *FD : RD->fields()) {
1430     Value *FieldPtr = RecordPtr;
1431     if (RD->isUnion())
1432       FieldPtr = CGF.Builder.CreatePointerCast(
1433           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1434     else
1435       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1436                                              FD->getFieldIndex());
1437 
1438     GString = CGF.Builder.CreateGlobalStringPtr(
1439         llvm::Twine(Pad)
1440             .concat(FD->getType().getAsString())
1441             .concat(llvm::Twine(' '))
1442             .concat(FD->getNameAsString())
1443             .concat(" : ")
1444             .str());
1445     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1446     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1447 
1448     QualType CanonicalType =
1449         FD->getType().getUnqualifiedType().getCanonicalType();
1450 
1451     // We check whether we are in a recursive type
1452     if (CanonicalType->isRecordType()) {
1453       Value *TmpRes =
1454           dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1455       Res = CGF.Builder.CreateAdd(TmpRes, Res);
1456       continue;
1457     }
1458 
1459     // We try to determine the best format to print the current field
1460     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1461                              ? Types[Context.VoidPtrTy]
1462                              : Types[CanonicalType];
1463 
1464     Address FieldAddress = Address(FieldPtr, Align);
1465     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1466 
1467     // FIXME Need to handle bitfield here
1468     GString = CGF.Builder.CreateGlobalStringPtr(
1469         Format.concat(llvm::Twine('\n')).str());
1470     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1471     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1472   }
1473 
1474   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1475   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1476   Res = CGF.Builder.CreateAdd(Res, TmpRes);
1477   return Res;
1478 }
1479 
1480 static bool
1481 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1482                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1483   if (const auto *Arr = Ctx.getAsArrayType(Ty))
1484     Ty = Ctx.getBaseElementType(Arr);
1485 
1486   const auto *Record = Ty->getAsCXXRecordDecl();
1487   if (!Record)
1488     return false;
1489 
1490   // We've already checked this type, or are in the process of checking it.
1491   if (!Seen.insert(Record).second)
1492     return false;
1493 
1494   assert(Record->hasDefinition() &&
1495          "Incomplete types should already be diagnosed");
1496 
1497   if (Record->isDynamicClass())
1498     return true;
1499 
1500   for (FieldDecl *F : Record->fields()) {
1501     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1502       return true;
1503   }
1504   return false;
1505 }
1506 
1507 /// Determine if the specified type requires laundering by checking if it is a
1508 /// dynamic class type or contains a subobject which is a dynamic class type.
1509 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1510   if (!CGM.getCodeGenOpts().StrictVTablePointers)
1511     return false;
1512   llvm::SmallPtrSet<const Decl *, 16> Seen;
1513   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1514 }
1515 
1516 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1517   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1518   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1519 
1520   // The builtin's shift arg may have a different type than the source arg and
1521   // result, but the LLVM intrinsic uses the same type for all values.
1522   llvm::Type *Ty = Src->getType();
1523   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1524 
1525   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1526   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1527   Function *F = CGM.getIntrinsic(IID, Ty);
1528   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1529 }
1530 
1531 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1532                                         const CallExpr *E,
1533                                         ReturnValueSlot ReturnValue) {
1534   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1535   // See if we can constant fold this builtin.  If so, don't emit it at all.
1536   Expr::EvalResult Result;
1537   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1538       !Result.hasSideEffects()) {
1539     if (Result.Val.isInt())
1540       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1541                                                 Result.Val.getInt()));
1542     if (Result.Val.isFloat())
1543       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1544                                                Result.Val.getFloat()));
1545   }
1546 
1547   // There are LLVM math intrinsics/instructions corresponding to math library
1548   // functions except the LLVM op will never set errno while the math library
1549   // might. Also, math builtins have the same semantics as their math library
1550   // twins. Thus, we can transform math library and builtin calls to their
1551   // LLVM counterparts if the call is marked 'const' (known to never set errno).
1552   if (FD->hasAttr<ConstAttr>()) {
1553     switch (BuiltinID) {
1554     case Builtin::BIceil:
1555     case Builtin::BIceilf:
1556     case Builtin::BIceill:
1557     case Builtin::BI__builtin_ceil:
1558     case Builtin::BI__builtin_ceilf:
1559     case Builtin::BI__builtin_ceilf16:
1560     case Builtin::BI__builtin_ceill:
1561       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
1562 
1563     case Builtin::BIcopysign:
1564     case Builtin::BIcopysignf:
1565     case Builtin::BIcopysignl:
1566     case Builtin::BI__builtin_copysign:
1567     case Builtin::BI__builtin_copysignf:
1568     case Builtin::BI__builtin_copysignf16:
1569     case Builtin::BI__builtin_copysignl:
1570     case Builtin::BI__builtin_copysignf128:
1571       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1572 
1573     case Builtin::BIcos:
1574     case Builtin::BIcosf:
1575     case Builtin::BIcosl:
1576     case Builtin::BI__builtin_cos:
1577     case Builtin::BI__builtin_cosf:
1578     case Builtin::BI__builtin_cosf16:
1579     case Builtin::BI__builtin_cosl:
1580       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
1581 
1582     case Builtin::BIexp:
1583     case Builtin::BIexpf:
1584     case Builtin::BIexpl:
1585     case Builtin::BI__builtin_exp:
1586     case Builtin::BI__builtin_expf:
1587     case Builtin::BI__builtin_expf16:
1588     case Builtin::BI__builtin_expl:
1589       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
1590 
1591     case Builtin::BIexp2:
1592     case Builtin::BIexp2f:
1593     case Builtin::BIexp2l:
1594     case Builtin::BI__builtin_exp2:
1595     case Builtin::BI__builtin_exp2f:
1596     case Builtin::BI__builtin_exp2f16:
1597     case Builtin::BI__builtin_exp2l:
1598       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
1599 
1600     case Builtin::BIfabs:
1601     case Builtin::BIfabsf:
1602     case Builtin::BIfabsl:
1603     case Builtin::BI__builtin_fabs:
1604     case Builtin::BI__builtin_fabsf:
1605     case Builtin::BI__builtin_fabsf16:
1606     case Builtin::BI__builtin_fabsl:
1607     case Builtin::BI__builtin_fabsf128:
1608       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1609 
1610     case Builtin::BIfloor:
1611     case Builtin::BIfloorf:
1612     case Builtin::BIfloorl:
1613     case Builtin::BI__builtin_floor:
1614     case Builtin::BI__builtin_floorf:
1615     case Builtin::BI__builtin_floorf16:
1616     case Builtin::BI__builtin_floorl:
1617       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1618 
1619     case Builtin::BIfma:
1620     case Builtin::BIfmaf:
1621     case Builtin::BIfmal:
1622     case Builtin::BI__builtin_fma:
1623     case Builtin::BI__builtin_fmaf:
1624     case Builtin::BI__builtin_fmaf16:
1625     case Builtin::BI__builtin_fmal:
1626       return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1627 
1628     case Builtin::BIfmax:
1629     case Builtin::BIfmaxf:
1630     case Builtin::BIfmaxl:
1631     case Builtin::BI__builtin_fmax:
1632     case Builtin::BI__builtin_fmaxf:
1633     case Builtin::BI__builtin_fmaxf16:
1634     case Builtin::BI__builtin_fmaxl:
1635       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1636 
1637     case Builtin::BIfmin:
1638     case Builtin::BIfminf:
1639     case Builtin::BIfminl:
1640     case Builtin::BI__builtin_fmin:
1641     case Builtin::BI__builtin_fminf:
1642     case Builtin::BI__builtin_fminf16:
1643     case Builtin::BI__builtin_fminl:
1644       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1645 
1646     // fmod() is a special-case. It maps to the frem instruction rather than an
1647     // LLVM intrinsic.
1648     case Builtin::BIfmod:
1649     case Builtin::BIfmodf:
1650     case Builtin::BIfmodl:
1651     case Builtin::BI__builtin_fmod:
1652     case Builtin::BI__builtin_fmodf:
1653     case Builtin::BI__builtin_fmodf16:
1654     case Builtin::BI__builtin_fmodl: {
1655       Value *Arg1 = EmitScalarExpr(E->getArg(0));
1656       Value *Arg2 = EmitScalarExpr(E->getArg(1));
1657       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1658     }
1659 
1660     case Builtin::BIlog:
1661     case Builtin::BIlogf:
1662     case Builtin::BIlogl:
1663     case Builtin::BI__builtin_log:
1664     case Builtin::BI__builtin_logf:
1665     case Builtin::BI__builtin_logf16:
1666     case Builtin::BI__builtin_logl:
1667       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1668 
1669     case Builtin::BIlog10:
1670     case Builtin::BIlog10f:
1671     case Builtin::BIlog10l:
1672     case Builtin::BI__builtin_log10:
1673     case Builtin::BI__builtin_log10f:
1674     case Builtin::BI__builtin_log10f16:
1675     case Builtin::BI__builtin_log10l:
1676       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1677 
1678     case Builtin::BIlog2:
1679     case Builtin::BIlog2f:
1680     case Builtin::BIlog2l:
1681     case Builtin::BI__builtin_log2:
1682     case Builtin::BI__builtin_log2f:
1683     case Builtin::BI__builtin_log2f16:
1684     case Builtin::BI__builtin_log2l:
1685       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1686 
1687     case Builtin::BInearbyint:
1688     case Builtin::BInearbyintf:
1689     case Builtin::BInearbyintl:
1690     case Builtin::BI__builtin_nearbyint:
1691     case Builtin::BI__builtin_nearbyintf:
1692     case Builtin::BI__builtin_nearbyintl:
1693       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1694 
1695     case Builtin::BIpow:
1696     case Builtin::BIpowf:
1697     case Builtin::BIpowl:
1698     case Builtin::BI__builtin_pow:
1699     case Builtin::BI__builtin_powf:
1700     case Builtin::BI__builtin_powf16:
1701     case Builtin::BI__builtin_powl:
1702       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1703 
1704     case Builtin::BIrint:
1705     case Builtin::BIrintf:
1706     case Builtin::BIrintl:
1707     case Builtin::BI__builtin_rint:
1708     case Builtin::BI__builtin_rintf:
1709     case Builtin::BI__builtin_rintf16:
1710     case Builtin::BI__builtin_rintl:
1711       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1712 
1713     case Builtin::BIround:
1714     case Builtin::BIroundf:
1715     case Builtin::BIroundl:
1716     case Builtin::BI__builtin_round:
1717     case Builtin::BI__builtin_roundf:
1718     case Builtin::BI__builtin_roundf16:
1719     case Builtin::BI__builtin_roundl:
1720       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1721 
1722     case Builtin::BIsin:
1723     case Builtin::BIsinf:
1724     case Builtin::BIsinl:
1725     case Builtin::BI__builtin_sin:
1726     case Builtin::BI__builtin_sinf:
1727     case Builtin::BI__builtin_sinf16:
1728     case Builtin::BI__builtin_sinl:
1729       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1730 
1731     case Builtin::BIsqrt:
1732     case Builtin::BIsqrtf:
1733     case Builtin::BIsqrtl:
1734     case Builtin::BI__builtin_sqrt:
1735     case Builtin::BI__builtin_sqrtf:
1736     case Builtin::BI__builtin_sqrtf16:
1737     case Builtin::BI__builtin_sqrtl:
1738       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1739 
1740     case Builtin::BItrunc:
1741     case Builtin::BItruncf:
1742     case Builtin::BItruncl:
1743     case Builtin::BI__builtin_trunc:
1744     case Builtin::BI__builtin_truncf:
1745     case Builtin::BI__builtin_truncf16:
1746     case Builtin::BI__builtin_truncl:
1747       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1748 
1749     case Builtin::BIlround:
1750     case Builtin::BIlroundf:
1751     case Builtin::BIlroundl:
1752     case Builtin::BI__builtin_lround:
1753     case Builtin::BI__builtin_lroundf:
1754     case Builtin::BI__builtin_lroundl:
1755       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
1756 
1757     case Builtin::BIllround:
1758     case Builtin::BIllroundf:
1759     case Builtin::BIllroundl:
1760     case Builtin::BI__builtin_llround:
1761     case Builtin::BI__builtin_llroundf:
1762     case Builtin::BI__builtin_llroundl:
1763       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
1764 
1765     case Builtin::BIlrint:
1766     case Builtin::BIlrintf:
1767     case Builtin::BIlrintl:
1768     case Builtin::BI__builtin_lrint:
1769     case Builtin::BI__builtin_lrintf:
1770     case Builtin::BI__builtin_lrintl:
1771       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
1772 
1773     case Builtin::BIllrint:
1774     case Builtin::BIllrintf:
1775     case Builtin::BIllrintl:
1776     case Builtin::BI__builtin_llrint:
1777     case Builtin::BI__builtin_llrintf:
1778     case Builtin::BI__builtin_llrintl:
1779       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
1780 
1781     default:
1782       break;
1783     }
1784   }
1785 
1786   switch (BuiltinID) {
1787   default: break;
1788   case Builtin::BI__builtin___CFStringMakeConstantString:
1789   case Builtin::BI__builtin___NSStringMakeConstantString:
1790     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1791   case Builtin::BI__builtin_stdarg_start:
1792   case Builtin::BI__builtin_va_start:
1793   case Builtin::BI__va_start:
1794   case Builtin::BI__builtin_va_end:
1795     return RValue::get(
1796         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1797                            ? EmitScalarExpr(E->getArg(0))
1798                            : EmitVAListRef(E->getArg(0)).getPointer(),
1799                        BuiltinID != Builtin::BI__builtin_va_end));
1800   case Builtin::BI__builtin_va_copy: {
1801     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1802     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1803 
1804     llvm::Type *Type = Int8PtrTy;
1805 
1806     DstPtr = Builder.CreateBitCast(DstPtr, Type);
1807     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1808     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1809                                           {DstPtr, SrcPtr}));
1810   }
1811   case Builtin::BI__builtin_abs:
1812   case Builtin::BI__builtin_labs:
1813   case Builtin::BI__builtin_llabs: {
1814     // X < 0 ? -X : X
1815     // The negation has 'nsw' because abs of INT_MIN is undefined.
1816     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1817     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1818     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1819     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1820     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1821     return RValue::get(Result);
1822   }
1823   case Builtin::BI__builtin_conj:
1824   case Builtin::BI__builtin_conjf:
1825   case Builtin::BI__builtin_conjl: {
1826     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1827     Value *Real = ComplexVal.first;
1828     Value *Imag = ComplexVal.second;
1829     Value *Zero =
1830       Imag->getType()->isFPOrFPVectorTy()
1831         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1832         : llvm::Constant::getNullValue(Imag->getType());
1833 
1834     Imag = Builder.CreateFSub(Zero, Imag, "sub");
1835     return RValue::getComplex(std::make_pair(Real, Imag));
1836   }
1837   case Builtin::BI__builtin_creal:
1838   case Builtin::BI__builtin_crealf:
1839   case Builtin::BI__builtin_creall:
1840   case Builtin::BIcreal:
1841   case Builtin::BIcrealf:
1842   case Builtin::BIcreall: {
1843     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1844     return RValue::get(ComplexVal.first);
1845   }
1846 
1847   case Builtin::BI__builtin_dump_struct: {
1848     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
1849     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
1850         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
1851 
1852     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1853     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1854 
1855     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1856     QualType Arg0Type = Arg0->getType()->getPointeeType();
1857 
1858     Value *RecordPtr = EmitScalarExpr(Arg0);
1859     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
1860                             {LLVMFuncType, Func}, 0);
1861     return RValue::get(Res);
1862   }
1863 
1864   case Builtin::BI__builtin_preserve_access_index: {
1865     // Only enabled preserved access index region when debuginfo
1866     // is available as debuginfo is needed to preserve user-level
1867     // access pattern.
1868     if (!getDebugInfo()) {
1869       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
1870       return RValue::get(EmitScalarExpr(E->getArg(0)));
1871     }
1872 
1873     // Nested builtin_preserve_access_index() not supported
1874     if (IsInPreservedAIRegion) {
1875       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
1876       return RValue::get(EmitScalarExpr(E->getArg(0)));
1877     }
1878 
1879     IsInPreservedAIRegion = true;
1880     Value *Res = EmitScalarExpr(E->getArg(0));
1881     IsInPreservedAIRegion = false;
1882     return RValue::get(Res);
1883   }
1884 
1885   case Builtin::BI__builtin_cimag:
1886   case Builtin::BI__builtin_cimagf:
1887   case Builtin::BI__builtin_cimagl:
1888   case Builtin::BIcimag:
1889   case Builtin::BIcimagf:
1890   case Builtin::BIcimagl: {
1891     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1892     return RValue::get(ComplexVal.second);
1893   }
1894 
1895   case Builtin::BI__builtin_clrsb:
1896   case Builtin::BI__builtin_clrsbl:
1897   case Builtin::BI__builtin_clrsbll: {
1898     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
1899     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1900 
1901     llvm::Type *ArgType = ArgValue->getType();
1902     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1903 
1904     llvm::Type *ResultType = ConvertType(E->getType());
1905     Value *Zero = llvm::Constant::getNullValue(ArgType);
1906     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
1907     Value *Inverse = Builder.CreateNot(ArgValue, "not");
1908     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
1909     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
1910     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
1911     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1912                                    "cast");
1913     return RValue::get(Result);
1914   }
1915   case Builtin::BI__builtin_ctzs:
1916   case Builtin::BI__builtin_ctz:
1917   case Builtin::BI__builtin_ctzl:
1918   case Builtin::BI__builtin_ctzll: {
1919     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1920 
1921     llvm::Type *ArgType = ArgValue->getType();
1922     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1923 
1924     llvm::Type *ResultType = ConvertType(E->getType());
1925     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1926     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1927     if (Result->getType() != ResultType)
1928       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1929                                      "cast");
1930     return RValue::get(Result);
1931   }
1932   case Builtin::BI__builtin_clzs:
1933   case Builtin::BI__builtin_clz:
1934   case Builtin::BI__builtin_clzl:
1935   case Builtin::BI__builtin_clzll: {
1936     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1937 
1938     llvm::Type *ArgType = ArgValue->getType();
1939     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1940 
1941     llvm::Type *ResultType = ConvertType(E->getType());
1942     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1943     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1944     if (Result->getType() != ResultType)
1945       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1946                                      "cast");
1947     return RValue::get(Result);
1948   }
1949   case Builtin::BI__builtin_ffs:
1950   case Builtin::BI__builtin_ffsl:
1951   case Builtin::BI__builtin_ffsll: {
1952     // ffs(x) -> x ? cttz(x) + 1 : 0
1953     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1954 
1955     llvm::Type *ArgType = ArgValue->getType();
1956     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1957 
1958     llvm::Type *ResultType = ConvertType(E->getType());
1959     Value *Tmp =
1960         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1961                           llvm::ConstantInt::get(ArgType, 1));
1962     Value *Zero = llvm::Constant::getNullValue(ArgType);
1963     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1964     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1965     if (Result->getType() != ResultType)
1966       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1967                                      "cast");
1968     return RValue::get(Result);
1969   }
1970   case Builtin::BI__builtin_parity:
1971   case Builtin::BI__builtin_parityl:
1972   case Builtin::BI__builtin_parityll: {
1973     // parity(x) -> ctpop(x) & 1
1974     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1975 
1976     llvm::Type *ArgType = ArgValue->getType();
1977     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1978 
1979     llvm::Type *ResultType = ConvertType(E->getType());
1980     Value *Tmp = Builder.CreateCall(F, ArgValue);
1981     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1982     if (Result->getType() != ResultType)
1983       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1984                                      "cast");
1985     return RValue::get(Result);
1986   }
1987   case Builtin::BI__lzcnt16:
1988   case Builtin::BI__lzcnt:
1989   case Builtin::BI__lzcnt64: {
1990     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1991 
1992     llvm::Type *ArgType = ArgValue->getType();
1993     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1994 
1995     llvm::Type *ResultType = ConvertType(E->getType());
1996     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
1997     if (Result->getType() != ResultType)
1998       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1999                                      "cast");
2000     return RValue::get(Result);
2001   }
2002   case Builtin::BI__popcnt16:
2003   case Builtin::BI__popcnt:
2004   case Builtin::BI__popcnt64:
2005   case Builtin::BI__builtin_popcount:
2006   case Builtin::BI__builtin_popcountl:
2007   case Builtin::BI__builtin_popcountll: {
2008     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2009 
2010     llvm::Type *ArgType = ArgValue->getType();
2011     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2012 
2013     llvm::Type *ResultType = ConvertType(E->getType());
2014     Value *Result = Builder.CreateCall(F, ArgValue);
2015     if (Result->getType() != ResultType)
2016       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2017                                      "cast");
2018     return RValue::get(Result);
2019   }
2020   case Builtin::BI__builtin_unpredictable: {
2021     // Always return the argument of __builtin_unpredictable. LLVM does not
2022     // handle this builtin. Metadata for this builtin should be added directly
2023     // to instructions such as branches or switches that use it.
2024     return RValue::get(EmitScalarExpr(E->getArg(0)));
2025   }
2026   case Builtin::BI__builtin_expect: {
2027     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2028     llvm::Type *ArgType = ArgValue->getType();
2029 
2030     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2031     // Don't generate llvm.expect on -O0 as the backend won't use it for
2032     // anything.
2033     // Note, we still IRGen ExpectedValue because it could have side-effects.
2034     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2035       return RValue::get(ArgValue);
2036 
2037     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2038     Value *Result =
2039         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2040     return RValue::get(Result);
2041   }
2042   case Builtin::BI__builtin_assume_aligned: {
2043     const Expr *Ptr = E->getArg(0);
2044     Value *PtrValue = EmitScalarExpr(Ptr);
2045     Value *OffsetValue =
2046       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2047 
2048     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2049     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2050     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2051       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2052                                      llvm::Value::MaximumAlignment);
2053 
2054     EmitAlignmentAssumption(PtrValue, Ptr,
2055                             /*The expr loc is sufficient.*/ SourceLocation(),
2056                             AlignmentCI, OffsetValue);
2057     return RValue::get(PtrValue);
2058   }
2059   case Builtin::BI__assume:
2060   case Builtin::BI__builtin_assume: {
2061     if (E->getArg(0)->HasSideEffects(getContext()))
2062       return RValue::get(nullptr);
2063 
2064     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2065     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2066     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2067   }
2068   case Builtin::BI__builtin_bswap16:
2069   case Builtin::BI__builtin_bswap32:
2070   case Builtin::BI__builtin_bswap64: {
2071     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2072   }
2073   case Builtin::BI__builtin_bitreverse8:
2074   case Builtin::BI__builtin_bitreverse16:
2075   case Builtin::BI__builtin_bitreverse32:
2076   case Builtin::BI__builtin_bitreverse64: {
2077     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2078   }
2079   case Builtin::BI__builtin_rotateleft8:
2080   case Builtin::BI__builtin_rotateleft16:
2081   case Builtin::BI__builtin_rotateleft32:
2082   case Builtin::BI__builtin_rotateleft64:
2083   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2084   case Builtin::BI_rotl16:
2085   case Builtin::BI_rotl:
2086   case Builtin::BI_lrotl:
2087   case Builtin::BI_rotl64:
2088     return emitRotate(E, false);
2089 
2090   case Builtin::BI__builtin_rotateright8:
2091   case Builtin::BI__builtin_rotateright16:
2092   case Builtin::BI__builtin_rotateright32:
2093   case Builtin::BI__builtin_rotateright64:
2094   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2095   case Builtin::BI_rotr16:
2096   case Builtin::BI_rotr:
2097   case Builtin::BI_lrotr:
2098   case Builtin::BI_rotr64:
2099     return emitRotate(E, true);
2100 
2101   case Builtin::BI__builtin_constant_p: {
2102     llvm::Type *ResultType = ConvertType(E->getType());
2103 
2104     const Expr *Arg = E->getArg(0);
2105     QualType ArgType = Arg->getType();
2106     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2107     // and likely a mistake.
2108     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2109         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2110       // Per the GCC documentation, only numeric constants are recognized after
2111       // inlining.
2112       return RValue::get(ConstantInt::get(ResultType, 0));
2113 
2114     if (Arg->HasSideEffects(getContext()))
2115       // The argument is unevaluated, so be conservative if it might have
2116       // side-effects.
2117       return RValue::get(ConstantInt::get(ResultType, 0));
2118 
2119     Value *ArgValue = EmitScalarExpr(Arg);
2120     if (ArgType->isObjCObjectPointerType()) {
2121       // Convert Objective-C objects to id because we cannot distinguish between
2122       // LLVM types for Obj-C classes as they are opaque.
2123       ArgType = CGM.getContext().getObjCIdType();
2124       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2125     }
2126     Function *F =
2127         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2128     Value *Result = Builder.CreateCall(F, ArgValue);
2129     if (Result->getType() != ResultType)
2130       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2131     return RValue::get(Result);
2132   }
2133   case Builtin::BI__builtin_dynamic_object_size:
2134   case Builtin::BI__builtin_object_size: {
2135     unsigned Type =
2136         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2137     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2138 
2139     // We pass this builtin onto the optimizer so that it can figure out the
2140     // object size in more complex cases.
2141     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2142     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2143                                              /*EmittedE=*/nullptr, IsDynamic));
2144   }
2145   case Builtin::BI__builtin_prefetch: {
2146     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2147     // FIXME: Technically these constants should of type 'int', yes?
2148     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2149       llvm::ConstantInt::get(Int32Ty, 0);
2150     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2151       llvm::ConstantInt::get(Int32Ty, 3);
2152     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2153     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2154     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2155   }
2156   case Builtin::BI__builtin_readcyclecounter: {
2157     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2158     return RValue::get(Builder.CreateCall(F));
2159   }
2160   case Builtin::BI__builtin___clear_cache: {
2161     Value *Begin = EmitScalarExpr(E->getArg(0));
2162     Value *End = EmitScalarExpr(E->getArg(1));
2163     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2164     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2165   }
2166   case Builtin::BI__builtin_trap:
2167     return RValue::get(EmitTrapCall(Intrinsic::trap));
2168   case Builtin::BI__debugbreak:
2169     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2170   case Builtin::BI__builtin_unreachable: {
2171     EmitUnreachable(E->getExprLoc());
2172 
2173     // We do need to preserve an insertion point.
2174     EmitBlock(createBasicBlock("unreachable.cont"));
2175 
2176     return RValue::get(nullptr);
2177   }
2178 
2179   case Builtin::BI__builtin_powi:
2180   case Builtin::BI__builtin_powif:
2181   case Builtin::BI__builtin_powil: {
2182     Value *Base = EmitScalarExpr(E->getArg(0));
2183     Value *Exponent = EmitScalarExpr(E->getArg(1));
2184     llvm::Type *ArgType = Base->getType();
2185     Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2186     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
2187   }
2188 
2189   case Builtin::BI__builtin_isgreater:
2190   case Builtin::BI__builtin_isgreaterequal:
2191   case Builtin::BI__builtin_isless:
2192   case Builtin::BI__builtin_islessequal:
2193   case Builtin::BI__builtin_islessgreater:
2194   case Builtin::BI__builtin_isunordered: {
2195     // Ordered comparisons: we know the arguments to these are matching scalar
2196     // floating point values.
2197     Value *LHS = EmitScalarExpr(E->getArg(0));
2198     Value *RHS = EmitScalarExpr(E->getArg(1));
2199 
2200     switch (BuiltinID) {
2201     default: llvm_unreachable("Unknown ordered comparison");
2202     case Builtin::BI__builtin_isgreater:
2203       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2204       break;
2205     case Builtin::BI__builtin_isgreaterequal:
2206       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2207       break;
2208     case Builtin::BI__builtin_isless:
2209       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2210       break;
2211     case Builtin::BI__builtin_islessequal:
2212       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2213       break;
2214     case Builtin::BI__builtin_islessgreater:
2215       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2216       break;
2217     case Builtin::BI__builtin_isunordered:
2218       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2219       break;
2220     }
2221     // ZExt bool to int type.
2222     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2223   }
2224   case Builtin::BI__builtin_isnan: {
2225     Value *V = EmitScalarExpr(E->getArg(0));
2226     V = Builder.CreateFCmpUNO(V, V, "cmp");
2227     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2228   }
2229 
2230   case Builtin::BIfinite:
2231   case Builtin::BI__finite:
2232   case Builtin::BIfinitef:
2233   case Builtin::BI__finitef:
2234   case Builtin::BIfinitel:
2235   case Builtin::BI__finitel:
2236   case Builtin::BI__builtin_isinf:
2237   case Builtin::BI__builtin_isfinite: {
2238     // isinf(x)    --> fabs(x) == infinity
2239     // isfinite(x) --> fabs(x) != infinity
2240     // x != NaN via the ordered compare in either case.
2241     Value *V = EmitScalarExpr(E->getArg(0));
2242     Value *Fabs = EmitFAbs(*this, V);
2243     Constant *Infinity = ConstantFP::getInfinity(V->getType());
2244     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2245                                   ? CmpInst::FCMP_OEQ
2246                                   : CmpInst::FCMP_ONE;
2247     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2248     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2249   }
2250 
2251   case Builtin::BI__builtin_isinf_sign: {
2252     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2253     Value *Arg = EmitScalarExpr(E->getArg(0));
2254     Value *AbsArg = EmitFAbs(*this, Arg);
2255     Value *IsInf = Builder.CreateFCmpOEQ(
2256         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2257     Value *IsNeg = EmitSignBit(*this, Arg);
2258 
2259     llvm::Type *IntTy = ConvertType(E->getType());
2260     Value *Zero = Constant::getNullValue(IntTy);
2261     Value *One = ConstantInt::get(IntTy, 1);
2262     Value *NegativeOne = ConstantInt::get(IntTy, -1);
2263     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2264     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2265     return RValue::get(Result);
2266   }
2267 
2268   case Builtin::BI__builtin_isnormal: {
2269     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2270     Value *V = EmitScalarExpr(E->getArg(0));
2271     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2272 
2273     Value *Abs = EmitFAbs(*this, V);
2274     Value *IsLessThanInf =
2275       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2276     APFloat Smallest = APFloat::getSmallestNormalized(
2277                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2278     Value *IsNormal =
2279       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2280                             "isnormal");
2281     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2282     V = Builder.CreateAnd(V, IsNormal, "and");
2283     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2284   }
2285 
2286   case Builtin::BI__builtin_flt_rounds: {
2287     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2288 
2289     llvm::Type *ResultType = ConvertType(E->getType());
2290     Value *Result = Builder.CreateCall(F);
2291     if (Result->getType() != ResultType)
2292       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2293                                      "cast");
2294     return RValue::get(Result);
2295   }
2296 
2297   case Builtin::BI__builtin_fpclassify: {
2298     Value *V = EmitScalarExpr(E->getArg(5));
2299     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2300 
2301     // Create Result
2302     BasicBlock *Begin = Builder.GetInsertBlock();
2303     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2304     Builder.SetInsertPoint(End);
2305     PHINode *Result =
2306       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2307                         "fpclassify_result");
2308 
2309     // if (V==0) return FP_ZERO
2310     Builder.SetInsertPoint(Begin);
2311     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2312                                           "iszero");
2313     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2314     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2315     Builder.CreateCondBr(IsZero, End, NotZero);
2316     Result->addIncoming(ZeroLiteral, Begin);
2317 
2318     // if (V != V) return FP_NAN
2319     Builder.SetInsertPoint(NotZero);
2320     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2321     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2322     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2323     Builder.CreateCondBr(IsNan, End, NotNan);
2324     Result->addIncoming(NanLiteral, NotZero);
2325 
2326     // if (fabs(V) == infinity) return FP_INFINITY
2327     Builder.SetInsertPoint(NotNan);
2328     Value *VAbs = EmitFAbs(*this, V);
2329     Value *IsInf =
2330       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2331                             "isinf");
2332     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2333     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2334     Builder.CreateCondBr(IsInf, End, NotInf);
2335     Result->addIncoming(InfLiteral, NotNan);
2336 
2337     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2338     Builder.SetInsertPoint(NotInf);
2339     APFloat Smallest = APFloat::getSmallestNormalized(
2340         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2341     Value *IsNormal =
2342       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2343                             "isnormal");
2344     Value *NormalResult =
2345       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2346                            EmitScalarExpr(E->getArg(3)));
2347     Builder.CreateBr(End);
2348     Result->addIncoming(NormalResult, NotInf);
2349 
2350     // return Result
2351     Builder.SetInsertPoint(End);
2352     return RValue::get(Result);
2353   }
2354 
2355   case Builtin::BIalloca:
2356   case Builtin::BI_alloca:
2357   case Builtin::BI__builtin_alloca: {
2358     Value *Size = EmitScalarExpr(E->getArg(0));
2359     const TargetInfo &TI = getContext().getTargetInfo();
2360     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2361     unsigned SuitableAlignmentInBytes =
2362         CGM.getContext()
2363             .toCharUnitsFromBits(TI.getSuitableAlign())
2364             .getQuantity();
2365     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2366     AI->setAlignment(MaybeAlign(SuitableAlignmentInBytes));
2367     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2368     return RValue::get(AI);
2369   }
2370 
2371   case Builtin::BI__builtin_alloca_with_align: {
2372     Value *Size = EmitScalarExpr(E->getArg(0));
2373     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2374     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2375     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2376     unsigned AlignmentInBytes =
2377         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
2378     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2379     AI->setAlignment(MaybeAlign(AlignmentInBytes));
2380     initializeAlloca(*this, AI, Size, AlignmentInBytes);
2381     return RValue::get(AI);
2382   }
2383 
2384   case Builtin::BIbzero:
2385   case Builtin::BI__builtin_bzero: {
2386     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2387     Value *SizeVal = EmitScalarExpr(E->getArg(1));
2388     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2389                         E->getArg(0)->getExprLoc(), FD, 0);
2390     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2391     return RValue::get(nullptr);
2392   }
2393   case Builtin::BImemcpy:
2394   case Builtin::BI__builtin_memcpy: {
2395     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2396     Address Src = EmitPointerWithAlignment(E->getArg(1));
2397     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2398     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2399                         E->getArg(0)->getExprLoc(), FD, 0);
2400     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2401                         E->getArg(1)->getExprLoc(), FD, 1);
2402     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2403     return RValue::get(Dest.getPointer());
2404   }
2405 
2406   case Builtin::BI__builtin_char_memchr:
2407     BuiltinID = Builtin::BI__builtin_memchr;
2408     break;
2409 
2410   case Builtin::BI__builtin___memcpy_chk: {
2411     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2412     Expr::EvalResult SizeResult, DstSizeResult;
2413     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2414         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2415       break;
2416     llvm::APSInt Size = SizeResult.Val.getInt();
2417     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2418     if (Size.ugt(DstSize))
2419       break;
2420     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2421     Address Src = EmitPointerWithAlignment(E->getArg(1));
2422     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2423     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2424     return RValue::get(Dest.getPointer());
2425   }
2426 
2427   case Builtin::BI__builtin_objc_memmove_collectable: {
2428     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2429     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2430     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2431     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2432                                                   DestAddr, SrcAddr, SizeVal);
2433     return RValue::get(DestAddr.getPointer());
2434   }
2435 
2436   case Builtin::BI__builtin___memmove_chk: {
2437     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2438     Expr::EvalResult SizeResult, DstSizeResult;
2439     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2440         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2441       break;
2442     llvm::APSInt Size = SizeResult.Val.getInt();
2443     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2444     if (Size.ugt(DstSize))
2445       break;
2446     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2447     Address Src = EmitPointerWithAlignment(E->getArg(1));
2448     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2449     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2450     return RValue::get(Dest.getPointer());
2451   }
2452 
2453   case Builtin::BImemmove:
2454   case Builtin::BI__builtin_memmove: {
2455     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2456     Address Src = EmitPointerWithAlignment(E->getArg(1));
2457     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2458     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2459                         E->getArg(0)->getExprLoc(), FD, 0);
2460     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2461                         E->getArg(1)->getExprLoc(), FD, 1);
2462     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2463     return RValue::get(Dest.getPointer());
2464   }
2465   case Builtin::BImemset:
2466   case Builtin::BI__builtin_memset: {
2467     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2468     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2469                                          Builder.getInt8Ty());
2470     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2471     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2472                         E->getArg(0)->getExprLoc(), FD, 0);
2473     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2474     return RValue::get(Dest.getPointer());
2475   }
2476   case Builtin::BI__builtin___memset_chk: {
2477     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2478     Expr::EvalResult SizeResult, DstSizeResult;
2479     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2480         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2481       break;
2482     llvm::APSInt Size = SizeResult.Val.getInt();
2483     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2484     if (Size.ugt(DstSize))
2485       break;
2486     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2487     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2488                                          Builder.getInt8Ty());
2489     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2490     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2491     return RValue::get(Dest.getPointer());
2492   }
2493   case Builtin::BI__builtin_wmemcmp: {
2494     // The MSVC runtime library does not provide a definition of wmemcmp, so we
2495     // need an inline implementation.
2496     if (!getTarget().getTriple().isOSMSVCRT())
2497       break;
2498 
2499     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2500 
2501     Value *Dst = EmitScalarExpr(E->getArg(0));
2502     Value *Src = EmitScalarExpr(E->getArg(1));
2503     Value *Size = EmitScalarExpr(E->getArg(2));
2504 
2505     BasicBlock *Entry = Builder.GetInsertBlock();
2506     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2507     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2508     BasicBlock *Next = createBasicBlock("wmemcmp.next");
2509     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2510     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2511     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2512 
2513     EmitBlock(CmpGT);
2514     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2515     DstPhi->addIncoming(Dst, Entry);
2516     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2517     SrcPhi->addIncoming(Src, Entry);
2518     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2519     SizePhi->addIncoming(Size, Entry);
2520     CharUnits WCharAlign =
2521         getContext().getTypeAlignInChars(getContext().WCharTy);
2522     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2523     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2524     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2525     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2526 
2527     EmitBlock(CmpLT);
2528     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2529     Builder.CreateCondBr(DstLtSrc, Exit, Next);
2530 
2531     EmitBlock(Next);
2532     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2533     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2534     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2535     Value *NextSizeEq0 =
2536         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2537     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2538     DstPhi->addIncoming(NextDst, Next);
2539     SrcPhi->addIncoming(NextSrc, Next);
2540     SizePhi->addIncoming(NextSize, Next);
2541 
2542     EmitBlock(Exit);
2543     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2544     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2545     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2546     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2547     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2548     return RValue::get(Ret);
2549   }
2550   case Builtin::BI__builtin_dwarf_cfa: {
2551     // The offset in bytes from the first argument to the CFA.
2552     //
2553     // Why on earth is this in the frontend?  Is there any reason at
2554     // all that the backend can't reasonably determine this while
2555     // lowering llvm.eh.dwarf.cfa()?
2556     //
2557     // TODO: If there's a satisfactory reason, add a target hook for
2558     // this instead of hard-coding 0, which is correct for most targets.
2559     int32_t Offset = 0;
2560 
2561     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2562     return RValue::get(Builder.CreateCall(F,
2563                                       llvm::ConstantInt::get(Int32Ty, Offset)));
2564   }
2565   case Builtin::BI__builtin_return_address: {
2566     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2567                                                    getContext().UnsignedIntTy);
2568     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2569     return RValue::get(Builder.CreateCall(F, Depth));
2570   }
2571   case Builtin::BI_ReturnAddress: {
2572     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2573     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2574   }
2575   case Builtin::BI__builtin_frame_address: {
2576     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2577                                                    getContext().UnsignedIntTy);
2578     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2579     return RValue::get(Builder.CreateCall(F, Depth));
2580   }
2581   case Builtin::BI__builtin_extract_return_addr: {
2582     Value *Address = EmitScalarExpr(E->getArg(0));
2583     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2584     return RValue::get(Result);
2585   }
2586   case Builtin::BI__builtin_frob_return_addr: {
2587     Value *Address = EmitScalarExpr(E->getArg(0));
2588     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2589     return RValue::get(Result);
2590   }
2591   case Builtin::BI__builtin_dwarf_sp_column: {
2592     llvm::IntegerType *Ty
2593       = cast<llvm::IntegerType>(ConvertType(E->getType()));
2594     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2595     if (Column == -1) {
2596       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2597       return RValue::get(llvm::UndefValue::get(Ty));
2598     }
2599     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2600   }
2601   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2602     Value *Address = EmitScalarExpr(E->getArg(0));
2603     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2604       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2605     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2606   }
2607   case Builtin::BI__builtin_eh_return: {
2608     Value *Int = EmitScalarExpr(E->getArg(0));
2609     Value *Ptr = EmitScalarExpr(E->getArg(1));
2610 
2611     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2612     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2613            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2614     Function *F =
2615         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2616                                                     : Intrinsic::eh_return_i64);
2617     Builder.CreateCall(F, {Int, Ptr});
2618     Builder.CreateUnreachable();
2619 
2620     // We do need to preserve an insertion point.
2621     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2622 
2623     return RValue::get(nullptr);
2624   }
2625   case Builtin::BI__builtin_unwind_init: {
2626     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2627     return RValue::get(Builder.CreateCall(F));
2628   }
2629   case Builtin::BI__builtin_extend_pointer: {
2630     // Extends a pointer to the size of an _Unwind_Word, which is
2631     // uint64_t on all platforms.  Generally this gets poked into a
2632     // register and eventually used as an address, so if the
2633     // addressing registers are wider than pointers and the platform
2634     // doesn't implicitly ignore high-order bits when doing
2635     // addressing, we need to make sure we zext / sext based on
2636     // the platform's expectations.
2637     //
2638     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2639 
2640     // Cast the pointer to intptr_t.
2641     Value *Ptr = EmitScalarExpr(E->getArg(0));
2642     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2643 
2644     // If that's 64 bits, we're done.
2645     if (IntPtrTy->getBitWidth() == 64)
2646       return RValue::get(Result);
2647 
2648     // Otherwise, ask the codegen data what to do.
2649     if (getTargetHooks().extendPointerWithSExt())
2650       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2651     else
2652       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2653   }
2654   case Builtin::BI__builtin_setjmp: {
2655     // Buffer is a void**.
2656     Address Buf = EmitPointerWithAlignment(E->getArg(0));
2657 
2658     // Store the frame pointer to the setjmp buffer.
2659     Value *FrameAddr = Builder.CreateCall(
2660         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2661         ConstantInt::get(Int32Ty, 0));
2662     Builder.CreateStore(FrameAddr, Buf);
2663 
2664     // Store the stack pointer to the setjmp buffer.
2665     Value *StackAddr =
2666         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2667     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2668     Builder.CreateStore(StackAddr, StackSaveSlot);
2669 
2670     // Call LLVM's EH setjmp, which is lightweight.
2671     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2672     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2673     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2674   }
2675   case Builtin::BI__builtin_longjmp: {
2676     Value *Buf = EmitScalarExpr(E->getArg(0));
2677     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2678 
2679     // Call LLVM's EH longjmp, which is lightweight.
2680     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2681 
2682     // longjmp doesn't return; mark this as unreachable.
2683     Builder.CreateUnreachable();
2684 
2685     // We do need to preserve an insertion point.
2686     EmitBlock(createBasicBlock("longjmp.cont"));
2687 
2688     return RValue::get(nullptr);
2689   }
2690   case Builtin::BI__builtin_launder: {
2691     const Expr *Arg = E->getArg(0);
2692     QualType ArgTy = Arg->getType()->getPointeeType();
2693     Value *Ptr = EmitScalarExpr(Arg);
2694     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2695       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2696 
2697     return RValue::get(Ptr);
2698   }
2699   case Builtin::BI__sync_fetch_and_add:
2700   case Builtin::BI__sync_fetch_and_sub:
2701   case Builtin::BI__sync_fetch_and_or:
2702   case Builtin::BI__sync_fetch_and_and:
2703   case Builtin::BI__sync_fetch_and_xor:
2704   case Builtin::BI__sync_fetch_and_nand:
2705   case Builtin::BI__sync_add_and_fetch:
2706   case Builtin::BI__sync_sub_and_fetch:
2707   case Builtin::BI__sync_and_and_fetch:
2708   case Builtin::BI__sync_or_and_fetch:
2709   case Builtin::BI__sync_xor_and_fetch:
2710   case Builtin::BI__sync_nand_and_fetch:
2711   case Builtin::BI__sync_val_compare_and_swap:
2712   case Builtin::BI__sync_bool_compare_and_swap:
2713   case Builtin::BI__sync_lock_test_and_set:
2714   case Builtin::BI__sync_lock_release:
2715   case Builtin::BI__sync_swap:
2716     llvm_unreachable("Shouldn't make it through sema");
2717   case Builtin::BI__sync_fetch_and_add_1:
2718   case Builtin::BI__sync_fetch_and_add_2:
2719   case Builtin::BI__sync_fetch_and_add_4:
2720   case Builtin::BI__sync_fetch_and_add_8:
2721   case Builtin::BI__sync_fetch_and_add_16:
2722     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2723   case Builtin::BI__sync_fetch_and_sub_1:
2724   case Builtin::BI__sync_fetch_and_sub_2:
2725   case Builtin::BI__sync_fetch_and_sub_4:
2726   case Builtin::BI__sync_fetch_and_sub_8:
2727   case Builtin::BI__sync_fetch_and_sub_16:
2728     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2729   case Builtin::BI__sync_fetch_and_or_1:
2730   case Builtin::BI__sync_fetch_and_or_2:
2731   case Builtin::BI__sync_fetch_and_or_4:
2732   case Builtin::BI__sync_fetch_and_or_8:
2733   case Builtin::BI__sync_fetch_and_or_16:
2734     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2735   case Builtin::BI__sync_fetch_and_and_1:
2736   case Builtin::BI__sync_fetch_and_and_2:
2737   case Builtin::BI__sync_fetch_and_and_4:
2738   case Builtin::BI__sync_fetch_and_and_8:
2739   case Builtin::BI__sync_fetch_and_and_16:
2740     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2741   case Builtin::BI__sync_fetch_and_xor_1:
2742   case Builtin::BI__sync_fetch_and_xor_2:
2743   case Builtin::BI__sync_fetch_and_xor_4:
2744   case Builtin::BI__sync_fetch_and_xor_8:
2745   case Builtin::BI__sync_fetch_and_xor_16:
2746     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2747   case Builtin::BI__sync_fetch_and_nand_1:
2748   case Builtin::BI__sync_fetch_and_nand_2:
2749   case Builtin::BI__sync_fetch_and_nand_4:
2750   case Builtin::BI__sync_fetch_and_nand_8:
2751   case Builtin::BI__sync_fetch_and_nand_16:
2752     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2753 
2754   // Clang extensions: not overloaded yet.
2755   case Builtin::BI__sync_fetch_and_min:
2756     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2757   case Builtin::BI__sync_fetch_and_max:
2758     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2759   case Builtin::BI__sync_fetch_and_umin:
2760     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2761   case Builtin::BI__sync_fetch_and_umax:
2762     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2763 
2764   case Builtin::BI__sync_add_and_fetch_1:
2765   case Builtin::BI__sync_add_and_fetch_2:
2766   case Builtin::BI__sync_add_and_fetch_4:
2767   case Builtin::BI__sync_add_and_fetch_8:
2768   case Builtin::BI__sync_add_and_fetch_16:
2769     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2770                                 llvm::Instruction::Add);
2771   case Builtin::BI__sync_sub_and_fetch_1:
2772   case Builtin::BI__sync_sub_and_fetch_2:
2773   case Builtin::BI__sync_sub_and_fetch_4:
2774   case Builtin::BI__sync_sub_and_fetch_8:
2775   case Builtin::BI__sync_sub_and_fetch_16:
2776     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2777                                 llvm::Instruction::Sub);
2778   case Builtin::BI__sync_and_and_fetch_1:
2779   case Builtin::BI__sync_and_and_fetch_2:
2780   case Builtin::BI__sync_and_and_fetch_4:
2781   case Builtin::BI__sync_and_and_fetch_8:
2782   case Builtin::BI__sync_and_and_fetch_16:
2783     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2784                                 llvm::Instruction::And);
2785   case Builtin::BI__sync_or_and_fetch_1:
2786   case Builtin::BI__sync_or_and_fetch_2:
2787   case Builtin::BI__sync_or_and_fetch_4:
2788   case Builtin::BI__sync_or_and_fetch_8:
2789   case Builtin::BI__sync_or_and_fetch_16:
2790     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2791                                 llvm::Instruction::Or);
2792   case Builtin::BI__sync_xor_and_fetch_1:
2793   case Builtin::BI__sync_xor_and_fetch_2:
2794   case Builtin::BI__sync_xor_and_fetch_4:
2795   case Builtin::BI__sync_xor_and_fetch_8:
2796   case Builtin::BI__sync_xor_and_fetch_16:
2797     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2798                                 llvm::Instruction::Xor);
2799   case Builtin::BI__sync_nand_and_fetch_1:
2800   case Builtin::BI__sync_nand_and_fetch_2:
2801   case Builtin::BI__sync_nand_and_fetch_4:
2802   case Builtin::BI__sync_nand_and_fetch_8:
2803   case Builtin::BI__sync_nand_and_fetch_16:
2804     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2805                                 llvm::Instruction::And, true);
2806 
2807   case Builtin::BI__sync_val_compare_and_swap_1:
2808   case Builtin::BI__sync_val_compare_and_swap_2:
2809   case Builtin::BI__sync_val_compare_and_swap_4:
2810   case Builtin::BI__sync_val_compare_and_swap_8:
2811   case Builtin::BI__sync_val_compare_and_swap_16:
2812     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2813 
2814   case Builtin::BI__sync_bool_compare_and_swap_1:
2815   case Builtin::BI__sync_bool_compare_and_swap_2:
2816   case Builtin::BI__sync_bool_compare_and_swap_4:
2817   case Builtin::BI__sync_bool_compare_and_swap_8:
2818   case Builtin::BI__sync_bool_compare_and_swap_16:
2819     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2820 
2821   case Builtin::BI__sync_swap_1:
2822   case Builtin::BI__sync_swap_2:
2823   case Builtin::BI__sync_swap_4:
2824   case Builtin::BI__sync_swap_8:
2825   case Builtin::BI__sync_swap_16:
2826     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2827 
2828   case Builtin::BI__sync_lock_test_and_set_1:
2829   case Builtin::BI__sync_lock_test_and_set_2:
2830   case Builtin::BI__sync_lock_test_and_set_4:
2831   case Builtin::BI__sync_lock_test_and_set_8:
2832   case Builtin::BI__sync_lock_test_and_set_16:
2833     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2834 
2835   case Builtin::BI__sync_lock_release_1:
2836   case Builtin::BI__sync_lock_release_2:
2837   case Builtin::BI__sync_lock_release_4:
2838   case Builtin::BI__sync_lock_release_8:
2839   case Builtin::BI__sync_lock_release_16: {
2840     Value *Ptr = EmitScalarExpr(E->getArg(0));
2841     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2842     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2843     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2844                                              StoreSize.getQuantity() * 8);
2845     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2846     llvm::StoreInst *Store =
2847       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2848                                  StoreSize);
2849     Store->setAtomic(llvm::AtomicOrdering::Release);
2850     return RValue::get(nullptr);
2851   }
2852 
2853   case Builtin::BI__sync_synchronize: {
2854     // We assume this is supposed to correspond to a C++0x-style
2855     // sequentially-consistent fence (i.e. this is only usable for
2856     // synchronization, not device I/O or anything like that). This intrinsic
2857     // is really badly designed in the sense that in theory, there isn't
2858     // any way to safely use it... but in practice, it mostly works
2859     // to use it with non-atomic loads and stores to get acquire/release
2860     // semantics.
2861     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2862     return RValue::get(nullptr);
2863   }
2864 
2865   case Builtin::BI__builtin_nontemporal_load:
2866     return RValue::get(EmitNontemporalLoad(*this, E));
2867   case Builtin::BI__builtin_nontemporal_store:
2868     return RValue::get(EmitNontemporalStore(*this, E));
2869   case Builtin::BI__c11_atomic_is_lock_free:
2870   case Builtin::BI__atomic_is_lock_free: {
2871     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2872     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2873     // _Atomic(T) is always properly-aligned.
2874     const char *LibCallName = "__atomic_is_lock_free";
2875     CallArgList Args;
2876     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2877              getContext().getSizeType());
2878     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2879       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2880                getContext().VoidPtrTy);
2881     else
2882       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2883                getContext().VoidPtrTy);
2884     const CGFunctionInfo &FuncInfo =
2885         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2886     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2887     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2888     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2889                     ReturnValueSlot(), Args);
2890   }
2891 
2892   case Builtin::BI__atomic_test_and_set: {
2893     // Look at the argument type to determine whether this is a volatile
2894     // operation. The parameter type is always volatile.
2895     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2896     bool Volatile =
2897         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2898 
2899     Value *Ptr = EmitScalarExpr(E->getArg(0));
2900     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2901     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2902     Value *NewVal = Builder.getInt8(1);
2903     Value *Order = EmitScalarExpr(E->getArg(1));
2904     if (isa<llvm::ConstantInt>(Order)) {
2905       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2906       AtomicRMWInst *Result = nullptr;
2907       switch (ord) {
2908       case 0:  // memory_order_relaxed
2909       default: // invalid order
2910         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2911                                          llvm::AtomicOrdering::Monotonic);
2912         break;
2913       case 1: // memory_order_consume
2914       case 2: // memory_order_acquire
2915         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2916                                          llvm::AtomicOrdering::Acquire);
2917         break;
2918       case 3: // memory_order_release
2919         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2920                                          llvm::AtomicOrdering::Release);
2921         break;
2922       case 4: // memory_order_acq_rel
2923 
2924         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2925                                          llvm::AtomicOrdering::AcquireRelease);
2926         break;
2927       case 5: // memory_order_seq_cst
2928         Result = Builder.CreateAtomicRMW(
2929             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2930             llvm::AtomicOrdering::SequentiallyConsistent);
2931         break;
2932       }
2933       Result->setVolatile(Volatile);
2934       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2935     }
2936 
2937     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2938 
2939     llvm::BasicBlock *BBs[5] = {
2940       createBasicBlock("monotonic", CurFn),
2941       createBasicBlock("acquire", CurFn),
2942       createBasicBlock("release", CurFn),
2943       createBasicBlock("acqrel", CurFn),
2944       createBasicBlock("seqcst", CurFn)
2945     };
2946     llvm::AtomicOrdering Orders[5] = {
2947         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2948         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2949         llvm::AtomicOrdering::SequentiallyConsistent};
2950 
2951     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2952     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2953 
2954     Builder.SetInsertPoint(ContBB);
2955     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2956 
2957     for (unsigned i = 0; i < 5; ++i) {
2958       Builder.SetInsertPoint(BBs[i]);
2959       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2960                                                    Ptr, NewVal, Orders[i]);
2961       RMW->setVolatile(Volatile);
2962       Result->addIncoming(RMW, BBs[i]);
2963       Builder.CreateBr(ContBB);
2964     }
2965 
2966     SI->addCase(Builder.getInt32(0), BBs[0]);
2967     SI->addCase(Builder.getInt32(1), BBs[1]);
2968     SI->addCase(Builder.getInt32(2), BBs[1]);
2969     SI->addCase(Builder.getInt32(3), BBs[2]);
2970     SI->addCase(Builder.getInt32(4), BBs[3]);
2971     SI->addCase(Builder.getInt32(5), BBs[4]);
2972 
2973     Builder.SetInsertPoint(ContBB);
2974     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2975   }
2976 
2977   case Builtin::BI__atomic_clear: {
2978     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2979     bool Volatile =
2980         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2981 
2982     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2983     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2984     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2985     Value *NewVal = Builder.getInt8(0);
2986     Value *Order = EmitScalarExpr(E->getArg(1));
2987     if (isa<llvm::ConstantInt>(Order)) {
2988       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2989       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2990       switch (ord) {
2991       case 0:  // memory_order_relaxed
2992       default: // invalid order
2993         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2994         break;
2995       case 3:  // memory_order_release
2996         Store->setOrdering(llvm::AtomicOrdering::Release);
2997         break;
2998       case 5:  // memory_order_seq_cst
2999         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3000         break;
3001       }
3002       return RValue::get(nullptr);
3003     }
3004 
3005     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3006 
3007     llvm::BasicBlock *BBs[3] = {
3008       createBasicBlock("monotonic", CurFn),
3009       createBasicBlock("release", CurFn),
3010       createBasicBlock("seqcst", CurFn)
3011     };
3012     llvm::AtomicOrdering Orders[3] = {
3013         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3014         llvm::AtomicOrdering::SequentiallyConsistent};
3015 
3016     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3017     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3018 
3019     for (unsigned i = 0; i < 3; ++i) {
3020       Builder.SetInsertPoint(BBs[i]);
3021       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3022       Store->setOrdering(Orders[i]);
3023       Builder.CreateBr(ContBB);
3024     }
3025 
3026     SI->addCase(Builder.getInt32(0), BBs[0]);
3027     SI->addCase(Builder.getInt32(3), BBs[1]);
3028     SI->addCase(Builder.getInt32(5), BBs[2]);
3029 
3030     Builder.SetInsertPoint(ContBB);
3031     return RValue::get(nullptr);
3032   }
3033 
3034   case Builtin::BI__atomic_thread_fence:
3035   case Builtin::BI__atomic_signal_fence:
3036   case Builtin::BI__c11_atomic_thread_fence:
3037   case Builtin::BI__c11_atomic_signal_fence: {
3038     llvm::SyncScope::ID SSID;
3039     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3040         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3041       SSID = llvm::SyncScope::SingleThread;
3042     else
3043       SSID = llvm::SyncScope::System;
3044     Value *Order = EmitScalarExpr(E->getArg(0));
3045     if (isa<llvm::ConstantInt>(Order)) {
3046       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3047       switch (ord) {
3048       case 0:  // memory_order_relaxed
3049       default: // invalid order
3050         break;
3051       case 1:  // memory_order_consume
3052       case 2:  // memory_order_acquire
3053         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3054         break;
3055       case 3:  // memory_order_release
3056         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3057         break;
3058       case 4:  // memory_order_acq_rel
3059         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3060         break;
3061       case 5:  // memory_order_seq_cst
3062         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3063         break;
3064       }
3065       return RValue::get(nullptr);
3066     }
3067 
3068     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3069     AcquireBB = createBasicBlock("acquire", CurFn);
3070     ReleaseBB = createBasicBlock("release", CurFn);
3071     AcqRelBB = createBasicBlock("acqrel", CurFn);
3072     SeqCstBB = createBasicBlock("seqcst", CurFn);
3073     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3074 
3075     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3076     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3077 
3078     Builder.SetInsertPoint(AcquireBB);
3079     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3080     Builder.CreateBr(ContBB);
3081     SI->addCase(Builder.getInt32(1), AcquireBB);
3082     SI->addCase(Builder.getInt32(2), AcquireBB);
3083 
3084     Builder.SetInsertPoint(ReleaseBB);
3085     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3086     Builder.CreateBr(ContBB);
3087     SI->addCase(Builder.getInt32(3), ReleaseBB);
3088 
3089     Builder.SetInsertPoint(AcqRelBB);
3090     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3091     Builder.CreateBr(ContBB);
3092     SI->addCase(Builder.getInt32(4), AcqRelBB);
3093 
3094     Builder.SetInsertPoint(SeqCstBB);
3095     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3096     Builder.CreateBr(ContBB);
3097     SI->addCase(Builder.getInt32(5), SeqCstBB);
3098 
3099     Builder.SetInsertPoint(ContBB);
3100     return RValue::get(nullptr);
3101   }
3102 
3103   case Builtin::BI__builtin_signbit:
3104   case Builtin::BI__builtin_signbitf:
3105   case Builtin::BI__builtin_signbitl: {
3106     return RValue::get(
3107         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3108                            ConvertType(E->getType())));
3109   }
3110   case Builtin::BI__annotation: {
3111     // Re-encode each wide string to UTF8 and make an MDString.
3112     SmallVector<Metadata *, 1> Strings;
3113     for (const Expr *Arg : E->arguments()) {
3114       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3115       assert(Str->getCharByteWidth() == 2);
3116       StringRef WideBytes = Str->getBytes();
3117       std::string StrUtf8;
3118       if (!convertUTF16ToUTF8String(
3119               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3120         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3121         continue;
3122       }
3123       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3124     }
3125 
3126     // Build and MDTuple of MDStrings and emit the intrinsic call.
3127     llvm::Function *F =
3128         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3129     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3130     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3131     return RValue::getIgnored();
3132   }
3133   case Builtin::BI__builtin_annotation: {
3134     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3135     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3136                                       AnnVal->getType());
3137 
3138     // Get the annotation string, go through casts. Sema requires this to be a
3139     // non-wide string literal, potentially casted, so the cast<> is safe.
3140     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3141     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3142     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3143   }
3144   case Builtin::BI__builtin_addcb:
3145   case Builtin::BI__builtin_addcs:
3146   case Builtin::BI__builtin_addc:
3147   case Builtin::BI__builtin_addcl:
3148   case Builtin::BI__builtin_addcll:
3149   case Builtin::BI__builtin_subcb:
3150   case Builtin::BI__builtin_subcs:
3151   case Builtin::BI__builtin_subc:
3152   case Builtin::BI__builtin_subcl:
3153   case Builtin::BI__builtin_subcll: {
3154 
3155     // We translate all of these builtins from expressions of the form:
3156     //   int x = ..., y = ..., carryin = ..., carryout, result;
3157     //   result = __builtin_addc(x, y, carryin, &carryout);
3158     //
3159     // to LLVM IR of the form:
3160     //
3161     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3162     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3163     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3164     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3165     //                                                       i32 %carryin)
3166     //   %result = extractvalue {i32, i1} %tmp2, 0
3167     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3168     //   %tmp3 = or i1 %carry1, %carry2
3169     //   %tmp4 = zext i1 %tmp3 to i32
3170     //   store i32 %tmp4, i32* %carryout
3171 
3172     // Scalarize our inputs.
3173     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3174     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3175     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3176     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3177 
3178     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3179     llvm::Intrinsic::ID IntrinsicId;
3180     switch (BuiltinID) {
3181     default: llvm_unreachable("Unknown multiprecision builtin id.");
3182     case Builtin::BI__builtin_addcb:
3183     case Builtin::BI__builtin_addcs:
3184     case Builtin::BI__builtin_addc:
3185     case Builtin::BI__builtin_addcl:
3186     case Builtin::BI__builtin_addcll:
3187       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3188       break;
3189     case Builtin::BI__builtin_subcb:
3190     case Builtin::BI__builtin_subcs:
3191     case Builtin::BI__builtin_subc:
3192     case Builtin::BI__builtin_subcl:
3193     case Builtin::BI__builtin_subcll:
3194       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3195       break;
3196     }
3197 
3198     // Construct our resulting LLVM IR expression.
3199     llvm::Value *Carry1;
3200     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3201                                               X, Y, Carry1);
3202     llvm::Value *Carry2;
3203     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3204                                               Sum1, Carryin, Carry2);
3205     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3206                                                X->getType());
3207     Builder.CreateStore(CarryOut, CarryOutPtr);
3208     return RValue::get(Sum2);
3209   }
3210 
3211   case Builtin::BI__builtin_add_overflow:
3212   case Builtin::BI__builtin_sub_overflow:
3213   case Builtin::BI__builtin_mul_overflow: {
3214     const clang::Expr *LeftArg = E->getArg(0);
3215     const clang::Expr *RightArg = E->getArg(1);
3216     const clang::Expr *ResultArg = E->getArg(2);
3217 
3218     clang::QualType ResultQTy =
3219         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3220 
3221     WidthAndSignedness LeftInfo =
3222         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3223     WidthAndSignedness RightInfo =
3224         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3225     WidthAndSignedness ResultInfo =
3226         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3227 
3228     // Handle mixed-sign multiplication as a special case, because adding
3229     // runtime or backend support for our generic irgen would be too expensive.
3230     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3231       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3232                                           RightInfo, ResultArg, ResultQTy,
3233                                           ResultInfo);
3234 
3235     WidthAndSignedness EncompassingInfo =
3236         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3237 
3238     llvm::Type *EncompassingLLVMTy =
3239         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3240 
3241     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3242 
3243     llvm::Intrinsic::ID IntrinsicId;
3244     switch (BuiltinID) {
3245     default:
3246       llvm_unreachable("Unknown overflow builtin id.");
3247     case Builtin::BI__builtin_add_overflow:
3248       IntrinsicId = EncompassingInfo.Signed
3249                         ? llvm::Intrinsic::sadd_with_overflow
3250                         : llvm::Intrinsic::uadd_with_overflow;
3251       break;
3252     case Builtin::BI__builtin_sub_overflow:
3253       IntrinsicId = EncompassingInfo.Signed
3254                         ? llvm::Intrinsic::ssub_with_overflow
3255                         : llvm::Intrinsic::usub_with_overflow;
3256       break;
3257     case Builtin::BI__builtin_mul_overflow:
3258       IntrinsicId = EncompassingInfo.Signed
3259                         ? llvm::Intrinsic::smul_with_overflow
3260                         : llvm::Intrinsic::umul_with_overflow;
3261       break;
3262     }
3263 
3264     llvm::Value *Left = EmitScalarExpr(LeftArg);
3265     llvm::Value *Right = EmitScalarExpr(RightArg);
3266     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3267 
3268     // Extend each operand to the encompassing type.
3269     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3270     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3271 
3272     // Perform the operation on the extended values.
3273     llvm::Value *Overflow, *Result;
3274     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3275 
3276     if (EncompassingInfo.Width > ResultInfo.Width) {
3277       // The encompassing type is wider than the result type, so we need to
3278       // truncate it.
3279       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3280 
3281       // To see if the truncation caused an overflow, we will extend
3282       // the result and then compare it to the original result.
3283       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3284           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3285       llvm::Value *TruncationOverflow =
3286           Builder.CreateICmpNE(Result, ResultTruncExt);
3287 
3288       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3289       Result = ResultTrunc;
3290     }
3291 
3292     // Finally, store the result using the pointer.
3293     bool isVolatile =
3294       ResultArg->getType()->getPointeeType().isVolatileQualified();
3295     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3296 
3297     return RValue::get(Overflow);
3298   }
3299 
3300   case Builtin::BI__builtin_uadd_overflow:
3301   case Builtin::BI__builtin_uaddl_overflow:
3302   case Builtin::BI__builtin_uaddll_overflow:
3303   case Builtin::BI__builtin_usub_overflow:
3304   case Builtin::BI__builtin_usubl_overflow:
3305   case Builtin::BI__builtin_usubll_overflow:
3306   case Builtin::BI__builtin_umul_overflow:
3307   case Builtin::BI__builtin_umull_overflow:
3308   case Builtin::BI__builtin_umulll_overflow:
3309   case Builtin::BI__builtin_sadd_overflow:
3310   case Builtin::BI__builtin_saddl_overflow:
3311   case Builtin::BI__builtin_saddll_overflow:
3312   case Builtin::BI__builtin_ssub_overflow:
3313   case Builtin::BI__builtin_ssubl_overflow:
3314   case Builtin::BI__builtin_ssubll_overflow:
3315   case Builtin::BI__builtin_smul_overflow:
3316   case Builtin::BI__builtin_smull_overflow:
3317   case Builtin::BI__builtin_smulll_overflow: {
3318 
3319     // We translate all of these builtins directly to the relevant llvm IR node.
3320 
3321     // Scalarize our inputs.
3322     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3323     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3324     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3325 
3326     // Decide which of the overflow intrinsics we are lowering to:
3327     llvm::Intrinsic::ID IntrinsicId;
3328     switch (BuiltinID) {
3329     default: llvm_unreachable("Unknown overflow builtin id.");
3330     case Builtin::BI__builtin_uadd_overflow:
3331     case Builtin::BI__builtin_uaddl_overflow:
3332     case Builtin::BI__builtin_uaddll_overflow:
3333       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3334       break;
3335     case Builtin::BI__builtin_usub_overflow:
3336     case Builtin::BI__builtin_usubl_overflow:
3337     case Builtin::BI__builtin_usubll_overflow:
3338       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3339       break;
3340     case Builtin::BI__builtin_umul_overflow:
3341     case Builtin::BI__builtin_umull_overflow:
3342     case Builtin::BI__builtin_umulll_overflow:
3343       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3344       break;
3345     case Builtin::BI__builtin_sadd_overflow:
3346     case Builtin::BI__builtin_saddl_overflow:
3347     case Builtin::BI__builtin_saddll_overflow:
3348       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3349       break;
3350     case Builtin::BI__builtin_ssub_overflow:
3351     case Builtin::BI__builtin_ssubl_overflow:
3352     case Builtin::BI__builtin_ssubll_overflow:
3353       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3354       break;
3355     case Builtin::BI__builtin_smul_overflow:
3356     case Builtin::BI__builtin_smull_overflow:
3357     case Builtin::BI__builtin_smulll_overflow:
3358       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3359       break;
3360     }
3361 
3362 
3363     llvm::Value *Carry;
3364     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3365     Builder.CreateStore(Sum, SumOutPtr);
3366 
3367     return RValue::get(Carry);
3368   }
3369   case Builtin::BI__builtin_addressof:
3370     return RValue::get(EmitLValue(E->getArg(0)).getPointer());
3371   case Builtin::BI__builtin_operator_new:
3372     return EmitBuiltinNewDeleteCall(
3373         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3374   case Builtin::BI__builtin_operator_delete:
3375     return EmitBuiltinNewDeleteCall(
3376         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3377 
3378   case Builtin::BI__noop:
3379     // __noop always evaluates to an integer literal zero.
3380     return RValue::get(ConstantInt::get(IntTy, 0));
3381   case Builtin::BI__builtin_call_with_static_chain: {
3382     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3383     const Expr *Chain = E->getArg(1);
3384     return EmitCall(Call->getCallee()->getType(),
3385                     EmitCallee(Call->getCallee()), Call, ReturnValue,
3386                     EmitScalarExpr(Chain));
3387   }
3388   case Builtin::BI_InterlockedExchange8:
3389   case Builtin::BI_InterlockedExchange16:
3390   case Builtin::BI_InterlockedExchange:
3391   case Builtin::BI_InterlockedExchangePointer:
3392     return RValue::get(
3393         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3394   case Builtin::BI_InterlockedCompareExchangePointer:
3395   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3396     llvm::Type *RTy;
3397     llvm::IntegerType *IntType =
3398       IntegerType::get(getLLVMContext(),
3399                        getContext().getTypeSize(E->getType()));
3400     llvm::Type *IntPtrType = IntType->getPointerTo();
3401 
3402     llvm::Value *Destination =
3403       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3404 
3405     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3406     RTy = Exchange->getType();
3407     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3408 
3409     llvm::Value *Comparand =
3410       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3411 
3412     auto Ordering =
3413       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3414       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3415 
3416     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3417                                               Ordering, Ordering);
3418     Result->setVolatile(true);
3419 
3420     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3421                                                                          0),
3422                                               RTy));
3423   }
3424   case Builtin::BI_InterlockedCompareExchange8:
3425   case Builtin::BI_InterlockedCompareExchange16:
3426   case Builtin::BI_InterlockedCompareExchange:
3427   case Builtin::BI_InterlockedCompareExchange64:
3428     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3429   case Builtin::BI_InterlockedIncrement16:
3430   case Builtin::BI_InterlockedIncrement:
3431     return RValue::get(
3432         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3433   case Builtin::BI_InterlockedDecrement16:
3434   case Builtin::BI_InterlockedDecrement:
3435     return RValue::get(
3436         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3437   case Builtin::BI_InterlockedAnd8:
3438   case Builtin::BI_InterlockedAnd16:
3439   case Builtin::BI_InterlockedAnd:
3440     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3441   case Builtin::BI_InterlockedExchangeAdd8:
3442   case Builtin::BI_InterlockedExchangeAdd16:
3443   case Builtin::BI_InterlockedExchangeAdd:
3444     return RValue::get(
3445         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3446   case Builtin::BI_InterlockedExchangeSub8:
3447   case Builtin::BI_InterlockedExchangeSub16:
3448   case Builtin::BI_InterlockedExchangeSub:
3449     return RValue::get(
3450         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3451   case Builtin::BI_InterlockedOr8:
3452   case Builtin::BI_InterlockedOr16:
3453   case Builtin::BI_InterlockedOr:
3454     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3455   case Builtin::BI_InterlockedXor8:
3456   case Builtin::BI_InterlockedXor16:
3457   case Builtin::BI_InterlockedXor:
3458     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3459 
3460   case Builtin::BI_bittest64:
3461   case Builtin::BI_bittest:
3462   case Builtin::BI_bittestandcomplement64:
3463   case Builtin::BI_bittestandcomplement:
3464   case Builtin::BI_bittestandreset64:
3465   case Builtin::BI_bittestandreset:
3466   case Builtin::BI_bittestandset64:
3467   case Builtin::BI_bittestandset:
3468   case Builtin::BI_interlockedbittestandreset:
3469   case Builtin::BI_interlockedbittestandreset64:
3470   case Builtin::BI_interlockedbittestandset64:
3471   case Builtin::BI_interlockedbittestandset:
3472   case Builtin::BI_interlockedbittestandset_acq:
3473   case Builtin::BI_interlockedbittestandset_rel:
3474   case Builtin::BI_interlockedbittestandset_nf:
3475   case Builtin::BI_interlockedbittestandreset_acq:
3476   case Builtin::BI_interlockedbittestandreset_rel:
3477   case Builtin::BI_interlockedbittestandreset_nf:
3478     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3479 
3480     // These builtins exist to emit regular volatile loads and stores not
3481     // affected by the -fms-volatile setting.
3482   case Builtin::BI__iso_volatile_load8:
3483   case Builtin::BI__iso_volatile_load16:
3484   case Builtin::BI__iso_volatile_load32:
3485   case Builtin::BI__iso_volatile_load64:
3486     return RValue::get(EmitISOVolatileLoad(*this, E));
3487   case Builtin::BI__iso_volatile_store8:
3488   case Builtin::BI__iso_volatile_store16:
3489   case Builtin::BI__iso_volatile_store32:
3490   case Builtin::BI__iso_volatile_store64:
3491     return RValue::get(EmitISOVolatileStore(*this, E));
3492 
3493   case Builtin::BI__exception_code:
3494   case Builtin::BI_exception_code:
3495     return RValue::get(EmitSEHExceptionCode());
3496   case Builtin::BI__exception_info:
3497   case Builtin::BI_exception_info:
3498     return RValue::get(EmitSEHExceptionInfo());
3499   case Builtin::BI__abnormal_termination:
3500   case Builtin::BI_abnormal_termination:
3501     return RValue::get(EmitSEHAbnormalTermination());
3502   case Builtin::BI_setjmpex:
3503     if (getTarget().getTriple().isOSMSVCRT())
3504       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3505     break;
3506   case Builtin::BI_setjmp:
3507     if (getTarget().getTriple().isOSMSVCRT()) {
3508       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3509         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3510       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3511         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3512       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3513     }
3514     break;
3515 
3516   case Builtin::BI__GetExceptionInfo: {
3517     if (llvm::GlobalVariable *GV =
3518             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3519       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3520     break;
3521   }
3522 
3523   case Builtin::BI__fastfail:
3524     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3525 
3526   case Builtin::BI__builtin_coro_size: {
3527     auto & Context = getContext();
3528     auto SizeTy = Context.getSizeType();
3529     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3530     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3531     return RValue::get(Builder.CreateCall(F));
3532   }
3533 
3534   case Builtin::BI__builtin_coro_id:
3535     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3536   case Builtin::BI__builtin_coro_promise:
3537     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3538   case Builtin::BI__builtin_coro_resume:
3539     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3540   case Builtin::BI__builtin_coro_frame:
3541     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3542   case Builtin::BI__builtin_coro_noop:
3543     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3544   case Builtin::BI__builtin_coro_free:
3545     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3546   case Builtin::BI__builtin_coro_destroy:
3547     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3548   case Builtin::BI__builtin_coro_done:
3549     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3550   case Builtin::BI__builtin_coro_alloc:
3551     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3552   case Builtin::BI__builtin_coro_begin:
3553     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3554   case Builtin::BI__builtin_coro_end:
3555     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3556   case Builtin::BI__builtin_coro_suspend:
3557     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3558   case Builtin::BI__builtin_coro_param:
3559     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3560 
3561   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3562   case Builtin::BIread_pipe:
3563   case Builtin::BIwrite_pipe: {
3564     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3565           *Arg1 = EmitScalarExpr(E->getArg(1));
3566     CGOpenCLRuntime OpenCLRT(CGM);
3567     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3568     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3569 
3570     // Type of the generic packet parameter.
3571     unsigned GenericAS =
3572         getContext().getTargetAddressSpace(LangAS::opencl_generic);
3573     llvm::Type *I8PTy = llvm::PointerType::get(
3574         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3575 
3576     // Testing which overloaded version we should generate the call for.
3577     if (2U == E->getNumArgs()) {
3578       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3579                                                              : "__write_pipe_2";
3580       // Creating a generic function type to be able to call with any builtin or
3581       // user defined type.
3582       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3583       llvm::FunctionType *FTy = llvm::FunctionType::get(
3584           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3585       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3586       return RValue::get(
3587           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3588                              {Arg0, BCast, PacketSize, PacketAlign}));
3589     } else {
3590       assert(4 == E->getNumArgs() &&
3591              "Illegal number of parameters to pipe function");
3592       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3593                                                              : "__write_pipe_4";
3594 
3595       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3596                               Int32Ty, Int32Ty};
3597       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3598             *Arg3 = EmitScalarExpr(E->getArg(3));
3599       llvm::FunctionType *FTy = llvm::FunctionType::get(
3600           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3601       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3602       // We know the third argument is an integer type, but we may need to cast
3603       // it to i32.
3604       if (Arg2->getType() != Int32Ty)
3605         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3606       return RValue::get(Builder.CreateCall(
3607           CGM.CreateRuntimeFunction(FTy, Name),
3608           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3609     }
3610   }
3611   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3612   // functions
3613   case Builtin::BIreserve_read_pipe:
3614   case Builtin::BIreserve_write_pipe:
3615   case Builtin::BIwork_group_reserve_read_pipe:
3616   case Builtin::BIwork_group_reserve_write_pipe:
3617   case Builtin::BIsub_group_reserve_read_pipe:
3618   case Builtin::BIsub_group_reserve_write_pipe: {
3619     // Composing the mangled name for the function.
3620     const char *Name;
3621     if (BuiltinID == Builtin::BIreserve_read_pipe)
3622       Name = "__reserve_read_pipe";
3623     else if (BuiltinID == Builtin::BIreserve_write_pipe)
3624       Name = "__reserve_write_pipe";
3625     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3626       Name = "__work_group_reserve_read_pipe";
3627     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3628       Name = "__work_group_reserve_write_pipe";
3629     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3630       Name = "__sub_group_reserve_read_pipe";
3631     else
3632       Name = "__sub_group_reserve_write_pipe";
3633 
3634     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3635           *Arg1 = EmitScalarExpr(E->getArg(1));
3636     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3637     CGOpenCLRuntime OpenCLRT(CGM);
3638     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3639     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3640 
3641     // Building the generic function prototype.
3642     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3643     llvm::FunctionType *FTy = llvm::FunctionType::get(
3644         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3645     // We know the second argument is an integer type, but we may need to cast
3646     // it to i32.
3647     if (Arg1->getType() != Int32Ty)
3648       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3649     return RValue::get(
3650         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3651                            {Arg0, Arg1, PacketSize, PacketAlign}));
3652   }
3653   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3654   // functions
3655   case Builtin::BIcommit_read_pipe:
3656   case Builtin::BIcommit_write_pipe:
3657   case Builtin::BIwork_group_commit_read_pipe:
3658   case Builtin::BIwork_group_commit_write_pipe:
3659   case Builtin::BIsub_group_commit_read_pipe:
3660   case Builtin::BIsub_group_commit_write_pipe: {
3661     const char *Name;
3662     if (BuiltinID == Builtin::BIcommit_read_pipe)
3663       Name = "__commit_read_pipe";
3664     else if (BuiltinID == Builtin::BIcommit_write_pipe)
3665       Name = "__commit_write_pipe";
3666     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3667       Name = "__work_group_commit_read_pipe";
3668     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3669       Name = "__work_group_commit_write_pipe";
3670     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3671       Name = "__sub_group_commit_read_pipe";
3672     else
3673       Name = "__sub_group_commit_write_pipe";
3674 
3675     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3676           *Arg1 = EmitScalarExpr(E->getArg(1));
3677     CGOpenCLRuntime OpenCLRT(CGM);
3678     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3679     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3680 
3681     // Building the generic function prototype.
3682     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3683     llvm::FunctionType *FTy =
3684         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3685                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3686 
3687     return RValue::get(
3688         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3689                            {Arg0, Arg1, PacketSize, PacketAlign}));
3690   }
3691   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3692   case Builtin::BIget_pipe_num_packets:
3693   case Builtin::BIget_pipe_max_packets: {
3694     const char *BaseName;
3695     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
3696     if (BuiltinID == Builtin::BIget_pipe_num_packets)
3697       BaseName = "__get_pipe_num_packets";
3698     else
3699       BaseName = "__get_pipe_max_packets";
3700     std::string Name = std::string(BaseName) +
3701                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3702 
3703     // Building the generic function prototype.
3704     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3705     CGOpenCLRuntime OpenCLRT(CGM);
3706     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3707     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3708     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3709     llvm::FunctionType *FTy = llvm::FunctionType::get(
3710         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3711 
3712     return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3713                                           {Arg0, PacketSize, PacketAlign}));
3714   }
3715 
3716   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3717   case Builtin::BIto_global:
3718   case Builtin::BIto_local:
3719   case Builtin::BIto_private: {
3720     auto Arg0 = EmitScalarExpr(E->getArg(0));
3721     auto NewArgT = llvm::PointerType::get(Int8Ty,
3722       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3723     auto NewRetT = llvm::PointerType::get(Int8Ty,
3724       CGM.getContext().getTargetAddressSpace(
3725         E->getType()->getPointeeType().getAddressSpace()));
3726     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3727     llvm::Value *NewArg;
3728     if (Arg0->getType()->getPointerAddressSpace() !=
3729         NewArgT->getPointerAddressSpace())
3730       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3731     else
3732       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3733     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3734     auto NewCall =
3735         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3736     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3737       ConvertType(E->getType())));
3738   }
3739 
3740   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3741   // It contains four different overload formats specified in Table 6.13.17.1.
3742   case Builtin::BIenqueue_kernel: {
3743     StringRef Name; // Generated function call name
3744     unsigned NumArgs = E->getNumArgs();
3745 
3746     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3747     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3748         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3749 
3750     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3751     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3752     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3753     llvm::Value *Range = NDRangeL.getAddress().getPointer();
3754     llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3755 
3756     if (NumArgs == 4) {
3757       // The most basic form of the call with parameters:
3758       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3759       Name = "__enqueue_kernel_basic";
3760       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3761                               GenericVoidPtrTy};
3762       llvm::FunctionType *FTy = llvm::FunctionType::get(
3763           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3764 
3765       auto Info =
3766           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3767       llvm::Value *Kernel =
3768           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3769       llvm::Value *Block =
3770           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3771 
3772       AttrBuilder B;
3773       B.addByValAttr(NDRangeL.getAddress().getElementType());
3774       llvm::AttributeList ByValAttrSet =
3775           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3776 
3777       auto RTCall =
3778           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3779                              {Queue, Flags, Range, Kernel, Block});
3780       RTCall->setAttributes(ByValAttrSet);
3781       return RValue::get(RTCall);
3782     }
3783     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
3784 
3785     // Create a temporary array to hold the sizes of local pointer arguments
3786     // for the block. \p First is the position of the first size argument.
3787     auto CreateArrayForSizeVar = [=](unsigned First)
3788         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3789       llvm::APInt ArraySize(32, NumArgs - First);
3790       QualType SizeArrayTy = getContext().getConstantArrayType(
3791           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
3792           /*IndexTypeQuals=*/0);
3793       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3794       llvm::Value *TmpPtr = Tmp.getPointer();
3795       llvm::Value *TmpSize = EmitLifetimeStart(
3796           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3797       llvm::Value *ElemPtr;
3798       // Each of the following arguments specifies the size of the corresponding
3799       // argument passed to the enqueued block.
3800       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3801       for (unsigned I = First; I < NumArgs; ++I) {
3802         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3803         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3804         if (I == First)
3805           ElemPtr = GEP;
3806         auto *V =
3807             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3808         Builder.CreateAlignedStore(
3809             V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3810       }
3811       return std::tie(ElemPtr, TmpSize, TmpPtr);
3812     };
3813 
3814     // Could have events and/or varargs.
3815     if (E->getArg(3)->getType()->isBlockPointerType()) {
3816       // No events passed, but has variadic arguments.
3817       Name = "__enqueue_kernel_varargs";
3818       auto Info =
3819           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3820       llvm::Value *Kernel =
3821           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3822       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3823       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3824       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3825 
3826       // Create a vector of the arguments, as well as a constant value to
3827       // express to the runtime the number of variadic arguments.
3828       std::vector<llvm::Value *> Args = {
3829           Queue,  Flags, Range,
3830           Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3831           ElemPtr};
3832       std::vector<llvm::Type *> ArgTys = {
3833           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
3834           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3835 
3836       llvm::FunctionType *FTy = llvm::FunctionType::get(
3837           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3838       auto Call =
3839           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3840                                          llvm::ArrayRef<llvm::Value *>(Args)));
3841       if (TmpSize)
3842         EmitLifetimeEnd(TmpSize, TmpPtr);
3843       return Call;
3844     }
3845     // Any calls now have event arguments passed.
3846     if (NumArgs >= 7) {
3847       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3848       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
3849           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3850 
3851       llvm::Value *NumEvents =
3852           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3853 
3854       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
3855       // to be a null pointer constant (including `0` literal), we can take it
3856       // into account and emit null pointer directly.
3857       llvm::Value *EventWaitList = nullptr;
3858       if (E->getArg(4)->isNullPointerConstant(
3859               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3860         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
3861       } else {
3862         EventWaitList = E->getArg(4)->getType()->isArrayType()
3863                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3864                         : EmitScalarExpr(E->getArg(4));
3865         // Convert to generic address space.
3866         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
3867       }
3868       llvm::Value *EventRet = nullptr;
3869       if (E->getArg(5)->isNullPointerConstant(
3870               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3871         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
3872       } else {
3873         EventRet =
3874             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
3875       }
3876 
3877       auto Info =
3878           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3879       llvm::Value *Kernel =
3880           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3881       llvm::Value *Block =
3882           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3883 
3884       std::vector<llvm::Type *> ArgTys = {
3885           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
3886           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3887 
3888       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
3889                                          NumEvents, EventWaitList, EventRet,
3890                                          Kernel,    Block};
3891 
3892       if (NumArgs == 7) {
3893         // Has events but no variadics.
3894         Name = "__enqueue_kernel_basic_events";
3895         llvm::FunctionType *FTy = llvm::FunctionType::get(
3896             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3897         return RValue::get(
3898             Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3899                                llvm::ArrayRef<llvm::Value *>(Args)));
3900       }
3901       // Has event info and variadics
3902       // Pass the number of variadics to the runtime function too.
3903       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3904       ArgTys.push_back(Int32Ty);
3905       Name = "__enqueue_kernel_events_varargs";
3906 
3907       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3908       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
3909       Args.push_back(ElemPtr);
3910       ArgTys.push_back(ElemPtr->getType());
3911 
3912       llvm::FunctionType *FTy = llvm::FunctionType::get(
3913           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3914       auto Call =
3915           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3916                                          llvm::ArrayRef<llvm::Value *>(Args)));
3917       if (TmpSize)
3918         EmitLifetimeEnd(TmpSize, TmpPtr);
3919       return Call;
3920     }
3921     LLVM_FALLTHROUGH;
3922   }
3923   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3924   // parameter.
3925   case Builtin::BIget_kernel_work_group_size: {
3926     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3927         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3928     auto Info =
3929         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3930     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3931     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3932     return RValue::get(Builder.CreateCall(
3933         CGM.CreateRuntimeFunction(
3934             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3935                                     false),
3936             "__get_kernel_work_group_size_impl"),
3937         {Kernel, Arg}));
3938   }
3939   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3940     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3941         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3942     auto Info =
3943         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3944     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3945     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3946     return RValue::get(Builder.CreateCall(
3947         CGM.CreateRuntimeFunction(
3948             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3949                                     false),
3950             "__get_kernel_preferred_work_group_size_multiple_impl"),
3951         {Kernel, Arg}));
3952   }
3953   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3954   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3955     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3956         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3957     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3958     llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3959     auto Info =
3960         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3961     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3962     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3963     const char *Name =
3964         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3965             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3966             : "__get_kernel_sub_group_count_for_ndrange_impl";
3967     return RValue::get(Builder.CreateCall(
3968         CGM.CreateRuntimeFunction(
3969             llvm::FunctionType::get(
3970                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3971                 false),
3972             Name),
3973         {NDRange, Kernel, Block}));
3974   }
3975 
3976   case Builtin::BI__builtin_store_half:
3977   case Builtin::BI__builtin_store_halff: {
3978     Value *Val = EmitScalarExpr(E->getArg(0));
3979     Address Address = EmitPointerWithAlignment(E->getArg(1));
3980     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3981     return RValue::get(Builder.CreateStore(HalfVal, Address));
3982   }
3983   case Builtin::BI__builtin_load_half: {
3984     Address Address = EmitPointerWithAlignment(E->getArg(0));
3985     Value *HalfVal = Builder.CreateLoad(Address);
3986     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3987   }
3988   case Builtin::BI__builtin_load_halff: {
3989     Address Address = EmitPointerWithAlignment(E->getArg(0));
3990     Value *HalfVal = Builder.CreateLoad(Address);
3991     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3992   }
3993   case Builtin::BIprintf:
3994     if (getTarget().getTriple().isNVPTX())
3995       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3996     break;
3997   case Builtin::BI__builtin_canonicalize:
3998   case Builtin::BI__builtin_canonicalizef:
3999   case Builtin::BI__builtin_canonicalizef16:
4000   case Builtin::BI__builtin_canonicalizel:
4001     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4002 
4003   case Builtin::BI__builtin_thread_pointer: {
4004     if (!getContext().getTargetInfo().isTLSSupported())
4005       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4006     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4007     break;
4008   }
4009   case Builtin::BI__builtin_os_log_format:
4010     return emitBuiltinOSLogFormat(*E);
4011 
4012   case Builtin::BI__xray_customevent: {
4013     if (!ShouldXRayInstrumentFunction())
4014       return RValue::getIgnored();
4015 
4016     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4017             XRayInstrKind::Custom))
4018       return RValue::getIgnored();
4019 
4020     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4021       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4022         return RValue::getIgnored();
4023 
4024     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4025     auto FTy = F->getFunctionType();
4026     auto Arg0 = E->getArg(0);
4027     auto Arg0Val = EmitScalarExpr(Arg0);
4028     auto Arg0Ty = Arg0->getType();
4029     auto PTy0 = FTy->getParamType(0);
4030     if (PTy0 != Arg0Val->getType()) {
4031       if (Arg0Ty->isArrayType())
4032         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4033       else
4034         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4035     }
4036     auto Arg1 = EmitScalarExpr(E->getArg(1));
4037     auto PTy1 = FTy->getParamType(1);
4038     if (PTy1 != Arg1->getType())
4039       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4040     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4041   }
4042 
4043   case Builtin::BI__xray_typedevent: {
4044     // TODO: There should be a way to always emit events even if the current
4045     // function is not instrumented. Losing events in a stream can cripple
4046     // a trace.
4047     if (!ShouldXRayInstrumentFunction())
4048       return RValue::getIgnored();
4049 
4050     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4051             XRayInstrKind::Typed))
4052       return RValue::getIgnored();
4053 
4054     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4055       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4056         return RValue::getIgnored();
4057 
4058     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4059     auto FTy = F->getFunctionType();
4060     auto Arg0 = EmitScalarExpr(E->getArg(0));
4061     auto PTy0 = FTy->getParamType(0);
4062     if (PTy0 != Arg0->getType())
4063       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4064     auto Arg1 = E->getArg(1);
4065     auto Arg1Val = EmitScalarExpr(Arg1);
4066     auto Arg1Ty = Arg1->getType();
4067     auto PTy1 = FTy->getParamType(1);
4068     if (PTy1 != Arg1Val->getType()) {
4069       if (Arg1Ty->isArrayType())
4070         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4071       else
4072         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4073     }
4074     auto Arg2 = EmitScalarExpr(E->getArg(2));
4075     auto PTy2 = FTy->getParamType(2);
4076     if (PTy2 != Arg2->getType())
4077       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4078     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4079   }
4080 
4081   case Builtin::BI__builtin_ms_va_start:
4082   case Builtin::BI__builtin_ms_va_end:
4083     return RValue::get(
4084         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4085                        BuiltinID == Builtin::BI__builtin_ms_va_start));
4086 
4087   case Builtin::BI__builtin_ms_va_copy: {
4088     // Lower this manually. We can't reliably determine whether or not any
4089     // given va_copy() is for a Win64 va_list from the calling convention
4090     // alone, because it's legal to do this from a System V ABI function.
4091     // With opaque pointer types, we won't have enough information in LLVM
4092     // IR to determine this from the argument types, either. Best to do it
4093     // now, while we have enough information.
4094     Address DestAddr = EmitMSVAListRef(E->getArg(0));
4095     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4096 
4097     llvm::Type *BPP = Int8PtrPtrTy;
4098 
4099     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4100                        DestAddr.getAlignment());
4101     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4102                       SrcAddr.getAlignment());
4103 
4104     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4105     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4106   }
4107   }
4108 
4109   // If this is an alias for a lib function (e.g. __builtin_sin), emit
4110   // the call using the normal call path, but using the unmangled
4111   // version of the function name.
4112   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4113     return emitLibraryCall(*this, FD, E,
4114                            CGM.getBuiltinLibFunction(FD, BuiltinID));
4115 
4116   // If this is a predefined lib function (e.g. malloc), emit the call
4117   // using exactly the normal call path.
4118   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4119     return emitLibraryCall(*this, FD, E,
4120                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4121 
4122   // Check that a call to a target specific builtin has the correct target
4123   // features.
4124   // This is down here to avoid non-target specific builtins, however, if
4125   // generic builtins start to require generic target features then we
4126   // can move this up to the beginning of the function.
4127   checkTargetFeatures(E, FD);
4128 
4129   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4130     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4131 
4132   // See if we have a target specific intrinsic.
4133   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4134   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4135   StringRef Prefix =
4136       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4137   if (!Prefix.empty()) {
4138     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4139     // NOTE we don't need to perform a compatibility flag check here since the
4140     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4141     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4142     if (IntrinsicID == Intrinsic::not_intrinsic)
4143       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4144   }
4145 
4146   if (IntrinsicID != Intrinsic::not_intrinsic) {
4147     SmallVector<Value*, 16> Args;
4148 
4149     // Find out if any arguments are required to be integer constant
4150     // expressions.
4151     unsigned ICEArguments = 0;
4152     ASTContext::GetBuiltinTypeError Error;
4153     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4154     assert(Error == ASTContext::GE_None && "Should not codegen an error");
4155 
4156     Function *F = CGM.getIntrinsic(IntrinsicID);
4157     llvm::FunctionType *FTy = F->getFunctionType();
4158 
4159     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4160       Value *ArgValue;
4161       // If this is a normal argument, just emit it as a scalar.
4162       if ((ICEArguments & (1 << i)) == 0) {
4163         ArgValue = EmitScalarExpr(E->getArg(i));
4164       } else {
4165         // If this is required to be a constant, constant fold it so that we
4166         // know that the generated intrinsic gets a ConstantInt.
4167         llvm::APSInt Result;
4168         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4169         assert(IsConst && "Constant arg isn't actually constant?");
4170         (void)IsConst;
4171         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4172       }
4173 
4174       // If the intrinsic arg type is different from the builtin arg type
4175       // we need to do a bit cast.
4176       llvm::Type *PTy = FTy->getParamType(i);
4177       if (PTy != ArgValue->getType()) {
4178         // XXX - vector of pointers?
4179         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4180           if (PtrTy->getAddressSpace() !=
4181               ArgValue->getType()->getPointerAddressSpace()) {
4182             ArgValue = Builder.CreateAddrSpaceCast(
4183               ArgValue,
4184               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4185           }
4186         }
4187 
4188         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4189                "Must be able to losslessly bit cast to param");
4190         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4191       }
4192 
4193       Args.push_back(ArgValue);
4194     }
4195 
4196     Value *V = Builder.CreateCall(F, Args);
4197     QualType BuiltinRetType = E->getType();
4198 
4199     llvm::Type *RetTy = VoidTy;
4200     if (!BuiltinRetType->isVoidType())
4201       RetTy = ConvertType(BuiltinRetType);
4202 
4203     if (RetTy != V->getType()) {
4204       // XXX - vector of pointers?
4205       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4206         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4207           V = Builder.CreateAddrSpaceCast(
4208             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4209         }
4210       }
4211 
4212       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4213              "Must be able to losslessly bit cast result type");
4214       V = Builder.CreateBitCast(V, RetTy);
4215     }
4216 
4217     return RValue::get(V);
4218   }
4219 
4220   // See if we have a target specific builtin that needs to be lowered.
4221   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
4222     return RValue::get(V);
4223 
4224   ErrorUnsupported(E, "builtin function");
4225 
4226   // Unknown builtin, for now just dump it out and return undef.
4227   return GetUndefRValue(E->getType());
4228 }
4229 
4230 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4231                                         unsigned BuiltinID, const CallExpr *E,
4232                                         llvm::Triple::ArchType Arch) {
4233   switch (Arch) {
4234   case llvm::Triple::arm:
4235   case llvm::Triple::armeb:
4236   case llvm::Triple::thumb:
4237   case llvm::Triple::thumbeb:
4238     return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
4239   case llvm::Triple::aarch64:
4240   case llvm::Triple::aarch64_be:
4241     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4242   case llvm::Triple::bpfeb:
4243   case llvm::Triple::bpfel:
4244     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4245   case llvm::Triple::x86:
4246   case llvm::Triple::x86_64:
4247     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4248   case llvm::Triple::ppc:
4249   case llvm::Triple::ppc64:
4250   case llvm::Triple::ppc64le:
4251     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4252   case llvm::Triple::r600:
4253   case llvm::Triple::amdgcn:
4254     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4255   case llvm::Triple::systemz:
4256     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4257   case llvm::Triple::nvptx:
4258   case llvm::Triple::nvptx64:
4259     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4260   case llvm::Triple::wasm32:
4261   case llvm::Triple::wasm64:
4262     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4263   case llvm::Triple::hexagon:
4264     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4265   default:
4266     return nullptr;
4267   }
4268 }
4269 
4270 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4271                                               const CallExpr *E) {
4272   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4273     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4274     return EmitTargetArchBuiltinExpr(
4275         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4276         getContext().getAuxTargetInfo()->getTriple().getArch());
4277   }
4278 
4279   return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
4280                                    getTarget().getTriple().getArch());
4281 }
4282 
4283 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4284                                      NeonTypeFlags TypeFlags,
4285                                      bool HasLegalHalfType=true,
4286                                      bool V1Ty=false) {
4287   int IsQuad = TypeFlags.isQuad();
4288   switch (TypeFlags.getEltType()) {
4289   case NeonTypeFlags::Int8:
4290   case NeonTypeFlags::Poly8:
4291     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4292   case NeonTypeFlags::Int16:
4293   case NeonTypeFlags::Poly16:
4294     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4295   case NeonTypeFlags::Float16:
4296     if (HasLegalHalfType)
4297       return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4298     else
4299       return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4300   case NeonTypeFlags::Int32:
4301     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4302   case NeonTypeFlags::Int64:
4303   case NeonTypeFlags::Poly64:
4304     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4305   case NeonTypeFlags::Poly128:
4306     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4307     // There is a lot of i128 and f128 API missing.
4308     // so we use v16i8 to represent poly128 and get pattern matched.
4309     return llvm::VectorType::get(CGF->Int8Ty, 16);
4310   case NeonTypeFlags::Float32:
4311     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4312   case NeonTypeFlags::Float64:
4313     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4314   }
4315   llvm_unreachable("Unknown vector element type!");
4316 }
4317 
4318 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4319                                           NeonTypeFlags IntTypeFlags) {
4320   int IsQuad = IntTypeFlags.isQuad();
4321   switch (IntTypeFlags.getEltType()) {
4322   case NeonTypeFlags::Int16:
4323     return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4324   case NeonTypeFlags::Int32:
4325     return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4326   case NeonTypeFlags::Int64:
4327     return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4328   default:
4329     llvm_unreachable("Type can't be converted to floating-point!");
4330   }
4331 }
4332 
4333 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4334   unsigned nElts = V->getType()->getVectorNumElements();
4335   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4336   return Builder.CreateShuffleVector(V, V, SV, "lane");
4337 }
4338 
4339 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4340                                      const char *name,
4341                                      unsigned shift, bool rightshift) {
4342   unsigned j = 0;
4343   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4344        ai != ae; ++ai, ++j)
4345     if (shift > 0 && shift == j)
4346       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4347     else
4348       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4349 
4350   return Builder.CreateCall(F, Ops, name);
4351 }
4352 
4353 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4354                                             bool neg) {
4355   int SV = cast<ConstantInt>(V)->getSExtValue();
4356   return ConstantInt::get(Ty, neg ? -SV : SV);
4357 }
4358 
4359 // Right-shift a vector by a constant.
4360 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4361                                           llvm::Type *Ty, bool usgn,
4362                                           const char *name) {
4363   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4364 
4365   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4366   int EltSize = VTy->getScalarSizeInBits();
4367 
4368   Vec = Builder.CreateBitCast(Vec, Ty);
4369 
4370   // lshr/ashr are undefined when the shift amount is equal to the vector
4371   // element size.
4372   if (ShiftAmt == EltSize) {
4373     if (usgn) {
4374       // Right-shifting an unsigned value by its size yields 0.
4375       return llvm::ConstantAggregateZero::get(VTy);
4376     } else {
4377       // Right-shifting a signed value by its size is equivalent
4378       // to a shift of size-1.
4379       --ShiftAmt;
4380       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4381     }
4382   }
4383 
4384   Shift = EmitNeonShiftVector(Shift, Ty, false);
4385   if (usgn)
4386     return Builder.CreateLShr(Vec, Shift, name);
4387   else
4388     return Builder.CreateAShr(Vec, Shift, name);
4389 }
4390 
4391 enum {
4392   AddRetType = (1 << 0),
4393   Add1ArgType = (1 << 1),
4394   Add2ArgTypes = (1 << 2),
4395 
4396   VectorizeRetType = (1 << 3),
4397   VectorizeArgTypes = (1 << 4),
4398 
4399   InventFloatType = (1 << 5),
4400   UnsignedAlts = (1 << 6),
4401 
4402   Use64BitVectors = (1 << 7),
4403   Use128BitVectors = (1 << 8),
4404 
4405   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4406   VectorRet = AddRetType | VectorizeRetType,
4407   VectorRetGetArgs01 =
4408       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4409   FpCmpzModifiers =
4410       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4411 };
4412 
4413 namespace {
4414 struct NeonIntrinsicInfo {
4415   const char *NameHint;
4416   unsigned BuiltinID;
4417   unsigned LLVMIntrinsic;
4418   unsigned AltLLVMIntrinsic;
4419   unsigned TypeModifier;
4420 
4421   bool operator<(unsigned RHSBuiltinID) const {
4422     return BuiltinID < RHSBuiltinID;
4423   }
4424   bool operator<(const NeonIntrinsicInfo &TE) const {
4425     return BuiltinID < TE.BuiltinID;
4426   }
4427 };
4428 } // end anonymous namespace
4429 
4430 #define NEONMAP0(NameBase) \
4431   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4432 
4433 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4434   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4435       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4436 
4437 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4438   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4439       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4440       TypeModifier }
4441 
4442 static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4443   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4444   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4445   NEONMAP1(vabs_v, arm_neon_vabs, 0),
4446   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4447   NEONMAP0(vaddhn_v),
4448   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4449   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4450   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4451   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4452   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4453   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4454   NEONMAP1(vcage_v, arm_neon_vacge, 0),
4455   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4456   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4457   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4458   NEONMAP1(vcale_v, arm_neon_vacge, 0),
4459   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4460   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4461   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4462   NEONMAP0(vceqz_v),
4463   NEONMAP0(vceqzq_v),
4464   NEONMAP0(vcgez_v),
4465   NEONMAP0(vcgezq_v),
4466   NEONMAP0(vcgtz_v),
4467   NEONMAP0(vcgtzq_v),
4468   NEONMAP0(vclez_v),
4469   NEONMAP0(vclezq_v),
4470   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4471   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4472   NEONMAP0(vcltz_v),
4473   NEONMAP0(vcltzq_v),
4474   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4475   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4476   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4477   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4478   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4479   NEONMAP0(vcvt_f16_v),
4480   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4481   NEONMAP0(vcvt_f32_v),
4482   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4483   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4484   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4485   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4486   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4487   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4488   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4489   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4490   NEONMAP0(vcvt_s16_v),
4491   NEONMAP0(vcvt_s32_v),
4492   NEONMAP0(vcvt_s64_v),
4493   NEONMAP0(vcvt_u16_v),
4494   NEONMAP0(vcvt_u32_v),
4495   NEONMAP0(vcvt_u64_v),
4496   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4497   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4498   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4499   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4500   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4501   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4502   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4503   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4504   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4505   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4506   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4507   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4508   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4509   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4510   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4511   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4512   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4513   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4514   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4515   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4516   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4517   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4518   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4519   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4520   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4521   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4522   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4523   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4524   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4525   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4526   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4527   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4528   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4529   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4530   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4531   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4532   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4533   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4534   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4535   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4536   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4537   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4538   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4539   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4540   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4541   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4542   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4543   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4544   NEONMAP0(vcvtq_f16_v),
4545   NEONMAP0(vcvtq_f32_v),
4546   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4547   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4548   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4549   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4550   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4551   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4552   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4553   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4554   NEONMAP0(vcvtq_s16_v),
4555   NEONMAP0(vcvtq_s32_v),
4556   NEONMAP0(vcvtq_s64_v),
4557   NEONMAP0(vcvtq_u16_v),
4558   NEONMAP0(vcvtq_u32_v),
4559   NEONMAP0(vcvtq_u64_v),
4560   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4561   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4562   NEONMAP0(vext_v),
4563   NEONMAP0(vextq_v),
4564   NEONMAP0(vfma_v),
4565   NEONMAP0(vfmaq_v),
4566   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4567   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4568   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4569   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4570   NEONMAP0(vld1_dup_v),
4571   NEONMAP1(vld1_v, arm_neon_vld1, 0),
4572   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4573   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4574   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4575   NEONMAP0(vld1q_dup_v),
4576   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4577   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4578   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4579   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4580   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4581   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4582   NEONMAP1(vld2_v, arm_neon_vld2, 0),
4583   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4584   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4585   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4586   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4587   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4588   NEONMAP1(vld3_v, arm_neon_vld3, 0),
4589   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4590   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4591   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4592   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4593   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4594   NEONMAP1(vld4_v, arm_neon_vld4, 0),
4595   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4596   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4597   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4598   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4599   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4600   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4601   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4602   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4603   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4604   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4605   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4606   NEONMAP0(vmovl_v),
4607   NEONMAP0(vmovn_v),
4608   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4609   NEONMAP0(vmull_v),
4610   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4611   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4612   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4613   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4614   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4615   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4616   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4617   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4618   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4619   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4620   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4621   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4622   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4623   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
4624   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
4625   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4626   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4627   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4628   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4629   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4630   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4631   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4632   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4633   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4634   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4635   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4636   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4637   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4638   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4639   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4640   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4641   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4642   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4643   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4644   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4645   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4646   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4647   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4648   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4649   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4650   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4651   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4652   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4653   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4654   NEONMAP0(vrndi_v),
4655   NEONMAP0(vrndiq_v),
4656   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4657   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4658   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4659   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4660   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4661   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4662   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4663   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4664   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4665   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4666   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4667   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4668   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4669   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4670   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4671   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4672   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4673   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4674   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4675   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4676   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4677   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4678   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4679   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4680   NEONMAP0(vshl_n_v),
4681   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4682   NEONMAP0(vshll_n_v),
4683   NEONMAP0(vshlq_n_v),
4684   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4685   NEONMAP0(vshr_n_v),
4686   NEONMAP0(vshrn_n_v),
4687   NEONMAP0(vshrq_n_v),
4688   NEONMAP1(vst1_v, arm_neon_vst1, 0),
4689   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4690   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4691   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4692   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4693   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4694   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4695   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4696   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4697   NEONMAP1(vst2_v, arm_neon_vst2, 0),
4698   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4699   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4700   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4701   NEONMAP1(vst3_v, arm_neon_vst3, 0),
4702   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4703   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4704   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4705   NEONMAP1(vst4_v, arm_neon_vst4, 0),
4706   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4707   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4708   NEONMAP0(vsubhn_v),
4709   NEONMAP0(vtrn_v),
4710   NEONMAP0(vtrnq_v),
4711   NEONMAP0(vtst_v),
4712   NEONMAP0(vtstq_v),
4713   NEONMAP0(vuzp_v),
4714   NEONMAP0(vuzpq_v),
4715   NEONMAP0(vzip_v),
4716   NEONMAP0(vzipq_v)
4717 };
4718 
4719 static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4720   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4721   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4722   NEONMAP0(vaddhn_v),
4723   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4724   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4725   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4726   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4727   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4728   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4729   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4730   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4731   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4732   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4733   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4734   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4735   NEONMAP0(vceqz_v),
4736   NEONMAP0(vceqzq_v),
4737   NEONMAP0(vcgez_v),
4738   NEONMAP0(vcgezq_v),
4739   NEONMAP0(vcgtz_v),
4740   NEONMAP0(vcgtzq_v),
4741   NEONMAP0(vclez_v),
4742   NEONMAP0(vclezq_v),
4743   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4744   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4745   NEONMAP0(vcltz_v),
4746   NEONMAP0(vcltzq_v),
4747   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4748   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4749   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4750   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4751   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4752   NEONMAP0(vcvt_f16_v),
4753   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4754   NEONMAP0(vcvt_f32_v),
4755   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4756   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4757   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4758   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4759   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4760   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4761   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4762   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4763   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4764   NEONMAP0(vcvtq_f16_v),
4765   NEONMAP0(vcvtq_f32_v),
4766   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4767   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4768   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4769   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4770   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4771   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4772   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4773   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4774   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4775   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4776   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4777   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4778   NEONMAP0(vext_v),
4779   NEONMAP0(vextq_v),
4780   NEONMAP0(vfma_v),
4781   NEONMAP0(vfmaq_v),
4782   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4783   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4784   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4785   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4786   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4787   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4788   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4789   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4790   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4791   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4792   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4793   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4794   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4795   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4796   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4797   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4798   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4799   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4800   NEONMAP0(vmovl_v),
4801   NEONMAP0(vmovn_v),
4802   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4803   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4804   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4805   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4806   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4807   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4808   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4809   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4810   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4811   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4812   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4813   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4814   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4815   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4816   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4817   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4818   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4819   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4820   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4821   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4822   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4823   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4824   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4825   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4826   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4827   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4828   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4829   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4830   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4831   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4832   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4833   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4834   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4835   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4836   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4837   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4838   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4839   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4840   NEONMAP0(vrndi_v),
4841   NEONMAP0(vrndiq_v),
4842   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4843   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4844   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4845   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4846   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4847   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4848   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
4849   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
4850   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
4851   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
4852   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
4853   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
4854   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
4855   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
4856   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
4857   NEONMAP0(vshl_n_v),
4858   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4859   NEONMAP0(vshll_n_v),
4860   NEONMAP0(vshlq_n_v),
4861   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4862   NEONMAP0(vshr_n_v),
4863   NEONMAP0(vshrn_n_v),
4864   NEONMAP0(vshrq_n_v),
4865   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
4866   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
4867   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
4868   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
4869   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
4870   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
4871   NEONMAP0(vsubhn_v),
4872   NEONMAP0(vtst_v),
4873   NEONMAP0(vtstq_v),
4874 };
4875 
4876 static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
4877   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
4878   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
4879   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
4880   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4881   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4882   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4883   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4884   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4885   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4886   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4887   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4888   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
4889   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4890   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
4891   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4892   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4893   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4894   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4895   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4896   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4897   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4898   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4899   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4900   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4901   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4902   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4903   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4904   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4905   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4906   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4907   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4908   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4909   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4910   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4911   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4912   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4913   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4914   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4915   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4916   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4917   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4918   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4919   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4920   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4921   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4922   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4923   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4924   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4925   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4926   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4927   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4928   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4929   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4930   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4931   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4932   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4933   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4934   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4935   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4936   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4937   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4938   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4939   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4940   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4941   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4942   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4943   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4944   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4945   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4946   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4947   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4948   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4949   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4950   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4951   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4952   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4953   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4954   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4955   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4956   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4957   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4958   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4959   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4960   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4961   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4962   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4963   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4964   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4965   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4966   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4967   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4968   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4969   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4970   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4971   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4972   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4973   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4974   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4975   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4976   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4977   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4978   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4979   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4980   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4981   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4982   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4983   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4984   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4985   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4986   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4987   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4988   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4989   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4990   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4991   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4992   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4993   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4994   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4995   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4996   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4997   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4998   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
4999   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5000   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5001   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5002   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5003   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5004   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5005   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5006   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5007   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5008   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5009   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5010   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5011   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5012   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5013   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5014   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5015   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5016   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5017   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5018   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5019   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5020   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5021   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5022   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5023   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5024   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5025   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5026   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5027   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5028   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5029   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5030   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5031   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5032   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5033   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5034   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5035   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5036   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5037   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5038   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5039   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5040   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5041   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5042   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5043   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5044   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5045   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5046   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5047   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5048   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5049   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5050   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5051   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5052   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5053   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5054   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5055   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5056   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5057   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5058   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5059   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5060   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5061   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5062   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5063   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5064   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5065   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5066   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5067   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5068   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5069   // FP16 scalar intrinisics go here.
5070   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5071   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5072   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5073   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5074   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5075   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5076   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5077   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5078   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5079   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5080   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5081   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5082   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5083   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5084   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5085   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5086   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5087   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5088   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5089   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5090   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5091   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5092   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5093   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5094   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5095   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5096   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5097   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5098   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5099   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5100 };
5101 
5102 #undef NEONMAP0
5103 #undef NEONMAP1
5104 #undef NEONMAP2
5105 
5106 static bool NEONSIMDIntrinsicsProvenSorted = false;
5107 
5108 static bool AArch64SIMDIntrinsicsProvenSorted = false;
5109 static bool AArch64SISDIntrinsicsProvenSorted = false;
5110 
5111 
5112 static const NeonIntrinsicInfo *
5113 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
5114                        unsigned BuiltinID, bool &MapProvenSorted) {
5115 
5116 #ifndef NDEBUG
5117   if (!MapProvenSorted) {
5118     assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
5119     MapProvenSorted = true;
5120   }
5121 #endif
5122 
5123   const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
5124 
5125   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5126     return Builtin;
5127 
5128   return nullptr;
5129 }
5130 
5131 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5132                                                    unsigned Modifier,
5133                                                    llvm::Type *ArgType,
5134                                                    const CallExpr *E) {
5135   int VectorSize = 0;
5136   if (Modifier & Use64BitVectors)
5137     VectorSize = 64;
5138   else if (Modifier & Use128BitVectors)
5139     VectorSize = 128;
5140 
5141   // Return type.
5142   SmallVector<llvm::Type *, 3> Tys;
5143   if (Modifier & AddRetType) {
5144     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5145     if (Modifier & VectorizeRetType)
5146       Ty = llvm::VectorType::get(
5147           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5148 
5149     Tys.push_back(Ty);
5150   }
5151 
5152   // Arguments.
5153   if (Modifier & VectorizeArgTypes) {
5154     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5155     ArgType = llvm::VectorType::get(ArgType, Elts);
5156   }
5157 
5158   if (Modifier & (Add1ArgType | Add2ArgTypes))
5159     Tys.push_back(ArgType);
5160 
5161   if (Modifier & Add2ArgTypes)
5162     Tys.push_back(ArgType);
5163 
5164   if (Modifier & InventFloatType)
5165     Tys.push_back(FloatTy);
5166 
5167   return CGM.getIntrinsic(IntrinsicID, Tys);
5168 }
5169 
5170 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
5171                                             const NeonIntrinsicInfo &SISDInfo,
5172                                             SmallVectorImpl<Value *> &Ops,
5173                                             const CallExpr *E) {
5174   unsigned BuiltinID = SISDInfo.BuiltinID;
5175   unsigned int Int = SISDInfo.LLVMIntrinsic;
5176   unsigned Modifier = SISDInfo.TypeModifier;
5177   const char *s = SISDInfo.NameHint;
5178 
5179   switch (BuiltinID) {
5180   case NEON::BI__builtin_neon_vcled_s64:
5181   case NEON::BI__builtin_neon_vcled_u64:
5182   case NEON::BI__builtin_neon_vcles_f32:
5183   case NEON::BI__builtin_neon_vcled_f64:
5184   case NEON::BI__builtin_neon_vcltd_s64:
5185   case NEON::BI__builtin_neon_vcltd_u64:
5186   case NEON::BI__builtin_neon_vclts_f32:
5187   case NEON::BI__builtin_neon_vcltd_f64:
5188   case NEON::BI__builtin_neon_vcales_f32:
5189   case NEON::BI__builtin_neon_vcaled_f64:
5190   case NEON::BI__builtin_neon_vcalts_f32:
5191   case NEON::BI__builtin_neon_vcaltd_f64:
5192     // Only one direction of comparisons actually exist, cmle is actually a cmge
5193     // with swapped operands. The table gives us the right intrinsic but we
5194     // still need to do the swap.
5195     std::swap(Ops[0], Ops[1]);
5196     break;
5197   }
5198 
5199   assert(Int && "Generic code assumes a valid intrinsic");
5200 
5201   // Determine the type(s) of this overloaded AArch64 intrinsic.
5202   const Expr *Arg = E->getArg(0);
5203   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5204   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5205 
5206   int j = 0;
5207   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5208   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5209        ai != ae; ++ai, ++j) {
5210     llvm::Type *ArgTy = ai->getType();
5211     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5212              ArgTy->getPrimitiveSizeInBits())
5213       continue;
5214 
5215     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5216     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5217     // it before inserting.
5218     Ops[j] =
5219         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5220     Ops[j] =
5221         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5222   }
5223 
5224   Value *Result = CGF.EmitNeonCall(F, Ops, s);
5225   llvm::Type *ResultType = CGF.ConvertType(E->getType());
5226   if (ResultType->getPrimitiveSizeInBits() <
5227       Result->getType()->getPrimitiveSizeInBits())
5228     return CGF.Builder.CreateExtractElement(Result, C0);
5229 
5230   return CGF.Builder.CreateBitCast(Result, ResultType, s);
5231 }
5232 
5233 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5234     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5235     const char *NameHint, unsigned Modifier, const CallExpr *E,
5236     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5237     llvm::Triple::ArchType Arch) {
5238   // Get the last argument, which specifies the vector type.
5239   llvm::APSInt NeonTypeConst;
5240   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5241   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5242     return nullptr;
5243 
5244   // Determine the type of this overloaded NEON intrinsic.
5245   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5246   bool Usgn = Type.isUnsigned();
5247   bool Quad = Type.isQuad();
5248   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5249 
5250   llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5251   llvm::Type *Ty = VTy;
5252   if (!Ty)
5253     return nullptr;
5254 
5255   auto getAlignmentValue32 = [&](Address addr) -> Value* {
5256     return Builder.getInt32(addr.getAlignment().getQuantity());
5257   };
5258 
5259   unsigned Int = LLVMIntrinsic;
5260   if ((Modifier & UnsignedAlts) && !Usgn)
5261     Int = AltLLVMIntrinsic;
5262 
5263   switch (BuiltinID) {
5264   default: break;
5265   case NEON::BI__builtin_neon_vpadd_v:
5266   case NEON::BI__builtin_neon_vpaddq_v:
5267     // We don't allow fp/int overloading of intrinsics.
5268     if (VTy->getElementType()->isFloatingPointTy() &&
5269         Int == Intrinsic::aarch64_neon_addp)
5270       Int = Intrinsic::aarch64_neon_faddp;
5271     break;
5272   case NEON::BI__builtin_neon_vabs_v:
5273   case NEON::BI__builtin_neon_vabsq_v:
5274     if (VTy->getElementType()->isFloatingPointTy())
5275       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5276     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5277   case NEON::BI__builtin_neon_vaddhn_v: {
5278     llvm::VectorType *SrcTy =
5279         llvm::VectorType::getExtendedElementVectorType(VTy);
5280 
5281     // %sum = add <4 x i32> %lhs, %rhs
5282     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5283     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5284     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5285 
5286     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5287     Constant *ShiftAmt =
5288         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5289     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5290 
5291     // %res = trunc <4 x i32> %high to <4 x i16>
5292     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5293   }
5294   case NEON::BI__builtin_neon_vcale_v:
5295   case NEON::BI__builtin_neon_vcaleq_v:
5296   case NEON::BI__builtin_neon_vcalt_v:
5297   case NEON::BI__builtin_neon_vcaltq_v:
5298     std::swap(Ops[0], Ops[1]);
5299     LLVM_FALLTHROUGH;
5300   case NEON::BI__builtin_neon_vcage_v:
5301   case NEON::BI__builtin_neon_vcageq_v:
5302   case NEON::BI__builtin_neon_vcagt_v:
5303   case NEON::BI__builtin_neon_vcagtq_v: {
5304     llvm::Type *Ty;
5305     switch (VTy->getScalarSizeInBits()) {
5306     default: llvm_unreachable("unexpected type");
5307     case 32:
5308       Ty = FloatTy;
5309       break;
5310     case 64:
5311       Ty = DoubleTy;
5312       break;
5313     case 16:
5314       Ty = HalfTy;
5315       break;
5316     }
5317     llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5318     llvm::Type *Tys[] = { VTy, VecFlt };
5319     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5320     return EmitNeonCall(F, Ops, NameHint);
5321   }
5322   case NEON::BI__builtin_neon_vceqz_v:
5323   case NEON::BI__builtin_neon_vceqzq_v:
5324     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5325                                          ICmpInst::ICMP_EQ, "vceqz");
5326   case NEON::BI__builtin_neon_vcgez_v:
5327   case NEON::BI__builtin_neon_vcgezq_v:
5328     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5329                                          ICmpInst::ICMP_SGE, "vcgez");
5330   case NEON::BI__builtin_neon_vclez_v:
5331   case NEON::BI__builtin_neon_vclezq_v:
5332     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5333                                          ICmpInst::ICMP_SLE, "vclez");
5334   case NEON::BI__builtin_neon_vcgtz_v:
5335   case NEON::BI__builtin_neon_vcgtzq_v:
5336     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5337                                          ICmpInst::ICMP_SGT, "vcgtz");
5338   case NEON::BI__builtin_neon_vcltz_v:
5339   case NEON::BI__builtin_neon_vcltzq_v:
5340     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5341                                          ICmpInst::ICMP_SLT, "vcltz");
5342   case NEON::BI__builtin_neon_vclz_v:
5343   case NEON::BI__builtin_neon_vclzq_v:
5344     // We generate target-independent intrinsic, which needs a second argument
5345     // for whether or not clz of zero is undefined; on ARM it isn't.
5346     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5347     break;
5348   case NEON::BI__builtin_neon_vcvt_f32_v:
5349   case NEON::BI__builtin_neon_vcvtq_f32_v:
5350     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5351     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5352                      HasLegalHalfType);
5353     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5354                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5355   case NEON::BI__builtin_neon_vcvt_f16_v:
5356   case NEON::BI__builtin_neon_vcvtq_f16_v:
5357     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5358     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5359                      HasLegalHalfType);
5360     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5361                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5362   case NEON::BI__builtin_neon_vcvt_n_f16_v:
5363   case NEON::BI__builtin_neon_vcvt_n_f32_v:
5364   case NEON::BI__builtin_neon_vcvt_n_f64_v:
5365   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5366   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5367   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5368     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5369     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5370     Function *F = CGM.getIntrinsic(Int, Tys);
5371     return EmitNeonCall(F, Ops, "vcvt_n");
5372   }
5373   case NEON::BI__builtin_neon_vcvt_n_s16_v:
5374   case NEON::BI__builtin_neon_vcvt_n_s32_v:
5375   case NEON::BI__builtin_neon_vcvt_n_u16_v:
5376   case NEON::BI__builtin_neon_vcvt_n_u32_v:
5377   case NEON::BI__builtin_neon_vcvt_n_s64_v:
5378   case NEON::BI__builtin_neon_vcvt_n_u64_v:
5379   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5380   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5381   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5382   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5383   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5384   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5385     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5386     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5387     return EmitNeonCall(F, Ops, "vcvt_n");
5388   }
5389   case NEON::BI__builtin_neon_vcvt_s32_v:
5390   case NEON::BI__builtin_neon_vcvt_u32_v:
5391   case NEON::BI__builtin_neon_vcvt_s64_v:
5392   case NEON::BI__builtin_neon_vcvt_u64_v:
5393   case NEON::BI__builtin_neon_vcvt_s16_v:
5394   case NEON::BI__builtin_neon_vcvt_u16_v:
5395   case NEON::BI__builtin_neon_vcvtq_s32_v:
5396   case NEON::BI__builtin_neon_vcvtq_u32_v:
5397   case NEON::BI__builtin_neon_vcvtq_s64_v:
5398   case NEON::BI__builtin_neon_vcvtq_u64_v:
5399   case NEON::BI__builtin_neon_vcvtq_s16_v:
5400   case NEON::BI__builtin_neon_vcvtq_u16_v: {
5401     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5402     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5403                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5404   }
5405   case NEON::BI__builtin_neon_vcvta_s16_v:
5406   case NEON::BI__builtin_neon_vcvta_s32_v:
5407   case NEON::BI__builtin_neon_vcvta_s64_v:
5408   case NEON::BI__builtin_neon_vcvta_u16_v:
5409   case NEON::BI__builtin_neon_vcvta_u32_v:
5410   case NEON::BI__builtin_neon_vcvta_u64_v:
5411   case NEON::BI__builtin_neon_vcvtaq_s16_v:
5412   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5413   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5414   case NEON::BI__builtin_neon_vcvtaq_u16_v:
5415   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5416   case NEON::BI__builtin_neon_vcvtaq_u64_v:
5417   case NEON::BI__builtin_neon_vcvtn_s16_v:
5418   case NEON::BI__builtin_neon_vcvtn_s32_v:
5419   case NEON::BI__builtin_neon_vcvtn_s64_v:
5420   case NEON::BI__builtin_neon_vcvtn_u16_v:
5421   case NEON::BI__builtin_neon_vcvtn_u32_v:
5422   case NEON::BI__builtin_neon_vcvtn_u64_v:
5423   case NEON::BI__builtin_neon_vcvtnq_s16_v:
5424   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5425   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5426   case NEON::BI__builtin_neon_vcvtnq_u16_v:
5427   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5428   case NEON::BI__builtin_neon_vcvtnq_u64_v:
5429   case NEON::BI__builtin_neon_vcvtp_s16_v:
5430   case NEON::BI__builtin_neon_vcvtp_s32_v:
5431   case NEON::BI__builtin_neon_vcvtp_s64_v:
5432   case NEON::BI__builtin_neon_vcvtp_u16_v:
5433   case NEON::BI__builtin_neon_vcvtp_u32_v:
5434   case NEON::BI__builtin_neon_vcvtp_u64_v:
5435   case NEON::BI__builtin_neon_vcvtpq_s16_v:
5436   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5437   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5438   case NEON::BI__builtin_neon_vcvtpq_u16_v:
5439   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5440   case NEON::BI__builtin_neon_vcvtpq_u64_v:
5441   case NEON::BI__builtin_neon_vcvtm_s16_v:
5442   case NEON::BI__builtin_neon_vcvtm_s32_v:
5443   case NEON::BI__builtin_neon_vcvtm_s64_v:
5444   case NEON::BI__builtin_neon_vcvtm_u16_v:
5445   case NEON::BI__builtin_neon_vcvtm_u32_v:
5446   case NEON::BI__builtin_neon_vcvtm_u64_v:
5447   case NEON::BI__builtin_neon_vcvtmq_s16_v:
5448   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5449   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5450   case NEON::BI__builtin_neon_vcvtmq_u16_v:
5451   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5452   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5453     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5454     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5455   }
5456   case NEON::BI__builtin_neon_vext_v:
5457   case NEON::BI__builtin_neon_vextq_v: {
5458     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5459     SmallVector<uint32_t, 16> Indices;
5460     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5461       Indices.push_back(i+CV);
5462 
5463     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5464     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5465     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5466   }
5467   case NEON::BI__builtin_neon_vfma_v:
5468   case NEON::BI__builtin_neon_vfmaq_v: {
5469     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5470     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5471     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5472     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5473 
5474     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5475     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5476   }
5477   case NEON::BI__builtin_neon_vld1_v:
5478   case NEON::BI__builtin_neon_vld1q_v: {
5479     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5480     Ops.push_back(getAlignmentValue32(PtrOp0));
5481     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5482   }
5483   case NEON::BI__builtin_neon_vld1_x2_v:
5484   case NEON::BI__builtin_neon_vld1q_x2_v:
5485   case NEON::BI__builtin_neon_vld1_x3_v:
5486   case NEON::BI__builtin_neon_vld1q_x3_v:
5487   case NEON::BI__builtin_neon_vld1_x4_v:
5488   case NEON::BI__builtin_neon_vld1q_x4_v: {
5489     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5490     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5491     llvm::Type *Tys[2] = { VTy, PTy };
5492     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5493     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5494     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5495     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5496     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5497   }
5498   case NEON::BI__builtin_neon_vld2_v:
5499   case NEON::BI__builtin_neon_vld2q_v:
5500   case NEON::BI__builtin_neon_vld3_v:
5501   case NEON::BI__builtin_neon_vld3q_v:
5502   case NEON::BI__builtin_neon_vld4_v:
5503   case NEON::BI__builtin_neon_vld4q_v:
5504   case NEON::BI__builtin_neon_vld2_dup_v:
5505   case NEON::BI__builtin_neon_vld2q_dup_v:
5506   case NEON::BI__builtin_neon_vld3_dup_v:
5507   case NEON::BI__builtin_neon_vld3q_dup_v:
5508   case NEON::BI__builtin_neon_vld4_dup_v:
5509   case NEON::BI__builtin_neon_vld4q_dup_v: {
5510     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5511     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5512     Value *Align = getAlignmentValue32(PtrOp1);
5513     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5514     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5515     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5516     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5517   }
5518   case NEON::BI__builtin_neon_vld1_dup_v:
5519   case NEON::BI__builtin_neon_vld1q_dup_v: {
5520     Value *V = UndefValue::get(Ty);
5521     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5522     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5523     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5524     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5525     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5526     return EmitNeonSplat(Ops[0], CI);
5527   }
5528   case NEON::BI__builtin_neon_vld2_lane_v:
5529   case NEON::BI__builtin_neon_vld2q_lane_v:
5530   case NEON::BI__builtin_neon_vld3_lane_v:
5531   case NEON::BI__builtin_neon_vld3q_lane_v:
5532   case NEON::BI__builtin_neon_vld4_lane_v:
5533   case NEON::BI__builtin_neon_vld4q_lane_v: {
5534     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5535     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5536     for (unsigned I = 2; I < Ops.size() - 1; ++I)
5537       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5538     Ops.push_back(getAlignmentValue32(PtrOp1));
5539     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5540     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5541     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5542     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5543   }
5544   case NEON::BI__builtin_neon_vmovl_v: {
5545     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5546     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5547     if (Usgn)
5548       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5549     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5550   }
5551   case NEON::BI__builtin_neon_vmovn_v: {
5552     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5553     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5554     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5555   }
5556   case NEON::BI__builtin_neon_vmull_v:
5557     // FIXME: the integer vmull operations could be emitted in terms of pure
5558     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5559     // hoisting the exts outside loops. Until global ISel comes along that can
5560     // see through such movement this leads to bad CodeGen. So we need an
5561     // intrinsic for now.
5562     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5563     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5564     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5565   case NEON::BI__builtin_neon_vpadal_v:
5566   case NEON::BI__builtin_neon_vpadalq_v: {
5567     // The source operand type has twice as many elements of half the size.
5568     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5569     llvm::Type *EltTy =
5570       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5571     llvm::Type *NarrowTy =
5572       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5573     llvm::Type *Tys[2] = { Ty, NarrowTy };
5574     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5575   }
5576   case NEON::BI__builtin_neon_vpaddl_v:
5577   case NEON::BI__builtin_neon_vpaddlq_v: {
5578     // The source operand type has twice as many elements of half the size.
5579     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5580     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5581     llvm::Type *NarrowTy =
5582       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5583     llvm::Type *Tys[2] = { Ty, NarrowTy };
5584     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5585   }
5586   case NEON::BI__builtin_neon_vqdmlal_v:
5587   case NEON::BI__builtin_neon_vqdmlsl_v: {
5588     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5589     Ops[1] =
5590         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5591     Ops.resize(2);
5592     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5593   }
5594   case NEON::BI__builtin_neon_vqshl_n_v:
5595   case NEON::BI__builtin_neon_vqshlq_n_v:
5596     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5597                         1, false);
5598   case NEON::BI__builtin_neon_vqshlu_n_v:
5599   case NEON::BI__builtin_neon_vqshluq_n_v:
5600     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5601                         1, false);
5602   case NEON::BI__builtin_neon_vrecpe_v:
5603   case NEON::BI__builtin_neon_vrecpeq_v:
5604   case NEON::BI__builtin_neon_vrsqrte_v:
5605   case NEON::BI__builtin_neon_vrsqrteq_v:
5606     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5607     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5608   case NEON::BI__builtin_neon_vrndi_v:
5609   case NEON::BI__builtin_neon_vrndiq_v:
5610     Int = Intrinsic::nearbyint;
5611     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5612   case NEON::BI__builtin_neon_vrshr_n_v:
5613   case NEON::BI__builtin_neon_vrshrq_n_v:
5614     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5615                         1, true);
5616   case NEON::BI__builtin_neon_vshl_n_v:
5617   case NEON::BI__builtin_neon_vshlq_n_v:
5618     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5619     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5620                              "vshl_n");
5621   case NEON::BI__builtin_neon_vshll_n_v: {
5622     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5623     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5624     if (Usgn)
5625       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5626     else
5627       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5628     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5629     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5630   }
5631   case NEON::BI__builtin_neon_vshrn_n_v: {
5632     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5633     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5634     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5635     if (Usgn)
5636       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5637     else
5638       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5639     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5640   }
5641   case NEON::BI__builtin_neon_vshr_n_v:
5642   case NEON::BI__builtin_neon_vshrq_n_v:
5643     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5644   case NEON::BI__builtin_neon_vst1_v:
5645   case NEON::BI__builtin_neon_vst1q_v:
5646   case NEON::BI__builtin_neon_vst2_v:
5647   case NEON::BI__builtin_neon_vst2q_v:
5648   case NEON::BI__builtin_neon_vst3_v:
5649   case NEON::BI__builtin_neon_vst3q_v:
5650   case NEON::BI__builtin_neon_vst4_v:
5651   case NEON::BI__builtin_neon_vst4q_v:
5652   case NEON::BI__builtin_neon_vst2_lane_v:
5653   case NEON::BI__builtin_neon_vst2q_lane_v:
5654   case NEON::BI__builtin_neon_vst3_lane_v:
5655   case NEON::BI__builtin_neon_vst3q_lane_v:
5656   case NEON::BI__builtin_neon_vst4_lane_v:
5657   case NEON::BI__builtin_neon_vst4q_lane_v: {
5658     llvm::Type *Tys[] = {Int8PtrTy, Ty};
5659     Ops.push_back(getAlignmentValue32(PtrOp0));
5660     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5661   }
5662   case NEON::BI__builtin_neon_vst1_x2_v:
5663   case NEON::BI__builtin_neon_vst1q_x2_v:
5664   case NEON::BI__builtin_neon_vst1_x3_v:
5665   case NEON::BI__builtin_neon_vst1q_x3_v:
5666   case NEON::BI__builtin_neon_vst1_x4_v:
5667   case NEON::BI__builtin_neon_vst1q_x4_v: {
5668     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5669     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5670     // in AArch64 it comes last. We may want to stick to one or another.
5671     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
5672       llvm::Type *Tys[2] = { VTy, PTy };
5673       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5674       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5675     }
5676     llvm::Type *Tys[2] = { PTy, VTy };
5677     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5678   }
5679   case NEON::BI__builtin_neon_vsubhn_v: {
5680     llvm::VectorType *SrcTy =
5681         llvm::VectorType::getExtendedElementVectorType(VTy);
5682 
5683     // %sum = add <4 x i32> %lhs, %rhs
5684     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5685     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5686     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5687 
5688     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5689     Constant *ShiftAmt =
5690         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5691     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5692 
5693     // %res = trunc <4 x i32> %high to <4 x i16>
5694     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5695   }
5696   case NEON::BI__builtin_neon_vtrn_v:
5697   case NEON::BI__builtin_neon_vtrnq_v: {
5698     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5699     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5700     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5701     Value *SV = nullptr;
5702 
5703     for (unsigned vi = 0; vi != 2; ++vi) {
5704       SmallVector<uint32_t, 16> Indices;
5705       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5706         Indices.push_back(i+vi);
5707         Indices.push_back(i+e+vi);
5708       }
5709       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5710       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5711       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5712     }
5713     return SV;
5714   }
5715   case NEON::BI__builtin_neon_vtst_v:
5716   case NEON::BI__builtin_neon_vtstq_v: {
5717     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5718     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5719     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5720     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5721                                 ConstantAggregateZero::get(Ty));
5722     return Builder.CreateSExt(Ops[0], Ty, "vtst");
5723   }
5724   case NEON::BI__builtin_neon_vuzp_v:
5725   case NEON::BI__builtin_neon_vuzpq_v: {
5726     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5727     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5728     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5729     Value *SV = nullptr;
5730 
5731     for (unsigned vi = 0; vi != 2; ++vi) {
5732       SmallVector<uint32_t, 16> Indices;
5733       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5734         Indices.push_back(2*i+vi);
5735 
5736       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5737       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5738       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5739     }
5740     return SV;
5741   }
5742   case NEON::BI__builtin_neon_vzip_v:
5743   case NEON::BI__builtin_neon_vzipq_v: {
5744     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5745     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5746     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5747     Value *SV = nullptr;
5748 
5749     for (unsigned vi = 0; vi != 2; ++vi) {
5750       SmallVector<uint32_t, 16> Indices;
5751       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5752         Indices.push_back((i + vi*e) >> 1);
5753         Indices.push_back(((i + vi*e) >> 1)+e);
5754       }
5755       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5756       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5757       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5758     }
5759     return SV;
5760   }
5761   case NEON::BI__builtin_neon_vdot_v:
5762   case NEON::BI__builtin_neon_vdotq_v: {
5763     llvm::Type *InputTy =
5764         llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5765     llvm::Type *Tys[2] = { Ty, InputTy };
5766     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5767     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5768   }
5769   case NEON::BI__builtin_neon_vfmlal_low_v:
5770   case NEON::BI__builtin_neon_vfmlalq_low_v: {
5771     llvm::Type *InputTy =
5772         llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5773     llvm::Type *Tys[2] = { Ty, InputTy };
5774     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5775   }
5776   case NEON::BI__builtin_neon_vfmlsl_low_v:
5777   case NEON::BI__builtin_neon_vfmlslq_low_v: {
5778     llvm::Type *InputTy =
5779         llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5780     llvm::Type *Tys[2] = { Ty, InputTy };
5781     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5782   }
5783   case NEON::BI__builtin_neon_vfmlal_high_v:
5784   case NEON::BI__builtin_neon_vfmlalq_high_v: {
5785     llvm::Type *InputTy =
5786            llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5787     llvm::Type *Tys[2] = { Ty, InputTy };
5788     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5789   }
5790   case NEON::BI__builtin_neon_vfmlsl_high_v:
5791   case NEON::BI__builtin_neon_vfmlslq_high_v: {
5792     llvm::Type *InputTy =
5793            llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5794     llvm::Type *Tys[2] = { Ty, InputTy };
5795     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5796   }
5797   }
5798 
5799   assert(Int && "Expected valid intrinsic number");
5800 
5801   // Determine the type(s) of this overloaded AArch64 intrinsic.
5802   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5803 
5804   Value *Result = EmitNeonCall(F, Ops, NameHint);
5805   llvm::Type *ResultType = ConvertType(E->getType());
5806   // AArch64 intrinsic one-element vector type cast to
5807   // scalar type expected by the builtin
5808   return Builder.CreateBitCast(Result, ResultType, NameHint);
5809 }
5810 
5811 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5812     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5813     const CmpInst::Predicate Ip, const Twine &Name) {
5814   llvm::Type *OTy = Op->getType();
5815 
5816   // FIXME: this is utterly horrific. We should not be looking at previous
5817   // codegen context to find out what needs doing. Unfortunately TableGen
5818   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5819   // (etc).
5820   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5821     OTy = BI->getOperand(0)->getType();
5822 
5823   Op = Builder.CreateBitCast(Op, OTy);
5824   if (OTy->getScalarType()->isFloatingPointTy()) {
5825     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5826   } else {
5827     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5828   }
5829   return Builder.CreateSExt(Op, Ty, Name);
5830 }
5831 
5832 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5833                                  Value *ExtOp, Value *IndexOp,
5834                                  llvm::Type *ResTy, unsigned IntID,
5835                                  const char *Name) {
5836   SmallVector<Value *, 2> TblOps;
5837   if (ExtOp)
5838     TblOps.push_back(ExtOp);
5839 
5840   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
5841   SmallVector<uint32_t, 16> Indices;
5842   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
5843   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
5844     Indices.push_back(2*i);
5845     Indices.push_back(2*i+1);
5846   }
5847 
5848   int PairPos = 0, End = Ops.size() - 1;
5849   while (PairPos < End) {
5850     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5851                                                      Ops[PairPos+1], Indices,
5852                                                      Name));
5853     PairPos += 2;
5854   }
5855 
5856   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
5857   // of the 128-bit lookup table with zero.
5858   if (PairPos == End) {
5859     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
5860     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5861                                                      ZeroTbl, Indices, Name));
5862   }
5863 
5864   Function *TblF;
5865   TblOps.push_back(IndexOp);
5866   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
5867 
5868   return CGF.EmitNeonCall(TblF, TblOps, Name);
5869 }
5870 
5871 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
5872   unsigned Value;
5873   switch (BuiltinID) {
5874   default:
5875     return nullptr;
5876   case ARM::BI__builtin_arm_nop:
5877     Value = 0;
5878     break;
5879   case ARM::BI__builtin_arm_yield:
5880   case ARM::BI__yield:
5881     Value = 1;
5882     break;
5883   case ARM::BI__builtin_arm_wfe:
5884   case ARM::BI__wfe:
5885     Value = 2;
5886     break;
5887   case ARM::BI__builtin_arm_wfi:
5888   case ARM::BI__wfi:
5889     Value = 3;
5890     break;
5891   case ARM::BI__builtin_arm_sev:
5892   case ARM::BI__sev:
5893     Value = 4;
5894     break;
5895   case ARM::BI__builtin_arm_sevl:
5896   case ARM::BI__sevl:
5897     Value = 5;
5898     break;
5899   }
5900 
5901   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
5902                             llvm::ConstantInt::get(Int32Ty, Value));
5903 }
5904 
5905 // Generates the IR for the read/write special register builtin,
5906 // ValueType is the type of the value that is to be written or read,
5907 // RegisterType is the type of the register being written to or read from.
5908 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
5909                                          const CallExpr *E,
5910                                          llvm::Type *RegisterType,
5911                                          llvm::Type *ValueType,
5912                                          bool IsRead,
5913                                          StringRef SysReg = "") {
5914   // write and register intrinsics only support 32 and 64 bit operations.
5915   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
5916           && "Unsupported size for register.");
5917 
5918   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5919   CodeGen::CodeGenModule &CGM = CGF.CGM;
5920   LLVMContext &Context = CGM.getLLVMContext();
5921 
5922   if (SysReg.empty()) {
5923     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
5924     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
5925   }
5926 
5927   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
5928   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
5929   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
5930 
5931   llvm::Type *Types[] = { RegisterType };
5932 
5933   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
5934   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
5935             && "Can't fit 64-bit value in 32-bit register");
5936 
5937   if (IsRead) {
5938     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
5939     llvm::Value *Call = Builder.CreateCall(F, Metadata);
5940 
5941     if (MixedTypes)
5942       // Read into 64 bit register and then truncate result to 32 bit.
5943       return Builder.CreateTrunc(Call, ValueType);
5944 
5945     if (ValueType->isPointerTy())
5946       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
5947       return Builder.CreateIntToPtr(Call, ValueType);
5948 
5949     return Call;
5950   }
5951 
5952   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
5953   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
5954   if (MixedTypes) {
5955     // Extend 32 bit write value to 64 bit to pass to write.
5956     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
5957     return Builder.CreateCall(F, { Metadata, ArgValue });
5958   }
5959 
5960   if (ValueType->isPointerTy()) {
5961     // Have VoidPtrTy ArgValue but want to return an i32/i64.
5962     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
5963     return Builder.CreateCall(F, { Metadata, ArgValue });
5964   }
5965 
5966   return Builder.CreateCall(F, { Metadata, ArgValue });
5967 }
5968 
5969 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
5970 /// argument that specifies the vector type.
5971 static bool HasExtraNeonArgument(unsigned BuiltinID) {
5972   switch (BuiltinID) {
5973   default: break;
5974   case NEON::BI__builtin_neon_vget_lane_i8:
5975   case NEON::BI__builtin_neon_vget_lane_i16:
5976   case NEON::BI__builtin_neon_vget_lane_i32:
5977   case NEON::BI__builtin_neon_vget_lane_i64:
5978   case NEON::BI__builtin_neon_vget_lane_f32:
5979   case NEON::BI__builtin_neon_vgetq_lane_i8:
5980   case NEON::BI__builtin_neon_vgetq_lane_i16:
5981   case NEON::BI__builtin_neon_vgetq_lane_i32:
5982   case NEON::BI__builtin_neon_vgetq_lane_i64:
5983   case NEON::BI__builtin_neon_vgetq_lane_f32:
5984   case NEON::BI__builtin_neon_vset_lane_i8:
5985   case NEON::BI__builtin_neon_vset_lane_i16:
5986   case NEON::BI__builtin_neon_vset_lane_i32:
5987   case NEON::BI__builtin_neon_vset_lane_i64:
5988   case NEON::BI__builtin_neon_vset_lane_f32:
5989   case NEON::BI__builtin_neon_vsetq_lane_i8:
5990   case NEON::BI__builtin_neon_vsetq_lane_i16:
5991   case NEON::BI__builtin_neon_vsetq_lane_i32:
5992   case NEON::BI__builtin_neon_vsetq_lane_i64:
5993   case NEON::BI__builtin_neon_vsetq_lane_f32:
5994   case NEON::BI__builtin_neon_vsha1h_u32:
5995   case NEON::BI__builtin_neon_vsha1cq_u32:
5996   case NEON::BI__builtin_neon_vsha1pq_u32:
5997   case NEON::BI__builtin_neon_vsha1mq_u32:
5998   case clang::ARM::BI_MoveToCoprocessor:
5999   case clang::ARM::BI_MoveToCoprocessor2:
6000     return false;
6001   }
6002   return true;
6003 }
6004 
6005 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6006                                            const CallExpr *E,
6007                                            llvm::Triple::ArchType Arch) {
6008   if (auto Hint = GetValueForARMHint(BuiltinID))
6009     return Hint;
6010 
6011   if (BuiltinID == ARM::BI__emit) {
6012     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6013     llvm::FunctionType *FTy =
6014         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6015 
6016     Expr::EvalResult Result;
6017     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6018       llvm_unreachable("Sema will ensure that the parameter is constant");
6019 
6020     llvm::APSInt Value = Result.Val.getInt();
6021     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6022 
6023     llvm::InlineAsm *Emit =
6024         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6025                                  /*hasSideEffects=*/true)
6026                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6027                                  /*hasSideEffects=*/true);
6028 
6029     return Builder.CreateCall(Emit);
6030   }
6031 
6032   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6033     Value *Option = EmitScalarExpr(E->getArg(0));
6034     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6035   }
6036 
6037   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6038     Value *Address = EmitScalarExpr(E->getArg(0));
6039     Value *RW      = EmitScalarExpr(E->getArg(1));
6040     Value *IsData  = EmitScalarExpr(E->getArg(2));
6041 
6042     // Locality is not supported on ARM target
6043     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6044 
6045     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6046     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6047   }
6048 
6049   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6050     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6051     return Builder.CreateCall(
6052         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6053   }
6054 
6055   if (BuiltinID == ARM::BI__clear_cache) {
6056     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6057     const FunctionDecl *FD = E->getDirectCallee();
6058     Value *Ops[2];
6059     for (unsigned i = 0; i < 2; i++)
6060       Ops[i] = EmitScalarExpr(E->getArg(i));
6061     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6062     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6063     StringRef Name = FD->getName();
6064     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6065   }
6066 
6067   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6068       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6069     Function *F;
6070 
6071     switch (BuiltinID) {
6072     default: llvm_unreachable("unexpected builtin");
6073     case ARM::BI__builtin_arm_mcrr:
6074       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6075       break;
6076     case ARM::BI__builtin_arm_mcrr2:
6077       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6078       break;
6079     }
6080 
6081     // MCRR{2} instruction has 5 operands but
6082     // the intrinsic has 4 because Rt and Rt2
6083     // are represented as a single unsigned 64
6084     // bit integer in the intrinsic definition
6085     // but internally it's represented as 2 32
6086     // bit integers.
6087 
6088     Value *Coproc = EmitScalarExpr(E->getArg(0));
6089     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6090     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6091     Value *CRm = EmitScalarExpr(E->getArg(3));
6092 
6093     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6094     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6095     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6096     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6097 
6098     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6099   }
6100 
6101   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6102       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6103     Function *F;
6104 
6105     switch (BuiltinID) {
6106     default: llvm_unreachable("unexpected builtin");
6107     case ARM::BI__builtin_arm_mrrc:
6108       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6109       break;
6110     case ARM::BI__builtin_arm_mrrc2:
6111       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6112       break;
6113     }
6114 
6115     Value *Coproc = EmitScalarExpr(E->getArg(0));
6116     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6117     Value *CRm  = EmitScalarExpr(E->getArg(2));
6118     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6119 
6120     // Returns an unsigned 64 bit integer, represented
6121     // as two 32 bit integers.
6122 
6123     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6124     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6125     Rt = Builder.CreateZExt(Rt, Int64Ty);
6126     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6127 
6128     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6129     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6130     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6131 
6132     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6133   }
6134 
6135   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6136       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6137         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6138        getContext().getTypeSize(E->getType()) == 64) ||
6139       BuiltinID == ARM::BI__ldrexd) {
6140     Function *F;
6141 
6142     switch (BuiltinID) {
6143     default: llvm_unreachable("unexpected builtin");
6144     case ARM::BI__builtin_arm_ldaex:
6145       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6146       break;
6147     case ARM::BI__builtin_arm_ldrexd:
6148     case ARM::BI__builtin_arm_ldrex:
6149     case ARM::BI__ldrexd:
6150       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6151       break;
6152     }
6153 
6154     Value *LdPtr = EmitScalarExpr(E->getArg(0));
6155     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6156                                     "ldrexd");
6157 
6158     Value *Val0 = Builder.CreateExtractValue(Val, 1);
6159     Value *Val1 = Builder.CreateExtractValue(Val, 0);
6160     Val0 = Builder.CreateZExt(Val0, Int64Ty);
6161     Val1 = Builder.CreateZExt(Val1, Int64Ty);
6162 
6163     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6164     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6165     Val = Builder.CreateOr(Val, Val1);
6166     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6167   }
6168 
6169   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6170       BuiltinID == ARM::BI__builtin_arm_ldaex) {
6171     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6172 
6173     QualType Ty = E->getType();
6174     llvm::Type *RealResTy = ConvertType(Ty);
6175     llvm::Type *PtrTy = llvm::IntegerType::get(
6176         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6177     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6178 
6179     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6180                                        ? Intrinsic::arm_ldaex
6181                                        : Intrinsic::arm_ldrex,
6182                                    PtrTy);
6183     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6184 
6185     if (RealResTy->isPointerTy())
6186       return Builder.CreateIntToPtr(Val, RealResTy);
6187     else {
6188       llvm::Type *IntResTy = llvm::IntegerType::get(
6189           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6190       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6191       return Builder.CreateBitCast(Val, RealResTy);
6192     }
6193   }
6194 
6195   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6196       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6197         BuiltinID == ARM::BI__builtin_arm_strex) &&
6198        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6199     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6200                                        ? Intrinsic::arm_stlexd
6201                                        : Intrinsic::arm_strexd);
6202     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6203 
6204     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6205     Value *Val = EmitScalarExpr(E->getArg(0));
6206     Builder.CreateStore(Val, Tmp);
6207 
6208     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6209     Val = Builder.CreateLoad(LdPtr);
6210 
6211     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6212     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6213     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6214     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6215   }
6216 
6217   if (BuiltinID == ARM::BI__builtin_arm_strex ||
6218       BuiltinID == ARM::BI__builtin_arm_stlex) {
6219     Value *StoreVal = EmitScalarExpr(E->getArg(0));
6220     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6221 
6222     QualType Ty = E->getArg(0)->getType();
6223     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6224                                                  getContext().getTypeSize(Ty));
6225     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6226 
6227     if (StoreVal->getType()->isPointerTy())
6228       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6229     else {
6230       llvm::Type *IntTy = llvm::IntegerType::get(
6231           getLLVMContext(),
6232           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6233       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6234       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6235     }
6236 
6237     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6238                                        ? Intrinsic::arm_stlex
6239                                        : Intrinsic::arm_strex,
6240                                    StoreAddr->getType());
6241     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6242   }
6243 
6244   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6245     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6246     return Builder.CreateCall(F);
6247   }
6248 
6249   // CRC32
6250   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6251   switch (BuiltinID) {
6252   case ARM::BI__builtin_arm_crc32b:
6253     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6254   case ARM::BI__builtin_arm_crc32cb:
6255     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6256   case ARM::BI__builtin_arm_crc32h:
6257     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6258   case ARM::BI__builtin_arm_crc32ch:
6259     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6260   case ARM::BI__builtin_arm_crc32w:
6261   case ARM::BI__builtin_arm_crc32d:
6262     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6263   case ARM::BI__builtin_arm_crc32cw:
6264   case ARM::BI__builtin_arm_crc32cd:
6265     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6266   }
6267 
6268   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6269     Value *Arg0 = EmitScalarExpr(E->getArg(0));
6270     Value *Arg1 = EmitScalarExpr(E->getArg(1));
6271 
6272     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6273     // intrinsics, hence we need different codegen for these cases.
6274     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6275         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6276       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6277       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6278       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6279       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6280 
6281       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6282       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6283       return Builder.CreateCall(F, {Res, Arg1b});
6284     } else {
6285       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6286 
6287       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6288       return Builder.CreateCall(F, {Arg0, Arg1});
6289     }
6290   }
6291 
6292   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6293       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6294       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6295       BuiltinID == ARM::BI__builtin_arm_wsr ||
6296       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6297       BuiltinID == ARM::BI__builtin_arm_wsrp) {
6298 
6299     bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6300                   BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6301                   BuiltinID == ARM::BI__builtin_arm_rsrp;
6302 
6303     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6304                             BuiltinID == ARM::BI__builtin_arm_wsrp;
6305 
6306     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6307                    BuiltinID == ARM::BI__builtin_arm_wsr64;
6308 
6309     llvm::Type *ValueType;
6310     llvm::Type *RegisterType;
6311     if (IsPointerBuiltin) {
6312       ValueType = VoidPtrTy;
6313       RegisterType = Int32Ty;
6314     } else if (Is64Bit) {
6315       ValueType = RegisterType = Int64Ty;
6316     } else {
6317       ValueType = RegisterType = Int32Ty;
6318     }
6319 
6320     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6321   }
6322 
6323   // Find out if any arguments are required to be integer constant
6324   // expressions.
6325   unsigned ICEArguments = 0;
6326   ASTContext::GetBuiltinTypeError Error;
6327   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6328   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6329 
6330   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6331     return Builder.getInt32(addr.getAlignment().getQuantity());
6332   };
6333 
6334   Address PtrOp0 = Address::invalid();
6335   Address PtrOp1 = Address::invalid();
6336   SmallVector<Value*, 4> Ops;
6337   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6338   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6339   for (unsigned i = 0, e = NumArgs; i != e; i++) {
6340     if (i == 0) {
6341       switch (BuiltinID) {
6342       case NEON::BI__builtin_neon_vld1_v:
6343       case NEON::BI__builtin_neon_vld1q_v:
6344       case NEON::BI__builtin_neon_vld1q_lane_v:
6345       case NEON::BI__builtin_neon_vld1_lane_v:
6346       case NEON::BI__builtin_neon_vld1_dup_v:
6347       case NEON::BI__builtin_neon_vld1q_dup_v:
6348       case NEON::BI__builtin_neon_vst1_v:
6349       case NEON::BI__builtin_neon_vst1q_v:
6350       case NEON::BI__builtin_neon_vst1q_lane_v:
6351       case NEON::BI__builtin_neon_vst1_lane_v:
6352       case NEON::BI__builtin_neon_vst2_v:
6353       case NEON::BI__builtin_neon_vst2q_v:
6354       case NEON::BI__builtin_neon_vst2_lane_v:
6355       case NEON::BI__builtin_neon_vst2q_lane_v:
6356       case NEON::BI__builtin_neon_vst3_v:
6357       case NEON::BI__builtin_neon_vst3q_v:
6358       case NEON::BI__builtin_neon_vst3_lane_v:
6359       case NEON::BI__builtin_neon_vst3q_lane_v:
6360       case NEON::BI__builtin_neon_vst4_v:
6361       case NEON::BI__builtin_neon_vst4q_v:
6362       case NEON::BI__builtin_neon_vst4_lane_v:
6363       case NEON::BI__builtin_neon_vst4q_lane_v:
6364         // Get the alignment for the argument in addition to the value;
6365         // we'll use it later.
6366         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6367         Ops.push_back(PtrOp0.getPointer());
6368         continue;
6369       }
6370     }
6371     if (i == 1) {
6372       switch (BuiltinID) {
6373       case NEON::BI__builtin_neon_vld2_v:
6374       case NEON::BI__builtin_neon_vld2q_v:
6375       case NEON::BI__builtin_neon_vld3_v:
6376       case NEON::BI__builtin_neon_vld3q_v:
6377       case NEON::BI__builtin_neon_vld4_v:
6378       case NEON::BI__builtin_neon_vld4q_v:
6379       case NEON::BI__builtin_neon_vld2_lane_v:
6380       case NEON::BI__builtin_neon_vld2q_lane_v:
6381       case NEON::BI__builtin_neon_vld3_lane_v:
6382       case NEON::BI__builtin_neon_vld3q_lane_v:
6383       case NEON::BI__builtin_neon_vld4_lane_v:
6384       case NEON::BI__builtin_neon_vld4q_lane_v:
6385       case NEON::BI__builtin_neon_vld2_dup_v:
6386       case NEON::BI__builtin_neon_vld2q_dup_v:
6387       case NEON::BI__builtin_neon_vld3_dup_v:
6388       case NEON::BI__builtin_neon_vld3q_dup_v:
6389       case NEON::BI__builtin_neon_vld4_dup_v:
6390       case NEON::BI__builtin_neon_vld4q_dup_v:
6391         // Get the alignment for the argument in addition to the value;
6392         // we'll use it later.
6393         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6394         Ops.push_back(PtrOp1.getPointer());
6395         continue;
6396       }
6397     }
6398 
6399     if ((ICEArguments & (1 << i)) == 0) {
6400       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6401     } else {
6402       // If this is required to be a constant, constant fold it so that we know
6403       // that the generated intrinsic gets a ConstantInt.
6404       llvm::APSInt Result;
6405       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6406       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6407       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6408     }
6409   }
6410 
6411   switch (BuiltinID) {
6412   default: break;
6413 
6414   case NEON::BI__builtin_neon_vget_lane_i8:
6415   case NEON::BI__builtin_neon_vget_lane_i16:
6416   case NEON::BI__builtin_neon_vget_lane_i32:
6417   case NEON::BI__builtin_neon_vget_lane_i64:
6418   case NEON::BI__builtin_neon_vget_lane_f32:
6419   case NEON::BI__builtin_neon_vgetq_lane_i8:
6420   case NEON::BI__builtin_neon_vgetq_lane_i16:
6421   case NEON::BI__builtin_neon_vgetq_lane_i32:
6422   case NEON::BI__builtin_neon_vgetq_lane_i64:
6423   case NEON::BI__builtin_neon_vgetq_lane_f32:
6424     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6425 
6426   case NEON::BI__builtin_neon_vrndns_f32: {
6427     Value *Arg = EmitScalarExpr(E->getArg(0));
6428     llvm::Type *Tys[] = {Arg->getType()};
6429     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6430     return Builder.CreateCall(F, {Arg}, "vrndn"); }
6431 
6432   case NEON::BI__builtin_neon_vset_lane_i8:
6433   case NEON::BI__builtin_neon_vset_lane_i16:
6434   case NEON::BI__builtin_neon_vset_lane_i32:
6435   case NEON::BI__builtin_neon_vset_lane_i64:
6436   case NEON::BI__builtin_neon_vset_lane_f32:
6437   case NEON::BI__builtin_neon_vsetq_lane_i8:
6438   case NEON::BI__builtin_neon_vsetq_lane_i16:
6439   case NEON::BI__builtin_neon_vsetq_lane_i32:
6440   case NEON::BI__builtin_neon_vsetq_lane_i64:
6441   case NEON::BI__builtin_neon_vsetq_lane_f32:
6442     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6443 
6444   case NEON::BI__builtin_neon_vsha1h_u32:
6445     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6446                         "vsha1h");
6447   case NEON::BI__builtin_neon_vsha1cq_u32:
6448     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6449                         "vsha1h");
6450   case NEON::BI__builtin_neon_vsha1pq_u32:
6451     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6452                         "vsha1h");
6453   case NEON::BI__builtin_neon_vsha1mq_u32:
6454     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6455                         "vsha1h");
6456 
6457   // The ARM _MoveToCoprocessor builtins put the input register value as
6458   // the first argument, but the LLVM intrinsic expects it as the third one.
6459   case ARM::BI_MoveToCoprocessor:
6460   case ARM::BI_MoveToCoprocessor2: {
6461     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6462                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6463     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6464                                   Ops[3], Ops[4], Ops[5]});
6465   }
6466   case ARM::BI_BitScanForward:
6467   case ARM::BI_BitScanForward64:
6468     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6469   case ARM::BI_BitScanReverse:
6470   case ARM::BI_BitScanReverse64:
6471     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6472 
6473   case ARM::BI_InterlockedAnd64:
6474     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6475   case ARM::BI_InterlockedExchange64:
6476     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6477   case ARM::BI_InterlockedExchangeAdd64:
6478     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6479   case ARM::BI_InterlockedExchangeSub64:
6480     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6481   case ARM::BI_InterlockedOr64:
6482     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6483   case ARM::BI_InterlockedXor64:
6484     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6485   case ARM::BI_InterlockedDecrement64:
6486     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6487   case ARM::BI_InterlockedIncrement64:
6488     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6489   case ARM::BI_InterlockedExchangeAdd8_acq:
6490   case ARM::BI_InterlockedExchangeAdd16_acq:
6491   case ARM::BI_InterlockedExchangeAdd_acq:
6492   case ARM::BI_InterlockedExchangeAdd64_acq:
6493     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6494   case ARM::BI_InterlockedExchangeAdd8_rel:
6495   case ARM::BI_InterlockedExchangeAdd16_rel:
6496   case ARM::BI_InterlockedExchangeAdd_rel:
6497   case ARM::BI_InterlockedExchangeAdd64_rel:
6498     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6499   case ARM::BI_InterlockedExchangeAdd8_nf:
6500   case ARM::BI_InterlockedExchangeAdd16_nf:
6501   case ARM::BI_InterlockedExchangeAdd_nf:
6502   case ARM::BI_InterlockedExchangeAdd64_nf:
6503     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6504   case ARM::BI_InterlockedExchange8_acq:
6505   case ARM::BI_InterlockedExchange16_acq:
6506   case ARM::BI_InterlockedExchange_acq:
6507   case ARM::BI_InterlockedExchange64_acq:
6508     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6509   case ARM::BI_InterlockedExchange8_rel:
6510   case ARM::BI_InterlockedExchange16_rel:
6511   case ARM::BI_InterlockedExchange_rel:
6512   case ARM::BI_InterlockedExchange64_rel:
6513     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6514   case ARM::BI_InterlockedExchange8_nf:
6515   case ARM::BI_InterlockedExchange16_nf:
6516   case ARM::BI_InterlockedExchange_nf:
6517   case ARM::BI_InterlockedExchange64_nf:
6518     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6519   case ARM::BI_InterlockedCompareExchange8_acq:
6520   case ARM::BI_InterlockedCompareExchange16_acq:
6521   case ARM::BI_InterlockedCompareExchange_acq:
6522   case ARM::BI_InterlockedCompareExchange64_acq:
6523     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6524   case ARM::BI_InterlockedCompareExchange8_rel:
6525   case ARM::BI_InterlockedCompareExchange16_rel:
6526   case ARM::BI_InterlockedCompareExchange_rel:
6527   case ARM::BI_InterlockedCompareExchange64_rel:
6528     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6529   case ARM::BI_InterlockedCompareExchange8_nf:
6530   case ARM::BI_InterlockedCompareExchange16_nf:
6531   case ARM::BI_InterlockedCompareExchange_nf:
6532   case ARM::BI_InterlockedCompareExchange64_nf:
6533     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6534   case ARM::BI_InterlockedOr8_acq:
6535   case ARM::BI_InterlockedOr16_acq:
6536   case ARM::BI_InterlockedOr_acq:
6537   case ARM::BI_InterlockedOr64_acq:
6538     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6539   case ARM::BI_InterlockedOr8_rel:
6540   case ARM::BI_InterlockedOr16_rel:
6541   case ARM::BI_InterlockedOr_rel:
6542   case ARM::BI_InterlockedOr64_rel:
6543     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6544   case ARM::BI_InterlockedOr8_nf:
6545   case ARM::BI_InterlockedOr16_nf:
6546   case ARM::BI_InterlockedOr_nf:
6547   case ARM::BI_InterlockedOr64_nf:
6548     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6549   case ARM::BI_InterlockedXor8_acq:
6550   case ARM::BI_InterlockedXor16_acq:
6551   case ARM::BI_InterlockedXor_acq:
6552   case ARM::BI_InterlockedXor64_acq:
6553     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6554   case ARM::BI_InterlockedXor8_rel:
6555   case ARM::BI_InterlockedXor16_rel:
6556   case ARM::BI_InterlockedXor_rel:
6557   case ARM::BI_InterlockedXor64_rel:
6558     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6559   case ARM::BI_InterlockedXor8_nf:
6560   case ARM::BI_InterlockedXor16_nf:
6561   case ARM::BI_InterlockedXor_nf:
6562   case ARM::BI_InterlockedXor64_nf:
6563     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6564   case ARM::BI_InterlockedAnd8_acq:
6565   case ARM::BI_InterlockedAnd16_acq:
6566   case ARM::BI_InterlockedAnd_acq:
6567   case ARM::BI_InterlockedAnd64_acq:
6568     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6569   case ARM::BI_InterlockedAnd8_rel:
6570   case ARM::BI_InterlockedAnd16_rel:
6571   case ARM::BI_InterlockedAnd_rel:
6572   case ARM::BI_InterlockedAnd64_rel:
6573     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6574   case ARM::BI_InterlockedAnd8_nf:
6575   case ARM::BI_InterlockedAnd16_nf:
6576   case ARM::BI_InterlockedAnd_nf:
6577   case ARM::BI_InterlockedAnd64_nf:
6578     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6579   case ARM::BI_InterlockedIncrement16_acq:
6580   case ARM::BI_InterlockedIncrement_acq:
6581   case ARM::BI_InterlockedIncrement64_acq:
6582     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6583   case ARM::BI_InterlockedIncrement16_rel:
6584   case ARM::BI_InterlockedIncrement_rel:
6585   case ARM::BI_InterlockedIncrement64_rel:
6586     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6587   case ARM::BI_InterlockedIncrement16_nf:
6588   case ARM::BI_InterlockedIncrement_nf:
6589   case ARM::BI_InterlockedIncrement64_nf:
6590     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6591   case ARM::BI_InterlockedDecrement16_acq:
6592   case ARM::BI_InterlockedDecrement_acq:
6593   case ARM::BI_InterlockedDecrement64_acq:
6594     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6595   case ARM::BI_InterlockedDecrement16_rel:
6596   case ARM::BI_InterlockedDecrement_rel:
6597   case ARM::BI_InterlockedDecrement64_rel:
6598     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6599   case ARM::BI_InterlockedDecrement16_nf:
6600   case ARM::BI_InterlockedDecrement_nf:
6601   case ARM::BI_InterlockedDecrement64_nf:
6602     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6603   }
6604 
6605   // Get the last argument, which specifies the vector type.
6606   assert(HasExtraArg);
6607   llvm::APSInt Result;
6608   const Expr *Arg = E->getArg(E->getNumArgs()-1);
6609   if (!Arg->isIntegerConstantExpr(Result, getContext()))
6610     return nullptr;
6611 
6612   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6613       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6614     // Determine the overloaded type of this builtin.
6615     llvm::Type *Ty;
6616     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6617       Ty = FloatTy;
6618     else
6619       Ty = DoubleTy;
6620 
6621     // Determine whether this is an unsigned conversion or not.
6622     bool usgn = Result.getZExtValue() == 1;
6623     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6624 
6625     // Call the appropriate intrinsic.
6626     Function *F = CGM.getIntrinsic(Int, Ty);
6627     return Builder.CreateCall(F, Ops, "vcvtr");
6628   }
6629 
6630   // Determine the type of this overloaded NEON intrinsic.
6631   NeonTypeFlags Type(Result.getZExtValue());
6632   bool usgn = Type.isUnsigned();
6633   bool rightShift = false;
6634 
6635   llvm::VectorType *VTy = GetNeonType(this, Type,
6636                                       getTarget().hasLegalHalfType());
6637   llvm::Type *Ty = VTy;
6638   if (!Ty)
6639     return nullptr;
6640 
6641   // Many NEON builtins have identical semantics and uses in ARM and
6642   // AArch64. Emit these in a single function.
6643   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6644   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6645       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6646   if (Builtin)
6647     return EmitCommonNeonBuiltinExpr(
6648         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6649         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6650 
6651   unsigned Int;
6652   switch (BuiltinID) {
6653   default: return nullptr;
6654   case NEON::BI__builtin_neon_vld1q_lane_v:
6655     // Handle 64-bit integer elements as a special case.  Use shuffles of
6656     // one-element vectors to avoid poor code for i64 in the backend.
6657     if (VTy->getElementType()->isIntegerTy(64)) {
6658       // Extract the other lane.
6659       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6660       uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6661       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6662       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6663       // Load the value as a one-element vector.
6664       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6665       llvm::Type *Tys[] = {Ty, Int8PtrTy};
6666       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6667       Value *Align = getAlignmentValue32(PtrOp0);
6668       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6669       // Combine them.
6670       uint32_t Indices[] = {1 - Lane, Lane};
6671       SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6672       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6673     }
6674     LLVM_FALLTHROUGH;
6675   case NEON::BI__builtin_neon_vld1_lane_v: {
6676     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6677     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6678     Value *Ld = Builder.CreateLoad(PtrOp0);
6679     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6680   }
6681   case NEON::BI__builtin_neon_vqrshrn_n_v:
6682     Int =
6683       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6684     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6685                         1, true);
6686   case NEON::BI__builtin_neon_vqrshrun_n_v:
6687     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6688                         Ops, "vqrshrun_n", 1, true);
6689   case NEON::BI__builtin_neon_vqshrn_n_v:
6690     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6691     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6692                         1, true);
6693   case NEON::BI__builtin_neon_vqshrun_n_v:
6694     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6695                         Ops, "vqshrun_n", 1, true);
6696   case NEON::BI__builtin_neon_vrecpe_v:
6697   case NEON::BI__builtin_neon_vrecpeq_v:
6698     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6699                         Ops, "vrecpe");
6700   case NEON::BI__builtin_neon_vrshrn_n_v:
6701     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6702                         Ops, "vrshrn_n", 1, true);
6703   case NEON::BI__builtin_neon_vrsra_n_v:
6704   case NEON::BI__builtin_neon_vrsraq_n_v:
6705     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6706     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6707     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6708     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6709     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6710     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6711   case NEON::BI__builtin_neon_vsri_n_v:
6712   case NEON::BI__builtin_neon_vsriq_n_v:
6713     rightShift = true;
6714     LLVM_FALLTHROUGH;
6715   case NEON::BI__builtin_neon_vsli_n_v:
6716   case NEON::BI__builtin_neon_vsliq_n_v:
6717     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6718     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6719                         Ops, "vsli_n");
6720   case NEON::BI__builtin_neon_vsra_n_v:
6721   case NEON::BI__builtin_neon_vsraq_n_v:
6722     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6723     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6724     return Builder.CreateAdd(Ops[0], Ops[1]);
6725   case NEON::BI__builtin_neon_vst1q_lane_v:
6726     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
6727     // a one-element vector and avoid poor code for i64 in the backend.
6728     if (VTy->getElementType()->isIntegerTy(64)) {
6729       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6730       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6731       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6732       Ops[2] = getAlignmentValue32(PtrOp0);
6733       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6734       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6735                                                  Tys), Ops);
6736     }
6737     LLVM_FALLTHROUGH;
6738   case NEON::BI__builtin_neon_vst1_lane_v: {
6739     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6740     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6741     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6742     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6743     return St;
6744   }
6745   case NEON::BI__builtin_neon_vtbl1_v:
6746     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6747                         Ops, "vtbl1");
6748   case NEON::BI__builtin_neon_vtbl2_v:
6749     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6750                         Ops, "vtbl2");
6751   case NEON::BI__builtin_neon_vtbl3_v:
6752     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6753                         Ops, "vtbl3");
6754   case NEON::BI__builtin_neon_vtbl4_v:
6755     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6756                         Ops, "vtbl4");
6757   case NEON::BI__builtin_neon_vtbx1_v:
6758     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6759                         Ops, "vtbx1");
6760   case NEON::BI__builtin_neon_vtbx2_v:
6761     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6762                         Ops, "vtbx2");
6763   case NEON::BI__builtin_neon_vtbx3_v:
6764     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6765                         Ops, "vtbx3");
6766   case NEON::BI__builtin_neon_vtbx4_v:
6767     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6768                         Ops, "vtbx4");
6769   }
6770 }
6771 
6772 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
6773                                       const CallExpr *E,
6774                                       SmallVectorImpl<Value *> &Ops,
6775                                       llvm::Triple::ArchType Arch) {
6776   unsigned int Int = 0;
6777   const char *s = nullptr;
6778 
6779   switch (BuiltinID) {
6780   default:
6781     return nullptr;
6782   case NEON::BI__builtin_neon_vtbl1_v:
6783   case NEON::BI__builtin_neon_vqtbl1_v:
6784   case NEON::BI__builtin_neon_vqtbl1q_v:
6785   case NEON::BI__builtin_neon_vtbl2_v:
6786   case NEON::BI__builtin_neon_vqtbl2_v:
6787   case NEON::BI__builtin_neon_vqtbl2q_v:
6788   case NEON::BI__builtin_neon_vtbl3_v:
6789   case NEON::BI__builtin_neon_vqtbl3_v:
6790   case NEON::BI__builtin_neon_vqtbl3q_v:
6791   case NEON::BI__builtin_neon_vtbl4_v:
6792   case NEON::BI__builtin_neon_vqtbl4_v:
6793   case NEON::BI__builtin_neon_vqtbl4q_v:
6794     break;
6795   case NEON::BI__builtin_neon_vtbx1_v:
6796   case NEON::BI__builtin_neon_vqtbx1_v:
6797   case NEON::BI__builtin_neon_vqtbx1q_v:
6798   case NEON::BI__builtin_neon_vtbx2_v:
6799   case NEON::BI__builtin_neon_vqtbx2_v:
6800   case NEON::BI__builtin_neon_vqtbx2q_v:
6801   case NEON::BI__builtin_neon_vtbx3_v:
6802   case NEON::BI__builtin_neon_vqtbx3_v:
6803   case NEON::BI__builtin_neon_vqtbx3q_v:
6804   case NEON::BI__builtin_neon_vtbx4_v:
6805   case NEON::BI__builtin_neon_vqtbx4_v:
6806   case NEON::BI__builtin_neon_vqtbx4q_v:
6807     break;
6808   }
6809 
6810   assert(E->getNumArgs() >= 3);
6811 
6812   // Get the last argument, which specifies the vector type.
6813   llvm::APSInt Result;
6814   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6815   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
6816     return nullptr;
6817 
6818   // Determine the type of this overloaded NEON intrinsic.
6819   NeonTypeFlags Type(Result.getZExtValue());
6820   llvm::VectorType *Ty = GetNeonType(&CGF, Type);
6821   if (!Ty)
6822     return nullptr;
6823 
6824   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6825 
6826   // AArch64 scalar builtins are not overloaded, they do not have an extra
6827   // argument that specifies the vector type, need to handle each case.
6828   switch (BuiltinID) {
6829   case NEON::BI__builtin_neon_vtbl1_v: {
6830     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
6831                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
6832                               "vtbl1");
6833   }
6834   case NEON::BI__builtin_neon_vtbl2_v: {
6835     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
6836                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
6837                               "vtbl1");
6838   }
6839   case NEON::BI__builtin_neon_vtbl3_v: {
6840     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
6841                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
6842                               "vtbl2");
6843   }
6844   case NEON::BI__builtin_neon_vtbl4_v: {
6845     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
6846                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
6847                               "vtbl2");
6848   }
6849   case NEON::BI__builtin_neon_vtbx1_v: {
6850     Value *TblRes =
6851         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
6852                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
6853 
6854     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
6855     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
6856     CmpRes = Builder.CreateSExt(CmpRes, Ty);
6857 
6858     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6859     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6860     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6861   }
6862   case NEON::BI__builtin_neon_vtbx2_v: {
6863     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
6864                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
6865                               "vtbx1");
6866   }
6867   case NEON::BI__builtin_neon_vtbx3_v: {
6868     Value *TblRes =
6869         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
6870                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
6871 
6872     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
6873     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
6874                                            TwentyFourV);
6875     CmpRes = Builder.CreateSExt(CmpRes, Ty);
6876 
6877     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6878     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6879     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6880   }
6881   case NEON::BI__builtin_neon_vtbx4_v: {
6882     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
6883                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
6884                               "vtbx2");
6885   }
6886   case NEON::BI__builtin_neon_vqtbl1_v:
6887   case NEON::BI__builtin_neon_vqtbl1q_v:
6888     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
6889   case NEON::BI__builtin_neon_vqtbl2_v:
6890   case NEON::BI__builtin_neon_vqtbl2q_v: {
6891     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
6892   case NEON::BI__builtin_neon_vqtbl3_v:
6893   case NEON::BI__builtin_neon_vqtbl3q_v:
6894     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
6895   case NEON::BI__builtin_neon_vqtbl4_v:
6896   case NEON::BI__builtin_neon_vqtbl4q_v:
6897     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
6898   case NEON::BI__builtin_neon_vqtbx1_v:
6899   case NEON::BI__builtin_neon_vqtbx1q_v:
6900     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
6901   case NEON::BI__builtin_neon_vqtbx2_v:
6902   case NEON::BI__builtin_neon_vqtbx2q_v:
6903     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
6904   case NEON::BI__builtin_neon_vqtbx3_v:
6905   case NEON::BI__builtin_neon_vqtbx3q_v:
6906     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
6907   case NEON::BI__builtin_neon_vqtbx4_v:
6908   case NEON::BI__builtin_neon_vqtbx4q_v:
6909     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
6910   }
6911   }
6912 
6913   if (!Int)
6914     return nullptr;
6915 
6916   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
6917   return CGF.EmitNeonCall(F, Ops, s);
6918 }
6919 
6920 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
6921   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
6922   Op = Builder.CreateBitCast(Op, Int16Ty);
6923   Value *V = UndefValue::get(VTy);
6924   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6925   Op = Builder.CreateInsertElement(V, Op, CI);
6926   return Op;
6927 }
6928 
6929 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
6930                                                const CallExpr *E,
6931                                                llvm::Triple::ArchType Arch) {
6932   unsigned HintID = static_cast<unsigned>(-1);
6933   switch (BuiltinID) {
6934   default: break;
6935   case AArch64::BI__builtin_arm_nop:
6936     HintID = 0;
6937     break;
6938   case AArch64::BI__builtin_arm_yield:
6939   case AArch64::BI__yield:
6940     HintID = 1;
6941     break;
6942   case AArch64::BI__builtin_arm_wfe:
6943   case AArch64::BI__wfe:
6944     HintID = 2;
6945     break;
6946   case AArch64::BI__builtin_arm_wfi:
6947   case AArch64::BI__wfi:
6948     HintID = 3;
6949     break;
6950   case AArch64::BI__builtin_arm_sev:
6951   case AArch64::BI__sev:
6952     HintID = 4;
6953     break;
6954   case AArch64::BI__builtin_arm_sevl:
6955   case AArch64::BI__sevl:
6956     HintID = 5;
6957     break;
6958   }
6959 
6960   if (HintID != static_cast<unsigned>(-1)) {
6961     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
6962     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
6963   }
6964 
6965   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
6966     Value *Address         = EmitScalarExpr(E->getArg(0));
6967     Value *RW              = EmitScalarExpr(E->getArg(1));
6968     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
6969     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
6970     Value *IsData          = EmitScalarExpr(E->getArg(4));
6971 
6972     Value *Locality = nullptr;
6973     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
6974       // Temporal fetch, needs to convert cache level to locality.
6975       Locality = llvm::ConstantInt::get(Int32Ty,
6976         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
6977     } else {
6978       // Streaming fetch.
6979       Locality = llvm::ConstantInt::get(Int32Ty, 0);
6980     }
6981 
6982     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
6983     // PLDL3STRM or PLDL2STRM.
6984     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6985     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6986   }
6987 
6988   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
6989     assert((getContext().getTypeSize(E->getType()) == 32) &&
6990            "rbit of unusual size!");
6991     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6992     return Builder.CreateCall(
6993         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6994   }
6995   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
6996     assert((getContext().getTypeSize(E->getType()) == 64) &&
6997            "rbit of unusual size!");
6998     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6999     return Builder.CreateCall(
7000         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7001   }
7002 
7003   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
7004     assert((getContext().getTypeSize(E->getType()) == 32) &&
7005            "__jcvt of unusual size!");
7006     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7007     return Builder.CreateCall(
7008         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
7009   }
7010 
7011   if (BuiltinID == AArch64::BI__clear_cache) {
7012     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7013     const FunctionDecl *FD = E->getDirectCallee();
7014     Value *Ops[2];
7015     for (unsigned i = 0; i < 2; i++)
7016       Ops[i] = EmitScalarExpr(E->getArg(i));
7017     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7018     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7019     StringRef Name = FD->getName();
7020     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7021   }
7022 
7023   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7024       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
7025       getContext().getTypeSize(E->getType()) == 128) {
7026     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7027                                        ? Intrinsic::aarch64_ldaxp
7028                                        : Intrinsic::aarch64_ldxp);
7029 
7030     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7031     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7032                                     "ldxp");
7033 
7034     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7035     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7036     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
7037     Val0 = Builder.CreateZExt(Val0, Int128Ty);
7038     Val1 = Builder.CreateZExt(Val1, Int128Ty);
7039 
7040     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
7041     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7042     Val = Builder.CreateOr(Val, Val1);
7043     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7044   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7045              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
7046     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7047 
7048     QualType Ty = E->getType();
7049     llvm::Type *RealResTy = ConvertType(Ty);
7050     llvm::Type *PtrTy = llvm::IntegerType::get(
7051         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7052     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7053 
7054     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7055                                        ? Intrinsic::aarch64_ldaxr
7056                                        : Intrinsic::aarch64_ldxr,
7057                                    PtrTy);
7058     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
7059 
7060     if (RealResTy->isPointerTy())
7061       return Builder.CreateIntToPtr(Val, RealResTy);
7062 
7063     llvm::Type *IntResTy = llvm::IntegerType::get(
7064         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7065     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7066     return Builder.CreateBitCast(Val, RealResTy);
7067   }
7068 
7069   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
7070        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
7071       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
7072     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7073                                        ? Intrinsic::aarch64_stlxp
7074                                        : Intrinsic::aarch64_stxp);
7075     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
7076 
7077     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7078     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
7079 
7080     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
7081     llvm::Value *Val = Builder.CreateLoad(Tmp);
7082 
7083     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7084     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7085     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
7086                                          Int8PtrTy);
7087     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
7088   }
7089 
7090   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
7091       BuiltinID == AArch64::BI__builtin_arm_stlex) {
7092     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7093     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7094 
7095     QualType Ty = E->getArg(0)->getType();
7096     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7097                                                  getContext().getTypeSize(Ty));
7098     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7099 
7100     if (StoreVal->getType()->isPointerTy())
7101       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
7102     else {
7103       llvm::Type *IntTy = llvm::IntegerType::get(
7104           getLLVMContext(),
7105           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7106       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7107       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
7108     }
7109 
7110     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7111                                        ? Intrinsic::aarch64_stlxr
7112                                        : Intrinsic::aarch64_stxr,
7113                                    StoreAddr->getType());
7114     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
7115   }
7116 
7117   if (BuiltinID == AArch64::BI__getReg) {
7118     Expr::EvalResult Result;
7119     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7120       llvm_unreachable("Sema will ensure that the parameter is constant");
7121 
7122     llvm::APSInt Value = Result.Val.getInt();
7123     LLVMContext &Context = CGM.getLLVMContext();
7124     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
7125 
7126     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
7127     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7128     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7129 
7130     llvm::Function *F =
7131         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
7132     return Builder.CreateCall(F, Metadata);
7133   }
7134 
7135   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
7136     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
7137     return Builder.CreateCall(F);
7138   }
7139 
7140   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
7141     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
7142                                llvm::SyncScope::SingleThread);
7143 
7144   // CRC32
7145   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7146   switch (BuiltinID) {
7147   case AArch64::BI__builtin_arm_crc32b:
7148     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
7149   case AArch64::BI__builtin_arm_crc32cb:
7150     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
7151   case AArch64::BI__builtin_arm_crc32h:
7152     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
7153   case AArch64::BI__builtin_arm_crc32ch:
7154     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
7155   case AArch64::BI__builtin_arm_crc32w:
7156     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
7157   case AArch64::BI__builtin_arm_crc32cw:
7158     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
7159   case AArch64::BI__builtin_arm_crc32d:
7160     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
7161   case AArch64::BI__builtin_arm_crc32cd:
7162     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
7163   }
7164 
7165   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7166     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7167     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7168     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7169 
7170     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7171     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7172 
7173     return Builder.CreateCall(F, {Arg0, Arg1});
7174   }
7175 
7176   // Memory Tagging Extensions (MTE) Intrinsics
7177   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
7178   switch (BuiltinID) {
7179   case AArch64::BI__builtin_arm_irg:
7180     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
7181   case  AArch64::BI__builtin_arm_addg:
7182     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
7183   case  AArch64::BI__builtin_arm_gmi:
7184     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
7185   case  AArch64::BI__builtin_arm_ldg:
7186     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
7187   case AArch64::BI__builtin_arm_stg:
7188     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
7189   case AArch64::BI__builtin_arm_subp:
7190     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
7191   }
7192 
7193   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
7194     llvm::Type *T = ConvertType(E->getType());
7195 
7196     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
7197       Value *Pointer = EmitScalarExpr(E->getArg(0));
7198       Value *Mask = EmitScalarExpr(E->getArg(1));
7199 
7200       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7201       Mask = Builder.CreateZExt(Mask, Int64Ty);
7202       Value *RV = Builder.CreateCall(
7203                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
7204        return Builder.CreatePointerCast(RV, T);
7205     }
7206     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
7207       Value *Pointer = EmitScalarExpr(E->getArg(0));
7208       Value *TagOffset = EmitScalarExpr(E->getArg(1));
7209 
7210       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7211       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
7212       Value *RV = Builder.CreateCall(
7213                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
7214       return Builder.CreatePointerCast(RV, T);
7215     }
7216     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
7217       Value *Pointer = EmitScalarExpr(E->getArg(0));
7218       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
7219 
7220       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
7221       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7222       return Builder.CreateCall(
7223                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
7224     }
7225     // Although it is possible to supply a different return
7226     // address (first arg) to this intrinsic, for now we set
7227     // return address same as input address.
7228     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
7229       Value *TagAddress = EmitScalarExpr(E->getArg(0));
7230       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7231       Value *RV = Builder.CreateCall(
7232                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7233       return Builder.CreatePointerCast(RV, T);
7234     }
7235     // Although it is possible to supply a different tag (to set)
7236     // to this intrinsic (as first arg), for now we supply
7237     // the tag that is in input address arg (common use case).
7238     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
7239         Value *TagAddress = EmitScalarExpr(E->getArg(0));
7240         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7241         return Builder.CreateCall(
7242                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7243     }
7244     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
7245       Value *PointerA = EmitScalarExpr(E->getArg(0));
7246       Value *PointerB = EmitScalarExpr(E->getArg(1));
7247       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
7248       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
7249       return Builder.CreateCall(
7250                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
7251     }
7252   }
7253 
7254   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7255       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7256       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7257       BuiltinID == AArch64::BI__builtin_arm_wsr ||
7258       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7259       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7260 
7261     bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7262                   BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7263                   BuiltinID == AArch64::BI__builtin_arm_rsrp;
7264 
7265     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7266                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
7267 
7268     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7269                    BuiltinID != AArch64::BI__builtin_arm_wsr;
7270 
7271     llvm::Type *ValueType;
7272     llvm::Type *RegisterType = Int64Ty;
7273     if (IsPointerBuiltin) {
7274       ValueType = VoidPtrTy;
7275     } else if (Is64Bit) {
7276       ValueType = Int64Ty;
7277     } else {
7278       ValueType = Int32Ty;
7279     }
7280 
7281     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7282   }
7283 
7284   if (BuiltinID == AArch64::BI_ReadStatusReg ||
7285       BuiltinID == AArch64::BI_WriteStatusReg) {
7286     LLVMContext &Context = CGM.getLLVMContext();
7287 
7288     unsigned SysReg =
7289       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7290 
7291     std::string SysRegStr;
7292     llvm::raw_string_ostream(SysRegStr) <<
7293                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
7294                        ((SysReg >> 11) & 7)               << ":" <<
7295                        ((SysReg >> 7)  & 15)              << ":" <<
7296                        ((SysReg >> 3)  & 15)              << ":" <<
7297                        ( SysReg        & 7);
7298 
7299     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7300     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7301     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7302 
7303     llvm::Type *RegisterType = Int64Ty;
7304     llvm::Type *Types[] = { RegisterType };
7305 
7306     if (BuiltinID == AArch64::BI_ReadStatusReg) {
7307       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7308 
7309       return Builder.CreateCall(F, Metadata);
7310     }
7311 
7312     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7313     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7314 
7315     return Builder.CreateCall(F, { Metadata, ArgValue });
7316   }
7317 
7318   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7319     llvm::Function *F =
7320         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
7321     return Builder.CreateCall(F);
7322   }
7323 
7324   if (BuiltinID == AArch64::BI__builtin_sponentry) {
7325     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
7326     return Builder.CreateCall(F);
7327   }
7328 
7329   // Find out if any arguments are required to be integer constant
7330   // expressions.
7331   unsigned ICEArguments = 0;
7332   ASTContext::GetBuiltinTypeError Error;
7333   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7334   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7335 
7336   llvm::SmallVector<Value*, 4> Ops;
7337   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7338     if ((ICEArguments & (1 << i)) == 0) {
7339       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7340     } else {
7341       // If this is required to be a constant, constant fold it so that we know
7342       // that the generated intrinsic gets a ConstantInt.
7343       llvm::APSInt Result;
7344       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7345       assert(IsConst && "Constant arg isn't actually constant?");
7346       (void)IsConst;
7347       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7348     }
7349   }
7350 
7351   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7352   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7353       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7354 
7355   if (Builtin) {
7356     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7357     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7358     assert(Result && "SISD intrinsic should have been handled");
7359     return Result;
7360   }
7361 
7362   llvm::APSInt Result;
7363   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7364   NeonTypeFlags Type(0);
7365   if (Arg->isIntegerConstantExpr(Result, getContext()))
7366     // Determine the type of this overloaded NEON intrinsic.
7367     Type = NeonTypeFlags(Result.getZExtValue());
7368 
7369   bool usgn = Type.isUnsigned();
7370   bool quad = Type.isQuad();
7371 
7372   // Handle non-overloaded intrinsics first.
7373   switch (BuiltinID) {
7374   default: break;
7375   case NEON::BI__builtin_neon_vabsh_f16:
7376     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7377     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7378   case NEON::BI__builtin_neon_vldrq_p128: {
7379     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7380     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7381     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7382     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7383                                      CharUnits::fromQuantity(16));
7384   }
7385   case NEON::BI__builtin_neon_vstrq_p128: {
7386     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7387     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7388     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7389   }
7390   case NEON::BI__builtin_neon_vcvts_u32_f32:
7391   case NEON::BI__builtin_neon_vcvtd_u64_f64:
7392     usgn = true;
7393     LLVM_FALLTHROUGH;
7394   case NEON::BI__builtin_neon_vcvts_s32_f32:
7395   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7396     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7397     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7398     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7399     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7400     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7401     if (usgn)
7402       return Builder.CreateFPToUI(Ops[0], InTy);
7403     return Builder.CreateFPToSI(Ops[0], InTy);
7404   }
7405   case NEON::BI__builtin_neon_vcvts_f32_u32:
7406   case NEON::BI__builtin_neon_vcvtd_f64_u64:
7407     usgn = true;
7408     LLVM_FALLTHROUGH;
7409   case NEON::BI__builtin_neon_vcvts_f32_s32:
7410   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7411     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7412     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7413     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7414     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7415     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7416     if (usgn)
7417       return Builder.CreateUIToFP(Ops[0], FTy);
7418     return Builder.CreateSIToFP(Ops[0], FTy);
7419   }
7420   case NEON::BI__builtin_neon_vcvth_f16_u16:
7421   case NEON::BI__builtin_neon_vcvth_f16_u32:
7422   case NEON::BI__builtin_neon_vcvth_f16_u64:
7423     usgn = true;
7424     LLVM_FALLTHROUGH;
7425   case NEON::BI__builtin_neon_vcvth_f16_s16:
7426   case NEON::BI__builtin_neon_vcvth_f16_s32:
7427   case NEON::BI__builtin_neon_vcvth_f16_s64: {
7428     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7429     llvm::Type *FTy = HalfTy;
7430     llvm::Type *InTy;
7431     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7432       InTy = Int64Ty;
7433     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7434       InTy = Int32Ty;
7435     else
7436       InTy = Int16Ty;
7437     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7438     if (usgn)
7439       return Builder.CreateUIToFP(Ops[0], FTy);
7440     return Builder.CreateSIToFP(Ops[0], FTy);
7441   }
7442   case NEON::BI__builtin_neon_vcvth_u16_f16:
7443     usgn = true;
7444     LLVM_FALLTHROUGH;
7445   case NEON::BI__builtin_neon_vcvth_s16_f16: {
7446     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7447     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7448     if (usgn)
7449       return Builder.CreateFPToUI(Ops[0], Int16Ty);
7450     return Builder.CreateFPToSI(Ops[0], Int16Ty);
7451   }
7452   case NEON::BI__builtin_neon_vcvth_u32_f16:
7453     usgn = true;
7454     LLVM_FALLTHROUGH;
7455   case NEON::BI__builtin_neon_vcvth_s32_f16: {
7456     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7457     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7458     if (usgn)
7459       return Builder.CreateFPToUI(Ops[0], Int32Ty);
7460     return Builder.CreateFPToSI(Ops[0], Int32Ty);
7461   }
7462   case NEON::BI__builtin_neon_vcvth_u64_f16:
7463     usgn = true;
7464     LLVM_FALLTHROUGH;
7465   case NEON::BI__builtin_neon_vcvth_s64_f16: {
7466     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7467     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7468     if (usgn)
7469       return Builder.CreateFPToUI(Ops[0], Int64Ty);
7470     return Builder.CreateFPToSI(Ops[0], Int64Ty);
7471   }
7472   case NEON::BI__builtin_neon_vcvtah_u16_f16:
7473   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7474   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7475   case NEON::BI__builtin_neon_vcvtph_u16_f16:
7476   case NEON::BI__builtin_neon_vcvtah_s16_f16:
7477   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7478   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7479   case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7480     unsigned Int;
7481     llvm::Type* InTy = Int32Ty;
7482     llvm::Type* FTy  = HalfTy;
7483     llvm::Type *Tys[2] = {InTy, FTy};
7484     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7485     switch (BuiltinID) {
7486     default: llvm_unreachable("missing builtin ID in switch!");
7487     case NEON::BI__builtin_neon_vcvtah_u16_f16:
7488       Int = Intrinsic::aarch64_neon_fcvtau; break;
7489     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7490       Int = Intrinsic::aarch64_neon_fcvtmu; break;
7491     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7492       Int = Intrinsic::aarch64_neon_fcvtnu; break;
7493     case NEON::BI__builtin_neon_vcvtph_u16_f16:
7494       Int = Intrinsic::aarch64_neon_fcvtpu; break;
7495     case NEON::BI__builtin_neon_vcvtah_s16_f16:
7496       Int = Intrinsic::aarch64_neon_fcvtas; break;
7497     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7498       Int = Intrinsic::aarch64_neon_fcvtms; break;
7499     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7500       Int = Intrinsic::aarch64_neon_fcvtns; break;
7501     case NEON::BI__builtin_neon_vcvtph_s16_f16:
7502       Int = Intrinsic::aarch64_neon_fcvtps; break;
7503     }
7504     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7505     return Builder.CreateTrunc(Ops[0], Int16Ty);
7506   }
7507   case NEON::BI__builtin_neon_vcaleh_f16:
7508   case NEON::BI__builtin_neon_vcalth_f16:
7509   case NEON::BI__builtin_neon_vcageh_f16:
7510   case NEON::BI__builtin_neon_vcagth_f16: {
7511     unsigned Int;
7512     llvm::Type* InTy = Int32Ty;
7513     llvm::Type* FTy  = HalfTy;
7514     llvm::Type *Tys[2] = {InTy, FTy};
7515     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7516     switch (BuiltinID) {
7517     default: llvm_unreachable("missing builtin ID in switch!");
7518     case NEON::BI__builtin_neon_vcageh_f16:
7519       Int = Intrinsic::aarch64_neon_facge; break;
7520     case NEON::BI__builtin_neon_vcagth_f16:
7521       Int = Intrinsic::aarch64_neon_facgt; break;
7522     case NEON::BI__builtin_neon_vcaleh_f16:
7523       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7524     case NEON::BI__builtin_neon_vcalth_f16:
7525       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7526     }
7527     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7528     return Builder.CreateTrunc(Ops[0], Int16Ty);
7529   }
7530   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7531   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7532     unsigned Int;
7533     llvm::Type* InTy = Int32Ty;
7534     llvm::Type* FTy  = HalfTy;
7535     llvm::Type *Tys[2] = {InTy, FTy};
7536     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7537     switch (BuiltinID) {
7538     default: llvm_unreachable("missing builtin ID in switch!");
7539     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7540       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7541     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7542       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7543     }
7544     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7545     return Builder.CreateTrunc(Ops[0], Int16Ty);
7546   }
7547   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7548   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7549     unsigned Int;
7550     llvm::Type* FTy  = HalfTy;
7551     llvm::Type* InTy = Int32Ty;
7552     llvm::Type *Tys[2] = {FTy, InTy};
7553     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7554     switch (BuiltinID) {
7555     default: llvm_unreachable("missing builtin ID in switch!");
7556     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7557       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7558       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7559       break;
7560     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7561       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7562       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7563       break;
7564     }
7565     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7566   }
7567   case NEON::BI__builtin_neon_vpaddd_s64: {
7568     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7569     Value *Vec = EmitScalarExpr(E->getArg(0));
7570     // The vector is v2f64, so make sure it's bitcast to that.
7571     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7572     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7573     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7574     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7575     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7576     // Pairwise addition of a v2f64 into a scalar f64.
7577     return Builder.CreateAdd(Op0, Op1, "vpaddd");
7578   }
7579   case NEON::BI__builtin_neon_vpaddd_f64: {
7580     llvm::Type *Ty =
7581       llvm::VectorType::get(DoubleTy, 2);
7582     Value *Vec = EmitScalarExpr(E->getArg(0));
7583     // The vector is v2f64, so make sure it's bitcast to that.
7584     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7585     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7586     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7587     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7588     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7589     // Pairwise addition of a v2f64 into a scalar f64.
7590     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7591   }
7592   case NEON::BI__builtin_neon_vpadds_f32: {
7593     llvm::Type *Ty =
7594       llvm::VectorType::get(FloatTy, 2);
7595     Value *Vec = EmitScalarExpr(E->getArg(0));
7596     // The vector is v2f32, so make sure it's bitcast to that.
7597     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7598     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7599     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7600     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7601     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7602     // Pairwise addition of a v2f32 into a scalar f32.
7603     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7604   }
7605   case NEON::BI__builtin_neon_vceqzd_s64:
7606   case NEON::BI__builtin_neon_vceqzd_f64:
7607   case NEON::BI__builtin_neon_vceqzs_f32:
7608   case NEON::BI__builtin_neon_vceqzh_f16:
7609     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7610     return EmitAArch64CompareBuiltinExpr(
7611         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7612         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7613   case NEON::BI__builtin_neon_vcgezd_s64:
7614   case NEON::BI__builtin_neon_vcgezd_f64:
7615   case NEON::BI__builtin_neon_vcgezs_f32:
7616   case NEON::BI__builtin_neon_vcgezh_f16:
7617     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7618     return EmitAArch64CompareBuiltinExpr(
7619         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7620         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7621   case NEON::BI__builtin_neon_vclezd_s64:
7622   case NEON::BI__builtin_neon_vclezd_f64:
7623   case NEON::BI__builtin_neon_vclezs_f32:
7624   case NEON::BI__builtin_neon_vclezh_f16:
7625     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7626     return EmitAArch64CompareBuiltinExpr(
7627         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7628         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7629   case NEON::BI__builtin_neon_vcgtzd_s64:
7630   case NEON::BI__builtin_neon_vcgtzd_f64:
7631   case NEON::BI__builtin_neon_vcgtzs_f32:
7632   case NEON::BI__builtin_neon_vcgtzh_f16:
7633     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7634     return EmitAArch64CompareBuiltinExpr(
7635         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7636         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7637   case NEON::BI__builtin_neon_vcltzd_s64:
7638   case NEON::BI__builtin_neon_vcltzd_f64:
7639   case NEON::BI__builtin_neon_vcltzs_f32:
7640   case NEON::BI__builtin_neon_vcltzh_f16:
7641     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7642     return EmitAArch64CompareBuiltinExpr(
7643         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7644         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7645 
7646   case NEON::BI__builtin_neon_vceqzd_u64: {
7647     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7648     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7649     Ops[0] =
7650         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7651     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7652   }
7653   case NEON::BI__builtin_neon_vceqd_f64:
7654   case NEON::BI__builtin_neon_vcled_f64:
7655   case NEON::BI__builtin_neon_vcltd_f64:
7656   case NEON::BI__builtin_neon_vcged_f64:
7657   case NEON::BI__builtin_neon_vcgtd_f64: {
7658     llvm::CmpInst::Predicate P;
7659     switch (BuiltinID) {
7660     default: llvm_unreachable("missing builtin ID in switch!");
7661     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7662     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7663     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7664     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7665     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7666     }
7667     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7668     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7669     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7670     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7671     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
7672   }
7673   case NEON::BI__builtin_neon_vceqs_f32:
7674   case NEON::BI__builtin_neon_vcles_f32:
7675   case NEON::BI__builtin_neon_vclts_f32:
7676   case NEON::BI__builtin_neon_vcges_f32:
7677   case NEON::BI__builtin_neon_vcgts_f32: {
7678     llvm::CmpInst::Predicate P;
7679     switch (BuiltinID) {
7680     default: llvm_unreachable("missing builtin ID in switch!");
7681     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
7682     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
7683     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
7684     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
7685     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
7686     }
7687     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7688     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
7689     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
7690     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7691     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
7692   }
7693   case NEON::BI__builtin_neon_vceqh_f16:
7694   case NEON::BI__builtin_neon_vcleh_f16:
7695   case NEON::BI__builtin_neon_vclth_f16:
7696   case NEON::BI__builtin_neon_vcgeh_f16:
7697   case NEON::BI__builtin_neon_vcgth_f16: {
7698     llvm::CmpInst::Predicate P;
7699     switch (BuiltinID) {
7700     default: llvm_unreachable("missing builtin ID in switch!");
7701     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
7702     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
7703     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
7704     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
7705     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
7706     }
7707     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7708     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7709     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
7710     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7711     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
7712   }
7713   case NEON::BI__builtin_neon_vceqd_s64:
7714   case NEON::BI__builtin_neon_vceqd_u64:
7715   case NEON::BI__builtin_neon_vcgtd_s64:
7716   case NEON::BI__builtin_neon_vcgtd_u64:
7717   case NEON::BI__builtin_neon_vcltd_s64:
7718   case NEON::BI__builtin_neon_vcltd_u64:
7719   case NEON::BI__builtin_neon_vcged_u64:
7720   case NEON::BI__builtin_neon_vcged_s64:
7721   case NEON::BI__builtin_neon_vcled_u64:
7722   case NEON::BI__builtin_neon_vcled_s64: {
7723     llvm::CmpInst::Predicate P;
7724     switch (BuiltinID) {
7725     default: llvm_unreachable("missing builtin ID in switch!");
7726     case NEON::BI__builtin_neon_vceqd_s64:
7727     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
7728     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
7729     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
7730     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
7731     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
7732     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
7733     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
7734     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
7735     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
7736     }
7737     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7738     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7739     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7740     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
7741     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
7742   }
7743   case NEON::BI__builtin_neon_vtstd_s64:
7744   case NEON::BI__builtin_neon_vtstd_u64: {
7745     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7746     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7747     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7748     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7749     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7750                                 llvm::Constant::getNullValue(Int64Ty));
7751     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
7752   }
7753   case NEON::BI__builtin_neon_vset_lane_i8:
7754   case NEON::BI__builtin_neon_vset_lane_i16:
7755   case NEON::BI__builtin_neon_vset_lane_i32:
7756   case NEON::BI__builtin_neon_vset_lane_i64:
7757   case NEON::BI__builtin_neon_vset_lane_f32:
7758   case NEON::BI__builtin_neon_vsetq_lane_i8:
7759   case NEON::BI__builtin_neon_vsetq_lane_i16:
7760   case NEON::BI__builtin_neon_vsetq_lane_i32:
7761   case NEON::BI__builtin_neon_vsetq_lane_i64:
7762   case NEON::BI__builtin_neon_vsetq_lane_f32:
7763     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7764     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7765   case NEON::BI__builtin_neon_vset_lane_f64:
7766     // The vector type needs a cast for the v1f64 variant.
7767     Ops[1] = Builder.CreateBitCast(Ops[1],
7768                                    llvm::VectorType::get(DoubleTy, 1));
7769     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7770     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7771   case NEON::BI__builtin_neon_vsetq_lane_f64:
7772     // The vector type needs a cast for the v2f64 variant.
7773     Ops[1] = Builder.CreateBitCast(Ops[1],
7774         llvm::VectorType::get(DoubleTy, 2));
7775     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7776     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7777 
7778   case NEON::BI__builtin_neon_vget_lane_i8:
7779   case NEON::BI__builtin_neon_vdupb_lane_i8:
7780     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
7781     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7782                                         "vget_lane");
7783   case NEON::BI__builtin_neon_vgetq_lane_i8:
7784   case NEON::BI__builtin_neon_vdupb_laneq_i8:
7785     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
7786     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7787                                         "vgetq_lane");
7788   case NEON::BI__builtin_neon_vget_lane_i16:
7789   case NEON::BI__builtin_neon_vduph_lane_i16:
7790     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
7791     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7792                                         "vget_lane");
7793   case NEON::BI__builtin_neon_vgetq_lane_i16:
7794   case NEON::BI__builtin_neon_vduph_laneq_i16:
7795     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
7796     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7797                                         "vgetq_lane");
7798   case NEON::BI__builtin_neon_vget_lane_i32:
7799   case NEON::BI__builtin_neon_vdups_lane_i32:
7800     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
7801     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7802                                         "vget_lane");
7803   case NEON::BI__builtin_neon_vdups_lane_f32:
7804     Ops[0] = Builder.CreateBitCast(Ops[0],
7805         llvm::VectorType::get(FloatTy, 2));
7806     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7807                                         "vdups_lane");
7808   case NEON::BI__builtin_neon_vgetq_lane_i32:
7809   case NEON::BI__builtin_neon_vdups_laneq_i32:
7810     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
7811     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7812                                         "vgetq_lane");
7813   case NEON::BI__builtin_neon_vget_lane_i64:
7814   case NEON::BI__builtin_neon_vdupd_lane_i64:
7815     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
7816     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7817                                         "vget_lane");
7818   case NEON::BI__builtin_neon_vdupd_lane_f64:
7819     Ops[0] = Builder.CreateBitCast(Ops[0],
7820         llvm::VectorType::get(DoubleTy, 1));
7821     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7822                                         "vdupd_lane");
7823   case NEON::BI__builtin_neon_vgetq_lane_i64:
7824   case NEON::BI__builtin_neon_vdupd_laneq_i64:
7825     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
7826     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7827                                         "vgetq_lane");
7828   case NEON::BI__builtin_neon_vget_lane_f32:
7829     Ops[0] = Builder.CreateBitCast(Ops[0],
7830         llvm::VectorType::get(FloatTy, 2));
7831     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7832                                         "vget_lane");
7833   case NEON::BI__builtin_neon_vget_lane_f64:
7834     Ops[0] = Builder.CreateBitCast(Ops[0],
7835         llvm::VectorType::get(DoubleTy, 1));
7836     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7837                                         "vget_lane");
7838   case NEON::BI__builtin_neon_vgetq_lane_f32:
7839   case NEON::BI__builtin_neon_vdups_laneq_f32:
7840     Ops[0] = Builder.CreateBitCast(Ops[0],
7841         llvm::VectorType::get(FloatTy, 4));
7842     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7843                                         "vgetq_lane");
7844   case NEON::BI__builtin_neon_vgetq_lane_f64:
7845   case NEON::BI__builtin_neon_vdupd_laneq_f64:
7846     Ops[0] = Builder.CreateBitCast(Ops[0],
7847         llvm::VectorType::get(DoubleTy, 2));
7848     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7849                                         "vgetq_lane");
7850   case NEON::BI__builtin_neon_vaddh_f16:
7851     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7852     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
7853   case NEON::BI__builtin_neon_vsubh_f16:
7854     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7855     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
7856   case NEON::BI__builtin_neon_vmulh_f16:
7857     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7858     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
7859   case NEON::BI__builtin_neon_vdivh_f16:
7860     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7861     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
7862   case NEON::BI__builtin_neon_vfmah_f16: {
7863     Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7864     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7865     return Builder.CreateCall(F,
7866       {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
7867   }
7868   case NEON::BI__builtin_neon_vfmsh_f16: {
7869     Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7870     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
7871     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
7872     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7873     return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
7874   }
7875   case NEON::BI__builtin_neon_vaddd_s64:
7876   case NEON::BI__builtin_neon_vaddd_u64:
7877     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
7878   case NEON::BI__builtin_neon_vsubd_s64:
7879   case NEON::BI__builtin_neon_vsubd_u64:
7880     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
7881   case NEON::BI__builtin_neon_vqdmlalh_s16:
7882   case NEON::BI__builtin_neon_vqdmlslh_s16: {
7883     SmallVector<Value *, 2> ProductOps;
7884     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7885     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
7886     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7887     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7888                           ProductOps, "vqdmlXl");
7889     Constant *CI = ConstantInt::get(SizeTy, 0);
7890     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7891 
7892     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
7893                                         ? Intrinsic::aarch64_neon_sqadd
7894                                         : Intrinsic::aarch64_neon_sqsub;
7895     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
7896   }
7897   case NEON::BI__builtin_neon_vqshlud_n_s64: {
7898     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7899     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7900     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
7901                         Ops, "vqshlu_n");
7902   }
7903   case NEON::BI__builtin_neon_vqshld_n_u64:
7904   case NEON::BI__builtin_neon_vqshld_n_s64: {
7905     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
7906                                    ? Intrinsic::aarch64_neon_uqshl
7907                                    : Intrinsic::aarch64_neon_sqshl;
7908     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7909     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7910     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
7911   }
7912   case NEON::BI__builtin_neon_vrshrd_n_u64:
7913   case NEON::BI__builtin_neon_vrshrd_n_s64: {
7914     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
7915                                    ? Intrinsic::aarch64_neon_urshl
7916                                    : Intrinsic::aarch64_neon_srshl;
7917     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7918     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
7919     Ops[1] = ConstantInt::get(Int64Ty, -SV);
7920     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
7921   }
7922   case NEON::BI__builtin_neon_vrsrad_n_u64:
7923   case NEON::BI__builtin_neon_vrsrad_n_s64: {
7924     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
7925                                    ? Intrinsic::aarch64_neon_urshl
7926                                    : Intrinsic::aarch64_neon_srshl;
7927     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7928     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
7929     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
7930                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
7931     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
7932   }
7933   case NEON::BI__builtin_neon_vshld_n_s64:
7934   case NEON::BI__builtin_neon_vshld_n_u64: {
7935     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7936     return Builder.CreateShl(
7937         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
7938   }
7939   case NEON::BI__builtin_neon_vshrd_n_s64: {
7940     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7941     return Builder.CreateAShr(
7942         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7943                                                    Amt->getZExtValue())),
7944         "shrd_n");
7945   }
7946   case NEON::BI__builtin_neon_vshrd_n_u64: {
7947     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7948     uint64_t ShiftAmt = Amt->getZExtValue();
7949     // Right-shifting an unsigned value by its size yields 0.
7950     if (ShiftAmt == 64)
7951       return ConstantInt::get(Int64Ty, 0);
7952     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
7953                               "shrd_n");
7954   }
7955   case NEON::BI__builtin_neon_vsrad_n_s64: {
7956     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7957     Ops[1] = Builder.CreateAShr(
7958         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7959                                                    Amt->getZExtValue())),
7960         "shrd_n");
7961     return Builder.CreateAdd(Ops[0], Ops[1]);
7962   }
7963   case NEON::BI__builtin_neon_vsrad_n_u64: {
7964     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7965     uint64_t ShiftAmt = Amt->getZExtValue();
7966     // Right-shifting an unsigned value by its size yields 0.
7967     // As Op + 0 = Op, return Ops[0] directly.
7968     if (ShiftAmt == 64)
7969       return Ops[0];
7970     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
7971                                 "shrd_n");
7972     return Builder.CreateAdd(Ops[0], Ops[1]);
7973   }
7974   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
7975   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
7976   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
7977   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
7978     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7979                                           "lane");
7980     SmallVector<Value *, 2> ProductOps;
7981     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7982     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
7983     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7984     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7985                           ProductOps, "vqdmlXl");
7986     Constant *CI = ConstantInt::get(SizeTy, 0);
7987     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7988     Ops.pop_back();
7989 
7990     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
7991                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
7992                           ? Intrinsic::aarch64_neon_sqadd
7993                           : Intrinsic::aarch64_neon_sqsub;
7994     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
7995   }
7996   case NEON::BI__builtin_neon_vqdmlals_s32:
7997   case NEON::BI__builtin_neon_vqdmlsls_s32: {
7998     SmallVector<Value *, 2> ProductOps;
7999     ProductOps.push_back(Ops[1]);
8000     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
8001     Ops[1] =
8002         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8003                      ProductOps, "vqdmlXl");
8004 
8005     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
8006                                         ? Intrinsic::aarch64_neon_sqadd
8007                                         : Intrinsic::aarch64_neon_sqsub;
8008     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
8009   }
8010   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
8011   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
8012   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
8013   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
8014     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
8015                                           "lane");
8016     SmallVector<Value *, 2> ProductOps;
8017     ProductOps.push_back(Ops[1]);
8018     ProductOps.push_back(Ops[2]);
8019     Ops[1] =
8020         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8021                      ProductOps, "vqdmlXl");
8022     Ops.pop_back();
8023 
8024     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
8025                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
8026                           ? Intrinsic::aarch64_neon_sqadd
8027                           : Intrinsic::aarch64_neon_sqsub;
8028     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
8029   }
8030   case NEON::BI__builtin_neon_vduph_lane_f16: {
8031     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8032                                         "vget_lane");
8033   }
8034   case NEON::BI__builtin_neon_vduph_laneq_f16: {
8035     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8036                                         "vgetq_lane");
8037   }
8038   case AArch64::BI_BitScanForward:
8039   case AArch64::BI_BitScanForward64:
8040     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
8041   case AArch64::BI_BitScanReverse:
8042   case AArch64::BI_BitScanReverse64:
8043     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
8044   case AArch64::BI_InterlockedAnd64:
8045     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
8046   case AArch64::BI_InterlockedExchange64:
8047     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
8048   case AArch64::BI_InterlockedExchangeAdd64:
8049     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
8050   case AArch64::BI_InterlockedExchangeSub64:
8051     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
8052   case AArch64::BI_InterlockedOr64:
8053     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
8054   case AArch64::BI_InterlockedXor64:
8055     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
8056   case AArch64::BI_InterlockedDecrement64:
8057     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
8058   case AArch64::BI_InterlockedIncrement64:
8059     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
8060   case AArch64::BI_InterlockedExchangeAdd8_acq:
8061   case AArch64::BI_InterlockedExchangeAdd16_acq:
8062   case AArch64::BI_InterlockedExchangeAdd_acq:
8063   case AArch64::BI_InterlockedExchangeAdd64_acq:
8064     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
8065   case AArch64::BI_InterlockedExchangeAdd8_rel:
8066   case AArch64::BI_InterlockedExchangeAdd16_rel:
8067   case AArch64::BI_InterlockedExchangeAdd_rel:
8068   case AArch64::BI_InterlockedExchangeAdd64_rel:
8069     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
8070   case AArch64::BI_InterlockedExchangeAdd8_nf:
8071   case AArch64::BI_InterlockedExchangeAdd16_nf:
8072   case AArch64::BI_InterlockedExchangeAdd_nf:
8073   case AArch64::BI_InterlockedExchangeAdd64_nf:
8074     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
8075   case AArch64::BI_InterlockedExchange8_acq:
8076   case AArch64::BI_InterlockedExchange16_acq:
8077   case AArch64::BI_InterlockedExchange_acq:
8078   case AArch64::BI_InterlockedExchange64_acq:
8079     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
8080   case AArch64::BI_InterlockedExchange8_rel:
8081   case AArch64::BI_InterlockedExchange16_rel:
8082   case AArch64::BI_InterlockedExchange_rel:
8083   case AArch64::BI_InterlockedExchange64_rel:
8084     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
8085   case AArch64::BI_InterlockedExchange8_nf:
8086   case AArch64::BI_InterlockedExchange16_nf:
8087   case AArch64::BI_InterlockedExchange_nf:
8088   case AArch64::BI_InterlockedExchange64_nf:
8089     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
8090   case AArch64::BI_InterlockedCompareExchange8_acq:
8091   case AArch64::BI_InterlockedCompareExchange16_acq:
8092   case AArch64::BI_InterlockedCompareExchange_acq:
8093   case AArch64::BI_InterlockedCompareExchange64_acq:
8094     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
8095   case AArch64::BI_InterlockedCompareExchange8_rel:
8096   case AArch64::BI_InterlockedCompareExchange16_rel:
8097   case AArch64::BI_InterlockedCompareExchange_rel:
8098   case AArch64::BI_InterlockedCompareExchange64_rel:
8099     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
8100   case AArch64::BI_InterlockedCompareExchange8_nf:
8101   case AArch64::BI_InterlockedCompareExchange16_nf:
8102   case AArch64::BI_InterlockedCompareExchange_nf:
8103   case AArch64::BI_InterlockedCompareExchange64_nf:
8104     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
8105   case AArch64::BI_InterlockedOr8_acq:
8106   case AArch64::BI_InterlockedOr16_acq:
8107   case AArch64::BI_InterlockedOr_acq:
8108   case AArch64::BI_InterlockedOr64_acq:
8109     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
8110   case AArch64::BI_InterlockedOr8_rel:
8111   case AArch64::BI_InterlockedOr16_rel:
8112   case AArch64::BI_InterlockedOr_rel:
8113   case AArch64::BI_InterlockedOr64_rel:
8114     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
8115   case AArch64::BI_InterlockedOr8_nf:
8116   case AArch64::BI_InterlockedOr16_nf:
8117   case AArch64::BI_InterlockedOr_nf:
8118   case AArch64::BI_InterlockedOr64_nf:
8119     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
8120   case AArch64::BI_InterlockedXor8_acq:
8121   case AArch64::BI_InterlockedXor16_acq:
8122   case AArch64::BI_InterlockedXor_acq:
8123   case AArch64::BI_InterlockedXor64_acq:
8124     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
8125   case AArch64::BI_InterlockedXor8_rel:
8126   case AArch64::BI_InterlockedXor16_rel:
8127   case AArch64::BI_InterlockedXor_rel:
8128   case AArch64::BI_InterlockedXor64_rel:
8129     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
8130   case AArch64::BI_InterlockedXor8_nf:
8131   case AArch64::BI_InterlockedXor16_nf:
8132   case AArch64::BI_InterlockedXor_nf:
8133   case AArch64::BI_InterlockedXor64_nf:
8134     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
8135   case AArch64::BI_InterlockedAnd8_acq:
8136   case AArch64::BI_InterlockedAnd16_acq:
8137   case AArch64::BI_InterlockedAnd_acq:
8138   case AArch64::BI_InterlockedAnd64_acq:
8139     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
8140   case AArch64::BI_InterlockedAnd8_rel:
8141   case AArch64::BI_InterlockedAnd16_rel:
8142   case AArch64::BI_InterlockedAnd_rel:
8143   case AArch64::BI_InterlockedAnd64_rel:
8144     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
8145   case AArch64::BI_InterlockedAnd8_nf:
8146   case AArch64::BI_InterlockedAnd16_nf:
8147   case AArch64::BI_InterlockedAnd_nf:
8148   case AArch64::BI_InterlockedAnd64_nf:
8149     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
8150   case AArch64::BI_InterlockedIncrement16_acq:
8151   case AArch64::BI_InterlockedIncrement_acq:
8152   case AArch64::BI_InterlockedIncrement64_acq:
8153     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
8154   case AArch64::BI_InterlockedIncrement16_rel:
8155   case AArch64::BI_InterlockedIncrement_rel:
8156   case AArch64::BI_InterlockedIncrement64_rel:
8157     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
8158   case AArch64::BI_InterlockedIncrement16_nf:
8159   case AArch64::BI_InterlockedIncrement_nf:
8160   case AArch64::BI_InterlockedIncrement64_nf:
8161     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
8162   case AArch64::BI_InterlockedDecrement16_acq:
8163   case AArch64::BI_InterlockedDecrement_acq:
8164   case AArch64::BI_InterlockedDecrement64_acq:
8165     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
8166   case AArch64::BI_InterlockedDecrement16_rel:
8167   case AArch64::BI_InterlockedDecrement_rel:
8168   case AArch64::BI_InterlockedDecrement64_rel:
8169     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
8170   case AArch64::BI_InterlockedDecrement16_nf:
8171   case AArch64::BI_InterlockedDecrement_nf:
8172   case AArch64::BI_InterlockedDecrement64_nf:
8173     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
8174 
8175   case AArch64::BI_InterlockedAdd: {
8176     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8177     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8178     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
8179       AtomicRMWInst::Add, Arg0, Arg1,
8180       llvm::AtomicOrdering::SequentiallyConsistent);
8181     return Builder.CreateAdd(RMWI, Arg1);
8182   }
8183   }
8184 
8185   llvm::VectorType *VTy = GetNeonType(this, Type);
8186   llvm::Type *Ty = VTy;
8187   if (!Ty)
8188     return nullptr;
8189 
8190   // Not all intrinsics handled by the common case work for AArch64 yet, so only
8191   // defer to common code if it's been added to our special map.
8192   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
8193                                    AArch64SIMDIntrinsicsProvenSorted);
8194 
8195   if (Builtin)
8196     return EmitCommonNeonBuiltinExpr(
8197         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8198         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
8199         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
8200 
8201   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
8202     return V;
8203 
8204   unsigned Int;
8205   switch (BuiltinID) {
8206   default: return nullptr;
8207   case NEON::BI__builtin_neon_vbsl_v:
8208   case NEON::BI__builtin_neon_vbslq_v: {
8209     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
8210     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
8211     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
8212     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
8213 
8214     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
8215     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
8216     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
8217     return Builder.CreateBitCast(Ops[0], Ty);
8218   }
8219   case NEON::BI__builtin_neon_vfma_lane_v:
8220   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
8221     // The ARM builtins (and instructions) have the addend as the first
8222     // operand, but the 'fma' intrinsics have it last. Swap it around here.
8223     Value *Addend = Ops[0];
8224     Value *Multiplicand = Ops[1];
8225     Value *LaneSource = Ops[2];
8226     Ops[0] = Multiplicand;
8227     Ops[1] = LaneSource;
8228     Ops[2] = Addend;
8229 
8230     // Now adjust things to handle the lane access.
8231     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
8232       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
8233       VTy;
8234     llvm::Constant *cst = cast<Constant>(Ops[3]);
8235     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
8236     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
8237     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
8238 
8239     Ops.pop_back();
8240     Int = Intrinsic::fma;
8241     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
8242   }
8243   case NEON::BI__builtin_neon_vfma_laneq_v: {
8244     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
8245     // v1f64 fma should be mapped to Neon scalar f64 fma
8246     if (VTy && VTy->getElementType() == DoubleTy) {
8247       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8248       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8249       llvm::Type *VTy = GetNeonType(this,
8250         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
8251       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
8252       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8253       Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
8254       Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8255       return Builder.CreateBitCast(Result, Ty);
8256     }
8257     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8258     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8259     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8260 
8261     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
8262                                             VTy->getNumElements() * 2);
8263     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
8264     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
8265                                                cast<ConstantInt>(Ops[3]));
8266     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
8267 
8268     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8269   }
8270   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
8271     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8272     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8273     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8274 
8275     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8276     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
8277     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8278   }
8279   case NEON::BI__builtin_neon_vfmah_lane_f16:
8280   case NEON::BI__builtin_neon_vfmas_lane_f32:
8281   case NEON::BI__builtin_neon_vfmah_laneq_f16:
8282   case NEON::BI__builtin_neon_vfmas_laneq_f32:
8283   case NEON::BI__builtin_neon_vfmad_lane_f64:
8284   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
8285     Ops.push_back(EmitScalarExpr(E->getArg(3)));
8286     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
8287     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8288     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8289     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8290   }
8291   case NEON::BI__builtin_neon_vmull_v:
8292     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8293     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
8294     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
8295     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8296   case NEON::BI__builtin_neon_vmax_v:
8297   case NEON::BI__builtin_neon_vmaxq_v:
8298     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8299     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
8300     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
8301     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
8302   case NEON::BI__builtin_neon_vmaxh_f16: {
8303     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8304     Int = Intrinsic::aarch64_neon_fmax;
8305     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
8306   }
8307   case NEON::BI__builtin_neon_vmin_v:
8308   case NEON::BI__builtin_neon_vminq_v:
8309     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8310     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
8311     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
8312     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
8313   case NEON::BI__builtin_neon_vminh_f16: {
8314     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8315     Int = Intrinsic::aarch64_neon_fmin;
8316     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
8317   }
8318   case NEON::BI__builtin_neon_vabd_v:
8319   case NEON::BI__builtin_neon_vabdq_v:
8320     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8321     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
8322     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
8323     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
8324   case NEON::BI__builtin_neon_vpadal_v:
8325   case NEON::BI__builtin_neon_vpadalq_v: {
8326     unsigned ArgElts = VTy->getNumElements();
8327     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
8328     unsigned BitWidth = EltTy->getBitWidth();
8329     llvm::Type *ArgTy = llvm::VectorType::get(
8330         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
8331     llvm::Type* Tys[2] = { VTy, ArgTy };
8332     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
8333     SmallVector<llvm::Value*, 1> TmpOps;
8334     TmpOps.push_back(Ops[1]);
8335     Function *F = CGM.getIntrinsic(Int, Tys);
8336     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
8337     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
8338     return Builder.CreateAdd(tmp, addend);
8339   }
8340   case NEON::BI__builtin_neon_vpmin_v:
8341   case NEON::BI__builtin_neon_vpminq_v:
8342     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8343     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
8344     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
8345     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
8346   case NEON::BI__builtin_neon_vpmax_v:
8347   case NEON::BI__builtin_neon_vpmaxq_v:
8348     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8349     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
8350     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
8351     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
8352   case NEON::BI__builtin_neon_vminnm_v:
8353   case NEON::BI__builtin_neon_vminnmq_v:
8354     Int = Intrinsic::aarch64_neon_fminnm;
8355     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
8356   case NEON::BI__builtin_neon_vminnmh_f16:
8357     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8358     Int = Intrinsic::aarch64_neon_fminnm;
8359     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
8360   case NEON::BI__builtin_neon_vmaxnm_v:
8361   case NEON::BI__builtin_neon_vmaxnmq_v:
8362     Int = Intrinsic::aarch64_neon_fmaxnm;
8363     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
8364   case NEON::BI__builtin_neon_vmaxnmh_f16:
8365     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8366     Int = Intrinsic::aarch64_neon_fmaxnm;
8367     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
8368   case NEON::BI__builtin_neon_vrecpss_f32: {
8369     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8370     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
8371                         Ops, "vrecps");
8372   }
8373   case NEON::BI__builtin_neon_vrecpsd_f64:
8374     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8375     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
8376                         Ops, "vrecps");
8377   case NEON::BI__builtin_neon_vrecpsh_f16:
8378     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8379     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
8380                         Ops, "vrecps");
8381   case NEON::BI__builtin_neon_vqshrun_n_v:
8382     Int = Intrinsic::aarch64_neon_sqshrun;
8383     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
8384   case NEON::BI__builtin_neon_vqrshrun_n_v:
8385     Int = Intrinsic::aarch64_neon_sqrshrun;
8386     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
8387   case NEON::BI__builtin_neon_vqshrn_n_v:
8388     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
8389     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
8390   case NEON::BI__builtin_neon_vrshrn_n_v:
8391     Int = Intrinsic::aarch64_neon_rshrn;
8392     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
8393   case NEON::BI__builtin_neon_vqrshrn_n_v:
8394     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
8395     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
8396   case NEON::BI__builtin_neon_vrndah_f16: {
8397     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8398     Int = Intrinsic::round;
8399     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
8400   }
8401   case NEON::BI__builtin_neon_vrnda_v:
8402   case NEON::BI__builtin_neon_vrndaq_v: {
8403     Int = Intrinsic::round;
8404     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
8405   }
8406   case NEON::BI__builtin_neon_vrndih_f16: {
8407     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8408     Int = Intrinsic::nearbyint;
8409     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8410   }
8411   case NEON::BI__builtin_neon_vrndmh_f16: {
8412     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8413     Int = Intrinsic::floor;
8414     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8415   }
8416   case NEON::BI__builtin_neon_vrndm_v:
8417   case NEON::BI__builtin_neon_vrndmq_v: {
8418     Int = Intrinsic::floor;
8419     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8420   }
8421   case NEON::BI__builtin_neon_vrndnh_f16: {
8422     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8423     Int = Intrinsic::aarch64_neon_frintn;
8424     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8425   }
8426   case NEON::BI__builtin_neon_vrndn_v:
8427   case NEON::BI__builtin_neon_vrndnq_v: {
8428     Int = Intrinsic::aarch64_neon_frintn;
8429     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8430   }
8431   case NEON::BI__builtin_neon_vrndns_f32: {
8432     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8433     Int = Intrinsic::aarch64_neon_frintn;
8434     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8435   }
8436   case NEON::BI__builtin_neon_vrndph_f16: {
8437     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8438     Int = Intrinsic::ceil;
8439     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8440   }
8441   case NEON::BI__builtin_neon_vrndp_v:
8442   case NEON::BI__builtin_neon_vrndpq_v: {
8443     Int = Intrinsic::ceil;
8444     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8445   }
8446   case NEON::BI__builtin_neon_vrndxh_f16: {
8447     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8448     Int = Intrinsic::rint;
8449     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8450   }
8451   case NEON::BI__builtin_neon_vrndx_v:
8452   case NEON::BI__builtin_neon_vrndxq_v: {
8453     Int = Intrinsic::rint;
8454     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8455   }
8456   case NEON::BI__builtin_neon_vrndh_f16: {
8457     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8458     Int = Intrinsic::trunc;
8459     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8460   }
8461   case NEON::BI__builtin_neon_vrnd_v:
8462   case NEON::BI__builtin_neon_vrndq_v: {
8463     Int = Intrinsic::trunc;
8464     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8465   }
8466   case NEON::BI__builtin_neon_vcvt_f64_v:
8467   case NEON::BI__builtin_neon_vcvtq_f64_v:
8468     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8469     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8470     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8471                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8472   case NEON::BI__builtin_neon_vcvt_f64_f32: {
8473     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
8474            "unexpected vcvt_f64_f32 builtin");
8475     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8476     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8477 
8478     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8479   }
8480   case NEON::BI__builtin_neon_vcvt_f32_f64: {
8481     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
8482            "unexpected vcvt_f32_f64 builtin");
8483     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8484     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8485 
8486     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8487   }
8488   case NEON::BI__builtin_neon_vcvt_s32_v:
8489   case NEON::BI__builtin_neon_vcvt_u32_v:
8490   case NEON::BI__builtin_neon_vcvt_s64_v:
8491   case NEON::BI__builtin_neon_vcvt_u64_v:
8492   case NEON::BI__builtin_neon_vcvt_s16_v:
8493   case NEON::BI__builtin_neon_vcvt_u16_v:
8494   case NEON::BI__builtin_neon_vcvtq_s32_v:
8495   case NEON::BI__builtin_neon_vcvtq_u32_v:
8496   case NEON::BI__builtin_neon_vcvtq_s64_v:
8497   case NEON::BI__builtin_neon_vcvtq_u64_v:
8498   case NEON::BI__builtin_neon_vcvtq_s16_v:
8499   case NEON::BI__builtin_neon_vcvtq_u16_v: {
8500     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8501     if (usgn)
8502       return Builder.CreateFPToUI(Ops[0], Ty);
8503     return Builder.CreateFPToSI(Ops[0], Ty);
8504   }
8505   case NEON::BI__builtin_neon_vcvta_s16_v:
8506   case NEON::BI__builtin_neon_vcvta_u16_v:
8507   case NEON::BI__builtin_neon_vcvta_s32_v:
8508   case NEON::BI__builtin_neon_vcvtaq_s16_v:
8509   case NEON::BI__builtin_neon_vcvtaq_s32_v:
8510   case NEON::BI__builtin_neon_vcvta_u32_v:
8511   case NEON::BI__builtin_neon_vcvtaq_u16_v:
8512   case NEON::BI__builtin_neon_vcvtaq_u32_v:
8513   case NEON::BI__builtin_neon_vcvta_s64_v:
8514   case NEON::BI__builtin_neon_vcvtaq_s64_v:
8515   case NEON::BI__builtin_neon_vcvta_u64_v:
8516   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8517     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8518     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8519     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8520   }
8521   case NEON::BI__builtin_neon_vcvtm_s16_v:
8522   case NEON::BI__builtin_neon_vcvtm_s32_v:
8523   case NEON::BI__builtin_neon_vcvtmq_s16_v:
8524   case NEON::BI__builtin_neon_vcvtmq_s32_v:
8525   case NEON::BI__builtin_neon_vcvtm_u16_v:
8526   case NEON::BI__builtin_neon_vcvtm_u32_v:
8527   case NEON::BI__builtin_neon_vcvtmq_u16_v:
8528   case NEON::BI__builtin_neon_vcvtmq_u32_v:
8529   case NEON::BI__builtin_neon_vcvtm_s64_v:
8530   case NEON::BI__builtin_neon_vcvtmq_s64_v:
8531   case NEON::BI__builtin_neon_vcvtm_u64_v:
8532   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8533     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8534     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8535     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8536   }
8537   case NEON::BI__builtin_neon_vcvtn_s16_v:
8538   case NEON::BI__builtin_neon_vcvtn_s32_v:
8539   case NEON::BI__builtin_neon_vcvtnq_s16_v:
8540   case NEON::BI__builtin_neon_vcvtnq_s32_v:
8541   case NEON::BI__builtin_neon_vcvtn_u16_v:
8542   case NEON::BI__builtin_neon_vcvtn_u32_v:
8543   case NEON::BI__builtin_neon_vcvtnq_u16_v:
8544   case NEON::BI__builtin_neon_vcvtnq_u32_v:
8545   case NEON::BI__builtin_neon_vcvtn_s64_v:
8546   case NEON::BI__builtin_neon_vcvtnq_s64_v:
8547   case NEON::BI__builtin_neon_vcvtn_u64_v:
8548   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8549     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8550     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8551     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8552   }
8553   case NEON::BI__builtin_neon_vcvtp_s16_v:
8554   case NEON::BI__builtin_neon_vcvtp_s32_v:
8555   case NEON::BI__builtin_neon_vcvtpq_s16_v:
8556   case NEON::BI__builtin_neon_vcvtpq_s32_v:
8557   case NEON::BI__builtin_neon_vcvtp_u16_v:
8558   case NEON::BI__builtin_neon_vcvtp_u32_v:
8559   case NEON::BI__builtin_neon_vcvtpq_u16_v:
8560   case NEON::BI__builtin_neon_vcvtpq_u32_v:
8561   case NEON::BI__builtin_neon_vcvtp_s64_v:
8562   case NEON::BI__builtin_neon_vcvtpq_s64_v:
8563   case NEON::BI__builtin_neon_vcvtp_u64_v:
8564   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8565     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8566     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8567     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8568   }
8569   case NEON::BI__builtin_neon_vmulx_v:
8570   case NEON::BI__builtin_neon_vmulxq_v: {
8571     Int = Intrinsic::aarch64_neon_fmulx;
8572     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8573   }
8574   case NEON::BI__builtin_neon_vmulxh_lane_f16:
8575   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8576     // vmulx_lane should be mapped to Neon scalar mulx after
8577     // extracting the scalar element
8578     Ops.push_back(EmitScalarExpr(E->getArg(2)));
8579     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8580     Ops.pop_back();
8581     Int = Intrinsic::aarch64_neon_fmulx;
8582     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8583   }
8584   case NEON::BI__builtin_neon_vmul_lane_v:
8585   case NEON::BI__builtin_neon_vmul_laneq_v: {
8586     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8587     bool Quad = false;
8588     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8589       Quad = true;
8590     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8591     llvm::Type *VTy = GetNeonType(this,
8592       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8593     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8594     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8595     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8596     return Builder.CreateBitCast(Result, Ty);
8597   }
8598   case NEON::BI__builtin_neon_vnegd_s64:
8599     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8600   case NEON::BI__builtin_neon_vnegh_f16:
8601     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8602   case NEON::BI__builtin_neon_vpmaxnm_v:
8603   case NEON::BI__builtin_neon_vpmaxnmq_v: {
8604     Int = Intrinsic::aarch64_neon_fmaxnmp;
8605     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8606   }
8607   case NEON::BI__builtin_neon_vpminnm_v:
8608   case NEON::BI__builtin_neon_vpminnmq_v: {
8609     Int = Intrinsic::aarch64_neon_fminnmp;
8610     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8611   }
8612   case NEON::BI__builtin_neon_vsqrth_f16: {
8613     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8614     Int = Intrinsic::sqrt;
8615     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8616   }
8617   case NEON::BI__builtin_neon_vsqrt_v:
8618   case NEON::BI__builtin_neon_vsqrtq_v: {
8619     Int = Intrinsic::sqrt;
8620     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8621     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8622   }
8623   case NEON::BI__builtin_neon_vrbit_v:
8624   case NEON::BI__builtin_neon_vrbitq_v: {
8625     Int = Intrinsic::aarch64_neon_rbit;
8626     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8627   }
8628   case NEON::BI__builtin_neon_vaddv_u8:
8629     // FIXME: These are handled by the AArch64 scalar code.
8630     usgn = true;
8631     LLVM_FALLTHROUGH;
8632   case NEON::BI__builtin_neon_vaddv_s8: {
8633     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8634     Ty = Int32Ty;
8635     VTy = llvm::VectorType::get(Int8Ty, 8);
8636     llvm::Type *Tys[2] = { Ty, VTy };
8637     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8638     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8639     return Builder.CreateTrunc(Ops[0], Int8Ty);
8640   }
8641   case NEON::BI__builtin_neon_vaddv_u16:
8642     usgn = true;
8643     LLVM_FALLTHROUGH;
8644   case NEON::BI__builtin_neon_vaddv_s16: {
8645     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8646     Ty = Int32Ty;
8647     VTy = llvm::VectorType::get(Int16Ty, 4);
8648     llvm::Type *Tys[2] = { Ty, VTy };
8649     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8650     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8651     return Builder.CreateTrunc(Ops[0], Int16Ty);
8652   }
8653   case NEON::BI__builtin_neon_vaddvq_u8:
8654     usgn = true;
8655     LLVM_FALLTHROUGH;
8656   case NEON::BI__builtin_neon_vaddvq_s8: {
8657     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8658     Ty = Int32Ty;
8659     VTy = llvm::VectorType::get(Int8Ty, 16);
8660     llvm::Type *Tys[2] = { Ty, VTy };
8661     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8662     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8663     return Builder.CreateTrunc(Ops[0], Int8Ty);
8664   }
8665   case NEON::BI__builtin_neon_vaddvq_u16:
8666     usgn = true;
8667     LLVM_FALLTHROUGH;
8668   case NEON::BI__builtin_neon_vaddvq_s16: {
8669     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8670     Ty = Int32Ty;
8671     VTy = llvm::VectorType::get(Int16Ty, 8);
8672     llvm::Type *Tys[2] = { Ty, VTy };
8673     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8674     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8675     return Builder.CreateTrunc(Ops[0], Int16Ty);
8676   }
8677   case NEON::BI__builtin_neon_vmaxv_u8: {
8678     Int = Intrinsic::aarch64_neon_umaxv;
8679     Ty = Int32Ty;
8680     VTy = llvm::VectorType::get(Int8Ty, 8);
8681     llvm::Type *Tys[2] = { Ty, VTy };
8682     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8683     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8684     return Builder.CreateTrunc(Ops[0], Int8Ty);
8685   }
8686   case NEON::BI__builtin_neon_vmaxv_u16: {
8687     Int = Intrinsic::aarch64_neon_umaxv;
8688     Ty = Int32Ty;
8689     VTy = llvm::VectorType::get(Int16Ty, 4);
8690     llvm::Type *Tys[2] = { Ty, VTy };
8691     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8692     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8693     return Builder.CreateTrunc(Ops[0], Int16Ty);
8694   }
8695   case NEON::BI__builtin_neon_vmaxvq_u8: {
8696     Int = Intrinsic::aarch64_neon_umaxv;
8697     Ty = Int32Ty;
8698     VTy = llvm::VectorType::get(Int8Ty, 16);
8699     llvm::Type *Tys[2] = { Ty, VTy };
8700     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8701     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8702     return Builder.CreateTrunc(Ops[0], Int8Ty);
8703   }
8704   case NEON::BI__builtin_neon_vmaxvq_u16: {
8705     Int = Intrinsic::aarch64_neon_umaxv;
8706     Ty = Int32Ty;
8707     VTy = llvm::VectorType::get(Int16Ty, 8);
8708     llvm::Type *Tys[2] = { Ty, VTy };
8709     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8710     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8711     return Builder.CreateTrunc(Ops[0], Int16Ty);
8712   }
8713   case NEON::BI__builtin_neon_vmaxv_s8: {
8714     Int = Intrinsic::aarch64_neon_smaxv;
8715     Ty = Int32Ty;
8716     VTy = llvm::VectorType::get(Int8Ty, 8);
8717     llvm::Type *Tys[2] = { Ty, VTy };
8718     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8719     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8720     return Builder.CreateTrunc(Ops[0], Int8Ty);
8721   }
8722   case NEON::BI__builtin_neon_vmaxv_s16: {
8723     Int = Intrinsic::aarch64_neon_smaxv;
8724     Ty = Int32Ty;
8725     VTy = llvm::VectorType::get(Int16Ty, 4);
8726     llvm::Type *Tys[2] = { Ty, VTy };
8727     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8728     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8729     return Builder.CreateTrunc(Ops[0], Int16Ty);
8730   }
8731   case NEON::BI__builtin_neon_vmaxvq_s8: {
8732     Int = Intrinsic::aarch64_neon_smaxv;
8733     Ty = Int32Ty;
8734     VTy = llvm::VectorType::get(Int8Ty, 16);
8735     llvm::Type *Tys[2] = { Ty, VTy };
8736     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8737     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8738     return Builder.CreateTrunc(Ops[0], Int8Ty);
8739   }
8740   case NEON::BI__builtin_neon_vmaxvq_s16: {
8741     Int = Intrinsic::aarch64_neon_smaxv;
8742     Ty = Int32Ty;
8743     VTy = llvm::VectorType::get(Int16Ty, 8);
8744     llvm::Type *Tys[2] = { Ty, VTy };
8745     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8746     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8747     return Builder.CreateTrunc(Ops[0], Int16Ty);
8748   }
8749   case NEON::BI__builtin_neon_vmaxv_f16: {
8750     Int = Intrinsic::aarch64_neon_fmaxv;
8751     Ty = HalfTy;
8752     VTy = llvm::VectorType::get(HalfTy, 4);
8753     llvm::Type *Tys[2] = { Ty, VTy };
8754     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8755     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8756     return Builder.CreateTrunc(Ops[0], HalfTy);
8757   }
8758   case NEON::BI__builtin_neon_vmaxvq_f16: {
8759     Int = Intrinsic::aarch64_neon_fmaxv;
8760     Ty = HalfTy;
8761     VTy = llvm::VectorType::get(HalfTy, 8);
8762     llvm::Type *Tys[2] = { Ty, VTy };
8763     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8764     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8765     return Builder.CreateTrunc(Ops[0], HalfTy);
8766   }
8767   case NEON::BI__builtin_neon_vminv_u8: {
8768     Int = Intrinsic::aarch64_neon_uminv;
8769     Ty = Int32Ty;
8770     VTy = llvm::VectorType::get(Int8Ty, 8);
8771     llvm::Type *Tys[2] = { Ty, VTy };
8772     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8773     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8774     return Builder.CreateTrunc(Ops[0], Int8Ty);
8775   }
8776   case NEON::BI__builtin_neon_vminv_u16: {
8777     Int = Intrinsic::aarch64_neon_uminv;
8778     Ty = Int32Ty;
8779     VTy = llvm::VectorType::get(Int16Ty, 4);
8780     llvm::Type *Tys[2] = { Ty, VTy };
8781     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8782     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8783     return Builder.CreateTrunc(Ops[0], Int16Ty);
8784   }
8785   case NEON::BI__builtin_neon_vminvq_u8: {
8786     Int = Intrinsic::aarch64_neon_uminv;
8787     Ty = Int32Ty;
8788     VTy = llvm::VectorType::get(Int8Ty, 16);
8789     llvm::Type *Tys[2] = { Ty, VTy };
8790     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8791     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8792     return Builder.CreateTrunc(Ops[0], Int8Ty);
8793   }
8794   case NEON::BI__builtin_neon_vminvq_u16: {
8795     Int = Intrinsic::aarch64_neon_uminv;
8796     Ty = Int32Ty;
8797     VTy = llvm::VectorType::get(Int16Ty, 8);
8798     llvm::Type *Tys[2] = { Ty, VTy };
8799     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8800     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8801     return Builder.CreateTrunc(Ops[0], Int16Ty);
8802   }
8803   case NEON::BI__builtin_neon_vminv_s8: {
8804     Int = Intrinsic::aarch64_neon_sminv;
8805     Ty = Int32Ty;
8806     VTy = llvm::VectorType::get(Int8Ty, 8);
8807     llvm::Type *Tys[2] = { Ty, VTy };
8808     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8809     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8810     return Builder.CreateTrunc(Ops[0], Int8Ty);
8811   }
8812   case NEON::BI__builtin_neon_vminv_s16: {
8813     Int = Intrinsic::aarch64_neon_sminv;
8814     Ty = Int32Ty;
8815     VTy = llvm::VectorType::get(Int16Ty, 4);
8816     llvm::Type *Tys[2] = { Ty, VTy };
8817     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8818     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8819     return Builder.CreateTrunc(Ops[0], Int16Ty);
8820   }
8821   case NEON::BI__builtin_neon_vminvq_s8: {
8822     Int = Intrinsic::aarch64_neon_sminv;
8823     Ty = Int32Ty;
8824     VTy = llvm::VectorType::get(Int8Ty, 16);
8825     llvm::Type *Tys[2] = { Ty, VTy };
8826     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8827     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8828     return Builder.CreateTrunc(Ops[0], Int8Ty);
8829   }
8830   case NEON::BI__builtin_neon_vminvq_s16: {
8831     Int = Intrinsic::aarch64_neon_sminv;
8832     Ty = Int32Ty;
8833     VTy = llvm::VectorType::get(Int16Ty, 8);
8834     llvm::Type *Tys[2] = { Ty, VTy };
8835     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8836     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8837     return Builder.CreateTrunc(Ops[0], Int16Ty);
8838   }
8839   case NEON::BI__builtin_neon_vminv_f16: {
8840     Int = Intrinsic::aarch64_neon_fminv;
8841     Ty = HalfTy;
8842     VTy = llvm::VectorType::get(HalfTy, 4);
8843     llvm::Type *Tys[2] = { Ty, VTy };
8844     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8845     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8846     return Builder.CreateTrunc(Ops[0], HalfTy);
8847   }
8848   case NEON::BI__builtin_neon_vminvq_f16: {
8849     Int = Intrinsic::aarch64_neon_fminv;
8850     Ty = HalfTy;
8851     VTy = llvm::VectorType::get(HalfTy, 8);
8852     llvm::Type *Tys[2] = { Ty, VTy };
8853     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8854     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8855     return Builder.CreateTrunc(Ops[0], HalfTy);
8856   }
8857   case NEON::BI__builtin_neon_vmaxnmv_f16: {
8858     Int = Intrinsic::aarch64_neon_fmaxnmv;
8859     Ty = HalfTy;
8860     VTy = llvm::VectorType::get(HalfTy, 4);
8861     llvm::Type *Tys[2] = { Ty, VTy };
8862     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8863     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8864     return Builder.CreateTrunc(Ops[0], HalfTy);
8865   }
8866   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
8867     Int = Intrinsic::aarch64_neon_fmaxnmv;
8868     Ty = HalfTy;
8869     VTy = llvm::VectorType::get(HalfTy, 8);
8870     llvm::Type *Tys[2] = { Ty, VTy };
8871     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8872     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8873     return Builder.CreateTrunc(Ops[0], HalfTy);
8874   }
8875   case NEON::BI__builtin_neon_vminnmv_f16: {
8876     Int = Intrinsic::aarch64_neon_fminnmv;
8877     Ty = HalfTy;
8878     VTy = llvm::VectorType::get(HalfTy, 4);
8879     llvm::Type *Tys[2] = { Ty, VTy };
8880     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8881     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8882     return Builder.CreateTrunc(Ops[0], HalfTy);
8883   }
8884   case NEON::BI__builtin_neon_vminnmvq_f16: {
8885     Int = Intrinsic::aarch64_neon_fminnmv;
8886     Ty = HalfTy;
8887     VTy = llvm::VectorType::get(HalfTy, 8);
8888     llvm::Type *Tys[2] = { Ty, VTy };
8889     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8890     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8891     return Builder.CreateTrunc(Ops[0], HalfTy);
8892   }
8893   case NEON::BI__builtin_neon_vmul_n_f64: {
8894     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8895     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
8896     return Builder.CreateFMul(Ops[0], RHS);
8897   }
8898   case NEON::BI__builtin_neon_vaddlv_u8: {
8899     Int = Intrinsic::aarch64_neon_uaddlv;
8900     Ty = Int32Ty;
8901     VTy = llvm::VectorType::get(Int8Ty, 8);
8902     llvm::Type *Tys[2] = { Ty, VTy };
8903     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8904     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8905     return Builder.CreateTrunc(Ops[0], Int16Ty);
8906   }
8907   case NEON::BI__builtin_neon_vaddlv_u16: {
8908     Int = Intrinsic::aarch64_neon_uaddlv;
8909     Ty = Int32Ty;
8910     VTy = llvm::VectorType::get(Int16Ty, 4);
8911     llvm::Type *Tys[2] = { Ty, VTy };
8912     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8913     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8914   }
8915   case NEON::BI__builtin_neon_vaddlvq_u8: {
8916     Int = Intrinsic::aarch64_neon_uaddlv;
8917     Ty = Int32Ty;
8918     VTy = llvm::VectorType::get(Int8Ty, 16);
8919     llvm::Type *Tys[2] = { Ty, VTy };
8920     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8921     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8922     return Builder.CreateTrunc(Ops[0], Int16Ty);
8923   }
8924   case NEON::BI__builtin_neon_vaddlvq_u16: {
8925     Int = Intrinsic::aarch64_neon_uaddlv;
8926     Ty = Int32Ty;
8927     VTy = llvm::VectorType::get(Int16Ty, 8);
8928     llvm::Type *Tys[2] = { Ty, VTy };
8929     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8930     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8931   }
8932   case NEON::BI__builtin_neon_vaddlv_s8: {
8933     Int = Intrinsic::aarch64_neon_saddlv;
8934     Ty = Int32Ty;
8935     VTy = llvm::VectorType::get(Int8Ty, 8);
8936     llvm::Type *Tys[2] = { Ty, VTy };
8937     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8938     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8939     return Builder.CreateTrunc(Ops[0], Int16Ty);
8940   }
8941   case NEON::BI__builtin_neon_vaddlv_s16: {
8942     Int = Intrinsic::aarch64_neon_saddlv;
8943     Ty = Int32Ty;
8944     VTy = llvm::VectorType::get(Int16Ty, 4);
8945     llvm::Type *Tys[2] = { Ty, VTy };
8946     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8947     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8948   }
8949   case NEON::BI__builtin_neon_vaddlvq_s8: {
8950     Int = Intrinsic::aarch64_neon_saddlv;
8951     Ty = Int32Ty;
8952     VTy = llvm::VectorType::get(Int8Ty, 16);
8953     llvm::Type *Tys[2] = { Ty, VTy };
8954     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8955     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8956     return Builder.CreateTrunc(Ops[0], Int16Ty);
8957   }
8958   case NEON::BI__builtin_neon_vaddlvq_s16: {
8959     Int = Intrinsic::aarch64_neon_saddlv;
8960     Ty = Int32Ty;
8961     VTy = llvm::VectorType::get(Int16Ty, 8);
8962     llvm::Type *Tys[2] = { Ty, VTy };
8963     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8964     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8965   }
8966   case NEON::BI__builtin_neon_vsri_n_v:
8967   case NEON::BI__builtin_neon_vsriq_n_v: {
8968     Int = Intrinsic::aarch64_neon_vsri;
8969     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8970     return EmitNeonCall(Intrin, Ops, "vsri_n");
8971   }
8972   case NEON::BI__builtin_neon_vsli_n_v:
8973   case NEON::BI__builtin_neon_vsliq_n_v: {
8974     Int = Intrinsic::aarch64_neon_vsli;
8975     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8976     return EmitNeonCall(Intrin, Ops, "vsli_n");
8977   }
8978   case NEON::BI__builtin_neon_vsra_n_v:
8979   case NEON::BI__builtin_neon_vsraq_n_v:
8980     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8981     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8982     return Builder.CreateAdd(Ops[0], Ops[1]);
8983   case NEON::BI__builtin_neon_vrsra_n_v:
8984   case NEON::BI__builtin_neon_vrsraq_n_v: {
8985     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
8986     SmallVector<llvm::Value*,2> TmpOps;
8987     TmpOps.push_back(Ops[1]);
8988     TmpOps.push_back(Ops[2]);
8989     Function* F = CGM.getIntrinsic(Int, Ty);
8990     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
8991     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
8992     return Builder.CreateAdd(Ops[0], tmp);
8993   }
8994   case NEON::BI__builtin_neon_vld1_v:
8995   case NEON::BI__builtin_neon_vld1q_v: {
8996     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8997     auto Alignment = CharUnits::fromQuantity(
8998         BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
8999     return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
9000   }
9001   case NEON::BI__builtin_neon_vst1_v:
9002   case NEON::BI__builtin_neon_vst1q_v:
9003     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
9004     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
9005     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9006   case NEON::BI__builtin_neon_vld1_lane_v:
9007   case NEON::BI__builtin_neon_vld1q_lane_v: {
9008     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9009     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9010     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9011     auto Alignment = CharUnits::fromQuantity(
9012         BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
9013     Ops[0] =
9014         Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9015     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
9016   }
9017   case NEON::BI__builtin_neon_vld1_dup_v:
9018   case NEON::BI__builtin_neon_vld1q_dup_v: {
9019     Value *V = UndefValue::get(Ty);
9020     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9021     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9022     auto Alignment = CharUnits::fromQuantity(
9023         BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
9024     Ops[0] =
9025         Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9026     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
9027     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
9028     return EmitNeonSplat(Ops[0], CI);
9029   }
9030   case NEON::BI__builtin_neon_vst1_lane_v:
9031   case NEON::BI__builtin_neon_vst1q_lane_v:
9032     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9033     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9034     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9035     return Builder.CreateDefaultAlignedStore(Ops[1],
9036                                              Builder.CreateBitCast(Ops[0], Ty));
9037   case NEON::BI__builtin_neon_vld2_v:
9038   case NEON::BI__builtin_neon_vld2q_v: {
9039     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9040     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9041     llvm::Type *Tys[2] = { VTy, PTy };
9042     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
9043     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9044     Ops[0] = Builder.CreateBitCast(Ops[0],
9045                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9046     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9047   }
9048   case NEON::BI__builtin_neon_vld3_v:
9049   case NEON::BI__builtin_neon_vld3q_v: {
9050     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9051     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9052     llvm::Type *Tys[2] = { VTy, PTy };
9053     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
9054     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9055     Ops[0] = Builder.CreateBitCast(Ops[0],
9056                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9057     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9058   }
9059   case NEON::BI__builtin_neon_vld4_v:
9060   case NEON::BI__builtin_neon_vld4q_v: {
9061     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9062     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9063     llvm::Type *Tys[2] = { VTy, PTy };
9064     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
9065     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9066     Ops[0] = Builder.CreateBitCast(Ops[0],
9067                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9068     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9069   }
9070   case NEON::BI__builtin_neon_vld2_dup_v:
9071   case NEON::BI__builtin_neon_vld2q_dup_v: {
9072     llvm::Type *PTy =
9073       llvm::PointerType::getUnqual(VTy->getElementType());
9074     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9075     llvm::Type *Tys[2] = { VTy, PTy };
9076     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
9077     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9078     Ops[0] = Builder.CreateBitCast(Ops[0],
9079                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9080     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9081   }
9082   case NEON::BI__builtin_neon_vld3_dup_v:
9083   case NEON::BI__builtin_neon_vld3q_dup_v: {
9084     llvm::Type *PTy =
9085       llvm::PointerType::getUnqual(VTy->getElementType());
9086     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9087     llvm::Type *Tys[2] = { VTy, PTy };
9088     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
9089     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9090     Ops[0] = Builder.CreateBitCast(Ops[0],
9091                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9092     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9093   }
9094   case NEON::BI__builtin_neon_vld4_dup_v:
9095   case NEON::BI__builtin_neon_vld4q_dup_v: {
9096     llvm::Type *PTy =
9097       llvm::PointerType::getUnqual(VTy->getElementType());
9098     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9099     llvm::Type *Tys[2] = { VTy, PTy };
9100     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
9101     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9102     Ops[0] = Builder.CreateBitCast(Ops[0],
9103                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9104     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9105   }
9106   case NEON::BI__builtin_neon_vld2_lane_v:
9107   case NEON::BI__builtin_neon_vld2q_lane_v: {
9108     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9109     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
9110     Ops.push_back(Ops[1]);
9111     Ops.erase(Ops.begin()+1);
9112     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9113     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9114     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9115     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
9116     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9117     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9118     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9119   }
9120   case NEON::BI__builtin_neon_vld3_lane_v:
9121   case NEON::BI__builtin_neon_vld3q_lane_v: {
9122     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9123     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
9124     Ops.push_back(Ops[1]);
9125     Ops.erase(Ops.begin()+1);
9126     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9127     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9128     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9129     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9130     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
9131     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9132     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9133     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9134   }
9135   case NEON::BI__builtin_neon_vld4_lane_v:
9136   case NEON::BI__builtin_neon_vld4q_lane_v: {
9137     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9138     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
9139     Ops.push_back(Ops[1]);
9140     Ops.erase(Ops.begin()+1);
9141     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9142     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9143     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9144     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
9145     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
9146     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
9147     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9148     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9149     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9150   }
9151   case NEON::BI__builtin_neon_vst2_v:
9152   case NEON::BI__builtin_neon_vst2q_v: {
9153     Ops.push_back(Ops[0]);
9154     Ops.erase(Ops.begin());
9155     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
9156     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
9157                         Ops, "");
9158   }
9159   case NEON::BI__builtin_neon_vst2_lane_v:
9160   case NEON::BI__builtin_neon_vst2q_lane_v: {
9161     Ops.push_back(Ops[0]);
9162     Ops.erase(Ops.begin());
9163     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
9164     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9165     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
9166                         Ops, "");
9167   }
9168   case NEON::BI__builtin_neon_vst3_v:
9169   case NEON::BI__builtin_neon_vst3q_v: {
9170     Ops.push_back(Ops[0]);
9171     Ops.erase(Ops.begin());
9172     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9173     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
9174                         Ops, "");
9175   }
9176   case NEON::BI__builtin_neon_vst3_lane_v:
9177   case NEON::BI__builtin_neon_vst3q_lane_v: {
9178     Ops.push_back(Ops[0]);
9179     Ops.erase(Ops.begin());
9180     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9181     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9182     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
9183                         Ops, "");
9184   }
9185   case NEON::BI__builtin_neon_vst4_v:
9186   case NEON::BI__builtin_neon_vst4q_v: {
9187     Ops.push_back(Ops[0]);
9188     Ops.erase(Ops.begin());
9189     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9190     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
9191                         Ops, "");
9192   }
9193   case NEON::BI__builtin_neon_vst4_lane_v:
9194   case NEON::BI__builtin_neon_vst4q_lane_v: {
9195     Ops.push_back(Ops[0]);
9196     Ops.erase(Ops.begin());
9197     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9198     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
9199     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
9200                         Ops, "");
9201   }
9202   case NEON::BI__builtin_neon_vtrn_v:
9203   case NEON::BI__builtin_neon_vtrnq_v: {
9204     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9205     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9206     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9207     Value *SV = nullptr;
9208 
9209     for (unsigned vi = 0; vi != 2; ++vi) {
9210       SmallVector<uint32_t, 16> Indices;
9211       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9212         Indices.push_back(i+vi);
9213         Indices.push_back(i+e+vi);
9214       }
9215       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9216       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
9217       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9218     }
9219     return SV;
9220   }
9221   case NEON::BI__builtin_neon_vuzp_v:
9222   case NEON::BI__builtin_neon_vuzpq_v: {
9223     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9224     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9225     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9226     Value *SV = nullptr;
9227 
9228     for (unsigned vi = 0; vi != 2; ++vi) {
9229       SmallVector<uint32_t, 16> Indices;
9230       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
9231         Indices.push_back(2*i+vi);
9232 
9233       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9234       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
9235       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9236     }
9237     return SV;
9238   }
9239   case NEON::BI__builtin_neon_vzip_v:
9240   case NEON::BI__builtin_neon_vzipq_v: {
9241     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9242     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9243     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9244     Value *SV = nullptr;
9245 
9246     for (unsigned vi = 0; vi != 2; ++vi) {
9247       SmallVector<uint32_t, 16> Indices;
9248       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9249         Indices.push_back((i + vi*e) >> 1);
9250         Indices.push_back(((i + vi*e) >> 1)+e);
9251       }
9252       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9253       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
9254       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9255     }
9256     return SV;
9257   }
9258   case NEON::BI__builtin_neon_vqtbl1q_v: {
9259     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
9260                         Ops, "vtbl1");
9261   }
9262   case NEON::BI__builtin_neon_vqtbl2q_v: {
9263     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
9264                         Ops, "vtbl2");
9265   }
9266   case NEON::BI__builtin_neon_vqtbl3q_v: {
9267     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
9268                         Ops, "vtbl3");
9269   }
9270   case NEON::BI__builtin_neon_vqtbl4q_v: {
9271     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
9272                         Ops, "vtbl4");
9273   }
9274   case NEON::BI__builtin_neon_vqtbx1q_v: {
9275     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
9276                         Ops, "vtbx1");
9277   }
9278   case NEON::BI__builtin_neon_vqtbx2q_v: {
9279     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
9280                         Ops, "vtbx2");
9281   }
9282   case NEON::BI__builtin_neon_vqtbx3q_v: {
9283     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
9284                         Ops, "vtbx3");
9285   }
9286   case NEON::BI__builtin_neon_vqtbx4q_v: {
9287     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
9288                         Ops, "vtbx4");
9289   }
9290   case NEON::BI__builtin_neon_vsqadd_v:
9291   case NEON::BI__builtin_neon_vsqaddq_v: {
9292     Int = Intrinsic::aarch64_neon_usqadd;
9293     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
9294   }
9295   case NEON::BI__builtin_neon_vuqadd_v:
9296   case NEON::BI__builtin_neon_vuqaddq_v: {
9297     Int = Intrinsic::aarch64_neon_suqadd;
9298     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
9299   }
9300   }
9301 }
9302 
9303 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
9304                                            const CallExpr *E) {
9305   assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
9306          "unexpected ARM builtin");
9307 
9308   const Expr *Arg = E->getArg(0);
9309   bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
9310 
9311   if (!getDebugInfo()) {
9312     CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g");
9313     return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9314                       : EmitLValue(Arg).getPointer();
9315   }
9316 
9317   // Enable underlying preserve_*_access_index() generation.
9318   bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
9319   IsInPreservedAIRegion = true;
9320   Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9321                                 : EmitLValue(Arg).getPointer();
9322   IsInPreservedAIRegion = OldIsInPreservedAIRegion;
9323 
9324   ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9325   Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
9326 
9327   // Built the IR for the preserve_field_info intrinsic.
9328   llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
9329       &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
9330       {FieldAddr->getType()});
9331   return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
9332 }
9333 
9334 llvm::Value *CodeGenFunction::
9335 BuildVector(ArrayRef<llvm::Value*> Ops) {
9336   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
9337          "Not a power-of-two sized vector!");
9338   bool AllConstants = true;
9339   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9340     AllConstants &= isa<Constant>(Ops[i]);
9341 
9342   // If this is a constant vector, create a ConstantVector.
9343   if (AllConstants) {
9344     SmallVector<llvm::Constant*, 16> CstOps;
9345     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9346       CstOps.push_back(cast<Constant>(Ops[i]));
9347     return llvm::ConstantVector::get(CstOps);
9348   }
9349 
9350   // Otherwise, insertelement the values to build the vector.
9351   Value *Result =
9352     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9353 
9354   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9355     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9356 
9357   return Result;
9358 }
9359 
9360 // Convert the mask from an integer type to a vector of i1.
9361 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9362                               unsigned NumElts) {
9363 
9364   llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9365                          cast<IntegerType>(Mask->getType())->getBitWidth());
9366   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9367 
9368   // If we have less than 8 elements, then the starting mask was an i8 and
9369   // we need to extract down to the right number of elements.
9370   if (NumElts < 8) {
9371     uint32_t Indices[4];
9372     for (unsigned i = 0; i != NumElts; ++i)
9373       Indices[i] = i;
9374     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9375                                              makeArrayRef(Indices, NumElts),
9376                                              "extract");
9377   }
9378   return MaskVec;
9379 }
9380 
9381 static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9382                                  ArrayRef<Value *> Ops,
9383                                  unsigned Align) {
9384   // Cast the pointer to right type.
9385   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9386                                llvm::PointerType::getUnqual(Ops[1]->getType()));
9387 
9388   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9389                                    Ops[1]->getType()->getVectorNumElements());
9390 
9391   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9392 }
9393 
9394 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9395                                 ArrayRef<Value *> Ops, unsigned Align) {
9396   // Cast the pointer to right type.
9397   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9398                                llvm::PointerType::getUnqual(Ops[1]->getType()));
9399 
9400   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9401                                    Ops[1]->getType()->getVectorNumElements());
9402 
9403   return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9404 }
9405 
9406 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9407                                 ArrayRef<Value *> Ops) {
9408   llvm::Type *ResultTy = Ops[1]->getType();
9409   llvm::Type *PtrTy = ResultTy->getVectorElementType();
9410 
9411   // Cast the pointer to element type.
9412   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9413                                          llvm::PointerType::getUnqual(PtrTy));
9414 
9415   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9416                                    ResultTy->getVectorNumElements());
9417 
9418   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9419                                            ResultTy);
9420   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9421 }
9422 
9423 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
9424                                     ArrayRef<Value *> Ops,
9425                                     bool IsCompress) {
9426   llvm::Type *ResultTy = Ops[1]->getType();
9427 
9428   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9429                                    ResultTy->getVectorNumElements());
9430 
9431   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
9432                                  : Intrinsic::x86_avx512_mask_expand;
9433   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
9434   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
9435 }
9436 
9437 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9438                                    ArrayRef<Value *> Ops) {
9439   llvm::Type *ResultTy = Ops[1]->getType();
9440   llvm::Type *PtrTy = ResultTy->getVectorElementType();
9441 
9442   // Cast the pointer to element type.
9443   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9444                                          llvm::PointerType::getUnqual(PtrTy));
9445 
9446   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9447                                    ResultTy->getVectorNumElements());
9448 
9449   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9450                                            ResultTy);
9451   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9452 }
9453 
9454 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9455                               ArrayRef<Value *> Ops,
9456                               bool InvertLHS = false) {
9457   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9458   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9459   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9460 
9461   if (InvertLHS)
9462     LHS = CGF.Builder.CreateNot(LHS);
9463 
9464   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9465                                    Ops[0]->getType());
9466 }
9467 
9468 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9469                                  Value *Amt, bool IsRight) {
9470   llvm::Type *Ty = Op0->getType();
9471 
9472   // Amount may be scalar immediate, in which case create a splat vector.
9473   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9474   // we only care about the lowest log2 bits anyway.
9475   if (Amt->getType() != Ty) {
9476     unsigned NumElts = Ty->getVectorNumElements();
9477     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9478     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9479   }
9480 
9481   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9482   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
9483   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9484 }
9485 
9486 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9487                            bool IsSigned) {
9488   Value *Op0 = Ops[0];
9489   Value *Op1 = Ops[1];
9490   llvm::Type *Ty = Op0->getType();
9491   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
9492 
9493   CmpInst::Predicate Pred;
9494   switch (Imm) {
9495   case 0x0:
9496     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
9497     break;
9498   case 0x1:
9499     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9500     break;
9501   case 0x2:
9502     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
9503     break;
9504   case 0x3:
9505     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
9506     break;
9507   case 0x4:
9508     Pred = ICmpInst::ICMP_EQ;
9509     break;
9510   case 0x5:
9511     Pred = ICmpInst::ICMP_NE;
9512     break;
9513   case 0x6:
9514     return llvm::Constant::getNullValue(Ty); // FALSE
9515   case 0x7:
9516     return llvm::Constant::getAllOnesValue(Ty); // TRUE
9517   default:
9518     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
9519   }
9520 
9521   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
9522   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
9523   return Res;
9524 }
9525 
9526 static Value *EmitX86Select(CodeGenFunction &CGF,
9527                             Value *Mask, Value *Op0, Value *Op1) {
9528 
9529   // If the mask is all ones just return first argument.
9530   if (const auto *C = dyn_cast<Constant>(Mask))
9531     if (C->isAllOnesValue())
9532       return Op0;
9533 
9534   Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9535 
9536   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9537 }
9538 
9539 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9540                                   Value *Mask, Value *Op0, Value *Op1) {
9541   // If the mask is all ones just return first argument.
9542   if (const auto *C = dyn_cast<Constant>(Mask))
9543     if (C->isAllOnesValue())
9544       return Op0;
9545 
9546   llvm::VectorType *MaskTy =
9547     llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9548                           Mask->getType()->getIntegerBitWidth());
9549   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9550   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9551   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9552 }
9553 
9554 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9555                                          unsigned NumElts, Value *MaskIn) {
9556   if (MaskIn) {
9557     const auto *C = dyn_cast<Constant>(MaskIn);
9558     if (!C || !C->isAllOnesValue())
9559       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9560   }
9561 
9562   if (NumElts < 8) {
9563     uint32_t Indices[8];
9564     for (unsigned i = 0; i != NumElts; ++i)
9565       Indices[i] = i;
9566     for (unsigned i = NumElts; i != 8; ++i)
9567       Indices[i] = i % NumElts + NumElts;
9568     Cmp = CGF.Builder.CreateShuffleVector(
9569         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9570   }
9571 
9572   return CGF.Builder.CreateBitCast(Cmp,
9573                                    IntegerType::get(CGF.getLLVMContext(),
9574                                                     std::max(NumElts, 8U)));
9575 }
9576 
9577 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9578                                    bool Signed, ArrayRef<Value *> Ops) {
9579   assert((Ops.size() == 2 || Ops.size() == 4) &&
9580          "Unexpected number of arguments");
9581   unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9582   Value *Cmp;
9583 
9584   if (CC == 3) {
9585     Cmp = Constant::getNullValue(
9586                        llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9587   } else if (CC == 7) {
9588     Cmp = Constant::getAllOnesValue(
9589                        llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9590   } else {
9591     ICmpInst::Predicate Pred;
9592     switch (CC) {
9593     default: llvm_unreachable("Unknown condition code");
9594     case 0: Pred = ICmpInst::ICMP_EQ;  break;
9595     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9596     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9597     case 4: Pred = ICmpInst::ICMP_NE;  break;
9598     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9599     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9600     }
9601     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9602   }
9603 
9604   Value *MaskIn = nullptr;
9605   if (Ops.size() == 4)
9606     MaskIn = Ops[3];
9607 
9608   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9609 }
9610 
9611 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9612   Value *Zero = Constant::getNullValue(In->getType());
9613   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9614 }
9615 
9616 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
9617                                     ArrayRef<Value *> Ops, bool IsSigned) {
9618   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
9619   llvm::Type *Ty = Ops[1]->getType();
9620 
9621   Value *Res;
9622   if (Rnd != 4) {
9623     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
9624                                  : Intrinsic::x86_avx512_uitofp_round;
9625     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
9626     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
9627   } else {
9628     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
9629                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
9630   }
9631 
9632   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
9633 }
9634 
9635 static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9636 
9637   llvm::Type *Ty = Ops[0]->getType();
9638   Value *Zero = llvm::Constant::getNullValue(Ty);
9639   Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9640   Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9641   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9642   return Res;
9643 }
9644 
9645 static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9646                             ArrayRef<Value *> Ops) {
9647   Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9648   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9649 
9650   assert(Ops.size() == 2);
9651   return Res;
9652 }
9653 
9654 // Lowers X86 FMA intrinsics to IR.
9655 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9656                              unsigned BuiltinID, bool IsAddSub) {
9657 
9658   bool Subtract = false;
9659   Intrinsic::ID IID = Intrinsic::not_intrinsic;
9660   switch (BuiltinID) {
9661   default: break;
9662   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9663     Subtract = true;
9664     LLVM_FALLTHROUGH;
9665   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9666   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9667   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9668     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
9669   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9670     Subtract = true;
9671     LLVM_FALLTHROUGH;
9672   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9673   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9674   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9675     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
9676   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9677     Subtract = true;
9678     LLVM_FALLTHROUGH;
9679   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9680   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9681   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9682     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
9683     break;
9684   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9685     Subtract = true;
9686     LLVM_FALLTHROUGH;
9687   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9688   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9689   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9690     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
9691     break;
9692   }
9693 
9694   Value *A = Ops[0];
9695   Value *B = Ops[1];
9696   Value *C = Ops[2];
9697 
9698   if (Subtract)
9699     C = CGF.Builder.CreateFNeg(C);
9700 
9701   Value *Res;
9702 
9703   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
9704   if (IID != Intrinsic::not_intrinsic &&
9705       cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
9706     Function *Intr = CGF.CGM.getIntrinsic(IID);
9707     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
9708   } else {
9709     llvm::Type *Ty = A->getType();
9710     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
9711     Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
9712 
9713     if (IsAddSub) {
9714       // Negate even elts in C using a mask.
9715       unsigned NumElts = Ty->getVectorNumElements();
9716       SmallVector<uint32_t, 16> Indices(NumElts);
9717       for (unsigned i = 0; i != NumElts; ++i)
9718         Indices[i] = i + (i % 2) * NumElts;
9719 
9720       Value *NegC = CGF.Builder.CreateFNeg(C);
9721       Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
9722       Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
9723     }
9724   }
9725 
9726   // Handle any required masking.
9727   Value *MaskFalseVal = nullptr;
9728   switch (BuiltinID) {
9729   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9730   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9731   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9732   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9733     MaskFalseVal = Ops[0];
9734     break;
9735   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9736   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9737   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9738   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9739     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
9740     break;
9741   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9742   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9743   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9744   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9745   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9746   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9747   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9748   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9749     MaskFalseVal = Ops[2];
9750     break;
9751   }
9752 
9753   if (MaskFalseVal)
9754     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
9755 
9756   return Res;
9757 }
9758 
9759 static Value *
9760 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
9761                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
9762                   bool NegAcc = false) {
9763   unsigned Rnd = 4;
9764   if (Ops.size() > 4)
9765     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
9766 
9767   if (NegAcc)
9768     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
9769 
9770   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
9771   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
9772   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
9773   Value *Res;
9774   if (Rnd != 4) {
9775     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
9776                         Intrinsic::x86_avx512_vfmadd_f32 :
9777                         Intrinsic::x86_avx512_vfmadd_f64;
9778     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9779                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
9780   } else {
9781     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
9782     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
9783   }
9784   // If we have more than 3 arguments, we need to do masking.
9785   if (Ops.size() > 3) {
9786     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
9787                                : Ops[PTIdx];
9788 
9789     // If we negated the accumulator and the its the PassThru value we need to
9790     // bypass the negate. Conveniently Upper should be the same thing in this
9791     // case.
9792     if (NegAcc && PTIdx == 2)
9793       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
9794 
9795     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
9796   }
9797   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
9798 }
9799 
9800 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
9801                            ArrayRef<Value *> Ops) {
9802   llvm::Type *Ty = Ops[0]->getType();
9803   // Arguments have a vXi32 type so cast to vXi64.
9804   Ty = llvm::VectorType::get(CGF.Int64Ty,
9805                              Ty->getPrimitiveSizeInBits() / 64);
9806   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
9807   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
9808 
9809   if (IsSigned) {
9810     // Shift left then arithmetic shift right.
9811     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
9812     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
9813     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
9814     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
9815     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
9816   } else {
9817     // Clear the upper bits.
9818     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
9819     LHS = CGF.Builder.CreateAnd(LHS, Mask);
9820     RHS = CGF.Builder.CreateAnd(RHS, Mask);
9821   }
9822 
9823   return CGF.Builder.CreateMul(LHS, RHS);
9824 }
9825 
9826 // Emit a masked pternlog intrinsic. This only exists because the header has to
9827 // use a macro and we aren't able to pass the input argument to a pternlog
9828 // builtin and a select builtin without evaluating it twice.
9829 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
9830                              ArrayRef<Value *> Ops) {
9831   llvm::Type *Ty = Ops[0]->getType();
9832 
9833   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
9834   unsigned EltWidth = Ty->getScalarSizeInBits();
9835   Intrinsic::ID IID;
9836   if (VecWidth == 128 && EltWidth == 32)
9837     IID = Intrinsic::x86_avx512_pternlog_d_128;
9838   else if (VecWidth == 256 && EltWidth == 32)
9839     IID = Intrinsic::x86_avx512_pternlog_d_256;
9840   else if (VecWidth == 512 && EltWidth == 32)
9841     IID = Intrinsic::x86_avx512_pternlog_d_512;
9842   else if (VecWidth == 128 && EltWidth == 64)
9843     IID = Intrinsic::x86_avx512_pternlog_q_128;
9844   else if (VecWidth == 256 && EltWidth == 64)
9845     IID = Intrinsic::x86_avx512_pternlog_q_256;
9846   else if (VecWidth == 512 && EltWidth == 64)
9847     IID = Intrinsic::x86_avx512_pternlog_q_512;
9848   else
9849     llvm_unreachable("Unexpected intrinsic");
9850 
9851   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9852                                           Ops.drop_back());
9853   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
9854   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
9855 }
9856 
9857 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
9858                               llvm::Type *DstTy) {
9859   unsigned NumberOfElements = DstTy->getVectorNumElements();
9860   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
9861   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
9862 }
9863 
9864 // Emit addition or subtraction with signed/unsigned saturation.
9865 static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
9866                                    ArrayRef<Value *> Ops, bool IsSigned,
9867                                    bool IsAddition) {
9868   Intrinsic::ID IID =
9869       IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
9870                : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
9871   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
9872   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
9873 }
9874 
9875 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
9876   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
9877   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
9878   return EmitX86CpuIs(CPUStr);
9879 }
9880 
9881 // Convert a BF16 to a float.
9882 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
9883                                         const CallExpr *E,
9884                                         ArrayRef<Value *> Ops) {
9885   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
9886   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
9887   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
9888   llvm::Type *ResultType = CGF.ConvertType(E->getType());
9889   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
9890   return BitCast;
9891 }
9892 
9893 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
9894 
9895   llvm::Type *Int32Ty = Builder.getInt32Ty();
9896 
9897   // Matching the struct layout from the compiler-rt/libgcc structure that is
9898   // filled in:
9899   // unsigned int __cpu_vendor;
9900   // unsigned int __cpu_type;
9901   // unsigned int __cpu_subtype;
9902   // unsigned int __cpu_features[1];
9903   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9904                                           llvm::ArrayType::get(Int32Ty, 1));
9905 
9906   // Grab the global __cpu_model.
9907   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9908   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9909 
9910   // Calculate the index needed to access the correct field based on the
9911   // range. Also adjust the expected value.
9912   unsigned Index;
9913   unsigned Value;
9914   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
9915 #define X86_VENDOR(ENUM, STRING)                                               \
9916   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
9917 #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS)             \
9918   .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9919 #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR)                               \
9920   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9921 #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR)                            \
9922   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
9923 #include "llvm/Support/X86TargetParser.def"
9924                                .Default({0, 0});
9925   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
9926 
9927   // Grab the appropriate field from __cpu_model.
9928   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
9929                          ConstantInt::get(Int32Ty, Index)};
9930   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
9931   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
9932 
9933   // Check the value of the field against the requested value.
9934   return Builder.CreateICmpEQ(CpuValue,
9935                                   llvm::ConstantInt::get(Int32Ty, Value));
9936 }
9937 
9938 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
9939   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
9940   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
9941   return EmitX86CpuSupports(FeatureStr);
9942 }
9943 
9944 uint64_t
9945 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
9946   // Processor features and mapping to processor feature value.
9947   uint64_t FeaturesMask = 0;
9948   for (const StringRef &FeatureStr : FeatureStrs) {
9949     unsigned Feature =
9950         StringSwitch<unsigned>(FeatureStr)
9951 #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
9952 #include "llvm/Support/X86TargetParser.def"
9953         ;
9954     FeaturesMask |= (1ULL << Feature);
9955   }
9956   return FeaturesMask;
9957 }
9958 
9959 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
9960   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
9961 }
9962 
9963 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
9964   uint32_t Features1 = Lo_32(FeaturesMask);
9965   uint32_t Features2 = Hi_32(FeaturesMask);
9966 
9967   Value *Result = Builder.getTrue();
9968 
9969   if (Features1 != 0) {
9970     // Matching the struct layout from the compiler-rt/libgcc structure that is
9971     // filled in:
9972     // unsigned int __cpu_vendor;
9973     // unsigned int __cpu_type;
9974     // unsigned int __cpu_subtype;
9975     // unsigned int __cpu_features[1];
9976     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9977                                             llvm::ArrayType::get(Int32Ty, 1));
9978 
9979     // Grab the global __cpu_model.
9980     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9981     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9982 
9983     // Grab the first (0th) element from the field __cpu_features off of the
9984     // global in the struct STy.
9985     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
9986                      Builder.getInt32(0)};
9987     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
9988     Value *Features =
9989         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
9990 
9991     // Check the value of the bit corresponding to the feature requested.
9992     Value *Mask = Builder.getInt32(Features1);
9993     Value *Bitset = Builder.CreateAnd(Features, Mask);
9994     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9995     Result = Builder.CreateAnd(Result, Cmp);
9996   }
9997 
9998   if (Features2 != 0) {
9999     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
10000                                                              "__cpu_features2");
10001     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
10002 
10003     Value *Features =
10004         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
10005 
10006     // Check the value of the bit corresponding to the feature requested.
10007     Value *Mask = Builder.getInt32(Features2);
10008     Value *Bitset = Builder.CreateAnd(Features, Mask);
10009     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
10010     Result = Builder.CreateAnd(Result, Cmp);
10011   }
10012 
10013   return Result;
10014 }
10015 
10016 Value *CodeGenFunction::EmitX86CpuInit() {
10017   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
10018                                                     /*Variadic*/ false);
10019   llvm::FunctionCallee Func =
10020       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
10021   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
10022   cast<llvm::GlobalValue>(Func.getCallee())
10023       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
10024   return Builder.CreateCall(Func);
10025 }
10026 
10027 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
10028                                            const CallExpr *E) {
10029   if (BuiltinID == X86::BI__builtin_cpu_is)
10030     return EmitX86CpuIs(E);
10031   if (BuiltinID == X86::BI__builtin_cpu_supports)
10032     return EmitX86CpuSupports(E);
10033   if (BuiltinID == X86::BI__builtin_cpu_init)
10034     return EmitX86CpuInit();
10035 
10036   SmallVector<Value*, 4> Ops;
10037 
10038   // Find out if any arguments are required to be integer constant expressions.
10039   unsigned ICEArguments = 0;
10040   ASTContext::GetBuiltinTypeError Error;
10041   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10042   assert(Error == ASTContext::GE_None && "Should not codegen an error");
10043 
10044   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10045     // If this is a normal argument, just emit it as a scalar.
10046     if ((ICEArguments & (1 << i)) == 0) {
10047       Ops.push_back(EmitScalarExpr(E->getArg(i)));
10048       continue;
10049     }
10050 
10051     // If this is required to be a constant, constant fold it so that we know
10052     // that the generated intrinsic gets a ConstantInt.
10053     llvm::APSInt Result;
10054     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
10055     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
10056     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
10057   }
10058 
10059   // These exist so that the builtin that takes an immediate can be bounds
10060   // checked by clang to avoid passing bad immediates to the backend. Since
10061   // AVX has a larger immediate than SSE we would need separate builtins to
10062   // do the different bounds checking. Rather than create a clang specific
10063   // SSE only builtin, this implements eight separate builtins to match gcc
10064   // implementation.
10065   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
10066     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
10067     llvm::Function *F = CGM.getIntrinsic(ID);
10068     return Builder.CreateCall(F, Ops);
10069   };
10070 
10071   // For the vector forms of FP comparisons, translate the builtins directly to
10072   // IR.
10073   // TODO: The builtins could be removed if the SSE header files used vector
10074   // extension comparisons directly (vector ordered/unordered may need
10075   // additional support via __builtin_isnan()).
10076   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
10077     Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
10078     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
10079     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
10080     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
10081     return Builder.CreateBitCast(Sext, FPVecTy);
10082   };
10083 
10084   switch (BuiltinID) {
10085   default: return nullptr;
10086   case X86::BI_mm_prefetch: {
10087     Value *Address = Ops[0];
10088     ConstantInt *C = cast<ConstantInt>(Ops[1]);
10089     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
10090     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
10091     Value *Data = ConstantInt::get(Int32Ty, 1);
10092     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
10093     return Builder.CreateCall(F, {Address, RW, Locality, Data});
10094   }
10095   case X86::BI_mm_clflush: {
10096     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
10097                               Ops[0]);
10098   }
10099   case X86::BI_mm_lfence: {
10100     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
10101   }
10102   case X86::BI_mm_mfence: {
10103     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
10104   }
10105   case X86::BI_mm_sfence: {
10106     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
10107   }
10108   case X86::BI_mm_pause: {
10109     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
10110   }
10111   case X86::BI__rdtsc: {
10112     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
10113   }
10114   case X86::BI__builtin_ia32_rdtscp: {
10115     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
10116     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
10117                                       Ops[0]);
10118     return Builder.CreateExtractValue(Call, 0);
10119   }
10120   case X86::BI__builtin_ia32_lzcnt_u16:
10121   case X86::BI__builtin_ia32_lzcnt_u32:
10122   case X86::BI__builtin_ia32_lzcnt_u64: {
10123     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10124     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10125   }
10126   case X86::BI__builtin_ia32_tzcnt_u16:
10127   case X86::BI__builtin_ia32_tzcnt_u32:
10128   case X86::BI__builtin_ia32_tzcnt_u64: {
10129     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
10130     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10131   }
10132   case X86::BI__builtin_ia32_undef128:
10133   case X86::BI__builtin_ia32_undef256:
10134   case X86::BI__builtin_ia32_undef512:
10135     // The x86 definition of "undef" is not the same as the LLVM definition
10136     // (PR32176). We leave optimizing away an unnecessary zero constant to the
10137     // IR optimizer and backend.
10138     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
10139     // value, we should use that here instead of a zero.
10140     return llvm::Constant::getNullValue(ConvertType(E->getType()));
10141   case X86::BI__builtin_ia32_vec_init_v8qi:
10142   case X86::BI__builtin_ia32_vec_init_v4hi:
10143   case X86::BI__builtin_ia32_vec_init_v2si:
10144     return Builder.CreateBitCast(BuildVector(Ops),
10145                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
10146   case X86::BI__builtin_ia32_vec_ext_v2si:
10147   case X86::BI__builtin_ia32_vec_ext_v16qi:
10148   case X86::BI__builtin_ia32_vec_ext_v8hi:
10149   case X86::BI__builtin_ia32_vec_ext_v4si:
10150   case X86::BI__builtin_ia32_vec_ext_v4sf:
10151   case X86::BI__builtin_ia32_vec_ext_v2di:
10152   case X86::BI__builtin_ia32_vec_ext_v32qi:
10153   case X86::BI__builtin_ia32_vec_ext_v16hi:
10154   case X86::BI__builtin_ia32_vec_ext_v8si:
10155   case X86::BI__builtin_ia32_vec_ext_v4di: {
10156     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10157     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10158     Index &= NumElts - 1;
10159     // These builtins exist so we can ensure the index is an ICE and in range.
10160     // Otherwise we could just do this in the header file.
10161     return Builder.CreateExtractElement(Ops[0], Index);
10162   }
10163   case X86::BI__builtin_ia32_vec_set_v16qi:
10164   case X86::BI__builtin_ia32_vec_set_v8hi:
10165   case X86::BI__builtin_ia32_vec_set_v4si:
10166   case X86::BI__builtin_ia32_vec_set_v2di:
10167   case X86::BI__builtin_ia32_vec_set_v32qi:
10168   case X86::BI__builtin_ia32_vec_set_v16hi:
10169   case X86::BI__builtin_ia32_vec_set_v8si:
10170   case X86::BI__builtin_ia32_vec_set_v4di: {
10171     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10172     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10173     Index &= NumElts - 1;
10174     // These builtins exist so we can ensure the index is an ICE and in range.
10175     // Otherwise we could just do this in the header file.
10176     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
10177   }
10178   case X86::BI_mm_setcsr:
10179   case X86::BI__builtin_ia32_ldmxcsr: {
10180     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10181     Builder.CreateStore(Ops[0], Tmp);
10182     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
10183                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10184   }
10185   case X86::BI_mm_getcsr:
10186   case X86::BI__builtin_ia32_stmxcsr: {
10187     Address Tmp = CreateMemTemp(E->getType());
10188     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
10189                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10190     return Builder.CreateLoad(Tmp, "stmxcsr");
10191   }
10192   case X86::BI__builtin_ia32_xsave:
10193   case X86::BI__builtin_ia32_xsave64:
10194   case X86::BI__builtin_ia32_xrstor:
10195   case X86::BI__builtin_ia32_xrstor64:
10196   case X86::BI__builtin_ia32_xsaveopt:
10197   case X86::BI__builtin_ia32_xsaveopt64:
10198   case X86::BI__builtin_ia32_xrstors:
10199   case X86::BI__builtin_ia32_xrstors64:
10200   case X86::BI__builtin_ia32_xsavec:
10201   case X86::BI__builtin_ia32_xsavec64:
10202   case X86::BI__builtin_ia32_xsaves:
10203   case X86::BI__builtin_ia32_xsaves64:
10204   case X86::BI__builtin_ia32_xsetbv:
10205   case X86::BI_xsetbv: {
10206     Intrinsic::ID ID;
10207 #define INTRINSIC_X86_XSAVE_ID(NAME) \
10208     case X86::BI__builtin_ia32_##NAME: \
10209       ID = Intrinsic::x86_##NAME; \
10210       break
10211     switch (BuiltinID) {
10212     default: llvm_unreachable("Unsupported intrinsic!");
10213     INTRINSIC_X86_XSAVE_ID(xsave);
10214     INTRINSIC_X86_XSAVE_ID(xsave64);
10215     INTRINSIC_X86_XSAVE_ID(xrstor);
10216     INTRINSIC_X86_XSAVE_ID(xrstor64);
10217     INTRINSIC_X86_XSAVE_ID(xsaveopt);
10218     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
10219     INTRINSIC_X86_XSAVE_ID(xrstors);
10220     INTRINSIC_X86_XSAVE_ID(xrstors64);
10221     INTRINSIC_X86_XSAVE_ID(xsavec);
10222     INTRINSIC_X86_XSAVE_ID(xsavec64);
10223     INTRINSIC_X86_XSAVE_ID(xsaves);
10224     INTRINSIC_X86_XSAVE_ID(xsaves64);
10225     INTRINSIC_X86_XSAVE_ID(xsetbv);
10226     case X86::BI_xsetbv:
10227       ID = Intrinsic::x86_xsetbv;
10228       break;
10229     }
10230 #undef INTRINSIC_X86_XSAVE_ID
10231     Value *Mhi = Builder.CreateTrunc(
10232       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
10233     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
10234     Ops[1] = Mhi;
10235     Ops.push_back(Mlo);
10236     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10237   }
10238   case X86::BI__builtin_ia32_xgetbv:
10239   case X86::BI_xgetbv:
10240     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
10241   case X86::BI__builtin_ia32_storedqudi128_mask:
10242   case X86::BI__builtin_ia32_storedqusi128_mask:
10243   case X86::BI__builtin_ia32_storedquhi128_mask:
10244   case X86::BI__builtin_ia32_storedquqi128_mask:
10245   case X86::BI__builtin_ia32_storeupd128_mask:
10246   case X86::BI__builtin_ia32_storeups128_mask:
10247   case X86::BI__builtin_ia32_storedqudi256_mask:
10248   case X86::BI__builtin_ia32_storedqusi256_mask:
10249   case X86::BI__builtin_ia32_storedquhi256_mask:
10250   case X86::BI__builtin_ia32_storedquqi256_mask:
10251   case X86::BI__builtin_ia32_storeupd256_mask:
10252   case X86::BI__builtin_ia32_storeups256_mask:
10253   case X86::BI__builtin_ia32_storedqudi512_mask:
10254   case X86::BI__builtin_ia32_storedqusi512_mask:
10255   case X86::BI__builtin_ia32_storedquhi512_mask:
10256   case X86::BI__builtin_ia32_storedquqi512_mask:
10257   case X86::BI__builtin_ia32_storeupd512_mask:
10258   case X86::BI__builtin_ia32_storeups512_mask:
10259     return EmitX86MaskedStore(*this, Ops, 1);
10260 
10261   case X86::BI__builtin_ia32_storess128_mask:
10262   case X86::BI__builtin_ia32_storesd128_mask: {
10263     return EmitX86MaskedStore(*this, Ops, 1);
10264   }
10265   case X86::BI__builtin_ia32_vpopcntb_128:
10266   case X86::BI__builtin_ia32_vpopcntd_128:
10267   case X86::BI__builtin_ia32_vpopcntq_128:
10268   case X86::BI__builtin_ia32_vpopcntw_128:
10269   case X86::BI__builtin_ia32_vpopcntb_256:
10270   case X86::BI__builtin_ia32_vpopcntd_256:
10271   case X86::BI__builtin_ia32_vpopcntq_256:
10272   case X86::BI__builtin_ia32_vpopcntw_256:
10273   case X86::BI__builtin_ia32_vpopcntb_512:
10274   case X86::BI__builtin_ia32_vpopcntd_512:
10275   case X86::BI__builtin_ia32_vpopcntq_512:
10276   case X86::BI__builtin_ia32_vpopcntw_512: {
10277     llvm::Type *ResultType = ConvertType(E->getType());
10278     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
10279     return Builder.CreateCall(F, Ops);
10280   }
10281   case X86::BI__builtin_ia32_cvtmask2b128:
10282   case X86::BI__builtin_ia32_cvtmask2b256:
10283   case X86::BI__builtin_ia32_cvtmask2b512:
10284   case X86::BI__builtin_ia32_cvtmask2w128:
10285   case X86::BI__builtin_ia32_cvtmask2w256:
10286   case X86::BI__builtin_ia32_cvtmask2w512:
10287   case X86::BI__builtin_ia32_cvtmask2d128:
10288   case X86::BI__builtin_ia32_cvtmask2d256:
10289   case X86::BI__builtin_ia32_cvtmask2d512:
10290   case X86::BI__builtin_ia32_cvtmask2q128:
10291   case X86::BI__builtin_ia32_cvtmask2q256:
10292   case X86::BI__builtin_ia32_cvtmask2q512:
10293     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
10294 
10295   case X86::BI__builtin_ia32_cvtb2mask128:
10296   case X86::BI__builtin_ia32_cvtb2mask256:
10297   case X86::BI__builtin_ia32_cvtb2mask512:
10298   case X86::BI__builtin_ia32_cvtw2mask128:
10299   case X86::BI__builtin_ia32_cvtw2mask256:
10300   case X86::BI__builtin_ia32_cvtw2mask512:
10301   case X86::BI__builtin_ia32_cvtd2mask128:
10302   case X86::BI__builtin_ia32_cvtd2mask256:
10303   case X86::BI__builtin_ia32_cvtd2mask512:
10304   case X86::BI__builtin_ia32_cvtq2mask128:
10305   case X86::BI__builtin_ia32_cvtq2mask256:
10306   case X86::BI__builtin_ia32_cvtq2mask512:
10307     return EmitX86ConvertToMask(*this, Ops[0]);
10308 
10309   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
10310   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
10311   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
10312     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
10313   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
10314   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
10315   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
10316     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
10317 
10318   case X86::BI__builtin_ia32_vfmaddss3:
10319   case X86::BI__builtin_ia32_vfmaddsd3:
10320   case X86::BI__builtin_ia32_vfmaddss3_mask:
10321   case X86::BI__builtin_ia32_vfmaddsd3_mask:
10322     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
10323   case X86::BI__builtin_ia32_vfmaddss:
10324   case X86::BI__builtin_ia32_vfmaddsd:
10325     return EmitScalarFMAExpr(*this, Ops,
10326                              Constant::getNullValue(Ops[0]->getType()));
10327   case X86::BI__builtin_ia32_vfmaddss3_maskz:
10328   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
10329     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
10330   case X86::BI__builtin_ia32_vfmaddss3_mask3:
10331   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
10332     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
10333   case X86::BI__builtin_ia32_vfmsubss3_mask3:
10334   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
10335     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
10336                              /*NegAcc*/true);
10337   case X86::BI__builtin_ia32_vfmaddps:
10338   case X86::BI__builtin_ia32_vfmaddpd:
10339   case X86::BI__builtin_ia32_vfmaddps256:
10340   case X86::BI__builtin_ia32_vfmaddpd256:
10341   case X86::BI__builtin_ia32_vfmaddps512_mask:
10342   case X86::BI__builtin_ia32_vfmaddps512_maskz:
10343   case X86::BI__builtin_ia32_vfmaddps512_mask3:
10344   case X86::BI__builtin_ia32_vfmsubps512_mask3:
10345   case X86::BI__builtin_ia32_vfmaddpd512_mask:
10346   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
10347   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
10348   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
10349     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
10350   case X86::BI__builtin_ia32_vfmaddsubps:
10351   case X86::BI__builtin_ia32_vfmaddsubpd:
10352   case X86::BI__builtin_ia32_vfmaddsubps256:
10353   case X86::BI__builtin_ia32_vfmaddsubpd256:
10354   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
10355   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10356   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10357   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10358   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10359   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10360   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10361   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10362     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
10363 
10364   case X86::BI__builtin_ia32_movdqa32store128_mask:
10365   case X86::BI__builtin_ia32_movdqa64store128_mask:
10366   case X86::BI__builtin_ia32_storeaps128_mask:
10367   case X86::BI__builtin_ia32_storeapd128_mask:
10368   case X86::BI__builtin_ia32_movdqa32store256_mask:
10369   case X86::BI__builtin_ia32_movdqa64store256_mask:
10370   case X86::BI__builtin_ia32_storeaps256_mask:
10371   case X86::BI__builtin_ia32_storeapd256_mask:
10372   case X86::BI__builtin_ia32_movdqa32store512_mask:
10373   case X86::BI__builtin_ia32_movdqa64store512_mask:
10374   case X86::BI__builtin_ia32_storeaps512_mask:
10375   case X86::BI__builtin_ia32_storeapd512_mask: {
10376     unsigned Align =
10377       getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10378     return EmitX86MaskedStore(*this, Ops, Align);
10379   }
10380   case X86::BI__builtin_ia32_loadups128_mask:
10381   case X86::BI__builtin_ia32_loadups256_mask:
10382   case X86::BI__builtin_ia32_loadups512_mask:
10383   case X86::BI__builtin_ia32_loadupd128_mask:
10384   case X86::BI__builtin_ia32_loadupd256_mask:
10385   case X86::BI__builtin_ia32_loadupd512_mask:
10386   case X86::BI__builtin_ia32_loaddquqi128_mask:
10387   case X86::BI__builtin_ia32_loaddquqi256_mask:
10388   case X86::BI__builtin_ia32_loaddquqi512_mask:
10389   case X86::BI__builtin_ia32_loaddquhi128_mask:
10390   case X86::BI__builtin_ia32_loaddquhi256_mask:
10391   case X86::BI__builtin_ia32_loaddquhi512_mask:
10392   case X86::BI__builtin_ia32_loaddqusi128_mask:
10393   case X86::BI__builtin_ia32_loaddqusi256_mask:
10394   case X86::BI__builtin_ia32_loaddqusi512_mask:
10395   case X86::BI__builtin_ia32_loaddqudi128_mask:
10396   case X86::BI__builtin_ia32_loaddqudi256_mask:
10397   case X86::BI__builtin_ia32_loaddqudi512_mask:
10398     return EmitX86MaskedLoad(*this, Ops, 1);
10399 
10400   case X86::BI__builtin_ia32_loadss128_mask:
10401   case X86::BI__builtin_ia32_loadsd128_mask:
10402     return EmitX86MaskedLoad(*this, Ops, 1);
10403 
10404   case X86::BI__builtin_ia32_loadaps128_mask:
10405   case X86::BI__builtin_ia32_loadaps256_mask:
10406   case X86::BI__builtin_ia32_loadaps512_mask:
10407   case X86::BI__builtin_ia32_loadapd128_mask:
10408   case X86::BI__builtin_ia32_loadapd256_mask:
10409   case X86::BI__builtin_ia32_loadapd512_mask:
10410   case X86::BI__builtin_ia32_movdqa32load128_mask:
10411   case X86::BI__builtin_ia32_movdqa32load256_mask:
10412   case X86::BI__builtin_ia32_movdqa32load512_mask:
10413   case X86::BI__builtin_ia32_movdqa64load128_mask:
10414   case X86::BI__builtin_ia32_movdqa64load256_mask:
10415   case X86::BI__builtin_ia32_movdqa64load512_mask: {
10416     unsigned Align =
10417       getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10418     return EmitX86MaskedLoad(*this, Ops, Align);
10419   }
10420 
10421   case X86::BI__builtin_ia32_expandloaddf128_mask:
10422   case X86::BI__builtin_ia32_expandloaddf256_mask:
10423   case X86::BI__builtin_ia32_expandloaddf512_mask:
10424   case X86::BI__builtin_ia32_expandloadsf128_mask:
10425   case X86::BI__builtin_ia32_expandloadsf256_mask:
10426   case X86::BI__builtin_ia32_expandloadsf512_mask:
10427   case X86::BI__builtin_ia32_expandloaddi128_mask:
10428   case X86::BI__builtin_ia32_expandloaddi256_mask:
10429   case X86::BI__builtin_ia32_expandloaddi512_mask:
10430   case X86::BI__builtin_ia32_expandloadsi128_mask:
10431   case X86::BI__builtin_ia32_expandloadsi256_mask:
10432   case X86::BI__builtin_ia32_expandloadsi512_mask:
10433   case X86::BI__builtin_ia32_expandloadhi128_mask:
10434   case X86::BI__builtin_ia32_expandloadhi256_mask:
10435   case X86::BI__builtin_ia32_expandloadhi512_mask:
10436   case X86::BI__builtin_ia32_expandloadqi128_mask:
10437   case X86::BI__builtin_ia32_expandloadqi256_mask:
10438   case X86::BI__builtin_ia32_expandloadqi512_mask:
10439     return EmitX86ExpandLoad(*this, Ops);
10440 
10441   case X86::BI__builtin_ia32_compressstoredf128_mask:
10442   case X86::BI__builtin_ia32_compressstoredf256_mask:
10443   case X86::BI__builtin_ia32_compressstoredf512_mask:
10444   case X86::BI__builtin_ia32_compressstoresf128_mask:
10445   case X86::BI__builtin_ia32_compressstoresf256_mask:
10446   case X86::BI__builtin_ia32_compressstoresf512_mask:
10447   case X86::BI__builtin_ia32_compressstoredi128_mask:
10448   case X86::BI__builtin_ia32_compressstoredi256_mask:
10449   case X86::BI__builtin_ia32_compressstoredi512_mask:
10450   case X86::BI__builtin_ia32_compressstoresi128_mask:
10451   case X86::BI__builtin_ia32_compressstoresi256_mask:
10452   case X86::BI__builtin_ia32_compressstoresi512_mask:
10453   case X86::BI__builtin_ia32_compressstorehi128_mask:
10454   case X86::BI__builtin_ia32_compressstorehi256_mask:
10455   case X86::BI__builtin_ia32_compressstorehi512_mask:
10456   case X86::BI__builtin_ia32_compressstoreqi128_mask:
10457   case X86::BI__builtin_ia32_compressstoreqi256_mask:
10458   case X86::BI__builtin_ia32_compressstoreqi512_mask:
10459     return EmitX86CompressStore(*this, Ops);
10460 
10461   case X86::BI__builtin_ia32_expanddf128_mask:
10462   case X86::BI__builtin_ia32_expanddf256_mask:
10463   case X86::BI__builtin_ia32_expanddf512_mask:
10464   case X86::BI__builtin_ia32_expandsf128_mask:
10465   case X86::BI__builtin_ia32_expandsf256_mask:
10466   case X86::BI__builtin_ia32_expandsf512_mask:
10467   case X86::BI__builtin_ia32_expanddi128_mask:
10468   case X86::BI__builtin_ia32_expanddi256_mask:
10469   case X86::BI__builtin_ia32_expanddi512_mask:
10470   case X86::BI__builtin_ia32_expandsi128_mask:
10471   case X86::BI__builtin_ia32_expandsi256_mask:
10472   case X86::BI__builtin_ia32_expandsi512_mask:
10473   case X86::BI__builtin_ia32_expandhi128_mask:
10474   case X86::BI__builtin_ia32_expandhi256_mask:
10475   case X86::BI__builtin_ia32_expandhi512_mask:
10476   case X86::BI__builtin_ia32_expandqi128_mask:
10477   case X86::BI__builtin_ia32_expandqi256_mask:
10478   case X86::BI__builtin_ia32_expandqi512_mask:
10479     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
10480 
10481   case X86::BI__builtin_ia32_compressdf128_mask:
10482   case X86::BI__builtin_ia32_compressdf256_mask:
10483   case X86::BI__builtin_ia32_compressdf512_mask:
10484   case X86::BI__builtin_ia32_compresssf128_mask:
10485   case X86::BI__builtin_ia32_compresssf256_mask:
10486   case X86::BI__builtin_ia32_compresssf512_mask:
10487   case X86::BI__builtin_ia32_compressdi128_mask:
10488   case X86::BI__builtin_ia32_compressdi256_mask:
10489   case X86::BI__builtin_ia32_compressdi512_mask:
10490   case X86::BI__builtin_ia32_compresssi128_mask:
10491   case X86::BI__builtin_ia32_compresssi256_mask:
10492   case X86::BI__builtin_ia32_compresssi512_mask:
10493   case X86::BI__builtin_ia32_compresshi128_mask:
10494   case X86::BI__builtin_ia32_compresshi256_mask:
10495   case X86::BI__builtin_ia32_compresshi512_mask:
10496   case X86::BI__builtin_ia32_compressqi128_mask:
10497   case X86::BI__builtin_ia32_compressqi256_mask:
10498   case X86::BI__builtin_ia32_compressqi512_mask:
10499     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
10500 
10501   case X86::BI__builtin_ia32_gather3div2df:
10502   case X86::BI__builtin_ia32_gather3div2di:
10503   case X86::BI__builtin_ia32_gather3div4df:
10504   case X86::BI__builtin_ia32_gather3div4di:
10505   case X86::BI__builtin_ia32_gather3div4sf:
10506   case X86::BI__builtin_ia32_gather3div4si:
10507   case X86::BI__builtin_ia32_gather3div8sf:
10508   case X86::BI__builtin_ia32_gather3div8si:
10509   case X86::BI__builtin_ia32_gather3siv2df:
10510   case X86::BI__builtin_ia32_gather3siv2di:
10511   case X86::BI__builtin_ia32_gather3siv4df:
10512   case X86::BI__builtin_ia32_gather3siv4di:
10513   case X86::BI__builtin_ia32_gather3siv4sf:
10514   case X86::BI__builtin_ia32_gather3siv4si:
10515   case X86::BI__builtin_ia32_gather3siv8sf:
10516   case X86::BI__builtin_ia32_gather3siv8si:
10517   case X86::BI__builtin_ia32_gathersiv8df:
10518   case X86::BI__builtin_ia32_gathersiv16sf:
10519   case X86::BI__builtin_ia32_gatherdiv8df:
10520   case X86::BI__builtin_ia32_gatherdiv16sf:
10521   case X86::BI__builtin_ia32_gathersiv8di:
10522   case X86::BI__builtin_ia32_gathersiv16si:
10523   case X86::BI__builtin_ia32_gatherdiv8di:
10524   case X86::BI__builtin_ia32_gatherdiv16si: {
10525     Intrinsic::ID IID;
10526     switch (BuiltinID) {
10527     default: llvm_unreachable("Unexpected builtin");
10528     case X86::BI__builtin_ia32_gather3div2df:
10529       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
10530       break;
10531     case X86::BI__builtin_ia32_gather3div2di:
10532       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
10533       break;
10534     case X86::BI__builtin_ia32_gather3div4df:
10535       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
10536       break;
10537     case X86::BI__builtin_ia32_gather3div4di:
10538       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
10539       break;
10540     case X86::BI__builtin_ia32_gather3div4sf:
10541       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
10542       break;
10543     case X86::BI__builtin_ia32_gather3div4si:
10544       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
10545       break;
10546     case X86::BI__builtin_ia32_gather3div8sf:
10547       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
10548       break;
10549     case X86::BI__builtin_ia32_gather3div8si:
10550       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
10551       break;
10552     case X86::BI__builtin_ia32_gather3siv2df:
10553       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
10554       break;
10555     case X86::BI__builtin_ia32_gather3siv2di:
10556       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
10557       break;
10558     case X86::BI__builtin_ia32_gather3siv4df:
10559       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
10560       break;
10561     case X86::BI__builtin_ia32_gather3siv4di:
10562       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
10563       break;
10564     case X86::BI__builtin_ia32_gather3siv4sf:
10565       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
10566       break;
10567     case X86::BI__builtin_ia32_gather3siv4si:
10568       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
10569       break;
10570     case X86::BI__builtin_ia32_gather3siv8sf:
10571       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
10572       break;
10573     case X86::BI__builtin_ia32_gather3siv8si:
10574       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
10575       break;
10576     case X86::BI__builtin_ia32_gathersiv8df:
10577       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
10578       break;
10579     case X86::BI__builtin_ia32_gathersiv16sf:
10580       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
10581       break;
10582     case X86::BI__builtin_ia32_gatherdiv8df:
10583       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
10584       break;
10585     case X86::BI__builtin_ia32_gatherdiv16sf:
10586       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
10587       break;
10588     case X86::BI__builtin_ia32_gathersiv8di:
10589       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
10590       break;
10591     case X86::BI__builtin_ia32_gathersiv16si:
10592       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
10593       break;
10594     case X86::BI__builtin_ia32_gatherdiv8di:
10595       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
10596       break;
10597     case X86::BI__builtin_ia32_gatherdiv16si:
10598       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
10599       break;
10600     }
10601 
10602     unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
10603                                 Ops[2]->getType()->getVectorNumElements());
10604     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
10605     Function *Intr = CGM.getIntrinsic(IID);
10606     return Builder.CreateCall(Intr, Ops);
10607   }
10608 
10609   case X86::BI__builtin_ia32_scattersiv8df:
10610   case X86::BI__builtin_ia32_scattersiv16sf:
10611   case X86::BI__builtin_ia32_scatterdiv8df:
10612   case X86::BI__builtin_ia32_scatterdiv16sf:
10613   case X86::BI__builtin_ia32_scattersiv8di:
10614   case X86::BI__builtin_ia32_scattersiv16si:
10615   case X86::BI__builtin_ia32_scatterdiv8di:
10616   case X86::BI__builtin_ia32_scatterdiv16si:
10617   case X86::BI__builtin_ia32_scatterdiv2df:
10618   case X86::BI__builtin_ia32_scatterdiv2di:
10619   case X86::BI__builtin_ia32_scatterdiv4df:
10620   case X86::BI__builtin_ia32_scatterdiv4di:
10621   case X86::BI__builtin_ia32_scatterdiv4sf:
10622   case X86::BI__builtin_ia32_scatterdiv4si:
10623   case X86::BI__builtin_ia32_scatterdiv8sf:
10624   case X86::BI__builtin_ia32_scatterdiv8si:
10625   case X86::BI__builtin_ia32_scattersiv2df:
10626   case X86::BI__builtin_ia32_scattersiv2di:
10627   case X86::BI__builtin_ia32_scattersiv4df:
10628   case X86::BI__builtin_ia32_scattersiv4di:
10629   case X86::BI__builtin_ia32_scattersiv4sf:
10630   case X86::BI__builtin_ia32_scattersiv4si:
10631   case X86::BI__builtin_ia32_scattersiv8sf:
10632   case X86::BI__builtin_ia32_scattersiv8si: {
10633     Intrinsic::ID IID;
10634     switch (BuiltinID) {
10635     default: llvm_unreachable("Unexpected builtin");
10636     case X86::BI__builtin_ia32_scattersiv8df:
10637       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
10638       break;
10639     case X86::BI__builtin_ia32_scattersiv16sf:
10640       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
10641       break;
10642     case X86::BI__builtin_ia32_scatterdiv8df:
10643       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
10644       break;
10645     case X86::BI__builtin_ia32_scatterdiv16sf:
10646       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
10647       break;
10648     case X86::BI__builtin_ia32_scattersiv8di:
10649       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
10650       break;
10651     case X86::BI__builtin_ia32_scattersiv16si:
10652       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
10653       break;
10654     case X86::BI__builtin_ia32_scatterdiv8di:
10655       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
10656       break;
10657     case X86::BI__builtin_ia32_scatterdiv16si:
10658       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
10659       break;
10660     case X86::BI__builtin_ia32_scatterdiv2df:
10661       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
10662       break;
10663     case X86::BI__builtin_ia32_scatterdiv2di:
10664       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
10665       break;
10666     case X86::BI__builtin_ia32_scatterdiv4df:
10667       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
10668       break;
10669     case X86::BI__builtin_ia32_scatterdiv4di:
10670       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
10671       break;
10672     case X86::BI__builtin_ia32_scatterdiv4sf:
10673       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
10674       break;
10675     case X86::BI__builtin_ia32_scatterdiv4si:
10676       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
10677       break;
10678     case X86::BI__builtin_ia32_scatterdiv8sf:
10679       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
10680       break;
10681     case X86::BI__builtin_ia32_scatterdiv8si:
10682       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
10683       break;
10684     case X86::BI__builtin_ia32_scattersiv2df:
10685       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
10686       break;
10687     case X86::BI__builtin_ia32_scattersiv2di:
10688       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
10689       break;
10690     case X86::BI__builtin_ia32_scattersiv4df:
10691       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
10692       break;
10693     case X86::BI__builtin_ia32_scattersiv4di:
10694       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
10695       break;
10696     case X86::BI__builtin_ia32_scattersiv4sf:
10697       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
10698       break;
10699     case X86::BI__builtin_ia32_scattersiv4si:
10700       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
10701       break;
10702     case X86::BI__builtin_ia32_scattersiv8sf:
10703       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
10704       break;
10705     case X86::BI__builtin_ia32_scattersiv8si:
10706       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
10707       break;
10708     }
10709 
10710     unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
10711                                 Ops[3]->getType()->getVectorNumElements());
10712     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
10713     Function *Intr = CGM.getIntrinsic(IID);
10714     return Builder.CreateCall(Intr, Ops);
10715   }
10716 
10717   case X86::BI__builtin_ia32_vextractf128_pd256:
10718   case X86::BI__builtin_ia32_vextractf128_ps256:
10719   case X86::BI__builtin_ia32_vextractf128_si256:
10720   case X86::BI__builtin_ia32_extract128i256:
10721   case X86::BI__builtin_ia32_extractf64x4_mask:
10722   case X86::BI__builtin_ia32_extractf32x4_mask:
10723   case X86::BI__builtin_ia32_extracti64x4_mask:
10724   case X86::BI__builtin_ia32_extracti32x4_mask:
10725   case X86::BI__builtin_ia32_extractf32x8_mask:
10726   case X86::BI__builtin_ia32_extracti32x8_mask:
10727   case X86::BI__builtin_ia32_extractf32x4_256_mask:
10728   case X86::BI__builtin_ia32_extracti32x4_256_mask:
10729   case X86::BI__builtin_ia32_extractf64x2_256_mask:
10730   case X86::BI__builtin_ia32_extracti64x2_256_mask:
10731   case X86::BI__builtin_ia32_extractf64x2_512_mask:
10732   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
10733     llvm::Type *DstTy = ConvertType(E->getType());
10734     unsigned NumElts = DstTy->getVectorNumElements();
10735     unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
10736     unsigned SubVectors = SrcNumElts / NumElts;
10737     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10738     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
10739     Index &= SubVectors - 1; // Remove any extra bits.
10740     Index *= NumElts;
10741 
10742     uint32_t Indices[16];
10743     for (unsigned i = 0; i != NumElts; ++i)
10744       Indices[i] = i + Index;
10745 
10746     Value *Res = Builder.CreateShuffleVector(Ops[0],
10747                                              UndefValue::get(Ops[0]->getType()),
10748                                              makeArrayRef(Indices, NumElts),
10749                                              "extract");
10750 
10751     if (Ops.size() == 4)
10752       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
10753 
10754     return Res;
10755   }
10756   case X86::BI__builtin_ia32_vinsertf128_pd256:
10757   case X86::BI__builtin_ia32_vinsertf128_ps256:
10758   case X86::BI__builtin_ia32_vinsertf128_si256:
10759   case X86::BI__builtin_ia32_insert128i256:
10760   case X86::BI__builtin_ia32_insertf64x4:
10761   case X86::BI__builtin_ia32_insertf32x4:
10762   case X86::BI__builtin_ia32_inserti64x4:
10763   case X86::BI__builtin_ia32_inserti32x4:
10764   case X86::BI__builtin_ia32_insertf32x8:
10765   case X86::BI__builtin_ia32_inserti32x8:
10766   case X86::BI__builtin_ia32_insertf32x4_256:
10767   case X86::BI__builtin_ia32_inserti32x4_256:
10768   case X86::BI__builtin_ia32_insertf64x2_256:
10769   case X86::BI__builtin_ia32_inserti64x2_256:
10770   case X86::BI__builtin_ia32_insertf64x2_512:
10771   case X86::BI__builtin_ia32_inserti64x2_512: {
10772     unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
10773     unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
10774     unsigned SubVectors = DstNumElts / SrcNumElts;
10775     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10776     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
10777     Index &= SubVectors - 1; // Remove any extra bits.
10778     Index *= SrcNumElts;
10779 
10780     uint32_t Indices[16];
10781     for (unsigned i = 0; i != DstNumElts; ++i)
10782       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
10783 
10784     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
10785                                              UndefValue::get(Ops[1]->getType()),
10786                                              makeArrayRef(Indices, DstNumElts),
10787                                              "widen");
10788 
10789     for (unsigned i = 0; i != DstNumElts; ++i) {
10790       if (i >= Index && i < (Index + SrcNumElts))
10791         Indices[i] = (i - Index) + DstNumElts;
10792       else
10793         Indices[i] = i;
10794     }
10795 
10796     return Builder.CreateShuffleVector(Ops[0], Op1,
10797                                        makeArrayRef(Indices, DstNumElts),
10798                                        "insert");
10799   }
10800   case X86::BI__builtin_ia32_pmovqd512_mask:
10801   case X86::BI__builtin_ia32_pmovwb512_mask: {
10802     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10803     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
10804   }
10805   case X86::BI__builtin_ia32_pmovdb512_mask:
10806   case X86::BI__builtin_ia32_pmovdw512_mask:
10807   case X86::BI__builtin_ia32_pmovqw512_mask: {
10808     if (const auto *C = dyn_cast<Constant>(Ops[2]))
10809       if (C->isAllOnesValue())
10810         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10811 
10812     Intrinsic::ID IID;
10813     switch (BuiltinID) {
10814     default: llvm_unreachable("Unsupported intrinsic!");
10815     case X86::BI__builtin_ia32_pmovdb512_mask:
10816       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
10817       break;
10818     case X86::BI__builtin_ia32_pmovdw512_mask:
10819       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
10820       break;
10821     case X86::BI__builtin_ia32_pmovqw512_mask:
10822       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
10823       break;
10824     }
10825 
10826     Function *Intr = CGM.getIntrinsic(IID);
10827     return Builder.CreateCall(Intr, Ops);
10828   }
10829   case X86::BI__builtin_ia32_pblendw128:
10830   case X86::BI__builtin_ia32_blendpd:
10831   case X86::BI__builtin_ia32_blendps:
10832   case X86::BI__builtin_ia32_blendpd256:
10833   case X86::BI__builtin_ia32_blendps256:
10834   case X86::BI__builtin_ia32_pblendw256:
10835   case X86::BI__builtin_ia32_pblendd128:
10836   case X86::BI__builtin_ia32_pblendd256: {
10837     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10838     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10839 
10840     uint32_t Indices[16];
10841     // If there are more than 8 elements, the immediate is used twice so make
10842     // sure we handle that.
10843     for (unsigned i = 0; i != NumElts; ++i)
10844       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
10845 
10846     return Builder.CreateShuffleVector(Ops[0], Ops[1],
10847                                        makeArrayRef(Indices, NumElts),
10848                                        "blend");
10849   }
10850   case X86::BI__builtin_ia32_pshuflw:
10851   case X86::BI__builtin_ia32_pshuflw256:
10852   case X86::BI__builtin_ia32_pshuflw512: {
10853     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10854     llvm::Type *Ty = Ops[0]->getType();
10855     unsigned NumElts = Ty->getVectorNumElements();
10856 
10857     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10858     Imm = (Imm & 0xff) * 0x01010101;
10859 
10860     uint32_t Indices[32];
10861     for (unsigned l = 0; l != NumElts; l += 8) {
10862       for (unsigned i = 0; i != 4; ++i) {
10863         Indices[l + i] = l + (Imm & 3);
10864         Imm >>= 2;
10865       }
10866       for (unsigned i = 4; i != 8; ++i)
10867         Indices[l + i] = l + i;
10868     }
10869 
10870     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10871                                        makeArrayRef(Indices, NumElts),
10872                                        "pshuflw");
10873   }
10874   case X86::BI__builtin_ia32_pshufhw:
10875   case X86::BI__builtin_ia32_pshufhw256:
10876   case X86::BI__builtin_ia32_pshufhw512: {
10877     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10878     llvm::Type *Ty = Ops[0]->getType();
10879     unsigned NumElts = Ty->getVectorNumElements();
10880 
10881     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10882     Imm = (Imm & 0xff) * 0x01010101;
10883 
10884     uint32_t Indices[32];
10885     for (unsigned l = 0; l != NumElts; l += 8) {
10886       for (unsigned i = 0; i != 4; ++i)
10887         Indices[l + i] = l + i;
10888       for (unsigned i = 4; i != 8; ++i) {
10889         Indices[l + i] = l + 4 + (Imm & 3);
10890         Imm >>= 2;
10891       }
10892     }
10893 
10894     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10895                                        makeArrayRef(Indices, NumElts),
10896                                        "pshufhw");
10897   }
10898   case X86::BI__builtin_ia32_pshufd:
10899   case X86::BI__builtin_ia32_pshufd256:
10900   case X86::BI__builtin_ia32_pshufd512:
10901   case X86::BI__builtin_ia32_vpermilpd:
10902   case X86::BI__builtin_ia32_vpermilps:
10903   case X86::BI__builtin_ia32_vpermilpd256:
10904   case X86::BI__builtin_ia32_vpermilps256:
10905   case X86::BI__builtin_ia32_vpermilpd512:
10906   case X86::BI__builtin_ia32_vpermilps512: {
10907     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10908     llvm::Type *Ty = Ops[0]->getType();
10909     unsigned NumElts = Ty->getVectorNumElements();
10910     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10911     unsigned NumLaneElts = NumElts / NumLanes;
10912 
10913     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10914     Imm = (Imm & 0xff) * 0x01010101;
10915 
10916     uint32_t Indices[16];
10917     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10918       for (unsigned i = 0; i != NumLaneElts; ++i) {
10919         Indices[i + l] = (Imm % NumLaneElts) + l;
10920         Imm /= NumLaneElts;
10921       }
10922     }
10923 
10924     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10925                                        makeArrayRef(Indices, NumElts),
10926                                        "permil");
10927   }
10928   case X86::BI__builtin_ia32_shufpd:
10929   case X86::BI__builtin_ia32_shufpd256:
10930   case X86::BI__builtin_ia32_shufpd512:
10931   case X86::BI__builtin_ia32_shufps:
10932   case X86::BI__builtin_ia32_shufps256:
10933   case X86::BI__builtin_ia32_shufps512: {
10934     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10935     llvm::Type *Ty = Ops[0]->getType();
10936     unsigned NumElts = Ty->getVectorNumElements();
10937     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10938     unsigned NumLaneElts = NumElts / NumLanes;
10939 
10940     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10941     Imm = (Imm & 0xff) * 0x01010101;
10942 
10943     uint32_t Indices[16];
10944     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10945       for (unsigned i = 0; i != NumLaneElts; ++i) {
10946         unsigned Index = Imm % NumLaneElts;
10947         Imm /= NumLaneElts;
10948         if (i >= (NumLaneElts / 2))
10949           Index += NumElts;
10950         Indices[l + i] = l + Index;
10951       }
10952     }
10953 
10954     return Builder.CreateShuffleVector(Ops[0], Ops[1],
10955                                        makeArrayRef(Indices, NumElts),
10956                                        "shufp");
10957   }
10958   case X86::BI__builtin_ia32_permdi256:
10959   case X86::BI__builtin_ia32_permdf256:
10960   case X86::BI__builtin_ia32_permdi512:
10961   case X86::BI__builtin_ia32_permdf512: {
10962     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10963     llvm::Type *Ty = Ops[0]->getType();
10964     unsigned NumElts = Ty->getVectorNumElements();
10965 
10966     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
10967     uint32_t Indices[8];
10968     for (unsigned l = 0; l != NumElts; l += 4)
10969       for (unsigned i = 0; i != 4; ++i)
10970         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
10971 
10972     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10973                                        makeArrayRef(Indices, NumElts),
10974                                        "perm");
10975   }
10976   case X86::BI__builtin_ia32_palignr128:
10977   case X86::BI__builtin_ia32_palignr256:
10978   case X86::BI__builtin_ia32_palignr512: {
10979     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10980 
10981     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10982     assert(NumElts % 16 == 0);
10983 
10984     // If palignr is shifting the pair of vectors more than the size of two
10985     // lanes, emit zero.
10986     if (ShiftVal >= 32)
10987       return llvm::Constant::getNullValue(ConvertType(E->getType()));
10988 
10989     // If palignr is shifting the pair of input vectors more than one lane,
10990     // but less than two lanes, convert to shifting in zeroes.
10991     if (ShiftVal > 16) {
10992       ShiftVal -= 16;
10993       Ops[1] = Ops[0];
10994       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
10995     }
10996 
10997     uint32_t Indices[64];
10998     // 256-bit palignr operates on 128-bit lanes so we need to handle that
10999     for (unsigned l = 0; l != NumElts; l += 16) {
11000       for (unsigned i = 0; i != 16; ++i) {
11001         unsigned Idx = ShiftVal + i;
11002         if (Idx >= 16)
11003           Idx += NumElts - 16; // End of lane, switch operand.
11004         Indices[l + i] = Idx + l;
11005       }
11006     }
11007 
11008     return Builder.CreateShuffleVector(Ops[1], Ops[0],
11009                                        makeArrayRef(Indices, NumElts),
11010                                        "palignr");
11011   }
11012   case X86::BI__builtin_ia32_alignd128:
11013   case X86::BI__builtin_ia32_alignd256:
11014   case X86::BI__builtin_ia32_alignd512:
11015   case X86::BI__builtin_ia32_alignq128:
11016   case X86::BI__builtin_ia32_alignq256:
11017   case X86::BI__builtin_ia32_alignq512: {
11018     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11019     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
11020 
11021     // Mask the shift amount to width of two vectors.
11022     ShiftVal &= (2 * NumElts) - 1;
11023 
11024     uint32_t Indices[16];
11025     for (unsigned i = 0; i != NumElts; ++i)
11026       Indices[i] = i + ShiftVal;
11027 
11028     return Builder.CreateShuffleVector(Ops[1], Ops[0],
11029                                        makeArrayRef(Indices, NumElts),
11030                                        "valign");
11031   }
11032   case X86::BI__builtin_ia32_shuf_f32x4_256:
11033   case X86::BI__builtin_ia32_shuf_f64x2_256:
11034   case X86::BI__builtin_ia32_shuf_i32x4_256:
11035   case X86::BI__builtin_ia32_shuf_i64x2_256:
11036   case X86::BI__builtin_ia32_shuf_f32x4:
11037   case X86::BI__builtin_ia32_shuf_f64x2:
11038   case X86::BI__builtin_ia32_shuf_i32x4:
11039   case X86::BI__builtin_ia32_shuf_i64x2: {
11040     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11041     llvm::Type *Ty = Ops[0]->getType();
11042     unsigned NumElts = Ty->getVectorNumElements();
11043     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
11044     unsigned NumLaneElts = NumElts / NumLanes;
11045 
11046     uint32_t Indices[16];
11047     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11048       unsigned Index = (Imm % NumLanes) * NumLaneElts;
11049       Imm /= NumLanes; // Discard the bits we just used.
11050       if (l >= (NumElts / 2))
11051         Index += NumElts; // Switch to other source.
11052       for (unsigned i = 0; i != NumLaneElts; ++i) {
11053         Indices[l + i] = Index + i;
11054       }
11055     }
11056 
11057     return Builder.CreateShuffleVector(Ops[0], Ops[1],
11058                                        makeArrayRef(Indices, NumElts),
11059                                        "shuf");
11060   }
11061 
11062   case X86::BI__builtin_ia32_vperm2f128_pd256:
11063   case X86::BI__builtin_ia32_vperm2f128_ps256:
11064   case X86::BI__builtin_ia32_vperm2f128_si256:
11065   case X86::BI__builtin_ia32_permti256: {
11066     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11067     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11068 
11069     // This takes a very simple approach since there are two lanes and a
11070     // shuffle can have 2 inputs. So we reserve the first input for the first
11071     // lane and the second input for the second lane. This may result in
11072     // duplicate sources, but this can be dealt with in the backend.
11073 
11074     Value *OutOps[2];
11075     uint32_t Indices[8];
11076     for (unsigned l = 0; l != 2; ++l) {
11077       // Determine the source for this lane.
11078       if (Imm & (1 << ((l * 4) + 3)))
11079         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
11080       else if (Imm & (1 << ((l * 4) + 1)))
11081         OutOps[l] = Ops[1];
11082       else
11083         OutOps[l] = Ops[0];
11084 
11085       for (unsigned i = 0; i != NumElts/2; ++i) {
11086         // Start with ith element of the source for this lane.
11087         unsigned Idx = (l * NumElts) + i;
11088         // If bit 0 of the immediate half is set, switch to the high half of
11089         // the source.
11090         if (Imm & (1 << (l * 4)))
11091           Idx += NumElts/2;
11092         Indices[(l * (NumElts/2)) + i] = Idx;
11093       }
11094     }
11095 
11096     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
11097                                        makeArrayRef(Indices, NumElts),
11098                                        "vperm");
11099   }
11100 
11101   case X86::BI__builtin_ia32_pslldqi128_byteshift:
11102   case X86::BI__builtin_ia32_pslldqi256_byteshift:
11103   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
11104     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11105     llvm::Type *ResultType = Ops[0]->getType();
11106     // Builtin type is vXi64 so multiply by 8 to get bytes.
11107     unsigned NumElts = ResultType->getVectorNumElements() * 8;
11108 
11109     // If pslldq is shifting the vector more than 15 bytes, emit zero.
11110     if (ShiftVal >= 16)
11111       return llvm::Constant::getNullValue(ResultType);
11112 
11113     uint32_t Indices[64];
11114     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
11115     for (unsigned l = 0; l != NumElts; l += 16) {
11116       for (unsigned i = 0; i != 16; ++i) {
11117         unsigned Idx = NumElts + i - ShiftVal;
11118         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
11119         Indices[l + i] = Idx + l;
11120       }
11121     }
11122 
11123     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11124     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11125     Value *Zero = llvm::Constant::getNullValue(VecTy);
11126     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
11127                                             makeArrayRef(Indices, NumElts),
11128                                             "pslldq");
11129     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
11130   }
11131   case X86::BI__builtin_ia32_psrldqi128_byteshift:
11132   case X86::BI__builtin_ia32_psrldqi256_byteshift:
11133   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
11134     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11135     llvm::Type *ResultType = Ops[0]->getType();
11136     // Builtin type is vXi64 so multiply by 8 to get bytes.
11137     unsigned NumElts = ResultType->getVectorNumElements() * 8;
11138 
11139     // If psrldq is shifting the vector more than 15 bytes, emit zero.
11140     if (ShiftVal >= 16)
11141       return llvm::Constant::getNullValue(ResultType);
11142 
11143     uint32_t Indices[64];
11144     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
11145     for (unsigned l = 0; l != NumElts; l += 16) {
11146       for (unsigned i = 0; i != 16; ++i) {
11147         unsigned Idx = i + ShiftVal;
11148         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
11149         Indices[l + i] = Idx + l;
11150       }
11151     }
11152 
11153     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11154     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11155     Value *Zero = llvm::Constant::getNullValue(VecTy);
11156     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
11157                                             makeArrayRef(Indices, NumElts),
11158                                             "psrldq");
11159     return Builder.CreateBitCast(SV, ResultType, "cast");
11160   }
11161   case X86::BI__builtin_ia32_kshiftliqi:
11162   case X86::BI__builtin_ia32_kshiftlihi:
11163   case X86::BI__builtin_ia32_kshiftlisi:
11164   case X86::BI__builtin_ia32_kshiftlidi: {
11165     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11166     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11167 
11168     if (ShiftVal >= NumElts)
11169       return llvm::Constant::getNullValue(Ops[0]->getType());
11170 
11171     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11172 
11173     uint32_t Indices[64];
11174     for (unsigned i = 0; i != NumElts; ++i)
11175       Indices[i] = NumElts + i - ShiftVal;
11176 
11177     Value *Zero = llvm::Constant::getNullValue(In->getType());
11178     Value *SV = Builder.CreateShuffleVector(Zero, In,
11179                                             makeArrayRef(Indices, NumElts),
11180                                             "kshiftl");
11181     return Builder.CreateBitCast(SV, Ops[0]->getType());
11182   }
11183   case X86::BI__builtin_ia32_kshiftriqi:
11184   case X86::BI__builtin_ia32_kshiftrihi:
11185   case X86::BI__builtin_ia32_kshiftrisi:
11186   case X86::BI__builtin_ia32_kshiftridi: {
11187     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11188     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11189 
11190     if (ShiftVal >= NumElts)
11191       return llvm::Constant::getNullValue(Ops[0]->getType());
11192 
11193     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11194 
11195     uint32_t Indices[64];
11196     for (unsigned i = 0; i != NumElts; ++i)
11197       Indices[i] = i + ShiftVal;
11198 
11199     Value *Zero = llvm::Constant::getNullValue(In->getType());
11200     Value *SV = Builder.CreateShuffleVector(In, Zero,
11201                                             makeArrayRef(Indices, NumElts),
11202                                             "kshiftr");
11203     return Builder.CreateBitCast(SV, Ops[0]->getType());
11204   }
11205   case X86::BI__builtin_ia32_movnti:
11206   case X86::BI__builtin_ia32_movnti64:
11207   case X86::BI__builtin_ia32_movntsd:
11208   case X86::BI__builtin_ia32_movntss: {
11209     llvm::MDNode *Node = llvm::MDNode::get(
11210         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
11211 
11212     Value *Ptr = Ops[0];
11213     Value *Src = Ops[1];
11214 
11215     // Extract the 0'th element of the source vector.
11216     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
11217         BuiltinID == X86::BI__builtin_ia32_movntss)
11218       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
11219 
11220     // Convert the type of the pointer to a pointer to the stored type.
11221     Value *BC = Builder.CreateBitCast(
11222         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
11223 
11224     // Unaligned nontemporal store of the scalar value.
11225     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
11226     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
11227     SI->setAlignment(llvm::Align::None());
11228     return SI;
11229   }
11230   // Rotate is a special case of funnel shift - 1st 2 args are the same.
11231   case X86::BI__builtin_ia32_vprotb:
11232   case X86::BI__builtin_ia32_vprotw:
11233   case X86::BI__builtin_ia32_vprotd:
11234   case X86::BI__builtin_ia32_vprotq:
11235   case X86::BI__builtin_ia32_vprotbi:
11236   case X86::BI__builtin_ia32_vprotwi:
11237   case X86::BI__builtin_ia32_vprotdi:
11238   case X86::BI__builtin_ia32_vprotqi:
11239   case X86::BI__builtin_ia32_prold128:
11240   case X86::BI__builtin_ia32_prold256:
11241   case X86::BI__builtin_ia32_prold512:
11242   case X86::BI__builtin_ia32_prolq128:
11243   case X86::BI__builtin_ia32_prolq256:
11244   case X86::BI__builtin_ia32_prolq512:
11245   case X86::BI__builtin_ia32_prolvd128:
11246   case X86::BI__builtin_ia32_prolvd256:
11247   case X86::BI__builtin_ia32_prolvd512:
11248   case X86::BI__builtin_ia32_prolvq128:
11249   case X86::BI__builtin_ia32_prolvq256:
11250   case X86::BI__builtin_ia32_prolvq512:
11251     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
11252   case X86::BI__builtin_ia32_prord128:
11253   case X86::BI__builtin_ia32_prord256:
11254   case X86::BI__builtin_ia32_prord512:
11255   case X86::BI__builtin_ia32_prorq128:
11256   case X86::BI__builtin_ia32_prorq256:
11257   case X86::BI__builtin_ia32_prorq512:
11258   case X86::BI__builtin_ia32_prorvd128:
11259   case X86::BI__builtin_ia32_prorvd256:
11260   case X86::BI__builtin_ia32_prorvd512:
11261   case X86::BI__builtin_ia32_prorvq128:
11262   case X86::BI__builtin_ia32_prorvq256:
11263   case X86::BI__builtin_ia32_prorvq512:
11264     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
11265   case X86::BI__builtin_ia32_selectb_128:
11266   case X86::BI__builtin_ia32_selectb_256:
11267   case X86::BI__builtin_ia32_selectb_512:
11268   case X86::BI__builtin_ia32_selectw_128:
11269   case X86::BI__builtin_ia32_selectw_256:
11270   case X86::BI__builtin_ia32_selectw_512:
11271   case X86::BI__builtin_ia32_selectd_128:
11272   case X86::BI__builtin_ia32_selectd_256:
11273   case X86::BI__builtin_ia32_selectd_512:
11274   case X86::BI__builtin_ia32_selectq_128:
11275   case X86::BI__builtin_ia32_selectq_256:
11276   case X86::BI__builtin_ia32_selectq_512:
11277   case X86::BI__builtin_ia32_selectps_128:
11278   case X86::BI__builtin_ia32_selectps_256:
11279   case X86::BI__builtin_ia32_selectps_512:
11280   case X86::BI__builtin_ia32_selectpd_128:
11281   case X86::BI__builtin_ia32_selectpd_256:
11282   case X86::BI__builtin_ia32_selectpd_512:
11283     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
11284   case X86::BI__builtin_ia32_selectss_128:
11285   case X86::BI__builtin_ia32_selectsd_128: {
11286     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11287     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11288     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
11289     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
11290   }
11291   case X86::BI__builtin_ia32_cmpb128_mask:
11292   case X86::BI__builtin_ia32_cmpb256_mask:
11293   case X86::BI__builtin_ia32_cmpb512_mask:
11294   case X86::BI__builtin_ia32_cmpw128_mask:
11295   case X86::BI__builtin_ia32_cmpw256_mask:
11296   case X86::BI__builtin_ia32_cmpw512_mask:
11297   case X86::BI__builtin_ia32_cmpd128_mask:
11298   case X86::BI__builtin_ia32_cmpd256_mask:
11299   case X86::BI__builtin_ia32_cmpd512_mask:
11300   case X86::BI__builtin_ia32_cmpq128_mask:
11301   case X86::BI__builtin_ia32_cmpq256_mask:
11302   case X86::BI__builtin_ia32_cmpq512_mask: {
11303     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11304     return EmitX86MaskedCompare(*this, CC, true, Ops);
11305   }
11306   case X86::BI__builtin_ia32_ucmpb128_mask:
11307   case X86::BI__builtin_ia32_ucmpb256_mask:
11308   case X86::BI__builtin_ia32_ucmpb512_mask:
11309   case X86::BI__builtin_ia32_ucmpw128_mask:
11310   case X86::BI__builtin_ia32_ucmpw256_mask:
11311   case X86::BI__builtin_ia32_ucmpw512_mask:
11312   case X86::BI__builtin_ia32_ucmpd128_mask:
11313   case X86::BI__builtin_ia32_ucmpd256_mask:
11314   case X86::BI__builtin_ia32_ucmpd512_mask:
11315   case X86::BI__builtin_ia32_ucmpq128_mask:
11316   case X86::BI__builtin_ia32_ucmpq256_mask:
11317   case X86::BI__builtin_ia32_ucmpq512_mask: {
11318     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11319     return EmitX86MaskedCompare(*this, CC, false, Ops);
11320   }
11321   case X86::BI__builtin_ia32_vpcomb:
11322   case X86::BI__builtin_ia32_vpcomw:
11323   case X86::BI__builtin_ia32_vpcomd:
11324   case X86::BI__builtin_ia32_vpcomq:
11325     return EmitX86vpcom(*this, Ops, true);
11326   case X86::BI__builtin_ia32_vpcomub:
11327   case X86::BI__builtin_ia32_vpcomuw:
11328   case X86::BI__builtin_ia32_vpcomud:
11329   case X86::BI__builtin_ia32_vpcomuq:
11330     return EmitX86vpcom(*this, Ops, false);
11331 
11332   case X86::BI__builtin_ia32_kortestcqi:
11333   case X86::BI__builtin_ia32_kortestchi:
11334   case X86::BI__builtin_ia32_kortestcsi:
11335   case X86::BI__builtin_ia32_kortestcdi: {
11336     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11337     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
11338     Value *Cmp = Builder.CreateICmpEQ(Or, C);
11339     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11340   }
11341   case X86::BI__builtin_ia32_kortestzqi:
11342   case X86::BI__builtin_ia32_kortestzhi:
11343   case X86::BI__builtin_ia32_kortestzsi:
11344   case X86::BI__builtin_ia32_kortestzdi: {
11345     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11346     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
11347     Value *Cmp = Builder.CreateICmpEQ(Or, C);
11348     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11349   }
11350 
11351   case X86::BI__builtin_ia32_ktestcqi:
11352   case X86::BI__builtin_ia32_ktestzqi:
11353   case X86::BI__builtin_ia32_ktestchi:
11354   case X86::BI__builtin_ia32_ktestzhi:
11355   case X86::BI__builtin_ia32_ktestcsi:
11356   case X86::BI__builtin_ia32_ktestzsi:
11357   case X86::BI__builtin_ia32_ktestcdi:
11358   case X86::BI__builtin_ia32_ktestzdi: {
11359     Intrinsic::ID IID;
11360     switch (BuiltinID) {
11361     default: llvm_unreachable("Unsupported intrinsic!");
11362     case X86::BI__builtin_ia32_ktestcqi:
11363       IID = Intrinsic::x86_avx512_ktestc_b;
11364       break;
11365     case X86::BI__builtin_ia32_ktestzqi:
11366       IID = Intrinsic::x86_avx512_ktestz_b;
11367       break;
11368     case X86::BI__builtin_ia32_ktestchi:
11369       IID = Intrinsic::x86_avx512_ktestc_w;
11370       break;
11371     case X86::BI__builtin_ia32_ktestzhi:
11372       IID = Intrinsic::x86_avx512_ktestz_w;
11373       break;
11374     case X86::BI__builtin_ia32_ktestcsi:
11375       IID = Intrinsic::x86_avx512_ktestc_d;
11376       break;
11377     case X86::BI__builtin_ia32_ktestzsi:
11378       IID = Intrinsic::x86_avx512_ktestz_d;
11379       break;
11380     case X86::BI__builtin_ia32_ktestcdi:
11381       IID = Intrinsic::x86_avx512_ktestc_q;
11382       break;
11383     case X86::BI__builtin_ia32_ktestzdi:
11384       IID = Intrinsic::x86_avx512_ktestz_q;
11385       break;
11386     }
11387 
11388     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11389     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11390     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11391     Function *Intr = CGM.getIntrinsic(IID);
11392     return Builder.CreateCall(Intr, {LHS, RHS});
11393   }
11394 
11395   case X86::BI__builtin_ia32_kaddqi:
11396   case X86::BI__builtin_ia32_kaddhi:
11397   case X86::BI__builtin_ia32_kaddsi:
11398   case X86::BI__builtin_ia32_kadddi: {
11399     Intrinsic::ID IID;
11400     switch (BuiltinID) {
11401     default: llvm_unreachable("Unsupported intrinsic!");
11402     case X86::BI__builtin_ia32_kaddqi:
11403       IID = Intrinsic::x86_avx512_kadd_b;
11404       break;
11405     case X86::BI__builtin_ia32_kaddhi:
11406       IID = Intrinsic::x86_avx512_kadd_w;
11407       break;
11408     case X86::BI__builtin_ia32_kaddsi:
11409       IID = Intrinsic::x86_avx512_kadd_d;
11410       break;
11411     case X86::BI__builtin_ia32_kadddi:
11412       IID = Intrinsic::x86_avx512_kadd_q;
11413       break;
11414     }
11415 
11416     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11417     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11418     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11419     Function *Intr = CGM.getIntrinsic(IID);
11420     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
11421     return Builder.CreateBitCast(Res, Ops[0]->getType());
11422   }
11423   case X86::BI__builtin_ia32_kandqi:
11424   case X86::BI__builtin_ia32_kandhi:
11425   case X86::BI__builtin_ia32_kandsi:
11426   case X86::BI__builtin_ia32_kanddi:
11427     return EmitX86MaskLogic(*this, Instruction::And, Ops);
11428   case X86::BI__builtin_ia32_kandnqi:
11429   case X86::BI__builtin_ia32_kandnhi:
11430   case X86::BI__builtin_ia32_kandnsi:
11431   case X86::BI__builtin_ia32_kandndi:
11432     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
11433   case X86::BI__builtin_ia32_korqi:
11434   case X86::BI__builtin_ia32_korhi:
11435   case X86::BI__builtin_ia32_korsi:
11436   case X86::BI__builtin_ia32_kordi:
11437     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
11438   case X86::BI__builtin_ia32_kxnorqi:
11439   case X86::BI__builtin_ia32_kxnorhi:
11440   case X86::BI__builtin_ia32_kxnorsi:
11441   case X86::BI__builtin_ia32_kxnordi:
11442     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
11443   case X86::BI__builtin_ia32_kxorqi:
11444   case X86::BI__builtin_ia32_kxorhi:
11445   case X86::BI__builtin_ia32_kxorsi:
11446   case X86::BI__builtin_ia32_kxordi:
11447     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
11448   case X86::BI__builtin_ia32_knotqi:
11449   case X86::BI__builtin_ia32_knothi:
11450   case X86::BI__builtin_ia32_knotsi:
11451   case X86::BI__builtin_ia32_knotdi: {
11452     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11453     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11454     return Builder.CreateBitCast(Builder.CreateNot(Res),
11455                                  Ops[0]->getType());
11456   }
11457   case X86::BI__builtin_ia32_kmovb:
11458   case X86::BI__builtin_ia32_kmovw:
11459   case X86::BI__builtin_ia32_kmovd:
11460   case X86::BI__builtin_ia32_kmovq: {
11461     // Bitcast to vXi1 type and then back to integer. This gets the mask
11462     // register type into the IR, but might be optimized out depending on
11463     // what's around it.
11464     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11465     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11466     return Builder.CreateBitCast(Res, Ops[0]->getType());
11467   }
11468 
11469   case X86::BI__builtin_ia32_kunpckdi:
11470   case X86::BI__builtin_ia32_kunpcksi:
11471   case X86::BI__builtin_ia32_kunpckhi: {
11472     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11473     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11474     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11475     uint32_t Indices[64];
11476     for (unsigned i = 0; i != NumElts; ++i)
11477       Indices[i] = i;
11478 
11479     // First extract half of each vector. This gives better codegen than
11480     // doing it in a single shuffle.
11481     LHS = Builder.CreateShuffleVector(LHS, LHS,
11482                                       makeArrayRef(Indices, NumElts / 2));
11483     RHS = Builder.CreateShuffleVector(RHS, RHS,
11484                                       makeArrayRef(Indices, NumElts / 2));
11485     // Concat the vectors.
11486     // NOTE: Operands are swapped to match the intrinsic definition.
11487     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
11488                                              makeArrayRef(Indices, NumElts));
11489     return Builder.CreateBitCast(Res, Ops[0]->getType());
11490   }
11491 
11492   case X86::BI__builtin_ia32_vplzcntd_128:
11493   case X86::BI__builtin_ia32_vplzcntd_256:
11494   case X86::BI__builtin_ia32_vplzcntd_512:
11495   case X86::BI__builtin_ia32_vplzcntq_128:
11496   case X86::BI__builtin_ia32_vplzcntq_256:
11497   case X86::BI__builtin_ia32_vplzcntq_512: {
11498     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11499     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
11500   }
11501   case X86::BI__builtin_ia32_sqrtss:
11502   case X86::BI__builtin_ia32_sqrtsd: {
11503     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11504     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11505     A = Builder.CreateCall(F, {A});
11506     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11507   }
11508   case X86::BI__builtin_ia32_sqrtsd_round_mask:
11509   case X86::BI__builtin_ia32_sqrtss_round_mask: {
11510     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11511     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11512     // otherwise keep the intrinsic.
11513     if (CC != 4) {
11514       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
11515                           Intrinsic::x86_avx512_mask_sqrt_sd :
11516                           Intrinsic::x86_avx512_mask_sqrt_ss;
11517       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11518     }
11519     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11520     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11521     A = Builder.CreateCall(F, A);
11522     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11523     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
11524     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11525   }
11526   case X86::BI__builtin_ia32_sqrtpd256:
11527   case X86::BI__builtin_ia32_sqrtpd:
11528   case X86::BI__builtin_ia32_sqrtps256:
11529   case X86::BI__builtin_ia32_sqrtps:
11530   case X86::BI__builtin_ia32_sqrtps512:
11531   case X86::BI__builtin_ia32_sqrtpd512: {
11532     if (Ops.size() == 2) {
11533       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11534       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11535       // otherwise keep the intrinsic.
11536       if (CC != 4) {
11537         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
11538                             Intrinsic::x86_avx512_sqrt_ps_512 :
11539                             Intrinsic::x86_avx512_sqrt_pd_512;
11540         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11541       }
11542     }
11543     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
11544     return Builder.CreateCall(F, Ops[0]);
11545   }
11546   case X86::BI__builtin_ia32_pabsb128:
11547   case X86::BI__builtin_ia32_pabsw128:
11548   case X86::BI__builtin_ia32_pabsd128:
11549   case X86::BI__builtin_ia32_pabsb256:
11550   case X86::BI__builtin_ia32_pabsw256:
11551   case X86::BI__builtin_ia32_pabsd256:
11552   case X86::BI__builtin_ia32_pabsq128:
11553   case X86::BI__builtin_ia32_pabsq256:
11554   case X86::BI__builtin_ia32_pabsb512:
11555   case X86::BI__builtin_ia32_pabsw512:
11556   case X86::BI__builtin_ia32_pabsd512:
11557   case X86::BI__builtin_ia32_pabsq512:
11558     return EmitX86Abs(*this, Ops);
11559 
11560   case X86::BI__builtin_ia32_pmaxsb128:
11561   case X86::BI__builtin_ia32_pmaxsw128:
11562   case X86::BI__builtin_ia32_pmaxsd128:
11563   case X86::BI__builtin_ia32_pmaxsq128:
11564   case X86::BI__builtin_ia32_pmaxsb256:
11565   case X86::BI__builtin_ia32_pmaxsw256:
11566   case X86::BI__builtin_ia32_pmaxsd256:
11567   case X86::BI__builtin_ia32_pmaxsq256:
11568   case X86::BI__builtin_ia32_pmaxsb512:
11569   case X86::BI__builtin_ia32_pmaxsw512:
11570   case X86::BI__builtin_ia32_pmaxsd512:
11571   case X86::BI__builtin_ia32_pmaxsq512:
11572     return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
11573   case X86::BI__builtin_ia32_pmaxub128:
11574   case X86::BI__builtin_ia32_pmaxuw128:
11575   case X86::BI__builtin_ia32_pmaxud128:
11576   case X86::BI__builtin_ia32_pmaxuq128:
11577   case X86::BI__builtin_ia32_pmaxub256:
11578   case X86::BI__builtin_ia32_pmaxuw256:
11579   case X86::BI__builtin_ia32_pmaxud256:
11580   case X86::BI__builtin_ia32_pmaxuq256:
11581   case X86::BI__builtin_ia32_pmaxub512:
11582   case X86::BI__builtin_ia32_pmaxuw512:
11583   case X86::BI__builtin_ia32_pmaxud512:
11584   case X86::BI__builtin_ia32_pmaxuq512:
11585     return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
11586   case X86::BI__builtin_ia32_pminsb128:
11587   case X86::BI__builtin_ia32_pminsw128:
11588   case X86::BI__builtin_ia32_pminsd128:
11589   case X86::BI__builtin_ia32_pminsq128:
11590   case X86::BI__builtin_ia32_pminsb256:
11591   case X86::BI__builtin_ia32_pminsw256:
11592   case X86::BI__builtin_ia32_pminsd256:
11593   case X86::BI__builtin_ia32_pminsq256:
11594   case X86::BI__builtin_ia32_pminsb512:
11595   case X86::BI__builtin_ia32_pminsw512:
11596   case X86::BI__builtin_ia32_pminsd512:
11597   case X86::BI__builtin_ia32_pminsq512:
11598     return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
11599   case X86::BI__builtin_ia32_pminub128:
11600   case X86::BI__builtin_ia32_pminuw128:
11601   case X86::BI__builtin_ia32_pminud128:
11602   case X86::BI__builtin_ia32_pminuq128:
11603   case X86::BI__builtin_ia32_pminub256:
11604   case X86::BI__builtin_ia32_pminuw256:
11605   case X86::BI__builtin_ia32_pminud256:
11606   case X86::BI__builtin_ia32_pminuq256:
11607   case X86::BI__builtin_ia32_pminub512:
11608   case X86::BI__builtin_ia32_pminuw512:
11609   case X86::BI__builtin_ia32_pminud512:
11610   case X86::BI__builtin_ia32_pminuq512:
11611     return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
11612 
11613   case X86::BI__builtin_ia32_pmuludq128:
11614   case X86::BI__builtin_ia32_pmuludq256:
11615   case X86::BI__builtin_ia32_pmuludq512:
11616     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
11617 
11618   case X86::BI__builtin_ia32_pmuldq128:
11619   case X86::BI__builtin_ia32_pmuldq256:
11620   case X86::BI__builtin_ia32_pmuldq512:
11621     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
11622 
11623   case X86::BI__builtin_ia32_pternlogd512_mask:
11624   case X86::BI__builtin_ia32_pternlogq512_mask:
11625   case X86::BI__builtin_ia32_pternlogd128_mask:
11626   case X86::BI__builtin_ia32_pternlogd256_mask:
11627   case X86::BI__builtin_ia32_pternlogq128_mask:
11628   case X86::BI__builtin_ia32_pternlogq256_mask:
11629     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
11630 
11631   case X86::BI__builtin_ia32_pternlogd512_maskz:
11632   case X86::BI__builtin_ia32_pternlogq512_maskz:
11633   case X86::BI__builtin_ia32_pternlogd128_maskz:
11634   case X86::BI__builtin_ia32_pternlogd256_maskz:
11635   case X86::BI__builtin_ia32_pternlogq128_maskz:
11636   case X86::BI__builtin_ia32_pternlogq256_maskz:
11637     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11638 
11639   case X86::BI__builtin_ia32_vpshldd128:
11640   case X86::BI__builtin_ia32_vpshldd256:
11641   case X86::BI__builtin_ia32_vpshldd512:
11642   case X86::BI__builtin_ia32_vpshldq128:
11643   case X86::BI__builtin_ia32_vpshldq256:
11644   case X86::BI__builtin_ia32_vpshldq512:
11645   case X86::BI__builtin_ia32_vpshldw128:
11646   case X86::BI__builtin_ia32_vpshldw256:
11647   case X86::BI__builtin_ia32_vpshldw512:
11648     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11649 
11650   case X86::BI__builtin_ia32_vpshrdd128:
11651   case X86::BI__builtin_ia32_vpshrdd256:
11652   case X86::BI__builtin_ia32_vpshrdd512:
11653   case X86::BI__builtin_ia32_vpshrdq128:
11654   case X86::BI__builtin_ia32_vpshrdq256:
11655   case X86::BI__builtin_ia32_vpshrdq512:
11656   case X86::BI__builtin_ia32_vpshrdw128:
11657   case X86::BI__builtin_ia32_vpshrdw256:
11658   case X86::BI__builtin_ia32_vpshrdw512:
11659     // Ops 0 and 1 are swapped.
11660     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11661 
11662   case X86::BI__builtin_ia32_vpshldvd128:
11663   case X86::BI__builtin_ia32_vpshldvd256:
11664   case X86::BI__builtin_ia32_vpshldvd512:
11665   case X86::BI__builtin_ia32_vpshldvq128:
11666   case X86::BI__builtin_ia32_vpshldvq256:
11667   case X86::BI__builtin_ia32_vpshldvq512:
11668   case X86::BI__builtin_ia32_vpshldvw128:
11669   case X86::BI__builtin_ia32_vpshldvw256:
11670   case X86::BI__builtin_ia32_vpshldvw512:
11671     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11672 
11673   case X86::BI__builtin_ia32_vpshrdvd128:
11674   case X86::BI__builtin_ia32_vpshrdvd256:
11675   case X86::BI__builtin_ia32_vpshrdvd512:
11676   case X86::BI__builtin_ia32_vpshrdvq128:
11677   case X86::BI__builtin_ia32_vpshrdvq256:
11678   case X86::BI__builtin_ia32_vpshrdvq512:
11679   case X86::BI__builtin_ia32_vpshrdvw128:
11680   case X86::BI__builtin_ia32_vpshrdvw256:
11681   case X86::BI__builtin_ia32_vpshrdvw512:
11682     // Ops 0 and 1 are swapped.
11683     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11684 
11685   // 3DNow!
11686   case X86::BI__builtin_ia32_pswapdsf:
11687   case X86::BI__builtin_ia32_pswapdsi: {
11688     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
11689     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
11690     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
11691     return Builder.CreateCall(F, Ops, "pswapd");
11692   }
11693   case X86::BI__builtin_ia32_rdrand16_step:
11694   case X86::BI__builtin_ia32_rdrand32_step:
11695   case X86::BI__builtin_ia32_rdrand64_step:
11696   case X86::BI__builtin_ia32_rdseed16_step:
11697   case X86::BI__builtin_ia32_rdseed32_step:
11698   case X86::BI__builtin_ia32_rdseed64_step: {
11699     Intrinsic::ID ID;
11700     switch (BuiltinID) {
11701     default: llvm_unreachable("Unsupported intrinsic!");
11702     case X86::BI__builtin_ia32_rdrand16_step:
11703       ID = Intrinsic::x86_rdrand_16;
11704       break;
11705     case X86::BI__builtin_ia32_rdrand32_step:
11706       ID = Intrinsic::x86_rdrand_32;
11707       break;
11708     case X86::BI__builtin_ia32_rdrand64_step:
11709       ID = Intrinsic::x86_rdrand_64;
11710       break;
11711     case X86::BI__builtin_ia32_rdseed16_step:
11712       ID = Intrinsic::x86_rdseed_16;
11713       break;
11714     case X86::BI__builtin_ia32_rdseed32_step:
11715       ID = Intrinsic::x86_rdseed_32;
11716       break;
11717     case X86::BI__builtin_ia32_rdseed64_step:
11718       ID = Intrinsic::x86_rdseed_64;
11719       break;
11720     }
11721 
11722     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
11723     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
11724                                       Ops[0]);
11725     return Builder.CreateExtractValue(Call, 1);
11726   }
11727   case X86::BI__builtin_ia32_addcarryx_u32:
11728   case X86::BI__builtin_ia32_addcarryx_u64:
11729   case X86::BI__builtin_ia32_subborrow_u32:
11730   case X86::BI__builtin_ia32_subborrow_u64: {
11731     Intrinsic::ID IID;
11732     switch (BuiltinID) {
11733     default: llvm_unreachable("Unsupported intrinsic!");
11734     case X86::BI__builtin_ia32_addcarryx_u32:
11735       IID = Intrinsic::x86_addcarry_32;
11736       break;
11737     case X86::BI__builtin_ia32_addcarryx_u64:
11738       IID = Intrinsic::x86_addcarry_64;
11739       break;
11740     case X86::BI__builtin_ia32_subborrow_u32:
11741       IID = Intrinsic::x86_subborrow_32;
11742       break;
11743     case X86::BI__builtin_ia32_subborrow_u64:
11744       IID = Intrinsic::x86_subborrow_64;
11745       break;
11746     }
11747 
11748     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
11749                                      { Ops[0], Ops[1], Ops[2] });
11750     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11751                                       Ops[3]);
11752     return Builder.CreateExtractValue(Call, 0);
11753   }
11754 
11755   case X86::BI__builtin_ia32_fpclassps128_mask:
11756   case X86::BI__builtin_ia32_fpclassps256_mask:
11757   case X86::BI__builtin_ia32_fpclassps512_mask:
11758   case X86::BI__builtin_ia32_fpclasspd128_mask:
11759   case X86::BI__builtin_ia32_fpclasspd256_mask:
11760   case X86::BI__builtin_ia32_fpclasspd512_mask: {
11761     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11762     Value *MaskIn = Ops[2];
11763     Ops.erase(&Ops[2]);
11764 
11765     Intrinsic::ID ID;
11766     switch (BuiltinID) {
11767     default: llvm_unreachable("Unsupported intrinsic!");
11768     case X86::BI__builtin_ia32_fpclassps128_mask:
11769       ID = Intrinsic::x86_avx512_fpclass_ps_128;
11770       break;
11771     case X86::BI__builtin_ia32_fpclassps256_mask:
11772       ID = Intrinsic::x86_avx512_fpclass_ps_256;
11773       break;
11774     case X86::BI__builtin_ia32_fpclassps512_mask:
11775       ID = Intrinsic::x86_avx512_fpclass_ps_512;
11776       break;
11777     case X86::BI__builtin_ia32_fpclasspd128_mask:
11778       ID = Intrinsic::x86_avx512_fpclass_pd_128;
11779       break;
11780     case X86::BI__builtin_ia32_fpclasspd256_mask:
11781       ID = Intrinsic::x86_avx512_fpclass_pd_256;
11782       break;
11783     case X86::BI__builtin_ia32_fpclasspd512_mask:
11784       ID = Intrinsic::x86_avx512_fpclass_pd_512;
11785       break;
11786     }
11787 
11788     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11789     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
11790   }
11791 
11792   case X86::BI__builtin_ia32_vp2intersect_q_512:
11793   case X86::BI__builtin_ia32_vp2intersect_q_256:
11794   case X86::BI__builtin_ia32_vp2intersect_q_128:
11795   case X86::BI__builtin_ia32_vp2intersect_d_512:
11796   case X86::BI__builtin_ia32_vp2intersect_d_256:
11797   case X86::BI__builtin_ia32_vp2intersect_d_128: {
11798     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11799     Intrinsic::ID ID;
11800 
11801     switch (BuiltinID) {
11802     default: llvm_unreachable("Unsupported intrinsic!");
11803     case X86::BI__builtin_ia32_vp2intersect_q_512:
11804       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
11805       break;
11806     case X86::BI__builtin_ia32_vp2intersect_q_256:
11807       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
11808       break;
11809     case X86::BI__builtin_ia32_vp2intersect_q_128:
11810       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
11811       break;
11812     case X86::BI__builtin_ia32_vp2intersect_d_512:
11813       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
11814       break;
11815     case X86::BI__builtin_ia32_vp2intersect_d_256:
11816       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
11817       break;
11818     case X86::BI__builtin_ia32_vp2intersect_d_128:
11819       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
11820       break;
11821     }
11822 
11823     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
11824     Value *Result = Builder.CreateExtractValue(Call, 0);
11825     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11826     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
11827 
11828     Result = Builder.CreateExtractValue(Call, 1);
11829     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11830     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
11831   }
11832 
11833   case X86::BI__builtin_ia32_vpmultishiftqb128:
11834   case X86::BI__builtin_ia32_vpmultishiftqb256:
11835   case X86::BI__builtin_ia32_vpmultishiftqb512: {
11836     Intrinsic::ID ID;
11837     switch (BuiltinID) {
11838     default: llvm_unreachable("Unsupported intrinsic!");
11839     case X86::BI__builtin_ia32_vpmultishiftqb128:
11840       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
11841       break;
11842     case X86::BI__builtin_ia32_vpmultishiftqb256:
11843       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
11844       break;
11845     case X86::BI__builtin_ia32_vpmultishiftqb512:
11846       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
11847       break;
11848     }
11849 
11850     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11851   }
11852 
11853   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11854   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11855   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
11856     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11857     Value *MaskIn = Ops[2];
11858     Ops.erase(&Ops[2]);
11859 
11860     Intrinsic::ID ID;
11861     switch (BuiltinID) {
11862     default: llvm_unreachable("Unsupported intrinsic!");
11863     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11864       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
11865       break;
11866     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11867       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
11868       break;
11869     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
11870       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
11871       break;
11872     }
11873 
11874     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11875     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
11876   }
11877 
11878   // packed comparison intrinsics
11879   case X86::BI__builtin_ia32_cmpeqps:
11880   case X86::BI__builtin_ia32_cmpeqpd:
11881     return getVectorFCmpIR(CmpInst::FCMP_OEQ);
11882   case X86::BI__builtin_ia32_cmpltps:
11883   case X86::BI__builtin_ia32_cmpltpd:
11884     return getVectorFCmpIR(CmpInst::FCMP_OLT);
11885   case X86::BI__builtin_ia32_cmpleps:
11886   case X86::BI__builtin_ia32_cmplepd:
11887     return getVectorFCmpIR(CmpInst::FCMP_OLE);
11888   case X86::BI__builtin_ia32_cmpunordps:
11889   case X86::BI__builtin_ia32_cmpunordpd:
11890     return getVectorFCmpIR(CmpInst::FCMP_UNO);
11891   case X86::BI__builtin_ia32_cmpneqps:
11892   case X86::BI__builtin_ia32_cmpneqpd:
11893     return getVectorFCmpIR(CmpInst::FCMP_UNE);
11894   case X86::BI__builtin_ia32_cmpnltps:
11895   case X86::BI__builtin_ia32_cmpnltpd:
11896     return getVectorFCmpIR(CmpInst::FCMP_UGE);
11897   case X86::BI__builtin_ia32_cmpnleps:
11898   case X86::BI__builtin_ia32_cmpnlepd:
11899     return getVectorFCmpIR(CmpInst::FCMP_UGT);
11900   case X86::BI__builtin_ia32_cmpordps:
11901   case X86::BI__builtin_ia32_cmpordpd:
11902     return getVectorFCmpIR(CmpInst::FCMP_ORD);
11903   case X86::BI__builtin_ia32_cmpps:
11904   case X86::BI__builtin_ia32_cmpps256:
11905   case X86::BI__builtin_ia32_cmppd:
11906   case X86::BI__builtin_ia32_cmppd256:
11907   case X86::BI__builtin_ia32_cmpps128_mask:
11908   case X86::BI__builtin_ia32_cmpps256_mask:
11909   case X86::BI__builtin_ia32_cmpps512_mask:
11910   case X86::BI__builtin_ia32_cmppd128_mask:
11911   case X86::BI__builtin_ia32_cmppd256_mask:
11912   case X86::BI__builtin_ia32_cmppd512_mask: {
11913     // Lowering vector comparisons to fcmp instructions, while
11914     // ignoring signalling behaviour requested
11915     // ignoring rounding mode requested
11916     // This is is only possible as long as FENV_ACCESS is not implemented.
11917     // See also: https://reviews.llvm.org/D45616
11918 
11919     // The third argument is the comparison condition, and integer in the
11920     // range [0, 31]
11921     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
11922 
11923     // Lowering to IR fcmp instruction.
11924     // Ignoring requested signaling behaviour,
11925     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
11926     FCmpInst::Predicate Pred;
11927     switch (CC) {
11928     case 0x00: Pred = FCmpInst::FCMP_OEQ;   break;
11929     case 0x01: Pred = FCmpInst::FCMP_OLT;   break;
11930     case 0x02: Pred = FCmpInst::FCMP_OLE;   break;
11931     case 0x03: Pred = FCmpInst::FCMP_UNO;   break;
11932     case 0x04: Pred = FCmpInst::FCMP_UNE;   break;
11933     case 0x05: Pred = FCmpInst::FCMP_UGE;   break;
11934     case 0x06: Pred = FCmpInst::FCMP_UGT;   break;
11935     case 0x07: Pred = FCmpInst::FCMP_ORD;   break;
11936     case 0x08: Pred = FCmpInst::FCMP_UEQ;   break;
11937     case 0x09: Pred = FCmpInst::FCMP_ULT;   break;
11938     case 0x0a: Pred = FCmpInst::FCMP_ULE;   break;
11939     case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
11940     case 0x0c: Pred = FCmpInst::FCMP_ONE;   break;
11941     case 0x0d: Pred = FCmpInst::FCMP_OGE;   break;
11942     case 0x0e: Pred = FCmpInst::FCMP_OGT;   break;
11943     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  break;
11944     case 0x10: Pred = FCmpInst::FCMP_OEQ;   break;
11945     case 0x11: Pred = FCmpInst::FCMP_OLT;   break;
11946     case 0x12: Pred = FCmpInst::FCMP_OLE;   break;
11947     case 0x13: Pred = FCmpInst::FCMP_UNO;   break;
11948     case 0x14: Pred = FCmpInst::FCMP_UNE;   break;
11949     case 0x15: Pred = FCmpInst::FCMP_UGE;   break;
11950     case 0x16: Pred = FCmpInst::FCMP_UGT;   break;
11951     case 0x17: Pred = FCmpInst::FCMP_ORD;   break;
11952     case 0x18: Pred = FCmpInst::FCMP_UEQ;   break;
11953     case 0x19: Pred = FCmpInst::FCMP_ULT;   break;
11954     case 0x1a: Pred = FCmpInst::FCMP_ULE;   break;
11955     case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
11956     case 0x1c: Pred = FCmpInst::FCMP_ONE;   break;
11957     case 0x1d: Pred = FCmpInst::FCMP_OGE;   break;
11958     case 0x1e: Pred = FCmpInst::FCMP_OGT;   break;
11959     case 0x1f: Pred = FCmpInst::FCMP_TRUE;  break;
11960     default: llvm_unreachable("Unhandled CC");
11961     }
11962 
11963     // Builtins without the _mask suffix return a vector of integers
11964     // of the same width as the input vectors
11965     switch (BuiltinID) {
11966     case X86::BI__builtin_ia32_cmpps512_mask:
11967     case X86::BI__builtin_ia32_cmppd512_mask:
11968     case X86::BI__builtin_ia32_cmpps128_mask:
11969     case X86::BI__builtin_ia32_cmpps256_mask:
11970     case X86::BI__builtin_ia32_cmppd128_mask:
11971     case X86::BI__builtin_ia32_cmppd256_mask: {
11972       unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11973       Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11974       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
11975     }
11976     default:
11977       return getVectorFCmpIR(Pred);
11978     }
11979   }
11980 
11981   // SSE scalar comparison intrinsics
11982   case X86::BI__builtin_ia32_cmpeqss:
11983     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
11984   case X86::BI__builtin_ia32_cmpltss:
11985     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
11986   case X86::BI__builtin_ia32_cmpless:
11987     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
11988   case X86::BI__builtin_ia32_cmpunordss:
11989     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
11990   case X86::BI__builtin_ia32_cmpneqss:
11991     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
11992   case X86::BI__builtin_ia32_cmpnltss:
11993     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
11994   case X86::BI__builtin_ia32_cmpnless:
11995     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
11996   case X86::BI__builtin_ia32_cmpordss:
11997     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
11998   case X86::BI__builtin_ia32_cmpeqsd:
11999     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
12000   case X86::BI__builtin_ia32_cmpltsd:
12001     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
12002   case X86::BI__builtin_ia32_cmplesd:
12003     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
12004   case X86::BI__builtin_ia32_cmpunordsd:
12005     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
12006   case X86::BI__builtin_ia32_cmpneqsd:
12007     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
12008   case X86::BI__builtin_ia32_cmpnltsd:
12009     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
12010   case X86::BI__builtin_ia32_cmpnlesd:
12011     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
12012   case X86::BI__builtin_ia32_cmpordsd:
12013     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
12014 
12015 // AVX512 bf16 intrinsics
12016   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
12017     Ops[2] = getMaskVecValue(*this, Ops[2],
12018                              Ops[0]->getType()->getVectorNumElements());
12019     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
12020     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
12021   }
12022   case X86::BI__builtin_ia32_cvtsbf162ss_32:
12023     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
12024 
12025   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12026   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
12027     Intrinsic::ID IID;
12028     switch (BuiltinID) {
12029     default: llvm_unreachable("Unsupported intrinsic!");
12030     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12031       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
12032       break;
12033     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
12034       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
12035       break;
12036     }
12037     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
12038     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12039   }
12040 
12041   case X86::BI__emul:
12042   case X86::BI__emulu: {
12043     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
12044     bool isSigned = (BuiltinID == X86::BI__emul);
12045     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
12046     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
12047     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
12048   }
12049   case X86::BI__mulh:
12050   case X86::BI__umulh:
12051   case X86::BI_mul128:
12052   case X86::BI_umul128: {
12053     llvm::Type *ResType = ConvertType(E->getType());
12054     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
12055 
12056     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
12057     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
12058     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
12059 
12060     Value *MulResult, *HigherBits;
12061     if (IsSigned) {
12062       MulResult = Builder.CreateNSWMul(LHS, RHS);
12063       HigherBits = Builder.CreateAShr(MulResult, 64);
12064     } else {
12065       MulResult = Builder.CreateNUWMul(LHS, RHS);
12066       HigherBits = Builder.CreateLShr(MulResult, 64);
12067     }
12068     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
12069 
12070     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
12071       return HigherBits;
12072 
12073     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
12074     Builder.CreateStore(HigherBits, HighBitsAddress);
12075     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
12076   }
12077 
12078   case X86::BI__faststorefence: {
12079     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12080                                llvm::SyncScope::System);
12081   }
12082   case X86::BI__shiftleft128:
12083   case X86::BI__shiftright128: {
12084     // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
12085     // llvm::Function *F = CGM.getIntrinsic(
12086     //   BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
12087     //   Int64Ty);
12088     // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12089     // return Builder.CreateCall(F, Ops);
12090     llvm::Type *Int128Ty = Builder.getInt128Ty();
12091     Value *HighPart128 =
12092         Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
12093     Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
12094     Value *Val = Builder.CreateOr(HighPart128, LowPart128);
12095     Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
12096                                    llvm::ConstantInt::get(Int128Ty, 0x3f));
12097     Value *Res;
12098     if (BuiltinID == X86::BI__shiftleft128)
12099       Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
12100     else
12101       Res = Builder.CreateLShr(Val, Amt);
12102     return Builder.CreateTrunc(Res, Int64Ty);
12103   }
12104   case X86::BI_ReadWriteBarrier:
12105   case X86::BI_ReadBarrier:
12106   case X86::BI_WriteBarrier: {
12107     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12108                                llvm::SyncScope::SingleThread);
12109   }
12110   case X86::BI_BitScanForward:
12111   case X86::BI_BitScanForward64:
12112     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
12113   case X86::BI_BitScanReverse:
12114   case X86::BI_BitScanReverse64:
12115     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
12116 
12117   case X86::BI_InterlockedAnd64:
12118     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
12119   case X86::BI_InterlockedExchange64:
12120     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
12121   case X86::BI_InterlockedExchangeAdd64:
12122     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
12123   case X86::BI_InterlockedExchangeSub64:
12124     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
12125   case X86::BI_InterlockedOr64:
12126     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
12127   case X86::BI_InterlockedXor64:
12128     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
12129   case X86::BI_InterlockedDecrement64:
12130     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
12131   case X86::BI_InterlockedIncrement64:
12132     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
12133   case X86::BI_InterlockedCompareExchange128: {
12134     // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
12135     // instead it takes pointers to 64bit ints for Destination and
12136     // ComparandResult, and exchange is taken as two 64bit ints (high & low).
12137     // The previous value is written to ComparandResult, and success is
12138     // returned.
12139 
12140     llvm::Type *Int128Ty = Builder.getInt128Ty();
12141     llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
12142 
12143     Value *Destination =
12144         Builder.CreateBitCast(Ops[0], Int128PtrTy);
12145     Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
12146     Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
12147     Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
12148                             getContext().toCharUnitsFromBits(128));
12149 
12150     Value *Exchange = Builder.CreateOr(
12151         Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
12152         ExchangeLow128);
12153 
12154     Value *Comparand = Builder.CreateLoad(ComparandResult);
12155 
12156     AtomicCmpXchgInst *CXI =
12157         Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
12158                                     AtomicOrdering::SequentiallyConsistent,
12159                                     AtomicOrdering::SequentiallyConsistent);
12160     CXI->setVolatile(true);
12161 
12162     // Write the result back to the inout pointer.
12163     Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
12164 
12165     // Get the success boolean and zero extend it to i8.
12166     Value *Success = Builder.CreateExtractValue(CXI, 1);
12167     return Builder.CreateZExt(Success, ConvertType(E->getType()));
12168   }
12169 
12170   case X86::BI_AddressOfReturnAddress: {
12171     Function *F =
12172         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
12173     return Builder.CreateCall(F);
12174   }
12175   case X86::BI__stosb: {
12176     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
12177     // instruction, but it will create a memset that won't be optimized away.
12178     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
12179   }
12180   case X86::BI__ud2:
12181     // llvm.trap makes a ud2a instruction on x86.
12182     return EmitTrapCall(Intrinsic::trap);
12183   case X86::BI__int2c: {
12184     // This syscall signals a driver assertion failure in x86 NT kernels.
12185     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
12186     llvm::InlineAsm *IA =
12187         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
12188     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
12189         getLLVMContext(), llvm::AttributeList::FunctionIndex,
12190         llvm::Attribute::NoReturn);
12191     llvm::CallInst *CI = Builder.CreateCall(IA);
12192     CI->setAttributes(NoReturnAttr);
12193     return CI;
12194   }
12195   case X86::BI__readfsbyte:
12196   case X86::BI__readfsword:
12197   case X86::BI__readfsdword:
12198   case X86::BI__readfsqword: {
12199     llvm::Type *IntTy = ConvertType(E->getType());
12200     Value *Ptr =
12201         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
12202     LoadInst *Load = Builder.CreateAlignedLoad(
12203         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12204     Load->setVolatile(true);
12205     return Load;
12206   }
12207   case X86::BI__readgsbyte:
12208   case X86::BI__readgsword:
12209   case X86::BI__readgsdword:
12210   case X86::BI__readgsqword: {
12211     llvm::Type *IntTy = ConvertType(E->getType());
12212     Value *Ptr =
12213         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
12214     LoadInst *Load = Builder.CreateAlignedLoad(
12215         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12216     Load->setVolatile(true);
12217     return Load;
12218   }
12219   case X86::BI__builtin_ia32_paddsb512:
12220   case X86::BI__builtin_ia32_paddsw512:
12221   case X86::BI__builtin_ia32_paddsb256:
12222   case X86::BI__builtin_ia32_paddsw256:
12223   case X86::BI__builtin_ia32_paddsb128:
12224   case X86::BI__builtin_ia32_paddsw128:
12225     return EmitX86AddSubSatExpr(*this, Ops, true, true);
12226   case X86::BI__builtin_ia32_paddusb512:
12227   case X86::BI__builtin_ia32_paddusw512:
12228   case X86::BI__builtin_ia32_paddusb256:
12229   case X86::BI__builtin_ia32_paddusw256:
12230   case X86::BI__builtin_ia32_paddusb128:
12231   case X86::BI__builtin_ia32_paddusw128:
12232     return EmitX86AddSubSatExpr(*this, Ops, false, true);
12233   case X86::BI__builtin_ia32_psubsb512:
12234   case X86::BI__builtin_ia32_psubsw512:
12235   case X86::BI__builtin_ia32_psubsb256:
12236   case X86::BI__builtin_ia32_psubsw256:
12237   case X86::BI__builtin_ia32_psubsb128:
12238   case X86::BI__builtin_ia32_psubsw128:
12239     return EmitX86AddSubSatExpr(*this, Ops, true, false);
12240   case X86::BI__builtin_ia32_psubusb512:
12241   case X86::BI__builtin_ia32_psubusw512:
12242   case X86::BI__builtin_ia32_psubusb256:
12243   case X86::BI__builtin_ia32_psubusw256:
12244   case X86::BI__builtin_ia32_psubusb128:
12245   case X86::BI__builtin_ia32_psubusw128:
12246     return EmitX86AddSubSatExpr(*this, Ops, false, false);
12247   }
12248 }
12249 
12250 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
12251                                            const CallExpr *E) {
12252   SmallVector<Value*, 4> Ops;
12253 
12254   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
12255     Ops.push_back(EmitScalarExpr(E->getArg(i)));
12256 
12257   Intrinsic::ID ID = Intrinsic::not_intrinsic;
12258 
12259   switch (BuiltinID) {
12260   default: return nullptr;
12261 
12262   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
12263   // call __builtin_readcyclecounter.
12264   case PPC::BI__builtin_ppc_get_timebase:
12265     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
12266 
12267   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
12268   case PPC::BI__builtin_altivec_lvx:
12269   case PPC::BI__builtin_altivec_lvxl:
12270   case PPC::BI__builtin_altivec_lvebx:
12271   case PPC::BI__builtin_altivec_lvehx:
12272   case PPC::BI__builtin_altivec_lvewx:
12273   case PPC::BI__builtin_altivec_lvsl:
12274   case PPC::BI__builtin_altivec_lvsr:
12275   case PPC::BI__builtin_vsx_lxvd2x:
12276   case PPC::BI__builtin_vsx_lxvw4x:
12277   case PPC::BI__builtin_vsx_lxvd2x_be:
12278   case PPC::BI__builtin_vsx_lxvw4x_be:
12279   case PPC::BI__builtin_vsx_lxvl:
12280   case PPC::BI__builtin_vsx_lxvll:
12281   {
12282     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
12283        BuiltinID == PPC::BI__builtin_vsx_lxvll){
12284       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
12285     }else {
12286       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12287       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
12288       Ops.pop_back();
12289     }
12290 
12291     switch (BuiltinID) {
12292     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
12293     case PPC::BI__builtin_altivec_lvx:
12294       ID = Intrinsic::ppc_altivec_lvx;
12295       break;
12296     case PPC::BI__builtin_altivec_lvxl:
12297       ID = Intrinsic::ppc_altivec_lvxl;
12298       break;
12299     case PPC::BI__builtin_altivec_lvebx:
12300       ID = Intrinsic::ppc_altivec_lvebx;
12301       break;
12302     case PPC::BI__builtin_altivec_lvehx:
12303       ID = Intrinsic::ppc_altivec_lvehx;
12304       break;
12305     case PPC::BI__builtin_altivec_lvewx:
12306       ID = Intrinsic::ppc_altivec_lvewx;
12307       break;
12308     case PPC::BI__builtin_altivec_lvsl:
12309       ID = Intrinsic::ppc_altivec_lvsl;
12310       break;
12311     case PPC::BI__builtin_altivec_lvsr:
12312       ID = Intrinsic::ppc_altivec_lvsr;
12313       break;
12314     case PPC::BI__builtin_vsx_lxvd2x:
12315       ID = Intrinsic::ppc_vsx_lxvd2x;
12316       break;
12317     case PPC::BI__builtin_vsx_lxvw4x:
12318       ID = Intrinsic::ppc_vsx_lxvw4x;
12319       break;
12320     case PPC::BI__builtin_vsx_lxvd2x_be:
12321       ID = Intrinsic::ppc_vsx_lxvd2x_be;
12322       break;
12323     case PPC::BI__builtin_vsx_lxvw4x_be:
12324       ID = Intrinsic::ppc_vsx_lxvw4x_be;
12325       break;
12326     case PPC::BI__builtin_vsx_lxvl:
12327       ID = Intrinsic::ppc_vsx_lxvl;
12328       break;
12329     case PPC::BI__builtin_vsx_lxvll:
12330       ID = Intrinsic::ppc_vsx_lxvll;
12331       break;
12332     }
12333     llvm::Function *F = CGM.getIntrinsic(ID);
12334     return Builder.CreateCall(F, Ops, "");
12335   }
12336 
12337   // vec_st, vec_xst_be
12338   case PPC::BI__builtin_altivec_stvx:
12339   case PPC::BI__builtin_altivec_stvxl:
12340   case PPC::BI__builtin_altivec_stvebx:
12341   case PPC::BI__builtin_altivec_stvehx:
12342   case PPC::BI__builtin_altivec_stvewx:
12343   case PPC::BI__builtin_vsx_stxvd2x:
12344   case PPC::BI__builtin_vsx_stxvw4x:
12345   case PPC::BI__builtin_vsx_stxvd2x_be:
12346   case PPC::BI__builtin_vsx_stxvw4x_be:
12347   case PPC::BI__builtin_vsx_stxvl:
12348   case PPC::BI__builtin_vsx_stxvll:
12349   {
12350     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
12351       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
12352       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12353     }else {
12354       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
12355       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
12356       Ops.pop_back();
12357     }
12358 
12359     switch (BuiltinID) {
12360     default: llvm_unreachable("Unsupported st intrinsic!");
12361     case PPC::BI__builtin_altivec_stvx:
12362       ID = Intrinsic::ppc_altivec_stvx;
12363       break;
12364     case PPC::BI__builtin_altivec_stvxl:
12365       ID = Intrinsic::ppc_altivec_stvxl;
12366       break;
12367     case PPC::BI__builtin_altivec_stvebx:
12368       ID = Intrinsic::ppc_altivec_stvebx;
12369       break;
12370     case PPC::BI__builtin_altivec_stvehx:
12371       ID = Intrinsic::ppc_altivec_stvehx;
12372       break;
12373     case PPC::BI__builtin_altivec_stvewx:
12374       ID = Intrinsic::ppc_altivec_stvewx;
12375       break;
12376     case PPC::BI__builtin_vsx_stxvd2x:
12377       ID = Intrinsic::ppc_vsx_stxvd2x;
12378       break;
12379     case PPC::BI__builtin_vsx_stxvw4x:
12380       ID = Intrinsic::ppc_vsx_stxvw4x;
12381       break;
12382     case PPC::BI__builtin_vsx_stxvd2x_be:
12383       ID = Intrinsic::ppc_vsx_stxvd2x_be;
12384       break;
12385     case PPC::BI__builtin_vsx_stxvw4x_be:
12386       ID = Intrinsic::ppc_vsx_stxvw4x_be;
12387       break;
12388     case PPC::BI__builtin_vsx_stxvl:
12389       ID = Intrinsic::ppc_vsx_stxvl;
12390       break;
12391     case PPC::BI__builtin_vsx_stxvll:
12392       ID = Intrinsic::ppc_vsx_stxvll;
12393       break;
12394     }
12395     llvm::Function *F = CGM.getIntrinsic(ID);
12396     return Builder.CreateCall(F, Ops, "");
12397   }
12398   // Square root
12399   case PPC::BI__builtin_vsx_xvsqrtsp:
12400   case PPC::BI__builtin_vsx_xvsqrtdp: {
12401     llvm::Type *ResultType = ConvertType(E->getType());
12402     Value *X = EmitScalarExpr(E->getArg(0));
12403     ID = Intrinsic::sqrt;
12404     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12405     return Builder.CreateCall(F, X);
12406   }
12407   // Count leading zeros
12408   case PPC::BI__builtin_altivec_vclzb:
12409   case PPC::BI__builtin_altivec_vclzh:
12410   case PPC::BI__builtin_altivec_vclzw:
12411   case PPC::BI__builtin_altivec_vclzd: {
12412     llvm::Type *ResultType = ConvertType(E->getType());
12413     Value *X = EmitScalarExpr(E->getArg(0));
12414     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12415     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12416     return Builder.CreateCall(F, {X, Undef});
12417   }
12418   case PPC::BI__builtin_altivec_vctzb:
12419   case PPC::BI__builtin_altivec_vctzh:
12420   case PPC::BI__builtin_altivec_vctzw:
12421   case PPC::BI__builtin_altivec_vctzd: {
12422     llvm::Type *ResultType = ConvertType(E->getType());
12423     Value *X = EmitScalarExpr(E->getArg(0));
12424     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12425     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12426     return Builder.CreateCall(F, {X, Undef});
12427   }
12428   case PPC::BI__builtin_altivec_vpopcntb:
12429   case PPC::BI__builtin_altivec_vpopcnth:
12430   case PPC::BI__builtin_altivec_vpopcntw:
12431   case PPC::BI__builtin_altivec_vpopcntd: {
12432     llvm::Type *ResultType = ConvertType(E->getType());
12433     Value *X = EmitScalarExpr(E->getArg(0));
12434     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12435     return Builder.CreateCall(F, X);
12436   }
12437   // Copy sign
12438   case PPC::BI__builtin_vsx_xvcpsgnsp:
12439   case PPC::BI__builtin_vsx_xvcpsgndp: {
12440     llvm::Type *ResultType = ConvertType(E->getType());
12441     Value *X = EmitScalarExpr(E->getArg(0));
12442     Value *Y = EmitScalarExpr(E->getArg(1));
12443     ID = Intrinsic::copysign;
12444     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12445     return Builder.CreateCall(F, {X, Y});
12446   }
12447   // Rounding/truncation
12448   case PPC::BI__builtin_vsx_xvrspip:
12449   case PPC::BI__builtin_vsx_xvrdpip:
12450   case PPC::BI__builtin_vsx_xvrdpim:
12451   case PPC::BI__builtin_vsx_xvrspim:
12452   case PPC::BI__builtin_vsx_xvrdpi:
12453   case PPC::BI__builtin_vsx_xvrspi:
12454   case PPC::BI__builtin_vsx_xvrdpic:
12455   case PPC::BI__builtin_vsx_xvrspic:
12456   case PPC::BI__builtin_vsx_xvrdpiz:
12457   case PPC::BI__builtin_vsx_xvrspiz: {
12458     llvm::Type *ResultType = ConvertType(E->getType());
12459     Value *X = EmitScalarExpr(E->getArg(0));
12460     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
12461         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
12462       ID = Intrinsic::floor;
12463     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
12464              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
12465       ID = Intrinsic::round;
12466     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
12467              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
12468       ID = Intrinsic::nearbyint;
12469     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
12470              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
12471       ID = Intrinsic::ceil;
12472     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
12473              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
12474       ID = Intrinsic::trunc;
12475     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12476     return Builder.CreateCall(F, X);
12477   }
12478 
12479   // Absolute value
12480   case PPC::BI__builtin_vsx_xvabsdp:
12481   case PPC::BI__builtin_vsx_xvabssp: {
12482     llvm::Type *ResultType = ConvertType(E->getType());
12483     Value *X = EmitScalarExpr(E->getArg(0));
12484     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12485     return Builder.CreateCall(F, X);
12486   }
12487 
12488   // FMA variations
12489   case PPC::BI__builtin_vsx_xvmaddadp:
12490   case PPC::BI__builtin_vsx_xvmaddasp:
12491   case PPC::BI__builtin_vsx_xvnmaddadp:
12492   case PPC::BI__builtin_vsx_xvnmaddasp:
12493   case PPC::BI__builtin_vsx_xvmsubadp:
12494   case PPC::BI__builtin_vsx_xvmsubasp:
12495   case PPC::BI__builtin_vsx_xvnmsubadp:
12496   case PPC::BI__builtin_vsx_xvnmsubasp: {
12497     llvm::Type *ResultType = ConvertType(E->getType());
12498     Value *X = EmitScalarExpr(E->getArg(0));
12499     Value *Y = EmitScalarExpr(E->getArg(1));
12500     Value *Z = EmitScalarExpr(E->getArg(2));
12501     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12502     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12503     switch (BuiltinID) {
12504       case PPC::BI__builtin_vsx_xvmaddadp:
12505       case PPC::BI__builtin_vsx_xvmaddasp:
12506         return Builder.CreateCall(F, {X, Y, Z});
12507       case PPC::BI__builtin_vsx_xvnmaddadp:
12508       case PPC::BI__builtin_vsx_xvnmaddasp:
12509         return Builder.CreateFSub(Zero,
12510                                   Builder.CreateCall(F, {X, Y, Z}), "sub");
12511       case PPC::BI__builtin_vsx_xvmsubadp:
12512       case PPC::BI__builtin_vsx_xvmsubasp:
12513         return Builder.CreateCall(F,
12514                                   {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12515       case PPC::BI__builtin_vsx_xvnmsubadp:
12516       case PPC::BI__builtin_vsx_xvnmsubasp:
12517         Value *FsubRes =
12518           Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12519         return Builder.CreateFSub(Zero, FsubRes, "sub");
12520     }
12521     llvm_unreachable("Unknown FMA operation");
12522     return nullptr; // Suppress no-return warning
12523   }
12524 
12525   case PPC::BI__builtin_vsx_insertword: {
12526     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
12527 
12528     // Third argument is a compile time constant int. It must be clamped to
12529     // to the range [0, 12].
12530     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12531     assert(ArgCI &&
12532            "Third arg to xxinsertw intrinsic must be constant integer");
12533     const int64_t MaxIndex = 12;
12534     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12535 
12536     // The builtin semantics don't exactly match the xxinsertw instructions
12537     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
12538     // word from the first argument, and inserts it in the second argument. The
12539     // instruction extracts the word from its second input register and inserts
12540     // it into its first input register, so swap the first and second arguments.
12541     std::swap(Ops[0], Ops[1]);
12542 
12543     // Need to cast the second argument from a vector of unsigned int to a
12544     // vector of long long.
12545     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12546 
12547     if (getTarget().isLittleEndian()) {
12548       // Create a shuffle mask of (1, 0)
12549       Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12550                                    ConstantInt::get(Int32Ty, 0)
12551                                  };
12552       Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12553 
12554       // Reverse the double words in the vector we will extract from.
12555       Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12556       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
12557 
12558       // Reverse the index.
12559       Index = MaxIndex - Index;
12560     }
12561 
12562     // Intrinsic expects the first arg to be a vector of int.
12563     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12564     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
12565     return Builder.CreateCall(F, Ops);
12566   }
12567 
12568   case PPC::BI__builtin_vsx_extractuword: {
12569     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
12570 
12571     // Intrinsic expects the first argument to be a vector of doublewords.
12572     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12573 
12574     // The second argument is a compile time constant int that needs to
12575     // be clamped to the range [0, 12].
12576     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
12577     assert(ArgCI &&
12578            "Second Arg to xxextractuw intrinsic must be a constant integer!");
12579     const int64_t MaxIndex = 12;
12580     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12581 
12582     if (getTarget().isLittleEndian()) {
12583       // Reverse the index.
12584       Index = MaxIndex - Index;
12585       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12586 
12587       // Emit the call, then reverse the double words of the results vector.
12588       Value *Call = Builder.CreateCall(F, Ops);
12589 
12590       // Create a shuffle mask of (1, 0)
12591       Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12592                                    ConstantInt::get(Int32Ty, 0)
12593                                  };
12594       Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12595 
12596       Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
12597       return ShuffleCall;
12598     } else {
12599       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12600       return Builder.CreateCall(F, Ops);
12601     }
12602   }
12603 
12604   case PPC::BI__builtin_vsx_xxpermdi: {
12605     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12606     assert(ArgCI && "Third arg must be constant integer!");
12607 
12608     unsigned Index = ArgCI->getZExtValue();
12609     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12610     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12611 
12612     // Account for endianness by treating this as just a shuffle. So we use the
12613     // same indices for both LE and BE in order to produce expected results in
12614     // both cases.
12615     unsigned ElemIdx0 = (Index & 2) >> 1;
12616     unsigned ElemIdx1 = 2 + (Index & 1);
12617 
12618     Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
12619                                 ConstantInt::get(Int32Ty, ElemIdx1)};
12620     Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12621 
12622     Value *ShuffleCall =
12623         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12624     QualType BIRetType = E->getType();
12625     auto RetTy = ConvertType(BIRetType);
12626     return Builder.CreateBitCast(ShuffleCall, RetTy);
12627   }
12628 
12629   case PPC::BI__builtin_vsx_xxsldwi: {
12630     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12631     assert(ArgCI && "Third argument must be a compile time constant");
12632     unsigned Index = ArgCI->getZExtValue() & 0x3;
12633     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12634     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
12635 
12636     // Create a shuffle mask
12637     unsigned ElemIdx0;
12638     unsigned ElemIdx1;
12639     unsigned ElemIdx2;
12640     unsigned ElemIdx3;
12641     if (getTarget().isLittleEndian()) {
12642       // Little endian element N comes from element 8+N-Index of the
12643       // concatenated wide vector (of course, using modulo arithmetic on
12644       // the total number of elements).
12645       ElemIdx0 = (8 - Index) % 8;
12646       ElemIdx1 = (9 - Index) % 8;
12647       ElemIdx2 = (10 - Index) % 8;
12648       ElemIdx3 = (11 - Index) % 8;
12649     } else {
12650       // Big endian ElemIdx<N> = Index + N
12651       ElemIdx0 = Index;
12652       ElemIdx1 = Index + 1;
12653       ElemIdx2 = Index + 2;
12654       ElemIdx3 = Index + 3;
12655     }
12656 
12657     Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
12658                                 ConstantInt::get(Int32Ty, ElemIdx1),
12659                                 ConstantInt::get(Int32Ty, ElemIdx2),
12660                                 ConstantInt::get(Int32Ty, ElemIdx3)};
12661 
12662     Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12663     Value *ShuffleCall =
12664         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12665     QualType BIRetType = E->getType();
12666     auto RetTy = ConvertType(BIRetType);
12667     return Builder.CreateBitCast(ShuffleCall, RetTy);
12668   }
12669 
12670   case PPC::BI__builtin_pack_vector_int128: {
12671     bool isLittleEndian = getTarget().isLittleEndian();
12672     Value *UndefValue =
12673         llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
12674     Value *Res = Builder.CreateInsertElement(
12675         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
12676     Res = Builder.CreateInsertElement(Res, Ops[1],
12677                                       (uint64_t)(isLittleEndian ? 0 : 1));
12678     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
12679   }
12680 
12681   case PPC::BI__builtin_unpack_vector_int128: {
12682     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
12683     Value *Unpacked = Builder.CreateBitCast(
12684         Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
12685 
12686     if (getTarget().isLittleEndian())
12687       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
12688 
12689     return Builder.CreateExtractElement(Unpacked, Index);
12690   }
12691   }
12692 }
12693 
12694 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
12695                                               const CallExpr *E) {
12696   switch (BuiltinID) {
12697   case AMDGPU::BI__builtin_amdgcn_div_scale:
12698   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
12699     // Translate from the intrinsics's struct return to the builtin's out
12700     // argument.
12701 
12702     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
12703 
12704     llvm::Value *X = EmitScalarExpr(E->getArg(0));
12705     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
12706     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
12707 
12708     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
12709                                            X->getType());
12710 
12711     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
12712 
12713     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
12714     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
12715 
12716     llvm::Type *RealFlagType
12717       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
12718 
12719     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
12720     Builder.CreateStore(FlagExt, FlagOutPtr);
12721     return Result;
12722   }
12723   case AMDGPU::BI__builtin_amdgcn_div_fmas:
12724   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
12725     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12726     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12727     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12728     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
12729 
12730     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
12731                                       Src0->getType());
12732     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
12733     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
12734   }
12735 
12736   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
12737     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
12738   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
12739     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
12740   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
12741   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
12742     llvm::SmallVector<llvm::Value *, 6> Args;
12743     for (unsigned I = 0; I != E->getNumArgs(); ++I)
12744       Args.push_back(EmitScalarExpr(E->getArg(I)));
12745     assert(Args.size() == 5 || Args.size() == 6);
12746     if (Args.size() == 5)
12747       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
12748     Function *F =
12749         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
12750     return Builder.CreateCall(F, Args);
12751   }
12752   case AMDGPU::BI__builtin_amdgcn_div_fixup:
12753   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
12754   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
12755     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
12756   case AMDGPU::BI__builtin_amdgcn_trig_preop:
12757   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
12758     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
12759   case AMDGPU::BI__builtin_amdgcn_rcp:
12760   case AMDGPU::BI__builtin_amdgcn_rcpf:
12761   case AMDGPU::BI__builtin_amdgcn_rcph:
12762     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
12763   case AMDGPU::BI__builtin_amdgcn_rsq:
12764   case AMDGPU::BI__builtin_amdgcn_rsqf:
12765   case AMDGPU::BI__builtin_amdgcn_rsqh:
12766     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
12767   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
12768   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
12769     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
12770   case AMDGPU::BI__builtin_amdgcn_sinf:
12771   case AMDGPU::BI__builtin_amdgcn_sinh:
12772     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
12773   case AMDGPU::BI__builtin_amdgcn_cosf:
12774   case AMDGPU::BI__builtin_amdgcn_cosh:
12775     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
12776   case AMDGPU::BI__builtin_amdgcn_log_clampf:
12777     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
12778   case AMDGPU::BI__builtin_amdgcn_ldexp:
12779   case AMDGPU::BI__builtin_amdgcn_ldexpf:
12780   case AMDGPU::BI__builtin_amdgcn_ldexph:
12781     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
12782   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
12783   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
12784   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
12785     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
12786   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
12787   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
12788     Value *Src0 = EmitScalarExpr(E->getArg(0));
12789     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12790                                 { Builder.getInt32Ty(), Src0->getType() });
12791     return Builder.CreateCall(F, Src0);
12792   }
12793   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
12794     Value *Src0 = EmitScalarExpr(E->getArg(0));
12795     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12796                                 { Builder.getInt16Ty(), Src0->getType() });
12797     return Builder.CreateCall(F, Src0);
12798   }
12799   case AMDGPU::BI__builtin_amdgcn_fract:
12800   case AMDGPU::BI__builtin_amdgcn_fractf:
12801   case AMDGPU::BI__builtin_amdgcn_fracth:
12802     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
12803   case AMDGPU::BI__builtin_amdgcn_lerp:
12804     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
12805   case AMDGPU::BI__builtin_amdgcn_ubfe:
12806     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
12807   case AMDGPU::BI__builtin_amdgcn_sbfe:
12808     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
12809   case AMDGPU::BI__builtin_amdgcn_uicmp:
12810   case AMDGPU::BI__builtin_amdgcn_uicmpl:
12811   case AMDGPU::BI__builtin_amdgcn_sicmp:
12812   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
12813     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12814     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12815     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12816 
12817     // FIXME-GFX10: How should 32 bit mask be handled?
12818     Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
12819       { Builder.getInt64Ty(), Src0->getType() });
12820     return Builder.CreateCall(F, { Src0, Src1, Src2 });
12821   }
12822   case AMDGPU::BI__builtin_amdgcn_fcmp:
12823   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
12824     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12825     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12826     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12827 
12828     // FIXME-GFX10: How should 32 bit mask be handled?
12829     Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
12830       { Builder.getInt64Ty(), Src0->getType() });
12831     return Builder.CreateCall(F, { Src0, Src1, Src2 });
12832   }
12833   case AMDGPU::BI__builtin_amdgcn_class:
12834   case AMDGPU::BI__builtin_amdgcn_classf:
12835   case AMDGPU::BI__builtin_amdgcn_classh:
12836     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
12837   case AMDGPU::BI__builtin_amdgcn_fmed3f:
12838   case AMDGPU::BI__builtin_amdgcn_fmed3h:
12839     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
12840   case AMDGPU::BI__builtin_amdgcn_ds_append:
12841   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
12842     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
12843       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
12844     Value *Src0 = EmitScalarExpr(E->getArg(0));
12845     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
12846     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
12847   }
12848   case AMDGPU::BI__builtin_amdgcn_read_exec: {
12849     CallInst *CI = cast<CallInst>(
12850       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
12851     CI->setConvergent();
12852     return CI;
12853   }
12854   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
12855   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
12856     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
12857       "exec_lo" : "exec_hi";
12858     CallInst *CI = cast<CallInst>(
12859       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
12860     CI->setConvergent();
12861     return CI;
12862   }
12863   // amdgcn workitem
12864   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
12865     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
12866   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
12867     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
12868   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
12869     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
12870 
12871   // r600 intrinsics
12872   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
12873   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
12874     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
12875   case AMDGPU::BI__builtin_r600_read_tidig_x:
12876     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
12877   case AMDGPU::BI__builtin_r600_read_tidig_y:
12878     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
12879   case AMDGPU::BI__builtin_r600_read_tidig_z:
12880     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
12881   default:
12882     return nullptr;
12883   }
12884 }
12885 
12886 /// Handle a SystemZ function in which the final argument is a pointer
12887 /// to an int that receives the post-instruction CC value.  At the LLVM level
12888 /// this is represented as a function that returns a {result, cc} pair.
12889 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
12890                                          unsigned IntrinsicID,
12891                                          const CallExpr *E) {
12892   unsigned NumArgs = E->getNumArgs() - 1;
12893   SmallVector<Value *, 8> Args(NumArgs);
12894   for (unsigned I = 0; I < NumArgs; ++I)
12895     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
12896   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
12897   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
12898   Value *Call = CGF.Builder.CreateCall(F, Args);
12899   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
12900   CGF.Builder.CreateStore(CC, CCPtr);
12901   return CGF.Builder.CreateExtractValue(Call, 0);
12902 }
12903 
12904 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
12905                                                const CallExpr *E) {
12906   switch (BuiltinID) {
12907   case SystemZ::BI__builtin_tbegin: {
12908     Value *TDB = EmitScalarExpr(E->getArg(0));
12909     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12910     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
12911     return Builder.CreateCall(F, {TDB, Control});
12912   }
12913   case SystemZ::BI__builtin_tbegin_nofloat: {
12914     Value *TDB = EmitScalarExpr(E->getArg(0));
12915     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12916     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
12917     return Builder.CreateCall(F, {TDB, Control});
12918   }
12919   case SystemZ::BI__builtin_tbeginc: {
12920     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
12921     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
12922     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
12923     return Builder.CreateCall(F, {TDB, Control});
12924   }
12925   case SystemZ::BI__builtin_tabort: {
12926     Value *Data = EmitScalarExpr(E->getArg(0));
12927     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
12928     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
12929   }
12930   case SystemZ::BI__builtin_non_tx_store: {
12931     Value *Address = EmitScalarExpr(E->getArg(0));
12932     Value *Data = EmitScalarExpr(E->getArg(1));
12933     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
12934     return Builder.CreateCall(F, {Data, Address});
12935   }
12936 
12937   // Vector builtins.  Note that most vector builtins are mapped automatically
12938   // to target-specific LLVM intrinsics.  The ones handled specially here can
12939   // be represented via standard LLVM IR, which is preferable to enable common
12940   // LLVM optimizations.
12941 
12942   case SystemZ::BI__builtin_s390_vpopctb:
12943   case SystemZ::BI__builtin_s390_vpopcth:
12944   case SystemZ::BI__builtin_s390_vpopctf:
12945   case SystemZ::BI__builtin_s390_vpopctg: {
12946     llvm::Type *ResultType = ConvertType(E->getType());
12947     Value *X = EmitScalarExpr(E->getArg(0));
12948     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12949     return Builder.CreateCall(F, X);
12950   }
12951 
12952   case SystemZ::BI__builtin_s390_vclzb:
12953   case SystemZ::BI__builtin_s390_vclzh:
12954   case SystemZ::BI__builtin_s390_vclzf:
12955   case SystemZ::BI__builtin_s390_vclzg: {
12956     llvm::Type *ResultType = ConvertType(E->getType());
12957     Value *X = EmitScalarExpr(E->getArg(0));
12958     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12959     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12960     return Builder.CreateCall(F, {X, Undef});
12961   }
12962 
12963   case SystemZ::BI__builtin_s390_vctzb:
12964   case SystemZ::BI__builtin_s390_vctzh:
12965   case SystemZ::BI__builtin_s390_vctzf:
12966   case SystemZ::BI__builtin_s390_vctzg: {
12967     llvm::Type *ResultType = ConvertType(E->getType());
12968     Value *X = EmitScalarExpr(E->getArg(0));
12969     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12970     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12971     return Builder.CreateCall(F, {X, Undef});
12972   }
12973 
12974   case SystemZ::BI__builtin_s390_vfsqsb:
12975   case SystemZ::BI__builtin_s390_vfsqdb: {
12976     llvm::Type *ResultType = ConvertType(E->getType());
12977     Value *X = EmitScalarExpr(E->getArg(0));
12978     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
12979     return Builder.CreateCall(F, X);
12980   }
12981   case SystemZ::BI__builtin_s390_vfmasb:
12982   case SystemZ::BI__builtin_s390_vfmadb: {
12983     llvm::Type *ResultType = ConvertType(E->getType());
12984     Value *X = EmitScalarExpr(E->getArg(0));
12985     Value *Y = EmitScalarExpr(E->getArg(1));
12986     Value *Z = EmitScalarExpr(E->getArg(2));
12987     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12988     return Builder.CreateCall(F, {X, Y, Z});
12989   }
12990   case SystemZ::BI__builtin_s390_vfmssb:
12991   case SystemZ::BI__builtin_s390_vfmsdb: {
12992     llvm::Type *ResultType = ConvertType(E->getType());
12993     Value *X = EmitScalarExpr(E->getArg(0));
12994     Value *Y = EmitScalarExpr(E->getArg(1));
12995     Value *Z = EmitScalarExpr(E->getArg(2));
12996     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12997     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12998     return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12999   }
13000   case SystemZ::BI__builtin_s390_vfnmasb:
13001   case SystemZ::BI__builtin_s390_vfnmadb: {
13002     llvm::Type *ResultType = ConvertType(E->getType());
13003     Value *X = EmitScalarExpr(E->getArg(0));
13004     Value *Y = EmitScalarExpr(E->getArg(1));
13005     Value *Z = EmitScalarExpr(E->getArg(2));
13006     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13007     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13008     return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
13009   }
13010   case SystemZ::BI__builtin_s390_vfnmssb:
13011   case SystemZ::BI__builtin_s390_vfnmsdb: {
13012     llvm::Type *ResultType = ConvertType(E->getType());
13013     Value *X = EmitScalarExpr(E->getArg(0));
13014     Value *Y = EmitScalarExpr(E->getArg(1));
13015     Value *Z = EmitScalarExpr(E->getArg(2));
13016     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13017     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13018     Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
13019     return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
13020   }
13021   case SystemZ::BI__builtin_s390_vflpsb:
13022   case SystemZ::BI__builtin_s390_vflpdb: {
13023     llvm::Type *ResultType = ConvertType(E->getType());
13024     Value *X = EmitScalarExpr(E->getArg(0));
13025     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13026     return Builder.CreateCall(F, X);
13027   }
13028   case SystemZ::BI__builtin_s390_vflnsb:
13029   case SystemZ::BI__builtin_s390_vflndb: {
13030     llvm::Type *ResultType = ConvertType(E->getType());
13031     Value *X = EmitScalarExpr(E->getArg(0));
13032     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13033     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13034     return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
13035   }
13036   case SystemZ::BI__builtin_s390_vfisb:
13037   case SystemZ::BI__builtin_s390_vfidb: {
13038     llvm::Type *ResultType = ConvertType(E->getType());
13039     Value *X = EmitScalarExpr(E->getArg(0));
13040     // Constant-fold the M4 and M5 mask arguments.
13041     llvm::APSInt M4, M5;
13042     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
13043     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
13044     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
13045     (void)IsConstM4; (void)IsConstM5;
13046     // Check whether this instance can be represented via a LLVM standard
13047     // intrinsic.  We only support some combinations of M4 and M5.
13048     Intrinsic::ID ID = Intrinsic::not_intrinsic;
13049     switch (M4.getZExtValue()) {
13050     default: break;
13051     case 0:  // IEEE-inexact exception allowed
13052       switch (M5.getZExtValue()) {
13053       default: break;
13054       case 0: ID = Intrinsic::rint; break;
13055       }
13056       break;
13057     case 4:  // IEEE-inexact exception suppressed
13058       switch (M5.getZExtValue()) {
13059       default: break;
13060       case 0: ID = Intrinsic::nearbyint; break;
13061       case 1: ID = Intrinsic::round; break;
13062       case 5: ID = Intrinsic::trunc; break;
13063       case 6: ID = Intrinsic::ceil; break;
13064       case 7: ID = Intrinsic::floor; break;
13065       }
13066       break;
13067     }
13068     if (ID != Intrinsic::not_intrinsic) {
13069       Function *F = CGM.getIntrinsic(ID, ResultType);
13070       return Builder.CreateCall(F, X);
13071     }
13072     switch (BuiltinID) {
13073       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
13074       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
13075       default: llvm_unreachable("Unknown BuiltinID");
13076     }
13077     Function *F = CGM.getIntrinsic(ID);
13078     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13079     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
13080     return Builder.CreateCall(F, {X, M4Value, M5Value});
13081   }
13082   case SystemZ::BI__builtin_s390_vfmaxsb:
13083   case SystemZ::BI__builtin_s390_vfmaxdb: {
13084     llvm::Type *ResultType = ConvertType(E->getType());
13085     Value *X = EmitScalarExpr(E->getArg(0));
13086     Value *Y = EmitScalarExpr(E->getArg(1));
13087     // Constant-fold the M4 mask argument.
13088     llvm::APSInt M4;
13089     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13090     assert(IsConstM4 && "Constant arg isn't actually constant?");
13091     (void)IsConstM4;
13092     // Check whether this instance can be represented via a LLVM standard
13093     // intrinsic.  We only support some values of M4.
13094     Intrinsic::ID ID = Intrinsic::not_intrinsic;
13095     switch (M4.getZExtValue()) {
13096     default: break;
13097     case 4: ID = Intrinsic::maxnum; break;
13098     }
13099     if (ID != Intrinsic::not_intrinsic) {
13100       Function *F = CGM.getIntrinsic(ID, ResultType);
13101       return Builder.CreateCall(F, {X, Y});
13102     }
13103     switch (BuiltinID) {
13104       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
13105       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
13106       default: llvm_unreachable("Unknown BuiltinID");
13107     }
13108     Function *F = CGM.getIntrinsic(ID);
13109     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13110     return Builder.CreateCall(F, {X, Y, M4Value});
13111   }
13112   case SystemZ::BI__builtin_s390_vfminsb:
13113   case SystemZ::BI__builtin_s390_vfmindb: {
13114     llvm::Type *ResultType = ConvertType(E->getType());
13115     Value *X = EmitScalarExpr(E->getArg(0));
13116     Value *Y = EmitScalarExpr(E->getArg(1));
13117     // Constant-fold the M4 mask argument.
13118     llvm::APSInt M4;
13119     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13120     assert(IsConstM4 && "Constant arg isn't actually constant?");
13121     (void)IsConstM4;
13122     // Check whether this instance can be represented via a LLVM standard
13123     // intrinsic.  We only support some values of M4.
13124     Intrinsic::ID ID = Intrinsic::not_intrinsic;
13125     switch (M4.getZExtValue()) {
13126     default: break;
13127     case 4: ID = Intrinsic::minnum; break;
13128     }
13129     if (ID != Intrinsic::not_intrinsic) {
13130       Function *F = CGM.getIntrinsic(ID, ResultType);
13131       return Builder.CreateCall(F, {X, Y});
13132     }
13133     switch (BuiltinID) {
13134       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
13135       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
13136       default: llvm_unreachable("Unknown BuiltinID");
13137     }
13138     Function *F = CGM.getIntrinsic(ID);
13139     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13140     return Builder.CreateCall(F, {X, Y, M4Value});
13141   }
13142 
13143   case SystemZ::BI__builtin_s390_vlbrh:
13144   case SystemZ::BI__builtin_s390_vlbrf:
13145   case SystemZ::BI__builtin_s390_vlbrg: {
13146     llvm::Type *ResultType = ConvertType(E->getType());
13147     Value *X = EmitScalarExpr(E->getArg(0));
13148     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
13149     return Builder.CreateCall(F, X);
13150   }
13151 
13152   // Vector intrinsics that output the post-instruction CC value.
13153 
13154 #define INTRINSIC_WITH_CC(NAME) \
13155     case SystemZ::BI__builtin_##NAME: \
13156       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
13157 
13158   INTRINSIC_WITH_CC(s390_vpkshs);
13159   INTRINSIC_WITH_CC(s390_vpksfs);
13160   INTRINSIC_WITH_CC(s390_vpksgs);
13161 
13162   INTRINSIC_WITH_CC(s390_vpklshs);
13163   INTRINSIC_WITH_CC(s390_vpklsfs);
13164   INTRINSIC_WITH_CC(s390_vpklsgs);
13165 
13166   INTRINSIC_WITH_CC(s390_vceqbs);
13167   INTRINSIC_WITH_CC(s390_vceqhs);
13168   INTRINSIC_WITH_CC(s390_vceqfs);
13169   INTRINSIC_WITH_CC(s390_vceqgs);
13170 
13171   INTRINSIC_WITH_CC(s390_vchbs);
13172   INTRINSIC_WITH_CC(s390_vchhs);
13173   INTRINSIC_WITH_CC(s390_vchfs);
13174   INTRINSIC_WITH_CC(s390_vchgs);
13175 
13176   INTRINSIC_WITH_CC(s390_vchlbs);
13177   INTRINSIC_WITH_CC(s390_vchlhs);
13178   INTRINSIC_WITH_CC(s390_vchlfs);
13179   INTRINSIC_WITH_CC(s390_vchlgs);
13180 
13181   INTRINSIC_WITH_CC(s390_vfaebs);
13182   INTRINSIC_WITH_CC(s390_vfaehs);
13183   INTRINSIC_WITH_CC(s390_vfaefs);
13184 
13185   INTRINSIC_WITH_CC(s390_vfaezbs);
13186   INTRINSIC_WITH_CC(s390_vfaezhs);
13187   INTRINSIC_WITH_CC(s390_vfaezfs);
13188 
13189   INTRINSIC_WITH_CC(s390_vfeebs);
13190   INTRINSIC_WITH_CC(s390_vfeehs);
13191   INTRINSIC_WITH_CC(s390_vfeefs);
13192 
13193   INTRINSIC_WITH_CC(s390_vfeezbs);
13194   INTRINSIC_WITH_CC(s390_vfeezhs);
13195   INTRINSIC_WITH_CC(s390_vfeezfs);
13196 
13197   INTRINSIC_WITH_CC(s390_vfenebs);
13198   INTRINSIC_WITH_CC(s390_vfenehs);
13199   INTRINSIC_WITH_CC(s390_vfenefs);
13200 
13201   INTRINSIC_WITH_CC(s390_vfenezbs);
13202   INTRINSIC_WITH_CC(s390_vfenezhs);
13203   INTRINSIC_WITH_CC(s390_vfenezfs);
13204 
13205   INTRINSIC_WITH_CC(s390_vistrbs);
13206   INTRINSIC_WITH_CC(s390_vistrhs);
13207   INTRINSIC_WITH_CC(s390_vistrfs);
13208 
13209   INTRINSIC_WITH_CC(s390_vstrcbs);
13210   INTRINSIC_WITH_CC(s390_vstrchs);
13211   INTRINSIC_WITH_CC(s390_vstrcfs);
13212 
13213   INTRINSIC_WITH_CC(s390_vstrczbs);
13214   INTRINSIC_WITH_CC(s390_vstrczhs);
13215   INTRINSIC_WITH_CC(s390_vstrczfs);
13216 
13217   INTRINSIC_WITH_CC(s390_vfcesbs);
13218   INTRINSIC_WITH_CC(s390_vfcedbs);
13219   INTRINSIC_WITH_CC(s390_vfchsbs);
13220   INTRINSIC_WITH_CC(s390_vfchdbs);
13221   INTRINSIC_WITH_CC(s390_vfchesbs);
13222   INTRINSIC_WITH_CC(s390_vfchedbs);
13223 
13224   INTRINSIC_WITH_CC(s390_vftcisb);
13225   INTRINSIC_WITH_CC(s390_vftcidb);
13226 
13227   INTRINSIC_WITH_CC(s390_vstrsb);
13228   INTRINSIC_WITH_CC(s390_vstrsh);
13229   INTRINSIC_WITH_CC(s390_vstrsf);
13230 
13231   INTRINSIC_WITH_CC(s390_vstrszb);
13232   INTRINSIC_WITH_CC(s390_vstrszh);
13233   INTRINSIC_WITH_CC(s390_vstrszf);
13234 
13235 #undef INTRINSIC_WITH_CC
13236 
13237   default:
13238     return nullptr;
13239   }
13240 }
13241 
13242 namespace {
13243 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
13244 struct NVPTXMmaLdstInfo {
13245   unsigned NumResults;  // Number of elements to load/store
13246   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
13247   unsigned IID_col;
13248   unsigned IID_row;
13249 };
13250 
13251 #define MMA_INTR(geom_op_type, layout) \
13252   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
13253 #define MMA_LDST(n, geom_op_type)                                              \
13254   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
13255 
13256 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
13257   switch (BuiltinID) {
13258   // FP MMA loads
13259   case NVPTX::BI__hmma_m16n16k16_ld_a:
13260     return MMA_LDST(8, m16n16k16_load_a_f16);
13261   case NVPTX::BI__hmma_m16n16k16_ld_b:
13262     return MMA_LDST(8, m16n16k16_load_b_f16);
13263   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13264     return MMA_LDST(4, m16n16k16_load_c_f16);
13265   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13266     return MMA_LDST(8, m16n16k16_load_c_f32);
13267   case NVPTX::BI__hmma_m32n8k16_ld_a:
13268     return MMA_LDST(8, m32n8k16_load_a_f16);
13269   case NVPTX::BI__hmma_m32n8k16_ld_b:
13270     return MMA_LDST(8, m32n8k16_load_b_f16);
13271   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13272     return MMA_LDST(4, m32n8k16_load_c_f16);
13273   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13274     return MMA_LDST(8, m32n8k16_load_c_f32);
13275   case NVPTX::BI__hmma_m8n32k16_ld_a:
13276     return MMA_LDST(8, m8n32k16_load_a_f16);
13277   case NVPTX::BI__hmma_m8n32k16_ld_b:
13278     return MMA_LDST(8, m8n32k16_load_b_f16);
13279   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13280     return MMA_LDST(4, m8n32k16_load_c_f16);
13281   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13282     return MMA_LDST(8, m8n32k16_load_c_f32);
13283 
13284   // Integer MMA loads
13285   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13286     return MMA_LDST(2, m16n16k16_load_a_s8);
13287   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13288     return MMA_LDST(2, m16n16k16_load_a_u8);
13289   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13290     return MMA_LDST(2, m16n16k16_load_b_s8);
13291   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13292     return MMA_LDST(2, m16n16k16_load_b_u8);
13293   case NVPTX::BI__imma_m16n16k16_ld_c:
13294     return MMA_LDST(8, m16n16k16_load_c_s32);
13295   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13296     return MMA_LDST(4, m32n8k16_load_a_s8);
13297   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13298     return MMA_LDST(4, m32n8k16_load_a_u8);
13299   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13300     return MMA_LDST(1, m32n8k16_load_b_s8);
13301   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13302     return MMA_LDST(1, m32n8k16_load_b_u8);
13303   case NVPTX::BI__imma_m32n8k16_ld_c:
13304     return MMA_LDST(8, m32n8k16_load_c_s32);
13305   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13306     return MMA_LDST(1, m8n32k16_load_a_s8);
13307   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13308     return MMA_LDST(1, m8n32k16_load_a_u8);
13309   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13310     return MMA_LDST(4, m8n32k16_load_b_s8);
13311   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13312     return MMA_LDST(4, m8n32k16_load_b_u8);
13313   case NVPTX::BI__imma_m8n32k16_ld_c:
13314     return MMA_LDST(8, m8n32k16_load_c_s32);
13315 
13316   // Sub-integer MMA loads.
13317   // Only row/col layout is supported by A/B fragments.
13318   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13319     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
13320   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13321     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
13322   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13323     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
13324   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13325     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
13326   case NVPTX::BI__imma_m8n8k32_ld_c:
13327     return MMA_LDST(2, m8n8k32_load_c_s32);
13328   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13329     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
13330   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13331     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
13332   case NVPTX::BI__bmma_m8n8k128_ld_c:
13333     return MMA_LDST(2, m8n8k128_load_c_s32);
13334 
13335   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
13336   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
13337   // use fragment C for both loads and stores.
13338   // FP MMA stores.
13339   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13340     return MMA_LDST(4, m16n16k16_store_d_f16);
13341   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13342     return MMA_LDST(8, m16n16k16_store_d_f32);
13343   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13344     return MMA_LDST(4, m32n8k16_store_d_f16);
13345   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13346     return MMA_LDST(8, m32n8k16_store_d_f32);
13347   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13348     return MMA_LDST(4, m8n32k16_store_d_f16);
13349   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13350     return MMA_LDST(8, m8n32k16_store_d_f32);
13351 
13352   // Integer and sub-integer MMA stores.
13353   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
13354   // name, integer loads/stores use LLVM's i32.
13355   case NVPTX::BI__imma_m16n16k16_st_c_i32:
13356     return MMA_LDST(8, m16n16k16_store_d_s32);
13357   case NVPTX::BI__imma_m32n8k16_st_c_i32:
13358     return MMA_LDST(8, m32n8k16_store_d_s32);
13359   case NVPTX::BI__imma_m8n32k16_st_c_i32:
13360     return MMA_LDST(8, m8n32k16_store_d_s32);
13361   case NVPTX::BI__imma_m8n8k32_st_c_i32:
13362     return MMA_LDST(2, m8n8k32_store_d_s32);
13363   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
13364     return MMA_LDST(2, m8n8k128_store_d_s32);
13365 
13366   default:
13367     llvm_unreachable("Unknown MMA builtin");
13368   }
13369 }
13370 #undef MMA_LDST
13371 #undef MMA_INTR
13372 
13373 
13374 struct NVPTXMmaInfo {
13375   unsigned NumEltsA;
13376   unsigned NumEltsB;
13377   unsigned NumEltsC;
13378   unsigned NumEltsD;
13379   std::array<unsigned, 8> Variants;
13380 
13381   unsigned getMMAIntrinsic(int Layout, bool Satf) {
13382     unsigned Index = Layout * 2 + Satf;
13383     if (Index >= Variants.size())
13384       return 0;
13385     return Variants[Index];
13386   }
13387 };
13388 
13389   // Returns an intrinsic that matches Layout and Satf for valid combinations of
13390   // Layout and Satf, 0 otherwise.
13391 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
13392   // clang-format off
13393 #define MMA_VARIANTS(geom, type) {{                                 \
13394       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
13395       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
13396       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13397       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13398       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
13399       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
13400       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
13401       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
13402     }}
13403 // Sub-integer MMA only supports row.col layout.
13404 #define MMA_VARIANTS_I4(geom, type) {{ \
13405       0, \
13406       0, \
13407       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13408       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13409       0, \
13410       0, \
13411       0, \
13412       0  \
13413     }}
13414 // b1 MMA does not support .satfinite.
13415 #define MMA_VARIANTS_B1(geom, type) {{ \
13416       0, \
13417       0, \
13418       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13419       0, \
13420       0, \
13421       0, \
13422       0, \
13423       0  \
13424     }}
13425     // clang-format on
13426     switch (BuiltinID) {
13427     // FP MMA
13428     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
13429     // NumEltsN of return value are ordered as A,B,C,D.
13430     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13431       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
13432     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13433       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
13434     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13435       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
13436     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13437       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
13438     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13439       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
13440     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13441       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
13442     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13443       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
13444     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13445       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
13446     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13447       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
13448     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13449       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
13450     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13451       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
13452     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13453       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
13454 
13455     // Integer MMA
13456     case NVPTX::BI__imma_m16n16k16_mma_s8:
13457       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
13458     case NVPTX::BI__imma_m16n16k16_mma_u8:
13459       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
13460     case NVPTX::BI__imma_m32n8k16_mma_s8:
13461       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
13462     case NVPTX::BI__imma_m32n8k16_mma_u8:
13463       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
13464     case NVPTX::BI__imma_m8n32k16_mma_s8:
13465       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
13466     case NVPTX::BI__imma_m8n32k16_mma_u8:
13467       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
13468 
13469     // Sub-integer MMA
13470     case NVPTX::BI__imma_m8n8k32_mma_s4:
13471       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
13472     case NVPTX::BI__imma_m8n8k32_mma_u4:
13473       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
13474     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
13475       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
13476     default:
13477       llvm_unreachable("Unexpected builtin ID.");
13478     }
13479 #undef MMA_VARIANTS
13480 #undef MMA_VARIANTS_I4
13481 #undef MMA_VARIANTS_B1
13482 }
13483 
13484 } // namespace
13485 
13486 Value *
13487 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
13488   auto MakeLdg = [&](unsigned IntrinsicID) {
13489     Value *Ptr = EmitScalarExpr(E->getArg(0));
13490     clang::CharUnits Align =
13491         getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
13492     return Builder.CreateCall(
13493         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13494                                        Ptr->getType()}),
13495         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
13496   };
13497   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
13498     Value *Ptr = EmitScalarExpr(E->getArg(0));
13499     return Builder.CreateCall(
13500         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13501                                        Ptr->getType()}),
13502         {Ptr, EmitScalarExpr(E->getArg(1))});
13503   };
13504   switch (BuiltinID) {
13505   case NVPTX::BI__nvvm_atom_add_gen_i:
13506   case NVPTX::BI__nvvm_atom_add_gen_l:
13507   case NVPTX::BI__nvvm_atom_add_gen_ll:
13508     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
13509 
13510   case NVPTX::BI__nvvm_atom_sub_gen_i:
13511   case NVPTX::BI__nvvm_atom_sub_gen_l:
13512   case NVPTX::BI__nvvm_atom_sub_gen_ll:
13513     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
13514 
13515   case NVPTX::BI__nvvm_atom_and_gen_i:
13516   case NVPTX::BI__nvvm_atom_and_gen_l:
13517   case NVPTX::BI__nvvm_atom_and_gen_ll:
13518     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
13519 
13520   case NVPTX::BI__nvvm_atom_or_gen_i:
13521   case NVPTX::BI__nvvm_atom_or_gen_l:
13522   case NVPTX::BI__nvvm_atom_or_gen_ll:
13523     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
13524 
13525   case NVPTX::BI__nvvm_atom_xor_gen_i:
13526   case NVPTX::BI__nvvm_atom_xor_gen_l:
13527   case NVPTX::BI__nvvm_atom_xor_gen_ll:
13528     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
13529 
13530   case NVPTX::BI__nvvm_atom_xchg_gen_i:
13531   case NVPTX::BI__nvvm_atom_xchg_gen_l:
13532   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
13533     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
13534 
13535   case NVPTX::BI__nvvm_atom_max_gen_i:
13536   case NVPTX::BI__nvvm_atom_max_gen_l:
13537   case NVPTX::BI__nvvm_atom_max_gen_ll:
13538     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
13539 
13540   case NVPTX::BI__nvvm_atom_max_gen_ui:
13541   case NVPTX::BI__nvvm_atom_max_gen_ul:
13542   case NVPTX::BI__nvvm_atom_max_gen_ull:
13543     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
13544 
13545   case NVPTX::BI__nvvm_atom_min_gen_i:
13546   case NVPTX::BI__nvvm_atom_min_gen_l:
13547   case NVPTX::BI__nvvm_atom_min_gen_ll:
13548     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
13549 
13550   case NVPTX::BI__nvvm_atom_min_gen_ui:
13551   case NVPTX::BI__nvvm_atom_min_gen_ul:
13552   case NVPTX::BI__nvvm_atom_min_gen_ull:
13553     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
13554 
13555   case NVPTX::BI__nvvm_atom_cas_gen_i:
13556   case NVPTX::BI__nvvm_atom_cas_gen_l:
13557   case NVPTX::BI__nvvm_atom_cas_gen_ll:
13558     // __nvvm_atom_cas_gen_* should return the old value rather than the
13559     // success flag.
13560     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
13561 
13562   case NVPTX::BI__nvvm_atom_add_gen_f:
13563   case NVPTX::BI__nvvm_atom_add_gen_d: {
13564     Value *Ptr = EmitScalarExpr(E->getArg(0));
13565     Value *Val = EmitScalarExpr(E->getArg(1));
13566     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
13567                                    AtomicOrdering::SequentiallyConsistent);
13568   }
13569 
13570   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
13571     Value *Ptr = EmitScalarExpr(E->getArg(0));
13572     Value *Val = EmitScalarExpr(E->getArg(1));
13573     Function *FnALI32 =
13574         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
13575     return Builder.CreateCall(FnALI32, {Ptr, Val});
13576   }
13577 
13578   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
13579     Value *Ptr = EmitScalarExpr(E->getArg(0));
13580     Value *Val = EmitScalarExpr(E->getArg(1));
13581     Function *FnALD32 =
13582         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
13583     return Builder.CreateCall(FnALD32, {Ptr, Val});
13584   }
13585 
13586   case NVPTX::BI__nvvm_ldg_c:
13587   case NVPTX::BI__nvvm_ldg_c2:
13588   case NVPTX::BI__nvvm_ldg_c4:
13589   case NVPTX::BI__nvvm_ldg_s:
13590   case NVPTX::BI__nvvm_ldg_s2:
13591   case NVPTX::BI__nvvm_ldg_s4:
13592   case NVPTX::BI__nvvm_ldg_i:
13593   case NVPTX::BI__nvvm_ldg_i2:
13594   case NVPTX::BI__nvvm_ldg_i4:
13595   case NVPTX::BI__nvvm_ldg_l:
13596   case NVPTX::BI__nvvm_ldg_ll:
13597   case NVPTX::BI__nvvm_ldg_ll2:
13598   case NVPTX::BI__nvvm_ldg_uc:
13599   case NVPTX::BI__nvvm_ldg_uc2:
13600   case NVPTX::BI__nvvm_ldg_uc4:
13601   case NVPTX::BI__nvvm_ldg_us:
13602   case NVPTX::BI__nvvm_ldg_us2:
13603   case NVPTX::BI__nvvm_ldg_us4:
13604   case NVPTX::BI__nvvm_ldg_ui:
13605   case NVPTX::BI__nvvm_ldg_ui2:
13606   case NVPTX::BI__nvvm_ldg_ui4:
13607   case NVPTX::BI__nvvm_ldg_ul:
13608   case NVPTX::BI__nvvm_ldg_ull:
13609   case NVPTX::BI__nvvm_ldg_ull2:
13610     // PTX Interoperability section 2.2: "For a vector with an even number of
13611     // elements, its alignment is set to number of elements times the alignment
13612     // of its member: n*alignof(t)."
13613     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
13614   case NVPTX::BI__nvvm_ldg_f:
13615   case NVPTX::BI__nvvm_ldg_f2:
13616   case NVPTX::BI__nvvm_ldg_f4:
13617   case NVPTX::BI__nvvm_ldg_d:
13618   case NVPTX::BI__nvvm_ldg_d2:
13619     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
13620 
13621   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
13622   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
13623   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
13624     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
13625   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
13626   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
13627   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
13628     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
13629   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
13630   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
13631     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
13632   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
13633   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
13634     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
13635   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
13636   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
13637   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
13638     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
13639   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
13640   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
13641   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
13642     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
13643   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
13644   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
13645   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
13646   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
13647   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
13648   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
13649     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
13650   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
13651   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
13652   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
13653   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
13654   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
13655   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
13656     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
13657   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
13658   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
13659   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
13660   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
13661   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
13662   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
13663     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
13664   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
13665   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
13666   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
13667   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
13668   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
13669   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
13670     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
13671   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
13672     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
13673   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
13674     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
13675   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
13676     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
13677   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
13678     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
13679   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
13680   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
13681   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
13682     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
13683   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
13684   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
13685   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
13686     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
13687   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
13688   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
13689   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
13690     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
13691   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
13692   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
13693   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
13694     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
13695   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
13696   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
13697   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
13698     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
13699   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
13700   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
13701   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
13702     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
13703   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
13704   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
13705   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
13706     Value *Ptr = EmitScalarExpr(E->getArg(0));
13707     return Builder.CreateCall(
13708         CGM.getIntrinsic(
13709             Intrinsic::nvvm_atomic_cas_gen_i_cta,
13710             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13711         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13712   }
13713   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
13714   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
13715   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
13716     Value *Ptr = EmitScalarExpr(E->getArg(0));
13717     return Builder.CreateCall(
13718         CGM.getIntrinsic(
13719             Intrinsic::nvvm_atomic_cas_gen_i_sys,
13720             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13721         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13722   }
13723   case NVPTX::BI__nvvm_match_all_sync_i32p:
13724   case NVPTX::BI__nvvm_match_all_sync_i64p: {
13725     Value *Mask = EmitScalarExpr(E->getArg(0));
13726     Value *Val = EmitScalarExpr(E->getArg(1));
13727     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
13728     Value *ResultPair = Builder.CreateCall(
13729         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
13730                              ? Intrinsic::nvvm_match_all_sync_i32p
13731                              : Intrinsic::nvvm_match_all_sync_i64p),
13732         {Mask, Val});
13733     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
13734                                      PredOutPtr.getElementType());
13735     Builder.CreateStore(Pred, PredOutPtr);
13736     return Builder.CreateExtractValue(ResultPair, 0);
13737   }
13738 
13739   // FP MMA loads
13740   case NVPTX::BI__hmma_m16n16k16_ld_a:
13741   case NVPTX::BI__hmma_m16n16k16_ld_b:
13742   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13743   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13744   case NVPTX::BI__hmma_m32n8k16_ld_a:
13745   case NVPTX::BI__hmma_m32n8k16_ld_b:
13746   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13747   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13748   case NVPTX::BI__hmma_m8n32k16_ld_a:
13749   case NVPTX::BI__hmma_m8n32k16_ld_b:
13750   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13751   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13752   // Integer MMA loads.
13753   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13754   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13755   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13756   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13757   case NVPTX::BI__imma_m16n16k16_ld_c:
13758   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13759   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13760   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13761   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13762   case NVPTX::BI__imma_m32n8k16_ld_c:
13763   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13764   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13765   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13766   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13767   case NVPTX::BI__imma_m8n32k16_ld_c:
13768   // Sub-integer MMA loads.
13769   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13770   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13771   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13772   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13773   case NVPTX::BI__imma_m8n8k32_ld_c:
13774   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13775   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13776   case NVPTX::BI__bmma_m8n8k128_ld_c:
13777   {
13778     Address Dst = EmitPointerWithAlignment(E->getArg(0));
13779     Value *Src = EmitScalarExpr(E->getArg(1));
13780     Value *Ldm = EmitScalarExpr(E->getArg(2));
13781     llvm::APSInt isColMajorArg;
13782     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13783       return nullptr;
13784     bool isColMajor = isColMajorArg.getSExtValue();
13785     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13786     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13787     if (IID == 0)
13788       return nullptr;
13789 
13790     Value *Result =
13791         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
13792 
13793     // Save returned values.
13794     assert(II.NumResults);
13795     if (II.NumResults == 1) {
13796       Builder.CreateAlignedStore(Result, Dst.getPointer(),
13797                                  CharUnits::fromQuantity(4));
13798     } else {
13799       for (unsigned i = 0; i < II.NumResults; ++i) {
13800         Builder.CreateAlignedStore(
13801             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
13802                                   Dst.getElementType()),
13803             Builder.CreateGEP(Dst.getPointer(),
13804                               llvm::ConstantInt::get(IntTy, i)),
13805             CharUnits::fromQuantity(4));
13806       }
13807     }
13808     return Result;
13809   }
13810 
13811   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13812   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13813   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13814   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13815   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13816   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13817   case NVPTX::BI__imma_m16n16k16_st_c_i32:
13818   case NVPTX::BI__imma_m32n8k16_st_c_i32:
13819   case NVPTX::BI__imma_m8n32k16_st_c_i32:
13820   case NVPTX::BI__imma_m8n8k32_st_c_i32:
13821   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
13822     Value *Dst = EmitScalarExpr(E->getArg(0));
13823     Address Src = EmitPointerWithAlignment(E->getArg(1));
13824     Value *Ldm = EmitScalarExpr(E->getArg(2));
13825     llvm::APSInt isColMajorArg;
13826     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13827       return nullptr;
13828     bool isColMajor = isColMajorArg.getSExtValue();
13829     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13830     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13831     if (IID == 0)
13832       return nullptr;
13833     Function *Intrinsic =
13834         CGM.getIntrinsic(IID, Dst->getType());
13835     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
13836     SmallVector<Value *, 10> Values = {Dst};
13837     for (unsigned i = 0; i < II.NumResults; ++i) {
13838       Value *V = Builder.CreateAlignedLoad(
13839           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13840           CharUnits::fromQuantity(4));
13841       Values.push_back(Builder.CreateBitCast(V, ParamType));
13842     }
13843     Values.push_back(Ldm);
13844     Value *Result = Builder.CreateCall(Intrinsic, Values);
13845     return Result;
13846   }
13847 
13848   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
13849   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
13850   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13851   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13852   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13853   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13854   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13855   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13856   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13857   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13858   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13859   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13860   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13861   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13862   case NVPTX::BI__imma_m16n16k16_mma_s8:
13863   case NVPTX::BI__imma_m16n16k16_mma_u8:
13864   case NVPTX::BI__imma_m32n8k16_mma_s8:
13865   case NVPTX::BI__imma_m32n8k16_mma_u8:
13866   case NVPTX::BI__imma_m8n32k16_mma_s8:
13867   case NVPTX::BI__imma_m8n32k16_mma_u8:
13868   case NVPTX::BI__imma_m8n8k32_mma_s4:
13869   case NVPTX::BI__imma_m8n8k32_mma_u4:
13870   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
13871     Address Dst = EmitPointerWithAlignment(E->getArg(0));
13872     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
13873     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
13874     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
13875     llvm::APSInt LayoutArg;
13876     if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
13877       return nullptr;
13878     int Layout = LayoutArg.getSExtValue();
13879     if (Layout < 0 || Layout > 3)
13880       return nullptr;
13881     llvm::APSInt SatfArg;
13882     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
13883       SatfArg = 0;  // .b1 does not have satf argument.
13884     else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
13885       return nullptr;
13886     bool Satf = SatfArg.getSExtValue();
13887     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
13888     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
13889     if (IID == 0)  // Unsupported combination of Layout/Satf.
13890       return nullptr;
13891 
13892     SmallVector<Value *, 24> Values;
13893     Function *Intrinsic = CGM.getIntrinsic(IID);
13894     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
13895     // Load A
13896     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
13897       Value *V = Builder.CreateAlignedLoad(
13898           Builder.CreateGEP(SrcA.getPointer(),
13899                             llvm::ConstantInt::get(IntTy, i)),
13900           CharUnits::fromQuantity(4));
13901       Values.push_back(Builder.CreateBitCast(V, AType));
13902     }
13903     // Load B
13904     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
13905     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
13906       Value *V = Builder.CreateAlignedLoad(
13907           Builder.CreateGEP(SrcB.getPointer(),
13908                             llvm::ConstantInt::get(IntTy, i)),
13909           CharUnits::fromQuantity(4));
13910       Values.push_back(Builder.CreateBitCast(V, BType));
13911     }
13912     // Load C
13913     llvm::Type *CType =
13914         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
13915     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
13916       Value *V = Builder.CreateAlignedLoad(
13917           Builder.CreateGEP(SrcC.getPointer(),
13918                             llvm::ConstantInt::get(IntTy, i)),
13919           CharUnits::fromQuantity(4));
13920       Values.push_back(Builder.CreateBitCast(V, CType));
13921     }
13922     Value *Result = Builder.CreateCall(Intrinsic, Values);
13923     llvm::Type *DType = Dst.getElementType();
13924     for (unsigned i = 0; i < MI.NumEltsD; ++i)
13925       Builder.CreateAlignedStore(
13926           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
13927           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13928           CharUnits::fromQuantity(4));
13929     return Result;
13930   }
13931   default:
13932     return nullptr;
13933   }
13934 }
13935 
13936 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
13937                                                    const CallExpr *E) {
13938   switch (BuiltinID) {
13939   case WebAssembly::BI__builtin_wasm_memory_size: {
13940     llvm::Type *ResultType = ConvertType(E->getType());
13941     Value *I = EmitScalarExpr(E->getArg(0));
13942     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
13943     return Builder.CreateCall(Callee, I);
13944   }
13945   case WebAssembly::BI__builtin_wasm_memory_grow: {
13946     llvm::Type *ResultType = ConvertType(E->getType());
13947     Value *Args[] = {
13948       EmitScalarExpr(E->getArg(0)),
13949       EmitScalarExpr(E->getArg(1))
13950     };
13951     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
13952     return Builder.CreateCall(Callee, Args);
13953   }
13954   case WebAssembly::BI__builtin_wasm_memory_init: {
13955     llvm::APSInt SegConst;
13956     if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13957       llvm_unreachable("Constant arg isn't actually constant?");
13958     llvm::APSInt MemConst;
13959     if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
13960       llvm_unreachable("Constant arg isn't actually constant?");
13961     if (!MemConst.isNullValue())
13962       ErrorUnsupported(E, "non-zero memory index");
13963     Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
13964                      llvm::ConstantInt::get(getLLVMContext(), MemConst),
13965                      EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
13966                      EmitScalarExpr(E->getArg(4))};
13967     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
13968     return Builder.CreateCall(Callee, Args);
13969   }
13970   case WebAssembly::BI__builtin_wasm_data_drop: {
13971     llvm::APSInt SegConst;
13972     if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13973       llvm_unreachable("Constant arg isn't actually constant?");
13974     Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
13975     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
13976     return Builder.CreateCall(Callee, {Arg});
13977   }
13978   case WebAssembly::BI__builtin_wasm_tls_size: {
13979     llvm::Type *ResultType = ConvertType(E->getType());
13980     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
13981     return Builder.CreateCall(Callee);
13982   }
13983   case WebAssembly::BI__builtin_wasm_tls_align: {
13984     llvm::Type *ResultType = ConvertType(E->getType());
13985     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
13986     return Builder.CreateCall(Callee);
13987   }
13988   case WebAssembly::BI__builtin_wasm_tls_base: {
13989     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
13990     return Builder.CreateCall(Callee);
13991   }
13992   case WebAssembly::BI__builtin_wasm_throw: {
13993     Value *Tag = EmitScalarExpr(E->getArg(0));
13994     Value *Obj = EmitScalarExpr(E->getArg(1));
13995     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
13996     return Builder.CreateCall(Callee, {Tag, Obj});
13997   }
13998   case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
13999     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
14000     return Builder.CreateCall(Callee);
14001   }
14002   case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
14003     Value *Addr = EmitScalarExpr(E->getArg(0));
14004     Value *Expected = EmitScalarExpr(E->getArg(1));
14005     Value *Timeout = EmitScalarExpr(E->getArg(2));
14006     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
14007     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14008   }
14009   case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
14010     Value *Addr = EmitScalarExpr(E->getArg(0));
14011     Value *Expected = EmitScalarExpr(E->getArg(1));
14012     Value *Timeout = EmitScalarExpr(E->getArg(2));
14013     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
14014     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14015   }
14016   case WebAssembly::BI__builtin_wasm_atomic_notify: {
14017     Value *Addr = EmitScalarExpr(E->getArg(0));
14018     Value *Count = EmitScalarExpr(E->getArg(1));
14019     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
14020     return Builder.CreateCall(Callee, {Addr, Count});
14021   }
14022   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
14023   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
14024   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
14025   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
14026     Value *Src = EmitScalarExpr(E->getArg(0));
14027     llvm::Type *ResT = ConvertType(E->getType());
14028     Function *Callee =
14029         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
14030     return Builder.CreateCall(Callee, {Src});
14031   }
14032   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
14033   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
14034   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
14035   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
14036     Value *Src = EmitScalarExpr(E->getArg(0));
14037     llvm::Type *ResT = ConvertType(E->getType());
14038     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
14039                                         {ResT, Src->getType()});
14040     return Builder.CreateCall(Callee, {Src});
14041   }
14042   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
14043   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
14044   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
14045   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
14046   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
14047   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
14048     Value *Src = EmitScalarExpr(E->getArg(0));
14049     llvm::Type *ResT = ConvertType(E->getType());
14050     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
14051                                      {ResT, Src->getType()});
14052     return Builder.CreateCall(Callee, {Src});
14053   }
14054   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
14055   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
14056   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
14057   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
14058   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
14059   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
14060     Value *Src = EmitScalarExpr(E->getArg(0));
14061     llvm::Type *ResT = ConvertType(E->getType());
14062     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
14063                                      {ResT, Src->getType()});
14064     return Builder.CreateCall(Callee, {Src});
14065   }
14066   case WebAssembly::BI__builtin_wasm_min_f32:
14067   case WebAssembly::BI__builtin_wasm_min_f64:
14068   case WebAssembly::BI__builtin_wasm_min_f32x4:
14069   case WebAssembly::BI__builtin_wasm_min_f64x2: {
14070     Value *LHS = EmitScalarExpr(E->getArg(0));
14071     Value *RHS = EmitScalarExpr(E->getArg(1));
14072     Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
14073                                      ConvertType(E->getType()));
14074     return Builder.CreateCall(Callee, {LHS, RHS});
14075   }
14076   case WebAssembly::BI__builtin_wasm_max_f32:
14077   case WebAssembly::BI__builtin_wasm_max_f64:
14078   case WebAssembly::BI__builtin_wasm_max_f32x4:
14079   case WebAssembly::BI__builtin_wasm_max_f64x2: {
14080     Value *LHS = EmitScalarExpr(E->getArg(0));
14081     Value *RHS = EmitScalarExpr(E->getArg(1));
14082     Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
14083                                      ConvertType(E->getType()));
14084     return Builder.CreateCall(Callee, {LHS, RHS});
14085   }
14086   case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
14087     Value *Src = EmitScalarExpr(E->getArg(0));
14088     Value *Indices = EmitScalarExpr(E->getArg(1));
14089     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
14090     return Builder.CreateCall(Callee, {Src, Indices});
14091   }
14092   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14093   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14094   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14095   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14096   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14097   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14098   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14099   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
14100     llvm::APSInt LaneConst;
14101     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14102       llvm_unreachable("Constant arg isn't actually constant?");
14103     Value *Vec = EmitScalarExpr(E->getArg(0));
14104     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14105     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
14106     switch (BuiltinID) {
14107     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14108     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14109       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
14110     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14111     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14112       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
14113     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14114     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14115     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14116     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
14117       return Extract;
14118     default:
14119       llvm_unreachable("unexpected builtin ID");
14120     }
14121   }
14122   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14123   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
14124   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14125   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14126   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14127   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
14128     llvm::APSInt LaneConst;
14129     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14130       llvm_unreachable("Constant arg isn't actually constant?");
14131     Value *Vec = EmitScalarExpr(E->getArg(0));
14132     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14133     Value *Val = EmitScalarExpr(E->getArg(2));
14134     switch (BuiltinID) {
14135     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14136     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
14137       llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
14138       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
14139       return Builder.CreateInsertElement(Vec, Trunc, Lane);
14140     }
14141     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14142     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14143     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14144     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
14145       return Builder.CreateInsertElement(Vec, Val, Lane);
14146     default:
14147       llvm_unreachable("unexpected builtin ID");
14148     }
14149   }
14150   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14151   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14152   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14153   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14154   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14155   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14156   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14157   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
14158     unsigned IntNo;
14159     switch (BuiltinID) {
14160     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14161     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14162       IntNo = Intrinsic::sadd_sat;
14163       break;
14164     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14165     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14166       IntNo = Intrinsic::uadd_sat;
14167       break;
14168     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14169     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14170       IntNo = Intrinsic::wasm_sub_saturate_signed;
14171       break;
14172     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14173     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
14174       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
14175       break;
14176     default:
14177       llvm_unreachable("unexpected builtin ID");
14178     }
14179     Value *LHS = EmitScalarExpr(E->getArg(0));
14180     Value *RHS = EmitScalarExpr(E->getArg(1));
14181     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
14182     return Builder.CreateCall(Callee, {LHS, RHS});
14183   }
14184   case WebAssembly::BI__builtin_wasm_bitselect: {
14185     Value *V1 = EmitScalarExpr(E->getArg(0));
14186     Value *V2 = EmitScalarExpr(E->getArg(1));
14187     Value *C = EmitScalarExpr(E->getArg(2));
14188     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
14189                                      ConvertType(E->getType()));
14190     return Builder.CreateCall(Callee, {V1, V2, C});
14191   }
14192   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14193   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14194   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14195   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14196   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14197   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14198   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14199   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
14200     unsigned IntNo;
14201     switch (BuiltinID) {
14202     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14203     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14204     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14205     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14206       IntNo = Intrinsic::wasm_anytrue;
14207       break;
14208     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14209     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14210     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14211     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
14212       IntNo = Intrinsic::wasm_alltrue;
14213       break;
14214     default:
14215       llvm_unreachable("unexpected builtin ID");
14216     }
14217     Value *Vec = EmitScalarExpr(E->getArg(0));
14218     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
14219     return Builder.CreateCall(Callee, {Vec});
14220   }
14221   case WebAssembly::BI__builtin_wasm_abs_f32x4:
14222   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
14223     Value *Vec = EmitScalarExpr(E->getArg(0));
14224     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
14225     return Builder.CreateCall(Callee, {Vec});
14226   }
14227   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
14228   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
14229     Value *Vec = EmitScalarExpr(E->getArg(0));
14230     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
14231     return Builder.CreateCall(Callee, {Vec});
14232   }
14233   case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14234   case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14235   case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14236   case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
14237     Value *A = EmitScalarExpr(E->getArg(0));
14238     Value *B = EmitScalarExpr(E->getArg(1));
14239     Value *C = EmitScalarExpr(E->getArg(2));
14240     unsigned IntNo;
14241     switch (BuiltinID) {
14242     case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14243     case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14244       IntNo = Intrinsic::wasm_qfma;
14245       break;
14246     case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14247     case WebAssembly::BI__builtin_wasm_qfms_f64x2:
14248       IntNo = Intrinsic::wasm_qfms;
14249       break;
14250     default:
14251       llvm_unreachable("unexpected builtin ID");
14252     }
14253     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
14254     return Builder.CreateCall(Callee, {A, B, C});
14255   }
14256   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14257   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14258   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14259   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
14260     Value *Low = EmitScalarExpr(E->getArg(0));
14261     Value *High = EmitScalarExpr(E->getArg(1));
14262     unsigned IntNo;
14263     switch (BuiltinID) {
14264     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14265     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14266       IntNo = Intrinsic::wasm_narrow_signed;
14267       break;
14268     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14269     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
14270       IntNo = Intrinsic::wasm_narrow_unsigned;
14271       break;
14272     default:
14273       llvm_unreachable("unexpected builtin ID");
14274     }
14275     Function *Callee =
14276         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
14277     return Builder.CreateCall(Callee, {Low, High});
14278   }
14279   case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14280   case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14281   case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14282   case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14283   case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14284   case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14285   case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14286   case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
14287     Value *Vec = EmitScalarExpr(E->getArg(0));
14288     unsigned IntNo;
14289     switch (BuiltinID) {
14290     case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14291     case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14292       IntNo = Intrinsic::wasm_widen_low_signed;
14293       break;
14294     case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14295     case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14296       IntNo = Intrinsic::wasm_widen_high_signed;
14297       break;
14298     case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14299     case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14300       IntNo = Intrinsic::wasm_widen_low_unsigned;
14301       break;
14302     case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14303     case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
14304       IntNo = Intrinsic::wasm_widen_high_unsigned;
14305       break;
14306     default:
14307       llvm_unreachable("unexpected builtin ID");
14308     }
14309     Function *Callee =
14310         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
14311     return Builder.CreateCall(Callee, Vec);
14312   }
14313   default:
14314     return nullptr;
14315   }
14316 }
14317 
14318 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
14319                                                const CallExpr *E) {
14320   SmallVector<llvm::Value *, 4> Ops;
14321   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14322 
14323   auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
14324     // The base pointer is passed by address, so it needs to be loaded.
14325     Address BP = EmitPointerWithAlignment(E->getArg(0));
14326     BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14327                  BP.getAlignment());
14328     llvm::Value *Base = Builder.CreateLoad(BP);
14329     // Operands are Base, Increment, Modifier, Start.
14330     if (HasImm)
14331       Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14332               EmitScalarExpr(E->getArg(3)) };
14333     else
14334       Ops = { Base, EmitScalarExpr(E->getArg(1)),
14335               EmitScalarExpr(E->getArg(2)) };
14336 
14337     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14338     llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
14339     llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14340                                             NewBase->getType()->getPointerTo());
14341     Address Dest = EmitPointerWithAlignment(E->getArg(0));
14342     // The intrinsic generates two results. The new value for the base pointer
14343     // needs to be stored.
14344     Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14345     return Builder.CreateExtractValue(Result, 0);
14346   };
14347 
14348   auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
14349     // The base pointer is passed by address, so it needs to be loaded.
14350     Address BP = EmitPointerWithAlignment(E->getArg(0));
14351     BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14352                  BP.getAlignment());
14353     llvm::Value *Base = Builder.CreateLoad(BP);
14354     // Operands are Base, Increment, Modifier, Value, Start.
14355     if (HasImm)
14356       Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14357               EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
14358     else
14359       Ops = { Base, EmitScalarExpr(E->getArg(1)),
14360               EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
14361 
14362     llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14363     llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14364                                             NewBase->getType()->getPointerTo());
14365     Address Dest = EmitPointerWithAlignment(E->getArg(0));
14366     // The intrinsic generates one result, which is the new value for the base
14367     // pointer. It needs to be stored.
14368     return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14369   };
14370 
14371   // Handle the conversion of bit-reverse load intrinsics to bit code.
14372   // The intrinsic call after this function only reads from memory and the
14373   // write to memory is dealt by the store instruction.
14374   auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
14375     // The intrinsic generates one result, which is the new value for the base
14376     // pointer. It needs to be returned. The result of the load instruction is
14377     // passed to intrinsic by address, so the value needs to be stored.
14378     llvm::Value *BaseAddress =
14379         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
14380 
14381     // Expressions like &(*pt++) will be incremented per evaluation.
14382     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
14383     // per call.
14384     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
14385     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
14386                        DestAddr.getAlignment());
14387     llvm::Value *DestAddress = DestAddr.getPointer();
14388 
14389     // Operands are Base, Dest, Modifier.
14390     // The intrinsic format in LLVM IR is defined as
14391     // { ValueType, i8* } (i8*, i32).
14392     Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
14393 
14394     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14395     // The value needs to be stored as the variable is passed by reference.
14396     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
14397 
14398     // The store needs to be truncated to fit the destination type.
14399     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
14400     // to be handled with stores of respective destination type.
14401     DestVal = Builder.CreateTrunc(DestVal, DestTy);
14402 
14403     llvm::Value *DestForStore =
14404         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
14405     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
14406     // The updated value of the base pointer is returned.
14407     return Builder.CreateExtractValue(Result, 1);
14408   };
14409 
14410   switch (BuiltinID) {
14411   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
14412   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
14413     Address Dest = EmitPointerWithAlignment(E->getArg(2));
14414     unsigned Size;
14415     if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
14416       Size = 512;
14417       ID = Intrinsic::hexagon_V6_vaddcarry;
14418     } else {
14419       Size = 1024;
14420       ID = Intrinsic::hexagon_V6_vaddcarry_128B;
14421     }
14422     Dest = Builder.CreateBitCast(Dest,
14423         llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14424     LoadInst *QLd = Builder.CreateLoad(Dest);
14425     Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14426     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14427     llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14428     llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14429                                               Vprd->getType()->getPointerTo(0));
14430     Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14431     return Builder.CreateExtractValue(Result, 0);
14432   }
14433   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
14434   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
14435     Address Dest = EmitPointerWithAlignment(E->getArg(2));
14436     unsigned Size;
14437     if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
14438       Size = 512;
14439       ID = Intrinsic::hexagon_V6_vsubcarry;
14440     } else {
14441       Size = 1024;
14442       ID = Intrinsic::hexagon_V6_vsubcarry_128B;
14443     }
14444     Dest = Builder.CreateBitCast(Dest,
14445         llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14446     LoadInst *QLd = Builder.CreateLoad(Dest);
14447     Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14448     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14449     llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14450     llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14451                                               Vprd->getType()->getPointerTo(0));
14452     Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14453     return Builder.CreateExtractValue(Result, 0);
14454   }
14455   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
14456     return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
14457   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
14458     return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci,  /*HasImm*/true);
14459   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
14460     return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
14461   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
14462     return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci,  /*HasImm*/true);
14463   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
14464     return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci,  /*HasImm*/true);
14465   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
14466     return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci,  /*HasImm*/true);
14467   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
14468     return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
14469   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
14470     return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr,  /*HasImm*/false);
14471   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
14472     return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
14473   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
14474     return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr,  /*HasImm*/false);
14475   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
14476     return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr,  /*HasImm*/false);
14477   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
14478     return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr,  /*HasImm*/false);
14479   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
14480     return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
14481   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
14482     return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
14483   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
14484     return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
14485   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
14486     return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
14487   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
14488     return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
14489   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
14490     return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
14491   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
14492     return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
14493   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
14494     return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
14495   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
14496     return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
14497   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
14498     return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
14499   case Hexagon::BI__builtin_brev_ldub:
14500     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
14501   case Hexagon::BI__builtin_brev_ldb:
14502     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
14503   case Hexagon::BI__builtin_brev_lduh:
14504     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
14505   case Hexagon::BI__builtin_brev_ldh:
14506     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
14507   case Hexagon::BI__builtin_brev_ldw:
14508     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
14509   case Hexagon::BI__builtin_brev_ldd:
14510     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
14511   default:
14512     break;
14513   } // switch
14514 
14515   return nullptr;
14516 }
14517