xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGAtomic.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the code for emitting atomic operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCall.h"
14 #include "CGRecordLayout.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/FrontendDiagnostic.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Operator.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 
29 namespace {
30   class AtomicInfo {
31     CodeGenFunction &CGF;
32     QualType AtomicTy;
33     QualType ValueTy;
34     uint64_t AtomicSizeInBits;
35     uint64_t ValueSizeInBits;
36     CharUnits AtomicAlign;
37     CharUnits ValueAlign;
38     TypeEvaluationKind EvaluationKind;
39     bool UseLibcall;
40     LValue LVal;
41     CGBitFieldInfo BFI;
42   public:
43     AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
44         : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
45           EvaluationKind(TEK_Scalar), UseLibcall(true) {
46       assert(!lvalue.isGlobalReg());
47       ASTContext &C = CGF.getContext();
48       if (lvalue.isSimple()) {
49         AtomicTy = lvalue.getType();
50         if (auto *ATy = AtomicTy->getAs<AtomicType>())
51           ValueTy = ATy->getValueType();
52         else
53           ValueTy = AtomicTy;
54         EvaluationKind = CGF.getEvaluationKind(ValueTy);
55 
56         uint64_t ValueAlignInBits;
57         uint64_t AtomicAlignInBits;
58         TypeInfo ValueTI = C.getTypeInfo(ValueTy);
59         ValueSizeInBits = ValueTI.Width;
60         ValueAlignInBits = ValueTI.Align;
61 
62         TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
63         AtomicSizeInBits = AtomicTI.Width;
64         AtomicAlignInBits = AtomicTI.Align;
65 
66         assert(ValueSizeInBits <= AtomicSizeInBits);
67         assert(ValueAlignInBits <= AtomicAlignInBits);
68 
69         AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
70         ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
71         if (lvalue.getAlignment().isZero())
72           lvalue.setAlignment(AtomicAlign);
73 
74         LVal = lvalue;
75       } else if (lvalue.isBitField()) {
76         ValueTy = lvalue.getType();
77         ValueSizeInBits = C.getTypeSize(ValueTy);
78         auto &OrigBFI = lvalue.getBitFieldInfo();
79         auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
80         AtomicSizeInBits = C.toBits(
81             C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
82                 .alignTo(lvalue.getAlignment()));
83         auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer());
84         auto OffsetInChars =
85             (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
86             lvalue.getAlignment();
87         VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
88             VoidPtrAddr, OffsetInChars.getQuantity());
89         auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
90             VoidPtrAddr,
91             CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
92             "atomic_bitfield_base");
93         BFI = OrigBFI;
94         BFI.Offset = Offset;
95         BFI.StorageSize = AtomicSizeInBits;
96         BFI.StorageOffset += OffsetInChars;
97         LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()),
98                                     BFI, lvalue.getType(), lvalue.getBaseInfo(),
99                                     lvalue.getTBAAInfo());
100         AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
101         if (AtomicTy.isNull()) {
102           llvm::APInt Size(
103               /*numBits=*/32,
104               C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
105           AtomicTy =
106               C.getConstantArrayType(C.CharTy, Size, nullptr, ArrayType::Normal,
107                                      /*IndexTypeQuals=*/0);
108         }
109         AtomicAlign = ValueAlign = lvalue.getAlignment();
110       } else if (lvalue.isVectorElt()) {
111         ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType();
112         ValueSizeInBits = C.getTypeSize(ValueTy);
113         AtomicTy = lvalue.getType();
114         AtomicSizeInBits = C.getTypeSize(AtomicTy);
115         AtomicAlign = ValueAlign = lvalue.getAlignment();
116         LVal = lvalue;
117       } else {
118         assert(lvalue.isExtVectorElt());
119         ValueTy = lvalue.getType();
120         ValueSizeInBits = C.getTypeSize(ValueTy);
121         AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
122             lvalue.getType(), lvalue.getExtVectorAddress()
123                                   .getElementType()->getVectorNumElements());
124         AtomicSizeInBits = C.getTypeSize(AtomicTy);
125         AtomicAlign = ValueAlign = lvalue.getAlignment();
126         LVal = lvalue;
127       }
128       UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
129           AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
130     }
131 
132     QualType getAtomicType() const { return AtomicTy; }
133     QualType getValueType() const { return ValueTy; }
134     CharUnits getAtomicAlignment() const { return AtomicAlign; }
135     uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
136     uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
137     TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
138     bool shouldUseLibcall() const { return UseLibcall; }
139     const LValue &getAtomicLValue() const { return LVal; }
140     llvm::Value *getAtomicPointer() const {
141       if (LVal.isSimple())
142         return LVal.getPointer(CGF);
143       else if (LVal.isBitField())
144         return LVal.getBitFieldPointer();
145       else if (LVal.isVectorElt())
146         return LVal.getVectorPointer();
147       assert(LVal.isExtVectorElt());
148       return LVal.getExtVectorPointer();
149     }
150     Address getAtomicAddress() const {
151       return Address(getAtomicPointer(), getAtomicAlignment());
152     }
153 
154     Address getAtomicAddressAsAtomicIntPointer() const {
155       return emitCastToAtomicIntPointer(getAtomicAddress());
156     }
157 
158     /// Is the atomic size larger than the underlying value type?
159     ///
160     /// Note that the absence of padding does not mean that atomic
161     /// objects are completely interchangeable with non-atomic
162     /// objects: we might have promoted the alignment of a type
163     /// without making it bigger.
164     bool hasPadding() const {
165       return (ValueSizeInBits != AtomicSizeInBits);
166     }
167 
168     bool emitMemSetZeroIfNecessary() const;
169 
170     llvm::Value *getAtomicSizeValue() const {
171       CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
172       return CGF.CGM.getSize(size);
173     }
174 
175     /// Cast the given pointer to an integer pointer suitable for atomic
176     /// operations if the source.
177     Address emitCastToAtomicIntPointer(Address Addr) const;
178 
179     /// If Addr is compatible with the iN that will be used for an atomic
180     /// operation, bitcast it. Otherwise, create a temporary that is suitable
181     /// and copy the value across.
182     Address convertToAtomicIntPointer(Address Addr) const;
183 
184     /// Turn an atomic-layout object into an r-value.
185     RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot,
186                                      SourceLocation loc, bool AsValue) const;
187 
188     /// Converts a rvalue to integer value.
189     llvm::Value *convertRValueToInt(RValue RVal) const;
190 
191     RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
192                                      AggValueSlot ResultSlot,
193                                      SourceLocation Loc, bool AsValue) const;
194 
195     /// Copy an atomic r-value into atomic-layout memory.
196     void emitCopyIntoMemory(RValue rvalue) const;
197 
198     /// Project an l-value down to the value field.
199     LValue projectValue() const {
200       assert(LVal.isSimple());
201       Address addr = getAtomicAddress();
202       if (hasPadding())
203         addr = CGF.Builder.CreateStructGEP(addr, 0);
204 
205       return LValue::MakeAddr(addr, getValueType(), CGF.getContext(),
206                               LVal.getBaseInfo(), LVal.getTBAAInfo());
207     }
208 
209     /// Emits atomic load.
210     /// \returns Loaded value.
211     RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
212                           bool AsValue, llvm::AtomicOrdering AO,
213                           bool IsVolatile);
214 
215     /// Emits atomic compare-and-exchange sequence.
216     /// \param Expected Expected value.
217     /// \param Desired Desired value.
218     /// \param Success Atomic ordering for success operation.
219     /// \param Failure Atomic ordering for failed operation.
220     /// \param IsWeak true if atomic operation is weak, false otherwise.
221     /// \returns Pair of values: previous value from storage (value type) and
222     /// boolean flag (i1 type) with true if success and false otherwise.
223     std::pair<RValue, llvm::Value *>
224     EmitAtomicCompareExchange(RValue Expected, RValue Desired,
225                               llvm::AtomicOrdering Success =
226                                   llvm::AtomicOrdering::SequentiallyConsistent,
227                               llvm::AtomicOrdering Failure =
228                                   llvm::AtomicOrdering::SequentiallyConsistent,
229                               bool IsWeak = false);
230 
231     /// Emits atomic update.
232     /// \param AO Atomic ordering.
233     /// \param UpdateOp Update operation for the current lvalue.
234     void EmitAtomicUpdate(llvm::AtomicOrdering AO,
235                           const llvm::function_ref<RValue(RValue)> &UpdateOp,
236                           bool IsVolatile);
237     /// Emits atomic update.
238     /// \param AO Atomic ordering.
239     void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
240                           bool IsVolatile);
241 
242     /// Materialize an atomic r-value in atomic-layout memory.
243     Address materializeRValue(RValue rvalue) const;
244 
245     /// Creates temp alloca for intermediate operations on atomic value.
246     Address CreateTempAlloca() const;
247   private:
248     bool requiresMemSetZero(llvm::Type *type) const;
249 
250 
251     /// Emits atomic load as a libcall.
252     void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
253                                llvm::AtomicOrdering AO, bool IsVolatile);
254     /// Emits atomic load as LLVM instruction.
255     llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
256     /// Emits atomic compare-and-exchange op as a libcall.
257     llvm::Value *EmitAtomicCompareExchangeLibcall(
258         llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
259         llvm::AtomicOrdering Success =
260             llvm::AtomicOrdering::SequentiallyConsistent,
261         llvm::AtomicOrdering Failure =
262             llvm::AtomicOrdering::SequentiallyConsistent);
263     /// Emits atomic compare-and-exchange op as LLVM instruction.
264     std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
265         llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
266         llvm::AtomicOrdering Success =
267             llvm::AtomicOrdering::SequentiallyConsistent,
268         llvm::AtomicOrdering Failure =
269             llvm::AtomicOrdering::SequentiallyConsistent,
270         bool IsWeak = false);
271     /// Emit atomic update as libcalls.
272     void
273     EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
274                             const llvm::function_ref<RValue(RValue)> &UpdateOp,
275                             bool IsVolatile);
276     /// Emit atomic update as LLVM instructions.
277     void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
278                             const llvm::function_ref<RValue(RValue)> &UpdateOp,
279                             bool IsVolatile);
280     /// Emit atomic update as libcalls.
281     void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
282                                  bool IsVolatile);
283     /// Emit atomic update as LLVM instructions.
284     void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
285                             bool IsVolatile);
286   };
287 }
288 
289 Address AtomicInfo::CreateTempAlloca() const {
290   Address TempAlloca = CGF.CreateMemTemp(
291       (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
292                                                                 : AtomicTy,
293       getAtomicAlignment(),
294       "atomic-temp");
295   // Cast to pointer to value type for bitfields.
296   if (LVal.isBitField())
297     return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
298         TempAlloca, getAtomicAddress().getType());
299   return TempAlloca;
300 }
301 
302 static RValue emitAtomicLibcall(CodeGenFunction &CGF,
303                                 StringRef fnName,
304                                 QualType resultType,
305                                 CallArgList &args) {
306   const CGFunctionInfo &fnInfo =
307     CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args);
308   llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
309   llvm::FunctionCallee fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
310   auto callee = CGCallee::forDirect(fn);
311   return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args);
312 }
313 
314 /// Does a store of the given IR type modify the full expected width?
315 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
316                            uint64_t expectedSize) {
317   return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
318 }
319 
320 /// Does the atomic type require memsetting to zero before initialization?
321 ///
322 /// The IR type is provided as a way of making certain queries faster.
323 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
324   // If the atomic type has size padding, we definitely need a memset.
325   if (hasPadding()) return true;
326 
327   // Otherwise, do some simple heuristics to try to avoid it:
328   switch (getEvaluationKind()) {
329   // For scalars and complexes, check whether the store size of the
330   // type uses the full size.
331   case TEK_Scalar:
332     return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
333   case TEK_Complex:
334     return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
335                            AtomicSizeInBits / 2);
336 
337   // Padding in structs has an undefined bit pattern.  User beware.
338   case TEK_Aggregate:
339     return false;
340   }
341   llvm_unreachable("bad evaluation kind");
342 }
343 
344 bool AtomicInfo::emitMemSetZeroIfNecessary() const {
345   assert(LVal.isSimple());
346   llvm::Value *addr = LVal.getPointer(CGF);
347   if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
348     return false;
349 
350   CGF.Builder.CreateMemSet(
351       addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
352       CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
353       LVal.getAlignment().getAsAlign());
354   return true;
355 }
356 
357 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
358                               Address Dest, Address Ptr,
359                               Address Val1, Address Val2,
360                               uint64_t Size,
361                               llvm::AtomicOrdering SuccessOrder,
362                               llvm::AtomicOrdering FailureOrder,
363                               llvm::SyncScope::ID Scope) {
364   // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
365   llvm::Value *Expected = CGF.Builder.CreateLoad(Val1);
366   llvm::Value *Desired = CGF.Builder.CreateLoad(Val2);
367 
368   llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
369       Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder,
370       Scope);
371   Pair->setVolatile(E->isVolatile());
372   Pair->setWeak(IsWeak);
373 
374   // Cmp holds the result of the compare-exchange operation: true on success,
375   // false on failure.
376   llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
377   llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
378 
379   // This basic block is used to hold the store instruction if the operation
380   // failed.
381   llvm::BasicBlock *StoreExpectedBB =
382       CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
383 
384   // This basic block is the exit point of the operation, we should end up
385   // here regardless of whether or not the operation succeeded.
386   llvm::BasicBlock *ContinueBB =
387       CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
388 
389   // Update Expected if Expected isn't equal to Old, otherwise branch to the
390   // exit point.
391   CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
392 
393   CGF.Builder.SetInsertPoint(StoreExpectedBB);
394   // Update the memory at Expected with Old's value.
395   CGF.Builder.CreateStore(Old, Val1);
396   // Finally, branch to the exit point.
397   CGF.Builder.CreateBr(ContinueBB);
398 
399   CGF.Builder.SetInsertPoint(ContinueBB);
400   // Update the memory at Dest with Cmp's value.
401   CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
402 }
403 
404 /// Given an ordering required on success, emit all possible cmpxchg
405 /// instructions to cope with the provided (but possibly only dynamically known)
406 /// FailureOrder.
407 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
408                                         bool IsWeak, Address Dest, Address Ptr,
409                                         Address Val1, Address Val2,
410                                         llvm::Value *FailureOrderVal,
411                                         uint64_t Size,
412                                         llvm::AtomicOrdering SuccessOrder,
413                                         llvm::SyncScope::ID Scope) {
414   llvm::AtomicOrdering FailureOrder;
415   if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
416     auto FOS = FO->getSExtValue();
417     if (!llvm::isValidAtomicOrderingCABI(FOS))
418       FailureOrder = llvm::AtomicOrdering::Monotonic;
419     else
420       switch ((llvm::AtomicOrderingCABI)FOS) {
421       case llvm::AtomicOrderingCABI::relaxed:
422       case llvm::AtomicOrderingCABI::release:
423       case llvm::AtomicOrderingCABI::acq_rel:
424         FailureOrder = llvm::AtomicOrdering::Monotonic;
425         break;
426       case llvm::AtomicOrderingCABI::consume:
427       case llvm::AtomicOrderingCABI::acquire:
428         FailureOrder = llvm::AtomicOrdering::Acquire;
429         break;
430       case llvm::AtomicOrderingCABI::seq_cst:
431         FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent;
432         break;
433       }
434     if (isStrongerThan(FailureOrder, SuccessOrder)) {
435       // Don't assert on undefined behavior "failure argument shall be no
436       // stronger than the success argument".
437       FailureOrder =
438           llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
439     }
440     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder,
441                       FailureOrder, Scope);
442     return;
443   }
444 
445   // Create all the relevant BB's
446   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
447                    *SeqCstBB = nullptr;
448   MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
449   if (SuccessOrder != llvm::AtomicOrdering::Monotonic &&
450       SuccessOrder != llvm::AtomicOrdering::Release)
451     AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
452   if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent)
453     SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
454 
455   llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
456 
457   llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
458 
459   // Emit all the different atomics
460 
461   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
462   // doesn't matter unless someone is crazy enough to use something that
463   // doesn't fold to a constant for the ordering.
464   CGF.Builder.SetInsertPoint(MonotonicBB);
465   emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
466                     Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope);
467   CGF.Builder.CreateBr(ContBB);
468 
469   if (AcquireBB) {
470     CGF.Builder.SetInsertPoint(AcquireBB);
471     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
472                       Size, SuccessOrder, llvm::AtomicOrdering::Acquire, Scope);
473     CGF.Builder.CreateBr(ContBB);
474     SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
475                 AcquireBB);
476     SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
477                 AcquireBB);
478   }
479   if (SeqCstBB) {
480     CGF.Builder.SetInsertPoint(SeqCstBB);
481     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder,
482                       llvm::AtomicOrdering::SequentiallyConsistent, Scope);
483     CGF.Builder.CreateBr(ContBB);
484     SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
485                 SeqCstBB);
486   }
487 
488   CGF.Builder.SetInsertPoint(ContBB);
489 }
490 
491 /// Duplicate the atomic min/max operation in conventional IR for the builtin
492 /// variants that return the new rather than the original value.
493 static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder,
494                                          AtomicExpr::AtomicOp Op,
495                                          bool IsSigned,
496                                          llvm::Value *OldVal,
497                                          llvm::Value *RHS) {
498   llvm::CmpInst::Predicate Pred;
499   switch (Op) {
500   default:
501     llvm_unreachable("Unexpected min/max operation");
502   case AtomicExpr::AO__atomic_max_fetch:
503     Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT;
504     break;
505   case AtomicExpr::AO__atomic_min_fetch:
506     Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT;
507     break;
508   }
509   llvm::Value *Cmp = Builder.CreateICmp(Pred, OldVal, RHS, "tst");
510   return Builder.CreateSelect(Cmp, OldVal, RHS, "newval");
511 }
512 
513 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest,
514                          Address Ptr, Address Val1, Address Val2,
515                          llvm::Value *IsWeak, llvm::Value *FailureOrder,
516                          uint64_t Size, llvm::AtomicOrdering Order,
517                          llvm::SyncScope::ID Scope) {
518   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
519   bool PostOpMinMax = false;
520   unsigned PostOp = 0;
521 
522   switch (E->getOp()) {
523   case AtomicExpr::AO__c11_atomic_init:
524   case AtomicExpr::AO__opencl_atomic_init:
525     llvm_unreachable("Already handled!");
526 
527   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
528   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
529     emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
530                                 FailureOrder, Size, Order, Scope);
531     return;
532   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
533   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
534     emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
535                                 FailureOrder, Size, Order, Scope);
536     return;
537   case AtomicExpr::AO__atomic_compare_exchange:
538   case AtomicExpr::AO__atomic_compare_exchange_n: {
539     if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
540       emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
541                                   Val1, Val2, FailureOrder, Size, Order, Scope);
542     } else {
543       // Create all the relevant BB's
544       llvm::BasicBlock *StrongBB =
545           CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
546       llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
547       llvm::BasicBlock *ContBB =
548           CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
549 
550       llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
551       SI->addCase(CGF.Builder.getInt1(false), StrongBB);
552 
553       CGF.Builder.SetInsertPoint(StrongBB);
554       emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
555                                   FailureOrder, Size, Order, Scope);
556       CGF.Builder.CreateBr(ContBB);
557 
558       CGF.Builder.SetInsertPoint(WeakBB);
559       emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
560                                   FailureOrder, Size, Order, Scope);
561       CGF.Builder.CreateBr(ContBB);
562 
563       CGF.Builder.SetInsertPoint(ContBB);
564     }
565     return;
566   }
567   case AtomicExpr::AO__c11_atomic_load:
568   case AtomicExpr::AO__opencl_atomic_load:
569   case AtomicExpr::AO__atomic_load_n:
570   case AtomicExpr::AO__atomic_load: {
571     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
572     Load->setAtomic(Order, Scope);
573     Load->setVolatile(E->isVolatile());
574     CGF.Builder.CreateStore(Load, Dest);
575     return;
576   }
577 
578   case AtomicExpr::AO__c11_atomic_store:
579   case AtomicExpr::AO__opencl_atomic_store:
580   case AtomicExpr::AO__atomic_store:
581   case AtomicExpr::AO__atomic_store_n: {
582     llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
583     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
584     Store->setAtomic(Order, Scope);
585     Store->setVolatile(E->isVolatile());
586     return;
587   }
588 
589   case AtomicExpr::AO__c11_atomic_exchange:
590   case AtomicExpr::AO__opencl_atomic_exchange:
591   case AtomicExpr::AO__atomic_exchange_n:
592   case AtomicExpr::AO__atomic_exchange:
593     Op = llvm::AtomicRMWInst::Xchg;
594     break;
595 
596   case AtomicExpr::AO__atomic_add_fetch:
597     PostOp = llvm::Instruction::Add;
598     LLVM_FALLTHROUGH;
599   case AtomicExpr::AO__c11_atomic_fetch_add:
600   case AtomicExpr::AO__opencl_atomic_fetch_add:
601   case AtomicExpr::AO__atomic_fetch_add:
602     Op = llvm::AtomicRMWInst::Add;
603     break;
604 
605   case AtomicExpr::AO__atomic_sub_fetch:
606     PostOp = llvm::Instruction::Sub;
607     LLVM_FALLTHROUGH;
608   case AtomicExpr::AO__c11_atomic_fetch_sub:
609   case AtomicExpr::AO__opencl_atomic_fetch_sub:
610   case AtomicExpr::AO__atomic_fetch_sub:
611     Op = llvm::AtomicRMWInst::Sub;
612     break;
613 
614   case AtomicExpr::AO__atomic_min_fetch:
615     PostOpMinMax = true;
616     LLVM_FALLTHROUGH;
617   case AtomicExpr::AO__c11_atomic_fetch_min:
618   case AtomicExpr::AO__opencl_atomic_fetch_min:
619   case AtomicExpr::AO__atomic_fetch_min:
620     Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Min
621                                                   : llvm::AtomicRMWInst::UMin;
622     break;
623 
624   case AtomicExpr::AO__atomic_max_fetch:
625     PostOpMinMax = true;
626     LLVM_FALLTHROUGH;
627   case AtomicExpr::AO__c11_atomic_fetch_max:
628   case AtomicExpr::AO__opencl_atomic_fetch_max:
629   case AtomicExpr::AO__atomic_fetch_max:
630     Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Max
631                                                   : llvm::AtomicRMWInst::UMax;
632     break;
633 
634   case AtomicExpr::AO__atomic_and_fetch:
635     PostOp = llvm::Instruction::And;
636     LLVM_FALLTHROUGH;
637   case AtomicExpr::AO__c11_atomic_fetch_and:
638   case AtomicExpr::AO__opencl_atomic_fetch_and:
639   case AtomicExpr::AO__atomic_fetch_and:
640     Op = llvm::AtomicRMWInst::And;
641     break;
642 
643   case AtomicExpr::AO__atomic_or_fetch:
644     PostOp = llvm::Instruction::Or;
645     LLVM_FALLTHROUGH;
646   case AtomicExpr::AO__c11_atomic_fetch_or:
647   case AtomicExpr::AO__opencl_atomic_fetch_or:
648   case AtomicExpr::AO__atomic_fetch_or:
649     Op = llvm::AtomicRMWInst::Or;
650     break;
651 
652   case AtomicExpr::AO__atomic_xor_fetch:
653     PostOp = llvm::Instruction::Xor;
654     LLVM_FALLTHROUGH;
655   case AtomicExpr::AO__c11_atomic_fetch_xor:
656   case AtomicExpr::AO__opencl_atomic_fetch_xor:
657   case AtomicExpr::AO__atomic_fetch_xor:
658     Op = llvm::AtomicRMWInst::Xor;
659     break;
660 
661   case AtomicExpr::AO__atomic_nand_fetch:
662     PostOp = llvm::Instruction::And; // the NOT is special cased below
663     LLVM_FALLTHROUGH;
664   case AtomicExpr::AO__atomic_fetch_nand:
665     Op = llvm::AtomicRMWInst::Nand;
666     break;
667   }
668 
669   llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
670   llvm::AtomicRMWInst *RMWI =
671       CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order, Scope);
672   RMWI->setVolatile(E->isVolatile());
673 
674   // For __atomic_*_fetch operations, perform the operation again to
675   // determine the value which was written.
676   llvm::Value *Result = RMWI;
677   if (PostOpMinMax)
678     Result = EmitPostAtomicMinMax(CGF.Builder, E->getOp(),
679                                   E->getValueType()->isSignedIntegerType(),
680                                   RMWI, LoadVal1);
681   else if (PostOp)
682     Result = CGF.Builder.CreateBinOp((llvm::Instruction::BinaryOps)PostOp, RMWI,
683                                      LoadVal1);
684   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
685     Result = CGF.Builder.CreateNot(Result);
686   CGF.Builder.CreateStore(Result, Dest);
687 }
688 
689 // This function emits any expression (scalar, complex, or aggregate)
690 // into a temporary alloca.
691 static Address
692 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
693   Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
694   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
695                        /*Init*/ true);
696   return DeclPtr;
697 }
698 
699 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest,
700                          Address Ptr, Address Val1, Address Val2,
701                          llvm::Value *IsWeak, llvm::Value *FailureOrder,
702                          uint64_t Size, llvm::AtomicOrdering Order,
703                          llvm::Value *Scope) {
704   auto ScopeModel = Expr->getScopeModel();
705 
706   // LLVM atomic instructions always have synch scope. If clang atomic
707   // expression has no scope operand, use default LLVM synch scope.
708   if (!ScopeModel) {
709     EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size,
710                  Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID(""));
711     return;
712   }
713 
714   // Handle constant scope.
715   if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) {
716     auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID(
717         CGF.CGM.getLangOpts(), ScopeModel->map(SC->getZExtValue()),
718         Order, CGF.CGM.getLLVMContext());
719     EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size,
720                  Order, SCID);
721     return;
722   }
723 
724   // Handle non-constant scope.
725   auto &Builder = CGF.Builder;
726   auto Scopes = ScopeModel->getRuntimeValues();
727   llvm::DenseMap<unsigned, llvm::BasicBlock *> BB;
728   for (auto S : Scopes)
729     BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn);
730 
731   llvm::BasicBlock *ContBB =
732       CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn);
733 
734   auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false);
735   // If unsupported synch scope is encountered at run time, assume a fallback
736   // synch scope value.
737   auto FallBack = ScopeModel->getFallBackValue();
738   llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]);
739   for (auto S : Scopes) {
740     auto *B = BB[S];
741     if (S != FallBack)
742       SI->addCase(Builder.getInt32(S), B);
743 
744     Builder.SetInsertPoint(B);
745     EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size,
746                  Order,
747                  CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(),
748                                                          ScopeModel->map(S),
749                                                          Order,
750                                                          CGF.getLLVMContext()));
751     Builder.CreateBr(ContBB);
752   }
753 
754   Builder.SetInsertPoint(ContBB);
755 }
756 
757 static void
758 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
759                   bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
760                   SourceLocation Loc, CharUnits SizeInChars) {
761   if (UseOptimizedLibcall) {
762     // Load value and pass it to the function directly.
763     CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy);
764     int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
765     ValTy =
766         CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
767     llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
768                                                 SizeInBits)->getPointerTo();
769     Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align);
770     Val = CGF.EmitLoadOfScalar(Ptr, false,
771                                CGF.getContext().getPointerType(ValTy),
772                                Loc);
773     // Coerce the value into an appropriately sized integer type.
774     Args.add(RValue::get(Val), ValTy);
775   } else {
776     // Non-optimized functions always take a reference.
777     Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
778                          CGF.getContext().VoidPtrTy);
779   }
780 }
781 
782 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
783   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
784   QualType MemTy = AtomicTy;
785   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
786     MemTy = AT->getValueType();
787   llvm::Value *IsWeak = nullptr, *OrderFail = nullptr;
788 
789   Address Val1 = Address::invalid();
790   Address Val2 = Address::invalid();
791   Address Dest = Address::invalid();
792   Address Ptr = EmitPointerWithAlignment(E->getPtr());
793 
794   if (E->getOp() == AtomicExpr::AO__c11_atomic_init ||
795       E->getOp() == AtomicExpr::AO__opencl_atomic_init) {
796     LValue lvalue = MakeAddrLValue(Ptr, AtomicTy);
797     EmitAtomicInit(E->getVal1(), lvalue);
798     return RValue::get(nullptr);
799   }
800 
801   CharUnits sizeChars, alignChars;
802   std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy);
803   uint64_t Size = sizeChars.getQuantity();
804   unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth();
805 
806   bool Oversized = getContext().toBits(sizeChars) > MaxInlineWidthInBits;
807   bool Misaligned = (Ptr.getAlignment() % sizeChars) != 0;
808   bool UseLibcall = Misaligned | Oversized;
809 
810   if (UseLibcall) {
811     CGM.getDiags().Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned)
812         << !Oversized;
813   }
814 
815   llvm::Value *Order = EmitScalarExpr(E->getOrder());
816   llvm::Value *Scope =
817       E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr;
818 
819   switch (E->getOp()) {
820   case AtomicExpr::AO__c11_atomic_init:
821   case AtomicExpr::AO__opencl_atomic_init:
822     llvm_unreachable("Already handled above with EmitAtomicInit!");
823 
824   case AtomicExpr::AO__c11_atomic_load:
825   case AtomicExpr::AO__opencl_atomic_load:
826   case AtomicExpr::AO__atomic_load_n:
827     break;
828 
829   case AtomicExpr::AO__atomic_load:
830     Dest = EmitPointerWithAlignment(E->getVal1());
831     break;
832 
833   case AtomicExpr::AO__atomic_store:
834     Val1 = EmitPointerWithAlignment(E->getVal1());
835     break;
836 
837   case AtomicExpr::AO__atomic_exchange:
838     Val1 = EmitPointerWithAlignment(E->getVal1());
839     Dest = EmitPointerWithAlignment(E->getVal2());
840     break;
841 
842   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
843   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
844   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
845   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
846   case AtomicExpr::AO__atomic_compare_exchange_n:
847   case AtomicExpr::AO__atomic_compare_exchange:
848     Val1 = EmitPointerWithAlignment(E->getVal1());
849     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
850       Val2 = EmitPointerWithAlignment(E->getVal2());
851     else
852       Val2 = EmitValToTemp(*this, E->getVal2());
853     OrderFail = EmitScalarExpr(E->getOrderFail());
854     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n ||
855         E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
856       IsWeak = EmitScalarExpr(E->getWeak());
857     break;
858 
859   case AtomicExpr::AO__c11_atomic_fetch_add:
860   case AtomicExpr::AO__c11_atomic_fetch_sub:
861   case AtomicExpr::AO__opencl_atomic_fetch_add:
862   case AtomicExpr::AO__opencl_atomic_fetch_sub:
863     if (MemTy->isPointerType()) {
864       // For pointer arithmetic, we're required to do a bit of math:
865       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
866       // ... but only for the C11 builtins. The GNU builtins expect the
867       // user to multiply by sizeof(T).
868       QualType Val1Ty = E->getVal1()->getType();
869       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
870       CharUnits PointeeIncAmt =
871           getContext().getTypeSizeInChars(MemTy->getPointeeType());
872       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
873       auto Temp = CreateMemTemp(Val1Ty, ".atomictmp");
874       Val1 = Temp;
875       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty));
876       break;
877     }
878       LLVM_FALLTHROUGH;
879   case AtomicExpr::AO__atomic_fetch_add:
880   case AtomicExpr::AO__atomic_fetch_sub:
881   case AtomicExpr::AO__atomic_add_fetch:
882   case AtomicExpr::AO__atomic_sub_fetch:
883   case AtomicExpr::AO__c11_atomic_store:
884   case AtomicExpr::AO__c11_atomic_exchange:
885   case AtomicExpr::AO__opencl_atomic_store:
886   case AtomicExpr::AO__opencl_atomic_exchange:
887   case AtomicExpr::AO__atomic_store_n:
888   case AtomicExpr::AO__atomic_exchange_n:
889   case AtomicExpr::AO__c11_atomic_fetch_and:
890   case AtomicExpr::AO__c11_atomic_fetch_or:
891   case AtomicExpr::AO__c11_atomic_fetch_xor:
892   case AtomicExpr::AO__c11_atomic_fetch_max:
893   case AtomicExpr::AO__c11_atomic_fetch_min:
894   case AtomicExpr::AO__opencl_atomic_fetch_and:
895   case AtomicExpr::AO__opencl_atomic_fetch_or:
896   case AtomicExpr::AO__opencl_atomic_fetch_xor:
897   case AtomicExpr::AO__opencl_atomic_fetch_min:
898   case AtomicExpr::AO__opencl_atomic_fetch_max:
899   case AtomicExpr::AO__atomic_fetch_and:
900   case AtomicExpr::AO__atomic_fetch_or:
901   case AtomicExpr::AO__atomic_fetch_xor:
902   case AtomicExpr::AO__atomic_fetch_nand:
903   case AtomicExpr::AO__atomic_and_fetch:
904   case AtomicExpr::AO__atomic_or_fetch:
905   case AtomicExpr::AO__atomic_xor_fetch:
906   case AtomicExpr::AO__atomic_nand_fetch:
907   case AtomicExpr::AO__atomic_max_fetch:
908   case AtomicExpr::AO__atomic_min_fetch:
909   case AtomicExpr::AO__atomic_fetch_max:
910   case AtomicExpr::AO__atomic_fetch_min:
911     Val1 = EmitValToTemp(*this, E->getVal1());
912     break;
913   }
914 
915   QualType RValTy = E->getType().getUnqualifiedType();
916 
917   // The inlined atomics only function on iN types, where N is a power of 2. We
918   // need to make sure (via temporaries if necessary) that all incoming values
919   // are compatible.
920   LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy);
921   AtomicInfo Atomics(*this, AtomicVal);
922 
923   Ptr = Atomics.emitCastToAtomicIntPointer(Ptr);
924   if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1);
925   if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2);
926   if (Dest.isValid())
927     Dest = Atomics.emitCastToAtomicIntPointer(Dest);
928   else if (E->isCmpXChg())
929     Dest = CreateMemTemp(RValTy, "cmpxchg.bool");
930   else if (!RValTy->isVoidType())
931     Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca());
932 
933   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
934   if (UseLibcall) {
935     bool UseOptimizedLibcall = false;
936     switch (E->getOp()) {
937     case AtomicExpr::AO__c11_atomic_init:
938     case AtomicExpr::AO__opencl_atomic_init:
939       llvm_unreachable("Already handled above with EmitAtomicInit!");
940 
941     case AtomicExpr::AO__c11_atomic_fetch_add:
942     case AtomicExpr::AO__opencl_atomic_fetch_add:
943     case AtomicExpr::AO__atomic_fetch_add:
944     case AtomicExpr::AO__c11_atomic_fetch_and:
945     case AtomicExpr::AO__opencl_atomic_fetch_and:
946     case AtomicExpr::AO__atomic_fetch_and:
947     case AtomicExpr::AO__c11_atomic_fetch_or:
948     case AtomicExpr::AO__opencl_atomic_fetch_or:
949     case AtomicExpr::AO__atomic_fetch_or:
950     case AtomicExpr::AO__atomic_fetch_nand:
951     case AtomicExpr::AO__c11_atomic_fetch_sub:
952     case AtomicExpr::AO__opencl_atomic_fetch_sub:
953     case AtomicExpr::AO__atomic_fetch_sub:
954     case AtomicExpr::AO__c11_atomic_fetch_xor:
955     case AtomicExpr::AO__opencl_atomic_fetch_xor:
956     case AtomicExpr::AO__opencl_atomic_fetch_min:
957     case AtomicExpr::AO__opencl_atomic_fetch_max:
958     case AtomicExpr::AO__atomic_fetch_xor:
959     case AtomicExpr::AO__c11_atomic_fetch_max:
960     case AtomicExpr::AO__c11_atomic_fetch_min:
961     case AtomicExpr::AO__atomic_add_fetch:
962     case AtomicExpr::AO__atomic_and_fetch:
963     case AtomicExpr::AO__atomic_nand_fetch:
964     case AtomicExpr::AO__atomic_or_fetch:
965     case AtomicExpr::AO__atomic_sub_fetch:
966     case AtomicExpr::AO__atomic_xor_fetch:
967     case AtomicExpr::AO__atomic_fetch_max:
968     case AtomicExpr::AO__atomic_fetch_min:
969     case AtomicExpr::AO__atomic_max_fetch:
970     case AtomicExpr::AO__atomic_min_fetch:
971       // For these, only library calls for certain sizes exist.
972       UseOptimizedLibcall = true;
973       break;
974 
975     case AtomicExpr::AO__atomic_load:
976     case AtomicExpr::AO__atomic_store:
977     case AtomicExpr::AO__atomic_exchange:
978     case AtomicExpr::AO__atomic_compare_exchange:
979       // Use the generic version if we don't know that the operand will be
980       // suitably aligned for the optimized version.
981       if (Misaligned)
982         break;
983       LLVM_FALLTHROUGH;
984     case AtomicExpr::AO__c11_atomic_load:
985     case AtomicExpr::AO__c11_atomic_store:
986     case AtomicExpr::AO__c11_atomic_exchange:
987     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
988     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
989     case AtomicExpr::AO__opencl_atomic_load:
990     case AtomicExpr::AO__opencl_atomic_store:
991     case AtomicExpr::AO__opencl_atomic_exchange:
992     case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
993     case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
994     case AtomicExpr::AO__atomic_load_n:
995     case AtomicExpr::AO__atomic_store_n:
996     case AtomicExpr::AO__atomic_exchange_n:
997     case AtomicExpr::AO__atomic_compare_exchange_n:
998       // Only use optimized library calls for sizes for which they exist.
999       // FIXME: Size == 16 optimized library functions exist too.
1000       if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
1001         UseOptimizedLibcall = true;
1002       break;
1003     }
1004 
1005     CallArgList Args;
1006     if (!UseOptimizedLibcall) {
1007       // For non-optimized library calls, the size is the first parameter
1008       Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
1009                getContext().getSizeType());
1010     }
1011     // Atomic address is the first or second parameter
1012     // The OpenCL atomic library functions only accept pointer arguments to
1013     // generic address space.
1014     auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) {
1015       if (!E->isOpenCL())
1016         return V;
1017       auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace();
1018       if (AS == LangAS::opencl_generic)
1019         return V;
1020       auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic);
1021       auto T = V->getType();
1022       auto *DestType = T->getPointerElementType()->getPointerTo(DestAS);
1023 
1024       return getTargetHooks().performAddrSpaceCast(
1025           *this, V, AS, LangAS::opencl_generic, DestType, false);
1026     };
1027 
1028     Args.add(RValue::get(CastToGenericAddrSpace(
1029                  EmitCastToVoidPtr(Ptr.getPointer()), E->getPtr()->getType())),
1030              getContext().VoidPtrTy);
1031 
1032     std::string LibCallName;
1033     QualType LoweredMemTy =
1034       MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
1035     QualType RetTy;
1036     bool HaveRetTy = false;
1037     llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
1038     bool PostOpMinMax = false;
1039     switch (E->getOp()) {
1040     case AtomicExpr::AO__c11_atomic_init:
1041     case AtomicExpr::AO__opencl_atomic_init:
1042       llvm_unreachable("Already handled!");
1043 
1044     // There is only one libcall for compare an exchange, because there is no
1045     // optimisation benefit possible from a libcall version of a weak compare
1046     // and exchange.
1047     // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
1048     //                                void *desired, int success, int failure)
1049     // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
1050     //                                  int success, int failure)
1051     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1052     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1053     case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
1054     case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
1055     case AtomicExpr::AO__atomic_compare_exchange:
1056     case AtomicExpr::AO__atomic_compare_exchange_n:
1057       LibCallName = "__atomic_compare_exchange";
1058       RetTy = getContext().BoolTy;
1059       HaveRetTy = true;
1060       Args.add(
1061           RValue::get(CastToGenericAddrSpace(
1062               EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())),
1063           getContext().VoidPtrTy);
1064       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(),
1065                         MemTy, E->getExprLoc(), sizeChars);
1066       Args.add(RValue::get(Order), getContext().IntTy);
1067       Order = OrderFail;
1068       break;
1069     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
1070     //                        int order)
1071     // T __atomic_exchange_N(T *mem, T val, int order)
1072     case AtomicExpr::AO__c11_atomic_exchange:
1073     case AtomicExpr::AO__opencl_atomic_exchange:
1074     case AtomicExpr::AO__atomic_exchange_n:
1075     case AtomicExpr::AO__atomic_exchange:
1076       LibCallName = "__atomic_exchange";
1077       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1078                         MemTy, E->getExprLoc(), sizeChars);
1079       break;
1080     // void __atomic_store(size_t size, void *mem, void *val, int order)
1081     // void __atomic_store_N(T *mem, T val, int order)
1082     case AtomicExpr::AO__c11_atomic_store:
1083     case AtomicExpr::AO__opencl_atomic_store:
1084     case AtomicExpr::AO__atomic_store:
1085     case AtomicExpr::AO__atomic_store_n:
1086       LibCallName = "__atomic_store";
1087       RetTy = getContext().VoidTy;
1088       HaveRetTy = true;
1089       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1090                         MemTy, E->getExprLoc(), sizeChars);
1091       break;
1092     // void __atomic_load(size_t size, void *mem, void *return, int order)
1093     // T __atomic_load_N(T *mem, int order)
1094     case AtomicExpr::AO__c11_atomic_load:
1095     case AtomicExpr::AO__opencl_atomic_load:
1096     case AtomicExpr::AO__atomic_load:
1097     case AtomicExpr::AO__atomic_load_n:
1098       LibCallName = "__atomic_load";
1099       break;
1100     // T __atomic_add_fetch_N(T *mem, T val, int order)
1101     // T __atomic_fetch_add_N(T *mem, T val, int order)
1102     case AtomicExpr::AO__atomic_add_fetch:
1103       PostOp = llvm::Instruction::Add;
1104       LLVM_FALLTHROUGH;
1105     case AtomicExpr::AO__c11_atomic_fetch_add:
1106     case AtomicExpr::AO__opencl_atomic_fetch_add:
1107     case AtomicExpr::AO__atomic_fetch_add:
1108       LibCallName = "__atomic_fetch_add";
1109       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1110                         LoweredMemTy, E->getExprLoc(), sizeChars);
1111       break;
1112     // T __atomic_and_fetch_N(T *mem, T val, int order)
1113     // T __atomic_fetch_and_N(T *mem, T val, int order)
1114     case AtomicExpr::AO__atomic_and_fetch:
1115       PostOp = llvm::Instruction::And;
1116       LLVM_FALLTHROUGH;
1117     case AtomicExpr::AO__c11_atomic_fetch_and:
1118     case AtomicExpr::AO__opencl_atomic_fetch_and:
1119     case AtomicExpr::AO__atomic_fetch_and:
1120       LibCallName = "__atomic_fetch_and";
1121       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1122                         MemTy, E->getExprLoc(), sizeChars);
1123       break;
1124     // T __atomic_or_fetch_N(T *mem, T val, int order)
1125     // T __atomic_fetch_or_N(T *mem, T val, int order)
1126     case AtomicExpr::AO__atomic_or_fetch:
1127       PostOp = llvm::Instruction::Or;
1128       LLVM_FALLTHROUGH;
1129     case AtomicExpr::AO__c11_atomic_fetch_or:
1130     case AtomicExpr::AO__opencl_atomic_fetch_or:
1131     case AtomicExpr::AO__atomic_fetch_or:
1132       LibCallName = "__atomic_fetch_or";
1133       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1134                         MemTy, E->getExprLoc(), sizeChars);
1135       break;
1136     // T __atomic_sub_fetch_N(T *mem, T val, int order)
1137     // T __atomic_fetch_sub_N(T *mem, T val, int order)
1138     case AtomicExpr::AO__atomic_sub_fetch:
1139       PostOp = llvm::Instruction::Sub;
1140       LLVM_FALLTHROUGH;
1141     case AtomicExpr::AO__c11_atomic_fetch_sub:
1142     case AtomicExpr::AO__opencl_atomic_fetch_sub:
1143     case AtomicExpr::AO__atomic_fetch_sub:
1144       LibCallName = "__atomic_fetch_sub";
1145       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1146                         LoweredMemTy, E->getExprLoc(), sizeChars);
1147       break;
1148     // T __atomic_xor_fetch_N(T *mem, T val, int order)
1149     // T __atomic_fetch_xor_N(T *mem, T val, int order)
1150     case AtomicExpr::AO__atomic_xor_fetch:
1151       PostOp = llvm::Instruction::Xor;
1152       LLVM_FALLTHROUGH;
1153     case AtomicExpr::AO__c11_atomic_fetch_xor:
1154     case AtomicExpr::AO__opencl_atomic_fetch_xor:
1155     case AtomicExpr::AO__atomic_fetch_xor:
1156       LibCallName = "__atomic_fetch_xor";
1157       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1158                         MemTy, E->getExprLoc(), sizeChars);
1159       break;
1160     case AtomicExpr::AO__atomic_min_fetch:
1161       PostOpMinMax = true;
1162       LLVM_FALLTHROUGH;
1163     case AtomicExpr::AO__c11_atomic_fetch_min:
1164     case AtomicExpr::AO__atomic_fetch_min:
1165     case AtomicExpr::AO__opencl_atomic_fetch_min:
1166       LibCallName = E->getValueType()->isSignedIntegerType()
1167                         ? "__atomic_fetch_min"
1168                         : "__atomic_fetch_umin";
1169       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1170                         LoweredMemTy, E->getExprLoc(), sizeChars);
1171       break;
1172     case AtomicExpr::AO__atomic_max_fetch:
1173       PostOpMinMax = true;
1174       LLVM_FALLTHROUGH;
1175     case AtomicExpr::AO__c11_atomic_fetch_max:
1176     case AtomicExpr::AO__atomic_fetch_max:
1177     case AtomicExpr::AO__opencl_atomic_fetch_max:
1178       LibCallName = E->getValueType()->isSignedIntegerType()
1179                         ? "__atomic_fetch_max"
1180                         : "__atomic_fetch_umax";
1181       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1182                         LoweredMemTy, E->getExprLoc(), sizeChars);
1183       break;
1184     // T __atomic_nand_fetch_N(T *mem, T val, int order)
1185     // T __atomic_fetch_nand_N(T *mem, T val, int order)
1186     case AtomicExpr::AO__atomic_nand_fetch:
1187       PostOp = llvm::Instruction::And; // the NOT is special cased below
1188       LLVM_FALLTHROUGH;
1189     case AtomicExpr::AO__atomic_fetch_nand:
1190       LibCallName = "__atomic_fetch_nand";
1191       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
1192                         MemTy, E->getExprLoc(), sizeChars);
1193       break;
1194     }
1195 
1196     if (E->isOpenCL()) {
1197       LibCallName = std::string("__opencl") +
1198           StringRef(LibCallName).drop_front(1).str();
1199 
1200     }
1201     // Optimized functions have the size in their name.
1202     if (UseOptimizedLibcall)
1203       LibCallName += "_" + llvm::utostr(Size);
1204     // By default, assume we return a value of the atomic type.
1205     if (!HaveRetTy) {
1206       if (UseOptimizedLibcall) {
1207         // Value is returned directly.
1208         // The function returns an appropriately sized integer type.
1209         RetTy = getContext().getIntTypeForBitwidth(
1210             getContext().toBits(sizeChars), /*Signed=*/false);
1211       } else {
1212         // Value is returned through parameter before the order.
1213         RetTy = getContext().VoidTy;
1214         Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())),
1215                  getContext().VoidPtrTy);
1216       }
1217     }
1218     // order is always the last parameter
1219     Args.add(RValue::get(Order),
1220              getContext().IntTy);
1221     if (E->isOpenCL())
1222       Args.add(RValue::get(Scope), getContext().IntTy);
1223 
1224     // PostOp is only needed for the atomic_*_fetch operations, and
1225     // thus is only needed for and implemented in the
1226     // UseOptimizedLibcall codepath.
1227     assert(UseOptimizedLibcall || (!PostOp && !PostOpMinMax));
1228 
1229     RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
1230     // The value is returned directly from the libcall.
1231     if (E->isCmpXChg())
1232       return Res;
1233 
1234     // The value is returned directly for optimized libcalls but the expr
1235     // provided an out-param.
1236     if (UseOptimizedLibcall && Res.getScalarVal()) {
1237       llvm::Value *ResVal = Res.getScalarVal();
1238       if (PostOpMinMax) {
1239         llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal();
1240         ResVal = EmitPostAtomicMinMax(Builder, E->getOp(),
1241                                       E->getValueType()->isSignedIntegerType(),
1242                                       ResVal, LoadVal1);
1243       } else if (PostOp) {
1244         llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal();
1245         ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1);
1246       }
1247       if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
1248         ResVal = Builder.CreateNot(ResVal);
1249 
1250       Builder.CreateStore(
1251           ResVal,
1252           Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo()));
1253     }
1254 
1255     if (RValTy->isVoidType())
1256       return RValue::get(nullptr);
1257 
1258     return convertTempToRValue(
1259         Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
1260         RValTy, E->getExprLoc());
1261   }
1262 
1263   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
1264                  E->getOp() == AtomicExpr::AO__opencl_atomic_store ||
1265                  E->getOp() == AtomicExpr::AO__atomic_store ||
1266                  E->getOp() == AtomicExpr::AO__atomic_store_n;
1267   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
1268                 E->getOp() == AtomicExpr::AO__opencl_atomic_load ||
1269                 E->getOp() == AtomicExpr::AO__atomic_load ||
1270                 E->getOp() == AtomicExpr::AO__atomic_load_n;
1271 
1272   if (isa<llvm::ConstantInt>(Order)) {
1273     auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1274     // We should not ever get to a case where the ordering isn't a valid C ABI
1275     // value, but it's hard to enforce that in general.
1276     if (llvm::isValidAtomicOrderingCABI(ord))
1277       switch ((llvm::AtomicOrderingCABI)ord) {
1278       case llvm::AtomicOrderingCABI::relaxed:
1279         EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1280                      llvm::AtomicOrdering::Monotonic, Scope);
1281         break;
1282       case llvm::AtomicOrderingCABI::consume:
1283       case llvm::AtomicOrderingCABI::acquire:
1284         if (IsStore)
1285           break; // Avoid crashing on code with undefined behavior
1286         EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1287                      llvm::AtomicOrdering::Acquire, Scope);
1288         break;
1289       case llvm::AtomicOrderingCABI::release:
1290         if (IsLoad)
1291           break; // Avoid crashing on code with undefined behavior
1292         EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1293                      llvm::AtomicOrdering::Release, Scope);
1294         break;
1295       case llvm::AtomicOrderingCABI::acq_rel:
1296         if (IsLoad || IsStore)
1297           break; // Avoid crashing on code with undefined behavior
1298         EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1299                      llvm::AtomicOrdering::AcquireRelease, Scope);
1300         break;
1301       case llvm::AtomicOrderingCABI::seq_cst:
1302         EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1303                      llvm::AtomicOrdering::SequentiallyConsistent, Scope);
1304         break;
1305       }
1306     if (RValTy->isVoidType())
1307       return RValue::get(nullptr);
1308 
1309     return convertTempToRValue(
1310         Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo(
1311                                         Dest.getAddressSpace())),
1312         RValTy, E->getExprLoc());
1313   }
1314 
1315   // Long case, when Order isn't obviously constant.
1316 
1317   // Create all the relevant BB's
1318   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
1319                    *ReleaseBB = nullptr, *AcqRelBB = nullptr,
1320                    *SeqCstBB = nullptr;
1321   MonotonicBB = createBasicBlock("monotonic", CurFn);
1322   if (!IsStore)
1323     AcquireBB = createBasicBlock("acquire", CurFn);
1324   if (!IsLoad)
1325     ReleaseBB = createBasicBlock("release", CurFn);
1326   if (!IsLoad && !IsStore)
1327     AcqRelBB = createBasicBlock("acqrel", CurFn);
1328   SeqCstBB = createBasicBlock("seqcst", CurFn);
1329   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1330 
1331   // Create the switch for the split
1332   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
1333   // doesn't matter unless someone is crazy enough to use something that
1334   // doesn't fold to a constant for the ordering.
1335   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1336   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
1337 
1338   // Emit all the different atomics
1339   Builder.SetInsertPoint(MonotonicBB);
1340   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1341                llvm::AtomicOrdering::Monotonic, Scope);
1342   Builder.CreateBr(ContBB);
1343   if (!IsStore) {
1344     Builder.SetInsertPoint(AcquireBB);
1345     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1346                  llvm::AtomicOrdering::Acquire, Scope);
1347     Builder.CreateBr(ContBB);
1348     SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
1349                 AcquireBB);
1350     SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
1351                 AcquireBB);
1352   }
1353   if (!IsLoad) {
1354     Builder.SetInsertPoint(ReleaseBB);
1355     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1356                  llvm::AtomicOrdering::Release, Scope);
1357     Builder.CreateBr(ContBB);
1358     SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release),
1359                 ReleaseBB);
1360   }
1361   if (!IsLoad && !IsStore) {
1362     Builder.SetInsertPoint(AcqRelBB);
1363     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1364                  llvm::AtomicOrdering::AcquireRelease, Scope);
1365     Builder.CreateBr(ContBB);
1366     SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel),
1367                 AcqRelBB);
1368   }
1369   Builder.SetInsertPoint(SeqCstBB);
1370   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1371                llvm::AtomicOrdering::SequentiallyConsistent, Scope);
1372   Builder.CreateBr(ContBB);
1373   SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
1374               SeqCstBB);
1375 
1376   // Cleanup and return
1377   Builder.SetInsertPoint(ContBB);
1378   if (RValTy->isVoidType())
1379     return RValue::get(nullptr);
1380 
1381   assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits());
1382   return convertTempToRValue(
1383       Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo(
1384                                       Dest.getAddressSpace())),
1385       RValTy, E->getExprLoc());
1386 }
1387 
1388 Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const {
1389   unsigned addrspace =
1390     cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace();
1391   llvm::IntegerType *ty =
1392     llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
1393   return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
1394 }
1395 
1396 Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const {
1397   llvm::Type *Ty = Addr.getElementType();
1398   uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty);
1399   if (SourceSizeInBits != AtomicSizeInBits) {
1400     Address Tmp = CreateTempAlloca();
1401     CGF.Builder.CreateMemCpy(Tmp, Addr,
1402                              std::min(AtomicSizeInBits, SourceSizeInBits) / 8);
1403     Addr = Tmp;
1404   }
1405 
1406   return emitCastToAtomicIntPointer(Addr);
1407 }
1408 
1409 RValue AtomicInfo::convertAtomicTempToRValue(Address addr,
1410                                              AggValueSlot resultSlot,
1411                                              SourceLocation loc,
1412                                              bool asValue) const {
1413   if (LVal.isSimple()) {
1414     if (EvaluationKind == TEK_Aggregate)
1415       return resultSlot.asRValue();
1416 
1417     // Drill into the padding structure if we have one.
1418     if (hasPadding())
1419       addr = CGF.Builder.CreateStructGEP(addr, 0);
1420 
1421     // Otherwise, just convert the temporary to an r-value using the
1422     // normal conversion routine.
1423     return CGF.convertTempToRValue(addr, getValueType(), loc);
1424   }
1425   if (!asValue)
1426     // Get RValue from temp memory as atomic for non-simple lvalues
1427     return RValue::get(CGF.Builder.CreateLoad(addr));
1428   if (LVal.isBitField())
1429     return CGF.EmitLoadOfBitfieldLValue(
1430         LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(),
1431                              LVal.getBaseInfo(), TBAAAccessInfo()), loc);
1432   if (LVal.isVectorElt())
1433     return CGF.EmitLoadOfLValue(
1434         LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(),
1435                               LVal.getBaseInfo(), TBAAAccessInfo()), loc);
1436   assert(LVal.isExtVectorElt());
1437   return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
1438       addr, LVal.getExtVectorElts(), LVal.getType(),
1439       LVal.getBaseInfo(), TBAAAccessInfo()));
1440 }
1441 
1442 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
1443                                              AggValueSlot ResultSlot,
1444                                              SourceLocation Loc,
1445                                              bool AsValue) const {
1446   // Try not to in some easy cases.
1447   assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
1448   if (getEvaluationKind() == TEK_Scalar &&
1449       (((!LVal.isBitField() ||
1450          LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
1451         !hasPadding()) ||
1452        !AsValue)) {
1453     auto *ValTy = AsValue
1454                       ? CGF.ConvertTypeForMem(ValueTy)
1455                       : getAtomicAddress().getType()->getPointerElementType();
1456     if (ValTy->isIntegerTy()) {
1457       assert(IntVal->getType() == ValTy && "Different integer types.");
1458       return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
1459     } else if (ValTy->isPointerTy())
1460       return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
1461     else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
1462       return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
1463   }
1464 
1465   // Create a temporary.  This needs to be big enough to hold the
1466   // atomic integer.
1467   Address Temp = Address::invalid();
1468   bool TempIsVolatile = false;
1469   if (AsValue && getEvaluationKind() == TEK_Aggregate) {
1470     assert(!ResultSlot.isIgnored());
1471     Temp = ResultSlot.getAddress();
1472     TempIsVolatile = ResultSlot.isVolatile();
1473   } else {
1474     Temp = CreateTempAlloca();
1475   }
1476 
1477   // Slam the integer into the temporary.
1478   Address CastTemp = emitCastToAtomicIntPointer(Temp);
1479   CGF.Builder.CreateStore(IntVal, CastTemp)
1480       ->setVolatile(TempIsVolatile);
1481 
1482   return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue);
1483 }
1484 
1485 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1486                                        llvm::AtomicOrdering AO, bool) {
1487   // void __atomic_load(size_t size, void *mem, void *return, int order);
1488   CallArgList Args;
1489   Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1490   Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
1491            CGF.getContext().VoidPtrTy);
1492   Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
1493            CGF.getContext().VoidPtrTy);
1494   Args.add(
1495       RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))),
1496       CGF.getContext().IntTy);
1497   emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
1498 }
1499 
1500 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1501                                           bool IsVolatile) {
1502   // Okay, we're doing this natively.
1503   Address Addr = getAtomicAddressAsAtomicIntPointer();
1504   llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
1505   Load->setAtomic(AO);
1506 
1507   // Other decoration.
1508   if (IsVolatile)
1509     Load->setVolatile(true);
1510   CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo());
1511   return Load;
1512 }
1513 
1514 /// An LValue is a candidate for having its loads and stores be made atomic if
1515 /// we are operating under /volatile:ms *and* the LValue itself is volatile and
1516 /// performing such an operation can be performed without a libcall.
1517 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
1518   if (!CGM.getCodeGenOpts().MSVolatile) return false;
1519   AtomicInfo AI(*this, LV);
1520   bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
1521   // An atomic is inline if we don't need to use a libcall.
1522   bool AtomicIsInline = !AI.shouldUseLibcall();
1523   // MSVC doesn't seem to do this for types wider than a pointer.
1524   if (getContext().getTypeSize(LV.getType()) >
1525       getContext().getTypeSize(getContext().getIntPtrType()))
1526     return false;
1527   return IsVolatile && AtomicIsInline;
1528 }
1529 
1530 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
1531                                        AggValueSlot Slot) {
1532   llvm::AtomicOrdering AO;
1533   bool IsVolatile = LV.isVolatileQualified();
1534   if (LV.getType()->isAtomicType()) {
1535     AO = llvm::AtomicOrdering::SequentiallyConsistent;
1536   } else {
1537     AO = llvm::AtomicOrdering::Acquire;
1538     IsVolatile = true;
1539   }
1540   return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
1541 }
1542 
1543 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
1544                                   bool AsValue, llvm::AtomicOrdering AO,
1545                                   bool IsVolatile) {
1546   // Check whether we should use a library call.
1547   if (shouldUseLibcall()) {
1548     Address TempAddr = Address::invalid();
1549     if (LVal.isSimple() && !ResultSlot.isIgnored()) {
1550       assert(getEvaluationKind() == TEK_Aggregate);
1551       TempAddr = ResultSlot.getAddress();
1552     } else
1553       TempAddr = CreateTempAlloca();
1554 
1555     EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile);
1556 
1557     // Okay, turn that back into the original value or whole atomic (for
1558     // non-simple lvalues) type.
1559     return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
1560   }
1561 
1562   // Okay, we're doing this natively.
1563   auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
1564 
1565   // If we're ignoring an aggregate return, don't do anything.
1566   if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
1567     return RValue::getAggregate(Address::invalid(), false);
1568 
1569   // Okay, turn that back into the original value or atomic (for non-simple
1570   // lvalues) type.
1571   return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
1572 }
1573 
1574 /// Emit a load from an l-value of atomic type.  Note that the r-value
1575 /// we produce is an r-value of the atomic *value* type.
1576 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
1577                                        llvm::AtomicOrdering AO, bool IsVolatile,
1578                                        AggValueSlot resultSlot) {
1579   AtomicInfo Atomics(*this, src);
1580   return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
1581                                 IsVolatile);
1582 }
1583 
1584 /// Copy an r-value into memory as part of storing to an atomic type.
1585 /// This needs to create a bit-pattern suitable for atomic operations.
1586 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
1587   assert(LVal.isSimple());
1588   // If we have an r-value, the rvalue should be of the atomic type,
1589   // which means that the caller is responsible for having zeroed
1590   // any padding.  Just do an aggregate copy of that type.
1591   if (rvalue.isAggregate()) {
1592     LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType());
1593     LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(),
1594                                     getAtomicType());
1595     bool IsVolatile = rvalue.isVolatileQualified() ||
1596                       LVal.isVolatileQualified();
1597     CGF.EmitAggregateCopy(Dest, Src, getAtomicType(),
1598                           AggValueSlot::DoesNotOverlap, IsVolatile);
1599     return;
1600   }
1601 
1602   // Okay, otherwise we're copying stuff.
1603 
1604   // Zero out the buffer if necessary.
1605   emitMemSetZeroIfNecessary();
1606 
1607   // Drill past the padding if present.
1608   LValue TempLVal = projectValue();
1609 
1610   // Okay, store the rvalue in.
1611   if (rvalue.isScalar()) {
1612     CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
1613   } else {
1614     CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
1615   }
1616 }
1617 
1618 
1619 /// Materialize an r-value into memory for the purposes of storing it
1620 /// to an atomic type.
1621 Address AtomicInfo::materializeRValue(RValue rvalue) const {
1622   // Aggregate r-values are already in memory, and EmitAtomicStore
1623   // requires them to be values of the atomic type.
1624   if (rvalue.isAggregate())
1625     return rvalue.getAggregateAddress();
1626 
1627   // Otherwise, make a temporary and materialize into it.
1628   LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType());
1629   AtomicInfo Atomics(CGF, TempLV);
1630   Atomics.emitCopyIntoMemory(rvalue);
1631   return TempLV.getAddress(CGF);
1632 }
1633 
1634 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
1635   // If we've got a scalar value of the right size, try to avoid going
1636   // through memory.
1637   if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
1638     llvm::Value *Value = RVal.getScalarVal();
1639     if (isa<llvm::IntegerType>(Value->getType()))
1640       return CGF.EmitToMemory(Value, ValueTy);
1641     else {
1642       llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1643           CGF.getLLVMContext(),
1644           LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1645       if (isa<llvm::PointerType>(Value->getType()))
1646         return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
1647       else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
1648         return CGF.Builder.CreateBitCast(Value, InputIntTy);
1649     }
1650   }
1651   // Otherwise, we need to go through memory.
1652   // Put the r-value in memory.
1653   Address Addr = materializeRValue(RVal);
1654 
1655   // Cast the temporary to the atomic int type and pull a value out.
1656   Addr = emitCastToAtomicIntPointer(Addr);
1657   return CGF.Builder.CreateLoad(Addr);
1658 }
1659 
1660 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1661     llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1662     llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
1663   // Do the atomic store.
1664   Address Addr = getAtomicAddressAsAtomicIntPointer();
1665   auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(),
1666                                                ExpectedVal, DesiredVal,
1667                                                Success, Failure);
1668   // Other decoration.
1669   Inst->setVolatile(LVal.isVolatileQualified());
1670   Inst->setWeak(IsWeak);
1671 
1672   // Okay, turn that back into the original value type.
1673   auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
1674   auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
1675   return std::make_pair(PreviousVal, SuccessFailureVal);
1676 }
1677 
1678 llvm::Value *
1679 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1680                                              llvm::Value *DesiredAddr,
1681                                              llvm::AtomicOrdering Success,
1682                                              llvm::AtomicOrdering Failure) {
1683   // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
1684   // void *desired, int success, int failure);
1685   CallArgList Args;
1686   Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1687   Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
1688            CGF.getContext().VoidPtrTy);
1689   Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
1690            CGF.getContext().VoidPtrTy);
1691   Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
1692            CGF.getContext().VoidPtrTy);
1693   Args.add(RValue::get(
1694                llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))),
1695            CGF.getContext().IntTy);
1696   Args.add(RValue::get(
1697                llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))),
1698            CGF.getContext().IntTy);
1699   auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
1700                                               CGF.getContext().BoolTy, Args);
1701 
1702   return SuccessFailureRVal.getScalarVal();
1703 }
1704 
1705 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1706     RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
1707     llvm::AtomicOrdering Failure, bool IsWeak) {
1708   if (isStrongerThan(Failure, Success))
1709     // Don't assert on undefined behavior "failure argument shall be no stronger
1710     // than the success argument".
1711     Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
1712 
1713   // Check whether we should use a library call.
1714   if (shouldUseLibcall()) {
1715     // Produce a source address.
1716     Address ExpectedAddr = materializeRValue(Expected);
1717     Address DesiredAddr = materializeRValue(Desired);
1718     auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1719                                                  DesiredAddr.getPointer(),
1720                                                  Success, Failure);
1721     return std::make_pair(
1722         convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1723                                   SourceLocation(), /*AsValue=*/false),
1724         Res);
1725   }
1726 
1727   // If we've got a scalar value of the right size, try to avoid going
1728   // through memory.
1729   auto *ExpectedVal = convertRValueToInt(Expected);
1730   auto *DesiredVal = convertRValueToInt(Desired);
1731   auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
1732                                          Failure, IsWeak);
1733   return std::make_pair(
1734       ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
1735                                 SourceLocation(), /*AsValue=*/false),
1736       Res.second);
1737 }
1738 
1739 static void
1740 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
1741                       const llvm::function_ref<RValue(RValue)> &UpdateOp,
1742                       Address DesiredAddr) {
1743   RValue UpRVal;
1744   LValue AtomicLVal = Atomics.getAtomicLValue();
1745   LValue DesiredLVal;
1746   if (AtomicLVal.isSimple()) {
1747     UpRVal = OldRVal;
1748     DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType());
1749   } else {
1750     // Build new lvalue for temp address.
1751     Address Ptr = Atomics.materializeRValue(OldRVal);
1752     LValue UpdateLVal;
1753     if (AtomicLVal.isBitField()) {
1754       UpdateLVal =
1755           LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
1756                                AtomicLVal.getType(),
1757                                AtomicLVal.getBaseInfo(),
1758                                AtomicLVal.getTBAAInfo());
1759       DesiredLVal =
1760           LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1761                                AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1762                                AtomicLVal.getTBAAInfo());
1763     } else if (AtomicLVal.isVectorElt()) {
1764       UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
1765                                          AtomicLVal.getType(),
1766                                          AtomicLVal.getBaseInfo(),
1767                                          AtomicLVal.getTBAAInfo());
1768       DesiredLVal = LValue::MakeVectorElt(
1769           DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
1770           AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1771     } else {
1772       assert(AtomicLVal.isExtVectorElt());
1773       UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
1774                                             AtomicLVal.getType(),
1775                                             AtomicLVal.getBaseInfo(),
1776                                             AtomicLVal.getTBAAInfo());
1777       DesiredLVal = LValue::MakeExtVectorElt(
1778           DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1779           AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1780     }
1781     UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
1782   }
1783   // Store new value in the corresponding memory area.
1784   RValue NewRVal = UpdateOp(UpRVal);
1785   if (NewRVal.isScalar()) {
1786     CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
1787   } else {
1788     assert(NewRVal.isComplex());
1789     CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
1790                            /*isInit=*/false);
1791   }
1792 }
1793 
1794 void AtomicInfo::EmitAtomicUpdateLibcall(
1795     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1796     bool IsVolatile) {
1797   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1798 
1799   Address ExpectedAddr = CreateTempAlloca();
1800 
1801   EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
1802   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1803   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1804   CGF.EmitBlock(ContBB);
1805   Address DesiredAddr = CreateTempAlloca();
1806   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1807       requiresMemSetZero(getAtomicAddress().getElementType())) {
1808     auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1809     CGF.Builder.CreateStore(OldVal, DesiredAddr);
1810   }
1811   auto OldRVal = convertAtomicTempToRValue(ExpectedAddr,
1812                                            AggValueSlot::ignored(),
1813                                            SourceLocation(), /*AsValue=*/false);
1814   EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
1815   auto *Res =
1816       EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1817                                        DesiredAddr.getPointer(),
1818                                        AO, Failure);
1819   CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1820   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1821 }
1822 
1823 void AtomicInfo::EmitAtomicUpdateOp(
1824     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1825     bool IsVolatile) {
1826   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1827 
1828   // Do the atomic load.
1829   auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1830   // For non-simple lvalues perform compare-and-swap procedure.
1831   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1832   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1833   auto *CurBB = CGF.Builder.GetInsertBlock();
1834   CGF.EmitBlock(ContBB);
1835   llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1836                                              /*NumReservedValues=*/2);
1837   PHI->addIncoming(OldVal, CurBB);
1838   Address NewAtomicAddr = CreateTempAlloca();
1839   Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1840   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1841       requiresMemSetZero(getAtomicAddress().getElementType())) {
1842     CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1843   }
1844   auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
1845                                            SourceLocation(), /*AsValue=*/false);
1846   EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
1847   auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1848   // Try to write new value using cmpxchg operation.
1849   auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1850   PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1851   CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1852   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1853 }
1854 
1855 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
1856                                   RValue UpdateRVal, Address DesiredAddr) {
1857   LValue AtomicLVal = Atomics.getAtomicLValue();
1858   LValue DesiredLVal;
1859   // Build new lvalue for temp address.
1860   if (AtomicLVal.isBitField()) {
1861     DesiredLVal =
1862         LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1863                              AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1864                              AtomicLVal.getTBAAInfo());
1865   } else if (AtomicLVal.isVectorElt()) {
1866     DesiredLVal =
1867         LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
1868                               AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1869                               AtomicLVal.getTBAAInfo());
1870   } else {
1871     assert(AtomicLVal.isExtVectorElt());
1872     DesiredLVal = LValue::MakeExtVectorElt(
1873         DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1874         AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1875   }
1876   // Store new value in the corresponding memory area.
1877   assert(UpdateRVal.isScalar());
1878   CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
1879 }
1880 
1881 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1882                                          RValue UpdateRVal, bool IsVolatile) {
1883   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1884 
1885   Address ExpectedAddr = CreateTempAlloca();
1886 
1887   EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
1888   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1889   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1890   CGF.EmitBlock(ContBB);
1891   Address DesiredAddr = CreateTempAlloca();
1892   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1893       requiresMemSetZero(getAtomicAddress().getElementType())) {
1894     auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1895     CGF.Builder.CreateStore(OldVal, DesiredAddr);
1896   }
1897   EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
1898   auto *Res =
1899       EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1900                                        DesiredAddr.getPointer(),
1901                                        AO, Failure);
1902   CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1903   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1904 }
1905 
1906 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
1907                                     bool IsVolatile) {
1908   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1909 
1910   // Do the atomic load.
1911   auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1912   // For non-simple lvalues perform compare-and-swap procedure.
1913   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1914   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1915   auto *CurBB = CGF.Builder.GetInsertBlock();
1916   CGF.EmitBlock(ContBB);
1917   llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1918                                              /*NumReservedValues=*/2);
1919   PHI->addIncoming(OldVal, CurBB);
1920   Address NewAtomicAddr = CreateTempAlloca();
1921   Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1922   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1923       requiresMemSetZero(getAtomicAddress().getElementType())) {
1924     CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1925   }
1926   EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
1927   auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1928   // Try to write new value using cmpxchg operation.
1929   auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1930   PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1931   CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1932   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1933 }
1934 
1935 void AtomicInfo::EmitAtomicUpdate(
1936     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1937     bool IsVolatile) {
1938   if (shouldUseLibcall()) {
1939     EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
1940   } else {
1941     EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
1942   }
1943 }
1944 
1945 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
1946                                   bool IsVolatile) {
1947   if (shouldUseLibcall()) {
1948     EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
1949   } else {
1950     EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
1951   }
1952 }
1953 
1954 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
1955                                       bool isInit) {
1956   bool IsVolatile = lvalue.isVolatileQualified();
1957   llvm::AtomicOrdering AO;
1958   if (lvalue.getType()->isAtomicType()) {
1959     AO = llvm::AtomicOrdering::SequentiallyConsistent;
1960   } else {
1961     AO = llvm::AtomicOrdering::Release;
1962     IsVolatile = true;
1963   }
1964   return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
1965 }
1966 
1967 /// Emit a store to an l-value of atomic type.
1968 ///
1969 /// Note that the r-value is expected to be an r-value *of the atomic
1970 /// type*; this means that for aggregate r-values, it should include
1971 /// storage for any padding that was necessary.
1972 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
1973                                       llvm::AtomicOrdering AO, bool IsVolatile,
1974                                       bool isInit) {
1975   // If this is an aggregate r-value, it should agree in type except
1976   // maybe for address-space qualification.
1977   assert(!rvalue.isAggregate() ||
1978          rvalue.getAggregateAddress().getElementType() ==
1979              dest.getAddress(*this).getElementType());
1980 
1981   AtomicInfo atomics(*this, dest);
1982   LValue LVal = atomics.getAtomicLValue();
1983 
1984   // If this is an initialization, just put the value there normally.
1985   if (LVal.isSimple()) {
1986     if (isInit) {
1987       atomics.emitCopyIntoMemory(rvalue);
1988       return;
1989     }
1990 
1991     // Check whether we should use a library call.
1992     if (atomics.shouldUseLibcall()) {
1993       // Produce a source address.
1994       Address srcAddr = atomics.materializeRValue(rvalue);
1995 
1996       // void __atomic_store(size_t size, void *mem, void *val, int order)
1997       CallArgList args;
1998       args.add(RValue::get(atomics.getAtomicSizeValue()),
1999                getContext().getSizeType());
2000       args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())),
2001                getContext().VoidPtrTy);
2002       args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())),
2003                getContext().VoidPtrTy);
2004       args.add(
2005           RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))),
2006           getContext().IntTy);
2007       emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
2008       return;
2009     }
2010 
2011     // Okay, we're doing this natively.
2012     llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
2013 
2014     // Do the atomic store.
2015     Address addr =
2016         atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
2017     intValue = Builder.CreateIntCast(
2018         intValue, addr.getElementType(), /*isSigned=*/false);
2019     llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
2020 
2021     // Initializations don't need to be atomic.
2022     if (!isInit)
2023       store->setAtomic(AO);
2024 
2025     // Other decoration.
2026     if (IsVolatile)
2027       store->setVolatile(true);
2028     CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo());
2029     return;
2030   }
2031 
2032   // Emit simple atomic update operation.
2033   atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
2034 }
2035 
2036 /// Emit a compare-and-exchange op for atomic type.
2037 ///
2038 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
2039     LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2040     llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
2041     AggValueSlot Slot) {
2042   // If this is an aggregate r-value, it should agree in type except
2043   // maybe for address-space qualification.
2044   assert(!Expected.isAggregate() ||
2045          Expected.getAggregateAddress().getElementType() ==
2046              Obj.getAddress(*this).getElementType());
2047   assert(!Desired.isAggregate() ||
2048          Desired.getAggregateAddress().getElementType() ==
2049              Obj.getAddress(*this).getElementType());
2050   AtomicInfo Atomics(*this, Obj);
2051 
2052   return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
2053                                            IsWeak);
2054 }
2055 
2056 void CodeGenFunction::EmitAtomicUpdate(
2057     LValue LVal, llvm::AtomicOrdering AO,
2058     const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
2059   AtomicInfo Atomics(*this, LVal);
2060   Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
2061 }
2062 
2063 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
2064   AtomicInfo atomics(*this, dest);
2065 
2066   switch (atomics.getEvaluationKind()) {
2067   case TEK_Scalar: {
2068     llvm::Value *value = EmitScalarExpr(init);
2069     atomics.emitCopyIntoMemory(RValue::get(value));
2070     return;
2071   }
2072 
2073   case TEK_Complex: {
2074     ComplexPairTy value = EmitComplexExpr(init);
2075     atomics.emitCopyIntoMemory(RValue::getComplex(value));
2076     return;
2077   }
2078 
2079   case TEK_Aggregate: {
2080     // Fix up the destination if the initializer isn't an expression
2081     // of atomic type.
2082     bool Zeroed = false;
2083     if (!init->getType()->isAtomicType()) {
2084       Zeroed = atomics.emitMemSetZeroIfNecessary();
2085       dest = atomics.projectValue();
2086     }
2087 
2088     // Evaluate the expression directly into the destination.
2089     AggValueSlot slot = AggValueSlot::forLValue(
2090         dest, *this, AggValueSlot::IsNotDestructed,
2091         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2092         AggValueSlot::DoesNotOverlap,
2093         Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed);
2094 
2095     EmitAggExpr(init, slot);
2096     return;
2097   }
2098   }
2099   llvm_unreachable("bad evaluation kind");
2100 }
2101