1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasFloat16 = false; 38 PointerWidth = PointerAlign = 32; 39 BoolWidth = BoolAlign = 8; 40 IntWidth = IntAlign = 32; 41 LongWidth = LongAlign = 32; 42 LongLongWidth = LongLongAlign = 64; 43 44 // Fixed point default bit widths 45 ShortAccumWidth = ShortAccumAlign = 16; 46 AccumWidth = AccumAlign = 32; 47 LongAccumWidth = LongAccumAlign = 64; 48 ShortFractWidth = ShortFractAlign = 8; 49 FractWidth = FractAlign = 16; 50 LongFractWidth = LongFractAlign = 32; 51 52 // Fixed point default integral and fractional bit sizes 53 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 54 // types by default to have the same number of fractional bits between _Accum 55 // and _Fract types. 56 PaddingOnUnsignedFixedPoint = false; 57 ShortAccumScale = 7; 58 AccumScale = 15; 59 LongAccumScale = 31; 60 61 SuitableAlign = 64; 62 DefaultAlignForAttributeAligned = 128; 63 MinGlobalAlign = 0; 64 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 65 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 66 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 67 // This alignment guarantee also applies to Windows and Android. 68 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 69 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 70 else 71 NewAlign = 0; // Infer from basic type alignment. 72 HalfWidth = 16; 73 HalfAlign = 16; 74 FloatWidth = 32; 75 FloatAlign = 32; 76 DoubleWidth = 64; 77 DoubleAlign = 64; 78 LongDoubleWidth = 64; 79 LongDoubleAlign = 64; 80 Float128Align = 128; 81 LargeArrayMinWidth = 0; 82 LargeArrayAlign = 0; 83 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 84 MaxVectorAlign = 0; 85 MaxTLSAlign = 0; 86 SimdDefaultAlign = 0; 87 SizeType = UnsignedLong; 88 PtrDiffType = SignedLong; 89 IntMaxType = SignedLongLong; 90 IntPtrType = SignedLong; 91 WCharType = SignedInt; 92 WIntType = SignedInt; 93 Char16Type = UnsignedShort; 94 Char32Type = UnsignedInt; 95 Int64Type = SignedLongLong; 96 SigAtomicType = SignedInt; 97 ProcessIDType = SignedInt; 98 UseSignedCharForObjCBool = true; 99 UseBitFieldTypeAlignment = true; 100 UseZeroLengthBitfieldAlignment = false; 101 UseExplicitBitFieldAlignment = true; 102 ZeroLengthBitfieldBoundary = 0; 103 HalfFormat = &llvm::APFloat::IEEEhalf(); 104 FloatFormat = &llvm::APFloat::IEEEsingle(); 105 DoubleFormat = &llvm::APFloat::IEEEdouble(); 106 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 107 Float128Format = &llvm::APFloat::IEEEquad(); 108 MCountName = "mcount"; 109 RegParmMax = 0; 110 SSERegParmMax = 0; 111 HasAlignMac68kSupport = false; 112 HasBuiltinMSVaList = false; 113 IsRenderScriptTarget = false; 114 115 // Default to no types using fpret. 116 RealTypeUsesObjCFPRet = 0; 117 118 // Default to not using fp2ret for __Complex long double 119 ComplexLongDoubleUsesFP2Ret = false; 120 121 // Set the C++ ABI based on the triple. 122 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 123 ? TargetCXXABI::Microsoft 124 : TargetCXXABI::GenericItanium); 125 126 // Default to an empty address space map. 127 AddrSpaceMap = &DefaultAddrSpaceMap; 128 UseAddrSpaceMapMangling = false; 129 130 // Default to an unknown platform name. 131 PlatformName = "unknown"; 132 PlatformMinVersion = VersionTuple(); 133 } 134 135 // Out of line virtual dtor for TargetInfo. 136 TargetInfo::~TargetInfo() {} 137 138 bool 139 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 140 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 141 return false; 142 } 143 144 bool 145 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 146 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 147 return false; 148 } 149 150 /// getTypeName - Return the user string for the specified integer type enum. 151 /// For example, SignedShort -> "short". 152 const char *TargetInfo::getTypeName(IntType T) { 153 switch (T) { 154 default: llvm_unreachable("not an integer!"); 155 case SignedChar: return "signed char"; 156 case UnsignedChar: return "unsigned char"; 157 case SignedShort: return "short"; 158 case UnsignedShort: return "unsigned short"; 159 case SignedInt: return "int"; 160 case UnsignedInt: return "unsigned int"; 161 case SignedLong: return "long int"; 162 case UnsignedLong: return "long unsigned int"; 163 case SignedLongLong: return "long long int"; 164 case UnsignedLongLong: return "long long unsigned int"; 165 } 166 } 167 168 /// getTypeConstantSuffix - Return the constant suffix for the specified 169 /// integer type enum. For example, SignedLong -> "L". 170 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 171 switch (T) { 172 default: llvm_unreachable("not an integer!"); 173 case SignedChar: 174 case SignedShort: 175 case SignedInt: return ""; 176 case SignedLong: return "L"; 177 case SignedLongLong: return "LL"; 178 case UnsignedChar: 179 if (getCharWidth() < getIntWidth()) 180 return ""; 181 LLVM_FALLTHROUGH; 182 case UnsignedShort: 183 if (getShortWidth() < getIntWidth()) 184 return ""; 185 LLVM_FALLTHROUGH; 186 case UnsignedInt: return "U"; 187 case UnsignedLong: return "UL"; 188 case UnsignedLongLong: return "ULL"; 189 } 190 } 191 192 /// getTypeFormatModifier - Return the printf format modifier for the 193 /// specified integer type enum. For example, SignedLong -> "l". 194 195 const char *TargetInfo::getTypeFormatModifier(IntType T) { 196 switch (T) { 197 default: llvm_unreachable("not an integer!"); 198 case SignedChar: 199 case UnsignedChar: return "hh"; 200 case SignedShort: 201 case UnsignedShort: return "h"; 202 case SignedInt: 203 case UnsignedInt: return ""; 204 case SignedLong: 205 case UnsignedLong: return "l"; 206 case SignedLongLong: 207 case UnsignedLongLong: return "ll"; 208 } 209 } 210 211 /// getTypeWidth - Return the width (in bits) of the specified integer type 212 /// enum. For example, SignedInt -> getIntWidth(). 213 unsigned TargetInfo::getTypeWidth(IntType T) const { 214 switch (T) { 215 default: llvm_unreachable("not an integer!"); 216 case SignedChar: 217 case UnsignedChar: return getCharWidth(); 218 case SignedShort: 219 case UnsignedShort: return getShortWidth(); 220 case SignedInt: 221 case UnsignedInt: return getIntWidth(); 222 case SignedLong: 223 case UnsignedLong: return getLongWidth(); 224 case SignedLongLong: 225 case UnsignedLongLong: return getLongLongWidth(); 226 }; 227 } 228 229 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 230 unsigned BitWidth, bool IsSigned) const { 231 if (getCharWidth() == BitWidth) 232 return IsSigned ? SignedChar : UnsignedChar; 233 if (getShortWidth() == BitWidth) 234 return IsSigned ? SignedShort : UnsignedShort; 235 if (getIntWidth() == BitWidth) 236 return IsSigned ? SignedInt : UnsignedInt; 237 if (getLongWidth() == BitWidth) 238 return IsSigned ? SignedLong : UnsignedLong; 239 if (getLongLongWidth() == BitWidth) 240 return IsSigned ? SignedLongLong : UnsignedLongLong; 241 return NoInt; 242 } 243 244 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 245 bool IsSigned) const { 246 if (getCharWidth() >= BitWidth) 247 return IsSigned ? SignedChar : UnsignedChar; 248 if (getShortWidth() >= BitWidth) 249 return IsSigned ? SignedShort : UnsignedShort; 250 if (getIntWidth() >= BitWidth) 251 return IsSigned ? SignedInt : UnsignedInt; 252 if (getLongWidth() >= BitWidth) 253 return IsSigned ? SignedLong : UnsignedLong; 254 if (getLongLongWidth() >= BitWidth) 255 return IsSigned ? SignedLongLong : UnsignedLongLong; 256 return NoInt; 257 } 258 259 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const { 260 if (getFloatWidth() == BitWidth) 261 return Float; 262 if (getDoubleWidth() == BitWidth) 263 return Double; 264 265 switch (BitWidth) { 266 case 96: 267 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 268 return LongDouble; 269 break; 270 case 128: 271 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 272 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 273 return LongDouble; 274 if (hasFloat128Type()) 275 return Float128; 276 break; 277 } 278 279 return NoFloat; 280 } 281 282 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 283 /// enum. For example, SignedInt -> getIntAlign(). 284 unsigned TargetInfo::getTypeAlign(IntType T) const { 285 switch (T) { 286 default: llvm_unreachable("not an integer!"); 287 case SignedChar: 288 case UnsignedChar: return getCharAlign(); 289 case SignedShort: 290 case UnsignedShort: return getShortAlign(); 291 case SignedInt: 292 case UnsignedInt: return getIntAlign(); 293 case SignedLong: 294 case UnsignedLong: return getLongAlign(); 295 case SignedLongLong: 296 case UnsignedLongLong: return getLongLongAlign(); 297 }; 298 } 299 300 /// isTypeSigned - Return whether an integer types is signed. Returns true if 301 /// the type is signed; false otherwise. 302 bool TargetInfo::isTypeSigned(IntType T) { 303 switch (T) { 304 default: llvm_unreachable("not an integer!"); 305 case SignedChar: 306 case SignedShort: 307 case SignedInt: 308 case SignedLong: 309 case SignedLongLong: 310 return true; 311 case UnsignedChar: 312 case UnsignedShort: 313 case UnsignedInt: 314 case UnsignedLong: 315 case UnsignedLongLong: 316 return false; 317 }; 318 } 319 320 /// adjust - Set forced language options. 321 /// Apply changes to the target information with respect to certain 322 /// language options which change the target configuration and adjust 323 /// the language based on the target options where applicable. 324 void TargetInfo::adjust(LangOptions &Opts) { 325 if (Opts.NoBitFieldTypeAlign) 326 UseBitFieldTypeAlignment = false; 327 328 switch (Opts.WCharSize) { 329 default: llvm_unreachable("invalid wchar_t width"); 330 case 0: break; 331 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 332 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 333 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 334 } 335 336 if (Opts.AlignDouble) { 337 DoubleAlign = LongLongAlign = 64; 338 LongDoubleAlign = 64; 339 } 340 341 if (Opts.OpenCL) { 342 // OpenCL C requires specific widths for types, irrespective of 343 // what these normally are for the target. 344 // We also define long long and long double here, although the 345 // OpenCL standard only mentions these as "reserved". 346 IntWidth = IntAlign = 32; 347 LongWidth = LongAlign = 64; 348 LongLongWidth = LongLongAlign = 128; 349 HalfWidth = HalfAlign = 16; 350 FloatWidth = FloatAlign = 32; 351 352 // Embedded 32-bit targets (OpenCL EP) might have double C type 353 // defined as float. Let's not override this as it might lead 354 // to generating illegal code that uses 64bit doubles. 355 if (DoubleWidth != FloatWidth) { 356 DoubleWidth = DoubleAlign = 64; 357 DoubleFormat = &llvm::APFloat::IEEEdouble(); 358 } 359 LongDoubleWidth = LongDoubleAlign = 128; 360 361 unsigned MaxPointerWidth = getMaxPointerWidth(); 362 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 363 bool Is32BitArch = MaxPointerWidth == 32; 364 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 365 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 366 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 367 368 IntMaxType = SignedLongLong; 369 Int64Type = SignedLong; 370 371 HalfFormat = &llvm::APFloat::IEEEhalf(); 372 FloatFormat = &llvm::APFloat::IEEEsingle(); 373 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 374 } 375 376 if (Opts.LongDoubleSize) { 377 if (Opts.LongDoubleSize == DoubleWidth) { 378 LongDoubleWidth = DoubleWidth; 379 LongDoubleAlign = DoubleAlign; 380 LongDoubleFormat = DoubleFormat; 381 } else if (Opts.LongDoubleSize == 128) { 382 LongDoubleWidth = LongDoubleAlign = 128; 383 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 384 } 385 } 386 387 if (Opts.NewAlignOverride) 388 NewAlign = Opts.NewAlignOverride * getCharWidth(); 389 390 // Each unsigned fixed point type has the same number of fractional bits as 391 // its corresponding signed type. 392 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 393 CheckFixedPointBits(); 394 } 395 396 bool TargetInfo::initFeatureMap( 397 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 398 const std::vector<std::string> &FeatureVec) const { 399 for (const auto &F : FeatureVec) { 400 StringRef Name = F; 401 // Apply the feature via the target. 402 bool Enabled = Name[0] == '+'; 403 setFeatureEnabled(Features, Name.substr(1), Enabled); 404 } 405 return true; 406 } 407 408 TargetInfo::CallingConvKind 409 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 410 if (getCXXABI() != TargetCXXABI::Microsoft && 411 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 412 return CCK_ClangABI4OrPS4; 413 return CCK_Default; 414 } 415 416 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 417 switch (TK) { 418 case OCLTK_Image: 419 case OCLTK_Pipe: 420 return LangAS::opencl_global; 421 422 case OCLTK_Sampler: 423 return LangAS::opencl_constant; 424 425 default: 426 return LangAS::Default; 427 } 428 } 429 430 //===----------------------------------------------------------------------===// 431 432 433 static StringRef removeGCCRegisterPrefix(StringRef Name) { 434 if (Name[0] == '%' || Name[0] == '#') 435 Name = Name.substr(1); 436 437 return Name; 438 } 439 440 /// isValidClobber - Returns whether the passed in string is 441 /// a valid clobber in an inline asm statement. This is used by 442 /// Sema. 443 bool TargetInfo::isValidClobber(StringRef Name) const { 444 return (isValidGCCRegisterName(Name) || 445 Name == "memory" || Name == "cc"); 446 } 447 448 /// isValidGCCRegisterName - Returns whether the passed in string 449 /// is a valid register name according to GCC. This is used by Sema for 450 /// inline asm statements. 451 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 452 if (Name.empty()) 453 return false; 454 455 // Get rid of any register prefix. 456 Name = removeGCCRegisterPrefix(Name); 457 if (Name.empty()) 458 return false; 459 460 ArrayRef<const char *> Names = getGCCRegNames(); 461 462 // If we have a number it maps to an entry in the register name array. 463 if (isDigit(Name[0])) { 464 unsigned n; 465 if (!Name.getAsInteger(0, n)) 466 return n < Names.size(); 467 } 468 469 // Check register names. 470 if (llvm::is_contained(Names, Name)) 471 return true; 472 473 // Check any additional names that we have. 474 for (const AddlRegName &ARN : getGCCAddlRegNames()) 475 for (const char *AN : ARN.Names) { 476 if (!AN) 477 break; 478 // Make sure the register that the additional name is for is within 479 // the bounds of the register names from above. 480 if (AN == Name && ARN.RegNum < Names.size()) 481 return true; 482 } 483 484 // Now check aliases. 485 for (const GCCRegAlias &GRA : getGCCRegAliases()) 486 for (const char *A : GRA.Aliases) { 487 if (!A) 488 break; 489 if (A == Name) 490 return true; 491 } 492 493 return false; 494 } 495 496 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 497 bool ReturnCanonical) const { 498 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 499 500 // Get rid of any register prefix. 501 Name = removeGCCRegisterPrefix(Name); 502 503 ArrayRef<const char *> Names = getGCCRegNames(); 504 505 // First, check if we have a number. 506 if (isDigit(Name[0])) { 507 unsigned n; 508 if (!Name.getAsInteger(0, n)) { 509 assert(n < Names.size() && "Out of bounds register number!"); 510 return Names[n]; 511 } 512 } 513 514 // Check any additional names that we have. 515 for (const AddlRegName &ARN : getGCCAddlRegNames()) 516 for (const char *AN : ARN.Names) { 517 if (!AN) 518 break; 519 // Make sure the register that the additional name is for is within 520 // the bounds of the register names from above. 521 if (AN == Name && ARN.RegNum < Names.size()) 522 return ReturnCanonical ? Names[ARN.RegNum] : Name; 523 } 524 525 // Now check aliases. 526 for (const GCCRegAlias &RA : getGCCRegAliases()) 527 for (const char *A : RA.Aliases) { 528 if (!A) 529 break; 530 if (A == Name) 531 return RA.Register; 532 } 533 534 return Name; 535 } 536 537 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 538 const char *Name = Info.getConstraintStr().c_str(); 539 // An output constraint must start with '=' or '+' 540 if (*Name != '=' && *Name != '+') 541 return false; 542 543 if (*Name == '+') 544 Info.setIsReadWrite(); 545 546 Name++; 547 while (*Name) { 548 switch (*Name) { 549 default: 550 if (!validateAsmConstraint(Name, Info)) { 551 // FIXME: We temporarily return false 552 // so we can add more constraints as we hit it. 553 // Eventually, an unknown constraint should just be treated as 'g'. 554 return false; 555 } 556 break; 557 case '&': // early clobber. 558 Info.setEarlyClobber(); 559 break; 560 case '%': // commutative. 561 // FIXME: Check that there is a another register after this one. 562 break; 563 case 'r': // general register. 564 Info.setAllowsRegister(); 565 break; 566 case 'm': // memory operand. 567 case 'o': // offsetable memory operand. 568 case 'V': // non-offsetable memory operand. 569 case '<': // autodecrement memory operand. 570 case '>': // autoincrement memory operand. 571 Info.setAllowsMemory(); 572 break; 573 case 'g': // general register, memory operand or immediate integer. 574 case 'X': // any operand. 575 Info.setAllowsRegister(); 576 Info.setAllowsMemory(); 577 break; 578 case ',': // multiple alternative constraint. Pass it. 579 // Handle additional optional '=' or '+' modifiers. 580 if (Name[1] == '=' || Name[1] == '+') 581 Name++; 582 break; 583 case '#': // Ignore as constraint. 584 while (Name[1] && Name[1] != ',') 585 Name++; 586 break; 587 case '?': // Disparage slightly code. 588 case '!': // Disparage severely. 589 case '*': // Ignore for choosing register preferences. 590 case 'i': // Ignore i,n,E,F as output constraints (match from the other 591 // chars) 592 case 'n': 593 case 'E': 594 case 'F': 595 break; // Pass them. 596 } 597 598 Name++; 599 } 600 601 // Early clobber with a read-write constraint which doesn't permit registers 602 // is invalid. 603 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 604 return false; 605 606 // If a constraint allows neither memory nor register operands it contains 607 // only modifiers. Reject it. 608 return Info.allowsMemory() || Info.allowsRegister(); 609 } 610 611 bool TargetInfo::resolveSymbolicName(const char *&Name, 612 ArrayRef<ConstraintInfo> OutputConstraints, 613 unsigned &Index) const { 614 assert(*Name == '[' && "Symbolic name did not start with '['"); 615 Name++; 616 const char *Start = Name; 617 while (*Name && *Name != ']') 618 Name++; 619 620 if (!*Name) { 621 // Missing ']' 622 return false; 623 } 624 625 std::string SymbolicName(Start, Name - Start); 626 627 for (Index = 0; Index != OutputConstraints.size(); ++Index) 628 if (SymbolicName == OutputConstraints[Index].getName()) 629 return true; 630 631 return false; 632 } 633 634 bool TargetInfo::validateInputConstraint( 635 MutableArrayRef<ConstraintInfo> OutputConstraints, 636 ConstraintInfo &Info) const { 637 const char *Name = Info.ConstraintStr.c_str(); 638 639 if (!*Name) 640 return false; 641 642 while (*Name) { 643 switch (*Name) { 644 default: 645 // Check if we have a matching constraint 646 if (*Name >= '0' && *Name <= '9') { 647 const char *DigitStart = Name; 648 while (Name[1] >= '0' && Name[1] <= '9') 649 Name++; 650 const char *DigitEnd = Name; 651 unsigned i; 652 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 653 .getAsInteger(10, i)) 654 return false; 655 656 // Check if matching constraint is out of bounds. 657 if (i >= OutputConstraints.size()) return false; 658 659 // A number must refer to an output only operand. 660 if (OutputConstraints[i].isReadWrite()) 661 return false; 662 663 // If the constraint is already tied, it must be tied to the 664 // same operand referenced to by the number. 665 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 666 return false; 667 668 // The constraint should have the same info as the respective 669 // output constraint. 670 Info.setTiedOperand(i, OutputConstraints[i]); 671 } else if (!validateAsmConstraint(Name, Info)) { 672 // FIXME: This error return is in place temporarily so we can 673 // add more constraints as we hit it. Eventually, an unknown 674 // constraint should just be treated as 'g'. 675 return false; 676 } 677 break; 678 case '[': { 679 unsigned Index = 0; 680 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 681 return false; 682 683 // If the constraint is already tied, it must be tied to the 684 // same operand referenced to by the number. 685 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 686 return false; 687 688 // A number must refer to an output only operand. 689 if (OutputConstraints[Index].isReadWrite()) 690 return false; 691 692 Info.setTiedOperand(Index, OutputConstraints[Index]); 693 break; 694 } 695 case '%': // commutative 696 // FIXME: Fail if % is used with the last operand. 697 break; 698 case 'i': // immediate integer. 699 break; 700 case 'n': // immediate integer with a known value. 701 Info.setRequiresImmediate(); 702 break; 703 case 'I': // Various constant constraints with target-specific meanings. 704 case 'J': 705 case 'K': 706 case 'L': 707 case 'M': 708 case 'N': 709 case 'O': 710 case 'P': 711 if (!validateAsmConstraint(Name, Info)) 712 return false; 713 break; 714 case 'r': // general register. 715 Info.setAllowsRegister(); 716 break; 717 case 'm': // memory operand. 718 case 'o': // offsettable memory operand. 719 case 'V': // non-offsettable memory operand. 720 case '<': // autodecrement memory operand. 721 case '>': // autoincrement memory operand. 722 Info.setAllowsMemory(); 723 break; 724 case 'g': // general register, memory operand or immediate integer. 725 case 'X': // any operand. 726 Info.setAllowsRegister(); 727 Info.setAllowsMemory(); 728 break; 729 case 'E': // immediate floating point. 730 case 'F': // immediate floating point. 731 case 'p': // address operand. 732 break; 733 case ',': // multiple alternative constraint. Ignore comma. 734 break; 735 case '#': // Ignore as constraint. 736 while (Name[1] && Name[1] != ',') 737 Name++; 738 break; 739 case '?': // Disparage slightly code. 740 case '!': // Disparage severely. 741 case '*': // Ignore for choosing register preferences. 742 break; // Pass them. 743 } 744 745 Name++; 746 } 747 748 return true; 749 } 750 751 void TargetInfo::CheckFixedPointBits() const { 752 // Check that the number of fractional and integral bits (and maybe sign) can 753 // fit into the bits given for a fixed point type. 754 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 755 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 756 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 757 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 758 ShortAccumWidth); 759 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 760 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 761 LongAccumWidth); 762 763 assert(getShortFractScale() + 1 <= ShortFractWidth); 764 assert(getFractScale() + 1 <= FractWidth); 765 assert(getLongFractScale() + 1 <= LongFractWidth); 766 assert(getUnsignedShortFractScale() <= ShortFractWidth); 767 assert(getUnsignedFractScale() <= FractWidth); 768 assert(getUnsignedLongFractScale() <= LongFractWidth); 769 770 // Each unsigned fract type has either the same number of fractional bits 771 // as, or one more fractional bit than, its corresponding signed fract type. 772 assert(getShortFractScale() == getUnsignedShortFractScale() || 773 getShortFractScale() == getUnsignedShortFractScale() - 1); 774 assert(getFractScale() == getUnsignedFractScale() || 775 getFractScale() == getUnsignedFractScale() - 1); 776 assert(getLongFractScale() == getUnsignedLongFractScale() || 777 getLongFractScale() == getUnsignedLongFractScale() - 1); 778 779 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 780 // fractional bits is nondecreasing for each of the following sets of 781 // fixed-point types: 782 // - signed fract types 783 // - unsigned fract types 784 // - signed accum types 785 // - unsigned accum types. 786 assert(getLongFractScale() >= getFractScale() && 787 getFractScale() >= getShortFractScale()); 788 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 789 getUnsignedFractScale() >= getUnsignedShortFractScale()); 790 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 791 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 792 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 793 794 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 795 // integral bits is nondecreasing for each of the following sets of 796 // fixed-point types: 797 // - signed accum types 798 // - unsigned accum types 799 assert(getLongAccumIBits() >= getAccumIBits() && 800 getAccumIBits() >= getShortAccumIBits()); 801 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 802 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 803 804 // Each signed accum type has at least as many integral bits as its 805 // corresponding unsigned accum type. 806 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 807 assert(getAccumIBits() >= getUnsignedAccumIBits()); 808 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 809 } 810 811 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 812 auto *Target = static_cast<TransferrableTargetInfo*>(this); 813 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 814 *Target = *Src; 815 } 816