xref: /freebsd/contrib/llvm-project/clang/lib/Basic/TargetInfo.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/TargetParser.h"
22 #include <cstdlib>
23 using namespace clang;
24 
25 static const LangASMap DefaultAddrSpaceMap = {0};
26 
27 // TargetInfo Constructor.
28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
29   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
30   // SPARC.  These should be overridden by concrete targets as needed.
31   BigEndian = !T.isLittleEndian();
32   TLSSupported = true;
33   VLASupported = true;
34   NoAsmVariants = false;
35   HasLegalHalfType = false;
36   HasFloat128 = false;
37   HasIbm128 = false;
38   HasFloat16 = false;
39   HasBFloat16 = false;
40   HasLongDouble = true;
41   HasFPReturn = true;
42   HasStrictFP = false;
43   PointerWidth = PointerAlign = 32;
44   BoolWidth = BoolAlign = 8;
45   IntWidth = IntAlign = 32;
46   LongWidth = LongAlign = 32;
47   LongLongWidth = LongLongAlign = 64;
48 
49   // Fixed point default bit widths
50   ShortAccumWidth = ShortAccumAlign = 16;
51   AccumWidth = AccumAlign = 32;
52   LongAccumWidth = LongAccumAlign = 64;
53   ShortFractWidth = ShortFractAlign = 8;
54   FractWidth = FractAlign = 16;
55   LongFractWidth = LongFractAlign = 32;
56 
57   // Fixed point default integral and fractional bit sizes
58   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
59   // types by default to have the same number of fractional bits between _Accum
60   // and _Fract types.
61   PaddingOnUnsignedFixedPoint = false;
62   ShortAccumScale = 7;
63   AccumScale = 15;
64   LongAccumScale = 31;
65 
66   SuitableAlign = 64;
67   DefaultAlignForAttributeAligned = 128;
68   MinGlobalAlign = 0;
69   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
70   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
71   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
72   // This alignment guarantee also applies to Windows and Android. On Darwin,
73   // the alignment is 16 bytes on both 64-bit and 32-bit systems.
74   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
75     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
76   else if (T.isOSDarwin())
77     NewAlign = 128;
78   else
79     NewAlign = 0; // Infer from basic type alignment.
80   HalfWidth = 16;
81   HalfAlign = 16;
82   FloatWidth = 32;
83   FloatAlign = 32;
84   DoubleWidth = 64;
85   DoubleAlign = 64;
86   LongDoubleWidth = 64;
87   LongDoubleAlign = 64;
88   Float128Align = 128;
89   Ibm128Align = 128;
90   LargeArrayMinWidth = 0;
91   LargeArrayAlign = 0;
92   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
93   MaxVectorAlign = 0;
94   MaxTLSAlign = 0;
95   SimdDefaultAlign = 0;
96   SizeType = UnsignedLong;
97   PtrDiffType = SignedLong;
98   IntMaxType = SignedLongLong;
99   IntPtrType = SignedLong;
100   WCharType = SignedInt;
101   WIntType = SignedInt;
102   Char16Type = UnsignedShort;
103   Char32Type = UnsignedInt;
104   Int64Type = SignedLongLong;
105   Int16Type = SignedShort;
106   SigAtomicType = SignedInt;
107   ProcessIDType = SignedInt;
108   UseSignedCharForObjCBool = true;
109   UseBitFieldTypeAlignment = true;
110   UseZeroLengthBitfieldAlignment = false;
111   UseLeadingZeroLengthBitfield = true;
112   UseExplicitBitFieldAlignment = true;
113   ZeroLengthBitfieldBoundary = 0;
114   MaxAlignedAttribute = 0;
115   HalfFormat = &llvm::APFloat::IEEEhalf();
116   FloatFormat = &llvm::APFloat::IEEEsingle();
117   DoubleFormat = &llvm::APFloat::IEEEdouble();
118   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
119   Float128Format = &llvm::APFloat::IEEEquad();
120   Ibm128Format = &llvm::APFloat::PPCDoubleDouble();
121   MCountName = "mcount";
122   UserLabelPrefix = "_";
123   RegParmMax = 0;
124   SSERegParmMax = 0;
125   HasAlignMac68kSupport = false;
126   HasBuiltinMSVaList = false;
127   IsRenderScriptTarget = false;
128   HasAArch64SVETypes = false;
129   HasRISCVVTypes = false;
130   AllowAMDGPUUnsafeFPAtomics = false;
131   ARMCDECoprocMask = 0;
132 
133   // Default to no types using fpret.
134   RealTypeUsesObjCFPRet = 0;
135 
136   // Default to not using fp2ret for __Complex long double
137   ComplexLongDoubleUsesFP2Ret = false;
138 
139   // Set the C++ ABI based on the triple.
140   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
141                     ? TargetCXXABI::Microsoft
142                     : TargetCXXABI::GenericItanium);
143 
144   // Default to an empty address space map.
145   AddrSpaceMap = &DefaultAddrSpaceMap;
146   UseAddrSpaceMapMangling = false;
147 
148   // Default to an unknown platform name.
149   PlatformName = "unknown";
150   PlatformMinVersion = VersionTuple();
151 
152   MaxOpenCLWorkGroupSize = 1024;
153 }
154 
155 // Out of line virtual dtor for TargetInfo.
156 TargetInfo::~TargetInfo() {}
157 
158 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) {
159   DataLayoutString = DL.str();
160   UserLabelPrefix = ULP;
161 }
162 
163 bool
164 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
165   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
166   return false;
167 }
168 
169 bool
170 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
171   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
172   return false;
173 }
174 
175 /// getTypeName - Return the user string for the specified integer type enum.
176 /// For example, SignedShort -> "short".
177 const char *TargetInfo::getTypeName(IntType T) {
178   switch (T) {
179   default: llvm_unreachable("not an integer!");
180   case SignedChar:       return "signed char";
181   case UnsignedChar:     return "unsigned char";
182   case SignedShort:      return "short";
183   case UnsignedShort:    return "unsigned short";
184   case SignedInt:        return "int";
185   case UnsignedInt:      return "unsigned int";
186   case SignedLong:       return "long int";
187   case UnsignedLong:     return "long unsigned int";
188   case SignedLongLong:   return "long long int";
189   case UnsignedLongLong: return "long long unsigned int";
190   }
191 }
192 
193 /// getTypeConstantSuffix - Return the constant suffix for the specified
194 /// integer type enum. For example, SignedLong -> "L".
195 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
196   switch (T) {
197   default: llvm_unreachable("not an integer!");
198   case SignedChar:
199   case SignedShort:
200   case SignedInt:        return "";
201   case SignedLong:       return "L";
202   case SignedLongLong:   return "LL";
203   case UnsignedChar:
204     if (getCharWidth() < getIntWidth())
205       return "";
206     LLVM_FALLTHROUGH;
207   case UnsignedShort:
208     if (getShortWidth() < getIntWidth())
209       return "";
210     LLVM_FALLTHROUGH;
211   case UnsignedInt:      return "U";
212   case UnsignedLong:     return "UL";
213   case UnsignedLongLong: return "ULL";
214   }
215 }
216 
217 /// getTypeFormatModifier - Return the printf format modifier for the
218 /// specified integer type enum. For example, SignedLong -> "l".
219 
220 const char *TargetInfo::getTypeFormatModifier(IntType T) {
221   switch (T) {
222   default: llvm_unreachable("not an integer!");
223   case SignedChar:
224   case UnsignedChar:     return "hh";
225   case SignedShort:
226   case UnsignedShort:    return "h";
227   case SignedInt:
228   case UnsignedInt:      return "";
229   case SignedLong:
230   case UnsignedLong:     return "l";
231   case SignedLongLong:
232   case UnsignedLongLong: return "ll";
233   }
234 }
235 
236 /// getTypeWidth - Return the width (in bits) of the specified integer type
237 /// enum. For example, SignedInt -> getIntWidth().
238 unsigned TargetInfo::getTypeWidth(IntType T) const {
239   switch (T) {
240   default: llvm_unreachable("not an integer!");
241   case SignedChar:
242   case UnsignedChar:     return getCharWidth();
243   case SignedShort:
244   case UnsignedShort:    return getShortWidth();
245   case SignedInt:
246   case UnsignedInt:      return getIntWidth();
247   case SignedLong:
248   case UnsignedLong:     return getLongWidth();
249   case SignedLongLong:
250   case UnsignedLongLong: return getLongLongWidth();
251   };
252 }
253 
254 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
255     unsigned BitWidth, bool IsSigned) const {
256   if (getCharWidth() == BitWidth)
257     return IsSigned ? SignedChar : UnsignedChar;
258   if (getShortWidth() == BitWidth)
259     return IsSigned ? SignedShort : UnsignedShort;
260   if (getIntWidth() == BitWidth)
261     return IsSigned ? SignedInt : UnsignedInt;
262   if (getLongWidth() == BitWidth)
263     return IsSigned ? SignedLong : UnsignedLong;
264   if (getLongLongWidth() == BitWidth)
265     return IsSigned ? SignedLongLong : UnsignedLongLong;
266   return NoInt;
267 }
268 
269 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
270                                                        bool IsSigned) const {
271   if (getCharWidth() >= BitWidth)
272     return IsSigned ? SignedChar : UnsignedChar;
273   if (getShortWidth() >= BitWidth)
274     return IsSigned ? SignedShort : UnsignedShort;
275   if (getIntWidth() >= BitWidth)
276     return IsSigned ? SignedInt : UnsignedInt;
277   if (getLongWidth() >= BitWidth)
278     return IsSigned ? SignedLong : UnsignedLong;
279   if (getLongLongWidth() >= BitWidth)
280     return IsSigned ? SignedLongLong : UnsignedLongLong;
281   return NoInt;
282 }
283 
284 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth,
285                                              FloatModeKind ExplicitType) const {
286   if (getFloatWidth() == BitWidth)
287     return FloatModeKind::Float;
288   if (getDoubleWidth() == BitWidth)
289     return FloatModeKind::Double;
290 
291   switch (BitWidth) {
292   case 96:
293     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
294       return FloatModeKind::LongDouble;
295     break;
296   case 128:
297     // The caller explicitly asked for an IEEE compliant type but we still
298     // have to check if the target supports it.
299     if (ExplicitType == FloatModeKind::Float128)
300       return hasFloat128Type() ? FloatModeKind::Float128
301                                : FloatModeKind::NoFloat;
302     if (ExplicitType == FloatModeKind::Ibm128)
303       return hasIbm128Type() ? FloatModeKind::Ibm128
304                              : FloatModeKind::NoFloat;
305     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
306         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
307       return FloatModeKind::LongDouble;
308     if (hasFloat128Type())
309       return FloatModeKind::Float128;
310     break;
311   }
312 
313   return FloatModeKind::NoFloat;
314 }
315 
316 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
317 /// enum. For example, SignedInt -> getIntAlign().
318 unsigned TargetInfo::getTypeAlign(IntType T) const {
319   switch (T) {
320   default: llvm_unreachable("not an integer!");
321   case SignedChar:
322   case UnsignedChar:     return getCharAlign();
323   case SignedShort:
324   case UnsignedShort:    return getShortAlign();
325   case SignedInt:
326   case UnsignedInt:      return getIntAlign();
327   case SignedLong:
328   case UnsignedLong:     return getLongAlign();
329   case SignedLongLong:
330   case UnsignedLongLong: return getLongLongAlign();
331   };
332 }
333 
334 /// isTypeSigned - Return whether an integer types is signed. Returns true if
335 /// the type is signed; false otherwise.
336 bool TargetInfo::isTypeSigned(IntType T) {
337   switch (T) {
338   default: llvm_unreachable("not an integer!");
339   case SignedChar:
340   case SignedShort:
341   case SignedInt:
342   case SignedLong:
343   case SignedLongLong:
344     return true;
345   case UnsignedChar:
346   case UnsignedShort:
347   case UnsignedInt:
348   case UnsignedLong:
349   case UnsignedLongLong:
350     return false;
351   };
352 }
353 
354 /// adjust - Set forced language options.
355 /// Apply changes to the target information with respect to certain
356 /// language options which change the target configuration and adjust
357 /// the language based on the target options where applicable.
358 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) {
359   if (Opts.NoBitFieldTypeAlign)
360     UseBitFieldTypeAlignment = false;
361 
362   switch (Opts.WCharSize) {
363   default: llvm_unreachable("invalid wchar_t width");
364   case 0: break;
365   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
366   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
367   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
368   }
369 
370   if (Opts.AlignDouble) {
371     DoubleAlign = LongLongAlign = 64;
372     LongDoubleAlign = 64;
373   }
374 
375   if (Opts.OpenCL) {
376     // OpenCL C requires specific widths for types, irrespective of
377     // what these normally are for the target.
378     // We also define long long and long double here, although the
379     // OpenCL standard only mentions these as "reserved".
380     IntWidth = IntAlign = 32;
381     LongWidth = LongAlign = 64;
382     LongLongWidth = LongLongAlign = 128;
383     HalfWidth = HalfAlign = 16;
384     FloatWidth = FloatAlign = 32;
385 
386     // Embedded 32-bit targets (OpenCL EP) might have double C type
387     // defined as float. Let's not override this as it might lead
388     // to generating illegal code that uses 64bit doubles.
389     if (DoubleWidth != FloatWidth) {
390       DoubleWidth = DoubleAlign = 64;
391       DoubleFormat = &llvm::APFloat::IEEEdouble();
392     }
393     LongDoubleWidth = LongDoubleAlign = 128;
394 
395     unsigned MaxPointerWidth = getMaxPointerWidth();
396     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
397     bool Is32BitArch = MaxPointerWidth == 32;
398     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
399     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
400     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
401 
402     IntMaxType = SignedLongLong;
403     Int64Type = SignedLong;
404 
405     HalfFormat = &llvm::APFloat::IEEEhalf();
406     FloatFormat = &llvm::APFloat::IEEEsingle();
407     LongDoubleFormat = &llvm::APFloat::IEEEquad();
408 
409     // OpenCL C v3.0 s6.7.5 - The generic address space requires support for
410     // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space
411     // feature
412     // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0
413     // or later and __opencl_c_pipes feature
414     // FIXME: These language options are also defined in setLangDefaults()
415     // for OpenCL C 2.0 but with no access to target capabilities. Target
416     // should be immutable once created and thus these language options need
417     // to be defined only once.
418     if (Opts.getOpenCLCompatibleVersion() == 300) {
419       const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts();
420       Opts.OpenCLGenericAddressSpace = hasFeatureEnabled(
421           OpenCLFeaturesMap, "__opencl_c_generic_address_space");
422       Opts.OpenCLPipes =
423           hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes");
424     }
425   }
426 
427   if (Opts.DoubleSize) {
428     if (Opts.DoubleSize == 32) {
429       DoubleWidth = 32;
430       LongDoubleWidth = 32;
431       DoubleFormat = &llvm::APFloat::IEEEsingle();
432       LongDoubleFormat = &llvm::APFloat::IEEEsingle();
433     } else if (Opts.DoubleSize == 64) {
434       DoubleWidth = 64;
435       LongDoubleWidth = 64;
436       DoubleFormat = &llvm::APFloat::IEEEdouble();
437       LongDoubleFormat = &llvm::APFloat::IEEEdouble();
438     }
439   }
440 
441   if (Opts.LongDoubleSize) {
442     if (Opts.LongDoubleSize == DoubleWidth) {
443       LongDoubleWidth = DoubleWidth;
444       LongDoubleAlign = DoubleAlign;
445       LongDoubleFormat = DoubleFormat;
446     } else if (Opts.LongDoubleSize == 128) {
447       LongDoubleWidth = LongDoubleAlign = 128;
448       LongDoubleFormat = &llvm::APFloat::IEEEquad();
449     }
450   }
451 
452   if (Opts.NewAlignOverride)
453     NewAlign = Opts.NewAlignOverride * getCharWidth();
454 
455   // Each unsigned fixed point type has the same number of fractional bits as
456   // its corresponding signed type.
457   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
458   CheckFixedPointBits();
459 
460   if (Opts.ProtectParens && !checkArithmeticFenceSupported()) {
461     Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens";
462     Opts.ProtectParens = false;
463   }
464 }
465 
466 bool TargetInfo::initFeatureMap(
467     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
468     const std::vector<std::string> &FeatureVec) const {
469   for (const auto &F : FeatureVec) {
470     StringRef Name = F;
471     // Apply the feature via the target.
472     bool Enabled = Name[0] == '+';
473     setFeatureEnabled(Features, Name.substr(1), Enabled);
474   }
475   return true;
476 }
477 
478 TargetInfo::CallingConvKind
479 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
480   if (getCXXABI() != TargetCXXABI::Microsoft &&
481       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
482     return CCK_ClangABI4OrPS4;
483   return CCK_Default;
484 }
485 
486 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
487   switch (TK) {
488   case OCLTK_Image:
489   case OCLTK_Pipe:
490     return LangAS::opencl_global;
491 
492   case OCLTK_Sampler:
493     return LangAS::opencl_constant;
494 
495   default:
496     return LangAS::Default;
497   }
498 }
499 
500 //===----------------------------------------------------------------------===//
501 
502 
503 static StringRef removeGCCRegisterPrefix(StringRef Name) {
504   if (Name[0] == '%' || Name[0] == '#')
505     Name = Name.substr(1);
506 
507   return Name;
508 }
509 
510 /// isValidClobber - Returns whether the passed in string is
511 /// a valid clobber in an inline asm statement. This is used by
512 /// Sema.
513 bool TargetInfo::isValidClobber(StringRef Name) const {
514   return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" ||
515           Name == "unwind");
516 }
517 
518 /// isValidGCCRegisterName - Returns whether the passed in string
519 /// is a valid register name according to GCC. This is used by Sema for
520 /// inline asm statements.
521 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
522   if (Name.empty())
523     return false;
524 
525   // Get rid of any register prefix.
526   Name = removeGCCRegisterPrefix(Name);
527   if (Name.empty())
528     return false;
529 
530   ArrayRef<const char *> Names = getGCCRegNames();
531 
532   // If we have a number it maps to an entry in the register name array.
533   if (isDigit(Name[0])) {
534     unsigned n;
535     if (!Name.getAsInteger(0, n))
536       return n < Names.size();
537   }
538 
539   // Check register names.
540   if (llvm::is_contained(Names, Name))
541     return true;
542 
543   // Check any additional names that we have.
544   for (const AddlRegName &ARN : getGCCAddlRegNames())
545     for (const char *AN : ARN.Names) {
546       if (!AN)
547         break;
548       // Make sure the register that the additional name is for is within
549       // the bounds of the register names from above.
550       if (AN == Name && ARN.RegNum < Names.size())
551         return true;
552     }
553 
554   // Now check aliases.
555   for (const GCCRegAlias &GRA : getGCCRegAliases())
556     for (const char *A : GRA.Aliases) {
557       if (!A)
558         break;
559       if (A == Name)
560         return true;
561     }
562 
563   return false;
564 }
565 
566 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
567                                                    bool ReturnCanonical) const {
568   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
569 
570   // Get rid of any register prefix.
571   Name = removeGCCRegisterPrefix(Name);
572 
573   ArrayRef<const char *> Names = getGCCRegNames();
574 
575   // First, check if we have a number.
576   if (isDigit(Name[0])) {
577     unsigned n;
578     if (!Name.getAsInteger(0, n)) {
579       assert(n < Names.size() && "Out of bounds register number!");
580       return Names[n];
581     }
582   }
583 
584   // Check any additional names that we have.
585   for (const AddlRegName &ARN : getGCCAddlRegNames())
586     for (const char *AN : ARN.Names) {
587       if (!AN)
588         break;
589       // Make sure the register that the additional name is for is within
590       // the bounds of the register names from above.
591       if (AN == Name && ARN.RegNum < Names.size())
592         return ReturnCanonical ? Names[ARN.RegNum] : Name;
593     }
594 
595   // Now check aliases.
596   for (const GCCRegAlias &RA : getGCCRegAliases())
597     for (const char *A : RA.Aliases) {
598       if (!A)
599         break;
600       if (A == Name)
601         return RA.Register;
602     }
603 
604   return Name;
605 }
606 
607 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
608   const char *Name = Info.getConstraintStr().c_str();
609   // An output constraint must start with '=' or '+'
610   if (*Name != '=' && *Name != '+')
611     return false;
612 
613   if (*Name == '+')
614     Info.setIsReadWrite();
615 
616   Name++;
617   while (*Name) {
618     switch (*Name) {
619     default:
620       if (!validateAsmConstraint(Name, Info)) {
621         // FIXME: We temporarily return false
622         // so we can add more constraints as we hit it.
623         // Eventually, an unknown constraint should just be treated as 'g'.
624         return false;
625       }
626       break;
627     case '&': // early clobber.
628       Info.setEarlyClobber();
629       break;
630     case '%': // commutative.
631       // FIXME: Check that there is a another register after this one.
632       break;
633     case 'r': // general register.
634       Info.setAllowsRegister();
635       break;
636     case 'm': // memory operand.
637     case 'o': // offsetable memory operand.
638     case 'V': // non-offsetable memory operand.
639     case '<': // autodecrement memory operand.
640     case '>': // autoincrement memory operand.
641       Info.setAllowsMemory();
642       break;
643     case 'g': // general register, memory operand or immediate integer.
644     case 'X': // any operand.
645       Info.setAllowsRegister();
646       Info.setAllowsMemory();
647       break;
648     case ',': // multiple alternative constraint.  Pass it.
649       // Handle additional optional '=' or '+' modifiers.
650       if (Name[1] == '=' || Name[1] == '+')
651         Name++;
652       break;
653     case '#': // Ignore as constraint.
654       while (Name[1] && Name[1] != ',')
655         Name++;
656       break;
657     case '?': // Disparage slightly code.
658     case '!': // Disparage severely.
659     case '*': // Ignore for choosing register preferences.
660     case 'i': // Ignore i,n,E,F as output constraints (match from the other
661               // chars)
662     case 'n':
663     case 'E':
664     case 'F':
665       break;  // Pass them.
666     }
667 
668     Name++;
669   }
670 
671   // Early clobber with a read-write constraint which doesn't permit registers
672   // is invalid.
673   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
674     return false;
675 
676   // If a constraint allows neither memory nor register operands it contains
677   // only modifiers. Reject it.
678   return Info.allowsMemory() || Info.allowsRegister();
679 }
680 
681 bool TargetInfo::resolveSymbolicName(const char *&Name,
682                                      ArrayRef<ConstraintInfo> OutputConstraints,
683                                      unsigned &Index) const {
684   assert(*Name == '[' && "Symbolic name did not start with '['");
685   Name++;
686   const char *Start = Name;
687   while (*Name && *Name != ']')
688     Name++;
689 
690   if (!*Name) {
691     // Missing ']'
692     return false;
693   }
694 
695   std::string SymbolicName(Start, Name - Start);
696 
697   for (Index = 0; Index != OutputConstraints.size(); ++Index)
698     if (SymbolicName == OutputConstraints[Index].getName())
699       return true;
700 
701   return false;
702 }
703 
704 bool TargetInfo::validateInputConstraint(
705                               MutableArrayRef<ConstraintInfo> OutputConstraints,
706                               ConstraintInfo &Info) const {
707   const char *Name = Info.ConstraintStr.c_str();
708 
709   if (!*Name)
710     return false;
711 
712   while (*Name) {
713     switch (*Name) {
714     default:
715       // Check if we have a matching constraint
716       if (*Name >= '0' && *Name <= '9') {
717         const char *DigitStart = Name;
718         while (Name[1] >= '0' && Name[1] <= '9')
719           Name++;
720         const char *DigitEnd = Name;
721         unsigned i;
722         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
723                 .getAsInteger(10, i))
724           return false;
725 
726         // Check if matching constraint is out of bounds.
727         if (i >= OutputConstraints.size()) return false;
728 
729         // A number must refer to an output only operand.
730         if (OutputConstraints[i].isReadWrite())
731           return false;
732 
733         // If the constraint is already tied, it must be tied to the
734         // same operand referenced to by the number.
735         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
736           return false;
737 
738         // The constraint should have the same info as the respective
739         // output constraint.
740         Info.setTiedOperand(i, OutputConstraints[i]);
741       } else if (!validateAsmConstraint(Name, Info)) {
742         // FIXME: This error return is in place temporarily so we can
743         // add more constraints as we hit it.  Eventually, an unknown
744         // constraint should just be treated as 'g'.
745         return false;
746       }
747       break;
748     case '[': {
749       unsigned Index = 0;
750       if (!resolveSymbolicName(Name, OutputConstraints, Index))
751         return false;
752 
753       // If the constraint is already tied, it must be tied to the
754       // same operand referenced to by the number.
755       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
756         return false;
757 
758       // A number must refer to an output only operand.
759       if (OutputConstraints[Index].isReadWrite())
760         return false;
761 
762       Info.setTiedOperand(Index, OutputConstraints[Index]);
763       break;
764     }
765     case '%': // commutative
766       // FIXME: Fail if % is used with the last operand.
767       break;
768     case 'i': // immediate integer.
769       break;
770     case 'n': // immediate integer with a known value.
771       Info.setRequiresImmediate();
772       break;
773     case 'I':  // Various constant constraints with target-specific meanings.
774     case 'J':
775     case 'K':
776     case 'L':
777     case 'M':
778     case 'N':
779     case 'O':
780     case 'P':
781       if (!validateAsmConstraint(Name, Info))
782         return false;
783       break;
784     case 'r': // general register.
785       Info.setAllowsRegister();
786       break;
787     case 'm': // memory operand.
788     case 'o': // offsettable memory operand.
789     case 'V': // non-offsettable memory operand.
790     case '<': // autodecrement memory operand.
791     case '>': // autoincrement memory operand.
792       Info.setAllowsMemory();
793       break;
794     case 'g': // general register, memory operand or immediate integer.
795     case 'X': // any operand.
796       Info.setAllowsRegister();
797       Info.setAllowsMemory();
798       break;
799     case 'E': // immediate floating point.
800     case 'F': // immediate floating point.
801     case 'p': // address operand.
802       break;
803     case ',': // multiple alternative constraint.  Ignore comma.
804       break;
805     case '#': // Ignore as constraint.
806       while (Name[1] && Name[1] != ',')
807         Name++;
808       break;
809     case '?': // Disparage slightly code.
810     case '!': // Disparage severely.
811     case '*': // Ignore for choosing register preferences.
812       break;  // Pass them.
813     }
814 
815     Name++;
816   }
817 
818   return true;
819 }
820 
821 void TargetInfo::CheckFixedPointBits() const {
822   // Check that the number of fractional and integral bits (and maybe sign) can
823   // fit into the bits given for a fixed point type.
824   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
825   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
826   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
827   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
828          ShortAccumWidth);
829   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
830   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
831          LongAccumWidth);
832 
833   assert(getShortFractScale() + 1 <= ShortFractWidth);
834   assert(getFractScale() + 1 <= FractWidth);
835   assert(getLongFractScale() + 1 <= LongFractWidth);
836   assert(getUnsignedShortFractScale() <= ShortFractWidth);
837   assert(getUnsignedFractScale() <= FractWidth);
838   assert(getUnsignedLongFractScale() <= LongFractWidth);
839 
840   // Each unsigned fract type has either the same number of fractional bits
841   // as, or one more fractional bit than, its corresponding signed fract type.
842   assert(getShortFractScale() == getUnsignedShortFractScale() ||
843          getShortFractScale() == getUnsignedShortFractScale() - 1);
844   assert(getFractScale() == getUnsignedFractScale() ||
845          getFractScale() == getUnsignedFractScale() - 1);
846   assert(getLongFractScale() == getUnsignedLongFractScale() ||
847          getLongFractScale() == getUnsignedLongFractScale() - 1);
848 
849   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
850   // fractional bits is nondecreasing for each of the following sets of
851   // fixed-point types:
852   // - signed fract types
853   // - unsigned fract types
854   // - signed accum types
855   // - unsigned accum types.
856   assert(getLongFractScale() >= getFractScale() &&
857          getFractScale() >= getShortFractScale());
858   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
859          getUnsignedFractScale() >= getUnsignedShortFractScale());
860   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
861   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
862          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
863 
864   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
865   // integral bits is nondecreasing for each of the following sets of
866   // fixed-point types:
867   // - signed accum types
868   // - unsigned accum types
869   assert(getLongAccumIBits() >= getAccumIBits() &&
870          getAccumIBits() >= getShortAccumIBits());
871   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
872          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
873 
874   // Each signed accum type has at least as many integral bits as its
875   // corresponding unsigned accum type.
876   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
877   assert(getAccumIBits() >= getUnsignedAccumIBits());
878   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
879 }
880 
881 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
882   auto *Target = static_cast<TransferrableTargetInfo*>(this);
883   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
884   *Target = *Src;
885 }
886