1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/PointerIntPair.h" 45 #include "llvm/ADT/STLExtras.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/StringRef.h" 48 #include "llvm/Support/Allocator.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <functional> 55 #include <iterator> 56 #include <memory> 57 #include <string> 58 #include <type_traits> 59 #include <utility> 60 #include <vector> 61 62 using namespace clang; 63 using namespace threadSafety; 64 65 // Key method definition 66 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 67 68 /// Issue a warning about an invalid lock expression 69 static void warnInvalidLock(ThreadSafetyHandler &Handler, 70 const Expr *MutexExp, const NamedDecl *D, 71 const Expr *DeclExp, StringRef Kind) { 72 SourceLocation Loc; 73 if (DeclExp) 74 Loc = DeclExp->getExprLoc(); 75 76 // FIXME: add a note about the attribute location in MutexExp or D 77 if (Loc.isValid()) 78 Handler.handleInvalidLockExp(Kind, Loc); 79 } 80 81 namespace { 82 83 /// A set of CapabilityExpr objects, which are compiled from thread safety 84 /// attributes on a function. 85 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 86 public: 87 /// Push M onto list, but discard duplicates. 88 void push_back_nodup(const CapabilityExpr &CapE) { 89 iterator It = std::find_if(begin(), end(), 90 [=](const CapabilityExpr &CapE2) { 91 return CapE.equals(CapE2); 92 }); 93 if (It == end()) 94 push_back(CapE); 95 } 96 }; 97 98 class FactManager; 99 class FactSet; 100 101 /// This is a helper class that stores a fact that is known at a 102 /// particular point in program execution. Currently, a fact is a capability, 103 /// along with additional information, such as where it was acquired, whether 104 /// it is exclusive or shared, etc. 105 /// 106 /// FIXME: this analysis does not currently support re-entrant locking. 107 class FactEntry : public CapabilityExpr { 108 private: 109 /// Exclusive or shared. 110 LockKind LKind; 111 112 /// Where it was acquired. 113 SourceLocation AcquireLoc; 114 115 /// True if the lock was asserted. 116 bool Asserted; 117 118 /// True if the lock was declared. 119 bool Declared; 120 121 public: 122 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 123 bool Asrt, bool Declrd = false) 124 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), 125 Declared(Declrd) {} 126 virtual ~FactEntry() = default; 127 128 LockKind kind() const { return LKind; } 129 SourceLocation loc() const { return AcquireLoc; } 130 bool asserted() const { return Asserted; } 131 bool declared() const { return Declared; } 132 133 void setDeclared(bool D) { Declared = D; } 134 135 virtual void 136 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 137 SourceLocation JoinLoc, LockErrorKind LEK, 138 ThreadSafetyHandler &Handler) const = 0; 139 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 140 const FactEntry &entry, ThreadSafetyHandler &Handler, 141 StringRef DiagKind) const = 0; 142 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 143 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 144 bool FullyRemove, ThreadSafetyHandler &Handler, 145 StringRef DiagKind) const = 0; 146 147 // Return true if LKind >= LK, where exclusive > shared 148 bool isAtLeast(LockKind LK) const { 149 return (LKind == LK_Exclusive) || (LK == LK_Shared); 150 } 151 }; 152 153 using FactID = unsigned short; 154 155 /// FactManager manages the memory for all facts that are created during 156 /// the analysis of a single routine. 157 class FactManager { 158 private: 159 std::vector<std::unique_ptr<const FactEntry>> Facts; 160 161 public: 162 FactID newFact(std::unique_ptr<FactEntry> Entry) { 163 Facts.push_back(std::move(Entry)); 164 return static_cast<unsigned short>(Facts.size() - 1); 165 } 166 167 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 168 }; 169 170 /// A FactSet is the set of facts that are known to be true at a 171 /// particular program point. FactSets must be small, because they are 172 /// frequently copied, and are thus implemented as a set of indices into a 173 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 174 /// locks, so we can get away with doing a linear search for lookup. Note 175 /// that a hashtable or map is inappropriate in this case, because lookups 176 /// may involve partial pattern matches, rather than exact matches. 177 class FactSet { 178 private: 179 using FactVec = SmallVector<FactID, 4>; 180 181 FactVec FactIDs; 182 183 public: 184 using iterator = FactVec::iterator; 185 using const_iterator = FactVec::const_iterator; 186 187 iterator begin() { return FactIDs.begin(); } 188 const_iterator begin() const { return FactIDs.begin(); } 189 190 iterator end() { return FactIDs.end(); } 191 const_iterator end() const { return FactIDs.end(); } 192 193 bool isEmpty() const { return FactIDs.size() == 0; } 194 195 // Return true if the set contains only negative facts 196 bool isEmpty(FactManager &FactMan) const { 197 for (const auto FID : *this) { 198 if (!FactMan[FID].negative()) 199 return false; 200 } 201 return true; 202 } 203 204 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 205 206 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 207 FactID F = FM.newFact(std::move(Entry)); 208 FactIDs.push_back(F); 209 return F; 210 } 211 212 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 213 unsigned n = FactIDs.size(); 214 if (n == 0) 215 return false; 216 217 for (unsigned i = 0; i < n-1; ++i) { 218 if (FM[FactIDs[i]].matches(CapE)) { 219 FactIDs[i] = FactIDs[n-1]; 220 FactIDs.pop_back(); 221 return true; 222 } 223 } 224 if (FM[FactIDs[n-1]].matches(CapE)) { 225 FactIDs.pop_back(); 226 return true; 227 } 228 return false; 229 } 230 231 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 232 return std::find_if(begin(), end(), [&](FactID ID) { 233 return FM[ID].matches(CapE); 234 }); 235 } 236 237 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 238 auto I = std::find_if(begin(), end(), [&](FactID ID) { 239 return FM[ID].matches(CapE); 240 }); 241 return I != end() ? &FM[*I] : nullptr; 242 } 243 244 const FactEntry *findLockUniv(FactManager &FM, 245 const CapabilityExpr &CapE) const { 246 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 247 return FM[ID].matchesUniv(CapE); 248 }); 249 return I != end() ? &FM[*I] : nullptr; 250 } 251 252 const FactEntry *findPartialMatch(FactManager &FM, 253 const CapabilityExpr &CapE) const { 254 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 255 return FM[ID].partiallyMatches(CapE); 256 }); 257 return I != end() ? &FM[*I] : nullptr; 258 } 259 260 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 261 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 262 return FM[ID].valueDecl() == Vd; 263 }); 264 return I != end(); 265 } 266 }; 267 268 class ThreadSafetyAnalyzer; 269 270 } // namespace 271 272 namespace clang { 273 namespace threadSafety { 274 275 class BeforeSet { 276 private: 277 using BeforeVect = SmallVector<const ValueDecl *, 4>; 278 279 struct BeforeInfo { 280 BeforeVect Vect; 281 int Visited = 0; 282 283 BeforeInfo() = default; 284 BeforeInfo(BeforeInfo &&) = default; 285 }; 286 287 using BeforeMap = 288 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 289 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 290 291 public: 292 BeforeSet() = default; 293 294 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 295 ThreadSafetyAnalyzer& Analyzer); 296 297 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 298 ThreadSafetyAnalyzer &Analyzer); 299 300 void checkBeforeAfter(const ValueDecl* Vd, 301 const FactSet& FSet, 302 ThreadSafetyAnalyzer& Analyzer, 303 SourceLocation Loc, StringRef CapKind); 304 305 private: 306 BeforeMap BMap; 307 CycleMap CycMap; 308 }; 309 310 } // namespace threadSafety 311 } // namespace clang 312 313 namespace { 314 315 class LocalVariableMap; 316 317 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 318 319 /// A side (entry or exit) of a CFG node. 320 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 321 322 /// CFGBlockInfo is a struct which contains all the information that is 323 /// maintained for each block in the CFG. See LocalVariableMap for more 324 /// information about the contexts. 325 struct CFGBlockInfo { 326 // Lockset held at entry to block 327 FactSet EntrySet; 328 329 // Lockset held at exit from block 330 FactSet ExitSet; 331 332 // Context held at entry to block 333 LocalVarContext EntryContext; 334 335 // Context held at exit from block 336 LocalVarContext ExitContext; 337 338 // Location of first statement in block 339 SourceLocation EntryLoc; 340 341 // Location of last statement in block. 342 SourceLocation ExitLoc; 343 344 // Used to replay contexts later 345 unsigned EntryIndex; 346 347 // Is this block reachable? 348 bool Reachable = false; 349 350 const FactSet &getSet(CFGBlockSide Side) const { 351 return Side == CBS_Entry ? EntrySet : ExitSet; 352 } 353 354 SourceLocation getLocation(CFGBlockSide Side) const { 355 return Side == CBS_Entry ? EntryLoc : ExitLoc; 356 } 357 358 private: 359 CFGBlockInfo(LocalVarContext EmptyCtx) 360 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 361 362 public: 363 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 364 }; 365 366 // A LocalVariableMap maintains a map from local variables to their currently 367 // valid definitions. It provides SSA-like functionality when traversing the 368 // CFG. Like SSA, each definition or assignment to a variable is assigned a 369 // unique name (an integer), which acts as the SSA name for that definition. 370 // The total set of names is shared among all CFG basic blocks. 371 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 372 // with their SSA-names. Instead, we compute a Context for each point in the 373 // code, which maps local variables to the appropriate SSA-name. This map 374 // changes with each assignment. 375 // 376 // The map is computed in a single pass over the CFG. Subsequent analyses can 377 // then query the map to find the appropriate Context for a statement, and use 378 // that Context to look up the definitions of variables. 379 class LocalVariableMap { 380 public: 381 using Context = LocalVarContext; 382 383 /// A VarDefinition consists of an expression, representing the value of the 384 /// variable, along with the context in which that expression should be 385 /// interpreted. A reference VarDefinition does not itself contain this 386 /// information, but instead contains a pointer to a previous VarDefinition. 387 struct VarDefinition { 388 public: 389 friend class LocalVariableMap; 390 391 // The original declaration for this variable. 392 const NamedDecl *Dec; 393 394 // The expression for this variable, OR 395 const Expr *Exp = nullptr; 396 397 // Reference to another VarDefinition 398 unsigned Ref = 0; 399 400 // The map with which Exp should be interpreted. 401 Context Ctx; 402 403 bool isReference() { return !Exp; } 404 405 private: 406 // Create ordinary variable definition 407 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 408 : Dec(D), Exp(E), Ctx(C) {} 409 410 // Create reference to previous definition 411 VarDefinition(const NamedDecl *D, unsigned R, Context C) 412 : Dec(D), Ref(R), Ctx(C) {} 413 }; 414 415 private: 416 Context::Factory ContextFactory; 417 std::vector<VarDefinition> VarDefinitions; 418 std::vector<unsigned> CtxIndices; 419 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 420 421 public: 422 LocalVariableMap() { 423 // index 0 is a placeholder for undefined variables (aka phi-nodes). 424 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 425 } 426 427 /// Look up a definition, within the given context. 428 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 429 const unsigned *i = Ctx.lookup(D); 430 if (!i) 431 return nullptr; 432 assert(*i < VarDefinitions.size()); 433 return &VarDefinitions[*i]; 434 } 435 436 /// Look up the definition for D within the given context. Returns 437 /// NULL if the expression is not statically known. If successful, also 438 /// modifies Ctx to hold the context of the return Expr. 439 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 440 const unsigned *P = Ctx.lookup(D); 441 if (!P) 442 return nullptr; 443 444 unsigned i = *P; 445 while (i > 0) { 446 if (VarDefinitions[i].Exp) { 447 Ctx = VarDefinitions[i].Ctx; 448 return VarDefinitions[i].Exp; 449 } 450 i = VarDefinitions[i].Ref; 451 } 452 return nullptr; 453 } 454 455 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 456 457 /// Return the next context after processing S. This function is used by 458 /// clients of the class to get the appropriate context when traversing the 459 /// CFG. It must be called for every assignment or DeclStmt. 460 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 461 if (SavedContexts[CtxIndex+1].first == S) { 462 CtxIndex++; 463 Context Result = SavedContexts[CtxIndex].second; 464 return Result; 465 } 466 return C; 467 } 468 469 void dumpVarDefinitionName(unsigned i) { 470 if (i == 0) { 471 llvm::errs() << "Undefined"; 472 return; 473 } 474 const NamedDecl *Dec = VarDefinitions[i].Dec; 475 if (!Dec) { 476 llvm::errs() << "<<NULL>>"; 477 return; 478 } 479 Dec->printName(llvm::errs()); 480 llvm::errs() << "." << i << " " << ((const void*) Dec); 481 } 482 483 /// Dumps an ASCII representation of the variable map to llvm::errs() 484 void dump() { 485 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 486 const Expr *Exp = VarDefinitions[i].Exp; 487 unsigned Ref = VarDefinitions[i].Ref; 488 489 dumpVarDefinitionName(i); 490 llvm::errs() << " = "; 491 if (Exp) Exp->dump(); 492 else { 493 dumpVarDefinitionName(Ref); 494 llvm::errs() << "\n"; 495 } 496 } 497 } 498 499 /// Dumps an ASCII representation of a Context to llvm::errs() 500 void dumpContext(Context C) { 501 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 502 const NamedDecl *D = I.getKey(); 503 D->printName(llvm::errs()); 504 const unsigned *i = C.lookup(D); 505 llvm::errs() << " -> "; 506 dumpVarDefinitionName(*i); 507 llvm::errs() << "\n"; 508 } 509 } 510 511 /// Builds the variable map. 512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 513 std::vector<CFGBlockInfo> &BlockInfo); 514 515 protected: 516 friend class VarMapBuilder; 517 518 // Get the current context index 519 unsigned getContextIndex() { return SavedContexts.size()-1; } 520 521 // Save the current context for later replay 522 void saveContext(const Stmt *S, Context C) { 523 SavedContexts.push_back(std::make_pair(S, C)); 524 } 525 526 // Adds a new definition to the given context, and returns a new context. 527 // This method should be called when declaring a new variable. 528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 529 assert(!Ctx.contains(D)); 530 unsigned newID = VarDefinitions.size(); 531 Context NewCtx = ContextFactory.add(Ctx, D, newID); 532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 533 return NewCtx; 534 } 535 536 // Add a new reference to an existing definition. 537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 538 unsigned newID = VarDefinitions.size(); 539 Context NewCtx = ContextFactory.add(Ctx, D, newID); 540 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 541 return NewCtx; 542 } 543 544 // Updates a definition only if that definition is already in the map. 545 // This method should be called when assigning to an existing variable. 546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 547 if (Ctx.contains(D)) { 548 unsigned newID = VarDefinitions.size(); 549 Context NewCtx = ContextFactory.remove(Ctx, D); 550 NewCtx = ContextFactory.add(NewCtx, D, newID); 551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 552 return NewCtx; 553 } 554 return Ctx; 555 } 556 557 // Removes a definition from the context, but keeps the variable name 558 // as a valid variable. The index 0 is a placeholder for cleared definitions. 559 Context clearDefinition(const NamedDecl *D, Context Ctx) { 560 Context NewCtx = Ctx; 561 if (NewCtx.contains(D)) { 562 NewCtx = ContextFactory.remove(NewCtx, D); 563 NewCtx = ContextFactory.add(NewCtx, D, 0); 564 } 565 return NewCtx; 566 } 567 568 // Remove a definition entirely frmo the context. 569 Context removeDefinition(const NamedDecl *D, Context Ctx) { 570 Context NewCtx = Ctx; 571 if (NewCtx.contains(D)) { 572 NewCtx = ContextFactory.remove(NewCtx, D); 573 } 574 return NewCtx; 575 } 576 577 Context intersectContexts(Context C1, Context C2); 578 Context createReferenceContext(Context C); 579 void intersectBackEdge(Context C1, Context C2); 580 }; 581 582 } // namespace 583 584 // This has to be defined after LocalVariableMap. 585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 586 return CFGBlockInfo(M.getEmptyContext()); 587 } 588 589 namespace { 590 591 /// Visitor which builds a LocalVariableMap 592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 593 public: 594 LocalVariableMap* VMap; 595 LocalVariableMap::Context Ctx; 596 597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 598 : VMap(VM), Ctx(C) {} 599 600 void VisitDeclStmt(const DeclStmt *S); 601 void VisitBinaryOperator(const BinaryOperator *BO); 602 }; 603 604 } // namespace 605 606 // Add new local variables to the variable map 607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 608 bool modifiedCtx = false; 609 const DeclGroupRef DGrp = S->getDeclGroup(); 610 for (const auto *D : DGrp) { 611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 612 const Expr *E = VD->getInit(); 613 614 // Add local variables with trivial type to the variable map 615 QualType T = VD->getType(); 616 if (T.isTrivialType(VD->getASTContext())) { 617 Ctx = VMap->addDefinition(VD, E, Ctx); 618 modifiedCtx = true; 619 } 620 } 621 } 622 if (modifiedCtx) 623 VMap->saveContext(S, Ctx); 624 } 625 626 // Update local variable definitions in variable map 627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 628 if (!BO->isAssignmentOp()) 629 return; 630 631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 632 633 // Update the variable map and current context. 634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 635 const ValueDecl *VDec = DRE->getDecl(); 636 if (Ctx.lookup(VDec)) { 637 if (BO->getOpcode() == BO_Assign) 638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 639 else 640 // FIXME -- handle compound assignment operators 641 Ctx = VMap->clearDefinition(VDec, Ctx); 642 VMap->saveContext(BO, Ctx); 643 } 644 } 645 } 646 647 // Computes the intersection of two contexts. The intersection is the 648 // set of variables which have the same definition in both contexts; 649 // variables with different definitions are discarded. 650 LocalVariableMap::Context 651 LocalVariableMap::intersectContexts(Context C1, Context C2) { 652 Context Result = C1; 653 for (const auto &P : C1) { 654 const NamedDecl *Dec = P.first; 655 const unsigned *i2 = C2.lookup(Dec); 656 if (!i2) // variable doesn't exist on second path 657 Result = removeDefinition(Dec, Result); 658 else if (*i2 != P.second) // variable exists, but has different definition 659 Result = clearDefinition(Dec, Result); 660 } 661 return Result; 662 } 663 664 // For every variable in C, create a new variable that refers to the 665 // definition in C. Return a new context that contains these new variables. 666 // (We use this for a naive implementation of SSA on loop back-edges.) 667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 668 Context Result = getEmptyContext(); 669 for (const auto &P : C) 670 Result = addReference(P.first, P.second, Result); 671 return Result; 672 } 673 674 // This routine also takes the intersection of C1 and C2, but it does so by 675 // altering the VarDefinitions. C1 must be the result of an earlier call to 676 // createReferenceContext. 677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 678 for (const auto &P : C1) { 679 unsigned i1 = P.second; 680 VarDefinition *VDef = &VarDefinitions[i1]; 681 assert(VDef->isReference()); 682 683 const unsigned *i2 = C2.lookup(P.first); 684 if (!i2 || (*i2 != i1)) 685 VDef->Ref = 0; // Mark this variable as undefined 686 } 687 } 688 689 // Traverse the CFG in topological order, so all predecessors of a block 690 // (excluding back-edges) are visited before the block itself. At 691 // each point in the code, we calculate a Context, which holds the set of 692 // variable definitions which are visible at that point in execution. 693 // Visible variables are mapped to their definitions using an array that 694 // contains all definitions. 695 // 696 // At join points in the CFG, the set is computed as the intersection of 697 // the incoming sets along each edge, E.g. 698 // 699 // { Context | VarDefinitions } 700 // int x = 0; { x -> x1 | x1 = 0 } 701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 705 // 706 // This is essentially a simpler and more naive version of the standard SSA 707 // algorithm. Those definitions that remain in the intersection are from blocks 708 // that strictly dominate the current block. We do not bother to insert proper 709 // phi nodes, because they are not used in our analysis; instead, wherever 710 // a phi node would be required, we simply remove that definition from the 711 // context (E.g. x above). 712 // 713 // The initial traversal does not capture back-edges, so those need to be 714 // handled on a separate pass. Whenever the first pass encounters an 715 // incoming back edge, it duplicates the context, creating new definitions 716 // that refer back to the originals. (These correspond to places where SSA 717 // might have to insert a phi node.) On the second pass, these definitions are 718 // set to NULL if the variable has changed on the back-edge (i.e. a phi 719 // node was actually required.) E.g. 720 // 721 // { Context | VarDefinitions } 722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 725 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 726 void LocalVariableMap::traverseCFG(CFG *CFGraph, 727 const PostOrderCFGView *SortedGraph, 728 std::vector<CFGBlockInfo> &BlockInfo) { 729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 730 731 CtxIndices.resize(CFGraph->getNumBlockIDs()); 732 733 for (const auto *CurrBlock : *SortedGraph) { 734 unsigned CurrBlockID = CurrBlock->getBlockID(); 735 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 736 737 VisitedBlocks.insert(CurrBlock); 738 739 // Calculate the entry context for the current block 740 bool HasBackEdges = false; 741 bool CtxInit = true; 742 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 743 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 744 // if *PI -> CurrBlock is a back edge, so skip it 745 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 746 HasBackEdges = true; 747 continue; 748 } 749 750 unsigned PrevBlockID = (*PI)->getBlockID(); 751 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 752 753 if (CtxInit) { 754 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 755 CtxInit = false; 756 } 757 else { 758 CurrBlockInfo->EntryContext = 759 intersectContexts(CurrBlockInfo->EntryContext, 760 PrevBlockInfo->ExitContext); 761 } 762 } 763 764 // Duplicate the context if we have back-edges, so we can call 765 // intersectBackEdges later. 766 if (HasBackEdges) 767 CurrBlockInfo->EntryContext = 768 createReferenceContext(CurrBlockInfo->EntryContext); 769 770 // Create a starting context index for the current block 771 saveContext(nullptr, CurrBlockInfo->EntryContext); 772 CurrBlockInfo->EntryIndex = getContextIndex(); 773 774 // Visit all the statements in the basic block. 775 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 776 for (const auto &BI : *CurrBlock) { 777 switch (BI.getKind()) { 778 case CFGElement::Statement: { 779 CFGStmt CS = BI.castAs<CFGStmt>(); 780 VMapBuilder.Visit(CS.getStmt()); 781 break; 782 } 783 default: 784 break; 785 } 786 } 787 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 788 789 // Mark variables on back edges as "unknown" if they've been changed. 790 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 791 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 792 // if CurrBlock -> *SI is *not* a back edge 793 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 794 continue; 795 796 CFGBlock *FirstLoopBlock = *SI; 797 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 798 Context LoopEnd = CurrBlockInfo->ExitContext; 799 intersectBackEdge(LoopBegin, LoopEnd); 800 } 801 } 802 803 // Put an extra entry at the end of the indexed context array 804 unsigned exitID = CFGraph->getExit().getBlockID(); 805 saveContext(nullptr, BlockInfo[exitID].ExitContext); 806 } 807 808 /// Find the appropriate source locations to use when producing diagnostics for 809 /// each block in the CFG. 810 static void findBlockLocations(CFG *CFGraph, 811 const PostOrderCFGView *SortedGraph, 812 std::vector<CFGBlockInfo> &BlockInfo) { 813 for (const auto *CurrBlock : *SortedGraph) { 814 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 815 816 // Find the source location of the last statement in the block, if the 817 // block is not empty. 818 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 819 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 820 } else { 821 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 822 BE = CurrBlock->rend(); BI != BE; ++BI) { 823 // FIXME: Handle other CFGElement kinds. 824 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 825 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 826 break; 827 } 828 } 829 } 830 831 if (CurrBlockInfo->ExitLoc.isValid()) { 832 // This block contains at least one statement. Find the source location 833 // of the first statement in the block. 834 for (const auto &BI : *CurrBlock) { 835 // FIXME: Handle other CFGElement kinds. 836 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 837 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 838 break; 839 } 840 } 841 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 842 CurrBlock != &CFGraph->getExit()) { 843 // The block is empty, and has a single predecessor. Use its exit 844 // location. 845 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 846 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 847 } 848 } 849 } 850 851 namespace { 852 853 class LockableFactEntry : public FactEntry { 854 private: 855 /// managed by ScopedLockable object 856 bool Managed; 857 858 public: 859 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 860 bool Mng = false, bool Asrt = false) 861 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 862 863 void 864 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 865 SourceLocation JoinLoc, LockErrorKind LEK, 866 ThreadSafetyHandler &Handler) const override { 867 if (!Managed && !asserted() && !negative() && !isUniversal()) { 868 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 869 LEK); 870 } 871 } 872 873 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 874 ThreadSafetyHandler &Handler, 875 StringRef DiagKind) const override { 876 Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc()); 877 } 878 879 void handleUnlock(FactSet &FSet, FactManager &FactMan, 880 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 881 bool FullyRemove, ThreadSafetyHandler &Handler, 882 StringRef DiagKind) const override { 883 FSet.removeLock(FactMan, Cp); 884 if (!Cp.negative()) { 885 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 886 !Cp, LK_Exclusive, UnlockLoc)); 887 } 888 } 889 }; 890 891 class ScopedLockableFactEntry : public FactEntry { 892 private: 893 enum UnderlyingCapabilityKind { 894 UCK_Acquired, ///< Any kind of acquired capability. 895 UCK_ReleasedShared, ///< Shared capability that was released. 896 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 897 }; 898 899 using UnderlyingCapability = 900 llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>; 901 902 SmallVector<UnderlyingCapability, 4> UnderlyingMutexes; 903 904 public: 905 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 906 : FactEntry(CE, LK_Exclusive, Loc, false) {} 907 908 void addLock(const CapabilityExpr &M) { 909 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired); 910 } 911 912 void addExclusiveUnlock(const CapabilityExpr &M) { 913 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive); 914 } 915 916 void addSharedUnlock(const CapabilityExpr &M) { 917 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared); 918 } 919 920 void 921 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 922 SourceLocation JoinLoc, LockErrorKind LEK, 923 ThreadSafetyHandler &Handler) const override { 924 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 925 const auto *Entry = FSet.findLock( 926 FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false)); 927 if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) || 928 (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) { 929 // If this scoped lock manages another mutex, and if the underlying 930 // mutex is still/not held, then warn about the underlying mutex. 931 Handler.handleMutexHeldEndOfScope( 932 "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc, 933 LEK); 934 } 935 } 936 } 937 938 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 939 ThreadSafetyHandler &Handler, 940 StringRef DiagKind) const override { 941 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 942 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); 943 944 if (UnderlyingMutex.getInt() == UCK_Acquired) 945 lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler, 946 DiagKind); 947 else 948 unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind); 949 } 950 } 951 952 void handleUnlock(FactSet &FSet, FactManager &FactMan, 953 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 954 bool FullyRemove, ThreadSafetyHandler &Handler, 955 StringRef DiagKind) const override { 956 assert(!Cp.negative() && "Managing object cannot be negative."); 957 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 958 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); 959 960 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 961 // on double unlocking/locking if we're not destroying the scoped object. 962 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 963 if (UnderlyingMutex.getInt() == UCK_Acquired) { 964 unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind); 965 } else { 966 LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared 967 ? LK_Shared 968 : LK_Exclusive; 969 lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind); 970 } 971 } 972 if (FullyRemove) 973 FSet.removeLock(FactMan, Cp); 974 } 975 976 private: 977 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 978 LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler, 979 StringRef DiagKind) const { 980 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 981 if (Handler) 982 Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc); 983 } else { 984 FSet.removeLock(FactMan, !Cp); 985 FSet.addLock(FactMan, 986 std::make_unique<LockableFactEntry>(Cp, kind, loc)); 987 } 988 } 989 990 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 991 SourceLocation loc, ThreadSafetyHandler *Handler, 992 StringRef DiagKind) const { 993 if (FSet.findLock(FactMan, Cp)) { 994 FSet.removeLock(FactMan, Cp); 995 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 996 !Cp, LK_Exclusive, loc)); 997 } else if (Handler) { 998 SourceLocation PrevLoc; 999 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1000 PrevLoc = Neg->loc(); 1001 Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc); 1002 } 1003 } 1004 }; 1005 1006 /// Class which implements the core thread safety analysis routines. 1007 class ThreadSafetyAnalyzer { 1008 friend class BuildLockset; 1009 friend class threadSafety::BeforeSet; 1010 1011 llvm::BumpPtrAllocator Bpa; 1012 threadSafety::til::MemRegionRef Arena; 1013 threadSafety::SExprBuilder SxBuilder; 1014 1015 ThreadSafetyHandler &Handler; 1016 const CXXMethodDecl *CurrentMethod; 1017 LocalVariableMap LocalVarMap; 1018 FactManager FactMan; 1019 std::vector<CFGBlockInfo> BlockInfo; 1020 1021 BeforeSet *GlobalBeforeSet; 1022 1023 public: 1024 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1025 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1026 1027 bool inCurrentScope(const CapabilityExpr &CapE); 1028 1029 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1030 StringRef DiagKind, bool ReqAttr = false); 1031 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1032 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 1033 StringRef DiagKind); 1034 1035 template <typename AttrType> 1036 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1037 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 1038 1039 template <class AttrType> 1040 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1041 const NamedDecl *D, 1042 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1043 Expr *BrE, bool Neg); 1044 1045 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1046 bool &Negate); 1047 1048 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1049 const CFGBlock* PredBlock, 1050 const CFGBlock *CurrBlock); 1051 1052 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1053 SourceLocation JoinLoc, 1054 LockErrorKind LEK1, LockErrorKind LEK2, 1055 bool Modify=true); 1056 1057 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1058 SourceLocation JoinLoc, LockErrorKind LEK1, 1059 bool Modify=true) { 1060 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 1061 } 1062 1063 void runAnalysis(AnalysisDeclContext &AC); 1064 }; 1065 1066 } // namespace 1067 1068 /// Process acquired_before and acquired_after attributes on Vd. 1069 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1070 ThreadSafetyAnalyzer& Analyzer) { 1071 // Create a new entry for Vd. 1072 BeforeInfo *Info = nullptr; 1073 { 1074 // Keep InfoPtr in its own scope in case BMap is modified later and the 1075 // reference becomes invalid. 1076 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1077 if (!InfoPtr) 1078 InfoPtr.reset(new BeforeInfo()); 1079 Info = InfoPtr.get(); 1080 } 1081 1082 for (const auto *At : Vd->attrs()) { 1083 switch (At->getKind()) { 1084 case attr::AcquiredBefore: { 1085 const auto *A = cast<AcquiredBeforeAttr>(At); 1086 1087 // Read exprs from the attribute, and add them to BeforeVect. 1088 for (const auto *Arg : A->args()) { 1089 CapabilityExpr Cp = 1090 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1091 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1092 Info->Vect.push_back(Cpvd); 1093 const auto It = BMap.find(Cpvd); 1094 if (It == BMap.end()) 1095 insertAttrExprs(Cpvd, Analyzer); 1096 } 1097 } 1098 break; 1099 } 1100 case attr::AcquiredAfter: { 1101 const auto *A = cast<AcquiredAfterAttr>(At); 1102 1103 // Read exprs from the attribute, and add them to BeforeVect. 1104 for (const auto *Arg : A->args()) { 1105 CapabilityExpr Cp = 1106 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1107 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1108 // Get entry for mutex listed in attribute 1109 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1110 ArgInfo->Vect.push_back(Vd); 1111 } 1112 } 1113 break; 1114 } 1115 default: 1116 break; 1117 } 1118 } 1119 1120 return Info; 1121 } 1122 1123 BeforeSet::BeforeInfo * 1124 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1125 ThreadSafetyAnalyzer &Analyzer) { 1126 auto It = BMap.find(Vd); 1127 BeforeInfo *Info = nullptr; 1128 if (It == BMap.end()) 1129 Info = insertAttrExprs(Vd, Analyzer); 1130 else 1131 Info = It->second.get(); 1132 assert(Info && "BMap contained nullptr?"); 1133 return Info; 1134 } 1135 1136 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1137 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1138 const FactSet& FSet, 1139 ThreadSafetyAnalyzer& Analyzer, 1140 SourceLocation Loc, StringRef CapKind) { 1141 SmallVector<BeforeInfo*, 8> InfoVect; 1142 1143 // Do a depth-first traversal of Vd. 1144 // Return true if there are cycles. 1145 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1146 if (!Vd) 1147 return false; 1148 1149 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1150 1151 if (Info->Visited == 1) 1152 return true; 1153 1154 if (Info->Visited == 2) 1155 return false; 1156 1157 if (Info->Vect.empty()) 1158 return false; 1159 1160 InfoVect.push_back(Info); 1161 Info->Visited = 1; 1162 for (const auto *Vdb : Info->Vect) { 1163 // Exclude mutexes in our immediate before set. 1164 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1165 StringRef L1 = StartVd->getName(); 1166 StringRef L2 = Vdb->getName(); 1167 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1168 } 1169 // Transitively search other before sets, and warn on cycles. 1170 if (traverse(Vdb)) { 1171 if (CycMap.find(Vd) == CycMap.end()) { 1172 CycMap.insert(std::make_pair(Vd, true)); 1173 StringRef L1 = Vd->getName(); 1174 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1175 } 1176 } 1177 } 1178 Info->Visited = 2; 1179 return false; 1180 }; 1181 1182 traverse(StartVd); 1183 1184 for (auto *Info : InfoVect) 1185 Info->Visited = 0; 1186 } 1187 1188 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1189 static const ValueDecl *getValueDecl(const Expr *Exp) { 1190 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1191 return getValueDecl(CE->getSubExpr()); 1192 1193 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1194 return DR->getDecl(); 1195 1196 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1197 return ME->getMemberDecl(); 1198 1199 return nullptr; 1200 } 1201 1202 namespace { 1203 1204 template <typename Ty> 1205 class has_arg_iterator_range { 1206 using yes = char[1]; 1207 using no = char[2]; 1208 1209 template <typename Inner> 1210 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1211 1212 template <typename> 1213 static no& test(...); 1214 1215 public: 1216 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1217 }; 1218 1219 } // namespace 1220 1221 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 1222 return A->getName(); 1223 } 1224 1225 static StringRef ClassifyDiagnostic(QualType VDT) { 1226 // We need to look at the declaration of the type of the value to determine 1227 // which it is. The type should either be a record or a typedef, or a pointer 1228 // or reference thereof. 1229 if (const auto *RT = VDT->getAs<RecordType>()) { 1230 if (const auto *RD = RT->getDecl()) 1231 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 1232 return ClassifyDiagnostic(CA); 1233 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 1234 if (const auto *TD = TT->getDecl()) 1235 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 1236 return ClassifyDiagnostic(CA); 1237 } else if (VDT->isPointerType() || VDT->isReferenceType()) 1238 return ClassifyDiagnostic(VDT->getPointeeType()); 1239 1240 return "mutex"; 1241 } 1242 1243 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 1244 assert(VD && "No ValueDecl passed"); 1245 1246 // The ValueDecl is the declaration of a mutex or role (hopefully). 1247 return ClassifyDiagnostic(VD->getType()); 1248 } 1249 1250 template <typename AttrTy> 1251 static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef> 1252 ClassifyDiagnostic(const AttrTy *A) { 1253 if (const ValueDecl *VD = getValueDecl(A->getArg())) 1254 return ClassifyDiagnostic(VD); 1255 return "mutex"; 1256 } 1257 1258 template <typename AttrTy> 1259 static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef> 1260 ClassifyDiagnostic(const AttrTy *A) { 1261 for (const auto *Arg : A->args()) { 1262 if (const ValueDecl *VD = getValueDecl(Arg)) 1263 return ClassifyDiagnostic(VD); 1264 } 1265 return "mutex"; 1266 } 1267 1268 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1269 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1270 assert(SExp && "Null expressions should be ignored"); 1271 1272 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1273 const ValueDecl *VD = LP->clangDecl(); 1274 // Variables defined in a function are always inaccessible. 1275 if (!VD->isDefinedOutsideFunctionOrMethod()) 1276 return false; 1277 // For now we consider static class members to be inaccessible. 1278 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1279 return false; 1280 // Global variables are always in scope. 1281 return true; 1282 } 1283 1284 // Members are in scope from methods of the same class. 1285 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1286 if (!CurrentMethod) 1287 return false; 1288 const ValueDecl *VD = P->clangDecl(); 1289 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1290 } 1291 1292 return false; 1293 } 1294 1295 /// Add a new lock to the lockset, warning if the lock is already there. 1296 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1297 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1298 std::unique_ptr<FactEntry> Entry, 1299 StringRef DiagKind, bool ReqAttr) { 1300 if (Entry->shouldIgnore()) 1301 return; 1302 1303 if (!ReqAttr && !Entry->negative()) { 1304 // look for the negative capability, and remove it from the fact set. 1305 CapabilityExpr NegC = !*Entry; 1306 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1307 if (Nen) { 1308 FSet.removeLock(FactMan, NegC); 1309 } 1310 else { 1311 if (inCurrentScope(*Entry) && !Entry->asserted()) 1312 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1313 NegC.toString(), Entry->loc()); 1314 } 1315 } 1316 1317 // Check before/after constraints 1318 if (Handler.issueBetaWarnings() && 1319 !Entry->asserted() && !Entry->declared()) { 1320 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1321 Entry->loc(), DiagKind); 1322 } 1323 1324 // FIXME: Don't always warn when we have support for reentrant locks. 1325 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1326 if (!Entry->asserted()) 1327 Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind); 1328 } else { 1329 FSet.addLock(FactMan, std::move(Entry)); 1330 } 1331 } 1332 1333 /// Remove a lock from the lockset, warning if the lock is not there. 1334 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1335 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1336 SourceLocation UnlockLoc, 1337 bool FullyRemove, LockKind ReceivedKind, 1338 StringRef DiagKind) { 1339 if (Cp.shouldIgnore()) 1340 return; 1341 1342 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1343 if (!LDat) { 1344 SourceLocation PrevLoc; 1345 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1346 PrevLoc = Neg->loc(); 1347 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc); 1348 return; 1349 } 1350 1351 // Generic lock removal doesn't care about lock kind mismatches, but 1352 // otherwise diagnose when the lock kinds are mismatched. 1353 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1354 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(), 1355 ReceivedKind, LDat->loc(), UnlockLoc); 1356 } 1357 1358 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1359 DiagKind); 1360 } 1361 1362 /// Extract the list of mutexIDs from the attribute on an expression, 1363 /// and push them onto Mtxs, discarding any duplicates. 1364 template <typename AttrType> 1365 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1366 const Expr *Exp, const NamedDecl *D, 1367 VarDecl *SelfDecl) { 1368 if (Attr->args_size() == 0) { 1369 // The mutex held is the "this" object. 1370 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1371 if (Cp.isInvalid()) { 1372 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1373 return; 1374 } 1375 //else 1376 if (!Cp.shouldIgnore()) 1377 Mtxs.push_back_nodup(Cp); 1378 return; 1379 } 1380 1381 for (const auto *Arg : Attr->args()) { 1382 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1383 if (Cp.isInvalid()) { 1384 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1385 continue; 1386 } 1387 //else 1388 if (!Cp.shouldIgnore()) 1389 Mtxs.push_back_nodup(Cp); 1390 } 1391 } 1392 1393 /// Extract the list of mutexIDs from a trylock attribute. If the 1394 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1395 /// any duplicates. 1396 template <class AttrType> 1397 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1398 const Expr *Exp, const NamedDecl *D, 1399 const CFGBlock *PredBlock, 1400 const CFGBlock *CurrBlock, 1401 Expr *BrE, bool Neg) { 1402 // Find out which branch has the lock 1403 bool branch = false; 1404 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1405 branch = BLE->getValue(); 1406 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1407 branch = ILE->getValue().getBoolValue(); 1408 1409 int branchnum = branch ? 0 : 1; 1410 if (Neg) 1411 branchnum = !branchnum; 1412 1413 // If we've taken the trylock branch, then add the lock 1414 int i = 0; 1415 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1416 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1417 if (*SI == CurrBlock && i == branchnum) 1418 getMutexIDs(Mtxs, Attr, Exp, D); 1419 } 1420 } 1421 1422 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1423 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1424 TCond = false; 1425 return true; 1426 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1427 TCond = BLE->getValue(); 1428 return true; 1429 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1430 TCond = ILE->getValue().getBoolValue(); 1431 return true; 1432 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1433 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1434 return false; 1435 } 1436 1437 // If Cond can be traced back to a function call, return the call expression. 1438 // The negate variable should be called with false, and will be set to true 1439 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1440 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1441 LocalVarContext C, 1442 bool &Negate) { 1443 if (!Cond) 1444 return nullptr; 1445 1446 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1447 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1448 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1449 return CallExp; 1450 } 1451 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1452 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1453 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1454 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1455 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1456 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1457 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1458 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1459 return getTrylockCallExpr(E, C, Negate); 1460 } 1461 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1462 if (UOP->getOpcode() == UO_LNot) { 1463 Negate = !Negate; 1464 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1465 } 1466 return nullptr; 1467 } 1468 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1469 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1470 if (BOP->getOpcode() == BO_NE) 1471 Negate = !Negate; 1472 1473 bool TCond = false; 1474 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1475 if (!TCond) Negate = !Negate; 1476 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1477 } 1478 TCond = false; 1479 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1480 if (!TCond) Negate = !Negate; 1481 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1482 } 1483 return nullptr; 1484 } 1485 if (BOP->getOpcode() == BO_LAnd) { 1486 // LHS must have been evaluated in a different block. 1487 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1488 } 1489 if (BOP->getOpcode() == BO_LOr) 1490 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1491 return nullptr; 1492 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1493 bool TCond, FCond; 1494 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1495 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1496 if (TCond && !FCond) 1497 return getTrylockCallExpr(COP->getCond(), C, Negate); 1498 if (!TCond && FCond) { 1499 Negate = !Negate; 1500 return getTrylockCallExpr(COP->getCond(), C, Negate); 1501 } 1502 } 1503 } 1504 return nullptr; 1505 } 1506 1507 /// Find the lockset that holds on the edge between PredBlock 1508 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1509 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1510 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1511 const FactSet &ExitSet, 1512 const CFGBlock *PredBlock, 1513 const CFGBlock *CurrBlock) { 1514 Result = ExitSet; 1515 1516 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1517 // We don't acquire try-locks on ?: branches, only when its result is used. 1518 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1519 return; 1520 1521 bool Negate = false; 1522 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1523 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1524 StringRef CapDiagKind = "mutex"; 1525 1526 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1527 if (!Exp) 1528 return; 1529 1530 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1531 if(!FunDecl || !FunDecl->hasAttrs()) 1532 return; 1533 1534 CapExprSet ExclusiveLocksToAdd; 1535 CapExprSet SharedLocksToAdd; 1536 1537 // If the condition is a call to a Trylock function, then grab the attributes 1538 for (const auto *Attr : FunDecl->attrs()) { 1539 switch (Attr->getKind()) { 1540 case attr::TryAcquireCapability: { 1541 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1542 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1543 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1544 Negate); 1545 CapDiagKind = ClassifyDiagnostic(A); 1546 break; 1547 }; 1548 case attr::ExclusiveTrylockFunction: { 1549 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1550 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1551 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1552 CapDiagKind = ClassifyDiagnostic(A); 1553 break; 1554 } 1555 case attr::SharedTrylockFunction: { 1556 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1557 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1558 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1559 CapDiagKind = ClassifyDiagnostic(A); 1560 break; 1561 } 1562 default: 1563 break; 1564 } 1565 } 1566 1567 // Add and remove locks. 1568 SourceLocation Loc = Exp->getExprLoc(); 1569 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1570 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1571 LK_Exclusive, Loc), 1572 CapDiagKind); 1573 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1574 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1575 LK_Shared, Loc), 1576 CapDiagKind); 1577 } 1578 1579 namespace { 1580 1581 /// We use this class to visit different types of expressions in 1582 /// CFGBlocks, and build up the lockset. 1583 /// An expression may cause us to add or remove locks from the lockset, or else 1584 /// output error messages related to missing locks. 1585 /// FIXME: In future, we may be able to not inherit from a visitor. 1586 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1587 friend class ThreadSafetyAnalyzer; 1588 1589 ThreadSafetyAnalyzer *Analyzer; 1590 FactSet FSet; 1591 LocalVariableMap::Context LVarCtx; 1592 unsigned CtxIndex; 1593 1594 // helper functions 1595 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1596 Expr *MutexExp, ProtectedOperationKind POK, 1597 StringRef DiagKind, SourceLocation Loc); 1598 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1599 StringRef DiagKind); 1600 1601 void checkAccess(const Expr *Exp, AccessKind AK, 1602 ProtectedOperationKind POK = POK_VarAccess); 1603 void checkPtAccess(const Expr *Exp, AccessKind AK, 1604 ProtectedOperationKind POK = POK_VarAccess); 1605 1606 void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1607 void examineArguments(const FunctionDecl *FD, 1608 CallExpr::const_arg_iterator ArgBegin, 1609 CallExpr::const_arg_iterator ArgEnd, 1610 bool SkipFirstParam = false); 1611 1612 public: 1613 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1614 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1615 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1616 1617 void VisitUnaryOperator(const UnaryOperator *UO); 1618 void VisitBinaryOperator(const BinaryOperator *BO); 1619 void VisitCastExpr(const CastExpr *CE); 1620 void VisitCallExpr(const CallExpr *Exp); 1621 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1622 void VisitDeclStmt(const DeclStmt *S); 1623 }; 1624 1625 } // namespace 1626 1627 /// Warn if the LSet does not contain a lock sufficient to protect access 1628 /// of at least the passed in AccessKind. 1629 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1630 AccessKind AK, Expr *MutexExp, 1631 ProtectedOperationKind POK, 1632 StringRef DiagKind, SourceLocation Loc) { 1633 LockKind LK = getLockKindFromAccessKind(AK); 1634 1635 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1636 if (Cp.isInvalid()) { 1637 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1638 return; 1639 } else if (Cp.shouldIgnore()) { 1640 return; 1641 } 1642 1643 if (Cp.negative()) { 1644 // Negative capabilities act like locks excluded 1645 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1646 if (LDat) { 1647 Analyzer->Handler.handleFunExcludesLock( 1648 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1649 return; 1650 } 1651 1652 // If this does not refer to a negative capability in the same class, 1653 // then stop here. 1654 if (!Analyzer->inCurrentScope(Cp)) 1655 return; 1656 1657 // Otherwise the negative requirement must be propagated to the caller. 1658 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1659 if (!LDat) { 1660 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1661 } 1662 return; 1663 } 1664 1665 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1666 bool NoError = true; 1667 if (!LDat) { 1668 // No exact match found. Look for a partial match. 1669 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1670 if (LDat) { 1671 // Warn that there's no precise match. 1672 std::string PartMatchStr = LDat->toString(); 1673 StringRef PartMatchName(PartMatchStr); 1674 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1675 LK, Loc, &PartMatchName); 1676 } else { 1677 // Warn that there's no match at all. 1678 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1679 LK, Loc); 1680 } 1681 NoError = false; 1682 } 1683 // Make sure the mutex we found is the right kind. 1684 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1685 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1686 LK, Loc); 1687 } 1688 } 1689 1690 /// Warn if the LSet contains the given lock. 1691 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1692 Expr *MutexExp, StringRef DiagKind) { 1693 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1694 if (Cp.isInvalid()) { 1695 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1696 return; 1697 } else if (Cp.shouldIgnore()) { 1698 return; 1699 } 1700 1701 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); 1702 if (LDat) { 1703 Analyzer->Handler.handleFunExcludesLock( 1704 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1705 } 1706 } 1707 1708 /// Checks guarded_by and pt_guarded_by attributes. 1709 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1710 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1711 /// Similarly, we check if the access is to an expression that dereferences 1712 /// a pointer marked with pt_guarded_by. 1713 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1714 ProtectedOperationKind POK) { 1715 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1716 1717 SourceLocation Loc = Exp->getExprLoc(); 1718 1719 // Local variables of reference type cannot be re-assigned; 1720 // map them to their initializer. 1721 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1722 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1723 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1724 if (const auto *E = VD->getInit()) { 1725 // Guard against self-initialization. e.g., int &i = i; 1726 if (E == Exp) 1727 break; 1728 Exp = E; 1729 continue; 1730 } 1731 } 1732 break; 1733 } 1734 1735 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1736 // For dereferences 1737 if (UO->getOpcode() == UO_Deref) 1738 checkPtAccess(UO->getSubExpr(), AK, POK); 1739 return; 1740 } 1741 1742 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1743 checkPtAccess(AE->getLHS(), AK, POK); 1744 return; 1745 } 1746 1747 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1748 if (ME->isArrow()) 1749 checkPtAccess(ME->getBase(), AK, POK); 1750 else 1751 checkAccess(ME->getBase(), AK, POK); 1752 } 1753 1754 const ValueDecl *D = getValueDecl(Exp); 1755 if (!D || !D->hasAttrs()) 1756 return; 1757 1758 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1759 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1760 } 1761 1762 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1763 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1764 ClassifyDiagnostic(I), Loc); 1765 } 1766 1767 /// Checks pt_guarded_by and pt_guarded_var attributes. 1768 /// POK is the same operationKind that was passed to checkAccess. 1769 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1770 ProtectedOperationKind POK) { 1771 while (true) { 1772 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1773 Exp = PE->getSubExpr(); 1774 continue; 1775 } 1776 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1777 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1778 // If it's an actual array, and not a pointer, then it's elements 1779 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1780 checkAccess(CE->getSubExpr(), AK, POK); 1781 return; 1782 } 1783 Exp = CE->getSubExpr(); 1784 continue; 1785 } 1786 break; 1787 } 1788 1789 // Pass by reference warnings are under a different flag. 1790 ProtectedOperationKind PtPOK = POK_VarDereference; 1791 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1792 1793 const ValueDecl *D = getValueDecl(Exp); 1794 if (!D || !D->hasAttrs()) 1795 return; 1796 1797 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1798 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1799 Exp->getExprLoc()); 1800 1801 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1802 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1803 ClassifyDiagnostic(I), Exp->getExprLoc()); 1804 } 1805 1806 /// Process a function call, method call, constructor call, 1807 /// or destructor call. This involves looking at the attributes on the 1808 /// corresponding function/method/constructor/destructor, issuing warnings, 1809 /// and updating the locksets accordingly. 1810 /// 1811 /// FIXME: For classes annotated with one of the guarded annotations, we need 1812 /// to treat const method calls as reads and non-const method calls as writes, 1813 /// and check that the appropriate locks are held. Non-const method calls with 1814 /// the same signature as const method calls can be also treated as reads. 1815 /// 1816 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1817 VarDecl *VD) { 1818 SourceLocation Loc = Exp->getExprLoc(); 1819 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1820 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1821 CapExprSet ScopedReqsAndExcludes; 1822 StringRef CapDiagKind = "mutex"; 1823 1824 // Figure out if we're constructing an object of scoped lockable class 1825 bool isScopedVar = false; 1826 if (VD) { 1827 if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1828 const CXXRecordDecl* PD = CD->getParent(); 1829 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1830 isScopedVar = true; 1831 } 1832 } 1833 1834 for(const Attr *At : D->attrs()) { 1835 switch (At->getKind()) { 1836 // When we encounter a lock function, we need to add the lock to our 1837 // lockset. 1838 case attr::AcquireCapability: { 1839 const auto *A = cast<AcquireCapabilityAttr>(At); 1840 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1841 : ExclusiveLocksToAdd, 1842 A, Exp, D, VD); 1843 1844 CapDiagKind = ClassifyDiagnostic(A); 1845 break; 1846 } 1847 1848 // An assert will add a lock to the lockset, but will not generate 1849 // a warning if it is already there, and will not generate a warning 1850 // if it is not removed. 1851 case attr::AssertExclusiveLock: { 1852 const auto *A = cast<AssertExclusiveLockAttr>(At); 1853 1854 CapExprSet AssertLocks; 1855 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1856 for (const auto &AssertLock : AssertLocks) 1857 Analyzer->addLock(FSet, 1858 std::make_unique<LockableFactEntry>( 1859 AssertLock, LK_Exclusive, Loc, false, true), 1860 ClassifyDiagnostic(A)); 1861 break; 1862 } 1863 case attr::AssertSharedLock: { 1864 const auto *A = cast<AssertSharedLockAttr>(At); 1865 1866 CapExprSet AssertLocks; 1867 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1868 for (const auto &AssertLock : AssertLocks) 1869 Analyzer->addLock(FSet, 1870 std::make_unique<LockableFactEntry>( 1871 AssertLock, LK_Shared, Loc, false, true), 1872 ClassifyDiagnostic(A)); 1873 break; 1874 } 1875 1876 case attr::AssertCapability: { 1877 const auto *A = cast<AssertCapabilityAttr>(At); 1878 CapExprSet AssertLocks; 1879 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1880 for (const auto &AssertLock : AssertLocks) 1881 Analyzer->addLock(FSet, 1882 std::make_unique<LockableFactEntry>( 1883 AssertLock, 1884 A->isShared() ? LK_Shared : LK_Exclusive, Loc, 1885 false, true), 1886 ClassifyDiagnostic(A)); 1887 break; 1888 } 1889 1890 // When we encounter an unlock function, we need to remove unlocked 1891 // mutexes from the lockset, and flag a warning if they are not there. 1892 case attr::ReleaseCapability: { 1893 const auto *A = cast<ReleaseCapabilityAttr>(At); 1894 if (A->isGeneric()) 1895 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1896 else if (A->isShared()) 1897 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1898 else 1899 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1900 1901 CapDiagKind = ClassifyDiagnostic(A); 1902 break; 1903 } 1904 1905 case attr::RequiresCapability: { 1906 const auto *A = cast<RequiresCapabilityAttr>(At); 1907 for (auto *Arg : A->args()) { 1908 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1909 POK_FunctionCall, ClassifyDiagnostic(A), 1910 Exp->getExprLoc()); 1911 // use for adopting a lock 1912 if (isScopedVar) 1913 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD); 1914 } 1915 break; 1916 } 1917 1918 case attr::LocksExcluded: { 1919 const auto *A = cast<LocksExcludedAttr>(At); 1920 for (auto *Arg : A->args()) { 1921 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1922 // use for deferring a lock 1923 if (isScopedVar) 1924 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD); 1925 } 1926 break; 1927 } 1928 1929 // Ignore attributes unrelated to thread-safety 1930 default: 1931 break; 1932 } 1933 } 1934 1935 // Remove locks first to allow lock upgrading/downgrading. 1936 // FIXME -- should only fully remove if the attribute refers to 'this'. 1937 bool Dtor = isa<CXXDestructorDecl>(D); 1938 for (const auto &M : ExclusiveLocksToRemove) 1939 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1940 for (const auto &M : SharedLocksToRemove) 1941 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1942 for (const auto &M : GenericLocksToRemove) 1943 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1944 1945 // Add locks. 1946 for (const auto &M : ExclusiveLocksToAdd) 1947 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1948 M, LK_Exclusive, Loc, isScopedVar), 1949 CapDiagKind); 1950 for (const auto &M : SharedLocksToAdd) 1951 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1952 M, LK_Shared, Loc, isScopedVar), 1953 CapDiagKind); 1954 1955 if (isScopedVar) { 1956 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1957 SourceLocation MLoc = VD->getLocation(); 1958 DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue, 1959 VD->getLocation()); 1960 // FIXME: does this store a pointer to DRE? 1961 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1962 1963 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc); 1964 for (const auto &M : ExclusiveLocksToAdd) 1965 ScopedEntry->addLock(M); 1966 for (const auto &M : SharedLocksToAdd) 1967 ScopedEntry->addLock(M); 1968 for (const auto &M : ScopedReqsAndExcludes) 1969 ScopedEntry->addLock(M); 1970 for (const auto &M : ExclusiveLocksToRemove) 1971 ScopedEntry->addExclusiveUnlock(M); 1972 for (const auto &M : SharedLocksToRemove) 1973 ScopedEntry->addSharedUnlock(M); 1974 Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind); 1975 } 1976 } 1977 1978 /// For unary operations which read and write a variable, we need to 1979 /// check whether we hold any required mutexes. Reads are checked in 1980 /// VisitCastExpr. 1981 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1982 switch (UO->getOpcode()) { 1983 case UO_PostDec: 1984 case UO_PostInc: 1985 case UO_PreDec: 1986 case UO_PreInc: 1987 checkAccess(UO->getSubExpr(), AK_Written); 1988 break; 1989 default: 1990 break; 1991 } 1992 } 1993 1994 /// For binary operations which assign to a variable (writes), we need to check 1995 /// whether we hold any required mutexes. 1996 /// FIXME: Deal with non-primitive types. 1997 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1998 if (!BO->isAssignmentOp()) 1999 return; 2000 2001 // adjust the context 2002 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 2003 2004 checkAccess(BO->getLHS(), AK_Written); 2005 } 2006 2007 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 2008 /// need to ensure we hold any required mutexes. 2009 /// FIXME: Deal with non-primitive types. 2010 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 2011 if (CE->getCastKind() != CK_LValueToRValue) 2012 return; 2013 checkAccess(CE->getSubExpr(), AK_Read); 2014 } 2015 2016 void BuildLockset::examineArguments(const FunctionDecl *FD, 2017 CallExpr::const_arg_iterator ArgBegin, 2018 CallExpr::const_arg_iterator ArgEnd, 2019 bool SkipFirstParam) { 2020 // Currently we can't do anything if we don't know the function declaration. 2021 if (!FD) 2022 return; 2023 2024 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 2025 // only turns off checking within the body of a function, but we also 2026 // use it to turn off checking in arguments to the function. This 2027 // could result in some false negatives, but the alternative is to 2028 // create yet another attribute. 2029 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 2030 return; 2031 2032 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 2033 auto Param = Params.begin(); 2034 if (SkipFirstParam) 2035 ++Param; 2036 2037 // There can be default arguments, so we stop when one iterator is at end(). 2038 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 2039 ++Param, ++Arg) { 2040 QualType Qt = (*Param)->getType(); 2041 if (Qt->isReferenceType()) 2042 checkAccess(*Arg, AK_Read, POK_PassByRef); 2043 } 2044 } 2045 2046 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2047 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2048 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2049 // ME can be null when calling a method pointer 2050 const CXXMethodDecl *MD = CE->getMethodDecl(); 2051 2052 if (ME && MD) { 2053 if (ME->isArrow()) { 2054 if (MD->isConst()) 2055 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2056 else // FIXME -- should be AK_Written 2057 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2058 } else { 2059 if (MD->isConst()) 2060 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2061 else // FIXME -- should be AK_Written 2062 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2063 } 2064 } 2065 2066 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2067 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2068 auto OEop = OE->getOperator(); 2069 switch (OEop) { 2070 case OO_Equal: { 2071 const Expr *Target = OE->getArg(0); 2072 const Expr *Source = OE->getArg(1); 2073 checkAccess(Target, AK_Written); 2074 checkAccess(Source, AK_Read); 2075 break; 2076 } 2077 case OO_Star: 2078 case OO_Arrow: 2079 case OO_Subscript: 2080 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2081 // Grrr. operator* can be multiplication... 2082 checkPtAccess(OE->getArg(0), AK_Read); 2083 } 2084 LLVM_FALLTHROUGH; 2085 default: { 2086 // TODO: get rid of this, and rely on pass-by-ref instead. 2087 const Expr *Obj = OE->getArg(0); 2088 checkAccess(Obj, AK_Read); 2089 // Check the remaining arguments. For method operators, the first 2090 // argument is the implicit self argument, and doesn't appear in the 2091 // FunctionDecl, but for non-methods it does. 2092 const FunctionDecl *FD = OE->getDirectCallee(); 2093 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2094 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2095 break; 2096 } 2097 } 2098 } else { 2099 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2100 } 2101 2102 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2103 if(!D || !D->hasAttrs()) 2104 return; 2105 handleCall(Exp, D); 2106 } 2107 2108 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2109 const CXXConstructorDecl *D = Exp->getConstructor(); 2110 if (D && D->isCopyConstructor()) { 2111 const Expr* Source = Exp->getArg(0); 2112 checkAccess(Source, AK_Read); 2113 } else { 2114 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2115 } 2116 } 2117 2118 static CXXConstructorDecl * 2119 findConstructorForByValueReturn(const CXXRecordDecl *RD) { 2120 // Prefer a move constructor over a copy constructor. If there's more than 2121 // one copy constructor or more than one move constructor, we arbitrarily 2122 // pick the first declared such constructor rather than trying to guess which 2123 // one is more appropriate. 2124 CXXConstructorDecl *CopyCtor = nullptr; 2125 for (auto *Ctor : RD->ctors()) { 2126 if (Ctor->isDeleted()) 2127 continue; 2128 if (Ctor->isMoveConstructor()) 2129 return Ctor; 2130 if (!CopyCtor && Ctor->isCopyConstructor()) 2131 CopyCtor = Ctor; 2132 } 2133 return CopyCtor; 2134 } 2135 2136 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, 2137 SourceLocation Loc) { 2138 ASTContext &Ctx = CD->getASTContext(); 2139 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, 2140 CD, true, Args, false, false, false, false, 2141 CXXConstructExpr::CK_Complete, 2142 SourceRange(Loc, Loc)); 2143 } 2144 2145 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2146 // adjust the context 2147 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2148 2149 for (auto *D : S->getDeclGroup()) { 2150 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2151 Expr *E = VD->getInit(); 2152 if (!E) 2153 continue; 2154 E = E->IgnoreParens(); 2155 2156 // handle constructors that involve temporaries 2157 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2158 E = EWC->getSubExpr()->IgnoreParens(); 2159 if (auto *CE = dyn_cast<CastExpr>(E)) 2160 if (CE->getCastKind() == CK_NoOp || 2161 CE->getCastKind() == CK_ConstructorConversion || 2162 CE->getCastKind() == CK_UserDefinedConversion) 2163 E = CE->getSubExpr()->IgnoreParens(); 2164 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2165 E = BTE->getSubExpr()->IgnoreParens(); 2166 2167 if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 2168 const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 2169 if (!CtorD || !CtorD->hasAttrs()) 2170 continue; 2171 handleCall(E, CtorD, VD); 2172 } else if (isa<CallExpr>(E) && E->isRValue()) { 2173 // If the object is initialized by a function call that returns a 2174 // scoped lockable by value, use the attributes on the copy or move 2175 // constructor to figure out what effect that should have on the 2176 // lockset. 2177 // FIXME: Is this really the best way to handle this situation? 2178 auto *RD = E->getType()->getAsCXXRecordDecl(); 2179 if (!RD || !RD->hasAttr<ScopedLockableAttr>()) 2180 continue; 2181 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); 2182 if (!CtorD || !CtorD->hasAttrs()) 2183 continue; 2184 handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD); 2185 } 2186 } 2187 } 2188 } 2189 2190 /// Compute the intersection of two locksets and issue warnings for any 2191 /// locks in the symmetric difference. 2192 /// 2193 /// This function is used at a merge point in the CFG when comparing the lockset 2194 /// of each branch being merged. For example, given the following sequence: 2195 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2196 /// are the same. In the event of a difference, we use the intersection of these 2197 /// two locksets at the start of D. 2198 /// 2199 /// \param FSet1 The first lockset. 2200 /// \param FSet2 The second lockset. 2201 /// \param JoinLoc The location of the join point for error reporting 2202 /// \param LEK1 The error message to report if a mutex is missing from LSet1 2203 /// \param LEK2 The error message to report if a mutex is missing from Lset2 2204 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 2205 const FactSet &FSet2, 2206 SourceLocation JoinLoc, 2207 LockErrorKind LEK1, 2208 LockErrorKind LEK2, 2209 bool Modify) { 2210 FactSet FSet1Orig = FSet1; 2211 2212 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 2213 for (const auto &Fact : FSet2) { 2214 const FactEntry *LDat1 = nullptr; 2215 const FactEntry *LDat2 = &FactMan[Fact]; 2216 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 2217 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 2218 2219 if (LDat1) { 2220 if (LDat1->kind() != LDat2->kind()) { 2221 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 2222 LDat2->loc(), LDat1->loc()); 2223 if (Modify && LDat1->kind() != LK_Exclusive) { 2224 // Take the exclusive lock, which is the one in FSet2. 2225 *Iter1 = Fact; 2226 } 2227 } 2228 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 2229 // The non-asserted lock in FSet2 is the one we want to track. 2230 *Iter1 = Fact; 2231 } 2232 } else { 2233 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 2234 Handler); 2235 } 2236 } 2237 2238 // Find locks in FSet1 that are not in FSet2, and remove them. 2239 for (const auto &Fact : FSet1Orig) { 2240 const FactEntry *LDat1 = &FactMan[Fact]; 2241 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 2242 2243 if (!LDat2) { 2244 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 2245 Handler); 2246 if (Modify) 2247 FSet1.removeLock(FactMan, *LDat1); 2248 } 2249 } 2250 } 2251 2252 // Return true if block B never continues to its successors. 2253 static bool neverReturns(const CFGBlock *B) { 2254 if (B->hasNoReturnElement()) 2255 return true; 2256 if (B->empty()) 2257 return false; 2258 2259 CFGElement Last = B->back(); 2260 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2261 if (isa<CXXThrowExpr>(S->getStmt())) 2262 return true; 2263 } 2264 return false; 2265 } 2266 2267 /// Check a function's CFG for thread-safety violations. 2268 /// 2269 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2270 /// at the end of each block, and issue warnings for thread safety violations. 2271 /// Each block in the CFG is traversed exactly once. 2272 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2273 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2274 // For now, we just use the walker to set things up. 2275 threadSafety::CFGWalker walker; 2276 if (!walker.init(AC)) 2277 return; 2278 2279 // AC.dumpCFG(true); 2280 // threadSafety::printSCFG(walker); 2281 2282 CFG *CFGraph = walker.getGraph(); 2283 const NamedDecl *D = walker.getDecl(); 2284 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2285 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2286 2287 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2288 return; 2289 2290 // FIXME: Do something a bit more intelligent inside constructor and 2291 // destructor code. Constructors and destructors must assume unique access 2292 // to 'this', so checks on member variable access is disabled, but we should 2293 // still enable checks on other objects. 2294 if (isa<CXXConstructorDecl>(D)) 2295 return; // Don't check inside constructors. 2296 if (isa<CXXDestructorDecl>(D)) 2297 return; // Don't check inside destructors. 2298 2299 Handler.enterFunction(CurrentFunction); 2300 2301 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2302 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2303 2304 // We need to explore the CFG via a "topological" ordering. 2305 // That way, we will be guaranteed to have information about required 2306 // predecessor locksets when exploring a new block. 2307 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2308 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2309 2310 // Mark entry block as reachable 2311 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2312 2313 // Compute SSA names for local variables 2314 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2315 2316 // Fill in source locations for all CFGBlocks. 2317 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2318 2319 CapExprSet ExclusiveLocksAcquired; 2320 CapExprSet SharedLocksAcquired; 2321 CapExprSet LocksReleased; 2322 2323 // Add locks from exclusive_locks_required and shared_locks_required 2324 // to initial lockset. Also turn off checking for lock and unlock functions. 2325 // FIXME: is there a more intelligent way to check lock/unlock functions? 2326 if (!SortedGraph->empty() && D->hasAttrs()) { 2327 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2328 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2329 2330 CapExprSet ExclusiveLocksToAdd; 2331 CapExprSet SharedLocksToAdd; 2332 StringRef CapDiagKind = "mutex"; 2333 2334 SourceLocation Loc = D->getLocation(); 2335 for (const auto *Attr : D->attrs()) { 2336 Loc = Attr->getLocation(); 2337 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2338 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2339 nullptr, D); 2340 CapDiagKind = ClassifyDiagnostic(A); 2341 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2342 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2343 // We must ignore such methods. 2344 if (A->args_size() == 0) 2345 return; 2346 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2347 nullptr, D); 2348 getMutexIDs(LocksReleased, A, nullptr, D); 2349 CapDiagKind = ClassifyDiagnostic(A); 2350 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2351 if (A->args_size() == 0) 2352 return; 2353 getMutexIDs(A->isShared() ? SharedLocksAcquired 2354 : ExclusiveLocksAcquired, 2355 A, nullptr, D); 2356 CapDiagKind = ClassifyDiagnostic(A); 2357 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2358 // Don't try to check trylock functions for now. 2359 return; 2360 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2361 // Don't try to check trylock functions for now. 2362 return; 2363 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2364 // Don't try to check trylock functions for now. 2365 return; 2366 } 2367 } 2368 2369 // FIXME -- Loc can be wrong here. 2370 for (const auto &Mu : ExclusiveLocksToAdd) { 2371 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); 2372 Entry->setDeclared(true); 2373 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2374 } 2375 for (const auto &Mu : SharedLocksToAdd) { 2376 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); 2377 Entry->setDeclared(true); 2378 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2379 } 2380 } 2381 2382 for (const auto *CurrBlock : *SortedGraph) { 2383 unsigned CurrBlockID = CurrBlock->getBlockID(); 2384 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2385 2386 // Use the default initial lockset in case there are no predecessors. 2387 VisitedBlocks.insert(CurrBlock); 2388 2389 // Iterate through the predecessor blocks and warn if the lockset for all 2390 // predecessors is not the same. We take the entry lockset of the current 2391 // block to be the intersection of all previous locksets. 2392 // FIXME: By keeping the intersection, we may output more errors in future 2393 // for a lock which is not in the intersection, but was in the union. We 2394 // may want to also keep the union in future. As an example, let's say 2395 // the intersection contains Mutex L, and the union contains L and M. 2396 // Later we unlock M. At this point, we would output an error because we 2397 // never locked M; although the real error is probably that we forgot to 2398 // lock M on all code paths. Conversely, let's say that later we lock M. 2399 // In this case, we should compare against the intersection instead of the 2400 // union because the real error is probably that we forgot to unlock M on 2401 // all code paths. 2402 bool LocksetInitialized = false; 2403 SmallVector<CFGBlock *, 8> SpecialBlocks; 2404 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2405 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2406 // if *PI -> CurrBlock is a back edge 2407 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2408 continue; 2409 2410 unsigned PrevBlockID = (*PI)->getBlockID(); 2411 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2412 2413 // Ignore edges from blocks that can't return. 2414 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2415 continue; 2416 2417 // Okay, we can reach this block from the entry. 2418 CurrBlockInfo->Reachable = true; 2419 2420 // If the previous block ended in a 'continue' or 'break' statement, then 2421 // a difference in locksets is probably due to a bug in that block, rather 2422 // than in some other predecessor. In that case, keep the other 2423 // predecessor's lockset. 2424 if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) { 2425 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2426 SpecialBlocks.push_back(*PI); 2427 continue; 2428 } 2429 } 2430 2431 FactSet PrevLockset; 2432 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2433 2434 if (!LocksetInitialized) { 2435 CurrBlockInfo->EntrySet = PrevLockset; 2436 LocksetInitialized = true; 2437 } else { 2438 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2439 CurrBlockInfo->EntryLoc, 2440 LEK_LockedSomePredecessors); 2441 } 2442 } 2443 2444 // Skip rest of block if it's not reachable. 2445 if (!CurrBlockInfo->Reachable) 2446 continue; 2447 2448 // Process continue and break blocks. Assume that the lockset for the 2449 // resulting block is unaffected by any discrepancies in them. 2450 for (const auto *PrevBlock : SpecialBlocks) { 2451 unsigned PrevBlockID = PrevBlock->getBlockID(); 2452 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2453 2454 if (!LocksetInitialized) { 2455 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2456 LocksetInitialized = true; 2457 } else { 2458 // Determine whether this edge is a loop terminator for diagnostic 2459 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2460 // it might also be part of a switch. Also, a subsequent destructor 2461 // might add to the lockset, in which case the real issue might be a 2462 // double lock on the other path. 2463 const Stmt *Terminator = PrevBlock->getTerminatorStmt(); 2464 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2465 2466 FactSet PrevLockset; 2467 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2468 PrevBlock, CurrBlock); 2469 2470 // Do not update EntrySet. 2471 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2472 PrevBlockInfo->ExitLoc, 2473 IsLoop ? LEK_LockedSomeLoopIterations 2474 : LEK_LockedSomePredecessors, 2475 false); 2476 } 2477 } 2478 2479 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2480 2481 // Visit all the statements in the basic block. 2482 for (const auto &BI : *CurrBlock) { 2483 switch (BI.getKind()) { 2484 case CFGElement::Statement: { 2485 CFGStmt CS = BI.castAs<CFGStmt>(); 2486 LocksetBuilder.Visit(CS.getStmt()); 2487 break; 2488 } 2489 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2490 case CFGElement::AutomaticObjectDtor: { 2491 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2492 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2493 if (!DD->hasAttrs()) 2494 break; 2495 2496 // Create a dummy expression, 2497 auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); 2498 DeclRefExpr DRE(VD->getASTContext(), VD, false, 2499 VD->getType().getNonReferenceType(), VK_LValue, 2500 AD.getTriggerStmt()->getEndLoc()); 2501 LocksetBuilder.handleCall(&DRE, DD); 2502 break; 2503 } 2504 default: 2505 break; 2506 } 2507 } 2508 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2509 2510 // For every back edge from CurrBlock (the end of the loop) to another block 2511 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2512 // the one held at the beginning of FirstLoopBlock. We can look up the 2513 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2514 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2515 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2516 // if CurrBlock -> *SI is *not* a back edge 2517 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2518 continue; 2519 2520 CFGBlock *FirstLoopBlock = *SI; 2521 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2522 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2523 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2524 PreLoop->EntryLoc, 2525 LEK_LockedSomeLoopIterations, 2526 false); 2527 } 2528 } 2529 2530 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2531 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2532 2533 // Skip the final check if the exit block is unreachable. 2534 if (!Final->Reachable) 2535 return; 2536 2537 // By default, we expect all locks held on entry to be held on exit. 2538 FactSet ExpectedExitSet = Initial->EntrySet; 2539 2540 // Adjust the expected exit set by adding or removing locks, as declared 2541 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2542 // issue the appropriate warning. 2543 // FIXME: the location here is not quite right. 2544 for (const auto &Lock : ExclusiveLocksAcquired) 2545 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2546 Lock, LK_Exclusive, D->getLocation())); 2547 for (const auto &Lock : SharedLocksAcquired) 2548 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2549 Lock, LK_Shared, D->getLocation())); 2550 for (const auto &Lock : LocksReleased) 2551 ExpectedExitSet.removeLock(FactMan, Lock); 2552 2553 // FIXME: Should we call this function for all blocks which exit the function? 2554 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2555 Final->ExitLoc, 2556 LEK_LockedAtEndOfFunction, 2557 LEK_NotLockedAtEndOfFunction, 2558 false); 2559 2560 Handler.leaveFunction(CurrentFunction); 2561 } 2562 2563 /// Check a function's CFG for thread-safety violations. 2564 /// 2565 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2566 /// at the end of each block, and issue warnings for thread safety violations. 2567 /// Each block in the CFG is traversed exactly once. 2568 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2569 ThreadSafetyHandler &Handler, 2570 BeforeSet **BSet) { 2571 if (!*BSet) 2572 *BSet = new BeforeSet; 2573 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2574 Analyzer.runAnalysis(AC); 2575 } 2576 2577 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2578 2579 /// Helper function that returns a LockKind required for the given level 2580 /// of access. 2581 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2582 switch (AK) { 2583 case AK_Read : 2584 return LK_Shared; 2585 case AK_Written : 2586 return LK_Exclusive; 2587 } 2588 llvm_unreachable("Unknown AccessKind"); 2589 } 2590