xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ThreadSafetyCommon.cpp (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
36 
37 using namespace clang;
38 using namespace threadSafety;
39 
40 // From ThreadSafetyUtil.h
41 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42   switch (CE->getStmtClass()) {
43     case Stmt::IntegerLiteralClass:
44       return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45     case Stmt::StringLiteralClass: {
46       std::string ret("\"");
47       ret += cast<StringLiteral>(CE)->getString();
48       ret += "\"";
49       return ret;
50     }
51     case Stmt::CharacterLiteralClass:
52     case Stmt::CXXNullPtrLiteralExprClass:
53     case Stmt::GNUNullExprClass:
54     case Stmt::CXXBoolLiteralExprClass:
55     case Stmt::FloatingLiteralClass:
56     case Stmt::ImaginaryLiteralClass:
57     case Stmt::ObjCStringLiteralClass:
58     default:
59       return "#lit";
60   }
61 }
62 
63 // Return true if E is a variable that points to an incomplete Phi node.
64 static bool isIncompletePhi(const til::SExpr *E) {
65   if (const auto *Ph = dyn_cast<til::Phi>(E))
66     return Ph->status() == til::Phi::PH_Incomplete;
67   return false;
68 }
69 
70 using CallingContext = SExprBuilder::CallingContext;
71 
72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(S); }
73 
74 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
75   Walker.walk(*this);
76   return Scfg;
77 }
78 
79 static bool isCalleeArrow(const Expr *E) {
80   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
81   return ME ? ME->isArrow() : false;
82 }
83 
84 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
85   return A->getName();
86 }
87 
88 static StringRef ClassifyDiagnostic(QualType VDT) {
89   // We need to look at the declaration of the type of the value to determine
90   // which it is. The type should either be a record or a typedef, or a pointer
91   // or reference thereof.
92   if (const auto *RT = VDT->getAs<RecordType>()) {
93     if (const auto *RD = RT->getDecl())
94       if (const auto *CA = RD->getAttr<CapabilityAttr>())
95         return ClassifyDiagnostic(CA);
96   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
97     if (const auto *TD = TT->getDecl())
98       if (const auto *CA = TD->getAttr<CapabilityAttr>())
99         return ClassifyDiagnostic(CA);
100   } else if (VDT->isPointerType() || VDT->isReferenceType())
101     return ClassifyDiagnostic(VDT->getPointeeType());
102 
103   return "mutex";
104 }
105 
106 /// Translate a clang expression in an attribute to a til::SExpr.
107 /// Constructs the context from D, DeclExp, and SelfDecl.
108 ///
109 /// \param AttrExp The expression to translate.
110 /// \param D       The declaration to which the attribute is attached.
111 /// \param DeclExp An expression involving the Decl to which the attribute
112 ///                is attached.  E.g. the call to a function.
113 /// \param Self    S-expression to substitute for a \ref CXXThisExpr.
114 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
115                                                const NamedDecl *D,
116                                                const Expr *DeclExp,
117                                                til::SExpr *Self) {
118   // If we are processing a raw attribute expression, with no substitutions.
119   if (!DeclExp && !Self)
120     return translateAttrExpr(AttrExp, nullptr);
121 
122   CallingContext Ctx(nullptr, D);
123 
124   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
125   // for formal parameters when we call buildMutexID later.
126   if (!DeclExp)
127     /* We'll use Self. */;
128   else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
129     Ctx.SelfArg   = ME->getBase();
130     Ctx.SelfArrow = ME->isArrow();
131   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
132     Ctx.SelfArg   = CE->getImplicitObjectArgument();
133     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
134     Ctx.NumArgs   = CE->getNumArgs();
135     Ctx.FunArgs   = CE->getArgs();
136   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
137     Ctx.NumArgs = CE->getNumArgs();
138     Ctx.FunArgs = CE->getArgs();
139   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
140     Ctx.SelfArg = nullptr;  // Will be set below
141     Ctx.NumArgs = CE->getNumArgs();
142     Ctx.FunArgs = CE->getArgs();
143   }
144 
145   if (Self) {
146     assert(!Ctx.SelfArg && "Ambiguous self argument");
147     Ctx.SelfArg = Self;
148 
149     // If the attribute has no arguments, then assume the argument is "this".
150     if (!AttrExp)
151       return CapabilityExpr(
152           Self, ClassifyDiagnostic(cast<CXXMethodDecl>(D)->getThisObjectType()),
153           false);
154     else  // For most attributes.
155       return translateAttrExpr(AttrExp, &Ctx);
156   }
157 
158   // If the attribute has no arguments, then assume the argument is "this".
159   if (!AttrExp)
160     return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr);
161   else  // For most attributes.
162     return translateAttrExpr(AttrExp, &Ctx);
163 }
164 
165 /// Translate a clang expression in an attribute to a til::SExpr.
166 // This assumes a CallingContext has already been created.
167 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
168                                                CallingContext *Ctx) {
169   if (!AttrExp)
170     return CapabilityExpr();
171 
172   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
173     if (SLit->getString() == StringRef("*"))
174       // The "*" expr is a universal lock, which essentially turns off
175       // checks until it is removed from the lockset.
176       return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"),
177                             false);
178     else
179       // Ignore other string literals for now.
180       return CapabilityExpr();
181   }
182 
183   bool Neg = false;
184   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
185     if (OE->getOperator() == OO_Exclaim) {
186       Neg = true;
187       AttrExp = OE->getArg(0);
188     }
189   }
190   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
191     if (UO->getOpcode() == UO_LNot) {
192       Neg = true;
193       AttrExp = UO->getSubExpr();
194     }
195   }
196 
197   til::SExpr *E = translate(AttrExp, Ctx);
198 
199   // Trap mutex expressions like nullptr, or 0.
200   // Any literal value is nonsense.
201   if (!E || isa<til::Literal>(E))
202     return CapabilityExpr();
203 
204   StringRef Kind = ClassifyDiagnostic(AttrExp->getType());
205 
206   // Hack to deal with smart pointers -- strip off top-level pointer casts.
207   if (const auto *CE = dyn_cast<til::Cast>(E)) {
208     if (CE->castOpcode() == til::CAST_objToPtr)
209       return CapabilityExpr(CE->expr(), Kind, Neg);
210   }
211   return CapabilityExpr(E, Kind, Neg);
212 }
213 
214 til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) {
215   return new (Arena) til::LiteralPtr(VD);
216 }
217 
218 std::pair<til::LiteralPtr *, StringRef>
219 SExprBuilder::createThisPlaceholder(const Expr *Exp) {
220   return {new (Arena) til::LiteralPtr(nullptr),
221           ClassifyDiagnostic(Exp->getType())};
222 }
223 
224 // Translate a clang statement or expression to a TIL expression.
225 // Also performs substitution of variables; Ctx provides the context.
226 // Dispatches on the type of S.
227 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
228   if (!S)
229     return nullptr;
230 
231   // Check if S has already been translated and cached.
232   // This handles the lookup of SSA names for DeclRefExprs here.
233   if (til::SExpr *E = lookupStmt(S))
234     return E;
235 
236   switch (S->getStmtClass()) {
237   case Stmt::DeclRefExprClass:
238     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
239   case Stmt::CXXThisExprClass:
240     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
241   case Stmt::MemberExprClass:
242     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
243   case Stmt::ObjCIvarRefExprClass:
244     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
245   case Stmt::CallExprClass:
246     return translateCallExpr(cast<CallExpr>(S), Ctx);
247   case Stmt::CXXMemberCallExprClass:
248     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
249   case Stmt::CXXOperatorCallExprClass:
250     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
251   case Stmt::UnaryOperatorClass:
252     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
253   case Stmt::BinaryOperatorClass:
254   case Stmt::CompoundAssignOperatorClass:
255     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
256 
257   case Stmt::ArraySubscriptExprClass:
258     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
259   case Stmt::ConditionalOperatorClass:
260     return translateAbstractConditionalOperator(
261              cast<ConditionalOperator>(S), Ctx);
262   case Stmt::BinaryConditionalOperatorClass:
263     return translateAbstractConditionalOperator(
264              cast<BinaryConditionalOperator>(S), Ctx);
265 
266   // We treat these as no-ops
267   case Stmt::ConstantExprClass:
268     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
269   case Stmt::ParenExprClass:
270     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
271   case Stmt::ExprWithCleanupsClass:
272     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
273   case Stmt::CXXBindTemporaryExprClass:
274     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
275   case Stmt::MaterializeTemporaryExprClass:
276     return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
277 
278   // Collect all literals
279   case Stmt::CharacterLiteralClass:
280   case Stmt::CXXNullPtrLiteralExprClass:
281   case Stmt::GNUNullExprClass:
282   case Stmt::CXXBoolLiteralExprClass:
283   case Stmt::FloatingLiteralClass:
284   case Stmt::ImaginaryLiteralClass:
285   case Stmt::IntegerLiteralClass:
286   case Stmt::StringLiteralClass:
287   case Stmt::ObjCStringLiteralClass:
288     return new (Arena) til::Literal(cast<Expr>(S));
289 
290   case Stmt::DeclStmtClass:
291     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
292   default:
293     break;
294   }
295   if (const auto *CE = dyn_cast<CastExpr>(S))
296     return translateCastExpr(CE, Ctx);
297 
298   return new (Arena) til::Undefined(S);
299 }
300 
301 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
302                                                CallingContext *Ctx) {
303   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
304 
305   // Function parameters require substitution and/or renaming.
306   if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
307     unsigned I = PV->getFunctionScopeIndex();
308     const DeclContext *D = PV->getDeclContext();
309     if (Ctx && Ctx->FunArgs) {
310       const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
311       if (isa<FunctionDecl>(D)
312               ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
313               : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
314         // Substitute call arguments for references to function parameters
315         assert(I < Ctx->NumArgs);
316         return translate(Ctx->FunArgs[I], Ctx->Prev);
317       }
318     }
319     // Map the param back to the param of the original function declaration
320     // for consistent comparisons.
321     VD = isa<FunctionDecl>(D)
322              ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
323              : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
324   }
325 
326   // For non-local variables, treat it as a reference to a named object.
327   return new (Arena) til::LiteralPtr(VD);
328 }
329 
330 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
331                                                CallingContext *Ctx) {
332   // Substitute for 'this'
333   if (Ctx && Ctx->SelfArg) {
334     if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg))
335       return translate(SelfArg, Ctx->Prev);
336     else
337       return cast<til::SExpr *>(Ctx->SelfArg);
338   }
339   assert(SelfVar && "We have no variable for 'this'!");
340   return SelfVar;
341 }
342 
343 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
344   if (const auto *V = dyn_cast<til::Variable>(E))
345     return V->clangDecl();
346   if (const auto *Ph = dyn_cast<til::Phi>(E))
347     return Ph->clangDecl();
348   if (const auto *P = dyn_cast<til::Project>(E))
349     return P->clangDecl();
350   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
351     return L->clangDecl();
352   return nullptr;
353 }
354 
355 static bool hasAnyPointerType(const til::SExpr *E) {
356   auto *VD = getValueDeclFromSExpr(E);
357   if (VD && VD->getType()->isAnyPointerType())
358     return true;
359   if (const auto *C = dyn_cast<til::Cast>(E))
360     return C->castOpcode() == til::CAST_objToPtr;
361 
362   return false;
363 }
364 
365 // Grab the very first declaration of virtual method D
366 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
367   while (true) {
368     D = D->getCanonicalDecl();
369     auto OverriddenMethods = D->overridden_methods();
370     if (OverriddenMethods.begin() == OverriddenMethods.end())
371       return D;  // Method does not override anything
372     // FIXME: this does not work with multiple inheritance.
373     D = *OverriddenMethods.begin();
374   }
375   return nullptr;
376 }
377 
378 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
379                                               CallingContext *Ctx) {
380   til::SExpr *BE = translate(ME->getBase(), Ctx);
381   til::SExpr *E  = new (Arena) til::SApply(BE);
382 
383   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
384   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
385     D = getFirstVirtualDecl(VD);
386 
387   til::Project *P = new (Arena) til::Project(E, D);
388   if (hasAnyPointerType(BE))
389     P->setArrow(true);
390   return P;
391 }
392 
393 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
394                                                    CallingContext *Ctx) {
395   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
396   til::SExpr *E = new (Arena) til::SApply(BE);
397 
398   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
399 
400   til::Project *P = new (Arena) til::Project(E, D);
401   if (hasAnyPointerType(BE))
402     P->setArrow(true);
403   return P;
404 }
405 
406 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
407                                             CallingContext *Ctx,
408                                             const Expr *SelfE) {
409   if (CapabilityExprMode) {
410     // Handle LOCK_RETURNED
411     if (const FunctionDecl *FD = CE->getDirectCallee()) {
412       FD = FD->getMostRecentDecl();
413       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
414         CallingContext LRCallCtx(Ctx);
415         LRCallCtx.AttrDecl = CE->getDirectCallee();
416         LRCallCtx.SelfArg = SelfE;
417         LRCallCtx.NumArgs = CE->getNumArgs();
418         LRCallCtx.FunArgs = CE->getArgs();
419         return const_cast<til::SExpr *>(
420             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
421       }
422     }
423   }
424 
425   til::SExpr *E = translate(CE->getCallee(), Ctx);
426   for (const auto *Arg : CE->arguments()) {
427     til::SExpr *A = translate(Arg, Ctx);
428     E = new (Arena) til::Apply(E, A);
429   }
430   return new (Arena) til::Call(E, CE);
431 }
432 
433 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
434     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
435   if (CapabilityExprMode) {
436     // Ignore calls to get() on smart pointers.
437     if (ME->getMethodDecl()->getNameAsString() == "get" &&
438         ME->getNumArgs() == 0) {
439       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
440       return new (Arena) til::Cast(til::CAST_objToPtr, E);
441       // return E;
442     }
443   }
444   return translateCallExpr(cast<CallExpr>(ME), Ctx,
445                            ME->getImplicitObjectArgument());
446 }
447 
448 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
449     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
450   if (CapabilityExprMode) {
451     // Ignore operator * and operator -> on smart pointers.
452     OverloadedOperatorKind k = OCE->getOperator();
453     if (k == OO_Star || k == OO_Arrow) {
454       auto *E = translate(OCE->getArg(0), Ctx);
455       return new (Arena) til::Cast(til::CAST_objToPtr, E);
456       // return E;
457     }
458   }
459   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
460 }
461 
462 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
463                                                  CallingContext *Ctx) {
464   switch (UO->getOpcode()) {
465   case UO_PostInc:
466   case UO_PostDec:
467   case UO_PreInc:
468   case UO_PreDec:
469     return new (Arena) til::Undefined(UO);
470 
471   case UO_AddrOf:
472     if (CapabilityExprMode) {
473       // interpret &Graph::mu_ as an existential.
474       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
475         if (DRE->getDecl()->isCXXInstanceMember()) {
476           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
477           // We interpret this syntax specially, as a wildcard.
478           auto *W = new (Arena) til::Wildcard();
479           return new (Arena) til::Project(W, DRE->getDecl());
480         }
481       }
482     }
483     // otherwise, & is a no-op
484     return translate(UO->getSubExpr(), Ctx);
485 
486   // We treat these as no-ops
487   case UO_Deref:
488   case UO_Plus:
489     return translate(UO->getSubExpr(), Ctx);
490 
491   case UO_Minus:
492     return new (Arena)
493       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
494   case UO_Not:
495     return new (Arena)
496       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
497   case UO_LNot:
498     return new (Arena)
499       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
500 
501   // Currently unsupported
502   case UO_Real:
503   case UO_Imag:
504   case UO_Extension:
505   case UO_Coawait:
506     return new (Arena) til::Undefined(UO);
507   }
508   return new (Arena) til::Undefined(UO);
509 }
510 
511 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
512                                          const BinaryOperator *BO,
513                                          CallingContext *Ctx, bool Reverse) {
514    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
515    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
516    if (Reverse)
517      return new (Arena) til::BinaryOp(Op, E1, E0);
518    else
519      return new (Arena) til::BinaryOp(Op, E0, E1);
520 }
521 
522 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
523                                              const BinaryOperator *BO,
524                                              CallingContext *Ctx,
525                                              bool Assign) {
526   const Expr *LHS = BO->getLHS();
527   const Expr *RHS = BO->getRHS();
528   til::SExpr *E0 = translate(LHS, Ctx);
529   til::SExpr *E1 = translate(RHS, Ctx);
530 
531   const ValueDecl *VD = nullptr;
532   til::SExpr *CV = nullptr;
533   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
534     VD = DRE->getDecl();
535     CV = lookupVarDecl(VD);
536   }
537 
538   if (!Assign) {
539     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
540     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
541     E1 = addStatement(E1, nullptr, VD);
542   }
543   if (VD && CV)
544     return updateVarDecl(VD, E1);
545   return new (Arena) til::Store(E0, E1);
546 }
547 
548 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
549                                                   CallingContext *Ctx) {
550   switch (BO->getOpcode()) {
551   case BO_PtrMemD:
552   case BO_PtrMemI:
553     return new (Arena) til::Undefined(BO);
554 
555   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
556   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
557   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
558   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
559   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
560   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
561   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
562   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
563   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
564   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
565   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
566   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
567   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
568   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
569   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
570   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
571   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
572   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
573   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
574 
575   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
576   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
577   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
578   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
579   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
580   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
581   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
582   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
583   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
584   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
585   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
586 
587   case BO_Comma:
588     // The clang CFG should have already processed both sides.
589     return translate(BO->getRHS(), Ctx);
590   }
591   return new (Arena) til::Undefined(BO);
592 }
593 
594 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
595                                             CallingContext *Ctx) {
596   CastKind K = CE->getCastKind();
597   switch (K) {
598   case CK_LValueToRValue: {
599     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
600       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
601       if (E0)
602         return E0;
603     }
604     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
605     return E0;
606     // FIXME!! -- get Load working properly
607     // return new (Arena) til::Load(E0);
608   }
609   case CK_NoOp:
610   case CK_DerivedToBase:
611   case CK_UncheckedDerivedToBase:
612   case CK_ArrayToPointerDecay:
613   case CK_FunctionToPointerDecay: {
614     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
615     return E0;
616   }
617   default: {
618     // FIXME: handle different kinds of casts.
619     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
620     if (CapabilityExprMode)
621       return E0;
622     return new (Arena) til::Cast(til::CAST_none, E0);
623   }
624   }
625 }
626 
627 til::SExpr *
628 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
629                                           CallingContext *Ctx) {
630   til::SExpr *E0 = translate(E->getBase(), Ctx);
631   til::SExpr *E1 = translate(E->getIdx(), Ctx);
632   return new (Arena) til::ArrayIndex(E0, E1);
633 }
634 
635 til::SExpr *
636 SExprBuilder::translateAbstractConditionalOperator(
637     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
638   auto *C = translate(CO->getCond(), Ctx);
639   auto *T = translate(CO->getTrueExpr(), Ctx);
640   auto *E = translate(CO->getFalseExpr(), Ctx);
641   return new (Arena) til::IfThenElse(C, T, E);
642 }
643 
644 til::SExpr *
645 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
646   DeclGroupRef DGrp = S->getDeclGroup();
647   for (auto *I : DGrp) {
648     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
649       Expr *E = VD->getInit();
650       til::SExpr* SE = translate(E, Ctx);
651 
652       // Add local variables with trivial type to the variable map
653       QualType T = VD->getType();
654       if (T.isTrivialType(VD->getASTContext()))
655         return addVarDecl(VD, SE);
656       else {
657         // TODO: add alloca
658       }
659     }
660   }
661   return nullptr;
662 }
663 
664 // If (E) is non-trivial, then add it to the current basic block, and
665 // update the statement map so that S refers to E.  Returns a new variable
666 // that refers to E.
667 // If E is trivial returns E.
668 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
669                                        const ValueDecl *VD) {
670   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
671     return E;
672   if (VD)
673     E = new (Arena) til::Variable(E, VD);
674   CurrentInstructions.push_back(E);
675   if (S)
676     insertStmt(S, E);
677   return E;
678 }
679 
680 // Returns the current value of VD, if known, and nullptr otherwise.
681 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
682   auto It = LVarIdxMap.find(VD);
683   if (It != LVarIdxMap.end()) {
684     assert(CurrentLVarMap[It->second].first == VD);
685     return CurrentLVarMap[It->second].second;
686   }
687   return nullptr;
688 }
689 
690 // if E is a til::Variable, update its clangDecl.
691 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
692   if (!E)
693     return;
694   if (auto *V = dyn_cast<til::Variable>(E)) {
695     if (!V->clangDecl())
696       V->setClangDecl(VD);
697   }
698 }
699 
700 // Adds a new variable declaration.
701 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
702   maybeUpdateVD(E, VD);
703   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
704   CurrentLVarMap.makeWritable();
705   CurrentLVarMap.push_back(std::make_pair(VD, E));
706   return E;
707 }
708 
709 // Updates a current variable declaration.  (E.g. by assignment)
710 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
711   maybeUpdateVD(E, VD);
712   auto It = LVarIdxMap.find(VD);
713   if (It == LVarIdxMap.end()) {
714     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
715     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
716     return St;
717   }
718   CurrentLVarMap.makeWritable();
719   CurrentLVarMap.elem(It->second).second = E;
720   return E;
721 }
722 
723 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
724 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
725 // If E == null, this is a backedge and will be set later.
726 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
727   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
728   assert(ArgIndex > 0 && ArgIndex < NPreds);
729 
730   til::SExpr *CurrE = CurrentLVarMap[i].second;
731   if (CurrE->block() == CurrentBB) {
732     // We already have a Phi node in the current block,
733     // so just add the new variable to the Phi node.
734     auto *Ph = dyn_cast<til::Phi>(CurrE);
735     assert(Ph && "Expecting Phi node.");
736     if (E)
737       Ph->values()[ArgIndex] = E;
738     return;
739   }
740 
741   // Make a new phi node: phi(..., E)
742   // All phi args up to the current index are set to the current value.
743   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
744   Ph->values().setValues(NPreds, nullptr);
745   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
746     Ph->values()[PIdx] = CurrE;
747   if (E)
748     Ph->values()[ArgIndex] = E;
749   Ph->setClangDecl(CurrentLVarMap[i].first);
750   // If E is from a back-edge, or either E or CurrE are incomplete, then
751   // mark this node as incomplete; we may need to remove it later.
752   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
753     Ph->setStatus(til::Phi::PH_Incomplete);
754 
755   // Add Phi node to current block, and update CurrentLVarMap[i]
756   CurrentArguments.push_back(Ph);
757   if (Ph->status() == til::Phi::PH_Incomplete)
758     IncompleteArgs.push_back(Ph);
759 
760   CurrentLVarMap.makeWritable();
761   CurrentLVarMap.elem(i).second = Ph;
762 }
763 
764 // Merge values from Map into the current variable map.
765 // This will construct Phi nodes in the current basic block as necessary.
766 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
767   assert(CurrentBlockInfo && "Not processing a block!");
768 
769   if (!CurrentLVarMap.valid()) {
770     // Steal Map, using copy-on-write.
771     CurrentLVarMap = std::move(Map);
772     return;
773   }
774   if (CurrentLVarMap.sameAs(Map))
775     return;  // Easy merge: maps from different predecessors are unchanged.
776 
777   unsigned NPreds = CurrentBB->numPredecessors();
778   unsigned ESz = CurrentLVarMap.size();
779   unsigned MSz = Map.size();
780   unsigned Sz  = std::min(ESz, MSz);
781 
782   for (unsigned i = 0; i < Sz; ++i) {
783     if (CurrentLVarMap[i].first != Map[i].first) {
784       // We've reached the end of variables in common.
785       CurrentLVarMap.makeWritable();
786       CurrentLVarMap.downsize(i);
787       break;
788     }
789     if (CurrentLVarMap[i].second != Map[i].second)
790       makePhiNodeVar(i, NPreds, Map[i].second);
791   }
792   if (ESz > MSz) {
793     CurrentLVarMap.makeWritable();
794     CurrentLVarMap.downsize(Map.size());
795   }
796 }
797 
798 // Merge a back edge into the current variable map.
799 // This will create phi nodes for all variables in the variable map.
800 void SExprBuilder::mergeEntryMapBackEdge() {
801   // We don't have definitions for variables on the backedge, because we
802   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
803   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
804   // nodes will be marked as incomplete, and stripped out at the end.
805   //
806   // An Phi node is unnecessary if it only refers to itself and one other
807   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
808 
809   assert(CurrentBlockInfo && "Not processing a block!");
810 
811   if (CurrentBlockInfo->HasBackEdges)
812     return;
813   CurrentBlockInfo->HasBackEdges = true;
814 
815   CurrentLVarMap.makeWritable();
816   unsigned Sz = CurrentLVarMap.size();
817   unsigned NPreds = CurrentBB->numPredecessors();
818 
819   for (unsigned i = 0; i < Sz; ++i)
820     makePhiNodeVar(i, NPreds, nullptr);
821 }
822 
823 // Update the phi nodes that were initially created for a back edge
824 // once the variable definitions have been computed.
825 // I.e., merge the current variable map into the phi nodes for Blk.
826 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
827   til::BasicBlock *BB = lookupBlock(Blk);
828   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
829   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
830 
831   for (til::SExpr *PE : BB->arguments()) {
832     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
833     assert(Ph && "Expecting Phi Node.");
834     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
835 
836     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
837     assert(E && "Couldn't find local variable for Phi node.");
838     Ph->values()[ArgIndex] = E;
839   }
840 }
841 
842 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
843                             const CFGBlock *First) {
844   // Perform initial setup operations.
845   unsigned NBlocks = Cfg->getNumBlockIDs();
846   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
847 
848   // allocate all basic blocks immediately, to handle forward references.
849   BBInfo.resize(NBlocks);
850   BlockMap.resize(NBlocks, nullptr);
851   // create map from clang blockID to til::BasicBlocks
852   for (auto *B : *Cfg) {
853     auto *BB = new (Arena) til::BasicBlock(Arena);
854     BB->reserveInstructions(B->size());
855     BlockMap[B->getBlockID()] = BB;
856   }
857 
858   CurrentBB = lookupBlock(&Cfg->getEntry());
859   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
860                                       : cast<FunctionDecl>(D)->parameters();
861   for (auto *Pm : Parms) {
862     QualType T = Pm->getType();
863     if (!T.isTrivialType(Pm->getASTContext()))
864       continue;
865 
866     // Add parameters to local variable map.
867     // FIXME: right now we emulate params with loads; that should be fixed.
868     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
869     til::SExpr *Ld = new (Arena) til::Load(Lp);
870     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
871     addVarDecl(Pm, V);
872   }
873 }
874 
875 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
876   // Initialize TIL basic block and add it to the CFG.
877   CurrentBB = lookupBlock(B);
878   CurrentBB->reservePredecessors(B->pred_size());
879   Scfg->add(CurrentBB);
880 
881   CurrentBlockInfo = &BBInfo[B->getBlockID()];
882 
883   // CurrentLVarMap is moved to ExitMap on block exit.
884   // FIXME: the entry block will hold function parameters.
885   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
886 }
887 
888 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
889   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
890 
891   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
892   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
893   assert(PredInfo->UnprocessedSuccessors > 0);
894 
895   if (--PredInfo->UnprocessedSuccessors == 0)
896     mergeEntryMap(std::move(PredInfo->ExitMap));
897   else
898     mergeEntryMap(PredInfo->ExitMap.clone());
899 
900   ++CurrentBlockInfo->ProcessedPredecessors;
901 }
902 
903 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
904   mergeEntryMapBackEdge();
905 }
906 
907 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
908   // The merge*() methods have created arguments.
909   // Push those arguments onto the basic block.
910   CurrentBB->arguments().reserve(
911     static_cast<unsigned>(CurrentArguments.size()), Arena);
912   for (auto *A : CurrentArguments)
913     CurrentBB->addArgument(A);
914 }
915 
916 void SExprBuilder::handleStatement(const Stmt *S) {
917   til::SExpr *E = translate(S, nullptr);
918   addStatement(E, S);
919 }
920 
921 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
922                                         const CXXDestructorDecl *DD) {
923   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
924   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
925   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
926   til::SExpr *E = new (Arena) til::Call(Ap);
927   addStatement(E, nullptr);
928 }
929 
930 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
931   CurrentBB->instructions().reserve(
932     static_cast<unsigned>(CurrentInstructions.size()), Arena);
933   for (auto *V : CurrentInstructions)
934     CurrentBB->addInstruction(V);
935 
936   // Create an appropriate terminator
937   unsigned N = B->succ_size();
938   auto It = B->succ_begin();
939   if (N == 1) {
940     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
941     // TODO: set index
942     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
943     auto *Tm = new (Arena) til::Goto(BB, Idx);
944     CurrentBB->setTerminator(Tm);
945   }
946   else if (N == 2) {
947     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
948     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
949     ++It;
950     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
951     // FIXME: make sure these aren't critical edges.
952     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
953     CurrentBB->setTerminator(Tm);
954   }
955 }
956 
957 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
958   ++CurrentBlockInfo->UnprocessedSuccessors;
959 }
960 
961 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
962   mergePhiNodesBackEdge(Succ);
963   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
964 }
965 
966 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
967   CurrentArguments.clear();
968   CurrentInstructions.clear();
969   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
970   CurrentBB = nullptr;
971   CurrentBlockInfo = nullptr;
972 }
973 
974 void SExprBuilder::exitCFG(const CFGBlock *Last) {
975   for (auto *Ph : IncompleteArgs) {
976     if (Ph->status() == til::Phi::PH_Incomplete)
977       simplifyIncompleteArg(Ph);
978   }
979 
980   CurrentArguments.clear();
981   CurrentInstructions.clear();
982   IncompleteArgs.clear();
983 }
984 
985 /*
986 namespace {
987 
988 class TILPrinter :
989     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
990 
991 } // namespace
992 
993 namespace clang {
994 namespace threadSafety {
995 
996 void printSCFG(CFGWalker &Walker) {
997   llvm::BumpPtrAllocator Bpa;
998   til::MemRegionRef Arena(&Bpa);
999   SExprBuilder SxBuilder(Arena);
1000   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1001   TILPrinter::print(Scfg, llvm::errs());
1002 }
1003 
1004 } // namespace threadSafety
1005 } // namespace clang
1006 */
1007