1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements uninitialized values analysis for source-level CFGs. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Analysis/Analyses/UninitializedValues.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/OperationKinds.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtObjC.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/AST/Type.h" 23 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 24 #include "clang/Analysis/AnalysisDeclContext.h" 25 #include "clang/Analysis/CFG.h" 26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" 27 #include "clang/Analysis/FlowSensitive/DataflowWorklist.h" 28 #include "clang/Basic/LLVM.h" 29 #include "llvm/ADT/BitVector.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/PackedVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/Support/Casting.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <optional> 38 39 using namespace clang; 40 41 #define DEBUG_LOGGING 0 42 43 static bool recordIsNotEmpty(const RecordDecl *RD) { 44 // We consider a record decl to be empty if it contains only unnamed bit- 45 // fields, zero-width fields, and fields of empty record type. 46 for (const auto *FD : RD->fields()) { 47 if (FD->isUnnamedBitField()) 48 continue; 49 if (FD->isZeroSize(FD->getASTContext())) 50 continue; 51 // The only case remaining to check is for a field declaration of record 52 // type and whether that record itself is empty. 53 if (const auto *FieldRD = FD->getType()->getAsRecordDecl(); 54 !FieldRD || recordIsNotEmpty(FieldRD)) 55 return true; 56 } 57 return false; 58 } 59 60 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { 61 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 62 !vd->isExceptionVariable() && !vd->isInitCapture() && !vd->isImplicit() && 63 vd->getDeclContext() == dc) { 64 QualType ty = vd->getType(); 65 if (const auto *RD = ty->getAsRecordDecl()) 66 return recordIsNotEmpty(RD); 67 return ty->isScalarType() || ty->isVectorType() || ty->isRVVSizelessBuiltinType(); 68 } 69 return false; 70 } 71 72 //------------------------------------------------------------------------====// 73 // DeclToIndex: a mapping from Decls we track to value indices. 74 //====------------------------------------------------------------------------// 75 76 namespace { 77 78 class DeclToIndex { 79 llvm::DenseMap<const VarDecl *, unsigned> map; 80 81 public: 82 DeclToIndex() = default; 83 84 /// Compute the actual mapping from declarations to bits. 85 void computeMap(const DeclContext &dc); 86 87 /// Return the number of declarations in the map. 88 unsigned size() const { return map.size(); } 89 90 /// Returns the bit vector index for a given declaration. 91 std::optional<unsigned> getValueIndex(const VarDecl *d) const; 92 }; 93 94 } // namespace 95 96 void DeclToIndex::computeMap(const DeclContext &dc) { 97 unsigned count = 0; 98 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), 99 E(dc.decls_end()); 100 for ( ; I != E; ++I) { 101 const VarDecl *vd = *I; 102 if (isTrackedVar(vd, &dc)) 103 map[vd] = count++; 104 } 105 } 106 107 std::optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { 108 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); 109 if (I == map.end()) 110 return std::nullopt; 111 return I->second; 112 } 113 114 //------------------------------------------------------------------------====// 115 // CFGBlockValues: dataflow values for CFG blocks. 116 //====------------------------------------------------------------------------// 117 118 // These values are defined in such a way that a merge can be done using 119 // a bitwise OR. 120 enum Value { Unknown = 0x0, /* 00 */ 121 Initialized = 0x1, /* 01 */ 122 Uninitialized = 0x2, /* 10 */ 123 MayUninitialized = 0x3 /* 11 */ }; 124 125 static bool isUninitialized(const Value v) { 126 return v >= Uninitialized; 127 } 128 129 static bool isAlwaysUninit(const Value v) { 130 return v == Uninitialized; 131 } 132 133 namespace { 134 135 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>; 136 137 class CFGBlockValues { 138 const CFG &cfg; 139 SmallVector<ValueVector, 8> vals; 140 ValueVector scratch; 141 DeclToIndex declToIndex; 142 143 public: 144 CFGBlockValues(const CFG &cfg); 145 146 unsigned getNumEntries() const { return declToIndex.size(); } 147 148 void computeSetOfDeclarations(const DeclContext &dc); 149 150 ValueVector &getValueVector(const CFGBlock *block) { 151 return vals[block->getBlockID()]; 152 } 153 154 void setAllScratchValues(Value V); 155 void mergeIntoScratch(ValueVector const &source, bool isFirst); 156 bool updateValueVectorWithScratch(const CFGBlock *block); 157 158 bool hasNoDeclarations() const { 159 return declToIndex.size() == 0; 160 } 161 162 void resetScratch(); 163 164 ValueVector::reference operator[](const VarDecl *vd); 165 166 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, 167 const VarDecl *vd) { 168 std::optional<unsigned> idx = declToIndex.getValueIndex(vd); 169 return getValueVector(block)[*idx]; 170 } 171 }; 172 173 } // namespace 174 175 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} 176 177 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { 178 declToIndex.computeMap(dc); 179 unsigned decls = declToIndex.size(); 180 scratch.resize(decls); 181 unsigned n = cfg.getNumBlockIDs(); 182 if (!n) 183 return; 184 vals.resize(n); 185 for (auto &val : vals) 186 val.resize(decls); 187 } 188 189 #if DEBUG_LOGGING 190 static void printVector(const CFGBlock *block, ValueVector &bv, 191 unsigned num) { 192 llvm::errs() << block->getBlockID() << " :"; 193 for (const auto &i : bv) 194 llvm::errs() << ' ' << i; 195 llvm::errs() << " : " << num << '\n'; 196 } 197 #endif 198 199 void CFGBlockValues::setAllScratchValues(Value V) { 200 for (unsigned I = 0, E = scratch.size(); I != E; ++I) 201 scratch[I] = V; 202 } 203 204 void CFGBlockValues::mergeIntoScratch(ValueVector const &source, 205 bool isFirst) { 206 if (isFirst) 207 scratch = source; 208 else 209 scratch |= source; 210 } 211 212 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { 213 ValueVector &dst = getValueVector(block); 214 bool changed = (dst != scratch); 215 if (changed) 216 dst = scratch; 217 #if DEBUG_LOGGING 218 printVector(block, scratch, 0); 219 #endif 220 return changed; 221 } 222 223 void CFGBlockValues::resetScratch() { 224 scratch.reset(); 225 } 226 227 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { 228 return scratch[*declToIndex.getValueIndex(vd)]; 229 } 230 231 //------------------------------------------------------------------------====// 232 // Classification of DeclRefExprs as use or initialization. 233 //====------------------------------------------------------------------------// 234 235 namespace { 236 237 class FindVarResult { 238 const VarDecl *vd; 239 const DeclRefExpr *dr; 240 241 public: 242 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} 243 244 const DeclRefExpr *getDeclRefExpr() const { return dr; } 245 const VarDecl *getDecl() const { return vd; } 246 }; 247 248 } // namespace 249 250 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { 251 while (Ex) { 252 Ex = Ex->IgnoreParenNoopCasts(C); 253 if (const auto *CE = dyn_cast<CastExpr>(Ex)) { 254 if (CE->getCastKind() == CK_LValueBitCast) { 255 Ex = CE->getSubExpr(); 256 continue; 257 } 258 } 259 break; 260 } 261 return Ex; 262 } 263 264 /// If E is an expression comprising a reference to a single variable, find that 265 /// variable. 266 static FindVarResult findVar(const Expr *E, const DeclContext *DC) { 267 if (const auto *DRE = 268 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) 269 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 270 if (isTrackedVar(VD, DC)) 271 return FindVarResult(VD, DRE); 272 return FindVarResult(nullptr, nullptr); 273 } 274 275 namespace { 276 277 /// Classify each DeclRefExpr as an initialization or a use. Any 278 /// DeclRefExpr which isn't explicitly classified will be assumed to have 279 /// escaped the analysis and will be treated as an initialization. 280 class ClassifyRefs : public StmtVisitor<ClassifyRefs> { 281 public: 282 enum Class { 283 Init, 284 Use, 285 SelfInit, 286 ConstRefUse, 287 Ignore 288 }; 289 290 private: 291 const DeclContext *DC; 292 llvm::DenseMap<const DeclRefExpr *, Class> Classification; 293 294 bool isTrackedVar(const VarDecl *VD) const { 295 return ::isTrackedVar(VD, DC); 296 } 297 298 void classify(const Expr *E, Class C); 299 300 public: 301 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} 302 303 void VisitDeclStmt(DeclStmt *DS); 304 void VisitUnaryOperator(UnaryOperator *UO); 305 void VisitBinaryOperator(BinaryOperator *BO); 306 void VisitCallExpr(CallExpr *CE); 307 void VisitCastExpr(CastExpr *CE); 308 void VisitOMPExecutableDirective(OMPExecutableDirective *ED); 309 310 void operator()(Stmt *S) { Visit(S); } 311 312 Class get(const DeclRefExpr *DRE) const { 313 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I 314 = Classification.find(DRE); 315 if (I != Classification.end()) 316 return I->second; 317 318 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 319 if (!VD || !isTrackedVar(VD)) 320 return Ignore; 321 322 return Init; 323 } 324 }; 325 326 } // namespace 327 328 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { 329 if (VD->getType()->isRecordType()) 330 return nullptr; 331 if (Expr *Init = VD->getInit()) { 332 const auto *DRE = 333 dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); 334 if (DRE && DRE->getDecl() == VD) 335 return DRE; 336 } 337 return nullptr; 338 } 339 340 void ClassifyRefs::classify(const Expr *E, Class C) { 341 // The result of a ?: could also be an lvalue. 342 E = E->IgnoreParens(); 343 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 344 classify(CO->getTrueExpr(), C); 345 classify(CO->getFalseExpr(), C); 346 return; 347 } 348 349 if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) { 350 classify(BCO->getFalseExpr(), C); 351 return; 352 } 353 354 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 355 classify(OVE->getSourceExpr(), C); 356 return; 357 } 358 359 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 360 if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 361 if (!VD->isStaticDataMember()) 362 classify(ME->getBase(), C); 363 } 364 return; 365 } 366 367 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 368 switch (BO->getOpcode()) { 369 case BO_PtrMemD: 370 case BO_PtrMemI: 371 classify(BO->getLHS(), C); 372 return; 373 case BO_Comma: 374 classify(BO->getRHS(), C); 375 return; 376 default: 377 return; 378 } 379 } 380 381 FindVarResult Var = findVar(E, DC); 382 if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) 383 Classification[DRE] = std::max(Classification[DRE], C); 384 } 385 386 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { 387 for (auto *DI : DS->decls()) { 388 auto *VD = dyn_cast<VarDecl>(DI); 389 if (VD && isTrackedVar(VD)) 390 if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) 391 Classification[DRE] = SelfInit; 392 } 393 } 394 395 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { 396 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this 397 // is not a compound-assignment, we will treat it as initializing the variable 398 // when TransferFunctions visits it. A compound-assignment does not affect 399 // whether a variable is uninitialized, and there's no point counting it as a 400 // use. 401 if (BO->isCompoundAssignmentOp()) 402 classify(BO->getLHS(), Use); 403 else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma) 404 classify(BO->getLHS(), Ignore); 405 } 406 407 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { 408 // Increment and decrement are uses despite there being no lvalue-to-rvalue 409 // conversion. 410 if (UO->isIncrementDecrementOp()) 411 classify(UO->getSubExpr(), Use); 412 } 413 414 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) { 415 for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) 416 classify(cast<Expr>(S), Use); 417 } 418 419 static bool isPointerToConst(const QualType &QT) { 420 return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified(); 421 } 422 423 static bool hasTrivialBody(CallExpr *CE) { 424 if (FunctionDecl *FD = CE->getDirectCallee()) { 425 if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 426 return FTD->getTemplatedDecl()->hasTrivialBody(); 427 return FD->hasTrivialBody(); 428 } 429 return false; 430 } 431 432 void ClassifyRefs::VisitCallExpr(CallExpr *CE) { 433 // Classify arguments to std::move as used. 434 if (CE->isCallToStdMove()) { 435 // RecordTypes are handled in SemaDeclCXX.cpp. 436 if (!CE->getArg(0)->getType()->isRecordType()) 437 classify(CE->getArg(0), Use); 438 return; 439 } 440 bool isTrivialBody = hasTrivialBody(CE); 441 // If a value is passed by const pointer to a function, 442 // we should not assume that it is initialized by the call, and we 443 // conservatively do not assume that it is used. 444 // If a value is passed by const reference to a function, 445 // it should already be initialized. 446 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); 447 I != E; ++I) { 448 if ((*I)->isGLValue()) { 449 if ((*I)->getType().isConstQualified()) 450 classify((*I), isTrivialBody ? Ignore : ConstRefUse); 451 } else if (isPointerToConst((*I)->getType())) { 452 const Expr *Ex = stripCasts(DC->getParentASTContext(), *I); 453 const auto *UO = dyn_cast<UnaryOperator>(Ex); 454 if (UO && UO->getOpcode() == UO_AddrOf) 455 Ex = UO->getSubExpr(); 456 classify(Ex, Ignore); 457 } 458 } 459 } 460 461 void ClassifyRefs::VisitCastExpr(CastExpr *CE) { 462 if (CE->getCastKind() == CK_LValueToRValue) 463 classify(CE->getSubExpr(), Use); 464 else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) { 465 if (CSE->getType()->isVoidType()) { 466 // Squelch any detected load of an uninitialized value if 467 // we cast it to void. 468 // e.g. (void) x; 469 classify(CSE->getSubExpr(), Ignore); 470 } 471 } 472 } 473 474 //------------------------------------------------------------------------====// 475 // Transfer function for uninitialized values analysis. 476 //====------------------------------------------------------------------------// 477 478 namespace { 479 480 class TransferFunctions : public StmtVisitor<TransferFunctions> { 481 CFGBlockValues &vals; 482 const CFG &cfg; 483 const CFGBlock *block; 484 AnalysisDeclContext ∾ 485 const ClassifyRefs &classification; 486 ObjCNoReturn objCNoRet; 487 UninitVariablesHandler &handler; 488 489 public: 490 TransferFunctions(CFGBlockValues &vals, const CFG &cfg, 491 const CFGBlock *block, AnalysisDeclContext &ac, 492 const ClassifyRefs &classification, 493 UninitVariablesHandler &handler) 494 : vals(vals), cfg(cfg), block(block), ac(ac), 495 classification(classification), objCNoRet(ac.getASTContext()), 496 handler(handler) {} 497 498 void reportUse(const Expr *ex, const VarDecl *vd); 499 void reportConstRefUse(const Expr *ex, const VarDecl *vd); 500 501 void VisitBinaryOperator(BinaryOperator *bo); 502 void VisitBlockExpr(BlockExpr *be); 503 void VisitCallExpr(CallExpr *ce); 504 void VisitDeclRefExpr(DeclRefExpr *dr); 505 void VisitDeclStmt(DeclStmt *ds); 506 void VisitGCCAsmStmt(GCCAsmStmt *as); 507 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); 508 void VisitObjCMessageExpr(ObjCMessageExpr *ME); 509 void VisitOMPExecutableDirective(OMPExecutableDirective *ED); 510 511 bool isTrackedVar(const VarDecl *vd) { 512 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); 513 } 514 515 FindVarResult findVar(const Expr *ex) { 516 return ::findVar(ex, cast<DeclContext>(ac.getDecl())); 517 } 518 519 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { 520 UninitUse Use(ex, isAlwaysUninit(v)); 521 522 assert(isUninitialized(v)); 523 if (Use.getKind() == UninitUse::Always) 524 return Use; 525 526 // If an edge which leads unconditionally to this use did not initialize 527 // the variable, we can say something stronger than 'may be uninitialized': 528 // we can say 'either it's used uninitialized or you have dead code'. 529 // 530 // We track the number of successors of a node which have been visited, and 531 // visit a node once we have visited all of its successors. Only edges where 532 // the variable might still be uninitialized are followed. Since a variable 533 // can't transfer from being initialized to being uninitialized, this will 534 // trace out the subgraph which inevitably leads to the use and does not 535 // initialize the variable. We do not want to skip past loops, since their 536 // non-termination might be correlated with the initialization condition. 537 // 538 // For example: 539 // 540 // void f(bool a, bool b) { 541 // block1: int n; 542 // if (a) { 543 // block2: if (b) 544 // block3: n = 1; 545 // block4: } else if (b) { 546 // block5: while (!a) { 547 // block6: do_work(&a); 548 // n = 2; 549 // } 550 // } 551 // block7: if (a) 552 // block8: g(); 553 // block9: return n; 554 // } 555 // 556 // Starting from the maybe-uninitialized use in block 9: 557 // * Block 7 is not visited because we have only visited one of its two 558 // successors. 559 // * Block 8 is visited because we've visited its only successor. 560 // From block 8: 561 // * Block 7 is visited because we've now visited both of its successors. 562 // From block 7: 563 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all 564 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). 565 // * Block 3 is not visited because it initializes 'n'. 566 // Now the algorithm terminates, having visited blocks 7 and 8, and having 567 // found the frontier is blocks 2, 4, and 5. 568 // 569 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 570 // and 4), so we report that any time either of those edges is taken (in 571 // each case when 'b == false'), 'n' is used uninitialized. 572 SmallVector<const CFGBlock*, 32> Queue; 573 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); 574 Queue.push_back(block); 575 // Specify that we've already visited all successors of the starting block. 576 // This has the dual purpose of ensuring we never add it to the queue, and 577 // of marking it as not being a candidate element of the frontier. 578 SuccsVisited[block->getBlockID()] = block->succ_size(); 579 while (!Queue.empty()) { 580 const CFGBlock *B = Queue.pop_back_val(); 581 582 // If the use is always reached from the entry block, make a note of that. 583 if (B == &cfg.getEntry()) 584 Use.setUninitAfterCall(); 585 586 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); 587 I != E; ++I) { 588 const CFGBlock *Pred = *I; 589 if (!Pred) 590 continue; 591 592 Value AtPredExit = vals.getValue(Pred, B, vd); 593 if (AtPredExit == Initialized) 594 // This block initializes the variable. 595 continue; 596 if (AtPredExit == MayUninitialized && 597 vals.getValue(B, nullptr, vd) == Uninitialized) { 598 // This block declares the variable (uninitialized), and is reachable 599 // from a block that initializes the variable. We can't guarantee to 600 // give an earlier location for the diagnostic (and it appears that 601 // this code is intended to be reachable) so give a diagnostic here 602 // and go no further down this path. 603 Use.setUninitAfterDecl(); 604 continue; 605 } 606 607 unsigned &SV = SuccsVisited[Pred->getBlockID()]; 608 if (!SV) { 609 // When visiting the first successor of a block, mark all NULL 610 // successors as having been visited. 611 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), 612 SE = Pred->succ_end(); 613 SI != SE; ++SI) 614 if (!*SI) 615 ++SV; 616 } 617 618 if (++SV == Pred->succ_size()) 619 // All paths from this block lead to the use and don't initialize the 620 // variable. 621 Queue.push_back(Pred); 622 } 623 } 624 625 // Scan the frontier, looking for blocks where the variable was 626 // uninitialized. 627 for (const auto *Block : cfg) { 628 unsigned BlockID = Block->getBlockID(); 629 const Stmt *Term = Block->getTerminatorStmt(); 630 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && 631 Term) { 632 // This block inevitably leads to the use. If we have an edge from here 633 // to a post-dominator block, and the variable is uninitialized on that 634 // edge, we have found a bug. 635 for (CFGBlock::const_succ_iterator I = Block->succ_begin(), 636 E = Block->succ_end(); I != E; ++I) { 637 const CFGBlock *Succ = *I; 638 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && 639 vals.getValue(Block, Succ, vd) == Uninitialized) { 640 // Switch cases are a special case: report the label to the caller 641 // as the 'terminator', not the switch statement itself. Suppress 642 // situations where no label matched: we can't be sure that's 643 // possible. 644 if (isa<SwitchStmt>(Term)) { 645 const Stmt *Label = Succ->getLabel(); 646 if (!Label || !isa<SwitchCase>(Label)) 647 // Might not be possible. 648 continue; 649 UninitUse::Branch Branch; 650 Branch.Terminator = Label; 651 Branch.Output = 0; // Ignored. 652 Use.addUninitBranch(Branch); 653 } else { 654 UninitUse::Branch Branch; 655 Branch.Terminator = Term; 656 Branch.Output = I - Block->succ_begin(); 657 Use.addUninitBranch(Branch); 658 } 659 } 660 } 661 } 662 } 663 664 return Use; 665 } 666 }; 667 668 } // namespace 669 670 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { 671 Value v = vals[vd]; 672 if (isUninitialized(v)) 673 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 674 } 675 676 void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) { 677 Value v = vals[vd]; 678 if (isAlwaysUninit(v)) 679 handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 680 } 681 682 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { 683 // This represents an initialization of the 'element' value. 684 if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) { 685 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 686 if (isTrackedVar(VD)) 687 vals[VD] = Initialized; 688 } 689 } 690 691 void TransferFunctions::VisitOMPExecutableDirective( 692 OMPExecutableDirective *ED) { 693 for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) { 694 assert(S && "Expected non-null used-in-clause child."); 695 Visit(S); 696 } 697 if (!ED->isStandaloneDirective()) 698 Visit(ED->getStructuredBlock()); 699 } 700 701 void TransferFunctions::VisitBlockExpr(BlockExpr *be) { 702 const BlockDecl *bd = be->getBlockDecl(); 703 for (const auto &I : bd->captures()) { 704 const VarDecl *vd = I.getVariable(); 705 if (!isTrackedVar(vd)) 706 continue; 707 if (I.isByRef()) { 708 vals[vd] = Initialized; 709 continue; 710 } 711 reportUse(be, vd); 712 } 713 } 714 715 void TransferFunctions::VisitCallExpr(CallExpr *ce) { 716 if (Decl *Callee = ce->getCalleeDecl()) { 717 if (Callee->hasAttr<ReturnsTwiceAttr>()) { 718 // After a call to a function like setjmp or vfork, any variable which is 719 // initialized anywhere within this function may now be initialized. For 720 // now, just assume such a call initializes all variables. FIXME: Only 721 // mark variables as initialized if they have an initializer which is 722 // reachable from here. 723 vals.setAllScratchValues(Initialized); 724 } 725 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { 726 // Functions labeled like "analyzer_noreturn" are often used to denote 727 // "panic" functions that in special debug situations can still return, 728 // but for the most part should not be treated as returning. This is a 729 // useful annotation borrowed from the static analyzer that is useful for 730 // suppressing branch-specific false positives when we call one of these 731 // functions but keep pretending the path continues (when in reality the 732 // user doesn't care). 733 vals.setAllScratchValues(Unknown); 734 } 735 } 736 } 737 738 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { 739 switch (classification.get(dr)) { 740 case ClassifyRefs::Ignore: 741 break; 742 case ClassifyRefs::Use: 743 reportUse(dr, cast<VarDecl>(dr->getDecl())); 744 break; 745 case ClassifyRefs::Init: 746 vals[cast<VarDecl>(dr->getDecl())] = Initialized; 747 break; 748 case ClassifyRefs::SelfInit: 749 handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); 750 break; 751 case ClassifyRefs::ConstRefUse: 752 reportConstRefUse(dr, cast<VarDecl>(dr->getDecl())); 753 break; 754 } 755 } 756 757 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { 758 if (BO->getOpcode() == BO_Assign) { 759 FindVarResult Var = findVar(BO->getLHS()); 760 if (const VarDecl *VD = Var.getDecl()) 761 vals[VD] = Initialized; 762 } 763 } 764 765 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { 766 for (auto *DI : DS->decls()) { 767 auto *VD = dyn_cast<VarDecl>(DI); 768 if (VD && isTrackedVar(VD)) { 769 if (getSelfInitExpr(VD)) { 770 // If the initializer consists solely of a reference to itself, we 771 // explicitly mark the variable as uninitialized. This allows code 772 // like the following: 773 // 774 // int x = x; 775 // 776 // to deliberately leave a variable uninitialized. Different analysis 777 // clients can detect this pattern and adjust their reporting 778 // appropriately, but we need to continue to analyze subsequent uses 779 // of the variable. 780 vals[VD] = Uninitialized; 781 } else if (VD->getInit()) { 782 // Treat the new variable as initialized. 783 vals[VD] = Initialized; 784 } else { 785 // No initializer: the variable is now uninitialized. This matters 786 // for cases like: 787 // while (...) { 788 // int n; 789 // use(n); 790 // n = 0; 791 // } 792 // FIXME: Mark the variable as uninitialized whenever its scope is 793 // left, since its scope could be re-entered by a jump over the 794 // declaration. 795 vals[VD] = Uninitialized; 796 } 797 } 798 } 799 } 800 801 void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) { 802 // An "asm goto" statement is a terminator that may initialize some variables. 803 if (!as->isAsmGoto()) 804 return; 805 806 ASTContext &C = ac.getASTContext(); 807 for (const Expr *O : as->outputs()) { 808 const Expr *Ex = stripCasts(C, O); 809 810 // Strip away any unary operators. Invalid l-values are reported by other 811 // semantic analysis passes. 812 while (const auto *UO = dyn_cast<UnaryOperator>(Ex)) 813 Ex = stripCasts(C, UO->getSubExpr()); 814 815 // Mark the variable as potentially uninitialized for those cases where 816 // it's used on an indirect path, where it's not guaranteed to be 817 // defined. 818 if (const VarDecl *VD = findVar(Ex).getDecl()) 819 if (vals[VD] != Initialized) 820 vals[VD] = MayUninitialized; 821 } 822 } 823 824 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { 825 // If the Objective-C message expression is an implicit no-return that 826 // is not modeled in the CFG, set the tracked dataflow values to Unknown. 827 if (objCNoRet.isImplicitNoReturn(ME)) { 828 vals.setAllScratchValues(Unknown); 829 } 830 } 831 832 //------------------------------------------------------------------------====// 833 // High-level "driver" logic for uninitialized values analysis. 834 //====------------------------------------------------------------------------// 835 836 static bool runOnBlock(const CFGBlock *block, const CFG &cfg, 837 AnalysisDeclContext &ac, CFGBlockValues &vals, 838 const ClassifyRefs &classification, 839 llvm::BitVector &wasAnalyzed, 840 UninitVariablesHandler &handler) { 841 wasAnalyzed[block->getBlockID()] = true; 842 vals.resetScratch(); 843 // Merge in values of predecessor blocks. 844 bool isFirst = true; 845 for (CFGBlock::const_pred_iterator I = block->pred_begin(), 846 E = block->pred_end(); I != E; ++I) { 847 const CFGBlock *pred = *I; 848 if (!pred) 849 continue; 850 if (wasAnalyzed[pred->getBlockID()]) { 851 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); 852 isFirst = false; 853 } 854 } 855 // Apply the transfer function. 856 TransferFunctions tf(vals, cfg, block, ac, classification, handler); 857 for (const auto &I : *block) { 858 if (std::optional<CFGStmt> cs = I.getAs<CFGStmt>()) 859 tf.Visit(const_cast<Stmt *>(cs->getStmt())); 860 } 861 CFGTerminator terminator = block->getTerminator(); 862 if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt())) 863 if (as->isAsmGoto()) 864 tf.Visit(as); 865 return vals.updateValueVectorWithScratch(block); 866 } 867 868 namespace { 869 870 /// PruneBlocksHandler is a special UninitVariablesHandler that is used 871 /// to detect when a CFGBlock has any *potential* use of an uninitialized 872 /// variable. It is mainly used to prune out work during the final 873 /// reporting pass. 874 struct PruneBlocksHandler : public UninitVariablesHandler { 875 /// Records if a CFGBlock had a potential use of an uninitialized variable. 876 llvm::BitVector hadUse; 877 878 /// Records if any CFGBlock had a potential use of an uninitialized variable. 879 bool hadAnyUse = false; 880 881 /// The current block to scribble use information. 882 unsigned currentBlock = 0; 883 884 PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {} 885 886 ~PruneBlocksHandler() override = default; 887 888 void handleUseOfUninitVariable(const VarDecl *vd, 889 const UninitUse &use) override { 890 hadUse[currentBlock] = true; 891 hadAnyUse = true; 892 } 893 894 void handleConstRefUseOfUninitVariable(const VarDecl *vd, 895 const UninitUse &use) override { 896 hadUse[currentBlock] = true; 897 hadAnyUse = true; 898 } 899 900 /// Called when the uninitialized variable analysis detects the 901 /// idiom 'int x = x'. All other uses of 'x' within the initializer 902 /// are handled by handleUseOfUninitVariable. 903 void handleSelfInit(const VarDecl *vd) override { 904 hadUse[currentBlock] = true; 905 hadAnyUse = true; 906 } 907 }; 908 909 } // namespace 910 911 void clang::runUninitializedVariablesAnalysis( 912 const DeclContext &dc, 913 const CFG &cfg, 914 AnalysisDeclContext &ac, 915 UninitVariablesHandler &handler, 916 UninitVariablesAnalysisStats &stats) { 917 CFGBlockValues vals(cfg); 918 vals.computeSetOfDeclarations(dc); 919 if (vals.hasNoDeclarations()) 920 return; 921 922 stats.NumVariablesAnalyzed = vals.getNumEntries(); 923 924 // Precompute which expressions are uses and which are initializations. 925 ClassifyRefs classification(ac); 926 cfg.VisitBlockStmts(classification); 927 928 // Mark all variables uninitialized at the entry. 929 const CFGBlock &entry = cfg.getEntry(); 930 ValueVector &vec = vals.getValueVector(&entry); 931 const unsigned n = vals.getNumEntries(); 932 for (unsigned j = 0; j < n; ++j) { 933 vec[j] = Uninitialized; 934 } 935 936 // Proceed with the workist. 937 ForwardDataflowWorklist worklist(cfg, ac); 938 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); 939 worklist.enqueueSuccessors(&cfg.getEntry()); 940 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); 941 wasAnalyzed[cfg.getEntry().getBlockID()] = true; 942 PruneBlocksHandler PBH(cfg.getNumBlockIDs()); 943 944 while (const CFGBlock *block = worklist.dequeue()) { 945 PBH.currentBlock = block->getBlockID(); 946 947 // Did the block change? 948 bool changed = runOnBlock(block, cfg, ac, vals, 949 classification, wasAnalyzed, PBH); 950 ++stats.NumBlockVisits; 951 if (changed || !previouslyVisited[block->getBlockID()]) 952 worklist.enqueueSuccessors(block); 953 previouslyVisited[block->getBlockID()] = true; 954 } 955 956 if (!PBH.hadAnyUse) 957 return; 958 959 // Run through the blocks one more time, and report uninitialized variables. 960 for (const auto *block : cfg) 961 if (PBH.hadUse[block->getBlockID()]) { 962 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); 963 ++stats.NumBlockVisits; 964 } 965 } 966 967 UninitVariablesHandler::~UninitVariablesHandler() = default; 968