1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements uninitialized values analysis for source-level CFGs. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Analysis/Analyses/UninitializedValues.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/OperationKinds.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtObjC.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/AST/Type.h" 23 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 24 #include "clang/Analysis/AnalysisDeclContext.h" 25 #include "clang/Analysis/CFG.h" 26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" 27 #include "clang/Basic/LLVM.h" 28 #include "llvm/ADT/BitVector.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/ADT/PackedVector.h" 33 #include "llvm/ADT/SmallBitVector.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/Support/Casting.h" 36 #include <algorithm> 37 #include <cassert> 38 39 using namespace clang; 40 41 #define DEBUG_LOGGING 0 42 43 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { 44 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 45 !vd->isExceptionVariable() && !vd->isInitCapture() && 46 !vd->isImplicit() && vd->getDeclContext() == dc) { 47 QualType ty = vd->getType(); 48 return ty->isScalarType() || ty->isVectorType() || ty->isRecordType(); 49 } 50 return false; 51 } 52 53 //------------------------------------------------------------------------====// 54 // DeclToIndex: a mapping from Decls we track to value indices. 55 //====------------------------------------------------------------------------// 56 57 namespace { 58 59 class DeclToIndex { 60 llvm::DenseMap<const VarDecl *, unsigned> map; 61 62 public: 63 DeclToIndex() = default; 64 65 /// Compute the actual mapping from declarations to bits. 66 void computeMap(const DeclContext &dc); 67 68 /// Return the number of declarations in the map. 69 unsigned size() const { return map.size(); } 70 71 /// Returns the bit vector index for a given declaration. 72 Optional<unsigned> getValueIndex(const VarDecl *d) const; 73 }; 74 75 } // namespace 76 77 void DeclToIndex::computeMap(const DeclContext &dc) { 78 unsigned count = 0; 79 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), 80 E(dc.decls_end()); 81 for ( ; I != E; ++I) { 82 const VarDecl *vd = *I; 83 if (isTrackedVar(vd, &dc)) 84 map[vd] = count++; 85 } 86 } 87 88 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { 89 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); 90 if (I == map.end()) 91 return None; 92 return I->second; 93 } 94 95 //------------------------------------------------------------------------====// 96 // CFGBlockValues: dataflow values for CFG blocks. 97 //====------------------------------------------------------------------------// 98 99 // These values are defined in such a way that a merge can be done using 100 // a bitwise OR. 101 enum Value { Unknown = 0x0, /* 00 */ 102 Initialized = 0x1, /* 01 */ 103 Uninitialized = 0x2, /* 10 */ 104 MayUninitialized = 0x3 /* 11 */ }; 105 106 static bool isUninitialized(const Value v) { 107 return v >= Uninitialized; 108 } 109 110 static bool isAlwaysUninit(const Value v) { 111 return v == Uninitialized; 112 } 113 114 namespace { 115 116 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>; 117 118 class CFGBlockValues { 119 const CFG &cfg; 120 SmallVector<ValueVector, 8> vals; 121 ValueVector scratch; 122 DeclToIndex declToIndex; 123 124 public: 125 CFGBlockValues(const CFG &cfg); 126 127 unsigned getNumEntries() const { return declToIndex.size(); } 128 129 void computeSetOfDeclarations(const DeclContext &dc); 130 131 ValueVector &getValueVector(const CFGBlock *block) { 132 return vals[block->getBlockID()]; 133 } 134 135 void setAllScratchValues(Value V); 136 void mergeIntoScratch(ValueVector const &source, bool isFirst); 137 bool updateValueVectorWithScratch(const CFGBlock *block); 138 139 bool hasNoDeclarations() const { 140 return declToIndex.size() == 0; 141 } 142 143 void resetScratch(); 144 145 ValueVector::reference operator[](const VarDecl *vd); 146 147 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, 148 const VarDecl *vd) { 149 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 150 assert(idx.hasValue()); 151 return getValueVector(block)[idx.getValue()]; 152 } 153 }; 154 155 } // namespace 156 157 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} 158 159 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { 160 declToIndex.computeMap(dc); 161 unsigned decls = declToIndex.size(); 162 scratch.resize(decls); 163 unsigned n = cfg.getNumBlockIDs(); 164 if (!n) 165 return; 166 vals.resize(n); 167 for (auto &val : vals) 168 val.resize(decls); 169 } 170 171 #if DEBUG_LOGGING 172 static void printVector(const CFGBlock *block, ValueVector &bv, 173 unsigned num) { 174 llvm::errs() << block->getBlockID() << " :"; 175 for (const auto &i : bv) 176 llvm::errs() << ' ' << i; 177 llvm::errs() << " : " << num << '\n'; 178 } 179 #endif 180 181 void CFGBlockValues::setAllScratchValues(Value V) { 182 for (unsigned I = 0, E = scratch.size(); I != E; ++I) 183 scratch[I] = V; 184 } 185 186 void CFGBlockValues::mergeIntoScratch(ValueVector const &source, 187 bool isFirst) { 188 if (isFirst) 189 scratch = source; 190 else 191 scratch |= source; 192 } 193 194 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { 195 ValueVector &dst = getValueVector(block); 196 bool changed = (dst != scratch); 197 if (changed) 198 dst = scratch; 199 #if DEBUG_LOGGING 200 printVector(block, scratch, 0); 201 #endif 202 return changed; 203 } 204 205 void CFGBlockValues::resetScratch() { 206 scratch.reset(); 207 } 208 209 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { 210 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 211 assert(idx.hasValue()); 212 return scratch[idx.getValue()]; 213 } 214 215 //------------------------------------------------------------------------====// 216 // Worklist: worklist for dataflow analysis. 217 //====------------------------------------------------------------------------// 218 219 namespace { 220 221 class DataflowWorklist { 222 PostOrderCFGView::iterator PO_I, PO_E; 223 SmallVector<const CFGBlock *, 20> worklist; 224 llvm::BitVector enqueuedBlocks; 225 226 public: 227 DataflowWorklist(const CFG &cfg, PostOrderCFGView &view) 228 : PO_I(view.begin()), PO_E(view.end()), 229 enqueuedBlocks(cfg.getNumBlockIDs(), true) { 230 // Treat the first block as already analyzed. 231 if (PO_I != PO_E) { 232 assert(*PO_I == &cfg.getEntry()); 233 enqueuedBlocks[(*PO_I)->getBlockID()] = false; 234 ++PO_I; 235 } 236 } 237 238 void enqueueSuccessors(const CFGBlock *block); 239 const CFGBlock *dequeue(); 240 }; 241 242 } // namespace 243 244 void DataflowWorklist::enqueueSuccessors(const CFGBlock *block) { 245 for (CFGBlock::const_succ_iterator I = block->succ_begin(), 246 E = block->succ_end(); I != E; ++I) { 247 const CFGBlock *Successor = *I; 248 if (!Successor || enqueuedBlocks[Successor->getBlockID()]) 249 continue; 250 worklist.push_back(Successor); 251 enqueuedBlocks[Successor->getBlockID()] = true; 252 } 253 } 254 255 const CFGBlock *DataflowWorklist::dequeue() { 256 const CFGBlock *B = nullptr; 257 258 // First dequeue from the worklist. This can represent 259 // updates along backedges that we want propagated as quickly as possible. 260 if (!worklist.empty()) 261 B = worklist.pop_back_val(); 262 263 // Next dequeue from the initial reverse post order. This is the 264 // theoretical ideal in the presence of no back edges. 265 else if (PO_I != PO_E) { 266 B = *PO_I; 267 ++PO_I; 268 } 269 else 270 return nullptr; 271 272 assert(enqueuedBlocks[B->getBlockID()] == true); 273 enqueuedBlocks[B->getBlockID()] = false; 274 return B; 275 } 276 277 //------------------------------------------------------------------------====// 278 // Classification of DeclRefExprs as use or initialization. 279 //====------------------------------------------------------------------------// 280 281 namespace { 282 283 class FindVarResult { 284 const VarDecl *vd; 285 const DeclRefExpr *dr; 286 287 public: 288 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} 289 290 const DeclRefExpr *getDeclRefExpr() const { return dr; } 291 const VarDecl *getDecl() const { return vd; } 292 }; 293 294 } // namespace 295 296 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { 297 while (Ex) { 298 Ex = Ex->IgnoreParenNoopCasts(C); 299 if (const auto *CE = dyn_cast<CastExpr>(Ex)) { 300 if (CE->getCastKind() == CK_LValueBitCast) { 301 Ex = CE->getSubExpr(); 302 continue; 303 } 304 } 305 break; 306 } 307 return Ex; 308 } 309 310 /// If E is an expression comprising a reference to a single variable, find that 311 /// variable. 312 static FindVarResult findVar(const Expr *E, const DeclContext *DC) { 313 if (const auto *DRE = 314 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) 315 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 316 if (isTrackedVar(VD, DC)) 317 return FindVarResult(VD, DRE); 318 return FindVarResult(nullptr, nullptr); 319 } 320 321 namespace { 322 323 /// Classify each DeclRefExpr as an initialization or a use. Any 324 /// DeclRefExpr which isn't explicitly classified will be assumed to have 325 /// escaped the analysis and will be treated as an initialization. 326 class ClassifyRefs : public StmtVisitor<ClassifyRefs> { 327 public: 328 enum Class { 329 Init, 330 Use, 331 SelfInit, 332 Ignore 333 }; 334 335 private: 336 const DeclContext *DC; 337 llvm::DenseMap<const DeclRefExpr *, Class> Classification; 338 339 bool isTrackedVar(const VarDecl *VD) const { 340 return ::isTrackedVar(VD, DC); 341 } 342 343 void classify(const Expr *E, Class C); 344 345 public: 346 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} 347 348 void VisitDeclStmt(DeclStmt *DS); 349 void VisitUnaryOperator(UnaryOperator *UO); 350 void VisitBinaryOperator(BinaryOperator *BO); 351 void VisitCallExpr(CallExpr *CE); 352 void VisitCastExpr(CastExpr *CE); 353 void VisitOMPExecutableDirective(OMPExecutableDirective *ED); 354 355 void operator()(Stmt *S) { Visit(S); } 356 357 Class get(const DeclRefExpr *DRE) const { 358 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I 359 = Classification.find(DRE); 360 if (I != Classification.end()) 361 return I->second; 362 363 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 364 if (!VD || !isTrackedVar(VD)) 365 return Ignore; 366 367 return Init; 368 } 369 }; 370 371 } // namespace 372 373 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { 374 if (VD->getType()->isRecordType()) 375 return nullptr; 376 if (Expr *Init = VD->getInit()) { 377 const auto *DRE = 378 dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); 379 if (DRE && DRE->getDecl() == VD) 380 return DRE; 381 } 382 return nullptr; 383 } 384 385 void ClassifyRefs::classify(const Expr *E, Class C) { 386 // The result of a ?: could also be an lvalue. 387 E = E->IgnoreParens(); 388 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 389 classify(CO->getTrueExpr(), C); 390 classify(CO->getFalseExpr(), C); 391 return; 392 } 393 394 if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) { 395 classify(BCO->getFalseExpr(), C); 396 return; 397 } 398 399 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 400 classify(OVE->getSourceExpr(), C); 401 return; 402 } 403 404 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 405 if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 406 if (!VD->isStaticDataMember()) 407 classify(ME->getBase(), C); 408 } 409 return; 410 } 411 412 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 413 switch (BO->getOpcode()) { 414 case BO_PtrMemD: 415 case BO_PtrMemI: 416 classify(BO->getLHS(), C); 417 return; 418 case BO_Comma: 419 classify(BO->getRHS(), C); 420 return; 421 default: 422 return; 423 } 424 } 425 426 FindVarResult Var = findVar(E, DC); 427 if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) 428 Classification[DRE] = std::max(Classification[DRE], C); 429 } 430 431 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { 432 for (auto *DI : DS->decls()) { 433 auto *VD = dyn_cast<VarDecl>(DI); 434 if (VD && isTrackedVar(VD)) 435 if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) 436 Classification[DRE] = SelfInit; 437 } 438 } 439 440 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { 441 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this 442 // is not a compound-assignment, we will treat it as initializing the variable 443 // when TransferFunctions visits it. A compound-assignment does not affect 444 // whether a variable is uninitialized, and there's no point counting it as a 445 // use. 446 if (BO->isCompoundAssignmentOp()) 447 classify(BO->getLHS(), Use); 448 else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma) 449 classify(BO->getLHS(), Ignore); 450 } 451 452 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { 453 // Increment and decrement are uses despite there being no lvalue-to-rvalue 454 // conversion. 455 if (UO->isIncrementDecrementOp()) 456 classify(UO->getSubExpr(), Use); 457 } 458 459 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) { 460 for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) 461 classify(cast<Expr>(S), Use); 462 } 463 464 static bool isPointerToConst(const QualType &QT) { 465 return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified(); 466 } 467 468 void ClassifyRefs::VisitCallExpr(CallExpr *CE) { 469 // Classify arguments to std::move as used. 470 if (CE->isCallToStdMove()) { 471 // RecordTypes are handled in SemaDeclCXX.cpp. 472 if (!CE->getArg(0)->getType()->isRecordType()) 473 classify(CE->getArg(0), Use); 474 return; 475 } 476 477 // If a value is passed by const pointer or by const reference to a function, 478 // we should not assume that it is initialized by the call, and we 479 // conservatively do not assume that it is used. 480 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); 481 I != E; ++I) { 482 if ((*I)->isGLValue()) { 483 if ((*I)->getType().isConstQualified()) 484 classify((*I), Ignore); 485 } else if (isPointerToConst((*I)->getType())) { 486 const Expr *Ex = stripCasts(DC->getParentASTContext(), *I); 487 const auto *UO = dyn_cast<UnaryOperator>(Ex); 488 if (UO && UO->getOpcode() == UO_AddrOf) 489 Ex = UO->getSubExpr(); 490 classify(Ex, Ignore); 491 } 492 } 493 } 494 495 void ClassifyRefs::VisitCastExpr(CastExpr *CE) { 496 if (CE->getCastKind() == CK_LValueToRValue) 497 classify(CE->getSubExpr(), Use); 498 else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) { 499 if (CSE->getType()->isVoidType()) { 500 // Squelch any detected load of an uninitialized value if 501 // we cast it to void. 502 // e.g. (void) x; 503 classify(CSE->getSubExpr(), Ignore); 504 } 505 } 506 } 507 508 //------------------------------------------------------------------------====// 509 // Transfer function for uninitialized values analysis. 510 //====------------------------------------------------------------------------// 511 512 namespace { 513 514 class TransferFunctions : public StmtVisitor<TransferFunctions> { 515 CFGBlockValues &vals; 516 const CFG &cfg; 517 const CFGBlock *block; 518 AnalysisDeclContext ∾ 519 const ClassifyRefs &classification; 520 ObjCNoReturn objCNoRet; 521 UninitVariablesHandler &handler; 522 523 public: 524 TransferFunctions(CFGBlockValues &vals, const CFG &cfg, 525 const CFGBlock *block, AnalysisDeclContext &ac, 526 const ClassifyRefs &classification, 527 UninitVariablesHandler &handler) 528 : vals(vals), cfg(cfg), block(block), ac(ac), 529 classification(classification), objCNoRet(ac.getASTContext()), 530 handler(handler) {} 531 532 void reportUse(const Expr *ex, const VarDecl *vd); 533 534 void VisitBinaryOperator(BinaryOperator *bo); 535 void VisitBlockExpr(BlockExpr *be); 536 void VisitCallExpr(CallExpr *ce); 537 void VisitDeclRefExpr(DeclRefExpr *dr); 538 void VisitDeclStmt(DeclStmt *ds); 539 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); 540 void VisitObjCMessageExpr(ObjCMessageExpr *ME); 541 void VisitOMPExecutableDirective(OMPExecutableDirective *ED); 542 543 bool isTrackedVar(const VarDecl *vd) { 544 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); 545 } 546 547 FindVarResult findVar(const Expr *ex) { 548 return ::findVar(ex, cast<DeclContext>(ac.getDecl())); 549 } 550 551 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { 552 UninitUse Use(ex, isAlwaysUninit(v)); 553 554 assert(isUninitialized(v)); 555 if (Use.getKind() == UninitUse::Always) 556 return Use; 557 558 // If an edge which leads unconditionally to this use did not initialize 559 // the variable, we can say something stronger than 'may be uninitialized': 560 // we can say 'either it's used uninitialized or you have dead code'. 561 // 562 // We track the number of successors of a node which have been visited, and 563 // visit a node once we have visited all of its successors. Only edges where 564 // the variable might still be uninitialized are followed. Since a variable 565 // can't transfer from being initialized to being uninitialized, this will 566 // trace out the subgraph which inevitably leads to the use and does not 567 // initialize the variable. We do not want to skip past loops, since their 568 // non-termination might be correlated with the initialization condition. 569 // 570 // For example: 571 // 572 // void f(bool a, bool b) { 573 // block1: int n; 574 // if (a) { 575 // block2: if (b) 576 // block3: n = 1; 577 // block4: } else if (b) { 578 // block5: while (!a) { 579 // block6: do_work(&a); 580 // n = 2; 581 // } 582 // } 583 // block7: if (a) 584 // block8: g(); 585 // block9: return n; 586 // } 587 // 588 // Starting from the maybe-uninitialized use in block 9: 589 // * Block 7 is not visited because we have only visited one of its two 590 // successors. 591 // * Block 8 is visited because we've visited its only successor. 592 // From block 8: 593 // * Block 7 is visited because we've now visited both of its successors. 594 // From block 7: 595 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all 596 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). 597 // * Block 3 is not visited because it initializes 'n'. 598 // Now the algorithm terminates, having visited blocks 7 and 8, and having 599 // found the frontier is blocks 2, 4, and 5. 600 // 601 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 602 // and 4), so we report that any time either of those edges is taken (in 603 // each case when 'b == false'), 'n' is used uninitialized. 604 SmallVector<const CFGBlock*, 32> Queue; 605 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); 606 Queue.push_back(block); 607 // Specify that we've already visited all successors of the starting block. 608 // This has the dual purpose of ensuring we never add it to the queue, and 609 // of marking it as not being a candidate element of the frontier. 610 SuccsVisited[block->getBlockID()] = block->succ_size(); 611 while (!Queue.empty()) { 612 const CFGBlock *B = Queue.pop_back_val(); 613 614 // If the use is always reached from the entry block, make a note of that. 615 if (B == &cfg.getEntry()) 616 Use.setUninitAfterCall(); 617 618 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); 619 I != E; ++I) { 620 const CFGBlock *Pred = *I; 621 if (!Pred) 622 continue; 623 624 Value AtPredExit = vals.getValue(Pred, B, vd); 625 if (AtPredExit == Initialized) 626 // This block initializes the variable. 627 continue; 628 if (AtPredExit == MayUninitialized && 629 vals.getValue(B, nullptr, vd) == Uninitialized) { 630 // This block declares the variable (uninitialized), and is reachable 631 // from a block that initializes the variable. We can't guarantee to 632 // give an earlier location for the diagnostic (and it appears that 633 // this code is intended to be reachable) so give a diagnostic here 634 // and go no further down this path. 635 Use.setUninitAfterDecl(); 636 continue; 637 } 638 639 unsigned &SV = SuccsVisited[Pred->getBlockID()]; 640 if (!SV) { 641 // When visiting the first successor of a block, mark all NULL 642 // successors as having been visited. 643 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), 644 SE = Pred->succ_end(); 645 SI != SE; ++SI) 646 if (!*SI) 647 ++SV; 648 } 649 650 if (++SV == Pred->succ_size()) 651 // All paths from this block lead to the use and don't initialize the 652 // variable. 653 Queue.push_back(Pred); 654 } 655 } 656 657 // Scan the frontier, looking for blocks where the variable was 658 // uninitialized. 659 for (const auto *Block : cfg) { 660 unsigned BlockID = Block->getBlockID(); 661 const Stmt *Term = Block->getTerminatorStmt(); 662 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && 663 Term) { 664 // This block inevitably leads to the use. If we have an edge from here 665 // to a post-dominator block, and the variable is uninitialized on that 666 // edge, we have found a bug. 667 for (CFGBlock::const_succ_iterator I = Block->succ_begin(), 668 E = Block->succ_end(); I != E; ++I) { 669 const CFGBlock *Succ = *I; 670 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && 671 vals.getValue(Block, Succ, vd) == Uninitialized) { 672 // Switch cases are a special case: report the label to the caller 673 // as the 'terminator', not the switch statement itself. Suppress 674 // situations where no label matched: we can't be sure that's 675 // possible. 676 if (isa<SwitchStmt>(Term)) { 677 const Stmt *Label = Succ->getLabel(); 678 if (!Label || !isa<SwitchCase>(Label)) 679 // Might not be possible. 680 continue; 681 UninitUse::Branch Branch; 682 Branch.Terminator = Label; 683 Branch.Output = 0; // Ignored. 684 Use.addUninitBranch(Branch); 685 } else { 686 UninitUse::Branch Branch; 687 Branch.Terminator = Term; 688 Branch.Output = I - Block->succ_begin(); 689 Use.addUninitBranch(Branch); 690 } 691 } 692 } 693 } 694 } 695 696 return Use; 697 } 698 }; 699 700 } // namespace 701 702 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { 703 Value v = vals[vd]; 704 if (isUninitialized(v)) 705 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 706 } 707 708 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { 709 // This represents an initialization of the 'element' value. 710 if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) { 711 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 712 if (isTrackedVar(VD)) 713 vals[VD] = Initialized; 714 } 715 } 716 717 void TransferFunctions::VisitOMPExecutableDirective( 718 OMPExecutableDirective *ED) { 719 for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) { 720 assert(S && "Expected non-null used-in-clause child."); 721 Visit(S); 722 } 723 if (!ED->isStandaloneDirective()) 724 Visit(ED->getStructuredBlock()); 725 } 726 727 void TransferFunctions::VisitBlockExpr(BlockExpr *be) { 728 const BlockDecl *bd = be->getBlockDecl(); 729 for (const auto &I : bd->captures()) { 730 const VarDecl *vd = I.getVariable(); 731 if (!isTrackedVar(vd)) 732 continue; 733 if (I.isByRef()) { 734 vals[vd] = Initialized; 735 continue; 736 } 737 reportUse(be, vd); 738 } 739 } 740 741 void TransferFunctions::VisitCallExpr(CallExpr *ce) { 742 if (Decl *Callee = ce->getCalleeDecl()) { 743 if (Callee->hasAttr<ReturnsTwiceAttr>()) { 744 // After a call to a function like setjmp or vfork, any variable which is 745 // initialized anywhere within this function may now be initialized. For 746 // now, just assume such a call initializes all variables. FIXME: Only 747 // mark variables as initialized if they have an initializer which is 748 // reachable from here. 749 vals.setAllScratchValues(Initialized); 750 } 751 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { 752 // Functions labeled like "analyzer_noreturn" are often used to denote 753 // "panic" functions that in special debug situations can still return, 754 // but for the most part should not be treated as returning. This is a 755 // useful annotation borrowed from the static analyzer that is useful for 756 // suppressing branch-specific false positives when we call one of these 757 // functions but keep pretending the path continues (when in reality the 758 // user doesn't care). 759 vals.setAllScratchValues(Unknown); 760 } 761 } 762 } 763 764 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { 765 switch (classification.get(dr)) { 766 case ClassifyRefs::Ignore: 767 break; 768 case ClassifyRefs::Use: 769 reportUse(dr, cast<VarDecl>(dr->getDecl())); 770 break; 771 case ClassifyRefs::Init: 772 vals[cast<VarDecl>(dr->getDecl())] = Initialized; 773 break; 774 case ClassifyRefs::SelfInit: 775 handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); 776 break; 777 } 778 } 779 780 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { 781 if (BO->getOpcode() == BO_Assign) { 782 FindVarResult Var = findVar(BO->getLHS()); 783 if (const VarDecl *VD = Var.getDecl()) 784 vals[VD] = Initialized; 785 } 786 } 787 788 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { 789 for (auto *DI : DS->decls()) { 790 auto *VD = dyn_cast<VarDecl>(DI); 791 if (VD && isTrackedVar(VD)) { 792 if (getSelfInitExpr(VD)) { 793 // If the initializer consists solely of a reference to itself, we 794 // explicitly mark the variable as uninitialized. This allows code 795 // like the following: 796 // 797 // int x = x; 798 // 799 // to deliberately leave a variable uninitialized. Different analysis 800 // clients can detect this pattern and adjust their reporting 801 // appropriately, but we need to continue to analyze subsequent uses 802 // of the variable. 803 vals[VD] = Uninitialized; 804 } else if (VD->getInit()) { 805 // Treat the new variable as initialized. 806 vals[VD] = Initialized; 807 } else { 808 // No initializer: the variable is now uninitialized. This matters 809 // for cases like: 810 // while (...) { 811 // int n; 812 // use(n); 813 // n = 0; 814 // } 815 // FIXME: Mark the variable as uninitialized whenever its scope is 816 // left, since its scope could be re-entered by a jump over the 817 // declaration. 818 vals[VD] = Uninitialized; 819 } 820 } 821 } 822 } 823 824 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { 825 // If the Objective-C message expression is an implicit no-return that 826 // is not modeled in the CFG, set the tracked dataflow values to Unknown. 827 if (objCNoRet.isImplicitNoReturn(ME)) { 828 vals.setAllScratchValues(Unknown); 829 } 830 } 831 832 //------------------------------------------------------------------------====// 833 // High-level "driver" logic for uninitialized values analysis. 834 //====------------------------------------------------------------------------// 835 836 static bool runOnBlock(const CFGBlock *block, const CFG &cfg, 837 AnalysisDeclContext &ac, CFGBlockValues &vals, 838 const ClassifyRefs &classification, 839 llvm::BitVector &wasAnalyzed, 840 UninitVariablesHandler &handler) { 841 wasAnalyzed[block->getBlockID()] = true; 842 vals.resetScratch(); 843 // Merge in values of predecessor blocks. 844 bool isFirst = true; 845 for (CFGBlock::const_pred_iterator I = block->pred_begin(), 846 E = block->pred_end(); I != E; ++I) { 847 const CFGBlock *pred = *I; 848 if (!pred) 849 continue; 850 if (wasAnalyzed[pred->getBlockID()]) { 851 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); 852 isFirst = false; 853 } 854 } 855 // Apply the transfer function. 856 TransferFunctions tf(vals, cfg, block, ac, classification, handler); 857 for (const auto &I : *block) { 858 if (Optional<CFGStmt> cs = I.getAs<CFGStmt>()) 859 tf.Visit(const_cast<Stmt *>(cs->getStmt())); 860 } 861 return vals.updateValueVectorWithScratch(block); 862 } 863 864 namespace { 865 866 /// PruneBlocksHandler is a special UninitVariablesHandler that is used 867 /// to detect when a CFGBlock has any *potential* use of an uninitialized 868 /// variable. It is mainly used to prune out work during the final 869 /// reporting pass. 870 struct PruneBlocksHandler : public UninitVariablesHandler { 871 /// Records if a CFGBlock had a potential use of an uninitialized variable. 872 llvm::BitVector hadUse; 873 874 /// Records if any CFGBlock had a potential use of an uninitialized variable. 875 bool hadAnyUse = false; 876 877 /// The current block to scribble use information. 878 unsigned currentBlock = 0; 879 880 PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {} 881 882 ~PruneBlocksHandler() override = default; 883 884 void handleUseOfUninitVariable(const VarDecl *vd, 885 const UninitUse &use) override { 886 hadUse[currentBlock] = true; 887 hadAnyUse = true; 888 } 889 890 /// Called when the uninitialized variable analysis detects the 891 /// idiom 'int x = x'. All other uses of 'x' within the initializer 892 /// are handled by handleUseOfUninitVariable. 893 void handleSelfInit(const VarDecl *vd) override { 894 hadUse[currentBlock] = true; 895 hadAnyUse = true; 896 } 897 }; 898 899 } // namespace 900 901 void clang::runUninitializedVariablesAnalysis( 902 const DeclContext &dc, 903 const CFG &cfg, 904 AnalysisDeclContext &ac, 905 UninitVariablesHandler &handler, 906 UninitVariablesAnalysisStats &stats) { 907 CFGBlockValues vals(cfg); 908 vals.computeSetOfDeclarations(dc); 909 if (vals.hasNoDeclarations()) 910 return; 911 912 stats.NumVariablesAnalyzed = vals.getNumEntries(); 913 914 // Precompute which expressions are uses and which are initializations. 915 ClassifyRefs classification(ac); 916 cfg.VisitBlockStmts(classification); 917 918 // Mark all variables uninitialized at the entry. 919 const CFGBlock &entry = cfg.getEntry(); 920 ValueVector &vec = vals.getValueVector(&entry); 921 const unsigned n = vals.getNumEntries(); 922 for (unsigned j = 0; j < n; ++j) { 923 vec[j] = Uninitialized; 924 } 925 926 // Proceed with the workist. 927 DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>()); 928 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); 929 worklist.enqueueSuccessors(&cfg.getEntry()); 930 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); 931 wasAnalyzed[cfg.getEntry().getBlockID()] = true; 932 PruneBlocksHandler PBH(cfg.getNumBlockIDs()); 933 934 while (const CFGBlock *block = worklist.dequeue()) { 935 PBH.currentBlock = block->getBlockID(); 936 937 // Did the block change? 938 bool changed = runOnBlock(block, cfg, ac, vals, 939 classification, wasAnalyzed, PBH); 940 ++stats.NumBlockVisits; 941 if (changed || !previouslyVisited[block->getBlockID()]) 942 worklist.enqueueSuccessors(block); 943 previouslyVisited[block->getBlockID()] = true; 944 } 945 946 if (!PBH.hadAnyUse) 947 return; 948 949 // Run through the blocks one more time, and report uninitialized variables. 950 for (const auto *block : cfg) 951 if (PBH.hadUse[block->getBlockID()]) { 952 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); 953 ++stats.NumBlockVisits; 954 } 955 } 956 957 UninitVariablesHandler::~UninitVariablesHandler() = default; 958