xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/UninitializedValues.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements uninitialized values analysis for source-level CFGs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/UninitializedValues.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/OperationKinds.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
27 #include "clang/Basic/LLVM.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/PackedVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/Support/Casting.h"
36 #include <algorithm>
37 #include <cassert>
38 
39 using namespace clang;
40 
41 #define DEBUG_LOGGING 0
42 
43 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
44   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
45       !vd->isExceptionVariable() && !vd->isInitCapture() &&
46       !vd->isImplicit() && vd->getDeclContext() == dc) {
47     QualType ty = vd->getType();
48     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
49   }
50   return false;
51 }
52 
53 //------------------------------------------------------------------------====//
54 // DeclToIndex: a mapping from Decls we track to value indices.
55 //====------------------------------------------------------------------------//
56 
57 namespace {
58 
59 class DeclToIndex {
60   llvm::DenseMap<const VarDecl *, unsigned> map;
61 
62 public:
63   DeclToIndex() = default;
64 
65   /// Compute the actual mapping from declarations to bits.
66   void computeMap(const DeclContext &dc);
67 
68   /// Return the number of declarations in the map.
69   unsigned size() const { return map.size(); }
70 
71   /// Returns the bit vector index for a given declaration.
72   Optional<unsigned> getValueIndex(const VarDecl *d) const;
73 };
74 
75 } // namespace
76 
77 void DeclToIndex::computeMap(const DeclContext &dc) {
78   unsigned count = 0;
79   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
80                                                E(dc.decls_end());
81   for ( ; I != E; ++I) {
82     const VarDecl *vd = *I;
83     if (isTrackedVar(vd, &dc))
84       map[vd] = count++;
85   }
86 }
87 
88 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
89   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
90   if (I == map.end())
91     return None;
92   return I->second;
93 }
94 
95 //------------------------------------------------------------------------====//
96 // CFGBlockValues: dataflow values for CFG blocks.
97 //====------------------------------------------------------------------------//
98 
99 // These values are defined in such a way that a merge can be done using
100 // a bitwise OR.
101 enum Value { Unknown = 0x0,         /* 00 */
102              Initialized = 0x1,     /* 01 */
103              Uninitialized = 0x2,   /* 10 */
104              MayUninitialized = 0x3 /* 11 */ };
105 
106 static bool isUninitialized(const Value v) {
107   return v >= Uninitialized;
108 }
109 
110 static bool isAlwaysUninit(const Value v) {
111   return v == Uninitialized;
112 }
113 
114 namespace {
115 
116 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
117 
118 class CFGBlockValues {
119   const CFG &cfg;
120   SmallVector<ValueVector, 8> vals;
121   ValueVector scratch;
122   DeclToIndex declToIndex;
123 
124 public:
125   CFGBlockValues(const CFG &cfg);
126 
127   unsigned getNumEntries() const { return declToIndex.size(); }
128 
129   void computeSetOfDeclarations(const DeclContext &dc);
130 
131   ValueVector &getValueVector(const CFGBlock *block) {
132     return vals[block->getBlockID()];
133   }
134 
135   void setAllScratchValues(Value V);
136   void mergeIntoScratch(ValueVector const &source, bool isFirst);
137   bool updateValueVectorWithScratch(const CFGBlock *block);
138 
139   bool hasNoDeclarations() const {
140     return declToIndex.size() == 0;
141   }
142 
143   void resetScratch();
144 
145   ValueVector::reference operator[](const VarDecl *vd);
146 
147   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
148                  const VarDecl *vd) {
149     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
150     assert(idx.hasValue());
151     return getValueVector(block)[idx.getValue()];
152   }
153 };
154 
155 } // namespace
156 
157 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
158 
159 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
160   declToIndex.computeMap(dc);
161   unsigned decls = declToIndex.size();
162   scratch.resize(decls);
163   unsigned n = cfg.getNumBlockIDs();
164   if (!n)
165     return;
166   vals.resize(n);
167   for (auto &val : vals)
168     val.resize(decls);
169 }
170 
171 #if DEBUG_LOGGING
172 static void printVector(const CFGBlock *block, ValueVector &bv,
173                         unsigned num) {
174   llvm::errs() << block->getBlockID() << " :";
175   for (const auto &i : bv)
176     llvm::errs() << ' ' << i;
177   llvm::errs() << " : " << num << '\n';
178 }
179 #endif
180 
181 void CFGBlockValues::setAllScratchValues(Value V) {
182   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
183     scratch[I] = V;
184 }
185 
186 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
187                                       bool isFirst) {
188   if (isFirst)
189     scratch = source;
190   else
191     scratch |= source;
192 }
193 
194 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
195   ValueVector &dst = getValueVector(block);
196   bool changed = (dst != scratch);
197   if (changed)
198     dst = scratch;
199 #if DEBUG_LOGGING
200   printVector(block, scratch, 0);
201 #endif
202   return changed;
203 }
204 
205 void CFGBlockValues::resetScratch() {
206   scratch.reset();
207 }
208 
209 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
210   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
211   assert(idx.hasValue());
212   return scratch[idx.getValue()];
213 }
214 
215 //------------------------------------------------------------------------====//
216 // Worklist: worklist for dataflow analysis.
217 //====------------------------------------------------------------------------//
218 
219 namespace {
220 
221 class DataflowWorklist {
222   PostOrderCFGView::iterator PO_I, PO_E;
223   SmallVector<const CFGBlock *, 20> worklist;
224   llvm::BitVector enqueuedBlocks;
225 
226 public:
227   DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
228       : PO_I(view.begin()), PO_E(view.end()),
229         enqueuedBlocks(cfg.getNumBlockIDs(), true) {
230     // Treat the first block as already analyzed.
231     if (PO_I != PO_E) {
232       assert(*PO_I == &cfg.getEntry());
233       enqueuedBlocks[(*PO_I)->getBlockID()] = false;
234       ++PO_I;
235     }
236   }
237 
238   void enqueueSuccessors(const CFGBlock *block);
239   const CFGBlock *dequeue();
240 };
241 
242 } // namespace
243 
244 void DataflowWorklist::enqueueSuccessors(const CFGBlock *block) {
245   for (CFGBlock::const_succ_iterator I = block->succ_begin(),
246        E = block->succ_end(); I != E; ++I) {
247     const CFGBlock *Successor = *I;
248     if (!Successor || enqueuedBlocks[Successor->getBlockID()])
249       continue;
250     worklist.push_back(Successor);
251     enqueuedBlocks[Successor->getBlockID()] = true;
252   }
253 }
254 
255 const CFGBlock *DataflowWorklist::dequeue() {
256   const CFGBlock *B = nullptr;
257 
258   // First dequeue from the worklist.  This can represent
259   // updates along backedges that we want propagated as quickly as possible.
260   if (!worklist.empty())
261     B = worklist.pop_back_val();
262 
263   // Next dequeue from the initial reverse post order.  This is the
264   // theoretical ideal in the presence of no back edges.
265   else if (PO_I != PO_E) {
266     B = *PO_I;
267     ++PO_I;
268   }
269   else
270     return nullptr;
271 
272   assert(enqueuedBlocks[B->getBlockID()] == true);
273   enqueuedBlocks[B->getBlockID()] = false;
274   return B;
275 }
276 
277 //------------------------------------------------------------------------====//
278 // Classification of DeclRefExprs as use or initialization.
279 //====------------------------------------------------------------------------//
280 
281 namespace {
282 
283 class FindVarResult {
284   const VarDecl *vd;
285   const DeclRefExpr *dr;
286 
287 public:
288   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
289 
290   const DeclRefExpr *getDeclRefExpr() const { return dr; }
291   const VarDecl *getDecl() const { return vd; }
292 };
293 
294 } // namespace
295 
296 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
297   while (Ex) {
298     Ex = Ex->IgnoreParenNoopCasts(C);
299     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
300       if (CE->getCastKind() == CK_LValueBitCast) {
301         Ex = CE->getSubExpr();
302         continue;
303       }
304     }
305     break;
306   }
307   return Ex;
308 }
309 
310 /// If E is an expression comprising a reference to a single variable, find that
311 /// variable.
312 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
313   if (const auto *DRE =
314           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
315     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
316       if (isTrackedVar(VD, DC))
317         return FindVarResult(VD, DRE);
318   return FindVarResult(nullptr, nullptr);
319 }
320 
321 namespace {
322 
323 /// Classify each DeclRefExpr as an initialization or a use. Any
324 /// DeclRefExpr which isn't explicitly classified will be assumed to have
325 /// escaped the analysis and will be treated as an initialization.
326 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
327 public:
328   enum Class {
329     Init,
330     Use,
331     SelfInit,
332     Ignore
333   };
334 
335 private:
336   const DeclContext *DC;
337   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
338 
339   bool isTrackedVar(const VarDecl *VD) const {
340     return ::isTrackedVar(VD, DC);
341   }
342 
343   void classify(const Expr *E, Class C);
344 
345 public:
346   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
347 
348   void VisitDeclStmt(DeclStmt *DS);
349   void VisitUnaryOperator(UnaryOperator *UO);
350   void VisitBinaryOperator(BinaryOperator *BO);
351   void VisitCallExpr(CallExpr *CE);
352   void VisitCastExpr(CastExpr *CE);
353   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
354 
355   void operator()(Stmt *S) { Visit(S); }
356 
357   Class get(const DeclRefExpr *DRE) const {
358     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
359         = Classification.find(DRE);
360     if (I != Classification.end())
361       return I->second;
362 
363     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
364     if (!VD || !isTrackedVar(VD))
365       return Ignore;
366 
367     return Init;
368   }
369 };
370 
371 } // namespace
372 
373 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
374   if (VD->getType()->isRecordType())
375     return nullptr;
376   if (Expr *Init = VD->getInit()) {
377     const auto *DRE =
378         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
379     if (DRE && DRE->getDecl() == VD)
380       return DRE;
381   }
382   return nullptr;
383 }
384 
385 void ClassifyRefs::classify(const Expr *E, Class C) {
386   // The result of a ?: could also be an lvalue.
387   E = E->IgnoreParens();
388   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
389     classify(CO->getTrueExpr(), C);
390     classify(CO->getFalseExpr(), C);
391     return;
392   }
393 
394   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
395     classify(BCO->getFalseExpr(), C);
396     return;
397   }
398 
399   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
400     classify(OVE->getSourceExpr(), C);
401     return;
402   }
403 
404   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
405     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
406       if (!VD->isStaticDataMember())
407         classify(ME->getBase(), C);
408     }
409     return;
410   }
411 
412   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
413     switch (BO->getOpcode()) {
414     case BO_PtrMemD:
415     case BO_PtrMemI:
416       classify(BO->getLHS(), C);
417       return;
418     case BO_Comma:
419       classify(BO->getRHS(), C);
420       return;
421     default:
422       return;
423     }
424   }
425 
426   FindVarResult Var = findVar(E, DC);
427   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
428     Classification[DRE] = std::max(Classification[DRE], C);
429 }
430 
431 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
432   for (auto *DI : DS->decls()) {
433     auto *VD = dyn_cast<VarDecl>(DI);
434     if (VD && isTrackedVar(VD))
435       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
436         Classification[DRE] = SelfInit;
437   }
438 }
439 
440 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
441   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
442   // is not a compound-assignment, we will treat it as initializing the variable
443   // when TransferFunctions visits it. A compound-assignment does not affect
444   // whether a variable is uninitialized, and there's no point counting it as a
445   // use.
446   if (BO->isCompoundAssignmentOp())
447     classify(BO->getLHS(), Use);
448   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
449     classify(BO->getLHS(), Ignore);
450 }
451 
452 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
453   // Increment and decrement are uses despite there being no lvalue-to-rvalue
454   // conversion.
455   if (UO->isIncrementDecrementOp())
456     classify(UO->getSubExpr(), Use);
457 }
458 
459 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
460   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
461     classify(cast<Expr>(S), Use);
462 }
463 
464 static bool isPointerToConst(const QualType &QT) {
465   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
466 }
467 
468 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
469   // Classify arguments to std::move as used.
470   if (CE->isCallToStdMove()) {
471     // RecordTypes are handled in SemaDeclCXX.cpp.
472     if (!CE->getArg(0)->getType()->isRecordType())
473       classify(CE->getArg(0), Use);
474     return;
475   }
476 
477   // If a value is passed by const pointer or by const reference to a function,
478   // we should not assume that it is initialized by the call, and we
479   // conservatively do not assume that it is used.
480   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
481        I != E; ++I) {
482     if ((*I)->isGLValue()) {
483       if ((*I)->getType().isConstQualified())
484         classify((*I), Ignore);
485     } else if (isPointerToConst((*I)->getType())) {
486       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
487       const auto *UO = dyn_cast<UnaryOperator>(Ex);
488       if (UO && UO->getOpcode() == UO_AddrOf)
489         Ex = UO->getSubExpr();
490       classify(Ex, Ignore);
491     }
492   }
493 }
494 
495 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
496   if (CE->getCastKind() == CK_LValueToRValue)
497     classify(CE->getSubExpr(), Use);
498   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
499     if (CSE->getType()->isVoidType()) {
500       // Squelch any detected load of an uninitialized value if
501       // we cast it to void.
502       // e.g. (void) x;
503       classify(CSE->getSubExpr(), Ignore);
504     }
505   }
506 }
507 
508 //------------------------------------------------------------------------====//
509 // Transfer function for uninitialized values analysis.
510 //====------------------------------------------------------------------------//
511 
512 namespace {
513 
514 class TransferFunctions : public StmtVisitor<TransferFunctions> {
515   CFGBlockValues &vals;
516   const CFG &cfg;
517   const CFGBlock *block;
518   AnalysisDeclContext &ac;
519   const ClassifyRefs &classification;
520   ObjCNoReturn objCNoRet;
521   UninitVariablesHandler &handler;
522 
523 public:
524   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
525                     const CFGBlock *block, AnalysisDeclContext &ac,
526                     const ClassifyRefs &classification,
527                     UninitVariablesHandler &handler)
528       : vals(vals), cfg(cfg), block(block), ac(ac),
529         classification(classification), objCNoRet(ac.getASTContext()),
530         handler(handler) {}
531 
532   void reportUse(const Expr *ex, const VarDecl *vd);
533 
534   void VisitBinaryOperator(BinaryOperator *bo);
535   void VisitBlockExpr(BlockExpr *be);
536   void VisitCallExpr(CallExpr *ce);
537   void VisitDeclRefExpr(DeclRefExpr *dr);
538   void VisitDeclStmt(DeclStmt *ds);
539   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
540   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
541   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
542 
543   bool isTrackedVar(const VarDecl *vd) {
544     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
545   }
546 
547   FindVarResult findVar(const Expr *ex) {
548     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
549   }
550 
551   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
552     UninitUse Use(ex, isAlwaysUninit(v));
553 
554     assert(isUninitialized(v));
555     if (Use.getKind() == UninitUse::Always)
556       return Use;
557 
558     // If an edge which leads unconditionally to this use did not initialize
559     // the variable, we can say something stronger than 'may be uninitialized':
560     // we can say 'either it's used uninitialized or you have dead code'.
561     //
562     // We track the number of successors of a node which have been visited, and
563     // visit a node once we have visited all of its successors. Only edges where
564     // the variable might still be uninitialized are followed. Since a variable
565     // can't transfer from being initialized to being uninitialized, this will
566     // trace out the subgraph which inevitably leads to the use and does not
567     // initialize the variable. We do not want to skip past loops, since their
568     // non-termination might be correlated with the initialization condition.
569     //
570     // For example:
571     //
572     //         void f(bool a, bool b) {
573     // block1:   int n;
574     //           if (a) {
575     // block2:     if (b)
576     // block3:       n = 1;
577     // block4:   } else if (b) {
578     // block5:     while (!a) {
579     // block6:       do_work(&a);
580     //               n = 2;
581     //             }
582     //           }
583     // block7:   if (a)
584     // block8:     g();
585     // block9:   return n;
586     //         }
587     //
588     // Starting from the maybe-uninitialized use in block 9:
589     //  * Block 7 is not visited because we have only visited one of its two
590     //    successors.
591     //  * Block 8 is visited because we've visited its only successor.
592     // From block 8:
593     //  * Block 7 is visited because we've now visited both of its successors.
594     // From block 7:
595     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
596     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
597     //  * Block 3 is not visited because it initializes 'n'.
598     // Now the algorithm terminates, having visited blocks 7 and 8, and having
599     // found the frontier is blocks 2, 4, and 5.
600     //
601     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
602     // and 4), so we report that any time either of those edges is taken (in
603     // each case when 'b == false'), 'n' is used uninitialized.
604     SmallVector<const CFGBlock*, 32> Queue;
605     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
606     Queue.push_back(block);
607     // Specify that we've already visited all successors of the starting block.
608     // This has the dual purpose of ensuring we never add it to the queue, and
609     // of marking it as not being a candidate element of the frontier.
610     SuccsVisited[block->getBlockID()] = block->succ_size();
611     while (!Queue.empty()) {
612       const CFGBlock *B = Queue.pop_back_val();
613 
614       // If the use is always reached from the entry block, make a note of that.
615       if (B == &cfg.getEntry())
616         Use.setUninitAfterCall();
617 
618       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
619            I != E; ++I) {
620         const CFGBlock *Pred = *I;
621         if (!Pred)
622           continue;
623 
624         Value AtPredExit = vals.getValue(Pred, B, vd);
625         if (AtPredExit == Initialized)
626           // This block initializes the variable.
627           continue;
628         if (AtPredExit == MayUninitialized &&
629             vals.getValue(B, nullptr, vd) == Uninitialized) {
630           // This block declares the variable (uninitialized), and is reachable
631           // from a block that initializes the variable. We can't guarantee to
632           // give an earlier location for the diagnostic (and it appears that
633           // this code is intended to be reachable) so give a diagnostic here
634           // and go no further down this path.
635           Use.setUninitAfterDecl();
636           continue;
637         }
638 
639         unsigned &SV = SuccsVisited[Pred->getBlockID()];
640         if (!SV) {
641           // When visiting the first successor of a block, mark all NULL
642           // successors as having been visited.
643           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
644                                              SE = Pred->succ_end();
645                SI != SE; ++SI)
646             if (!*SI)
647               ++SV;
648         }
649 
650         if (++SV == Pred->succ_size())
651           // All paths from this block lead to the use and don't initialize the
652           // variable.
653           Queue.push_back(Pred);
654       }
655     }
656 
657     // Scan the frontier, looking for blocks where the variable was
658     // uninitialized.
659     for (const auto *Block : cfg) {
660       unsigned BlockID = Block->getBlockID();
661       const Stmt *Term = Block->getTerminatorStmt();
662       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
663           Term) {
664         // This block inevitably leads to the use. If we have an edge from here
665         // to a post-dominator block, and the variable is uninitialized on that
666         // edge, we have found a bug.
667         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
668              E = Block->succ_end(); I != E; ++I) {
669           const CFGBlock *Succ = *I;
670           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
671               vals.getValue(Block, Succ, vd) == Uninitialized) {
672             // Switch cases are a special case: report the label to the caller
673             // as the 'terminator', not the switch statement itself. Suppress
674             // situations where no label matched: we can't be sure that's
675             // possible.
676             if (isa<SwitchStmt>(Term)) {
677               const Stmt *Label = Succ->getLabel();
678               if (!Label || !isa<SwitchCase>(Label))
679                 // Might not be possible.
680                 continue;
681               UninitUse::Branch Branch;
682               Branch.Terminator = Label;
683               Branch.Output = 0; // Ignored.
684               Use.addUninitBranch(Branch);
685             } else {
686               UninitUse::Branch Branch;
687               Branch.Terminator = Term;
688               Branch.Output = I - Block->succ_begin();
689               Use.addUninitBranch(Branch);
690             }
691           }
692         }
693       }
694     }
695 
696     return Use;
697   }
698 };
699 
700 } // namespace
701 
702 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
703   Value v = vals[vd];
704   if (isUninitialized(v))
705     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
706 }
707 
708 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
709   // This represents an initialization of the 'element' value.
710   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
711     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
712     if (isTrackedVar(VD))
713       vals[VD] = Initialized;
714   }
715 }
716 
717 void TransferFunctions::VisitOMPExecutableDirective(
718     OMPExecutableDirective *ED) {
719   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
720     assert(S && "Expected non-null used-in-clause child.");
721     Visit(S);
722   }
723   if (!ED->isStandaloneDirective())
724     Visit(ED->getStructuredBlock());
725 }
726 
727 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
728   const BlockDecl *bd = be->getBlockDecl();
729   for (const auto &I : bd->captures()) {
730     const VarDecl *vd = I.getVariable();
731     if (!isTrackedVar(vd))
732       continue;
733     if (I.isByRef()) {
734       vals[vd] = Initialized;
735       continue;
736     }
737     reportUse(be, vd);
738   }
739 }
740 
741 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
742   if (Decl *Callee = ce->getCalleeDecl()) {
743     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
744       // After a call to a function like setjmp or vfork, any variable which is
745       // initialized anywhere within this function may now be initialized. For
746       // now, just assume such a call initializes all variables.  FIXME: Only
747       // mark variables as initialized if they have an initializer which is
748       // reachable from here.
749       vals.setAllScratchValues(Initialized);
750     }
751     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
752       // Functions labeled like "analyzer_noreturn" are often used to denote
753       // "panic" functions that in special debug situations can still return,
754       // but for the most part should not be treated as returning.  This is a
755       // useful annotation borrowed from the static analyzer that is useful for
756       // suppressing branch-specific false positives when we call one of these
757       // functions but keep pretending the path continues (when in reality the
758       // user doesn't care).
759       vals.setAllScratchValues(Unknown);
760     }
761   }
762 }
763 
764 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
765   switch (classification.get(dr)) {
766   case ClassifyRefs::Ignore:
767     break;
768   case ClassifyRefs::Use:
769     reportUse(dr, cast<VarDecl>(dr->getDecl()));
770     break;
771   case ClassifyRefs::Init:
772     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
773     break;
774   case ClassifyRefs::SelfInit:
775       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
776     break;
777   }
778 }
779 
780 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
781   if (BO->getOpcode() == BO_Assign) {
782     FindVarResult Var = findVar(BO->getLHS());
783     if (const VarDecl *VD = Var.getDecl())
784       vals[VD] = Initialized;
785   }
786 }
787 
788 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
789   for (auto *DI : DS->decls()) {
790     auto *VD = dyn_cast<VarDecl>(DI);
791     if (VD && isTrackedVar(VD)) {
792       if (getSelfInitExpr(VD)) {
793         // If the initializer consists solely of a reference to itself, we
794         // explicitly mark the variable as uninitialized. This allows code
795         // like the following:
796         //
797         //   int x = x;
798         //
799         // to deliberately leave a variable uninitialized. Different analysis
800         // clients can detect this pattern and adjust their reporting
801         // appropriately, but we need to continue to analyze subsequent uses
802         // of the variable.
803         vals[VD] = Uninitialized;
804       } else if (VD->getInit()) {
805         // Treat the new variable as initialized.
806         vals[VD] = Initialized;
807       } else {
808         // No initializer: the variable is now uninitialized. This matters
809         // for cases like:
810         //   while (...) {
811         //     int n;
812         //     use(n);
813         //     n = 0;
814         //   }
815         // FIXME: Mark the variable as uninitialized whenever its scope is
816         // left, since its scope could be re-entered by a jump over the
817         // declaration.
818         vals[VD] = Uninitialized;
819       }
820     }
821   }
822 }
823 
824 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
825   // If the Objective-C message expression is an implicit no-return that
826   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
827   if (objCNoRet.isImplicitNoReturn(ME)) {
828     vals.setAllScratchValues(Unknown);
829   }
830 }
831 
832 //------------------------------------------------------------------------====//
833 // High-level "driver" logic for uninitialized values analysis.
834 //====------------------------------------------------------------------------//
835 
836 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
837                        AnalysisDeclContext &ac, CFGBlockValues &vals,
838                        const ClassifyRefs &classification,
839                        llvm::BitVector &wasAnalyzed,
840                        UninitVariablesHandler &handler) {
841   wasAnalyzed[block->getBlockID()] = true;
842   vals.resetScratch();
843   // Merge in values of predecessor blocks.
844   bool isFirst = true;
845   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
846        E = block->pred_end(); I != E; ++I) {
847     const CFGBlock *pred = *I;
848     if (!pred)
849       continue;
850     if (wasAnalyzed[pred->getBlockID()]) {
851       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
852       isFirst = false;
853     }
854   }
855   // Apply the transfer function.
856   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
857   for (const auto &I : *block) {
858     if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
859       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
860   }
861   return vals.updateValueVectorWithScratch(block);
862 }
863 
864 namespace {
865 
866 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
867 /// to detect when a CFGBlock has any *potential* use of an uninitialized
868 /// variable.  It is mainly used to prune out work during the final
869 /// reporting pass.
870 struct PruneBlocksHandler : public UninitVariablesHandler {
871   /// Records if a CFGBlock had a potential use of an uninitialized variable.
872   llvm::BitVector hadUse;
873 
874   /// Records if any CFGBlock had a potential use of an uninitialized variable.
875   bool hadAnyUse = false;
876 
877   /// The current block to scribble use information.
878   unsigned currentBlock = 0;
879 
880   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
881 
882   ~PruneBlocksHandler() override = default;
883 
884   void handleUseOfUninitVariable(const VarDecl *vd,
885                                  const UninitUse &use) override {
886     hadUse[currentBlock] = true;
887     hadAnyUse = true;
888   }
889 
890   /// Called when the uninitialized variable analysis detects the
891   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
892   /// are handled by handleUseOfUninitVariable.
893   void handleSelfInit(const VarDecl *vd) override {
894     hadUse[currentBlock] = true;
895     hadAnyUse = true;
896   }
897 };
898 
899 } // namespace
900 
901 void clang::runUninitializedVariablesAnalysis(
902     const DeclContext &dc,
903     const CFG &cfg,
904     AnalysisDeclContext &ac,
905     UninitVariablesHandler &handler,
906     UninitVariablesAnalysisStats &stats) {
907   CFGBlockValues vals(cfg);
908   vals.computeSetOfDeclarations(dc);
909   if (vals.hasNoDeclarations())
910     return;
911 
912   stats.NumVariablesAnalyzed = vals.getNumEntries();
913 
914   // Precompute which expressions are uses and which are initializations.
915   ClassifyRefs classification(ac);
916   cfg.VisitBlockStmts(classification);
917 
918   // Mark all variables uninitialized at the entry.
919   const CFGBlock &entry = cfg.getEntry();
920   ValueVector &vec = vals.getValueVector(&entry);
921   const unsigned n = vals.getNumEntries();
922   for (unsigned j = 0; j < n; ++j) {
923     vec[j] = Uninitialized;
924   }
925 
926   // Proceed with the workist.
927   DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
928   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
929   worklist.enqueueSuccessors(&cfg.getEntry());
930   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
931   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
932   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
933 
934   while (const CFGBlock *block = worklist.dequeue()) {
935     PBH.currentBlock = block->getBlockID();
936 
937     // Did the block change?
938     bool changed = runOnBlock(block, cfg, ac, vals,
939                               classification, wasAnalyzed, PBH);
940     ++stats.NumBlockVisits;
941     if (changed || !previouslyVisited[block->getBlockID()])
942       worklist.enqueueSuccessors(block);
943     previouslyVisited[block->getBlockID()] = true;
944   }
945 
946   if (!PBH.hadAnyUse)
947     return;
948 
949   // Run through the blocks one more time, and report uninitialized variables.
950   for (const auto *block : cfg)
951     if (PBH.hadUse[block->getBlockID()]) {
952       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
953       ++stats.NumBlockVisits;
954     }
955 }
956 
957 UninitVariablesHandler::~UninitVariablesHandler() = default;
958