xref: /freebsd/contrib/llvm-project/clang/lib/Basic/TargetInfo.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TargetParser.h"
23 #include <cstdlib>
24 using namespace clang;
25 
26 static const LangASMap DefaultAddrSpaceMap = {0};
27 
28 // TargetInfo Constructor.
29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
30   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
31   // SPARC.  These should be overridden by concrete targets as needed.
32   BigEndian = !T.isLittleEndian();
33   TLSSupported = true;
34   VLASupported = true;
35   NoAsmVariants = false;
36   HasLegalHalfType = false;
37   HasFloat128 = false;
38   HasFloat16 = false;
39   PointerWidth = PointerAlign = 32;
40   BoolWidth = BoolAlign = 8;
41   IntWidth = IntAlign = 32;
42   LongWidth = LongAlign = 32;
43   LongLongWidth = LongLongAlign = 64;
44 
45   // Fixed point default bit widths
46   ShortAccumWidth = ShortAccumAlign = 16;
47   AccumWidth = AccumAlign = 32;
48   LongAccumWidth = LongAccumAlign = 64;
49   ShortFractWidth = ShortFractAlign = 8;
50   FractWidth = FractAlign = 16;
51   LongFractWidth = LongFractAlign = 32;
52 
53   // Fixed point default integral and fractional bit sizes
54   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
55   // types by default to have the same number of fractional bits between _Accum
56   // and _Fract types.
57   PaddingOnUnsignedFixedPoint = false;
58   ShortAccumScale = 7;
59   AccumScale = 15;
60   LongAccumScale = 31;
61 
62   SuitableAlign = 64;
63   DefaultAlignForAttributeAligned = 128;
64   MinGlobalAlign = 0;
65   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
66   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
67   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
68   // This alignment guarantee also applies to Windows and Android.
69   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
70     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
71   else
72     NewAlign = 0; // Infer from basic type alignment.
73   HalfWidth = 16;
74   HalfAlign = 16;
75   FloatWidth = 32;
76   FloatAlign = 32;
77   DoubleWidth = 64;
78   DoubleAlign = 64;
79   LongDoubleWidth = 64;
80   LongDoubleAlign = 64;
81   Float128Align = 128;
82   LargeArrayMinWidth = 0;
83   LargeArrayAlign = 0;
84   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
85   MaxVectorAlign = 0;
86   MaxTLSAlign = 0;
87   SimdDefaultAlign = 0;
88   SizeType = UnsignedLong;
89   PtrDiffType = SignedLong;
90   IntMaxType = SignedLongLong;
91   IntPtrType = SignedLong;
92   WCharType = SignedInt;
93   WIntType = SignedInt;
94   Char16Type = UnsignedShort;
95   Char32Type = UnsignedInt;
96   Int64Type = SignedLongLong;
97   SigAtomicType = SignedInt;
98   ProcessIDType = SignedInt;
99   UseSignedCharForObjCBool = true;
100   UseBitFieldTypeAlignment = true;
101   UseZeroLengthBitfieldAlignment = false;
102   UseExplicitBitFieldAlignment = true;
103   ZeroLengthBitfieldBoundary = 0;
104   HalfFormat = &llvm::APFloat::IEEEhalf();
105   FloatFormat = &llvm::APFloat::IEEEsingle();
106   DoubleFormat = &llvm::APFloat::IEEEdouble();
107   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
108   Float128Format = &llvm::APFloat::IEEEquad();
109   MCountName = "mcount";
110   RegParmMax = 0;
111   SSERegParmMax = 0;
112   HasAlignMac68kSupport = false;
113   HasBuiltinMSVaList = false;
114   IsRenderScriptTarget = false;
115   HasAArch64SVETypes = false;
116 
117   // Default to no types using fpret.
118   RealTypeUsesObjCFPRet = 0;
119 
120   // Default to not using fp2ret for __Complex long double
121   ComplexLongDoubleUsesFP2Ret = false;
122 
123   // Set the C++ ABI based on the triple.
124   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
125                     ? TargetCXXABI::Microsoft
126                     : TargetCXXABI::GenericItanium);
127 
128   // Default to an empty address space map.
129   AddrSpaceMap = &DefaultAddrSpaceMap;
130   UseAddrSpaceMapMangling = false;
131 
132   // Default to an unknown platform name.
133   PlatformName = "unknown";
134   PlatformMinVersion = VersionTuple();
135 }
136 
137 // Out of line virtual dtor for TargetInfo.
138 TargetInfo::~TargetInfo() {}
139 
140 void TargetInfo::resetDataLayout(StringRef DL) {
141   DataLayout.reset(new llvm::DataLayout(DL));
142 }
143 
144 bool
145 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
146   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
147   return false;
148 }
149 
150 bool
151 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
152   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
153   return false;
154 }
155 
156 /// getTypeName - Return the user string for the specified integer type enum.
157 /// For example, SignedShort -> "short".
158 const char *TargetInfo::getTypeName(IntType T) {
159   switch (T) {
160   default: llvm_unreachable("not an integer!");
161   case SignedChar:       return "signed char";
162   case UnsignedChar:     return "unsigned char";
163   case SignedShort:      return "short";
164   case UnsignedShort:    return "unsigned short";
165   case SignedInt:        return "int";
166   case UnsignedInt:      return "unsigned int";
167   case SignedLong:       return "long int";
168   case UnsignedLong:     return "long unsigned int";
169   case SignedLongLong:   return "long long int";
170   case UnsignedLongLong: return "long long unsigned int";
171   }
172 }
173 
174 /// getTypeConstantSuffix - Return the constant suffix for the specified
175 /// integer type enum. For example, SignedLong -> "L".
176 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
177   switch (T) {
178   default: llvm_unreachable("not an integer!");
179   case SignedChar:
180   case SignedShort:
181   case SignedInt:        return "";
182   case SignedLong:       return "L";
183   case SignedLongLong:   return "LL";
184   case UnsignedChar:
185     if (getCharWidth() < getIntWidth())
186       return "";
187     LLVM_FALLTHROUGH;
188   case UnsignedShort:
189     if (getShortWidth() < getIntWidth())
190       return "";
191     LLVM_FALLTHROUGH;
192   case UnsignedInt:      return "U";
193   case UnsignedLong:     return "UL";
194   case UnsignedLongLong: return "ULL";
195   }
196 }
197 
198 /// getTypeFormatModifier - Return the printf format modifier for the
199 /// specified integer type enum. For example, SignedLong -> "l".
200 
201 const char *TargetInfo::getTypeFormatModifier(IntType T) {
202   switch (T) {
203   default: llvm_unreachable("not an integer!");
204   case SignedChar:
205   case UnsignedChar:     return "hh";
206   case SignedShort:
207   case UnsignedShort:    return "h";
208   case SignedInt:
209   case UnsignedInt:      return "";
210   case SignedLong:
211   case UnsignedLong:     return "l";
212   case SignedLongLong:
213   case UnsignedLongLong: return "ll";
214   }
215 }
216 
217 /// getTypeWidth - Return the width (in bits) of the specified integer type
218 /// enum. For example, SignedInt -> getIntWidth().
219 unsigned TargetInfo::getTypeWidth(IntType T) const {
220   switch (T) {
221   default: llvm_unreachable("not an integer!");
222   case SignedChar:
223   case UnsignedChar:     return getCharWidth();
224   case SignedShort:
225   case UnsignedShort:    return getShortWidth();
226   case SignedInt:
227   case UnsignedInt:      return getIntWidth();
228   case SignedLong:
229   case UnsignedLong:     return getLongWidth();
230   case SignedLongLong:
231   case UnsignedLongLong: return getLongLongWidth();
232   };
233 }
234 
235 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
236     unsigned BitWidth, bool IsSigned) const {
237   if (getCharWidth() == BitWidth)
238     return IsSigned ? SignedChar : UnsignedChar;
239   if (getShortWidth() == BitWidth)
240     return IsSigned ? SignedShort : UnsignedShort;
241   if (getIntWidth() == BitWidth)
242     return IsSigned ? SignedInt : UnsignedInt;
243   if (getLongWidth() == BitWidth)
244     return IsSigned ? SignedLong : UnsignedLong;
245   if (getLongLongWidth() == BitWidth)
246     return IsSigned ? SignedLongLong : UnsignedLongLong;
247   return NoInt;
248 }
249 
250 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
251                                                        bool IsSigned) const {
252   if (getCharWidth() >= BitWidth)
253     return IsSigned ? SignedChar : UnsignedChar;
254   if (getShortWidth() >= BitWidth)
255     return IsSigned ? SignedShort : UnsignedShort;
256   if (getIntWidth() >= BitWidth)
257     return IsSigned ? SignedInt : UnsignedInt;
258   if (getLongWidth() >= BitWidth)
259     return IsSigned ? SignedLong : UnsignedLong;
260   if (getLongLongWidth() >= BitWidth)
261     return IsSigned ? SignedLongLong : UnsignedLongLong;
262   return NoInt;
263 }
264 
265 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
266   if (getFloatWidth() == BitWidth)
267     return Float;
268   if (getDoubleWidth() == BitWidth)
269     return Double;
270 
271   switch (BitWidth) {
272   case 96:
273     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
274       return LongDouble;
275     break;
276   case 128:
277     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
278         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
279       return LongDouble;
280     if (hasFloat128Type())
281       return Float128;
282     break;
283   }
284 
285   return NoFloat;
286 }
287 
288 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
289 /// enum. For example, SignedInt -> getIntAlign().
290 unsigned TargetInfo::getTypeAlign(IntType T) const {
291   switch (T) {
292   default: llvm_unreachable("not an integer!");
293   case SignedChar:
294   case UnsignedChar:     return getCharAlign();
295   case SignedShort:
296   case UnsignedShort:    return getShortAlign();
297   case SignedInt:
298   case UnsignedInt:      return getIntAlign();
299   case SignedLong:
300   case UnsignedLong:     return getLongAlign();
301   case SignedLongLong:
302   case UnsignedLongLong: return getLongLongAlign();
303   };
304 }
305 
306 /// isTypeSigned - Return whether an integer types is signed. Returns true if
307 /// the type is signed; false otherwise.
308 bool TargetInfo::isTypeSigned(IntType T) {
309   switch (T) {
310   default: llvm_unreachable("not an integer!");
311   case SignedChar:
312   case SignedShort:
313   case SignedInt:
314   case SignedLong:
315   case SignedLongLong:
316     return true;
317   case UnsignedChar:
318   case UnsignedShort:
319   case UnsignedInt:
320   case UnsignedLong:
321   case UnsignedLongLong:
322     return false;
323   };
324 }
325 
326 /// adjust - Set forced language options.
327 /// Apply changes to the target information with respect to certain
328 /// language options which change the target configuration and adjust
329 /// the language based on the target options where applicable.
330 void TargetInfo::adjust(LangOptions &Opts) {
331   if (Opts.NoBitFieldTypeAlign)
332     UseBitFieldTypeAlignment = false;
333 
334   switch (Opts.WCharSize) {
335   default: llvm_unreachable("invalid wchar_t width");
336   case 0: break;
337   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
338   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
339   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
340   }
341 
342   if (Opts.AlignDouble) {
343     DoubleAlign = LongLongAlign = 64;
344     LongDoubleAlign = 64;
345   }
346 
347   if (Opts.OpenCL) {
348     // OpenCL C requires specific widths for types, irrespective of
349     // what these normally are for the target.
350     // We also define long long and long double here, although the
351     // OpenCL standard only mentions these as "reserved".
352     IntWidth = IntAlign = 32;
353     LongWidth = LongAlign = 64;
354     LongLongWidth = LongLongAlign = 128;
355     HalfWidth = HalfAlign = 16;
356     FloatWidth = FloatAlign = 32;
357 
358     // Embedded 32-bit targets (OpenCL EP) might have double C type
359     // defined as float. Let's not override this as it might lead
360     // to generating illegal code that uses 64bit doubles.
361     if (DoubleWidth != FloatWidth) {
362       DoubleWidth = DoubleAlign = 64;
363       DoubleFormat = &llvm::APFloat::IEEEdouble();
364     }
365     LongDoubleWidth = LongDoubleAlign = 128;
366 
367     unsigned MaxPointerWidth = getMaxPointerWidth();
368     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
369     bool Is32BitArch = MaxPointerWidth == 32;
370     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
371     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
372     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
373 
374     IntMaxType = SignedLongLong;
375     Int64Type = SignedLong;
376 
377     HalfFormat = &llvm::APFloat::IEEEhalf();
378     FloatFormat = &llvm::APFloat::IEEEsingle();
379     LongDoubleFormat = &llvm::APFloat::IEEEquad();
380   }
381 
382   if (Opts.LongDoubleSize) {
383     if (Opts.LongDoubleSize == DoubleWidth) {
384       LongDoubleWidth = DoubleWidth;
385       LongDoubleAlign = DoubleAlign;
386       LongDoubleFormat = DoubleFormat;
387     } else if (Opts.LongDoubleSize == 128) {
388       LongDoubleWidth = LongDoubleAlign = 128;
389       LongDoubleFormat = &llvm::APFloat::IEEEquad();
390     }
391   }
392 
393   if (Opts.NewAlignOverride)
394     NewAlign = Opts.NewAlignOverride * getCharWidth();
395 
396   // Each unsigned fixed point type has the same number of fractional bits as
397   // its corresponding signed type.
398   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
399   CheckFixedPointBits();
400 }
401 
402 bool TargetInfo::initFeatureMap(
403     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
404     const std::vector<std::string> &FeatureVec) const {
405   for (const auto &F : FeatureVec) {
406     StringRef Name = F;
407     // Apply the feature via the target.
408     bool Enabled = Name[0] == '+';
409     setFeatureEnabled(Features, Name.substr(1), Enabled);
410   }
411   return true;
412 }
413 
414 TargetInfo::CallingConvKind
415 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
416   if (getCXXABI() != TargetCXXABI::Microsoft &&
417       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
418     return CCK_ClangABI4OrPS4;
419   return CCK_Default;
420 }
421 
422 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
423   switch (TK) {
424   case OCLTK_Image:
425   case OCLTK_Pipe:
426     return LangAS::opencl_global;
427 
428   case OCLTK_Sampler:
429     return LangAS::opencl_constant;
430 
431   default:
432     return LangAS::Default;
433   }
434 }
435 
436 //===----------------------------------------------------------------------===//
437 
438 
439 static StringRef removeGCCRegisterPrefix(StringRef Name) {
440   if (Name[0] == '%' || Name[0] == '#')
441     Name = Name.substr(1);
442 
443   return Name;
444 }
445 
446 /// isValidClobber - Returns whether the passed in string is
447 /// a valid clobber in an inline asm statement. This is used by
448 /// Sema.
449 bool TargetInfo::isValidClobber(StringRef Name) const {
450   return (isValidGCCRegisterName(Name) ||
451           Name == "memory" || Name == "cc");
452 }
453 
454 /// isValidGCCRegisterName - Returns whether the passed in string
455 /// is a valid register name according to GCC. This is used by Sema for
456 /// inline asm statements.
457 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
458   if (Name.empty())
459     return false;
460 
461   // Get rid of any register prefix.
462   Name = removeGCCRegisterPrefix(Name);
463   if (Name.empty())
464     return false;
465 
466   ArrayRef<const char *> Names = getGCCRegNames();
467 
468   // If we have a number it maps to an entry in the register name array.
469   if (isDigit(Name[0])) {
470     unsigned n;
471     if (!Name.getAsInteger(0, n))
472       return n < Names.size();
473   }
474 
475   // Check register names.
476   if (llvm::is_contained(Names, Name))
477     return true;
478 
479   // Check any additional names that we have.
480   for (const AddlRegName &ARN : getGCCAddlRegNames())
481     for (const char *AN : ARN.Names) {
482       if (!AN)
483         break;
484       // Make sure the register that the additional name is for is within
485       // the bounds of the register names from above.
486       if (AN == Name && ARN.RegNum < Names.size())
487         return true;
488     }
489 
490   // Now check aliases.
491   for (const GCCRegAlias &GRA : getGCCRegAliases())
492     for (const char *A : GRA.Aliases) {
493       if (!A)
494         break;
495       if (A == Name)
496         return true;
497     }
498 
499   return false;
500 }
501 
502 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
503                                                    bool ReturnCanonical) const {
504   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
505 
506   // Get rid of any register prefix.
507   Name = removeGCCRegisterPrefix(Name);
508 
509   ArrayRef<const char *> Names = getGCCRegNames();
510 
511   // First, check if we have a number.
512   if (isDigit(Name[0])) {
513     unsigned n;
514     if (!Name.getAsInteger(0, n)) {
515       assert(n < Names.size() && "Out of bounds register number!");
516       return Names[n];
517     }
518   }
519 
520   // Check any additional names that we have.
521   for (const AddlRegName &ARN : getGCCAddlRegNames())
522     for (const char *AN : ARN.Names) {
523       if (!AN)
524         break;
525       // Make sure the register that the additional name is for is within
526       // the bounds of the register names from above.
527       if (AN == Name && ARN.RegNum < Names.size())
528         return ReturnCanonical ? Names[ARN.RegNum] : Name;
529     }
530 
531   // Now check aliases.
532   for (const GCCRegAlias &RA : getGCCRegAliases())
533     for (const char *A : RA.Aliases) {
534       if (!A)
535         break;
536       if (A == Name)
537         return RA.Register;
538     }
539 
540   return Name;
541 }
542 
543 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
544   const char *Name = Info.getConstraintStr().c_str();
545   // An output constraint must start with '=' or '+'
546   if (*Name != '=' && *Name != '+')
547     return false;
548 
549   if (*Name == '+')
550     Info.setIsReadWrite();
551 
552   Name++;
553   while (*Name) {
554     switch (*Name) {
555     default:
556       if (!validateAsmConstraint(Name, Info)) {
557         // FIXME: We temporarily return false
558         // so we can add more constraints as we hit it.
559         // Eventually, an unknown constraint should just be treated as 'g'.
560         return false;
561       }
562       break;
563     case '&': // early clobber.
564       Info.setEarlyClobber();
565       break;
566     case '%': // commutative.
567       // FIXME: Check that there is a another register after this one.
568       break;
569     case 'r': // general register.
570       Info.setAllowsRegister();
571       break;
572     case 'm': // memory operand.
573     case 'o': // offsetable memory operand.
574     case 'V': // non-offsetable memory operand.
575     case '<': // autodecrement memory operand.
576     case '>': // autoincrement memory operand.
577       Info.setAllowsMemory();
578       break;
579     case 'g': // general register, memory operand or immediate integer.
580     case 'X': // any operand.
581       Info.setAllowsRegister();
582       Info.setAllowsMemory();
583       break;
584     case ',': // multiple alternative constraint.  Pass it.
585       // Handle additional optional '=' or '+' modifiers.
586       if (Name[1] == '=' || Name[1] == '+')
587         Name++;
588       break;
589     case '#': // Ignore as constraint.
590       while (Name[1] && Name[1] != ',')
591         Name++;
592       break;
593     case '?': // Disparage slightly code.
594     case '!': // Disparage severely.
595     case '*': // Ignore for choosing register preferences.
596     case 'i': // Ignore i,n,E,F as output constraints (match from the other
597               // chars)
598     case 'n':
599     case 'E':
600     case 'F':
601       break;  // Pass them.
602     }
603 
604     Name++;
605   }
606 
607   // Early clobber with a read-write constraint which doesn't permit registers
608   // is invalid.
609   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
610     return false;
611 
612   // If a constraint allows neither memory nor register operands it contains
613   // only modifiers. Reject it.
614   return Info.allowsMemory() || Info.allowsRegister();
615 }
616 
617 bool TargetInfo::resolveSymbolicName(const char *&Name,
618                                      ArrayRef<ConstraintInfo> OutputConstraints,
619                                      unsigned &Index) const {
620   assert(*Name == '[' && "Symbolic name did not start with '['");
621   Name++;
622   const char *Start = Name;
623   while (*Name && *Name != ']')
624     Name++;
625 
626   if (!*Name) {
627     // Missing ']'
628     return false;
629   }
630 
631   std::string SymbolicName(Start, Name - Start);
632 
633   for (Index = 0; Index != OutputConstraints.size(); ++Index)
634     if (SymbolicName == OutputConstraints[Index].getName())
635       return true;
636 
637   return false;
638 }
639 
640 bool TargetInfo::validateInputConstraint(
641                               MutableArrayRef<ConstraintInfo> OutputConstraints,
642                               ConstraintInfo &Info) const {
643   const char *Name = Info.ConstraintStr.c_str();
644 
645   if (!*Name)
646     return false;
647 
648   while (*Name) {
649     switch (*Name) {
650     default:
651       // Check if we have a matching constraint
652       if (*Name >= '0' && *Name <= '9') {
653         const char *DigitStart = Name;
654         while (Name[1] >= '0' && Name[1] <= '9')
655           Name++;
656         const char *DigitEnd = Name;
657         unsigned i;
658         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
659                 .getAsInteger(10, i))
660           return false;
661 
662         // Check if matching constraint is out of bounds.
663         if (i >= OutputConstraints.size()) return false;
664 
665         // A number must refer to an output only operand.
666         if (OutputConstraints[i].isReadWrite())
667           return false;
668 
669         // If the constraint is already tied, it must be tied to the
670         // same operand referenced to by the number.
671         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
672           return false;
673 
674         // The constraint should have the same info as the respective
675         // output constraint.
676         Info.setTiedOperand(i, OutputConstraints[i]);
677       } else if (!validateAsmConstraint(Name, Info)) {
678         // FIXME: This error return is in place temporarily so we can
679         // add more constraints as we hit it.  Eventually, an unknown
680         // constraint should just be treated as 'g'.
681         return false;
682       }
683       break;
684     case '[': {
685       unsigned Index = 0;
686       if (!resolveSymbolicName(Name, OutputConstraints, Index))
687         return false;
688 
689       // If the constraint is already tied, it must be tied to the
690       // same operand referenced to by the number.
691       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
692         return false;
693 
694       // A number must refer to an output only operand.
695       if (OutputConstraints[Index].isReadWrite())
696         return false;
697 
698       Info.setTiedOperand(Index, OutputConstraints[Index]);
699       break;
700     }
701     case '%': // commutative
702       // FIXME: Fail if % is used with the last operand.
703       break;
704     case 'i': // immediate integer.
705       break;
706     case 'n': // immediate integer with a known value.
707       Info.setRequiresImmediate();
708       break;
709     case 'I':  // Various constant constraints with target-specific meanings.
710     case 'J':
711     case 'K':
712     case 'L':
713     case 'M':
714     case 'N':
715     case 'O':
716     case 'P':
717       if (!validateAsmConstraint(Name, Info))
718         return false;
719       break;
720     case 'r': // general register.
721       Info.setAllowsRegister();
722       break;
723     case 'm': // memory operand.
724     case 'o': // offsettable memory operand.
725     case 'V': // non-offsettable memory operand.
726     case '<': // autodecrement memory operand.
727     case '>': // autoincrement memory operand.
728       Info.setAllowsMemory();
729       break;
730     case 'g': // general register, memory operand or immediate integer.
731     case 'X': // any operand.
732       Info.setAllowsRegister();
733       Info.setAllowsMemory();
734       break;
735     case 'E': // immediate floating point.
736     case 'F': // immediate floating point.
737     case 'p': // address operand.
738       break;
739     case ',': // multiple alternative constraint.  Ignore comma.
740       break;
741     case '#': // Ignore as constraint.
742       while (Name[1] && Name[1] != ',')
743         Name++;
744       break;
745     case '?': // Disparage slightly code.
746     case '!': // Disparage severely.
747     case '*': // Ignore for choosing register preferences.
748       break;  // Pass them.
749     }
750 
751     Name++;
752   }
753 
754   return true;
755 }
756 
757 void TargetInfo::CheckFixedPointBits() const {
758   // Check that the number of fractional and integral bits (and maybe sign) can
759   // fit into the bits given for a fixed point type.
760   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
761   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
762   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
763   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
764          ShortAccumWidth);
765   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
766   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
767          LongAccumWidth);
768 
769   assert(getShortFractScale() + 1 <= ShortFractWidth);
770   assert(getFractScale() + 1 <= FractWidth);
771   assert(getLongFractScale() + 1 <= LongFractWidth);
772   assert(getUnsignedShortFractScale() <= ShortFractWidth);
773   assert(getUnsignedFractScale() <= FractWidth);
774   assert(getUnsignedLongFractScale() <= LongFractWidth);
775 
776   // Each unsigned fract type has either the same number of fractional bits
777   // as, or one more fractional bit than, its corresponding signed fract type.
778   assert(getShortFractScale() == getUnsignedShortFractScale() ||
779          getShortFractScale() == getUnsignedShortFractScale() - 1);
780   assert(getFractScale() == getUnsignedFractScale() ||
781          getFractScale() == getUnsignedFractScale() - 1);
782   assert(getLongFractScale() == getUnsignedLongFractScale() ||
783          getLongFractScale() == getUnsignedLongFractScale() - 1);
784 
785   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
786   // fractional bits is nondecreasing for each of the following sets of
787   // fixed-point types:
788   // - signed fract types
789   // - unsigned fract types
790   // - signed accum types
791   // - unsigned accum types.
792   assert(getLongFractScale() >= getFractScale() &&
793          getFractScale() >= getShortFractScale());
794   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
795          getUnsignedFractScale() >= getUnsignedShortFractScale());
796   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
797   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
798          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
799 
800   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
801   // integral bits is nondecreasing for each of the following sets of
802   // fixed-point types:
803   // - signed accum types
804   // - unsigned accum types
805   assert(getLongAccumIBits() >= getAccumIBits() &&
806          getAccumIBits() >= getShortAccumIBits());
807   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
808          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
809 
810   // Each signed accum type has at least as many integral bits as its
811   // corresponding unsigned accum type.
812   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
813   assert(getAccumIBits() >= getUnsignedAccumIBits());
814   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
815 }
816 
817 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
818   auto *Target = static_cast<TransferrableTargetInfo*>(this);
819   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
820   *Target = *Src;
821 }
822