1 //===- ThreadSafetyTIL.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 10 #include "clang/Basic/LLVM.h" 11 #include "llvm/Support/Casting.h" 12 #include <cassert> 13 #include <cstddef> 14 15 using namespace clang; 16 using namespace threadSafety; 17 using namespace til; 18 19 StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) { 20 switch (Op) { 21 case UOP_Minus: return "-"; 22 case UOP_BitNot: return "~"; 23 case UOP_LogicNot: return "!"; 24 } 25 return {}; 26 } 27 28 StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) { 29 switch (Op) { 30 case BOP_Mul: return "*"; 31 case BOP_Div: return "/"; 32 case BOP_Rem: return "%"; 33 case BOP_Add: return "+"; 34 case BOP_Sub: return "-"; 35 case BOP_Shl: return "<<"; 36 case BOP_Shr: return ">>"; 37 case BOP_BitAnd: return "&"; 38 case BOP_BitXor: return "^"; 39 case BOP_BitOr: return "|"; 40 case BOP_Eq: return "=="; 41 case BOP_Neq: return "!="; 42 case BOP_Lt: return "<"; 43 case BOP_Leq: return "<="; 44 case BOP_Cmp: return "<=>"; 45 case BOP_LogicAnd: return "&&"; 46 case BOP_LogicOr: return "||"; 47 } 48 return {}; 49 } 50 51 SExpr* Future::force() { 52 Status = FS_evaluating; 53 Result = compute(); 54 Status = FS_done; 55 return Result; 56 } 57 58 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { 59 unsigned Idx = Predecessors.size(); 60 Predecessors.reserveCheck(1, Arena); 61 Predecessors.push_back(Pred); 62 for (auto *E : Args) { 63 if (auto *Ph = dyn_cast<Phi>(E)) { 64 Ph->values().reserveCheck(1, Arena); 65 Ph->values().push_back(nullptr); 66 } 67 } 68 return Idx; 69 } 70 71 void BasicBlock::reservePredecessors(unsigned NumPreds) { 72 Predecessors.reserve(NumPreds, Arena); 73 for (auto *E : Args) { 74 if (auto *Ph = dyn_cast<Phi>(E)) { 75 Ph->values().reserve(NumPreds, Arena); 76 } 77 } 78 } 79 80 // If E is a variable, then trace back through any aliases or redundant 81 // Phi nodes to find the canonical definition. 82 const SExpr *til::getCanonicalVal(const SExpr *E) { 83 while (true) { 84 if (const auto *V = dyn_cast<Variable>(E)) { 85 if (V->kind() == Variable::VK_Let) { 86 E = V->definition(); 87 continue; 88 } 89 } 90 if (const auto *Ph = dyn_cast<Phi>(E)) { 91 if (Ph->status() == Phi::PH_SingleVal) { 92 E = Ph->values()[0]; 93 continue; 94 } 95 } 96 break; 97 } 98 return E; 99 } 100 101 // If E is a variable, then trace back through any aliases or redundant 102 // Phi nodes to find the canonical definition. 103 // The non-const version will simplify incomplete Phi nodes. 104 SExpr *til::simplifyToCanonicalVal(SExpr *E) { 105 while (true) { 106 if (auto *V = dyn_cast<Variable>(E)) { 107 if (V->kind() != Variable::VK_Let) 108 return V; 109 // Eliminate redundant variables, e.g. x = y, or x = 5, 110 // but keep anything more complicated. 111 if (til::ThreadSafetyTIL::isTrivial(V->definition())) { 112 E = V->definition(); 113 continue; 114 } 115 return V; 116 } 117 if (auto *Ph = dyn_cast<Phi>(E)) { 118 if (Ph->status() == Phi::PH_Incomplete) 119 simplifyIncompleteArg(Ph); 120 // Eliminate redundant Phi nodes. 121 if (Ph->status() == Phi::PH_SingleVal) { 122 E = Ph->values()[0]; 123 continue; 124 } 125 } 126 return E; 127 } 128 } 129 130 // Trace the arguments of an incomplete Phi node to see if they have the same 131 // canonical definition. If so, mark the Phi node as redundant. 132 // getCanonicalVal() will recursively call simplifyIncompletePhi(). 133 void til::simplifyIncompleteArg(til::Phi *Ph) { 134 assert(Ph && Ph->status() == Phi::PH_Incomplete); 135 136 // eliminate infinite recursion -- assume that this node is not redundant. 137 Ph->setStatus(Phi::PH_MultiVal); 138 139 SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]); 140 for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) { 141 SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]); 142 if (Ei == Ph) 143 continue; // Recursive reference to itself. Don't count. 144 if (Ei != E0) { 145 return; // Status is already set to MultiVal. 146 } 147 } 148 Ph->setStatus(Phi::PH_SingleVal); 149 } 150 151 // Renumbers the arguments and instructions to have unique, sequential IDs. 152 unsigned BasicBlock::renumberInstrs(unsigned ID) { 153 for (auto *Arg : Args) 154 Arg->setID(this, ID++); 155 for (auto *Instr : Instrs) 156 Instr->setID(this, ID++); 157 TermInstr->setID(this, ID++); 158 return ID; 159 } 160 161 // Sorts the CFGs blocks using a reverse post-order depth-first traversal. 162 // Each block will be written into the Blocks array in order, and its BlockID 163 // will be set to the index in the array. Sorting should start from the entry 164 // block, and ID should be the total number of blocks. 165 unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks, 166 unsigned ID) { 167 if (Visited) return ID; 168 Visited = true; 169 for (auto *Block : successors()) 170 ID = Block->topologicalSort(Blocks, ID); 171 // set ID and update block array in place. 172 // We may lose pointers to unreachable blocks. 173 assert(ID > 0); 174 BlockID = --ID; 175 Blocks[BlockID] = this; 176 return ID; 177 } 178 179 // Performs a reverse topological traversal, starting from the exit block and 180 // following back-edges. The dominator is serialized before any predecessors, 181 // which guarantees that all blocks are serialized after their dominator and 182 // before their post-dominator (because it's a reverse topological traversal). 183 // ID should be initially set to 0. 184 // 185 // This sort assumes that (1) dominators have been computed, (2) there are no 186 // critical edges, and (3) the entry block is reachable from the exit block 187 // and no blocks are accessible via traversal of back-edges from the exit that 188 // weren't accessible via forward edges from the entry. 189 unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, 190 unsigned ID) { 191 // Visited is assumed to have been set by the topologicalSort. This pass 192 // assumes !Visited means that we've visited this node before. 193 if (!Visited) return ID; 194 Visited = false; 195 if (DominatorNode.Parent) 196 ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); 197 for (auto *Pred : Predecessors) 198 ID = Pred->topologicalFinalSort(Blocks, ID); 199 assert(static_cast<size_t>(ID) < Blocks.size()); 200 BlockID = ID++; 201 Blocks[BlockID] = this; 202 return ID; 203 } 204 205 // Computes the immediate dominator of the current block. Assumes that all of 206 // its predecessors have already computed their dominators. This is achieved 207 // by visiting the nodes in topological order. 208 void BasicBlock::computeDominator() { 209 BasicBlock *Candidate = nullptr; 210 // Walk backwards from each predecessor to find the common dominator node. 211 for (auto *Pred : Predecessors) { 212 // Skip back-edges 213 if (Pred->BlockID >= BlockID) continue; 214 // If we don't yet have a candidate for dominator yet, take this one. 215 if (Candidate == nullptr) { 216 Candidate = Pred; 217 continue; 218 } 219 // Walk the alternate and current candidate back to find a common ancestor. 220 auto *Alternate = Pred; 221 while (Alternate != Candidate) { 222 if (Candidate->BlockID > Alternate->BlockID) 223 Candidate = Candidate->DominatorNode.Parent; 224 else 225 Alternate = Alternate->DominatorNode.Parent; 226 } 227 } 228 DominatorNode.Parent = Candidate; 229 DominatorNode.SizeOfSubTree = 1; 230 } 231 232 // Computes the immediate post-dominator of the current block. Assumes that all 233 // of its successors have already computed their post-dominators. This is 234 // achieved visiting the nodes in reverse topological order. 235 void BasicBlock::computePostDominator() { 236 BasicBlock *Candidate = nullptr; 237 // Walk back from each predecessor to find the common post-dominator node. 238 for (auto *Succ : successors()) { 239 // Skip back-edges 240 if (Succ->BlockID <= BlockID) continue; 241 // If we don't yet have a candidate for post-dominator yet, take this one. 242 if (Candidate == nullptr) { 243 Candidate = Succ; 244 continue; 245 } 246 // Walk the alternate and current candidate back to find a common ancestor. 247 auto *Alternate = Succ; 248 while (Alternate != Candidate) { 249 if (Candidate->BlockID < Alternate->BlockID) 250 Candidate = Candidate->PostDominatorNode.Parent; 251 else 252 Alternate = Alternate->PostDominatorNode.Parent; 253 } 254 } 255 PostDominatorNode.Parent = Candidate; 256 PostDominatorNode.SizeOfSubTree = 1; 257 } 258 259 // Renumber instructions in all blocks 260 void SCFG::renumberInstrs() { 261 unsigned InstrID = 0; 262 for (auto *Block : Blocks) 263 InstrID = Block->renumberInstrs(InstrID); 264 } 265 266 static inline void computeNodeSize(BasicBlock *B, 267 BasicBlock::TopologyNode BasicBlock::*TN) { 268 BasicBlock::TopologyNode *N = &(B->*TN); 269 if (N->Parent) { 270 BasicBlock::TopologyNode *P = &(N->Parent->*TN); 271 // Initially set ID relative to the (as yet uncomputed) parent ID 272 N->NodeID = P->SizeOfSubTree; 273 P->SizeOfSubTree += N->SizeOfSubTree; 274 } 275 } 276 277 static inline void computeNodeID(BasicBlock *B, 278 BasicBlock::TopologyNode BasicBlock::*TN) { 279 BasicBlock::TopologyNode *N = &(B->*TN); 280 if (N->Parent) { 281 BasicBlock::TopologyNode *P = &(N->Parent->*TN); 282 N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node. 283 } 284 } 285 286 // Normalizes a CFG. Normalization has a few major components: 287 // 1) Removing unreachable blocks. 288 // 2) Computing dominators and post-dominators 289 // 3) Topologically sorting the blocks into the "Blocks" array. 290 void SCFG::computeNormalForm() { 291 // Topologically sort the blocks starting from the entry block. 292 unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size()); 293 if (NumUnreachableBlocks > 0) { 294 // If there were unreachable blocks shift everything down, and delete them. 295 for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { 296 unsigned NI = I - NumUnreachableBlocks; 297 Blocks[NI] = Blocks[I]; 298 Blocks[NI]->BlockID = NI; 299 // FIXME: clean up predecessor pointers to unreachable blocks? 300 } 301 Blocks.drop(NumUnreachableBlocks); 302 } 303 304 // Compute dominators. 305 for (auto *Block : Blocks) 306 Block->computeDominator(); 307 308 // Once dominators have been computed, the final sort may be performed. 309 unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0); 310 assert(static_cast<size_t>(NumBlocks) == Blocks.size()); 311 (void) NumBlocks; 312 313 // Renumber the instructions now that we have a final sort. 314 renumberInstrs(); 315 316 // Compute post-dominators and compute the sizes of each node in the 317 // dominator tree. 318 for (auto *Block : Blocks.reverse()) { 319 Block->computePostDominator(); 320 computeNodeSize(Block, &BasicBlock::DominatorNode); 321 } 322 // Compute the sizes of each node in the post-dominator tree and assign IDs in 323 // the dominator tree. 324 for (auto *Block : Blocks) { 325 computeNodeID(Block, &BasicBlock::DominatorNode); 326 computeNodeSize(Block, &BasicBlock::PostDominatorNode); 327 } 328 // Assign IDs in the post-dominator tree. 329 for (auto *Block : Blocks.reverse()) { 330 computeNodeID(Block, &BasicBlock::PostDominatorNode); 331 } 332 } 333